14,533 research outputs found

    Dynamical Encoding by Networks of Competing Neuron Groups: Winnerless Competition

    Get PDF
    Following studies of olfactory processing in insects and fish, we investigate neural networks whose dynamics in phase space is represented by orbits near the heteroclinic connections between saddle regions (fixed points or limit cycles). These networks encode input information as trajectories along the heteroclinic connections. If there are N neurons in the network, the capacity is approximately e(N-1)!, i.e., much larger than that of most traditional network structures. We show that a small winnerless competition network composed of FitzHugh-Nagumo spiking neurons efficiently transforms input information into a spatiotemporal output

    Classifiers With a Reject Option for Early Time-Series Classification

    Full text link
    Early classification of time-series data in a dynamic environment is a challenging problem of great importance in signal processing. This paper proposes a classifier architecture with a reject option capable of online decision making without the need to wait for the entire time series signal to be present. The main idea is to classify an odor/gas signal with an acceptable accuracy as early as possible. Instead of using posterior probability of a classifier, the proposed method uses the "agreement" of an ensemble to decide whether to accept or reject the candidate label. The introduced algorithm is applied to the bio-chemistry problem of odor classification to build a novel Electronic-Nose called Forefront-Nose. Experimental results on wind tunnel test-bed facility confirms the robustness of the forefront-nose compared to the standard classifiers from both earliness and recognition perspectives

    Odor-driven attractor dynamics in the antennal lobe allow for simple and rapid olfactory pattern classification

    Get PDF
    The antennal lobe plays a central role for odor processing in insects, as demonstrated by electrophysiological and imaging experiments. Here we analyze the detailed temporal evolution of glomerular activity patterns in the antennal lobe of honeybees. We represent these spatiotemporal patterns as trajectories in a multidimensional space, where each dimension accounts for the activity of one glomerulus. Our data show that the trajectories reach odor-specific steady states (attractors) that correspond to stable activity patterns at about 1 second after stimulus onset. As revealed by a detailed mathematical investigation, the trajectories are characterized by different phases: response onset, steady-state plateau, response offset, and periods of spontaneous activity. An analysis based on support-vector machines quantifies the odor specificity of the attractors and the optimal time needed for odor discrimination. The results support the hypothesis of a spatial olfactory code in the antennal lobe and suggest a perceptron-like readout mechanism that is biologically implemented in a downstream network, such as the mushroom body

    Fast and robust learning by reinforcement signals: explorations in the insect brain

    Get PDF
    We propose a model for pattern recognition in the insect brain. Departing from a well-known body of knowledge about the insect brain, we investigate which of the potentially present features may be useful to learn input patterns rapidly and in a stable manner. The plasticity underlying pattern recognition is situated in the insect mushroom bodies and requires an error signal to associate the stimulus with a proper response. As a proof of concept, we used our model insect brain to classify the well-known MNIST database of handwritten digits, a popular benchmark for classifiers. We show that the structural organization of the insect brain appears to be suitable for both fast learning of new stimuli and reasonable performance in stationary conditions. Furthermore, it is extremely robust to damage to the brain structures involved in sensory processing. Finally, we suggest that spatiotemporal dynamics can improve the level of confidence in a classification decision. The proposed approach allows testing the effect of hypothesized mechanisms rather than speculating on their benefit for system performance or confidence in its responses

    Gain control network conditions in early sensory coding

    Get PDF
    Gain control is essential for the proper function of any sensory system. However, the precise mechanisms for achieving effective gain control in the brain are unknown. Based on our understanding of the existence and strength of connections in the insect olfactory system, we analyze the conditions that lead to controlled gain in a randomly connected network of excitatory and inhibitory neurons. We consider two scenarios for the variation of input into the system. In the first case, the intensity of the sensory input controls the input currents to a fixed proportion of neurons of the excitatory and inhibitory populations. In the second case, increasing intensity of the sensory stimulus will both, recruit an increasing number of neurons that receive input and change the input current that they receive. Using a mean field approximation for the network activity we derive relationships between the parameters of the network that ensure that the overall level of activity of the excitatory population remains unchanged for increasing intensity of the external stimulation. We find that, first, the main parameters that regulate network gain are the probabilities of connections from the inhibitory population to the excitatory population and of the connections within the inhibitory population. Second, we show that strict gain control is not achievable in a random network in the second case, when the input recruits an increasing number of neurons. Finally, we confirm that the gain control conditions derived from the mean field approximation are valid in simulations of firing rate models and Hodgkin-Huxley conductance based models

    Data-driven modeling of the olfactory neural codes and their dynamics in the insect antennal lobe

    Get PDF
    Recordings from neurons in the insects' olfactory primary processing center, the antennal lobe (AL), reveal that the AL is able to process the input from chemical receptors into distinct neural activity patterns, called olfactory neural codes. These exciting results show the importance of neural codes and their relation to perception. The next challenge is to \emph{model the dynamics} of neural codes. In our study, we perform multichannel recordings from the projection neurons in the AL driven by different odorants. We then derive a neural network from the electrophysiological data. The network consists of lateral-inhibitory neurons and excitatory neurons, and is capable of producing unique olfactory neural codes for the tested odorants. Specifically, we (i) design a projection, an odor space, for the neural recording from the AL, which discriminates between distinct odorants trajectories (ii) characterize scent recognition, i.e., decision-making based on olfactory signals and (iii) infer the wiring of the neural circuit, the connectome of the AL. We show that the constructed model is consistent with biological observations, such as contrast enhancement and robustness to noise. The study answers a key biological question in identifying how lateral inhibitory neurons can be wired to excitatory neurons to permit robust activity patterns
    corecore