2,147 research outputs found

    Terrain analysis using radar shape-from-shading

    Get PDF
    This paper develops a maximum a posteriori (MAP) probability estimation framework for shape-from-shading (SFS) from synthetic aperture radar (SAR) images. The aim is to use this method to reconstruct surface topography from a single radar image of relatively complex terrain. Our MAP framework makes explicit how the recovery of local surface orientation depends on the whereabouts of terrain edge features and the available radar reflectance information. To apply the resulting process to real world radar data, we require probabilistic models for the appearance of terrain features and the relationship between the orientation of surface normals and the radar reflectance. We show that the SAR data can be modeled using a Rayleigh-Bessel distribution and use this distribution to develop a maximum likelihood algorithm for detecting and labeling terrain edge features. Moreover, we show how robust statistics can be used to estimate the characteristic parameters of this distribution. We also develop an empirical model for the SAR reflectance function. Using the reflectance model, we perform Lambertian correction so that a conventional SFS algorithm can be applied to the radar data. The initial surface normal direction is constrained to point in the direction of the nearest ridge or ravine feature. Each surface normal must fall within a conical envelope whose axis is in the direction of the radar illuminant. The extent of the envelope depends on the corrected radar reflectance and the variance of the radar signal statistics. We explore various ways of smoothing the field of surface normals using robust statistics. Finally, we show how to reconstruct the terrain surface from the smoothed field of surface normal vectors. The proposed algorithm is applied to various SAR data sets containing relatively complex terrain structure

    Weight-Aware Implicit Geometry Reconstruction with Curvature-Guided Sampling

    Full text link
    Neural surface implicit representations offer numerous advantages, including the ability to easily modify topology and surface resolution. However, reconstructing implicit geometry representation with only limited known data is challenging. In this paper, we present an approach that effectively interpolates and extrapolates within training points, generating additional training data to reconstruct a surface with superior qualitative and quantitative results. We also introduce a technique that efficiently calculates differentiable geometric properties, i.e., mean and Gaussian curvatures, to enhance the sampling process during training. Additionally, we propose a weight-aware implicit neural representation that not only streamlines surface extraction but also extend to non-closed surfaces by depicting non-closed areas as locally degenerated patches, thereby mitigating the drawbacks of the previous assumption in implicit neural representations.Comment: 9 page

    Modelling the human perception of shape-from-shading

    Get PDF
    Shading conveys information on 3-D shape and the process of recovering this information is called shape-from-shading (SFS). This thesis divides the process of human SFS into two functional sub-units (luminance disambiguation and shape computation) and studies them individually. Based on results of a series of psychophysical experiments it is proposed that the interaction between first- and second-order channels plays an important role in disambiguating luminance. Based on this idea, two versions of a biologically plausible model are developed to explain the human performances observed here and elsewhere. An algorithm sharing the same idea is also developed as a solution to the problem of intrinsic image decomposition in the field of image processing. With regard to the shape computation unit, a link between luminance variations and estimated surface norms is identified by testing participants on simple gratings with several different luminance profiles. This methodology is unconventional but can be justified in the light of past studies of human SFS. Finally a computational algorithm for SFS containing two distinct operating modes is proposed. This algorithm is broadly consistent with the known psychophysics on human SFS

    How Does the Cerebral Cortex Work? Developement, Learning, Attention, and 3D Vision by Laminar Circuits of Visual Cortex

    Full text link
    A key goal of behavioral and cognitive neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how the visual cortex sees. Visual cortex, like many parts of perceptual and cognitive neocortex, is organized into six main layers of cells, as well as characteristic sub-lamina. Here it is proposed how these layered circuits help to realize the processes of developement, learning, perceptual grouping, attention, and 3D vision through a combination of bottom-up, horizontal, and top-down interactions. A key theme is that the mechanisms which enable developement and learning to occur in a stable way imply properties of adult behavior. These results thus begin to unify three fields: infant cortical developement, adult cortical neurophysiology and anatomy, and adult visual perception. The identified cortical mechanisms promise to generalize to explain how other perceptual and cognitive processes work.Air Force Office of Scientific Research (F49620-01-1-0397); Office of Naval Research (N00014-01-1-0624

    Approximating Signed Distance Field to a Mesh by Artificial Neural Networks

    Get PDF
    Previous research has resulted in many representations of surfaces for rendering. However, for some approaches, an accurate representation comes at the expense of large data storage. Considering that Artifcial Neural Networks (ANNs) have been shown to achieve good performance in approximating non-linear functions in recent years, the potential to apply them to the problem of surface representation needs to be investigated. The goal in this research is to exploring how ANNs can effciently learn the Signed Distance Field (SDF) representation of shapes. Specifcally, we investigate how well different architectures of ANNs can learn 2D SDFs, 3D SDFs, and SDFs approximating a complex triangle mesh. In this research, we performed three main experiments to determine which ANN architectures and confgurations are suitable for learning SDFs by analyzing the errors in training and testing as well as rendering results. Also, three different pipelines for rendering general SDFs, grid-based SDFs, and ANN based SDFs were implemented to show the resulting images on screen. The following data are measured in this research project: the errors in training different architectures of ANNs; the errors in rendering SDFs; comparison between grid-based SDFs and ANN based SDFs. This work demonstrates the use of using ANNs to approximate the SDF to a mesh by learning the dataset through training data sampled near the mesh surface, which could be a useful technique in 3D reconstruction and rendering. We have found that the size of trained neural network is also much smaller than either the triangle mesh or grid-based SDFs, which could be useful for compression applications, and in software or hardware that has a strict requirement of memory size
    • …
    corecore