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ABSTRACT 

Author: Zeng, Zhe. M.S. 
Institution: Purdue University 
Degree Received: May 2018 
Title: Approximating Signed Distance Field to a Mesh by Artifcial Neural Networks 
Major Professor: Tim McGraw 

Previous research has resulted in many representations of surfaces for rendering. 

However, for some approaches, an accurate representation comes at the expense of large 

data storage. Considering that Artifcial Neural Networks (ANNs) have been shown to 

achieve good performance in approximating non-linear functions in recent years, the 

potential to apply them to the problem of surface representation needs to be investigated. 

The goal in this research is to exploring how ANNs can effciently learn the Signed 

Distance Field (SDF) representation of shapes. Specifcally, we investigate how well 

different architectures of ANNs can learn 2D SDFs, 3D SDFs, and SDFs approximating a 

complex triangle mesh. 

In this research, we performed three main experiments to determine which ANN 

architectures and confgurations are suitable for learning SDFs by analyzing the errors in 

training and testing as well as rendering results. Also, three different pipelines for 

rendering general SDFs, grid-based SDFs, and ANN based SDFs were implemented to 

show the resulting images on screen. 

The following data are measured in this research project: the errors in training 

different architectures of ANNs; the errors in rendering SDFs; comparison between 

grid-based SDFs and ANN based SDFs. This work demonstrates the use of using ANNs 

to approximate the SDF to a mesh by learning the dataset through training data sampled 

near the mesh surface, which could be a useful technique in 3D reconstruction and 

rendering. We have found that the size of trained neural network is also much smaller than 

either the triangle mesh or grid-based SDFs, which could be useful for compression 

applications, and in software or hardware that has a strict requirement of memory size. 
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CHAPTER 1. INTRODUCTION 

1.1 Statement of Problem 

Ray tracing is a computer graphics technique for generating images by simulating 

ray propagation in a 3D scene. It is widely used for rendering photo-realistic images by 

renderers like Mental Ray, for example, in applications such as indoor scenes, industrial 

design, and animation. However it is more expensive to render a complex mesh in ray 

tracing compared to other rendering technique like rasterization. Consider the problem of 

rendering a triangle mesh that has n triangles by a camera that shoots m rays as an 

example. In a trivial ray tracing algorithm, it must solve the intersections between m rays 

and n triangles, which makes the time complexity of the algorithm O(m× n). Many 

methods have been presented to optimize it, for instance, querying the triangles using a 

designed binary tree by direction of the ray can certainly reduce the complexity to 

O(m × logn), but the coeffcient could still be too large to render meshes with more 

triangles. Another example is rendering a surface by ray marching with a precomputed 

grid-based SDF. Unlike ray tracing a triangle mesh, the algorithm moves along the ray 

iteratively by the shortest distance to the surface. For any closed triangle mesh, the shorted 

distances can be represented as SDF using methods like level-sets which are precomputed 

before rendering. Since the time complexity for querying the precomputed data is O(1) 

and the number of iterations is also a constant for a given bounded space, the complexity 

of this method is O(n), which is a good improvement compared to other methods 

described above. However, to make the rendering accurate, many samples of the shortest 

distance must be precomputed and stored, which makes the storage complexity 

O(x × y × z), where x, y, and z are the dimensions of the voxel grid. 

Recently, researchers have been using ANNs to approximate non-linear 

relationships by learning from samples. For example, Ren et al. (2013) used a Fully 

Connected Neural Network (FCNN) to learn the Bidirectional Refectance Distribution 
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Function (BRDF) and got a good results on reconstructing indirect illumination. So the 

possibility of learning the SDF to a mesh using ANNs is worthwhile to be explored. 

1.2 Scope 

The main focus of this research is to investigate if ANNs can be applied to the 

problem of approximating the SDF to a mesh. In this research, different architectures of 

ANNs were trained to learn different types of SDFs. Errors in training as well as 

rendering will be analyzed and discussed in the following chapters. 

Topics covered in this research are ray tracing technique, ray marching technique 

with SDFs or grid-based SDFs, rendering triangle meshes, Generative Adversarial 

Networks (GAN) training and Convolutional Neural Netowrks (CNNs) training. Other 

surface representations, rendering techniques, methods of generating the SDF, and other 

ANN architectures are outside the scope of this work. 

1.3 Signifcance 

Ray tracing is a computationally-demanding technique for rendering 

photo-realistic images in 3D computer graphics. One approach to optimizing it is to use 

approximations rather than exact computations. ANNs are known to be capable of 

approximating a continuous function with a single hidden layer (Csáji, 2001). Although 

many methods like grid-based SDF have been used to do approximation in the past few 

years (Bærentzen & Aanæs, 2002), the possibilities of applying ANNs to the problem 

still need to be explored. Moreover, many previous researches in the computer graphics 

area have already used ANNs to, for example, do relighting of an image in screen-space 

(Ren et al., 2015). So it is useful to explore how ANNs can help solve problems in 3D 

space. Specifcally, in this research, the ANNs can learn the SDF to a triangle mesh only 

through some samples near its surface, the dataset of which is much easier to prepare than 

other approaches that will be presented later. Also, the ANN based SDF can still be used 
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to as a general SDF, consequently, it does not have problem in rendering transparent 

surface which is diffcult for the methods from some previous works. 

1.4 Research Question 

The questions of research in this study is: 

• Can ANNs approximate 2D signed distance functions? 

• Can ANNs approximate 3D signed distance functions? 

• Can ANNs approximate the signed distance feld to a mesh? 

1.5 Assumptions 

This research is done using the following assumptions: 

• The ray marching approach with signed distance functions can create a plausible 

rendering of a surface 

• Triangle meshes used in the research are closed 

• Level-set method can generate a correct SDF to a closed triangle mesh 

1.6 Limitations 

The following aspects limit this research: 

• Large scene will not be tested in this research 

• Complex shading, lighting, and unrelated optimization will not be considered 

• SDF applies only to closed surfaces 

• ANNs must be retrained if the SDF changes 
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1.7 Delimitations 

The delimitations for this study include: 

• This research will not investigate all types of distance functions 

• Training and rendering data will be collected under specifed environment 

• This research will only test with specifed types of triangle meshes and the distance 

functions 

• Since this is a modeling approach, rendering time is not measured 

1.8 Defnitions 

We defne the following terms which appear throughout this thesis: 

Artifcial Neural Network: Artifcial Neural Networks (ANNs) are a form of 

connectionism that can learn to do tasks by considering examples without any 

human programming (Medler, 1998). 

Generative Adversarial Network: Generative Adversarial Networks (GANs) are a form of 

ANN introduced by Goodfellow et al. (2014), which are implemented by a system 

of two ANNs under a contesting zero-sum game condition. 

Ray Marching: Ray marching is an algorithm to approximate the intersection between a 

viewing ray and surface. In ray marching, the ray is cast from the eye then marches 

step by step. When the ray is within an acceptable distance threshold from the 

surface, the algorithm considers it as an intersection. 

Signed Distance Function: Signed distance function takes coordinates of a point as input 

and returns the shortest distance between the point and a surface. The sign of SDF 

indicates whether the point is inside or outside the surface. Signed distance 

functions can be effciently rendered using ray marching algorithm. 
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Grid-based Signed Distance Field: Grid-based Signed Distance Field is a discretized 

SDF stored on a voxel grid. For each voxel in the grid, the shortest distance between 

the voxel and the surface is computed and stored. Grid-based SDF is generated 

using a level-set method. 

Triangle Mesh: Triangle mesh is a commonly-used data structure in 3D computer 

graphics to represent surfaces. In a triangle mesh, surfaces are connected by 

triangles with shared vertices and edges that can represent shape a wide range of 

models, for example, animals, plants, terrains. 

1.9 Summary 

This chapter introduced the research by outlining the statement of the problem, 

research questions, signifcance of this work, defnitions of key terms, assumptions, 

limitations, and delimitations. In the next chapter, a review of relevant literatures will be 

provided. 
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CHAPTER 2. REVIEW OF RELEVANT LITERATURE 

This chapter provides a review of existing studies that are relevant to this research. 

2.1 Artifcial Neural Networks (ANNs) 

An ANN is a form of connectionism that can learn to do tasks by considering 

examples without any human programming (Medler, 1998). ANNs recently become a 

very active area of research, though the history of it can be traced back before the 

invention of computers. In 1943, McCulloch and Pitts (1943) developed the frst model of 

ANN and tested logic functions like a or b on it, which is still a popular test case. In 1969, 

Minsky, Papert, and Bottou (2017) mathematically demonstrated that an ANN with only 

an input layer and output layer can learn limited things. Although some major innovations 

like multi-layered NNs, which are called deep today, made it possible to solve complex 

problems, there was limited knowledge about how to train it at that time (Rumelhart & 

McClelland, 1988). 

Later, a method called ’back-propagation’ for training deep ANNs was proposed 

by Rumelhart, Hinton, and Williams (1986), and it has become a very popular training 

method. In 2012 a project based on it beat the most advanced Image Recognition (IR) 

system at that time Krizhevsky, Sutskever, and Hinton (2012). Moreover, the revolution of 

computing ability in both software and hardware has made complex mathematical 

calculations much faster, which has led to benefts in training large ANNs. 

A simple neuron, as shown in Figure 2.1, takes the input of a vector with n 

dimensions and forwards one output. The middle node, which is called neuron, has two 

types of operation: training and using. In training operation, the neuron is desired to learn 

a specifc pattern in the input data. In using operation, the neuron will only forward the 

output while itself not being affected. 

After years of research, there are many different ANN architecture - ways of 

arranging and connecting groups of neurons. Two typical types of architectures are listed 

below: 
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Figure 2.1. A Simple Neuron (Stergiou & Siganos, n.d.) 

• Feed-forward Neural Networks (FFNNs). As the name indicates, such networks 

only have one direction, which means the input tensor is directly forwarded to 

output layer, and the result never affects the same layer. A typical architecture of 

FFNN is shown in Figure 2.2, which happens to be a fully-connected Neural 

Network (FCNN). 

• Feedback Neural Networks (FNNs). Compared to FFNNs, nodes in feedback neural 

networks may have feedback loops from one layer to a previous layer. 

The number of layers is another important characteristic of ANNs. A deep neural 

networks, which has multiple hidden layers, is better at prediction than ANN with single 

input and output layers (Svozil et al., 1997). A basic ANN usually has an input layer, an 

output layer, and multiple layers between them, which are called ’hidden layers’. In an 

ANN, each layer consists of multiple nodes with a binding weight. A network is formed 

when nodes in one layer are connected to the nodes in a neighboring layer. 

Recently, ANNs have been widely applied to problems in computer vision, 

artifcial intelligence, mathematics, statistics as well as computer graphics. In 3D 

computer graphics, ANNs have been used to do global illumination in real-time while 

achieving the same quality of rendering as offine rendering. For example, Ren et al. 

(2013) proposed a method of using an FCNN to approximate radiance regression 

functions of global illumination. This research trained a FCNN to learn the nonlinear 

coherence in the indirect illumination data while keeping the FCNN both compact and fast 
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Figure 2.2. Feed-forward Neural Network (Svozil et al., 1997) 

to use. Researchers fed the network data that were precomputed offine in ray tracing, 

which helped the FCNN learn to do similar illumination in real-time for the same scene. 

Their research fnally achieved similar appearance to offine rendering, and the time 

performance was acceptable for being used in real-time rendering (Ren et al., 2013). 

The rendering pipeline of their work is based on a multi-pass deferred shading 

method. In the frst pass, the scene is rendered using a general rasterization algorithm. 

Then in the second pass, the indirect illumination can be predicted per pixel by FCNN 

with the existing G-buffers from the frst pass including normals, texture colors, light 

directions, and view directions. The fnal image is generated by combining the two passes 

together (Ren et al., 2013). 

The equation learned by FCNN is derived from refectance equation (Cohen & 

Wallace, 2012): 
t ts = s (xp,v, l,n(xp),a(xp)) (2.1)a 
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Where st is the color channel of the indirect illumination, xp is the surface point, v 

is the view direction, l is the light position, n(xp) is the normal at xp, and a(xp is the 

texture mapped color at xp. 

Furthermore, based on this work, Ren et al. (2015) presented another method to do 

relighting on real photos. Similar to their frst work, the idea behind it is to let FCNN to 

approximate light transport matrix M with the input of incident radiance L and outgoing 

radiance I. The equation can be presented as Ng, Ramamoorthi, and Hanrahan (2003): 

I = ML (2.2) 

To obtain more coherent relationships, the input 4D vector is augmented with the 

average color of a pixel over all the captured images. The difference from their previous 

work is they trained multiple FCNNs for different subsets of the input images in an 

Adaptive Fuzzy Clustering (AFC) method. As shown in Figure 2.3, the AFC consists of 

three clusters, which stands for three base ANNs, and all pixels in the image are 

distributed to one or more FCNNs with the nearest distance. For testing, if a pixel drops to 

several FCNNs, which the researchers named ’NN ensemble’, the result is the average of 

the ensemble. The datasets used in this research were generated by capturing 200 photos 

of the Toolset scene, 300 photos of the Horse scene, and 400 photos of the Indoor scene 

with a real camera and real light sources. Then the researchers train each FCNN in the 

similar manner to their previous work (Ren et al., 2015). 

For another example, Tompson, Schlachter, Sprechmann, and Perlin (2016) 

presented a method using CNNs to accelerate Eulerian fuid simulation. The idea behind it 

is to train the ANN to learn Poissons equation, and apply conjugate gradient method to 

solve for pressure projection. 

Even before ANNs were applied in computer graphics, a similar early theory 

called data-driven rendering (DR) approaches were used. For example, Blanz and Vetter 

(1999) presented a method to reconstruct 3D face model from a simple photo of face 

based on a database of 3D faces. For another example, Sato, Morita, Dobashi, and 
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Figure 2.3. This AFC consists of three nasic NNs, each pixel in the image is assigned to 

the NN with nearest distance (Ren et al., 2015) 

Yamamoto (2012) presented a model that can add details to low resolution fre with the 

data of high resolution fre data. 

Compared to approaches listed above, this research focuses more on exploring 

hidden relationships in 3D space by letting FCNNs, GANs and CNNs earn general SDFs 

and SDFs to a complex mesh. 

2.2 Convolutional Neural Networks (CNNs) 

Like most other ANNs, CNNs are a class of neural network that are trained with 

back-propagation algorithm. The difference is CNNs use a variation of multilayer 

perceptrons inspired by biological processes to recognize the pattern from pixel image 

with minimal preprocessing (LeCun et al., 2015; Matsugu, Mori, Mitari, & Kaneda, 

2003). Similar to a FCNN, a typical CNN consists of an input layer, multiple hidden 

layers, and an output layer, but the hidden layers consist of convolutional layers rather 

than fully connected layers (LeCun, Bengio, et al., 1995). Figure 2.4 shows a schematic 

of a very deep CNN named VGG-16, which is known for achieving top 5 test accuracy in 

ImageNet (Simonyan & Zisserman, 2014). 

In recent years, CNNs have been used in object detection, natural language 

processing, and games (Maturana & Scherer, 2015; Shen, He, Gao, Deng, & Mesnil, 
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Figure 2.4. Architecture of VGG-16 (Blier, 2016) 

2014; Silver et al., 2016). In computer graphics, Nalbach et al. (2017) proposed a 

method of doing GI with a U-shaped network architecture, also known as U-net, CNN. 

The idea behind their work is to let the CNN learn how to synthesize images of required 

GI effects from data in deferred shading buffers. Different from what Ren et al. (2013) 

did, they trained the ANN to learn a target equation. The researchers focused on 2D 

screen space directly by taking advantage of the CNN. As mentioned in their paper, 

approximating the appearance from attributes of the image is actually a reverse process of 

semantic segmentation, which was demonstrated in by previous works in computer vision 

area (Long, Shelhamer, & Darrell, 2015; Nalbach et al., 2017). 

Nalbach et al. (2017) implemented U-Net fully convolutional networks (FCNs) for 

their experiments, which are widely used in biomedical image segmentation area (Long et 

al., 2015). FCN is a type of CNN that replaces fully connected layers at the end of the 

architecture by convolution layers, which is better at doing dense predictions for per-pixel 

tasks. In their case, as shown in Figure 2.5, the architecture of an FCN consists of an input 

layer, hidden layers, and an output layer. The input takes inputs from deferred shading 

buffers and the output layer generates the synthesized image. The hidden layers consist of 

two parts, in the left branch the spatial resolution of inputs are reduced level by level with 
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a 2 × 2 mean pooling, in the right branch the resolution is recovered by a bilinear 

up-sampling. In each level of the branch, an activation function of leaky ReLU are used. 

Screen space effects including ambient occlusion (AO), depth-of-dield (DoF), and 

anti-aliasing were examined in their experiments. 61,000pairs of deferred shading buffers 

and label images were used for training, validation, and testing. Different resolution of 

images were applied for different experiments, for example, images with 512 × 512pixels 

were used for AO, and 256 × 256pixel for all other effects. In total, 54,000 images were 

used to train, 6,000 for validation, and 1,000 for testing. The images for training and for 

validation shared the same set from 10 scenes, while images for testing came from 4 

unseen scenes. These images were sampled randomly from the scenes captured by a 

camera with a fxed feld-of-view (FoV). The deferred shading buffers were rendering 

using rasterization, the label image were rendered using ray tracing. A special loss 

function based on structural similarity (SSIM) index Zhao, Gallo, Frosio, and Kautz 

(2015) was used for training, which compared corresponding 8 × 8px patches from the 

output to the ground truth. The structural dissimilarity (DDSSIM) was used as fnal loss, 

which was (1 − SSIM)/2.0. The weights were updated by a general stochastic gradient 

descent (SGD) algorithm. The results of their research accurately reproduced most 

screen-space effects and have acceptable real-time rendering speed performance. One 

drawback in the work is the training time is very long even with very low resolution. 

Another problem is that the training datasets are hard to prepare. Additionally, no screen 

space effects depending on transparency, like refraction or fresnel refection were 

provided Nalbach et al. (2017). 

1D CNNs are also explored as one of the main approaches in this research to 

approximating 2D SDFs. A comparison between the performance of different depths of 

CNNs as well as the performance between CNNs and other frameworks are explored in 

this thesis. 
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Figure 2.5. U-Net FCN for GI. Input block is in grey, output block is in black. Resolution 

of imaged are reduced in the left and recovered in the right. (Nalbach et al., 2017) 

2.3 Generative Adversarial Networks (GANs) 

The framework of GANs was proposed by Goodfellow et al. (2014), which 

introduced a new method to estimate generative model through an adversarial process. 

The framework is a system of two ANN models: a generative model G that captures the 

data distribution and a discriminative model D that is used to judge the training procedure 

for G. Both G and D are trained simultaneously corresponding to a zero-sum game where 

G is trained with the response from D and D is trained to learn how close the output from 

G is to ground truth. The previous frameworks of ANNs achieved striking success in 

mapping high-dimensional and rich sensory inputs to a class label (Hinton et al., 2012; 

Krizhevsky et al., 2012) while having diffculty in approximating many intractable 

computations like maximum likelihood estimation by taking advantage of the generative 

context (Goodfellow et al., 2014). 

GANs have been used to generate natural images, super resolution, and to 

synthesize complex textures (Denton, Chintala, Fergus, et al., 2015; Ledig et al., 2016; 

Ulyanov, Lebedev, Vedaldi, & Lempitsky, 2016). In 3D computer graphics, Thomas and 

Forbes (2017) used a GAN to synthesis globally-illuminated images based a directional 

lighting buffer and G-buffers including the depth map, the color map, and the normal map. 
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In their research, system of the GAN consists of a U-net CNN as the G and a CNN as the 

D. Figure 2.6 shows the schematic of their G model (top) and D model (bottom). The G 

consists of an input layer that is fed by G-buffers and directional lighting buffer, eight 

convolutional layers with leaky ReLu as activation function, eight deconvolutional layers 

with ReLu as its activation function, and an output layer that generates the result. The D 

network consists of an input layer which takes G-buffers, directional lighting buffer, and 

ground truth or generated images from G Model as inputs, fve convolutional layers with 

leaky ReLu as the activation function, and the output layer followed by the sigmoid 

function. From the fgure, some details of indirect illumination as well as soft shadows 

can be clearly observed from their synthesized image (Thomas & Forbes, 2017). 

Figure 2.6. Generative Adversarial Networks Used to Approximate Global Illumination 

(Thomas & Forbes, 2017) 

GANs are also applied as one of the main approaches in this research to 

approximating SDFs due to their good ability to learn data distribution from generated 

results, which could be helpful because the inputs of SDFs are low-dimensional with less 

explicit information. 
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2.4 Ray Tracing 

Ray tracing (RT) is a rendering technique which traces the propagation of light 

rays in a scene. RT is widely used in many areas like computer vision, computer graphics, 

and telecommunication. The frst ray tracing algorithm in computer graphics was 

presented by Appel (1968). Compared to ray launching algorithm, RT only needs to track 

the rays that hit the image plane of a virtual camera, which reduces a large amount of the 

computational effort. 

Figure 2.7 shows how RT works. Typically, multiple rays are shot from the camera 

to each pixel on the image plane, and then into the scene. For each ray, the algorithm will 

compute the intersection with the surface. If the ray does not hit anything, a default color 

will be set for the pixel. If it hits a surface, the ray may bounce along another direction, 

which depends on the normal at the hit point and the maximum bounce count. Before 

bouncing, the color of the ray will be updated by the color of the hit point. 

Figure 2.7. The ray tracing algorithm (Henrik, 2008) 

Because it is an algorithm for simulating ray propagation, it can also be used to 

simulate light in the real world, which is one of the main reasons RT is often used in 
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rendering realistic phenomenon over other rendering methods such as scan-line 

rasterization. Besides, it is simpler in RT to implement some complex effects than in 

rasterization. For example, in rasterization, shadows are often computed using shadow 

maps, which require the scene to be render from the light position to a depth map, also 

known as the shadow map. Then for each valid pixel of the view camera, the scene 

coordinates are transformed to light-space for depth testing. However, in ray tracing, it is 

very straightforward to do this by using a shadow ray. As shown in Figure 2.7, a ray is 

cast from the position of the valid pixel to the light source. If the ray hits any surface in 

the scene, the pixel is in shadow. 

Regardless of these advantages, ray tracing algorithm has higher computational 

requirements than rasterization. Because in rasterization, many computations can be 

shared for coherent data, while ray tracing needs to do it from scratch for any new ray. 

These disadvantages make ray tracing more popular in industrial design, animation, and 

visual effects where images can be rendered slowly, as opposed to 3D games, and virtual 

reality (VR) which have strict real-time requirements. 

In computer graphics, researchers have proposed many new techniques to optimize 

ray tracing. The frst approach for real-time ray tracing was developed by Mike Muuss in 

1986, which achieved an impressive performance at that time for multiple frames per 

second. Since then, many projects like OpenRT, NVIDIA’s OptiX , and OpenRL were 

released as well as some special-purpose hardware like a ray processing unit for intensive 

operations developed by researchers at Saarland University. 

A common approach in these projects is to optimize intersection computation 

between rays and a mesh. For instance, Carr, Hoberock, Crane, and Hart (2006) used a 

threaded bounding volume hierarchy built from a geometry image to quickly determine 

intersections. Another example is an algorithm presented by Möller and Trumbore (2005) 

to fnd ray-triangle intersections by using a special ray constructed from the original ray. 
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2.5 Triangle Mesh 

This section is organized as follows: a brief review of the data structure of triangle 

meshes, and a review of a conventional algorithm of solving ray-mesh intersection. 

The triangle mesh is a common type of mesh in 3D computer graphics. In triangle 

meshes, surfaces are connected by triangles with shared vertices and edges that can 

represent shapes for a wide range of models, for example, animals, plants, terrains, as 

shown in Figure 2.8. One advantage of such a data structure is that it can save space for 

storing shared vertices as well as save time for operating on them. It is useful when the 

mesh is very large with many faces and shared edges. 

Figure 2.8. Triangle Mesh for Dolphin (Chrschn, 2007) 

Many standards have been proposed by different organizations for storing triangle 

meshes, for example, Wavefront OBJ (.obj), Autodesk FBX Format (.fbx), and Polygon 

File Format (.ply). Most of them are encoded in binary or American Standard Code for 

Information Interchange (ASCII). A basic triangle mesh fle consists of position 

coordinates, color value, texture coordinates, normal vector, number of vertices, number 

of triangles, and path of textures. 

Triangle meshes are also popular in ray tracing, and many algorithms are designed 

to support them. For example, one indirect use of it is deriving SDF from the mesh, then 

using the SDF in rendering, which will be discussed in more detail later. The direct use of 
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the mesh is computing the ray-mesh intersection. To fnd the intersection, a naive method 

could be calculating the intersection between the ray and all the triangles in that mesh 

(Appel, 1968). A better algorithm used for computing intersection between ray and 

triangle is the Mller-Trumbore (MT) algorithm Möller and Trumbore (2005). Although 

the MT algorithm was presented 20 years ago, it is still used as a benchmark for many 

optimization algorithms. In the MT algorithm, barycentric coordinates are used for points 

on the triangle, which satisfy the following equation, where P is the coordinate of the 

point on triangle, and A, B, C are the vertices of the triangle: 

P = u × A + v× B + w ∗×C. (2.3) 

If the hit point is inside of the triangle, then u, v, and w must be in the following 

interval: 

0 ≤ u,v,w ≥ 1 (2.4) 

And satisfy the following equation: 

u + v + w = 1 (2.5) 

Additionally, points on a ray satisfy the following equation, where O is rays origin, 

D is its normalized direction, and t is how far the ray is traversed: 

P = O + t × D. (2.6) 

Consequently, the intersection between them can be defned as a system of linear 

equations, where t, u, and v are the solution of intersection: ⎤⎡⎤⎡ ⎢⎢⎢⎣ 

−D 

B − A 
⎥⎥⎥⎦+ 

⎢⎢⎢⎣ 

t 

u 
⎥⎥⎥⎦ 
= B − A (2.7) 

C − A v 
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In ray marching, intersection can be calculated indirectly by SDFs, which will be 

reviewed in the next section. 

2.6 Ray Marching and Signed Distance Functions 

This section reviews literature related to ray marching and signed distance 

functions. 

2.6.1 Ray Marching 

Ray marching is a type of rendering technique based on ray casting algorithm used 

to compute intersection between a ray and surface. Very similar to ray tracing, rays are 

sent from camera through the image plane into the scene. A main difference between 

them is how the intersection is found. Typically, for each path tracing, the ray tracing 

technique computes the intersection between the ray and the surface directly, while in ray 

marching, a point is moved along the ray direction step by step. At each step it is 

determined whether the point is on the surface based on the distance to the surface. 

Ray marching has been applied to render photo-realistic images and screen-space 

effects for multi-pass rendering. For example, Zhou et al. (2008) presented an algorithm 

named compensated ray marching for rendering smoke in real-time. 

2.6.2 Signed Distance Function 

In ray marching, SDF is used to get the shortest distance from a voxel to the 

surface as well as determine if the voxiel is inside or outside the surface. Ray marching 

can render SDF to a surface very effciently. Figure 2.9 shows how a point on the ray 

approaches the surface. Firstly, for P0, the shortest distance is computed by the SDF, 

which is the distance between P0 and the top vertex of the triangle at the bottom, so the 

point will be moved to the position of P1, and because P1 does not hit the surface, similar 

moves and checks are repeated from P1 through P4. Finally at P4, the marching could stop 
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as it hits the surface. Surface intersection is assumed to happen when the distance to the 

surface is less than a small positive threshold to make the algorithm run effciently, . 

Figure 2.9. SDF in Ray Marching (Donnelly, 2005) 

Similar to ray tracing, explicit formulas can also be used as SDF for modeling 

either 2D or 3D shapes. For example the shortest distance from p to a sphere is the 

distance between p and the sphere’s origin minus the radius. And for a union of two 

shapes, the shortest distance the shorter distance of each shape. As shown in Figure 2.10, 

a scene consisting of multiple shapes can be rendered by a map of similar formulas. 

In this research we intend to train ANNs to learn both 2D SDFs and 3D SDFs. For 

all 2D SDFs and part of 3D SDFs, the datasets are generated using explicit formulas. For 

learning 3D SDFs to a triangle mesh, the dataset is generated from a grid-based SDF 

created using level-set methods, which is dicussed in the next section. 

2.7 Level-set Method and Grid-based Signed Distance Field 

The level-set method is a technique for using implicit functions to do numerical 

analysis of surfaces and shapes, which was proposed by Osher and Sethian (1988). The 

technique can easily track the shapes by using a fxed Cartesian grid without 

parameterizing them. In the grid, the closed curve Γ is represented by a level-set function 



21 

Figure 2.10. Primitives in Ray Marching by Basic SDFs (Quilez, 2013) 

ϕ when ϕ = 0. Moreover, the value of ϕ for points outside of Γ is negative, for points 

inside of Γ is positive Osher and Sethian (1988). 

The level-set method has been used in many computer vision and computer 

graphics applications, including image segmentation, simulation of complex water 

surface, volume segmentation, and shape modeling (Bærentzen & Christensen, 2002; 

Enright, Marschner, & Fedkiw, 2002; Malladi, Sethian, & Vemuri, 1995; Whitaker, 

Breen, Museth, & Soni, 2001). The technique is not varied too much when applied to the 

problem of generating the SDF to a shape. Such methods often involve a scan conversion 

step for calculating the signed shortest distance to the surface for each voxels in the grid. 

Bærentzen and Aanæs (2002) proposed a different level-set based method without 

scan conversion to generate SDF from a triangle mesh. The frst step of their method is 

calculating the shortest distance for each voxel and recording information of the closet 

point. The shortest distance is computed by simply comparing the distances between the 

voxel to all triangles of the mesh. The sign is determined in the second step, if the stored 

closest feature is a vertex or an edge, a precomputed angle weighted normal (Séquin, 

1987) will be used to determine whether a voxel is inside or outside. If it is a face, then the 

face normal will be used (Bærentzen & Aanæs, 2002). 
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In the following experiments approximating 3D SDF to a mesh, the grid-based 

SDF technique is used to compare between ANN approaches. The grid-based SDF is 

generated from a triangle mesh of bunny. 

2.8 Summary 

This chapter provided a review of the literature that is relevant to this research. 

Ray tracing is a rendering technique that casts a ray from the eye and computes the 

intersection with the scene. The corresponding pixel that the ray passed through is usually 

drawn with color of this ray. Many previous algorithms are presented to improve this 

process, including hardware acceleration and precomputation. This research is about 

training ANNs to learn SDFs for use in ray marching. The goal is to learn the relationship 

between points and nearest distance to a surface in bounded 3D space. 

The next chapter provides detailed methodology used in this research. 
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CHAPTER 3. FRAMEWORK AND METHODOLOGY 

This chapter introduces the framework of the application involved in this research, 

including the rendering pipeline and the experimental environment. Also, our hypotheses, 

procedures for the experiments, and description of the algorithms, variables, and 

measurements are included in this chapter. 

3.1 Hypotheses 

The hypotheses of this work are listed below: 

• ANNs can approximate 2D signed distance functions 

• ANNs can approximate 3D signed distance functions 

• ANNs can approximate the signed distance feld to a mesh 

3.2 Procedures for the experiments 

The experiments are designed as below: 

1. Use multiple ANN architectures to learn 2D SDFs and compare the result to the 

ground truth 

2. Apply the optimal confguration of ANN from previous experiment and assess the 

ability of the network to learn 3D SDFs and compare the result to the ground truth 

3. Apply the optimal confguration from the previous experiment to the SDF to a 

triangle mesh and compare the result to the ground truth 

3.3 Variables 

This section introduces control variables, independent variables, and dependent 

variables used in the experiments. 
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3.3.1 Control Variables 

Control variables used in the experiments are listed below: 

• Confguration of the virtual camera used to display the surface 

• The training data: SDFs for geometric surfaces and meshes 

• Training epochs 

3.3.2 Independent Variables 

In these experiments, the independent variable is the input of the SDF, which is the 

coordinate of a pixel or voxel. 

3.3.3 Dependent Variables 

In these experiments, the dependent variable is the shortest distance between input 

coordinate and the surface. 

3.4 Measurements 

This section introduces how results in the experiments are measured. 

3.4.1 Errors in training and testing 

Training errors are collected during training and measured by the loss function of the 

ANN. Two types of testing errors are measured in this experiment. The frst one is the 

error in all pixels on the image plane, the second is errors in rendering the surface, which 

means the background is exclusive. The errors are measured using mean squared errors 

(MSE) approach by calculating the distance between the ground truth and what is 

approximated by the ANN. 
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3.4.2 Storage cost 

When the ANN can render SDF with an acceptable error, the storage cost for the 

ANN is compared to the storage cost of the discretized SDF grid generated by level-set 

algorithm. We also compare to the size of triangle mesh. 

3.5 Dataset 

For camera: 

• 200 × 200 pixels 

• Camera is positioned at [0.0 0.0 0.0] 

• Camera has a view direction of [0.0 − 1.0 0.0], and a horizontal feld of view of 

90◦ 

For triangle mesh or SDFs: 

• 2D SDFs consisted of geometric primitives like circles and rectangle, as well as 

more complex shapes formed by boolean operations like union and subtraction of 

2D primitives. 

• 3D SDFs consisted of geometric primitives like spheres and cubes, as well as more 

complex shapes formed by boolean operations like union and subtraction of 3D 

primitives. 

• A triangle mesh of the Stanford bunny is used in the third experiment 

3.6 Development Tools 

The application is developed using the following tools: 

• Python: Used to write the main application including the ray marching pipeline, 

grid-based SDF parser, and data visualization tools. 
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• PyTorch: Used to build the ANNs and manage the training and testing process. 

• CUDA: Used to accelerate the training of the ANNs on the GPU. 

• Python multiprocessing: Used to accelerate the testing part. 

3.7 Rendering Pipeline 

The application has different pipelines for different rendering situations: 

• For rendering analytical SDF represented as a mathematical equation, the program 

frst computes distance for each pixel in parallel, then outputs the rendering result 

• For rendering grid-based SDF, the program frstly loads the SDF into memory using 

a custom parser. During rendering, the program looks up the data structure for the 

shortest distance, then outputs the rendering result. 

• For rendering ANN-based SDF, the program frst loads it using a built-in parser in 

PyTorch. During rendering, the program evaluates shortest distances using the ANN 

and outputs the result after computing all pixels. 

• A bounding box is used to render the surface more effciently. Rays which do not 

intersect the bounding box cannot intersect the surface, and are trivially assigned the 

background color. 

3.8 Environment 

The experiments are conducted under the following environment: 

• Intel Core i7-3770 @ 3.40GHz 

• 16 GB Memory 

• Graphics NVIDIA GeForce 960 
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• Windows 10 Education 64-bit Operation System 

3.9 Summary 

This chapter provides an overview of the design of our experiments as well as the 

rendering pipeline of this work. Accuracy and storage are assessed in this experiment. 

The next chapter provides the results of these experiments. 
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CHAPTER 4. RESULTS 

This chapter presents the results from the three experiments we conducted, 

including rendering results, errors in training, and errors in testing. In the 3D rendered 

results presented here, the fnal color is linearly shaded based on the depth of each visible 

pixel. 

4.1 Training Process 

In Figure 4.1, the left side is the ground truth 2D SDF rendered by plotting 

negative SDF values in black (inside the boundary), and positive values are plotted as 

white pixels. The right side is rendered by GAN. Preliminary results on simple geometric 

shapes, such as circles and squares, revealed diffculty in representing regions with high 

curvature. This specifc shape was created to test how well the ANN can reconstruct sharp 

corners. 

Similarly, in Figure 4.2, the left side is the ground truth rendered with 3D SDF by 

ray marching while the right one uses a SDF represented by GAN. In Figure 4.3, the left 

side is the triangle mesh of a bunny (displayed using Paint 3D), the middle image is 

rendered with a grid-based SDF for the same mesh by ray marching, and the right side is 

rendered using the GAN SDF. High resolution rendering results are presented in the 

appendix. 

Withing the three main experiments, many small experiments were conducted to 

determine the best architecture and confguration for ANNs to represent the SDF. In the 

following subsections, the most important fndings are described. 

4.1.1 Frameworks of Models 

Three different Frameworks of ANN models were assessed in these experiments: 

FCNN, CNN, and GAN. Since it is faster to train a network to learn a 2D SDF, 



29 

(a) Ground Truth (b) GAN 

Figure 4.1. Results Rendered for 2D SDFs 

(a) Ground Truth (b) GAN 

Figure 4.2. Results Rendered for 3D SDFs 

preliminary experiments were conducted in 2D, and the most promising of those methods 

were then tested in 3D. 

In the frst step of the experiment on 2D SDFs approximation, FCNN was used to 

approximate a basic SDF to a circle, but the result was much worse than CNN. In the next 

step, CNN and GAN were used to approximate a more complex 2D shape. Although CNN 

performed well in this step, the GAN had smaller errors shown in the following Table 4.1. 

Consequently, only the GAN was used to approximate 3D SDFs. Additionally, for the 

parameters of network width and depth in the table, −1 denotes the number of nodes from 

last layer, which is determined by the convolutional layer and the max pooling layer. 
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Table 4.1. Rendering Errors of GAN with Uniform Sampling Dataset 

# Generative Model of GAN CNN 

width and depth 

linear layer 
conv layer 
conv layer 
linear layer 

2 × 256 
1 × 16 
16 × 32 
−1× 1 

linear layer 
conv layer 
conv layer 
linear layer 

2 × 256 
1 × 16 
16 × 32 
−1 × 1 

overall errors 3.05 × 10−5 1.89 × 10−3 

errors in pixels on the surface 1.88 × 10−5 1.41 × 10−4 

result 
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(a) Ground Truth (b) Grid-based SDF (c) GAN 

Figure 4.3. Triangle mesh (a), discretized SDF computed from the mesh (b), and the 

surface reconstructed by GAN (c). 

4.1.2 Width and Depth of the Model 

Width, which is number of nodes in each hidden layer, and depth, which is the 

number of hidden layers, are also two important factors that have a major impact on the 

training results. Figure 4.4 shows how width of convolutional layer affects the rendering 

results. The output became signifcant when the width was increasedfrom 64 nodes to 256 

nodes. 

(a) 64 Nodes (b) 128 Nodes (c) 256 Nodes 

Figure 4.4. Results for Complex 2D SDF 
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Figure 4.5 shows different rendering results for ANNs with different depths. As 

you can see, there is a signifcant improvement from ANN with 3 hidden layers to ANN 

with 4 hidden layers, but from 4 hidden layers to 5 hidden layers, the improvement is not 

very signifcant, but the curve of ANN with more hidden layers is more regressive. 

Figure 4.5. Errors in Validation for CNNs and GANs with Different Number of Hidden 

Layers 

4.1.3 Dataset 

The experiment initially used randomly generated coordinates ranging from −2.0 

to 2.0 as inputs and the shortest distances calculated by SDF as labels to train the ANN, 

but we found out the result would be accurate only if these inputs are distributed 

uniformly. For example, in Figure 4.6(b), the bottom part of the circle was missed because 

the dataset only covers few inputs from that range. So one problem of this method is that 

if the randomly generated vectors fail to cover some geometric features, the object would 

be rendered incorrectly. 

Consequently, we turned to another approach to do a uniform sampling for the 

dataset. Take sampling a 2D box as an example, as you can see in Figure 4.7, the 
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bounding box of the 2D box is divided into 16 × 16 blocks along its horizontal axis and 

vertical axis, where the black bold line is its surface, and X represents the sampling points. 

For the uniform sampling approach, coordinates of all X are sampled, which can defnitely 

avoid the problem mentioned in random sampling. 

But one problem in uniform sampling is some details like sharp edges were not 

very accurate, although the mesh can be rendered well in general. So based on this 

observation, an improved approach that only samples the points near the surface, which is 

called narrow-band surface sampling, was applied. For example, in Figure 4.7, only points 

in red will be sampled. Far or near is determined by the absolute value of the signed 

distance to the surface. As a result, the rendering results by the ANNs trained with dataset 

using narrow-band surface sampling have better details than the other sampling 

approaches, as you can see in Figure 4.8. 

However, in Table 4.2 for errors in approximating 2D SDFs, the ftting errors in 

ANNs trained with uniformly sampled datasets are lower than the one with narrow-band 

surface sampling. The main reason for this is the latter one is less accurate at predicting 

for the pixel or voxel far from the surface regardless of the better performance near the 

surface. 

Table 4.2. Fitting Errors for ANNs with Dataset by Different Sampling Methods 

# uniform sampling narrow-band surface sampling 
overall errors 5.44 × 10−5 1.89 × 10−3 

errors in drawing surface 7.02 × 10−5 1.41 × 10−4 

result Figure 4.8(b) Figure 4.8(a) 

4.1.4 Optimizer, learning rate, epochs, and loss functions 

As a choice of optimizer used when training the network, the Stochastic Gradient 

Descent (SGD) method was initially used. Although it had good performance when 

approximating 2D SDFs of basic primitives, it had poor performance in approximating 
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(a) Ground Truth (b) CNN with Dataset by 
Random Sampling 

Figure 4.6. Rendering Result of CNN Trained with Dataset by Random Sampling 

Figure 4.7. Sampling Approach 

more complex SDFs. So we replaced it with Adaptive Moment Estimation (Adam) for the 

subsequent experiments. 

For determining learning rates, we found that the learning rates ranging from 

1.0 × 10−4 to 5.0 × 10−4 worked well for most experiments and did not have a large 

impact, as shown in Table 4.3. 

In this research, one epoch means one training cycle to the dataset. With the 

increase in the number of training epochs, the ftting results are more accurate to the 
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Table 4.3. 2D SDFs Data Collection on GAN with Samples Near the Surface 

# Higher Learning Rate Lower Learning Rate 
learning rate 5.00× 10−4 1.00× 10−4 

loss function MSE and Errors by D-Model MSE and Errors by D-Model 
optimizer Adam Adam 
overall errors(MSE) 2.56× 10−3 9.15× 10−4 

errors in drawn pixels 1.64× 10−4 1.05× 10−4 

result 



36 

(a) Dataset by Narrow-band 
Surface Sampling 

(b) Dataset by Uniform 
Sampling 

Figure 4.8. Rendering Results for ANNs with with Dataset by Different Sampling 

Methods 

ground truth and have better details, as you can see in Figure 4.9. Also, according the 

collected errors in Figure 4.10(a), although the end of the curve is not decreasing as fast as 

the beginning, it is still becoming more and more regressive. 

For loss functions, hybrid loss functions were used in experiments. The loss 

function for training CNNs was: 

P2 
( i 
−0.1 

L2 
i )2− 

n n1 
(Pi − Li)

2 + 2.0 × 
1

∑ ∑Error = 1.0 × (4.1)
−0.1n ni=1 i=1 

where P is a vector of n predictions and L is the vector of corresponding labels. 

For GAN, the error calculated by the discriminative model needs to be added to 

the formula above: 

n n nP2 
i L2 

i1 1 1 
(Pi − Li)

2 )2 (PGi − LGi)
2

∑ ∑ ∑Error = 1.0 × + 2.0 × + 5.0 ×( − 
−0.1 −0.1n n ni=1 i=1 i=1 

(4.2) 

where PG is a vector of n predictions by discriminative model and LG is a vector 

flled by of 1.0. 
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Figure 4.9. Rendering Results with Increasing Training Epochs 

4.2 Rendering Method 

The experiments used the following algorithm to look up the grid-based SDF and 

ANN based SDF. 

In detail, the algorithm frstly checks if the point is inside of the bounding box, if 

so, the program will return the nearest distance to the bounding box plus a small value, if 

not, the program will return the nearest distance to the surface. A boolean value is also 
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Algorithm 4.1 Getting Distance from SDFs with Bounding Box 
1: procedure LOOKUP 

2: ro ← position of current point 
3: if ro is inside of the bounding box then 
4: distance ← nearest distance to the surface 
5: f lag ← True 
6: else 
7: dist0 ← nearest distance to the bounding box 
8: dist1 ← grid spacing of the bounding box 
9: distance ← dist0 + 0.5 × dist1 

10: f lag ← False 
11: end ifreturn f lag,distance 
12: end procedure 

returned by the program, which indicates if the distance is between surface or bounding 

box. 

4.3 2D Signed Distance Functions 

In this section, errors in training and rendering with different architectures of the 

ANNs for 2D SDFs are presented. Figure 4.9 showed how the rendering changed during 

training. 

4.3.1 Training Errors 

Figure 4.10 shows the errors that were collected during training. For both 

discriminative model and generative model, when the hidden layers of generative model 

increased, the regression happened faster with a smoother curve, though the difference 

between models with 4 hidden layers and models with 5 hidden layers was not signifcant. 

4.3.2 Rendering Errors 

Figure 4.11 shows the errors that were collected during testing, where Figure 

4.11(b) means only errors in drawing pixels on the surface were measured and Figure 
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(a) Generative Model 

(b) Discriminative Model 

Figure 4.10. Errors in Training GAN for 2D SDF 

4.11(a) means errors in all pixels were measured. For total errors, the GAN with 3 hidden 

layers performed the worst, but there were no signifcant differences between the GAN 

with 4 hidden layers and the one with 5 hidden layers. For errors in drawing the surface, 

the GAN with 3 hidden layers performed better but still far from GANs with more layers, 

while the model with 4 hidden layers and the one with 5 still had similar performance. 
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(a) Errors in Overall Image 

(b) Errors in Drawing the Surface 

Figure 4.11. Errors in Rendering 2D SDFs Approximated by GAN 

4.4 3D Signed Distance Functions 

In this section, errors in training and rendering with different architectures of the 

ANNs for 2D SDFs are presented. Figure 4.12 shows the change in modeling 3D SDF by 

ANN after different number of training epochs. 
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Figure 4.12. Rendering Results with Increasing Training Epochs 

4.4.1 Training Errors 

Figure 4.13 shows the training errors for ANNs in approximating 3D SDFs. For 

discriminative model, the overall curve was less regressive than the curve for training 2D 

SDFs, one of the main reasons is the dataset for 3D SDFs is more than 5 times larger than 

the dataset for 2D SDFs while the architectures of their ANNs are the same. From the 

fgure, the ANN with 4 hidden layers performed the best and the one with 3 hidden layers 

performed the worst. The curve of errors in training generative model for 3D SDFs is 

similar to what for 2D SDFs, i.e. the deeper ANNs had lower errors. 
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(a) Generative Model 

(b) Discriminative Model 

Figure 4.13. Errors in Training GAN for 3D SDFs 

4.4.2 Testing Errors 

Figure 4.14 shows the two different types of errors, the top image is about errors in 

ftting all voxel and the bottom one is errors in rendering the surface. The errors were 

measured by the distance between camera to the hit point on the surface by the MSE 

method, the distance is 0 if the ray hit nothing. Distance of ground truth was calculated by 

the analytical formulas that model the surface. 
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According to the Figure, the accuracies were worse than approximating 2D SDF or 

SDF to the triangle mesh, which is presented in the next section. One possible reason 

might be the surface is too sharp for the current architecture, which needs to be 

investigated in future experiments. Regardless of it, deeper Gs still showed advantage over 

shallower architectures. 

(a) Errors in All Pixels 

(b) Errors in Drawing the Surface 

Figure 4.14. Errors in Training GAN for 3D SDF 
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4.5 Triangle Mesh 

In this section, errors in training and rendering with different architectures of the 

ANNs for mesh SDFs are presented. Besides, the section involves a comparison between 

ANN-based SDFs and grid-based SDFs, which is generated by level-set method with high 

dimensions. Figure 4.15 shows the rendering results with increasing training epochs. 

Figure 4.15. Rendering Results with Increasing Training Epochs 

4.5.1 Training Errors 

Figure 4.16(a) shows errors in training discriminative models, and Figure 4.16(b) 

represents the errors in training generative models. According to the fgures, the training 
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curve of D and G with the shallowest G model is very noisy compared to D with a deeper 

G model. For those with 4 hidden layers and 5 hidden layers, the difference is not 

signifcant in training G model, but the D model with a deeper G has a more regressive 

curve. 

(a) Discriminative Model 

(b) Generative Model 

Figure 4.16. Errors in Training GAN for SDF to Triangle Mesh 
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4.5.2 Testing Errors 

Figure 4.17 shows the errors in ftting all voxels and only in rendering pixels on 

the surface of the mesh. The errors were measured by the distance between camera to the 

hit point on the surface, the distance is 0 if the ray hit nothing. For effciency, distances to 

ground truth were calculated by looking up a level-set SDF approximating the mesh, 

which has been demonstrated to be close to the real distance (Bærentzen & Aanæs, 2002; 

Osher & Sethian, 1988). 

According to the Figure, the G with 3 hidden layers performed the worst while 

there is still no signifcant difference between the model with 4 hidden layers and the one 

with 5 hidden layers. And they do not show much decrease after the 40th epoch. 

4.5.3 Grid-based Signed Distance Functions 

As shown in Table 4.4, the ANN successfully approximated the SDF to a triangle 

mesh while requiring a smaller memory size than the grid-based SDF using level-set 

method and even smaller than the triangle mesh itself. Because the rendering pipeline 

only needs generative model from the GAN to look up the distance, so only the size of G 

was included when measuring for the size of ANN-based SDF. The G is saved without 

compression in a binary format using a built-in function of PyTorch, which includes 

weights and biases for each layer of the ANN. 
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Table 4.4. Storage Size for Different Techniques 

# size rendering result 

triangle mesh 2.28MB 

grid-based SDF 33.9MB 

generative model 47KB 
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(a) Errors in All Pixels 

(b) Errors in Pixels on Surface 

Figure 4.17. Errors in Training GAN for SDF to Triangle Mesh 
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CHAPTER 5. CONCLUSIONS 

The goal of this research is to explore the potential of ANNs in learning SDFs and 

determine the optimal network architecture and training techniques. In this research, we 

implemented multiple types of ANNs with various depths of the generative model, which 

involved FCNN, CNN, and GAN. The fnal results narrowed the gap in using ANNs to 

learn 3D shapes while most previous work focused on 2D rendered images. Besides the 

computer graphics area, the framework of this research project could be applied to ft 

many other non-linear functions. Consequently, the main hypothesis of the research is 

demonstrated to be true, although future works remains, since this is a rapidly expanding 

feld, and new ANN architectures and optimization technique can still be explored. 

5.1 Summary of the Research 

The research work explored the possibility of ANNs in learning SDFs by 

conducting three main experiments where each experiment was informed by results from 

the previous experiment. 

The frst experiment was using FCNN, CNN, and GAN to learn the SDF in 2D 

space. Analytic SDFs were used as the training data. The training dataset was sampled 

from the function using different techniques, including random sampling, uniform 

sampling, and narrow-band sampling. Based on these results, in the second experiment, a 

3D shape rendered with similar formulas was used to train a GAN with a dataset obtained 

by narrow-band sampling. The increased size of the dataset made the training harder than 

the frst experiment, although the GAN still was able to generate some plausible rendering 

results. Then in the third experiment, the same framework was applied to learn the SDF to 

a triangle mesh. First we generate a grid-based SDF by level-set method, and then use the 

dicretized SDF as the training data. In the experiment, the rendering result from GAN had 

a small error when compared to the grid-based SDF, and the storage size of the GAN is 

less than 0.1% of what the discretized SDF grid requires. In these experiments, errors in 
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training and testing were collected and measured. The rendering results were also 

collected and presented in this thesis. 

5.2 Future Work 

The future work for this research includes: 

• The training for 3D SDFs can be optimized further. As shown in last chapter, the 

training curve is sometimes noisy and over ftting. 

• The narrow-band surface sampling can be optimized. It was useful in sampling 

from the 2D graph, but the training dataset became very large when applied to 3D. 

• The potential of different architectures of the GAN should be researched in the 

future. This research has done a concise experiment on different widths and depths 

of the GAN, but there are more parameters to be explored to fnd which architecture 

is most effcient at learning SDFs. 

• The current rendering framework is implemented on the CPU. The possibility to 

implement it on GPU can be explored. 
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Möller, T., & Trumbore, B. (2005). Fast, minimum storage ray/triangle intersection. In 

Acm siggraph 2005 courses (p. 7). 



54 

Nalbach, O., Arabadzhiyska, E., Mehta, D., Seidel, H.-P., & Ritschel, T. (2017). Deep 

shading: Convolutional neural networks for screen space shading. In Computer 

graphics forum (Vol. 36, pp. 65–78). 

Ng, R., Ramamoorthi, R., & Hanrahan, P. (2003). All-frequency shadows using 

non-linear wavelet lighting approximation. In Acm transactions on graphics (tog) 

(Vol. 22, pp. 376–381). 

Osher, S., & Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: 

algorithms based on hamilton-jacobi formulations. Journal of computational 

physics, 79(1), 12–49. 

Quilez, I. (2013). Modeling with distance functions. Retrieved from http:// 

iquilezles.org/www/articles/distfunctions/distfunctions.htm 

Ren, P., Dong, Y., Lin, S., Tong, X., & Guo, B. (2015). Image based relighting using 

neural networks. ACM Transactions on Graphics (TOG), 34(4), 111. Retrieved 

from http://doi.acm.org/10.1145/2766899 

Ren, P., Wang, J., Gong, M., Lin, S., Tong, X., & Guo, B. (2013). Global illumination 

with radiance regression functions. ACM Transactions on Graphics (TOG), 32(4), 

130. Retrieved from http://doi.acm.org/10.1145/2461912.2462009 

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by 

back-propagating errors. nature, 323(6088), 533. 

Rumelhart, D. E., & McClelland, J. L. (1988). Explorations in the microstructure of 

cognition (volume 1: Foundations). MIT press. 

Sato, S., Morita, T., Dobashi, Y., & Yamamoto, T. (2012). A data-driven approach for 

synthesizing high-resolution animation of fre. In Proceedings of the digital 

production symposium (pp. 37–42). 

http://doi.acm.org/10.1145/2461912.2462009
http://doi.acm.org/10.1145/2766899
https://iquilezles.org/www/articles/distfunctions/distfunctions.htm


55 
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APPENDIX A. RENDERING RESULTS WITH HIGH 

RESOLUTION 

Rendering results as well as collected errors in the thesis are using a camera with a 

resolution of 200 × 200 pixels. The following fgures show the results with higher 

resolution. The model does not need to be retrained when it is applied to a new camera 

with different resolutions, transform, or feld of view. 
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(a) ANN 

(b) Ground Truth 
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(c) ANN 

(d) Ground Truth 
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(e) ANN 

(f) Ground Truth 
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APPENDIX B. ARCHITECTURES OF GAN 

(a) Generative Model 

(b) Discriminative Model 
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APPENDIX C. CAMERA, MESH, AND GRID-BASED SDF 

INFORMATION 

# Information 
flename bunny.obj 
encoding ANSI 
size 2.4 MB 
number of vertices 34,836 
number of triangles 69,664 
number of normals N/A 
texture coordinates N/A 
vertex color N/A 

# Information 
flename bunny.sdf 
encoding ANSI 
size 33.9 MB 
feld dimensions 165× 164 × 130 
grid origin [−2.07122 − 2.05417 − 1.6334] 
grid spacing 0.025 

# Information 
flename camera.py 
type Pinhole Camera 
resolution 200 × 200 
camera origin [0.0 0.0 0.0] 
horizontal feld of view 90◦ 
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