184 research outputs found

    MIDAS, prototype Multivariate Interactive Digital Analysis System for large area earth resources surveys. Volume 1: System description

    Get PDF
    A third-generation, fast, low cost, multispectral recognition system (MIDAS) able to keep pace with the large quantity and high rates of data acquisition from large regions with present and projected sensots is described. The program can process a complete ERTS frame in forty seconds and provide a color map of sixteen constituent categories in a few minutes. A principle objective of the MIDAS program is to provide a system well interfaced with the human operator and thus to obtain large overall reductions in turn-around time and significant gains in throughput. The hardware and software generated in the overall program is described. The system contains a midi-computer to control the various high speed processing elements in the data path, a preprocessor to condition data, and a classifier which implements an all digital prototype multivariate Gaussian maximum likelihood or a Bayesian decision algorithm. Sufficient software was developed to perform signature extraction, control the preprocessor, compute classifier coefficients, control the classifier operation, operate the color display and printer, and diagnose operation

    TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    Full text link

    Challenges and prospects for multi-chip microlens imprints on front-side illuminated SPAD imagers

    Full text link
    The overall sensitivity of frontside-illuminated, silicon single-photon avalanche diode (SPAD) arrays has often suffered from fill factor limitations. The fill factor loss can however be recovered by employing microlenses, whereby the challenges specific to SPAD arrays are represented by large pixel pitch (> 10 µm), low native fill factor (as low as ∼10%), and large size (up to 10 mm). In this work we report on the implementation of refractive microlenses by means of photoresist masters, used to fabricate molds for imprints of UV curable hybrid polymers deposited on SPAD arrays. Replications were successfully carried out for the first time, to the best of our knowledge, at wafer reticle level on different designs in the same technology and on single large SPAD arrays with very thin residual layers (∼10 µm), as needed for better efficiency at higher numerical aperture (NA > 0.25). In general, concentration factors within 15-20% of the simulation results were obtained for the smaller arrays (32×32 and 512×1), achieving for example an effective fill factor of 75.6-83.2% for a 28.5 µm pixel pitch with a native fill factor of 28%. A concentration factor up to 4.2 was measured on large 512×512 arrays with a pixel pitch of 16.38 µm and a native fill factor of 10.5%, whereas improved simulation tools could give a better estimate of the actual concentration factor. Spectral measurements were also carried out, resulting in good and uniform transmission in the visible and NIR

    Design Space Exploration for MPSoC Architectures

    Get PDF
    Multiprocessor system-on-chip (MPSoC) designs utilize the available technology and communication architectures to meet the requirements of the upcoming applications. In MPSoC, the communication platform is both the key enabler, as well as the key differentiator for realizing efficient MPSoCs. It provides product differentiation to meet a diverse, multi-dimensional set of design constraints, including performance, power, energy, reconfigurability, scalability, cost, reliability and time-to-market. The communication resources of a single interconnection platform cannot be fully utilized by all kind of applications, such as the availability of higher communication bandwidth for computation but not data intensive applications is often unfeasible in the practical implementation. This thesis aims to perform the architecture-level design space exploration towards efficient and scalable resource utilization for MPSoC communication architecture. In order to meet the performance requirements within the design constraints, careful selection of MPSoC communication platform, resource aware partitioning and mapping of the application play important role. To enhance the utilization of communication resources, variety of techniques such as resource sharing, multicast to avoid re-transmission of identical data, and adaptive routing can be used. For implementation, these techniques should be customized according to the platform architecture. To address the resource utilization of MPSoC communication platforms, variety of architectures with different design parameters and performance levels, namely Segmented bus (SegBus), Network-on-Chip (NoC) and Three-Dimensional NoC (3D-NoC), are selected. Average packet latency and power consumption are the evaluation parameters for the proposed techniques. In conventional computing architectures, fault on a component makes the connected fault-free components inoperative. Resource sharing approach can utilize the fault-free components to retain the system performance by reducing the impact of faults. Design space exploration also guides to narrow down the selection of MPSoC architecture, which can meet the performance requirements with design constraints.Siirretty Doriast

    Pion production and absorption in helium isotopes

    Get PDF
    Pion production and absorption mechanisms are studied in the exclusive and inclusive reactions (\u273)He(p,t(pi))p, and (\u273,4)He((pi)(\u27(+OR-)),p)X. The data for these two reactions were obtained from the experiments done at TRIUMF and LAMPF laboratories. The behavior of the data obtained in the exclusive reaction suggests deviations from the Impulse Approximation. The data of the inclusive reaction suggests the formation of a (DELTA) in the unobserved system X

    Exploration and Design of Power-Efficient Networked Many-Core Systems

    Get PDF
    Multiprocessing is a promising solution to meet the requirements of near future applications. To get full benefit from parallel processing, a manycore system needs efficient, on-chip communication architecture. Networkon- Chip (NoC) is a general purpose communication concept that offers highthroughput, reduced power consumption, and keeps complexity in check by a regular composition of basic building blocks. This thesis presents power efficient communication approaches for networked many-core systems. We address a range of issues being important for designing power-efficient manycore systems at two different levels: the network-level and the router-level. From the network-level point of view, exploiting state-of-the-art concepts such as Globally Asynchronous Locally Synchronous (GALS), Voltage/ Frequency Island (VFI), and 3D Networks-on-Chip approaches may be a solution to the excessive power consumption demanded by today’s and future many-core systems. To this end, a low-cost 3D NoC architecture, based on high-speed GALS-based vertical channels, is proposed to mitigate high peak temperatures, power densities, and area footprints of vertical interconnects in 3D ICs. To further exploit the beneficial feature of a negligible inter-layer distance of 3D ICs, we propose a novel hybridization scheme for inter-layer communication. In addition, an efficient adaptive routing algorithm is presented which enables congestion-aware and reliable communication for the hybridized NoC architecture. An integrated monitoring and management platform on top of this architecture is also developed in order to implement more scalable power optimization techniques. From the router-level perspective, four design styles for implementing power-efficient reconfigurable interfaces in VFI-based NoC systems are proposed. To enhance the utilization of virtual channel buffers and to manage their power consumption, a partial virtual channel sharing method for NoC routers is devised and implemented. Extensive experiments with synthetic and real benchmarks show significant power savings and mitigated hotspots with similar performance compared to latest NoC architectures. The thesis concludes that careful codesigned elements from different network levels enable considerable power savings for many-core systems.Siirretty Doriast

    Proceedings of the 2021 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    2021, the annual joint workshop of the Fraunhofer IOSB and KIT IES was hosted at the IOSB in Karlsruhe. For a week from the 2nd to the 6th July the doctoral students extensive reports on the status of their research. The results and ideas presented at the workshop are collected in this book in the form of detailed technical reports

    Proceedings of the 2021 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    2021, the annual joint workshop of the Fraunhofer IOSB and KIT IES was hosted at the IOSB in Karlsruhe. For a week from the 2nd to the 6th July the doctoral students extensive reports on the status of their research. The results and ideas presented at the workshop are collected in this book in the form of detailed technical reports

    Earth resources. A continuing bibliography with indexes, issue 23

    Get PDF
    This bibliography lists 226 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1979 and September 30, 1979. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis
    • …
    corecore