
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

October 2022

Controllable Neural Synthesis for Natural Images and Vector Art Controllable Neural Synthesis for Natural Images and Vector Art

Difan Liu
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

 Part of the Artificial Intelligence and Robotics Commons, and the Graphics and Human Computer

Interfaces Commons

Recommended Citation Recommended Citation
Liu, Difan, "Controllable Neural Synthesis for Natural Images and Vector Art" (2022). Doctoral
Dissertations. 2657.
https://doi.org/10.7275/30943204 https://scholarworks.umass.edu/dissertations_2/2657

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2657&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2657&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2657&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2657&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.7275/30943204
https://scholarworks.umass.edu/dissertations_2/2657?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2657&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

CONTROLLABLE NEURAL SYNTHESIS FOR NATURAL
IMAGES AND VECTOR ART

A Dissertation Presented

by

DIFAN LIU

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2022

Manning College of Information and Computer Sciences

© Copyright by Difan Liu 2022

All Rights Reserved

CONTROLLABLE NEURAL SYNTHESIS FOR NATURAL
IMAGES AND VECTOR ART

A Dissertation Presented

by

DIFAN LIU

Approved as to style and content by:

Evangelos Kalogerakis, Chair

Subhransu Maji, Member

Mohit Iyyer, Member

Aaron Hertzmann, Member

James Allan, Chair of the Faculty
Manning College of Information and Computer
Sciences

ACKNOWLEDGMENTS

First and foremost, I would like to thank my dear advisor, Prof. Evangelos

Kalogerakis, for his guidance, patience, and encouragement during my Ph.D. study.

His professional guidance and immense knowledge helped me in all the time of my aca-

demic research and daily life. He spent countless hours with me patiently discussing

ideas, reviewing results, and refining presentations and papers to minute detail. In

the first couple of years, I had little background knowledge in both computer graphics

and computer vision. Vangelis patiently waited for me to grow up and supported me

academically, financially, and mentally. His nurture and care have made me a better

researcher, colleague, friend, and human being. Any amount of future success that I

will have in my life, Vangelis’s teachings will have played a major role behind that.

Secondly, I would like to thank Aaron Hertzmann for mentoring me during my

first two projects. During the collaboration with him, I had great freedom of the re-

search topics and had the opportunity to investigate my passion for non-photorealistic

rendering. He has professional experience in these directions and gave me strong guid-

ance and constructive feedback. I would also like to thank my other colleagues and

project partners at Adobe Research. I thank Matthew Fisher and Oliver Wang who

helped manage my internship experience and offered me the great opportunity of

work position at Adobe. I thank Tobias Hinz who gave me great advice on genera-

tive models and paper writing. I would also like to thank Richard Zhang, Taesung

Park, Michaël Gharbi for their valuable guidance and encouragement. Without their

precious support, it would not be possible to conduct this thesis.

Thirdly, I would like to thank my collaborators Gopal Sharma, Li Yi, Mohamed

Nabail and Sandesh Shetty. Gopal and I worked on exciting projects towards better

iv

shape decomposition. Prof. Li Yi is an expert in the field of 3D perception and shape

analysis. It is always fun and inspiring to chat and collaborate with him. I would

also like to thank Mohamed and Sandesh for their kind help and great contribution

to my research projects.

Besides my collaborators, I would like to thank the rest of my thesis committee:

Prof. Subhransu Maji and Prof. Mohit Iyyer for their insightful comments and

encouragement which helped me widen my research from various perspectives.

I am glad to be part of the Computer Graphics and Vision lab at UMass Amherst,

where I met a lot of energetic and eager young minds. I would like to thank my fellow

lab-mates: Zhan Xu, Yang Zhou, Gopal Sharma, Pratheba Selvaraju, Dmitrii Petrov,

Zezhou Cheng, Chenyun Wu, Matheus Gadelha, Tsung-Yu Lin, Jong-Chyi Su, Hang

Su, Huaizu Jiang, Aruni RoyChowdhury, Zitian Chen, SouYoung Jin and Ashish

Singh. Also I thank my friends Pengshan Cai, Dongxu Zhang, Zhichao Yang, Xiang

Li, Zhipeng Tang, Mengxue Zhang, Zhiqi Huang, Puxuan Yu and Shufan Wang. They

made my life at Amherst much more joyful.

Finally, many thanks to my parents and family for their continued support, en-

couragement, and unconditional love. It would be impossible for me to finish my

Ph.D. study without their encouragement and love from the other side of the ocean.

v

ABSTRACT

CONTROLLABLE NEURAL SYNTHESIS FOR NATURAL
IMAGES AND VECTOR ART

SEPTEMBER 2022

DIFAN LIU

B.E., UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Evangelos Kalogerakis

Neural image synthesis approaches have become increasingly popular over the last

years due to their ability to generate photorealistic images useful for several applica-

tions, such as digital entertainment, mixed reality, synthetic dataset creation, com-

puter art, to name a few. Despite the progress over the last years, current approaches

lack two important aspects: (a) they often fail to capture long-range interactions

in the image, and as a result, they fail to generate scenes with complex dependen-

cies between their different objects or parts. (b) they often ignore the underlying

3D geometry of the shape/scene in the image, and as a result, they frequently lose

coherency and details.

My thesis proposes novel solutions to the above problems. First, I propose a

neural transformer architecture that captures long-range interactions and context for

image synthesis at high resolutions, leading to synthesizing interesting phenomena in

vi

scenes, such as reflections of landscapes onto water or flora consistent with the rest of

the landscape, that was not possible to generate reliably with previous ConvNet- and

other transformer-based approaches. The key idea of the architecture is to sparsify

the transformer’s attention matrix at high resolutions, guided by dense attention ex-

tracted at lower image resolution. I present qualitative and quantitative results, along

with user studies, demonstrating the effectiveness of the method, and its superiority

compared to the state-of-the-art. Second, I propose a method that generates artistic

images with the guidance of input 3D shapes. In contrast to previous methods, the

use of a geometric representation of 3D shape enables the synthesis of more precise

stylized drawings with fewer artifacts. My method outputs the synthesized images in

a vector representation, enabling richer downstream analysis or editing in interactive

applications. I also show that the method produces substantially better results than

existing image-based methods, in terms of predicting artists’ drawings and in user

evaluation of results.

vii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iv

ABSTRACT . vi

LIST OF TABLES . x

LIST OF FIGURES . xii

CHAPTER

1. INTRODUCTION . 1

1.1 Natural Image Synthesis Guided by Semantic Maps 2
1.2 Vector Art Synthesis Guided by 3D Shapes . 4
1.3 Summary of Publications . 6

2. LITERATURE REVIEW . 8

2.1 Natural Image Synthesis Guided by Semantic Maps 8
2.2 Vector Art Synthesis Guided by 3D Shapes . 11

3. NATURAL IMAGE SYNTHESIS GUIDED BY SEMANTIC
MAPS . 14

3.1 Method . 14

3.1.1 Image encoder . 16
3.1.2 Autoregressive transformer . 17
3.1.3 Image decoder . 21
3.1.4 Training . 21
3.1.5 Implementation Details . 22

3.2 Results . 24
3.3 Conclusion . 36

viii

4. VECTOR ART SYNTHESIS GUIDED BY 3D SHAPES 38

4.1 Neural Contours: Line Drawing Synthesis . 38

4.1.1 Line Drawing Model . 39

4.1.1.1 Geometry branch . 39
4.1.1.2 Image translation branch . 43
4.1.1.3 Image translation branch implementation 44
4.1.1.4 Neural Ranking Module . 45
4.1.1.5 Neural Ranking Module Implementation 47

4.1.2 Dataset . 48
4.1.3 Training . 51
4.1.4 Results . 52
4.1.5 Additional Results . 59
4.1.6 Summary . 62

4.2 Neural Strokes: Line Drawing Stylization . 63

4.2.1 Model . 63

4.2.1.1 Curve Extraction . 64
4.2.1.2 Stroke geometry prediction . 65
4.2.1.3 Stroke Texture . 68
4.2.1.4 Architecture Details . 69

4.2.2 Training . 70
4.2.3 Experiments . 73
4.2.4 Summary . 85

5. CONCLUSION . 86

5.1 Future Work . 87

5.1.1 Diverse Synthesis of 3D Data and Video . 87
5.1.2 Generative Modeling of Vector Art . 88
5.1.3 Image Editing with Sketches . 89

BIBLIOGRAPHY . 90

ix

LIST OF TABLES

Table Page

3.1 Transformer hyperparameters. For every experiment, the number of
total blocks N , the number of blocks in N (r), the number of
blocks in K(r) are set to 64, 3, 3 respectively. nE denotes the
number of transformer layers in the bidirectional encoder, nD is
the number of transformer layers in the autoregressive decoder, #
params is the number of transformer parameters, nh is the
number of attention heads in the transformer, |Z| is the number
of codebook entries, dropout is the dropout rate used for training
the transformer, and ne is the token embedding dimensionality. 23

3.2 Quantitative evaluation on the Flickr-Landscape dataset at various
resolutions. 26

3.3 Quantitative evaluation on the COCO-Stuff and ADE20K datasets at
512× 512 resolution. 27

3.4 Effects of different forms of attention on the Flickr-Landscapes
dataset at 512× 512 resolutions. 32

3.5 Ablation for use of global blocks at 512× 512 resolution. 33

3.6 Number of transformer parameters for TT and ASSET. 33

3.7 Average inference time in seconds per image. 35

4.1 Architecture of the Image Translation Branch. 45

4.2 Architecture of the Neural Ranking Module. 47

4.3 Comparisons with competing methods using all drawings from Cole
et al.’s dataset. IoU, F1, P, R are reported in percentages, CD is
pixel distance. 54

4.4 Comparisons with other methods using the most “consistent” human
drawings from Cole et al.’s dataset. 54

x

4.5 Comparisons in our new test dataset. 55

4.6 Ablation study. 55

4.7 Comparisons with competing methods using drawings from Cole et
al.’s dataset and our newly collected dataset. IoU, F1, P, R are
reported in percentages, CD is pixel distance. 60

4.8 Architecture of the surface geometry module. 70

4.9 Architecture of the path geometry module. 70

4.10 Architecture of the stroke texture module. 71

4.11 Numerical comparisons with other methods. 77

4.12 Quantitative evaluation of SketchPatch variants. 79

4.13 Ablation study. 84

xi

LIST OF FIGURES

Figure Page

3.1 ASSET allows users to create diverse editing results by specifying a
region and a new label on the input image. Our efficient
transformer captures long-range dependencies in the image, such
as the detailed reflection of the trees on the water, even at high
resolutions (1024× 1024 pixels in this example). 15

3.2 Overview of our semantic image editing model. Our transformer
model operates in the codebook space using the encoder E1. To
incorporate user edits the tokens inside the edited region are
masked and are augmented with a semantic encoder E2. The
mask tokens are filled in by our SGA-Transformer
Encoder-Decoder network, whose sparse attention mechanism is
guided by the Guiding Transformer that computes the full
attention on downsampled inputs. Finally, the generated tokens
are decoded into the output image via Dec. 16

3.3 Details of our Sparsified Guided Attention (SGA, right) compared to
full attention (left). We downsample the input and the user-edited
semantic layout and use a Guiding Transformer to obtain the full
attention map, which identifies the most important attention
locations for each sampling step. By keeping only the locations
with high attention weight, we construct the high-resolution,
sparse attention map for the SGA transformer. 19

3.4 Architecture of the image encoder and decoder. Note that
Hfeat =

Him

16
, Wfeat =

Wim

16
. 22

3.5 Comparison of our approach and all baselines on images of 256× 256
pixels resolution. 27

3.6 Comparison of ASSET with Taming Transformers [29] at 1024× 1024
resolution. 28

3.7 Comparison of ASSET with ImageBART [28] at 1024× 1024
resolution. 29

xii

3.8 Qualitative results and comparisons with Taming Transformers [29]
on COCO-Stuff at 512× 512 resolution. 30

3.9 Qualitative results and comparisons with Taming Transformers [29]
on ADE20K at 512× 512 resolution. 30

3.10 User study results. At both low and high resolution, our method
ASSET is dominantly preferred over the baselines. 31

3.11 Comparison showing the effects of using different kinds of attention
at 1024× 1024 resolution. 32

3.12 Encoder self-attention visualized for two different query points
(shown as red). The image regions acquiring higher attention are
the ones more relevant to generate water reflections at each of
these points. 34

3.13 The masked area of the input image is replaced with random noise.
The difference of 16× 16 latent features between the original
image (a) and the masked image (b) are visualized on the right.
Changed and unchanged latent features are visualized in blue and
black respectively. Image (c) shows how unmasked image latent
tokens are affected (blue tokens) by the masked area in the
original VQGAN. Image (d) shows that our image encoder
successfully prevents leakage from the masked area to the
unmasked area. 35

3.14 Example of a less successful result. 36

4.1 Given a 3D model (left), our network creates a line drawing that
conveys its structure more accurately compared to using other
methods individually, such as Occluding Contours [6], Apparent
Ridges [68], and pix2pix variants [135]. 39

4.2 Given a 3D shape (a), we show (b) occluding contours, (c,d)
unfiltered and filtered suggestive contours, (e,f) unfiltered and
filtered ridges and valleys, (g,h) unfiltered and filtered apparent
ridges. 41

4.3 Our network architecture: the input 3D model is processed by a
geometry branch operating on curvature features, and an
image-based branch operating on view-based representations.
Their outputs are combined to create a line drawing, which is in
turn evaluated by a ranking module that helps determining
optimal line drawing parameters. 42

xiii

4.4 A snapshot from our MTurk questionnaires used for gathering
training line drawing comparisons. The most voted answer is
highlighted as red. 49

4.5 Comparisons with other methods. Neural Contours are more
consistent with underlying shape features. 57

4.6 Comparisons with reduced NCs variants. 57

4.7 User study voting results. 59

4.8 Results of our “Neural Contours” method on various test 3D
models. 61

4.9 Additional comparison of our two branch outputs (image translation
branch output “NC-Image” vs geometry branch output
“NC-Geometry” vs Neural Contours). 62

4.10 Our model learns to generate stylized line drawings from a single
example of a training shape and corresponding drawing. Given a
test 3D shape and 2D geometric curves representing the shape,
our model synthesizes a line drawing in the style of the training
example. Here we show synthesized drawings by transferring the
artist’s style A (top) or B (below). 64

4.11 Our network architecture: the input 3D shape and a set of geometric
curves are processed by a surface geometry module and a path
geometry module to produce stroke thickness and displacement.
With the predicted thickness and displacement, a stroke texture
module creates a stylized line drawing with texture. 65

4.12 Left: an input set of geometric curves (each curve is highlighted with
a different color). Right: For each input curve, our model outputs
a stroke by predicting a thickness scalar and a 2D displacement
vector for each control point. 66

4.13 A gallery of our results. Top: artist-drawn training drawings.
Bottom: drawings from Neural Strokes. 75

4.14 Left to right: training artist’s drawing, test geometric curves, Neural
Strokes. 76

xiv

4.15 Comparisons with other methods. Left to right: training artist’s
drawing, artist’s drawing for test shape, Neural Strokes,
SketchPatch, SinCUT, NST result. Where possible, we retrained
the other methods to incorporate the same geometry features
present in the 3D shape as in our method. Our method produces
strokes having more similar texture, intensity and thickness
variation to the artist’s drawing compared to other methods,
which seem to miss the above style aspects. 78

4.16 Top: artist-drawn training drawings. Bottom: results from Bénard et
al.[5]. 79

4.17 Left to right: test geometric curves, Neural Strokes, SketchPatch,
SketchPatch-geometry, SketchPatch-texture result. 80

4.18 User study voting results. 81

4.19 Layout shown to participants of our user study. 82

4.20 Comparisons with variants of our method. Removing features from
our method result in noisy, incoherent strokes deviating from the
training drawing style. 83

4.21 Left to right: Input geometric curves of a hand shape, deformed
curves with predicted displacement from the path geometry
module, strokes with predicted displacement and thickness from
the path geometry module, final output textured strokes. 84

4.22 Given our output strokes (a) of a cat shape, we show three editing
operations: (b) rescale thickness, (c) add wiggliness, (d) move
control points of strokes. 85

5.1 Preliminary results: translation of raster images into vector graphics
with a diffusion model based on [55] operating on control points of
the curves. 89

xv

CHAPTER 1

INTRODUCTION

Visual content creation has a long history. It was manifested as cave art during

prehistoric ages, while throughout the mankind history, it is incarnated in art paint-

ings, drawings, sculptures, crafts, and architecture. More recently, it is demonstrated

in photography, filmmaking, and computer-generated imagery. Creating compelling

and expressive visual content has traditionally been the domain of experienced artists.

For casual users, attempts at creating or editing visual content end up quickly “falling

off” the manifold of aesthetically plausible images. With recent advances in deep

learning, neural image synthesis [38, 61, 161] has provided a learning-based alterna-

tive able to assist non-experts to synthesize or manipulate plausible imagery while

expressing their creativity. Neural networks have been particularly effective in remov-

ing unwanted objects and inpainting in photographs, changing the season of landscape

images, and turning photographs into plausible artwork or vice-versa [147, 105, 9]. To

achieve more controllable generation, a popular line of research focuses on generating

and editing images conditioned on certain guidance. Visual clues such as sketches

[64] and semantic maps [99] have been widely used as additional input, which enable

users to guide the process of image generation through easy-to-use operations.

Despite recent advances, there are still open problems in controllable image gener-

ation. First, 2D neural image synthesis often lack an understanding of the 3D world

and the image formation process. Explicit guidance in the form of a 3D representa-

tion [163] can provide more precise control over camera viewpoint or object pose, and

can effectively bridge the 2D image space and the 3D physical world. Second, there

1

are often prohibitive computational costs of neural image synthesis, which prevents

controllable image synthesis at high resolutions. More specifically, previous algo-

rithms fail to generate scenes with complex dependencies at high resolutions, such

as the phenomena of water reflection in landscape images. Third, the synthesis of

non-photorealistic images is less explored than photorealistic images. More impor-

tantly, the underlying 3D geometry of the artistic images is often ignored. Without

the understanding of the underlying 3D world, previous methods generally produce

artistic images that frequently lose detail and do not capture artists’ drawing styles.

The main focus of this thesis is to address the above challenges to produce

high-quality photorealistic and non-photorealistic images. I investigate several data-

driven approaches with different guidance signals including segmentation maps and

3D shapes. The presented methods not only help users easily synthesize more visually

appealing images but also enable new visual effects not possible before this work.

1.1 Natural Image Synthesis Guided by Semantic Maps

I first propose a method, called ASSET, to address the problem of generating

scenes with complex dependencies at high resolution. My method allows users to

easily edit a given image by modifying a corresponding segmentation map. To obtain

realistic and consistent results, an effective system needs to consider global context

from across the full image. For example, to properly hallucinate a reflection in the

water on the bottom of the image, the model should consider the content from the top.

Traditional CNN based approaches [61, 14, 104, 99, 164] rely entirely on convolutional

layers which have difficulty modeling such long-range dependencies [137].

Transformers are well equipped to handle these long-range dependencies through

their attention mechanism allowing them to focus on distant image areas at each

sampling step. However, the heavy computational cost for using attention, which

usually increases quadratically with the input size, makes it infeasible to use standard

2

transformers for high-resolution image editing. One way to address this is to use a

sliding-window approach [29], in which the transformer only attends to a small area

around the currently sampled token, thereby reducing the computational cost to a

fixed budget. While this approach enables the synthesis of high-resolution images, it

forgoes the benefit of modeling long-range dependencies. This leads to inconsistencies

when edits are dependent on image regions that are far away in pixel space.

I introduce a novel attention mechanism, called Sparsified Guided Attention (SGA),

to facilitate long-range image consistency at high resolutions. While the sliding win-

dow approach is limited to local contexts, SGA can attend to far contexts that are

relevant for the current sampling location. The core idea is to efficiently determine a

small list of relevant locations that are worth attending to, and compute the atten-

tion map only over these locations. To achieve this, I use a guiding transformer that

operates at the downsampled version of the input image and performs the same edit,

but enjoys the full self-attention map thanks to the reduced input size. Based on the

guiding transformer’s attention map, I rank the importance of different areas of the

image, and have the high resolution transformer attend only to the top-K most impor-

tant image regions. In practice, the SGA leads to a large reduction in computational

cost due to the obtained sparse attention matrix. Compared to other approaches, my

method obtains more realistic and consistent edits while still achieving high diversity

in the outputs.

The model takes as input a quantized representation of the image and its edited

segmentation map, both obtained through a modified VQGAN encoder [29]. I then

mask out all image tokens in the image representation corresponding to the edited area

and replace those tokens with a specific [MASK] token. The transformer then samples

new image tokens at the edited areas, conditioned on the original (masked) image and

the edited segmentation map. Finally, a VQGAN decoder is used to decode the image

tokens into the final RGB image. As the edited tokens are sampled autoregressively

3

based on a likelihood-based model, I can sample a diverse set of image outputs, all of

which are consistent with the overall image characteristics.

I highlight the following contributions:

• I propose a transformer-based model that outputs realistic and diverse edits

specified through modified segmentation maps.

• I introduce Sparsified Guided Attention (SGA), which allows the transformer to

only attend to the most important image locations, leading to sparse attention

matrices and reduced computational cost.

• The model achieves diverse, realistic, and consistent image edits even at 1024×

1024 resolution.

1.2 Vector Art Synthesis Guided by 3D Shapes

The second part of this thesis is an algorithm to produce stylized line drawings

with the guidance of 3D shapes. Understanding and creating stylized outline drawings

is a key task for stylization [85, 6], sketch understanding [42], and human vision

[21, 49]. Artists and amateurs alike draw pictures of 3D objects in many different

styles, whether for art, animation, architectural design, 3D authoring, or simply the

pleasure of drawing. However, most recent research in image stylization does not

take 3D geometry into account, producing drawings that frequently lose detail and

do not capture image outlines. Conversely, there is a long history of 3D drawing

algorithms that create precise line drawings in hand-authored procedural styles, but

they cannot be learned from data, making them difficult to control and inapplicable

for analysis of existing sketches. While there is a long literature on analysis and shape

reconstruction from sketches, these methods typically assume that artists draw with

plain line styles.

4

I propose a two-stage approach for line drawing synthesis and stylization from

3D shapes. In the first stage, the model implements geometric line drawing based

on suggestive contours, apparent ridges, ridges, and valleys. Existing geometric line

drawing approaches employ hard-to-tune user-specified parameters that need to be

determined separately for each object. In contrast, my method learns to automatically

select these parameters through a differentiable module. In the second stage, the

model converts the plain line drawing synthesized in the first stage into stylized

strokes with the guidance of 3D shapes.

There are several challenges in making such a system work. First, classic geomet-

ric lines are not readily differentiable with respect to their parameters. I combine soft

thresholding functions along with image-space rendered maps of differential surface

properties. Second, to generate stylized strokes, the method must disentangle sev-

eral stroke attributes, including spatially-varying thickness, geometric deformations

and smoothness, and texture. These elements may often be quite noisy, with strokes

being wiggly or messy; the final pixel values are an entangled combination of these

factors. I propose a differentiable rendering formulation of stroke attributes. This

allows the model to learn to accurately predict stroke thickness, deformation, and

texture. Moreover, it’s difficult to collect a large training set of skilled artistic draw-

ings from artists. I describe a crowdsourcing approach to gather data using unskilled

crowdworkers for ranking evaluations and a training procedure designed to work with

a single training example alone.

I highlight the following contributions for this part of the work:

• I propose a ranking module trained to assess the plausibility of the line drawing,

which can be used to drive the optimization of geometric lines.

• I introduce a convolutional network operating along parameterized stroke paths.

5

• I combine 3D geometry, 2D image, and 1D curve feature maps to learn stroke

properties with a differentiable vector renderer.

• I propose a training procedure that enables learning from a single training

example.

• My method significantly improves over the existing line drawing synthesis meth-

ods and the generated drawings are comparable to artists’ drawings.

1.3 Summary of Publications

The list of works that are part of this thesis:

• The content of Chapter 3:

– [86] Difan Liu, Sandesh Shetty, Tobias Hinz, Matthew Fisher, Richard

Zhang, Taesung Park, Evangelos Kalogerakis. ASSET: Autoregressive Se-

mantic Scene Editing with Transformers at High Resolutions. ACM Trans-

actions on Graphics (Proceedings of SIGGRAPH), 2022.

• The content of Chapter 4:

– [85] Difan Liu, Mohamed Nabail, Aaron Hertzmann, Evangelos Kaloger-

akis. Neural Contours: Learning to Draw Lines from 3D Shapes. IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2020.

– [84] Difan Liu, Matthew Fisher, Aaron Hertzmann, Evangelos Kaloger-

akis. Neural Strokes: Stylized Line Drawing of 3D Shapes. International

Conference on Computer Vision, 2021.

The list of publications I co-authored and are not part of this thesis:

• [121] Gopal Sharma, Difan Liu, Subhransu Maji, Evangelos Kalogerakis, Sid-

dhartha Chaudhuri, Radomir Mech. ParSeNet: A Parametric Surface Fitting

Network for 3D Point Clouds. European Conference on Computer Vision, 2020.

6

• [146] Li Yi, Haibin Huang, Difan Liu, Evangelos Kalogerakis, Hao Su, Leonidas

Guibas. Deep Part Induction from Articulated Object Pairs. ACM Transac-

tions on Graphics (Proceedings of SIGGRAPH Asia), 2018.

• [120] Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kalogerakis, Subhransu

Maji. Neural Shape Parsers for Constructive Solid Geometry. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 2020.

• [119] Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kalogerakis, Subhransu

Maji. CSGNet: Neural Shape Parser for Constructive Solid Geometry. IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2018.

7

CHAPTER 2

LITERATURE REVIEW

In this chapter, we discuss the most relevant prior works. In Section 2.1 we review

literature on semantic scene editing. In Section 2.2 we discuss prior methods of line

drawing synthesis and stylization from 3D shapes.

2.1 Natural Image Synthesis Guided by Semantic Maps

Our work is related to prior work in CNN-based image editing, transformers for

image synthesis, efficient transformers, as well as image synthesis with a guidance

image, discussed below.

CNN-based image editing. CNN-based methods have achieved impressive re-

sults by enabling users to move bounding boxes containing objects [58, 54], modi-

fying scene representations [26, 123], or following textual instructions [98, 15, 107].

Other approaches enable user guides with edges or color information [64, 89] or per-

form simple inpainting, typically without user guidance [87, 147, 148, 142, 124, 88].

Exemplar-based image translation methods [152, 160, 157] can synthesize images from

semantic maps, but they cannot hallucinate new content that does not exist in the

exemplar image. Other approaches fine-tune or train a generator for a specific image

to perform editing on that single image [3, 117, 53, 132]. However, these models

need to be adapted for each new image. More similarly to us, other methods allow

for direct editing via segmentation maps [44, 77, 99, 83]. However, these approaches

can only generate a single output for a given edit. In addition, previous CNN-based

8

approaches prioritize local interactions between image pixels for image synthesis due

to their inductive bias. They also fail to effectively capture long-range interactions

between image regions necessary for realistic image synthesis. Our approach is based

on a transformer that is able to effectively capture such interactions and also allows

the synthesis of diverse results for each edit.

Transformers for image synthesis. To apply transformers for image synthesis,

they are trained on discrete sequences of image elements. Some models first learn a

discrete image region representation [110, 29], whereas other approaches work directly

on pixels [106, 16, 13, 63]. However, most of them model images in a row-major

format, and thus cannot capture bidirectional context, leading to inconsistent editing

results. PixelTransformer [128], iLAT [8], and ImageBART [28] add bidirectional

context to their transformer models but do not support editing via segmentation

maps. More importantly, due to their quadratic complexity in the number of image

tokens, these methods are trained on small image resolutions of 256 × 256 pixels.

Alternatively, some approaches model the image directly at a low resolution (e.g.,

32×32) and then use a deterministic upsampling network [133, 150]. In this case, fine-

grained edits are difficult to achieve due to the small resolution at which the images

are modeled. For high-resolution image synthesis, [29, 28] proposed transformers

with attention constrained on sliding windows. However, this hampers long-range

interactions and, as a result, they often generate artifacts and inconsistent image edits.

In contrast, our work incorporates a novel sparsified attention mechanism that can

capture such interactions without compromising the synthesized image plausibility.

Diffusion models for image synthesis. Recent research on diffusion models [55]

has made significant progress in generating high-fidelity and diverse images. SDEdit

[97] “hijacks” the generative process of diffusion models for the task of image editing

with colored strokes. ILVR [17] guides the generative process in DDPM [55] to sample

9

images from various sets directed by a reference image, which leads to applications

such as paint-to-image and image editing with scribbles. These methods enable user

guidance with edge and color information. However, it is not straightforward to adapt

them for semantic image editing tasks. Very recently, text-to-image models such as

DALL-E 2 [109] and Imagen [114] produce very high quality results by leveraging

diffusion models and employing large-scale computation. These methods capture

long-range dependencies at high-resolution by using dense attention at low-resolution

and upsampling low-resolution results with attention-free diffusion models. Diffusion

models have seen wide success in image generation, yet there are still many exciting

directions for future work. For example, as opposed to raster images, diffusion models

for vector image synthesis remain largely unexplored. An effective diffusion model

operating in curve space can lead to various applications for vector graphics.

Efficient transformers. Much work has been invested in reducing the computa-

tional cost of the transformer’s attention mechanism [126]. Broadly speaking, there

are two ways to achieve this. One way is to reduce the computational cost of the at-

tention mechanism directly, e.g., by approximating full attention through mechanisms

where the computation cost grows linearly with the input length [73, 134]. Alterna-

tively, several works explore reducing the cost by replacing full attention with a sparse

variant [4, 151]. A few recent vision transformers reduce the computational complex-

ity by spatially reducing attention [91, 136, 153, 143]. However, these methods use

encoder-only transformers for feature extraction and do not support autoregressive

image generation. Our method is inspired by BigBird’s sparse attention mechanism

for long-document NLP tasks [151]. BigBird achieves high efficiency by using a ran-

dom sparse attention map over blocks of tokens. However, when applying the random

attention mechanism of BigBird to our task it fails to capture correct context for a

given edit. Instead of randomly choosing tokens, our approach picks the most relevant

tokens for attention at each spatial location.

10

Image synthesis with a guidance image. Synthesizing high resolution outputs

is challenging in terms of both quality and computational cost. The idea of utiliz-

ing a high-resolution guide to upsample a low-resolution output has been explored

in computer graphics [76, 11]. In particular, constructing a high-resolution depth

map from coarse sensor data, guided by an RGB image has been extensively investi-

gated [145, 102, 31, 90, 144]. More recently, learning-based approaches were developed

for similar tasks, by posing it as an image-to-image translation problem [95], fusing

the guidance and low-res information at multiple scales [60], or transferring the map-

ping learned at low resolution to high resolution [122]. While these works primarily

aim at leveraging high-resolution information in the input as a guide, our application

must synthesize information from a flat input. In fact, our guide is a low-resolution

version of the same image. Relatedly, [118] use a low-resolution network to predict

parameters of a lightweight high-resolution network, for the purpose of fast image

translation, using a convolutional network architecture.

2.2 Vector Art Synthesis Guided by 3D Shapes

How do artists create line drawings, and how do people perceive them? This

question has been studied in art history [37], philosophy [39], neuroscience [116], and

perceptual psychology [49, 71, 75]. Occluding contour algorithms are the foundation

of non-photorealistic 3D computer graphics; see [6] for a survey.

Generalizations of occluding contours improved line drawing algorithms, begin-

ning with the suggestive contours [24, 78], and continuing with Apparent Ridges [68]

and several other methods; see [23] for a survey of contour generalizations. Cole et

al. [20] performed a thorough study, enlisting human artists to create line drawings

of known 3D objects. They found that existing methods could account for the major-

ity of human-drawn lines, but many differences remained between hand-drawn and

computer-generated lines. Gryaditskaya et al. [43] collect and analyze professional

11

illustrations of objects. While these analyses yield deep insights into the nature of

hand-drawn lines, the synthesis algorithms fail to match the quality of hand-drawn

lines, while also requiring several parameters to be set by a user on a case-by-case

basis.

Meanwhile, learned image stylization algorithms in computer vision and computer

graphics have shown the potential of learning to capture artistic styles such as line

drawings and paintings. The first such methods, Image Analogies [50] and Neural

Style Transfer [36], used only single-image style exemplars. Many variants of Neural

Style Transfer use Gram-matrix-like losses for training or optimization from single

examples, e.g., [65, 59, 82]. Other recent approaches learn stylization from larger

collections of paired [61, 81] or unpaired examples [162, 103]. All of these methods take

only images for input and output. However, these methods lose important geometric

information, often resulting in inaccurate portrayal of shape, such as broken outlines.

Moreover, these methods do not produce vector output, limiting their usefulness for

certain applications.

Stylized rendering of 3D shapes has a long history in Non-Photorealistic Rendering

(NPR) research [6], and these algorithms have been used in numerous applications,

including movies [22], and video games [127]. Most methods entail hand-designed pro-

cedural stylization, e.g., [41, 140, 141, 70]. None of these methods can learn stylization

from examples, making authoring and definition of styles challenging. Moreover, none

of these methods are differentiable, making them unsuitable for integration with other

vision tasks, such as sketch analysis and interpretation.

A few previous methods learn stylized 3D rendering. Bénard et al.[5] and StyLit

[33] extend Image Analogies to stylize 3D models and animation. In contrast, our

method produces vector rather than raster output, which is a more interpretable and

useful representation.

12

Our work builds on ideas from learning vector strokes and stylization. Most exist-

ing methods for example-based stroke stylization [51, 94, 93, 69] are not differentiable

and require vector training data. More recent methods define differentiable strokes for

painting and vector graphics [34, 80], though these methods do not support texture

synthesis. Our work is perhaps most similar to SketchPatch [32]. SketchPatch is an

image-to-image model that translates a plain sketch to a textured sketch. However,

SketchPatch does not take 3D shape and stroke geometry into consideration, and its

output is a raster image, and as a result, the method often loses detail from the input

geometry.

13

CHAPTER 3

NATURAL IMAGE SYNTHESIS GUIDED BY
SEMANTIC MAPS

The first part of this thesis discusses ASSET, a neural architecture for automat-

ically modifying an input high-resolution image according to a user’s edits on its

semantic segmentation map [86] 1. Our architecture is based on a transformer with

a novel attention mechanism. Our key idea is to sparsify the transformer’s atten-

tion matrix at high resolutions, guided by dense attention extracted at lower image

resolutions. While previous attention mechanisms are computationally too expensive

for handling high-resolution images or are overly constrained within specific image

regions hampering long-range interactions, our novel attention mechanism is both

computationally efficient and effective. Our sparsified attention mechanism is able

to capture long-range interactions and context, leading to synthesizing interesting

phenomena in scenes, such as reflections of landscapes onto water or flora consistent

with the rest of the landscape, that were not possible to generate reliably with pre-

vious convnets and transformer approaches. We present qualitative and quantitative

results, along with user studies, demonstrating the effectiveness of our method.

3.1 Method

Overview. Our method synthesizes images guided by user input in the form of an

edited label map (“semantic map”) of an input image. More specifically, given an

1This work is published at the ACM Transactions on Graphics, Vol. 41, No. 4, 2022, and was
also presented in the Proceedings of ACM SIGGRAPH 2022.

14

User Edit Our Result 1 Our Result 2

water

Input

Figure 3.1: ASSET allows users to create diverse editing results by specifying a region
and a new label on the input image. Our efficient transformer captures long-range
dependencies in the image, such as the detailed reflection of the trees on the water,
even at high resolutions (1024× 1024 pixels in this example).

RGB image and its corresponding label map, the user paints some desired changes

on the label map, e.g., replace mountain regions with water (Figure 3.2). Since there

exist several possible output images reflecting the input edits, our method generates

a diverse set of outputs allowing the user to select the most preferable one. Moreover,

our method generates high-resolution images of up to 1024× 1024 resolution.

Our architecture is shown in Figure 3.2. Inspired by recent approaches [29] we

represent images and label maps as a spatial collection of quantized codebook entries

(Section 3.1.1). These codebook entries are processed by a transformer model which

aims to update the codebook entries of the edited areas in an autoregressive manner

(Section 3.1.2). All codebook entries are subsequently decoded to the output set

of images (Section 3.1.3). A crucial component of the transformer is its attention

mechanism, which enables long-range interaction between different parts of the image

such that the synthesized output is coherent as a whole. E.g., if a lake is generated by

the semantic edits it must also capture any reflections of landscape (Figure 3.1). One

complication is that the quadratic complexity of the traditional attention mechanism

15

Edited semantic map

Input image + Mask

𝐸!

𝐸"

Low-res
inputs

Downsample

𝐷𝑒𝑐

Flatten

Output Image
𝑝𝑥

Sparse-Guided
Attention (SGA)

Transformer

Guiding
Transformer

Guidance
Patch feature token

Predicted token
[Mask] token
Semantic patch token𝐸"

𝐸!

Figure 3.2: Overview of our semantic image editing model. Our transformer model
operates in the codebook space using the encoder E1. To incorporate user edits
the tokens inside the edited region are masked and are augmented with a semantic
encoder E2. The mask tokens are filled in by our SGA-Transformer Encoder-Decoder
network, whose sparse attention mechanism is guided by the Guiding Transformer
that computes the full attention on downsampled inputs. Finally, the generated
tokens are decoded into the output image via Dec.

leads to a large time and memory cost for high-resolution images. The key idea of our

method is to compute the full attention at lower resolution first, and then use that as

guidance for sparsifying the attention at full resolution (Section 3.1.2). This approach

allows us to model long-range dependencies even at high resolutions, resulting in more

coherent and plausible output images compared to existing approaches that constrain

attention within sliding windows [29] or alternative attention models [151].

3.1.1 Image encoder

The input RGB image X of size Him × Wim × 3 is processed by a convolutional

encoder resulting in a feature map F of size Him

16
×Wim

16
×d. We also create a Him×Wim

binary mask indicating image regions that must be replaced according to the semantic

map edits. Masked image regions should not affect features produced for unmasked

16

regions, e.g., information about the edited area of Figure 3.2 should not “leak” into the

feature map of the unmasked area. To avoid information leakage, we employ partial

convolutions [87] and region normalization [149] in our encoder while processing the

unmasked regions. The feature map F is subsequently quantized following VQGAN

[29] with the help of a learned codebook Z, i.e., each feature map entry fi,j at position

(i, j) in F is mapped to the closest codebook entry f̂i,j = argminzκ∈Z ||fi,j − zκ||, where

{zκ}|Z|
κ=1 are codebook entries with dimensionality d. The codebook indices of the

edited regions, as indicated by the binary mask, are replaced with a special [MASK]

token (Figure 3.2). We use a second encoder with regular convolutions to obtain a

feature representation of the edited semantic map P which is subsequently quantized

in the same way as the RGB image, resulting in codebook entries ĝi,j.

3.1.2 Autoregressive transformer

Our transformer follows a sequence-to-sequence architecture inspired by [131]

which consists of a bidirectional encoder and an autoregressive decoder, both of which

are equipped with our novel sparsified attention mechanism. The transformer encoder

captures bi-directional context of the image, which is used by the transformer decoder

to generate new codebook indices autoregressively.

Traditional Dense Attention. Traditional attention transforms each embedding

linearly into a learned query, key, and value representation Q,K,V of size L × d,

where L = HfeatWfeat =
Him

16
Wim

16
is the length of the flattened codebook indices in our

case [131]. The output embedding is then computed as softmax(A/
√
d)V, where

attention A = QKT ∈ RL×L. The advantage of attention is that it allows for

interactions across all positions in the sequence, i.e., in our case the whole encoded

image, as illustrated in Figure 3.3 (left). The disadvantage is computation of the

attention matrix A has quadratic time and memory complexity in terms of sequence

length: O(L2) = O(H2
featW

2
feat). For an input image with resolution 1024× 1024, the

17

sequence has length L = 4096, and practically the cost of performing the above matrix

multiplication becomes prohibitively high, as discussed by several other works [126].

One simple way to reduce the computational cost is to use a sliding window approach

[29], i.e., crop a fixed sized patch around the currently sampled token and feed it into

the transformer. However, this introduces a bias towards preferring interactions only

within local regions of the image, missing other useful longer-range interactions.

Sparsified Guided Attention (SGA). We propose an efficient sparsification

strategy, without sliding windows. The key idea is to first compute coarse full atten-

tion with downsampled images, determine which locations are worth attending to,

and then use it to avoid computing most entries of the attention matrix A.

To do this, we first proceed by downsampling the original input image and seman-

tic map to 256× 256 resolution. We further encode them to obtain a feature map of

size 16×16. At this resolution, computing full attention is fast, because the sequence

length of codebook indices is only 162 = 256. Then we employ a guiding transformer,

which has the same architecture as the main transformer but is trained at the low

resolution, to calculate the dense attention matrix Alow ∈ R256×256.

Then we leverage Alow to construct a block attention matrix B ∈ RL×L at the

original feature resolution that will guide the sparsification. To do this, we divide the

original feature map into non-overlapping blocks, as illustrated in Figure 3.3 (right)

for an 8 × 8 grid of blocks. For each block, we find the corresponding locations in

Alow and average their affinity values. Note that the matrix B essentially consists of

blocks, each of which is populated with a single affinity value.

Then we construct the sparse attention matrix Asparse by considering only the

attention weights that are likely important in approximating the true attention. To

this end, we keep the attention if the corresponding affinity is high in the block

attention matrix B. In other words, we argue that the selection of sparse attention

pairs can be reliably guided by the dense attention evaluated at lower resolution. In

18

Guiding
Transformer

 attention
computation

high-res input image
high-res input image

downsampled block attention sparsified
upsampled &

sparse
affinity map

: query
: affinities

dense
affinity maps

 full attention

Figure 3.3: Details of our Sparsified Guided Attention (SGA, right) compared to full
attention (left). We downsample the input and the user-edited semantic layout and
use a Guiding Transformer to obtain the full attention map, which identifies the most
important attention locations for each sampling step. By keeping only the locations
with high attention weight, we construct the high-resolution, sparse attention map
for the SGA transformer.

addition, following the proposition in the context of NLP models [151], we always

compute attention within the current and adjacent blocks, no matter their affinity

values.

Asparse(r, t) =

A(r, t), if t ∈ N (r) or t ∈ K(r).

−∞, otherwise,

(3.1)

where N (r) contains the entries of the neighborhood blocks of r, and K(r) contains

the entries of the blocks with the top-K highest affinities outside the neighborhood.

In our experiments, we set K = 3, resulting in the sparsity ratio <10%, and

significantly reduce the computational cost of attention.

Transformer encoder. The input to our transformer encoder is a sequence of

embeddings jointly representing the masked image codebook indices x = {xl}Ll=1 and

semantic codebook indices p = {pl}Ll=1 produced by the image encoders (flattened

using row-major format), and position information of each index in the corresponding

sequence. Note that here, the transformers are operating both at full-resolution and

low-resolution. Specifically, for each position in the sequence, three d-dimensional

learned embeddings are produced: (i) an image embedding Eim(xl) representing the

token xl at position l in our sequence and in turn the corresponding RGB image

19

region, (ii) an embedding Emap(pl) of the semantic token pl at the same position,

and finally (iii) a positional embedding Epos(l) for that position l. The summation

of token embeddings and positional embeddings follows other popular transformers

[131, 27]:

el = Eim(xl) + Emap(pl) + Epos(l) (3.2)

The sequence of embeddings {el}Ll=1 is fed to the first transformer encoder layer and

is transformed to a continuous representation by the stack of transformer encoder

layers. To preserve the position information of each index at subsequent layers, the

position encoding generator (PEG) is placed before each encoder layer [19, 18].

Transformer decoder. The decoder predicts codebook indices for the edited re-

gion with the help of the global context obtained through the transformer encoder.

Similar to BART [79], the autoregressive generation starts by pre-pending a special

index (token) [START] to the decoder input. At each step, the decoder predicts a dis-

tribution over codebook indices from our dictionary Z learned in our image encoder

(Section 3.1.1). Specifically, the decoder predicts p(Xl|{χ<l}), where Xl is a cate-

gorical random variable representing a codebook index to be generated at position

l in the sequence and {χ<l} are all indices of the previous steps. We note that the

tokens corresponding to unmasked image regions (i.e., image regions to be preserved)

are set to the original image codebook indices. We predict the distributions only for

positions corresponding to the edited image regions.

To predict the output distribution at each step, the decoder first takes as input a

learned embedding Dim(xl) representing the input token xl, and a learned positional

embedding Dpos(l) for that position l. It sums the two embeddings dl = Dim(xl) +

Dpos(l), then passes dl into a self-attention layer (attention between generated tokens)

and a cross-attention layer (attention between generated tokens and encoder output

features). For both self-attention and cross-attention we make use of the sparsified

20

guided attention mechanism. We also note that the self-attention in the decoder layer

is modified to prevent tokens from attending to subsequent positions. Based on the

predicted distribution of codebook indices, we use top-k sampling [57, 29] (k = 100

in our experiments) to create multiple candidate output sequences, each of which can

be mapped to a new image by the image decoder. The generated images are ordered

by the joint probability of the distributions predicted by the decoder.

3.1.3 Image decoder

The image decoder takes as input the quantized feature map and decodes an

RGB image of size Him ×Wim × 3 following VQGAN [29]. Due to the quantization

process, the reconstruction of the encoder-decoder pair is not perfect and leads to

minor changes in the areas that are not edited. To avoid this, we follow the same

strategy as SESAME [99] and retain only the generated pixels in the masked regions

while the rest of the image is retrieved from the original image. To further decrease

any small artifacts around the borders of the masked regions we apply Laplacian

pyramid image blending as a final post-processing step.

3.1.4 Training

We randomly sample free-form masks following [99] and use the semantic informa-

tion in the masked area as user edits. The image encoder, decoder, and transformer

are trained in a supervised manner on training images which contain ground-truth for

masked regions. We first train our image encoders and decoders following VQGAN

[29]. We then train our transformer architecture on images with 256× 256 resolution

using the original attention mechanism (full attention), which will be used as the

guiding transformer. Following that, we switch to train our SGA-transformer with

the sparsified guided attention on high resolution, specifically, we initialize its weights

from the previously trained guiding transformer and fine-tune it at 512× 512 resolu-

21

Figure 3.4: Architecture of the image encoder and decoder. Note that Hfeat =
Him

16
,

Wfeat =
Wim

16
.

tion again at 1024× 1024 resolution. In all cases, we use the same losses proposed in

VQGAN [28].

3.1.5 Implementation Details

Here we provide implementation details of our network architecture and training

procedure. Our model is implemented in PyTorch.

Image encoder / decoder. Our image encoder (Section 3.1.1) and decoder (Sec-

tion 3.1.3) use the architecture shown in Figure 3.4. The design of the networks

follows the architecture proposed in VQGAN [29]. One difference is that we employ

partial convolutions [87] and region normalization [149] in our image encoder while

processing the unmasked image regions. The reason is that the features produced

for unmasked regions should not be affected by the masked image regions. Partial

convolutions and region normalization avoid any information leakage of the masked

area.

The semantic map encoder follows the same architecture with regular convolu-

tions. We note that during training, VQGAN measures the reconstruction error in

terms of both the image and semantic map. Thus, along with the decoder for the

image, we also use a decoder to reconstruct the semantic map. The semantic map

decoder uses an architecture following the “decoder” column in Figure 3.4. A mi-

22

Dataset nE nD # params [M] nh |Z| dropout ne

Flickr-Landscape 7 15 343 16 1024 0.0 1024
COCO-Stuff 7 15 365 16 8192 0.0 1024
ADE20K 7 10 269 16 4096 0.1 1024

Table 3.1: Transformer hyperparameters. For every experiment, the number of total
blocks N , the number of blocks in N (r), the number of blocks in K(r) are set to 64,
3, 3 respectively. nE denotes the number of transformer layers in the bidirectional
encoder, nD is the number of transformer layers in the autoregressive decoder, #
params is the number of transformer parameters, nh is the number of attention heads
in the transformer, |Z| is the number of codebook entries, dropout is the dropout
rate used for training the transformer, and ne is the token embedding dimensionality.

nor difference is that the number of input/output channels is changed from 3 to the

number of categories C in the semantic map encoder and decoder.

Transformer. Our transformer (Section 3.1.2) follows the architecture presented

in BART [79]. All the hyperparameters for the transformer are described in Table

3.1.

Following [19, 18], the position encoding generator (PEG) is placed before each

transformer encoder layer. The position encoding generator is a 5 × 5 depth-wise

convolution with the padding size of 2, which convolves with each block independently.

Similar to the encoder layer, we add one PEG before the first decoder layer which

takes the encoder output representation as input to produce positional embeddings

for the transformer decoder.

Sparsified Guided Attention. For each transformer layer and attention head,

a full attention matrix Alow ∈ R256×256 is computed from the downsampled input

image. The computation of the block attention matrix B for high-resolution is guided

by Alow. Specifically, in our experiments, the number of blocks N is set to 64. Each

block consists of 256
64

= 4 tokens at low-resolution. The affinity value of each block

23

corresponds to a 4 × 4 region in Alow. In our implementation, we use a 2D average

pooling layer with kernel size 4 and stride 4 to downsample Alow into B.

Training details. For the image encoder/decoder and semantic encoder/decoder,

we used the Adam optimizer [72] with learning rate 7.2 · 10−6 and batch size 16.

During the training of the guiding transformer, we used the AdamW optimizer [92]

with learning rate 3.2 · 10−5 and batch size 224. During the finetuning of the SGA-

transformer, we used the AdamW optimizer [92] with learning rate 1.2 · 10−5 and

batch size 8. All training is done on 8 A100 GPUs.

3.2 Results

In this section, we present qualitative and quantitative evaluation for ASSET.

Dataset. We evaluate our ability to perform high-resolution semantic editing on

the Flickr-Landscape dataset consisting of images crawled from the Landscape group

on Flickr. It contains 440K high-quality landscape images. We reserve 2000 images

for our testing set, while the rest are used for training. Following [99], we use 17

semantic classes including mountain, clouds, water, and so on. To avoid expensive

manual annotation, we use a pre-trained DeepLabV2 [12] to compute segmentation

maps for all images. We also use the ADE20K [158] and COCO-Stuff [7] datasets for

additional evaluation.

Evaluation metrics. To automatically generate test cases, we simulate user edits

by masking out the pixels belonging to a random semantic class for each test image.

As explained in Section 3.1.2, we can sample several output images and also rank

them according to their probability. For our experiments, we sample 50 images, and

keep the top 10 of them, as also done in other works [88, 156]. This results in 20K

generated images for our test set. To evaluate the perceptual quality of our edits

24

we compute the FID [52], LPIPS [154], and SSIM metrics [138]. For each ground-

truth image of the test split, we evaluate these metrics against the synthesized image

that achieves the best balance of them, as done in [88, 156]. To evaluate how well

the models adhere to the specified label map at the edited areas we also compare

the mean Intersection over Union (mIoU) and the pixel-accuracy between the ground

truth semantic map and the inferred one using the pretrained DeepLabV2 model [12].

Finally, to evaluate diversity, we utilize the LPIPS metric following [156, 88]. The

diversity score is calculated as the average LPIPS distance between 5K pairs of images

randomly sampled from all generated images, as also done in [88, 156]. We also

perform a user study to evaluate the perceptual quality of several models.

Baselines. We compare our method with several semantic image editing baselines:

SESAME [99], INADE [125], Taming Transformers (TT) [29], and ImageBART [28].

SESAME and INADE are based on convolutional networks and only support image

resolutions of up to 256×256 pixels. TT and ImageBART are based on Transformers,

but use a sliding window approach at high resolution, in which the attention is only

calculated on a local neighborhood for each sampling location. While SESAME can

only produce a single output, the other three methods can generate diverse outputs

for a given edit. For a fair comparison, when generating image samples using TT or

ImageBART, we also selected top-10 images out of 50 sampled ones based on their

probability. We selected top-10 images for INADE based on discriminator scores as

done in [88, 156]. For all baselines, we use the authors’ implementation and train

them on the same datasets as our method.

Quantitative evaluation. For multimodal editing tasks we aim to obtain outputs

that are both diverse and consistent. There is an inherent trade-off between diversity

and consistency, as higher diversity can be achieved by sacrificing image consistency.

As such, we aim to achieve maximal diversity without generating inconsistent results.

25

Res Method LPIPS ↓ FID ↓ SSIM ↑ mIoU ↑ accu ↑ div ↑

256

INADE 0.233 11.2 0.826 48.6 59.1 0.145
SESAME 0.213 10.2 0.830 50.3 61.7 0.000
TT 0.201 10.4 0.839 46.1 58.3 0.187
ImageBART 0.196 10.0 0.841 47.3 58.5 0.163
ASSET 0.187 9.2 0.846 51.5 63.0 0.151

512
TT 0.203 10.6 0.850 52.2 63.7 0.186
ImageBART 0.199 10.4 0.851 52.4 63.3 0.168
ASSET 0.186 8.4 0.856 53.5 64.7 0.145

1024
TT 0.210 10.9 0.881 50.4 61.7 0.160
ImageBART 0.201 10.4 0.880 50.8 62.1 0.139
ASSET 0.160 7.7 0.887 54.1 65.2 0.124

Table 3.2: Quantitative evaluation on the Flickr-Landscape dataset at various reso-
lutions.

For all models that can generate more than one solution for a given edit, we choose

the sample with the best balance of quantitative measures (out of the top 10 samples),

as done in [88] and [156]. Table 3.2 shows the comparison with competing models on

the Flickr-Landscape dataset at different resolutions.

Except for the diversity metric our model outperforms all competing methods

on all resolutions. While TT and ImageBART achieve a higher diversity than our

model, we observe that this higher diversity comes at the cost of inconsistent images

(see Figure 3.6 and Figure 3.7). In contrast, our approach also achieves high diversity

but shows much more consistent image outputs, both at lower and higher resolutions.

At low resolution (256 × 256), our method differs from TT by using a bidirectional

transformer encoder to capture global context and partial convolutions to prevent

information leakage from masked regions. As we increase the resolution (512×512 and

higher), our approach continues to obtain consistent results, thanks to the Sparsified

Guided Attention (SGA) that captures long-range dependencies. In contrast, the

26

Dataset Method LPIPS ↓ FID ↓ SSIM ↑ mIoU ↑ accu ↑ div ↑

COCO- TT 0.237 20.2 0.820 36.9 51.7 0.192
Stuff ASSET 0.194 14.7 0.845 43.4 58.7 0.156

ADE20K
TT 0.197 15.7 0.860 51.8 68.1 0.155

ASSET 0.191 14.0 0.862 52.6 68.8 0.140

Table 3.3: Quantitative evaluation on the COCO-Stuff and ADE20K datasets at
512× 512 resolution.

Input Image User Edits Ours INADE [125] TT [29] SESAME [99]

Figure 3.5: Comparison of our approach and all baselines on images of 256 × 256
pixels resolution.

perceptual performance of TT and ImageBART decreases with increasing resolution,

as the sliding window approach is unable to enforce consistency over long distances.

We also conduct experiments on the COCO-Stuff and ADE20K datasets. Table 3.3

shows the comparison with TT at 512× 512 resolution. Our model outperforms TT

on both datasets.

Qualitative evaluation. For qualitative evaluation, a brush of a semantic class

is used, painting over the image. Figure 3.5 shows comparison with all competing

methods at 256× 256 resolution. Since we do not need SGA at small resolutions, we

only use our guiding transformer for these examples. Compared to other approaches,

our method produces more coherent content with fewer artifacts. In Figure 3.6 and

Figure 3.7, we show the comparison on 1024 × 1024 images against Taming Trans-

27

Input & Edits ASSET Taming Transformers

Figure 3.6: Comparison of ASSET with Taming Transformers [29] at 1024 × 1024
resolution.

28

Input & Edits ASSET ImageBART

Figure 3.7: Comparison of ASSET with ImageBART [28] at 1024× 1024 resolution.

29

Input & Edits ASSET Taming Transformers

Figure 3.8: Qualitative results and comparisons with Taming Transformers [29] on
COCO-Stuff at 512× 512 resolution.

Input & Edits ASSET Taming Transformers

Figure 3.9: Qualitative results and comparisons with Taming Transformers [29] on
ADE20K at 512× 512 resolution.

30

19.3%
ASSET
1024px

ImageBART
80.7%

14.0%
ASSET
1024px

TT
86.0%

34.7%
ASSET
256px

ImageBART
65.3%

29.3%
ASSET
256px

TT
70.7%

21.7%
ASSET
256px

SESAME
78.3%

Figure 3.10: User study results. At both low and high resolution, our method ASSET
is dominantly preferred over the baselines.

formers and ImageBART respectively. Figure 3.8 and Figure 3.9 show qualitative

results on COCO-Stuff and ADE20K at 512 × 512 resolution. Even at high reso-

lution, our method can synthesize coherent content across the whole image, while

Taming Transformers and ImageBART fail to capture long-range dependency and

sometimes ignore the user edits.

User study. To further evaluate perceptual image quality we also conduct an Ama-

zon MTurk study. We showed participants a masked input image, along with a

randomly ordered pair of images synthesized by ASSET and one of our baseline

algorithms. The participants were then asked which edited image looks more photo-

realistic and coherent with the rest of the image. Figure 3.10 summarizes 1500 user

responses for 256 × 256 and 1024 × 1024 resolutions. The study shows that our

method receives the most votes for better synthesis compared to other methods in

both resolutions, with the largest margin at the highest 1024× 1024 resolution.

Ablation study. To evaluate the effect of our SGA, we perform several ablations

with different attention approaches. The following variants are evaluated at 512×512

resolution: (1) Sliding : we use our guiding transformer with the sliding window ap-

31

Method LPIPS ↓ FID ↓ SSIM ↑ mIoU ↑ accu ↑ div ↑

Sliding 0.214 10.7 0.847 52.6 63.1 0.180
Local 0.209 10.1 0.853 51.1 62.4 0.152
Random 0.202 9.6 0.851 50.0 61.6 0.157
ASSET 0.186 8.4 0.856 53.5 64.7 0.145

Table 3.4: Effects of different forms of attention on the Flickr-Landscapes dataset at
512× 512 resolutions.

Input Image User Edits Ours Random Sliding Local

Figure 3.11: Comparison showing the effects of using different kinds of attention at
1024× 1024 resolution.

proach as in [29]. (2) Local : we remove our top-K attention and only use neighboring

window attention N (r). (3) Random : we use random instead of top-K attention

similar to [151]. Table 3.4 shows the performance of all variants compared to our full

model. Our model outperforms all variants in all metrics except for diversity. As

before, we observe that higher diversity can be achieved at the cost of poorer image

consistency. In Figure 3.11 we show qualitative comparisons with the proposed vari-

ants trained at 1024× 1024 resolution. As we can see, without the SGA component,

the image consistency and perceptual quality decreases as the model either only at-

tends to local areas (sliding and local) or fails to attend to important image regions

at each sampling step (random).

32

Method LPIPS ↓ FID ↓ SSIM ↑ mIoU ↑ accu ↑

R+G 0.207 9.5 0.849 50.3 61.7
Random 0.202 9.6 0.851 50.0 61.6
ASSET 0.186 8.4 0.856 53.5 64.7

Table 3.5: Ablation for use of global blocks at 512× 512 resolution.

Dataset TT ASSET

Landscape 307M 343M
COCO-Stuff 651M 365M
ADE20K 405M 269M

Table 3.6: Number of transformer parameters for TT and ASSET.

Ablation of global blocks. In our ablation study, we also experimented with the

global block presented in BigBird [151]. Specifically, we make the first and last blocks

“global”, which attend over the entire sequence. Similar to [151], we use the global

attention together with the local attention and random attention – this variant is

referred to as R+G. The results did not improve compared to the Random variant in

terms of our evaluation metrics (see Table 3.5).

Model capacity comparison with TT. We compare the number of transformer

parameters with TT in Table 3.6. Our transformer’s number of parameters is ∼12%

larger than the one in TT for the Landscape dataset, and much smaller for the COCO-

Stuff and ADE20K datasets. We note that ASSET’s and TT’s CNNs have the same

number of parameters.

Attention visualization. We use Attention Rollout [1] to visualize the attention

map of our guiding transformer encoder. Specifically, we average attention weights

of the guiding transformer encoder across all heads and then recursively multiply

the resulting averaged attention matrices of all layers. The attention maps for two

33

user edit

water

attention map

water water

Figure 3.12: Encoder self-attention visualized for two different query points (shown
as red). The image regions acquiring higher attention are the ones more relevant to
generate water reflections at each of these points.

different query points are presented in Figure 3.12. The guiding transformer can

attend to informative regions for different query points. For the query points in Figure

3.12, the regions with high attention correspond to image areas useful to synthesize

reflection of scenery at each of these points.

VQGAN leakage visualization. We employ partial convolutions [87] and region

normalization [149] in our image encoder while processing the unmasked image re-

gions. The reason is that the features produced for unmasked regions should not be

affected by the masked image regions. Partial convolutions and region normalization

avoid any information leakage of the masked area. In Figure 3.13, we visualize leakage

for the original VQGAN and our improved image encoder. With our modification,

the latent features produced for unmasked regions are independent of the masked

area.

Inference speed comparisons. Following [8, 28], we record the average inference

time on Flickr Landscape and ADE20K as shown in Table 3.7. The inference speed

is influenced by the size of the masked region relevant to the size of the input image

(i.e., ratio of the masked region). Following [8], we report the average masked ratio

34

(a) input image

mask

changed unchanged

(d) ASSET
latent features

(c) VQGAN
latent features(b) mask

masked area

Figure 3.13: The masked area of the input image is replaced with random noise. The
difference of 16 × 16 latent features between the original image (a) and the masked
image (b) are visualized on the right. Changed and unchanged latent features are
visualized in blue and black respectively. Image (c) shows how unmasked image latent
tokens are affected (blue tokens) by the masked area in the original VQGAN. Image
(d) shows that our image encoder successfully prevents leakage from the masked area
to the unmasked area.

Resolution Dataset Masked Ratio TT ASSET

1024 Landscape 0.287 52.3 55.8
512 ADE20K 0.296 16.9 10.6

Table 3.7: Average inference time in seconds per image.

in this table. Our method achieves similar inference speed with TT, while producing

much higher-quality results than TT.

Inference time of guiding transformer. Measured on the Landscape dataset,

the average inference time of our guiding transformer (256× 256 resolution) represents

only a small fraction (3.4%) of the total inference time of the full ASSET pipeline.

The majority of the inference time (96.6%) is taken by our architecture operating

at high resolution, which is the crucial part significantly accelerated by our SGA

mechanism.

35

input image User edit Our result

water

Figure 3.14: Example of a less successful result.

Comparison with full attention. Based on an NVIDIA A100 (40GB VRAM) at

1024×1024 resolution with a batch size of 1, the transformer architecture requirements

with full attention exceeds the available memory during training. Using our Sparsified

Guided Attention mechanism, the transformer architecture utilizes 37GB at train

time. In terms of inference time during testing, the cost of the guiding transformer

is significantly lower: ASSET is about 20 times faster at test time compared to using

full attention at 1024 × 1024 resolution.

Failure case. Structured textures such as the mountain in Figure 3.14 is challenging

for reflection synthesis. In this case, our result may not reproduce the texture well.

3.3 Conclusion

We introduce a novel transformer-based approach for semantic image editing at

high resolutions. Previous approaches have difficulty in modeling long-range depen-

dencies between image areas that are far apart, resulting in unrealistic and incon-

sistent image edits. To this end, we introduce a novel attention mechanism called

Sparsified Guided Attention (SGA), which uses the full attention map at the coarse

resolution to produce a sparse attention map at full resolution. Our experiments show

that SGA outperforms other variants of localized or sparse attention, and allows us

36

to obtain realistic and diverse image edits even at high resolutions of 1024 × 1024

pixels.

While our approach can perform consistent and diverse edits at high resolutions

of up to 1024 × 1024 pixels, there are still avenues for further improvements. A

common issue in transformers including ours is that directly applying a trained model

to generate content at a higher resolution degrades performance, since the learned

positional embedding cannot adapt to the new resolution. In addition, the repeated

autoregressive sampling takes several minutes to perform a full edit at 1024 × 1024

resolution. To alleviate this issue, we can sample a diverse set of outputs for a

given edit in parallel on multiple GPUs. Finally, the synthesized content may not

be perfectly aligned with the provided mask since the masking takes place at a low

resolution in the latent space.

37

CHAPTER 4

VECTOR ART SYNTHESIS GUIDED BY 3D SHAPES

The second part of my thesis focuses on a two-stage approach for line drawing

synthesis and stylization from 3D shapes. In Section 4.1, I will present a method

that learns to draw lines for 3D models based on a combination of a differentiable

geometric module and an image translation network. In Section 4.2, I will discuss a

model for stylizing line drawings with the guidance of 3D shapes.

4.1 Neural Contours: Line Drawing Synthesis

The first section of this chapter discusses Neural Contours, a method for learn-

ing to generate line drawings from 3D models [85] 1. Our architecture incorporates

a differentiable module operating on geometric features of the 3D model, and an

image-based module operating on view-based shape representations. At test time,

geometric and view-based reasoning are combined with the help of a neural module

to create a line drawing. The model is trained on a large number of crowdsourced

comparisons of line drawings. Experiments demonstrate that our method achieves

significant improvements in line drawing over the state-of-the-art when evaluated on

standard benchmarks, resulting in drawings that are comparable to those produced

by experienced human artists.

1This work is published in the Proceedings of CVPR 2020.

38

Figure 4.1: Given a 3D model (left), our network creates a line drawing that conveys
its structure more accurately compared to using other methods individually, such as
Occluding Contours [6], Apparent Ridges [68], and pix2pix variants [135].

4.1.1 Line Drawing Model

We first describe our architecture for computing a line drawing from a 3D shape.

The model takes a 3D shape and camera as input, and outputs a line drawing. The

3D shape is represented as a triangle mesh that approximates a smooth surface. The

output line drawing is specified as a 2D grayscale image. Our architecture has two

branches (Figure 4.3): a “geometry branch” that performs line drawing based on

geometric features of the 3D model, and an “image translation branch” that learns

lines through image-to-image translation. Parameters for the geometric lines are set

at run-time by a “ranking module”. Training for the model is described in Section

4.1.3.

4.1.1.1 Geometry branch

The first branch of our model is based on classic geometry-based line drawing

definitions, namely suggestive contours, ridges, valleys, and apparent ridges. Given a

camera viewpoint and 3D shape, each of these formulations contributes to a grayscale

pixel intensity map, which are combined to produce the final image I. Their contribu-

39

tions depend on a set of thresholding parameters. Instead of setting these by hand, we

introduce differentiable formulations to allow learning the thresholding parameters.

The first set of curves produced are Occluding Contours [6]. The model gener-

ates a binary mask IC with “on” pixels at projections of occluding contours (Figure

4.2b), computed using the interpolated contour algorithm [50]. Occluding contours

are parameter-free, and do not require any learning; they are used in all of our ren-

derings. Another parameter-free set of lines are mesh boundaries, also rendered as a

binary mask IB.

Suggestive Contours (SCs) [24] represent surface points that are occluding con-

tours in nearby views. See DeCarlo [24] for a detailed explanation and definitions.

Let κ be the radial curvature, and Dκ be the directional derivative of the radial cur-

vature at a surface point, as defined in [24]. SCs are points where κ = 0 and Dκ > 0.

For meshes, these curves are computed by interpolation to find the zero set of κ. As

seen in Figure 4.2c, rendering all SCs is undesirable. Instead, “weak” SCs are filtered

by only rendering SCs with Dκ > tS for some threshold tS, and tapered off below tS

(Figure 4.2d) [24]. In previous work, this tS parameter is manually adjusted for each

3D model. In order to determine this threshold automatically, we introduce a for-

mulation that is differentiable with respect to tS. For a given threshold, the method

outputs a per-pixel intensity map IS. We build two image-space maps. First, S(x)

is a binary map that is 1 at the projections of suggestive contours, and 0 otherwise,

where x indexes pixel locations in the image. Second, Dκ(x) associates each pixel x

to the directional derivative of the radial curvature at the surface point visible from

that pixel. Figure 4.3 shows these two image-space maps for an input 3D shape.

Then, the SC image is computed for each pixel x as:

IS(x, tS) = S(x) max

(
1− tS

Dκ(x)
, 0

)
(4.1)

40

(a) (b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 4.2: Given a 3D shape (a), we show (b) occluding contours, (c,d) unfiltered
and filtered suggestive contours, (e,f) unfiltered and filtered ridges and valleys, (g,h)
unfiltered and filtered apparent ridges.

41

Figure 4.3: Our network architecture: the input 3D model is processed by a geometry
branch operating on curvature features, and an image-based branch operating on
view-based representations. Their outputs are combined to create a line drawing,
which is in turn evaluated by a ranking module that helps determining optimal line
drawing parameters.

The second term filters out lines with small Dκ. For tS = 0, all suggestive contours

are displayed, while, as tS increases, they are eliminated. The inverse function is

used rather than a linear dependence, e.g., max(Dκ(x)− tS, 0), to produce a sharper

tapering, following the implementation in rtsc [113]. DeCarlo et al.[24] also proposed

filtering according to the radial direction magnitude, but we did not find that it was

much different.

Ridges and Valleys (RVs) are viewpoint-independent surface extrema; see [100]

for a detailed explanation. As with SCs, we introduce a formulation that is differ-

entiable with respect to the filtering function. We introduce a threshold for ridges

(tR) and one for valleys (tV). The per-pixel intensity maps showing locations of ridges

and valleys are generated as R(x) and V (x), along with maps κ1(x), κ2(x) containing

the two principal curvatures of the surface point visible from each pixel, respectively.

Ridges and valleys are then filtered as:

42

IR(x, tR) = R(x) max

(
1.0− tR

κ1(x)
, 0.0

)
(4.2)

IV (x, tV) = V (x) max

(
1.0− tV

κ2(x)
, 0.0

)
(4.3)

The interpretation of the formula is similar to SCs and yields RVs consistent with

rtsc [113]. Figures 4.2e and 4.2f show an example of RVs before and after filtering.

Apparent Ridges (ARs) [68] are object ridges from a given camera position, e.g.,

object points that “stick out” to the viewer; see [68] for a detailed description. We

define A(x) as the map containing ARs, and filter by the view-dependent curvature

κt(x):

IA(x, tA) = A(x) max

(
1.0− tA

κt(x)
, 0.0

)
(4.4)

Figures 4.2g and 4.2h show ARs before and after filtering.

Line drawing function. Given each of these functions, we define a combined geo-

metric line drawing function IG conditioned on the set of parameters t = {tS, tR, tV , tA}

(we drop the pixel id x for clarity):

IG(t) = max
(
IS(tS), IR(tR), IV (tV), IA(tA), IC , IB

)
(4.5)

where the max function operates per pixel independently.

Preprocessing. In a pre-processing step, we compute the curvatures required for

the above lines from the input mesh. using [112]. We normalize object size so that

the longest dimension is equal to 1 and the curvature quantities are divided by the

their 90th percentile value.

4.1.1.2 Image translation branch

An alternative approach to create line drawings from shapes is to use a neural

network that directly translates shape representations to 2D images. To simplify the

43

mapping, one can feed view-based shape representations as input to such network

(i.e., depth images, shaded renderings), which also allows us to re-purpose existing

image-to-image translation networks. Our method also incorporates this generative

approach. Specifically, following pix2pixHD [135], we used an image translation net-

work module, shown in Figure 4.3. As input to the network, we use a combination

of view-based representations. First, we use a depth image E of the shape from the

given camera. Then we also compute shaded rendering images representing Lam-

bertian reflectance (diffuse shading) [108] created from the dot product of surface

normals with light direction (light is at the camera). We use these shaded renderings

because shading features are important predictors of where people draw lines [20].

To increase robustness to rendering artifacts, we also smooth the mesh normals using

diffusion [66] with different smoothing parameters. As a result, we create a stack

of six smoothed versions of shaded images O = {O1,O2, ...,O6}, which are concate-

nated channel-wise with the depth image (Figure 4.3, bottom left). The resolution of

all images is set to 768 × 768. We found that using these combined multiple inputs

produces better results.

We also experimented with feeding rendered curvature maps, however, as we dis-

cuss in our experiments section, the results did not improve. Finally, since the network

outputs per-pixel line probabilities, we use the ridge detection procedure of Cole et

al.[20] so that the output image IL contains cleaner curves.

4.1.1.3 Image translation branch implementation

We provide here more implementation details for our image translation branch.

Multi-scale shaded maps. We smooth mesh normals by diffusing the vertex nor-

mal field in one-ring neighborhoods of the mesh through a Gaussian distribution.

Each vertex normal is expressed as a weighted average of neighboring vertex nor-

mals. The weights are set according to Gaussian functions on vertex distances. The

44

Layer Activation size

Input 768 × 768 × 7
Conv(7x7, 7→64, stride=1) 768 × 768 × 64
Conv(3x3, 64→128, stride=2) 384 × 384 × 128
Conv(3x3, 128→256, stride=2) 192 × 192 × 256
Conv(3x3, 256→512, stride=2) 96 × 96 × 512
Conv(3x3, 512→1024, stride=2) 48 × 48 × 1024

9 Residual blocks 48 × 48 × 1024
Conv(3x3, 1024→512, stride=1/2) 96 × 96 × 512
Conv(3x3, 512→256, stride=1/2) 192 × 192 × 256
Conv(3x3, 256→128, stride=1/2) 384 × 384 × 128
Conv(3x3, 128→64, stride=1/2) 768 × 768 × 64
Conv(7x7, 64→1, stride=1) 768 × 768 × 1

Table 4.1: Architecture of the Image Translation Branch.

standard deviation σ of the Gaussians control the degree of influence of neighboring

vertex normals: when σ is large, the effect of smoothing is larger. The map O1 is

generated based on the initial normal field, while O2,O3,O4,O5,O6 are created using

smoothing based on σ = {1.0, 2.0, 3.0, 4.0, 5.0} respectively.

Architecture details. Our image translation branch uses the architecture shown

in Table 4.1. All convolutional layers are followed by batch normalization and a

ReLU nonlinearity except the last convolutional layer. The last convolutional layer

is followed by a sigmoid activation function. The branch contains 9 identical residual

blocks, where each residual block contains two 3 × 3 convolutional layers with the

same number of filters for both layers.

4.1.1.4 Neural Ranking Module

As discussed earlier, the thresholding parameters t play an important role in

determining the existence and tapering of the geometric lines. The threshold values

determine how much intensity each geometric line will contribute to the final image,

if at all. Our approach determines the threshold parameters t at test time, since

45

different 3D models may be best rendered by different combinations of geometric

lines. We employ a Neural Ranking Module (NRM) that scores the quality of a given

line drawing. Then, at test time, the thresholds t are set by optimization of the NRM

score.

Specifically, the module is a function of the merged line drawing I(t) = max(IG(t), IL),

the depth image of the shape from the given viewpoint E, and also the multi-scale

shaded images O (Figure 4.3). The module is a neural network f(I(t),E,O,ϕ) = p,

where p is the output score, and ϕ are the learned network parameters. At test time,

we aim to maximize this function (i.e., the quality of the drawing) by modifying the

parameters t:

argmax
t

f(I(t),E,O) (4.6)

The maximization is done with L-BFGS using analytic gradients (∂f/∂I) · (∂I/∂t),

computed from backpropagation since our modules are differentiable. We also im-

pose a non-negativity constraint on the parameters t, as specified by the geometric

definitions of the lines. To avoid local minima, we try multiple initializations of the

parameter set t through a grid search.

The function 4.6 is also used to choose whether to render mesh boundaries IB.

This is simply a binary check that passes if the function value is higher when bound-

aries are included in I(t). Once the ranking network has determined the optimal

parameters topt, the final drawing is output as I(t) = max(IG(topt), IL). We note

that the NRM does not adjust the contribution of the image translation module at

test time. We tried using a soft thresholding function on its output IL, but it did

not help. Instead, during training, the image translation module is fine-tuned with

supervisory signal from the NRM. We also experimented with directly predicting the

parameters t with a feed-forward network, but we found that this strategy resulted

in much worse performance compared to test-time optimization of t.

46

Layer Activation size

Input 768 × 768 × 3
Conv(7x7, 8→64, stride=2) 384 × 384 × 64
Max-pool(3x3, stride=2) 192 × 192 × 64

ResBlock(64→64, stride=1, blocks=3) 192 × 192 × 64
ResBlock(64→128, stride=2, blocks=4) 96 × 96 × 128
ResBlock(128→256, stride=2, blocks=6) 48 × 48 × 256
ResBlock(256→512, stride=2, blocks=3) 24 × 24 × 512
ResBlock(512→1024, stride=2, blocks=3) 12 × 12 × 1024

Average-pool(12x12) 1024
FC(1024→1) 1

Table 4.2: Architecture of the Neural Ranking Module.

NRM architecture. The neural ranking module follows the ResNet-34 architec-

ture. The input is the line drawing I, depth E, and shaded maps O at 768 × 768

resolution that are concatenated channel-wise. To handle this input, we added one

more residual block after the original four residual blocks of ResNet-34 to downsam-

ple the feature map by a factor of 2. The newly added residual block produces a

12×12×1024 map. After mean pooling, we get a 1024-dimension feature vector. We

remove the softmax layer of ResNet-34 and use a fully connected layer to output the

“plausibility” value.

4.1.1.5 Neural Ranking Module Implementation

We provide here implementation details for our Neural Ranking Module.

Architecture details. Our Neural Ranking Module uses the architecture shown

in Table 4.2. It follows the ResNet-34 architecture. We add one more residual block

with 1024 filters after the original four residual blocks. After average pooling, we get

a 1024-dimensional feature vector. We remove the softmax layer of ResNet-34 and

use a fully connected layer to output the “plausibility” value.

47

4.1.2 Dataset

To train the the neural ranking and image translation modules, we need a dataset

of line drawings. Although there are a few large-scale human line drawing datasets

available online [67, 115], the drawings are not associated to reference 3D shapes and

include considerable distortions. An alternative scenario is to ask artists to provide us

with line drawings depicting training 3D shapes. However, gathering a large number of

human line drawings for training is labor-intensive and time-consuming. Cole et al.’s

dataset [20] was gathered this way, and is too small on its own to train a deep model.

In contrast, for each training shape, we generated multiple synthetic line drawings

using rtsc [113] through several combinations of different lines and thresholds, and

asked human subjects to select the best drawing in a relative comparison setting.

Since selecting the best drawing can be subjective, we gathered votes from multiple

human subjects, and used only training drawings for which there was consensus.

Below we describe our dataset, then we describe the losses to train our modules.

Shape dataset. The first step to create our dataset was to select training 3D shapes

from which reference line drawings will be generated. We used three collections:

ShapeNet [10], Models Resource [111], and Thingi10K [159]. These shape collections

contain a large variety of human-made and organic objects. In the case of ShapeNet,

we sampled a random subset of up to 200 shapes from each category, to avoid category

imbalance. All models have oriented ground planes specified. We removed duplicate

shapes and avoided sampling low-resolution shapes with fewer than 2K faces. We

also processed the meshes by correctly orienting polygons (front-facing with respect

to external viewpoints), and repairing connectivity (connect geometrically adjacent

but topologically disconnected polygons, weld coincident vertices). The number of

shapes in all collections is 23,477.

48

NEXT

Figure 4.4: A snapshot from our MTurk questionnaires used for gathering training
line drawing comparisons. The most voted answer is highlighted as red.

Generating candidate line drawings. We select two random camera positions

for each 3D model under the constraint that they are elevated 30 degrees from the

ground plane, are aligned with the upright axis, and they point towards the centroid

of the mesh (i.e., only the azimuth of each camera position is randomized). Then

for each of the two camera positions, we generated 256 synthetic line drawings using

all possible combinations of suggestive contours, apparent ridges, ridges with valleys

under 4 thresholds (e.g. suggestive contours have 4 different thresholds [0.001, 0.01,

0.1, off]), including combinations with and without mesh creases and borders (4×4×

4× 2× 2 = 256 combinations). We also generated additional synthetic line drawings

using Canny edges and edge-preserving filtering [35] on rendered shaded images of

shapes, each with 4 different edge detection thresholds resulting in 8 more drawings.

In total, this process resulted in 264 line drawings for each shape and viewpoint.

These line drawings can be similar to each other, so we selected the 8 most distinct

ones by applying k-mediods (k = 8) and using Chamfer distance between drawn lines

as metric to recover the clusters.

49

Questionnaires. We then created Amazon MTurk questionnaires, where, on each

page, we showed 8 candidate line drawings of a 3D shape, along with rendered images

of it from different viewpoints [139] (Figure 4.4). Each page asked human participants

to select the line drawing that best conveyed the rendered shape, and was most likely

to be selected by other people as well. We also provided the option not to select any

drawing (i.e., if none depicted the shape reliably). We employed sentinels (drawings

of irrelevant shapes) to filter unreliable participants. We had total 3, 739 reliable

MTurk participants in our study. For each shape and viewpoint, we gathered votes

from 3 different participants. We accepted a drawing for training if it was chosen by

at least two users. As a result, we gathered 21, 609 training line drawings voted as

“best” per shape and viewpoint. A random subset (10% of the original dataset) was

kept for hold-out validation.

Dataset Collection Details. We created Amazon MTurk questionnaires to collect

our training dataset. Each questionnaire had 35 questions. 5 of the questions were

randomly chosen from a pool of 15 sentinels. Each sentinel question showed eight

line drawings along with renderings from a reference 3D model. One line drawing

was created by an artist for the reference shape, and seven line drawings were created

for different 3D models. The line drawings were presented to the participants in a

random order. Choosing one of the seven line drawings (or the option “none of these

line drawings are good”) resulted in failing the sentinel. If a worker failed in one

of these 5 sentinels, then he/she was labeled as “unreliable” and the rest of his/her

responses were ignored. A total of 4396 participants took part in this user study to

collect the training data. Among 4396 participants, 657 users (15%) were labeled as

“unreliable”. Each participant was allowed to perform the questionnaire only once.

50

4.1.3 Training

The goal of our training procedure is to learn the parameters ϕ of the neural

ranking module, and the parameters θ of the image translation branch from our

training dataset, so that high-quality drawings can be generated for 3D models.

NRM training. To train the Neural Ranking Module f , we use a ranking loss

based on above crowdsourced comparisons. Given a drawing Is,cbest selected as “best”

for shape s and viewpoint c, we generate 7 pairwise comparisons consisting of that

drawing and every other drawing Is,cother ,j that participated in the questionnaire. We

use the hinge ranking loss to train the module [48, 25]:

LR=
∑
s,c,j

max(m− f(Is,cbest ,E,O,ϕ) + f(Is,cother ,j,E,O,ϕ), 0) (4.7)

where m is the margin set to 1.0.

Image translation module training. Based on the line drawings selected as

“best” per reference shape and viewpoint, we use cross-entropy to train the image

translation module. Specifically, we treat the intensity values Ibest as target proba-

bilities for drawing, and measure the cross-entropy of the predicted output IL and

Ibest:

Lce=−
∑
x

(Ibest(x) log IL(x) + (1−Ibest(x)) log(1−IL(x)))

We then further end-to-end fine-tune the image translation module along with the

NRM module based on the ranking loss. We also experimented with adding the GAN-

based losses of pix2pix [62] and pix2pixHD [135], yet, their main effect was only a

slight sharpening of existing lines, without adding or removing any new ones.

Implementation. For the ranking module, we used the Adam optimizer [72] with

learning rate 2 · 10−5 and batch size 32. For the image translation module, we used

Adam with learning rate set to 2 · 10−4 and batch size 2.

51

4.1.4 Results

We evaluate our method and alternatives quantitatively and qualitatively. To

perform our evaluation, we compare synthesized line drawings with ones drawn by

humans for reference shapes. Below, we describe our test datasets, evaluation mea-

sures, and comparisons with alternatives.

Test Datasets. Cole et al. [20] conducted a study in which artists made line draw-

ings intended to convey given 3D shapes. The dataset contains 170 precise human

line drawings of 12 3D models under different viewpoints and lighting conditions for

each model. Their resolution is 1024× 768 pixels. Since the number of 3D test mod-

els is small, we followed the same setup as Cole et al. to gather 88 more human line

drawings from 3 artists for 44 3D models under two viewpoints (same resolution),

including printing renderings, scanning their line drawings, and aligning them. Our

new test dataset includes 13 3D animal models, 10 human body parts, 11 furniture,

10 vehicles and mechanical parts. All 3D models (including the ones from Cole et

al.’s dataset) are disjoint from the training and validation sets.

Evaluation measures. We use precision and recall measures for comparing syn-

thetic drawings to human-made drawings, computed in the manner proposed by Cole

et al.[20]. Each drawing is first binarized through thinning and thresholding. Preci-

sion is defined as the fraction of drawn pixels in a synthetic drawing that are near

any drawn pixel of the human drawing of the same shape under the same viewpoint.

Recall is defined as the fraction of pixels in the human drawing that are near any

line of the synthetic drawing. Two pixels are “near” if they are within 1mm in the

coordinates of the physical page the drawing was made on; this distance was based

on measurements of agreement between human drawings in Cole et al.’s dataset. We

aggregate precision and recall into F1-score.

52

We also report Intersection over Union (IoU) to measure overlap between synthetic

and human drawings, based on the same definition of nearness. Lastly, we report the

symmetric Chamfer distance, which measures the average distance between lines of

synthetic and human drawings. Since both human and synthetic drawings include

aligned silhouettes, all measures will appear artificially improved because of them.

To avoid this biasing, we remove silhouettes from all human and synthetic drawings

and measure performance based on the rest of the lines only.

Comparisons. We compare our method, Neural Contours (NCs), with several al-

ternatives. (1) Occluding Contours. (2-4) SC-rtsc, RV-rtsc, AR-rtsc using rtsc [113]

with the default thresholding parameters; occluding contours are also included in all

renderings. (5) all-rtsc renders SCs, RVs, and ARs all together with rtsc [113], using

the default parameters. We note that we also tried to tune these parameters using an

exhaustive grid search to minimize average Chamfer distance in the training set, but

this resulted in worse performance. (6) decision tree: The method of Cole et al.[20],

namely, a decision tree (M5P from Weka [46]) operating on rendered curvature and

gradient maps, trained on our dataset. (7) Canny edges extracted from the shaded

shape rendering, as suggested by [20]. The edge detection parameters are selected

using grid search to minimize average Chamfer distance in our training dataset. (8)

pix2pixHD image translation [135], trained to output line drawings from an input

depth image and shaded renderings of a shape (same as E,O in our method). Train-

ing was done on the same dataset (“best” drawings) as ours using the GAN and

feature matching loss [135]. The original architecture outputs a 4096 × 2048 image

through three local enhancer networks. In our case, since the input and output have

the same resolution (1024× 768), we use only the global generator of pix2pixHD.

Ablation study. We also compare with training the following reduced variants of

our method. NC-geometry uses our geometry-based branch and our neural ranker

53

Method IoU CD F1 P R

contours 31.5 31.70 34.8 83.0 22.0
AR-rtsc 53.4 12.56 54.1 52.5 55.7
RV-rtsc 49.8 12.96 52.3 44.5 63.5
SC-rtsc 40.5 13.96 44.0 43.9 44.1
all-rtsc 48.2 12.63 52.5 40.4 75.1

Decision Tree 46.9 12.17 49.9 38.6 70.4
Canny Edges 51.9 12.59 52.9 50.4 55.8
pix2pixHD 45.0 15.73 48.7 69.6 37.5

NCs 57.9 10.72 60.6 60.8 60.5

Table 4.3: Comparisons with competing methods using all drawings from Cole et al.’s
dataset. IoU, F1, P, R are reported in percentages, CD is pixel distance.

Method IoU CD F1 P R

contours 43.5 24.63 49.6 90.2 34.3
AR-rtsc 59.9 10.64 63.3 62.6 64.0

Decision Tree 49.7 11.12 53.0 41.1 74.6
Canny Edges 58.0 11.16 61.3 56.7 66.7
pix2pixHD 50.5 13.35 54.2 75.1 42.4

NCs 65.2 8.71 67.6 66.3 69.0

Table 4.4: Comparisons with other methods using the most “consistent” human draw-
ings from Cole et al.’s dataset.

module. NC-image uses the image translation module alone trained with the same

losses as ours, and multi-scale shaded images as input. NC-image-noms uses the

image translation module alone trained with the same losses as ours, and using a

single shaded and depth image as input (no multi-scale shaded images). NC-curv is

an alternative image translation module that uses curvature maps rendered in image-

space concatenated with the multi-scale shaded images and depth.

Results. Tables 4.3 reports the evaluation measures for Cole et al.’s dataset for

competing methods. Specifically, the synthetic drawings are compared with each

human line drawing per shape and viewpoint, and the measures are averaged. Since

54

Method IoU CD F1 P R

contours 49.0 19.11 54.9 92.2 39.1
AR-rtsc 66.8 9.19 69.9 69.2 70.7
RV-rtsc 64.8 9.36 66.2 62.8 70.1
SC-rtsc 65.0 9.88 63.3 61.5 65.2
all-rtsc 64.4 9.70 68.6 58.6 82.7

Decision Tree 62.1 8.93 61.1 50.9 76.6
Canny Edges 65.6 8.57 64.6 59.8 70.2
pix2pixHD 66.0 9.62 68.2 76.9 61.2

NCs 72.4 7.25 74.6 74.5 74.8

Table 4.5: Comparisons in our new test dataset.

Method IoU CD F1 P R

NC-geometry 60.3 10.34 64.5 76.9 55.6
NC-image 60.0 9.97 62.9 65.0 61.0

NC-image-noms 58.4 10.85 60.7 59.1 62.3
NC-image-curv 56.1 10.72 60.0 61.0 59.0

NCs 62.8 9.54 65.4 65.5 65.4

Table 4.6: Ablation study.

55

there are artists that draw more consistently than others, we also include Table 4.4

as an alternative comparison. This table reports the evaluation measures in Cole et

al.’s dataset when synthetic drawings are compared only with the most “consistent”

human line drawing per shape and viewpoint, defined as the drawing that has the least

Chamfer distance to the rest of the human drawings for that shape and viewpoint.

We believe this comparison is more reliable than using all drawings, because in this

manner, we disregard any “outlier” drawings, and also get a measure of how well

methods match the most consistent, or agreeable, human line drawing. Table 4.5 also

reports the evaluation measures for our new dataset. Based on the results, Neural

Contours outperforms all competing methods in terms of IoU, Chamfer Distance, and

F1, especially when we compare with the most consistent human drawings.

Table 4.6 reports comparisons with reduced variants of our method for the pur-

pose of our ablation study. Our two-branch architecture offers the best performance

compared to using the individual branches alone.

Figure 4.5 shows characteristic comparisons with competing methods, and Figure

4.6 shows comparisons with reduced variants of our method. We also include repre-

sentative human drawings. Both figures indicate that our full method produces lines

that convey shape features more similarly to what an artist would do. Figure 4.1

also shows comparisons with other alternatives. Our method tends to produce more

accurate lines that are more aligned with underlying shape features, and with less

artifacts.

Are the two branches learning the same lines? To check this hypothesis, we

measure the IoU between the line drawings created from the geometry branch alone

and the ones created from the image translation branch. The average IoU is 69.4%.

This indicates that the two branches outputs have a partial overlap, but still they have

substantial differences. As shown in Figure 4.6, the geometry branch makes explicit

use of surface information in 3D, such as surface curvature, to identify important

56

 3D model all-rtsc AR-rtsc RV-rtsc SC-rtsc

Canny Edges Decision Tree pix2pixHD Neural Contours Artist’s Drawing

Figure 4.5: Comparisons with other methods. Neural Contours are more consistent
with underlying shape features.

 3D model NC-image-noms NC-image

NC-geometry Neural Contours Artist’s drawing

Figure 4.6: Comparisons with reduced NCs variants.

57

curves, which appear subtle or vanish in 2D rendered projections. In contrast, the

image branch identifies curves that depend on view-based shading information that

is not readily available in the 3D geometry.

Which geometric lines are used more in our method? The average percentage

of SCs, RVs, ARs selected by our geometry-based stylization branch are 32.2%, 16.5%,

51.3% respectively. It seems that ARs are used more dominantly, while RVs are the

least frequent lines.

User study. We also conducted an Amazon MTurk study as additional percep-

tual evaluation. Each questionnaire page showed participants shaded renderings of a

shape, along with a randomly ordered pair of synthetic drawings: one synthetic draw-

ing from our method, and another from a different one. We asked participants which

drawing best conveyed the shown 3D model. Participants could pick either drawing,

specify “none”, or ”both” drawings conveyed the shape equally well. We asked ques-

tions twice in a random order to verify participants’ reliability. We had 187 reliable

participants. Figure 4.7 summarizes the number of votes for the above options. Our

method received twice the number of votes compared to the best alternative (ARs)

found in this study.

In the Amazon Mechanical Turk perceptual evaluation where we showed partici-

pants (a) a rendered shape from a viewpoint of interest along with two more views

based on shifted camera azimuth by 30 degrees, (b) a pair of line drawings placed in a

randomized left/right position: one line drawing was picked from our method, while

the other came from pix2pixHD, NC-geometry, NC-image, or AR-rtsc. We asked par-

ticipants to select the drawing that best conveyed the shown 3D shape. Participants

could pick one of four options: left drawing, right drawing, “none of the drawings

conveyed the shape well”, or “both” drawings conveyed the shape equally well”. The

study included the 12 shapes (2 viewpoints each) from both Cole et al.’s and our new

58

214 58 8 56

219 58 8 51

288 12 5 31

Neural Contours

Neural Contours

Neural Contours

Neural Contours

AR-rtsc

 NC-image

 NC-geometry

pix2pixHD
prefer left both are good
none are good prefer right

201 25 6 104

Figure 4.7: User study voting results.

collected test dataset (44 shapes, two viewpoints each). Thus, there were total 112

test cases, each involving the above-mentioned 4 comparisons of techniques (448 total

comparisons).

Each questionnaire was released via the MTurk platform. It contained 15 unique

questions, each asking for one comparison. Then these 15 questions were repeated

in the questionnaire in a random order. In these repeated questions, the order of

compared line drawings was flipped. If a worker gave more than 7 inconsistent answers

for the repeated questions, then he/she was marked as “unreliable”. Each participant

was allowed to perform the questionnaire only once. A total of 225 participants took

part in the study. Among 225 participants, 38 workers were marked as “unreliable”.

For each of the 448 comparisons, we gathered consistent answers from 3 different

users.

4.1.5 Additional Results

Parameter set t regression. We experimented with directly predicting the pa-

rameter set t with a network, but this did not produce good results. The network

includes a mesh encoder which is a graph neural network based on NeuroSkinning and

59

Method IoU CD F1 P R

AR-grid 56.6 11.21 59.1 54.2 64.9
RV-grid 56.0 11.73 58.3 53.6 63.9
SC-grid 51.0 12.57 53.2 57.5 49.5
all-grid 54.6 11.61 57.4 47.9 71.7

Geometry-Regressor 52.9 11.05 54.2 48.2 62.0
NCs 62.8 9.54 65.4 65.5 65.4

Table 4.7: Comparisons with competing methods using drawings from Cole et al.’s
dataset and our newly collected dataset. IoU, F1, P, R are reported in percentages,
CD is pixel distance.

an image encoder based on ResNet-34. The mesh encoder takes a triangular mesh as

input and outputs a 1024-dimensional feature vector. The image encoder takes (E,O)

as input and outputs a 1024-dimensional feature vector. These two feature vectors

are concatenated and processed by a 3−layer MLP which outputs the parameter set

t. We used cross-entropy loss between IG(t) and Ibest to train the network. We note

that combining the mesh and image encoder worked the best. We name this variant

Geometry-Regressor. Table 4.7 reports the resulting performance compared to our

method. The results of this approach are significantly worse.

Parameter set t exhaustive search. We also tried to tune parameters of ARs,

RVs, SCs using an exhaustive grid search to minimize average Chamfer distance in

the training set. The grid was based on regular sampling 100 values of the parameters

in the interval [0, 1]. This exhaustive search did not produce good results. Table 4.7

reports the performance of these variants AR-grid, RV-grid, SC-grid, all-grid.

Image translation vs geometric branch output example. Figure 4.9 shows

an additional example of comparison between the geometry branch and the image

translation branch outputs; compare the areas around the antlers, and the shoulder

to see the contributions of each branch. The geometry model makes explicit use of

surface information in 3D, such as surface curvature, to identify important curves,

60

Figure 4.8: Results of our “Neural Contours” method on various test 3D models.

61

input shape NC-image NC-geometry Neural Contours

Figure 4.9: Additional comparison of our two branch outputs (image translation
branch output “NC-Image” vs geometry branch output “NC-Geometry” vs Neural
Contours).

which appear subtle or vanish in 2D rendered projections. In contrast, the image

model identifies curves that depend on view-based shading information that is not

readily available in the 3D geometry.

Gallery. Figure 4.8 shows a gallery of our results for various 3D models from our

test set (please zoom-in to see more details).

4.1.6 Summary

In this section, we presented a method that learns to draw lines for 3D models

based on a combination of a differentiable geometric module and an image translation

network. Surprisingly, since the study by Cole et al.[20], there has been little progress

on improving line drawings for 3D models. Our experiments demonstrate that our

method significantly improves over existing geometric and neural image translation

methods. There are still avenues for further improvements. Mesh artifacts (e.g.,

highly irregular tesselation) affect curvature estimation and shading, and in turn the

outputs of both branches. Learning to repair such artifacts to increase robustness

62

would be fruitful. Predicting drawing parameters in real-time is an open problem.

Rendering the lines with learned pressure, texture, or thickness could make them

match human drawings even more. Finally, our method does not handle point clouds,

which would either require a mesh reconstruction step or learning to extract lines

directly from unstructured point sets.

4.2 Neural Strokes: Line Drawing Stylization

The second section of this chapter discusses Neural Strokes, a model for producing

stylized line drawings from 3D shapes [84] 2. The model takes a 3D shape and a

viewpoint as input, and outputs a drawing with textured strokes, with variations in

stroke thickness, deformation, and color learned from an artist’s style. The model is

fully differentiable. We train its parameters from a single training drawing of another

3D shape. We show that, in contrast to previous image-based methods, the use of

a geometric representation of 3D shape and 2D strokes allows the model to transfer

important aspects of shape and texture style while preserving contours. Our method

outputs the resulting drawing in a vector representation, enabling richer downstream

analysis or editing in interactive applications.

4.2.1 Model

This subsection describes our stylized rendering architecture. Subsection 4.2.2

describes how to train the model from a single artist-drawn example. Our trained

model (Figure 4.11) takes as input a 3D shape and a camera position and produces

a stylized vector rendering I, represented as a set of strokes, that is, curves with

varying thickness and texture. This allows us to simulate the appearance of drawing

media (pen, pencil, paint), and the ways artists vary pressure/thickness along strokes

[45, 56].

2This work is published in the Proceedings of ICCV 2021.

63

A
rti

st
 A

A
rti

st
 B

Training shape &
geometric curves

Training artist’s
drawing

Neural
Strokes

Neural
Strokes

Neural
Strokes

Neural
Strokes

Synthesized
drawing

Synthesized
drawing

Test shape &
geometric curves

Test shape &
geometric curves

Figure 4.10: Our model learns to generate stylized line drawings from a single example
of a training shape and corresponding drawing. Given a test 3D shape and 2D
geometric curves representing the shape, our model synthesizes a line drawing in the
style of the training example. Here we show synthesized drawings by transferring the
artist’s style A (top) or B (below).

4.2.1.1 Curve Extraction

The first stage of our model extracts geometric curves from the 3D shape, pro-

ducing a set of curves C. The goal of the rest of our model is to convert these plain

curves into stylized strokes, by assigning thickness, displacement, and texture along

these curves.

The curves are extracted using an existing algorithm for creating line drawings

from 3D shapes. Many such methods have been developed [23], and our method

can be used with any method that outputs vector curves. In our method, we ex-

tract curves using the pretrained Geometry Branch of Neural Contours (Section 4.1),

which combines curves from many prior algorithms, including Occluding Contours

[6], Suggestive Contours [24], Apparent Ridges [68], Ridges & Valleys [101].

64

stylized
drawing

surface geometry
renderings

raster curves

��������
���������
������

������
�

������

������
��������

�����

�
����

raster
drawing

�����

feature
map F

��������������������

3D shape &
viewpoint

geometric
curves C

raw curve
features

curve
extraction

concat

concat

point feature
vector Pi, j

thickness &
 displacement

 [ti, j , di, j]

�����
�������
������

Ib I

Figure 4.11: Our network architecture: the input 3D shape and a set of geometric
curves are processed by a surface geometry module and a path geometry module
to produce stroke thickness and displacement. With the predicted thickness and
displacement, a stroke texture module creates a stylized line drawing with texture.

The geometric curves are represented as polylines: N vector paths C = {ci}Ni=1,

where ci is a sequence of densely sampled points ci = {ci,j}Mi
j=1 with uniform spacing,

Mi is the number of points on the path, and ci,j represents the 2D position of point

j on path i.

4.2.1.2 Stroke geometry prediction

The central portion of our model, described in this section, produces one stylized

output stroke for each of the curves in C. Texture synthesis is described in Section

4.2.1.3.

The geometric curves C are unstylized, and the goal of our model is to convert

them to strokes with new shape, along with thickness and texture. The stroke control

points are represented as displacements from the input curves. Displacement models

the ways that artists deform curves, for example, smoothing curves, adding “wiggles”

(e.g. Figure 4.21), and so on [30]. More precisely, for each input polyline ci, the

module described in this section produces a 1D thickness ti,j for each control point

ci,j, together with a displacement vector di,j. Hence, the control points of the output

stroke will be {ci,j + di,j} (Figure 4.12).

65

Geometric
curves C

Input curve i

Vertex ci,j
Displacement

di,j

Thickness
ti,j

Output
stroke i

Figure 4.12: Left: an input set of geometric curves (each curve is highlighted with a
different color). Right: For each input curve, our model outputs a stroke by predicting
a thickness scalar and a 2D displacement vector for each control point.

As observed in previous work, artistic stroke thickness and displacement depend

on image-space geometric shape features (e.g., object depth, view-dependent curva-

ture, and surface shading [40]). Stroke thickness and displacement also depend on

the shape of the stroke itself, including phenomena like tapering, stroke smoothing,

and “wiggliness,” (e.g., [41]), which can be captured as deformations of the 1D curve.

Hence, to predict stroke geometry, the model includes modules to incorporate infor-

mation from both the shape’s surface geometry and along the 1D stroke paths.

Surface geometry module. First, the surface geometry module processes surface

geometry via a 2D convolutional neural network, outputting image-space feature maps

F.

Surface geometry is represented in the form of image-space renderings. Each pixel

contains the geometric properties of the surface point that projects to that pixel.

There are nine input channels per pixel: depth from camera, radial curvature, deriva-

tive of radial curvature [24], maximum and minimum principal surface curvatures,

view-dependent surface curvature [68], dot product of surface normal with view vec-

66

tor, and a raster image containing the line segments of the vector paths C. We found

these geometric and shading features to be useful for predicting accurate stroke ge-

ometry. In this manner, the module jointly processes shape features and vector paths

in the concatenated 768× 768× 9 map V. The map passes through a neural network

function to output a 768 × 768 × 40 deep feature map F = f(V;w1), where f is a

ResNet-based fully convolutional network [65] with four residual blocks, and w1 are

learned during training.

Path geometry module. The path geometry module is a neural network applied

separately to each input curve using 1D convolutions. Each point {i, j} on a curve

has a set of curve features and features from the shape geometry.

The curve features are 2D curve normals, 2D tangent directions, and the nor-

malized arc length. The normalized arc length allows the model to learn to taper

stroke thickness, whereas the other two features can capture image-space curve orien-

tations. Since the orientation of the curve is ambiguous, there is a sign ambiguity in

the tangent direction ei,j and normal ni,j per curve point. To handle the ambiguity,

we extract two alternative curve features sets: one using (ei,j,ni,j) and another set

using (−ei,j,−ni,j).

In addition to the curve features, the deep surface geometry features F generated

by the surface geometry module are also included as input to the path geometry

module. Specifically, for each point on a curve, we use nearest interpolation on the

deep feature map F to produce 40-dim features. These features are concatenated with

each of the two sets of the above 5 raw curve features of the vector path, resulting in

two Mi × 45 feature maps (Pi,P
′
i) for the path i, where Mi is the number of control

points in the path. In this manner, the module jointly processes view-based surface

features together with geometric properties specific to the path. We also experimented

with processing these features independently and found the above combination yielded

the best performance. The above features pass through a neural network function to

67

predict the thickness and 2D displacement along each vector path:

[ti,di] = avg
(
h(Pi;w2), h(P

′
i;w2)

)
(4.8)

where di = {di,j}Mi
j=1 are the predicted per-point displacements, and ti = {ti,j}Mi

j=1 are

per-point thicknesses (Figure 4.12), and w2 are parameters learned from the training

reference drawing. The avg function performs average pooling over predictions of the

two alternative feature sets to ensure invariance to the sign of curve orientation. The

function h is a 1D fully convolutional network made of 3 layers, each using filters

of kernel size 3, stride 1, zero padding. The first two layers are followed by ReLU

activation. The last layer has 3 output channels: two for 2D displacement, and one for

thickness. For thickness, we use a ReLU activation to guarantee non-negative outputs,

while for the 2D real-valued displacement output, we do not use any non-linearity.

Differentiable vector renderer. Given the predicted displacement di for each

vector path ci, new vector paths are formed as c′i = ci + di. Using the differen-

tiable vector graphics renderer DiffVG [80], these new vector paths are rasterized

into grayscale polylines based on predicted thickness ti. Specifically, for each pixel in

the output image, its distance to the closest point on the vector paths is computed.

If it is smaller than half the stroke thickness of the closest point, the pixel is inside

the stroke’s area and assigned black color; otherwise it is marked as white. The

strokes are rendered in a 768× 768 raster image Ib with anti-aliasing provided by the

differentiable renderer. The resulting image is grayscale, lacking texture (see Figure

4.11).

4.2.1.3 Stroke Texture

The final module predicts texture for all strokes. Texture may vary according

to depth and underlying shape features, e.g., an artist may use darker strokes for

68

strong shape protrusions, and lighter strokes for lower-curvature regions. As a result,

we condition the texture prediction not only on the raster drawing Ib representing

the generated grayscale strokes, but also the shape representations used as input to

the surface geometry module of Section 4.2.1.2. Specifically, we formulate texture

prediction as a 2D image translation problem. The input to our image translation

module are the first eight channels of the view-based features V (Section 4.2.1.2)

concatenated with the raster drawing Ib channel-wise, resulting in a 768×768×9 map

U. This map is translated into a RGB image I = g(U;w3) where g is a ResNet-based

fully convolutional network [65] with four residual blocks, and w3 are parameters

learned during training.

As an optional post-processing step, to incorporate the predicted texture into our

editable vector graphics representation, we convert the predicted RGB colors into a

per stroke texture map. Specifically, each stroke is parameterized by a 2D u-v map,

whose coordinates are used as a look-up table to access the texture map for each

stroke. The color of each pixel in the stroke’s texture map is determined by the RGB

color of the corresponding pixel in the translated image I.

4.2.1.4 Architecture Details

We provide here details of our network architecture.

Surface geometry module. Our surface geometry module uses the architecture

shown in Table 4.8. All convolutional layers are followed by instance normalization

[130] and a ReLU nonlinearity. The module contains 4 residual blocks [47], where

each residual block contains two 3× 3 convolutional layers with the same number of

filters for both layers.

Path geometry module. Our path geometry module uses the architecture shown

in Table 4.9. The first two convolutional layers are followed by a ReLU nonlinearity.

69

Layer Activation size

Input 768 × 768 × 9
Conv2D(7x7, 9→10, stride=1) 768 × 768 × 10
Conv2D(3x3, 10→20, stride=2) 384 × 384 × 20
Conv2D(3x3, 20→40, stride=2) 192 × 192 × 40

4 Residual blocks 192 × 192 × 40
Conv2D(3x3, 40→40, stride=1/2) 384 × 384 × 40
Conv2D(3x3, 40→40, stride=1/2) 768 × 768 × 40
Conv2D(1x1, 40→40, stride=1) 768 × 768 × 40

Table 4.8: Architecture of the surface geometry module.

Layer Activation size

Input Mi × 45
Conv1D(3x3, 45→40, stride=1) Mi × 40
Conv1D(3x3, 40→40, stride=1) Mi × 40
Conv1D(3x3, 40→3, stride=1) Mi × 3

Table 4.9: Architecture of the path geometry module.

The last layer has 3 output channels: two for 2D displacement, and one for thickness.

For thickness, we use a ReLU activation to guarantee non-negative outputs, while for

the 2D real-valued displacement output, we do not use any nonlinearity.

Stroke texture module. Our stroke texture module uses the architecture shown in

Table 4.10. All convolutional layers are followed by instance normalization [130] and

a ReLU nonlinearity except for the last convolutional layer. The last convolutional

layer is followed by a sigmoid activation function. The module contains 6 residual

blocks [47], where each residual block contains two 3 × 3 convolutional layers with

the same number of filters for both layers.

4.2.2 Training

In order to train a model, we gather drawings made by artists based on rendered

line drawings. Due to the difficulties in creating multiple drawings in a consistent

70

Layer Activation size

Input 768 × 768 × 9
Conv2D(7x7, 9→64, stride=1) 768 × 768 × 64
Conv2D(3x3, 64→128, stride=2) 384 × 384 × 128
Conv2D(3x3, 128→256, stride=2) 192 × 192 × 256

6 Residual blocks 192 × 192 × 256
Conv2D(3x3, 256→128, stride=1/2) 384 × 384 × 128
Conv2D(3x3, 128→64, stride=1/2) 768 × 768 × 64
Conv2D(7x7, 64→3, stride=1) 768 × 768 × 3

Table 4.10: Architecture of the stroke texture module.

style, our training procedure is designed to work with a single training example alone.

The goal of our training procedure is to learn the parameters w = {w1,w2,w3} of

our surface geometry module, path geometry module, and stroke texture module

described in Section 4.2.1.

Obtaining an artist’s drawing. We provide an artist the feature curves C for

shape, produced from a 3D shape using the procedure in Section 4.1. The artist

is asked to produce a drawing on a digital tablet, using the provided curves as a

reference. They are specifically instructed not to trace the feature curves, so that

we can capture the artist’s natural tendency to deform curve shape and thickness.

Given the input training drawing Î, a binary mask Îb is extracted by assigning black

for pixels containing the artist’s strokes, and white for background. To smooth out

discontinuities, anti-aliasing is applied to the mask, in the same manner as in the

vector renderer, making it “soft” i.e., a grayscale image.

Note that, although we have paired drawings, i.e., input 3D geometry and a

drawing, our method is not fully supervised, because the drawing is provided in raster

format; we do not know the stroke thickness and displacement in the drawings. This

makes our data collection more flexible, allowing different data sources and allowing

artists to use their favorite drawing tools.

71

Losses. Training a network from a single drawing is prone to overfitting. To avoid

this problem, the core idea of our training procedure is to crop several random patches

from the artist’s drawing capturing strokes at different locations and scales. Each of

the sampled patches is treated as a separate training instance. We use only patches

that contain strokes. During training, we sample patches on the fly. For each patch,

we randomly choose a crop size c from a set of scales {64 × 64, 128 × 128, 192 ×

192, 256× 256}, crop all images and input feature maps accordingly.

We use four terms in our loss function. First, we evaluate the cropped grayscale

image Icb produced by the vector graphics renderer, as compared to the cropped ref-

erence soft mask Îcb, using L1 loss:

Lb = ||Icb − Îcb||1 (4.9)

Using the above loss alone, we found that the network sometimes end up generating

implausible self-intersecting and noisy strokes. To handle this problem, we add a

shape regularization term on the predicted displacements:

Ls =
1

N c

Nc∑
i=1

1

(M c
i − 1)

Mc
i −1∑
j=1

||di,j − di,j+1||2 (4.10)

where N c is the number of vector paths in the cropped patch and M c
i is the number

of points on the path i.

We use L1 loss in RGB space for texture, comparing a crop Ic from our predicted

drawing and the corresponding crop Îc from the artist’s drawing Î:

Lt = ||Ic − Îc||1 (4.11)

Finally, we use an adversarial loss to encourage the output patches to be visually

similar to random patches from the artist’s drawing. To this end, we add a discrim-

inator D during training that is trained in parallel with the stroke texture module.

72

Architecturally, the discriminator D is identical to a 70 × 70 PatchGAN [61] with

instance normalization, and it employs a standard LSGAN [96] discriminator loss.

The output patches of our model are taken as fake, and random patches from the

artist’s drawing are taken as real. The patches are always selected to contain stroke

pixels. We add the adversarial loss below to our stroke texture module by encouraging

output patches to be classified as real by the discriminator D:

La = (D(Ic)− 1)2 (4.12)

Implementation details. We train the surface geometry and path geometry mod-

ules using λbLb + λsLs, and train the stroke texture module with λtLt + λaLa. The

hyperparameters are set to the default values: λb = 1, λs = 0.02, λt = 1, λa = 1. For

all three modules, we used the Adam optimizer [72] with learning rate set to 0.0002

and batch size 16.

4.2.3 Experiments

We evaluated our method both qualitatively and quantitatively. Below we discuss

our dataset, evaluation metrics, comparisons with baseline methods, and our ablation

study.

Dataset. To create our dataset, we collected 48 3D shapes from an online repository

(TurboSquid [129]) and the ABC dataset [74], spanning several categories, including

animals, humanoids, human body parts, clothes, and mechanical parts. All the 3D

shapes are oriented and normalized so that the longest bounding box dimension is

equal to 1. A camera position is selected for each 3D shape under the constraint

that it is aligned with the upright axis and points towards the centroid of the mesh.

For each 3D shape and selected camera, a set of 2D geometric curves is extracted

automatically using the geometry branch of Neural Contours [85].

73

We hired 12 professional artists via UpWork to stylize the 2D plain line drawings of

the 3D shapes. Each artist drew with 2 to 4 different styles, resulting in 31 total styles.

For each style, the artist stylized 4 plain drawings representing 4 different 3D shapes,

resulting in a total of 124 drawings. Specifically, through a web questionnaire, an

artist is shown each of the four 3D shapes rendered in grayscale color using a frontal

view and two side views. We also provide the artist with the plain line drawing

for each of the 4 shapes. The artist is explicitly instructed to use a textured brush,

change the shape and vary the thickness of their strokes as they see fit to achieve their

preferred style, and be stylistically consistent for all 4 drawings. Since our model is

trained in a single image setting, for each style, we randomly select one drawing as

training and keep the other three for testing and evaluation.

Qualitative Results. Results of our method are shown in Figure 4.10 and Figure

4.13. As shown in the leftmost image in Figure 4.13, our method accurately transfers

variations in stroke thickness from the turtle to the dinosaur, giving thicker strokes

to low-curvature regions; strokes are also thicker on right-facing parts of the surface.

The method also transfers the charcoal-like stroke texture. In the second example,

our method accurately transfers the thin strokes, with stroke thickness often thicker

around convex bulges.

More generalization cases. Figure 4.14 demonstrates challenging generalization

cases: given a training drawing of a shape belonging to one category (e.g., humanoid),

we synthesize a drawing for a shape from an entirely different category (e.g., me-

chanical object) in the same style. Our method still generalizes sufficiently in these

challenging cases.

Evaluation metrics. To perform our evaluation, we compare synthesized test

drawings with ones drawn by artists. We use the following metrics for evaluation:

(1) LPIPS Learned Perceptual Image Patch Similarity [155] defined as a weighted

74

 A
rti

sts
 N

eu
ra

l S
tro

ke
s

Figure 4.13: A gallery of our results. Top: artist-drawn training drawings. Bottom:
drawings from Neural Strokes.

L2 distance between learned deep features of images. The measure has been demon-

strated to correlate well with human perceptual similarity [155]. We report LPIPS

averaged over all test cases in our set across all 31 styles. (2) FID Frechet Incep-

tion Distance [52]. FID measures the distance between two set of images in terms of

statistics on deep image features. In our evaluation, the set of images includes all the

synthesized line drawings of our testing set, and we compare it with the set of artists’

drawings.

Comparison methods. We compare our method, Neural Strokes, with several

raster image stylization approaches that attempt to transfer the style from a single

example image. (1) SketchPatch [32] is a paired image-to-image translation model

that, like ours, operates on a patch level. During training, SketchPatch takes as

input the plain line drawing patches and generates stylized line drawing patches.

For a fair comparison, we also condition the SketchPatch model on the input shape

representations of the surface geometry module (Section 4.2.1.2) by using them as

additional input channels. We also experimented with using one SketchPatch model

for stroke geometry prediction and another SketchPatch model for stroke texture

prediction; yet, results did not improve. Thus, we show here the results from training

75

Training artist’s
drawing

Test geometric
curves Neural Strokes

Figure 4.14: Left to right: training artist’s drawing, test geometric curves, Neural
Strokes.

76

Method LPIPS ↓ FID ↓
SketchPatch 0.1104 83.60
SinCUT 0.1195 95.74

Bénard et al.[5] 0.1618 181.36
NST 0.2782 155.79

Neural Strokes 0.0956 62.40

Table 4.11: Numerical comparisons with other methods.

a single SketchPatch model for both. (2) SinCUT [103] is an unpaired image-to-

image translation model designed to be trained from a single image. During training of

SinCUT, random crops from the training drawing are used as training instances, as in

our method. We also condition the SinCUT model on the input shape representations

of the surface geometry module (Section 4.2.1.2) for a fair comparison. (3) NST [36]

performs artistic style transfer by jointly minimizing a content loss and a style loss.

Given a training drawing and a testing shape, we use the test plain line drawing as

content image and the artist’s training drawing as style image. (4) Bénard et al.

[5] performs non-parametric line drawing stylization by copying pixel values from the

artist’s stylized drawing to corresponding pixels in the synthesized line drawing. The

correspondence is optimized by PatchMatch [2], maximizing patch-level similarity

between the reference and synthesized drawings. As pointed out by Bénard et al.[5],

their “parameters are style specific;” i.e., one has to tune the parameters for each

style. For purposes of comparison, we manually tuned their parameters to obtain the

best results.

Results. Table 4.11 reports the evaluation measures for Neural Strokes and other

competing methods. Based on the results, Neural Strokes outperforms all competing

methods in terms of both LPIPS and FID. Figure 4.15 shows characteristic compar-

isons with competing methods. We also include the artists’ drawings for the test

shapes. Since other methods do not take explicit advantage of the input geometry,

77

Training
artist’s drawing

Artist’s
drawing for test shape

Neural
Strokes

SketchPatch SinCUT NST

Figure 4.15: Comparisons with other methods. Left to right: training artist’s drawing,
artist’s drawing for test shape, Neural Strokes, SketchPatch, SinCUT, NST result.
Where possible, we retrained the other methods to incorporate the same geometry
features present in the 3D shape as in our method. Our method produces strokes
having more similar texture, intensity and thickness variation to the artist’s drawing
compared to other methods, which seem to miss the above style aspects.

except in terms of the feature maps that we provided, they often introduce gaps in

strokes, or blur the stroke entirely. In the top row, observe that other methods do not

accurately transfer stroke thicknesses from the example. Our method produces more

precise stylized strokes, with fewer artifacts, agreeing with the artists’ corresponding

styles in terms of stroke thickness, shape, and texture.

Additional comparisons with Bénard et al.[5]. Figure 4.16 shows the training

artist’s drawing on the top, and results from Bénard et al.[5] in the bottom (zoom-in

for details). They roughly capture the overall distribution of line properties, with-

out matching the artist’s choices well. Moreover, Bénard et al.[5] introduces many

holes and cannot handle challenging cases, such as varying stroke thickness or large

deformation (the rightmost style in Figure 4.16).

Additional comparisons with SketchPatch [32]. We experimented with us-

ing one SketchPatch model for stroke geometry prediction and another SketchPatch

model for stroke texture prediction. Specifically, in the first step, we train a Sketch-

78

Tr
ai

n
D

ra
w

in
g

Figure 4.16: Top: artist-drawn training drawings. Bottom: results from Bénard et
al.[5].

Method LPIPS ↓ FID ↓
SketchPatch 0.1104 83.60

SketchPatch-texture 0.1142 86.96
Neural Strokes 0.0956 62.40

Table 4.12: Quantitative evaluation of SketchPatch variants.

Patch model (called SketchPatch-geometry) on the training stroke mask Îb to predict

stroke geometry as a grayscale raster image. In the second step, we train another

SketchPatch model (called SketchPatch-texture) on the training drawing Î to gener-

ate a stylized line drawing given the output of SketchPatch-geometry. The results did

not improve compared to SketchPatch in terms of our evaluation metrics (see Table

4.12). Figure 4.17 shows example output of SketchPatch-geometry and SketchPatch-

texture.

User study. We also conducted an Amazon MTurk study as an additional per-

ceptual evaluation. Each questionnaire page showed participants the stylized artist’s

drawing for the training shape, along with a randomly ordered pair of drawings: one

79

test geometric
curves

Neural
Strokes

SketchPatch SketchPatch-
geometry

SketchPatch-
texture

Figure 4.17: Left to right: test geometric curves, Neural Strokes, SketchPatch,
SketchPatch-geometry, SketchPatch-texture result.

synthetic drawing from our method, and another from a different algorithm or from

the same artist and style. We asked participants which drawing best mimicked the

style of training drawing. Participants could pick either drawing, specify “none” or

”both” drawings mimicked the training drawing equally well. We asked questions

twice in a random order to verify participants’ reliability. We had 93 reliable par-

ticipants. Figure 4.18 summarizes the number of votes for the above options. The

study shows that our method receives the most votes for better stylization compared

to other methods, nearly seven times as many as the best alternative (SketchPatch).

Moreover, our method receives similar number of votes with the artists’ drawings.

This indicates that our stylized drawings are comparable to artists’ drawings.

In the Amazon Mechanical Turk perceptual evaluation where we showed partic-

ipants (a) a stylized artist’s drawing for a training shape (Figure 4.19, A) , (b) test

geometric curves (Figure 4.19, B) , (c) a pair of stylized line drawings of the test shape

placed in a randomized left/right position (Figure 4.19, X and Y): one line drawing

was picked from our method, while the other came from SketchPatch, SinCUT, NST,

Bénard et al.[5], or Artists (5 possible comparison cases). We asked participants to

select the drawing that best mimicked the style of training drawing A. Participants

could pick one of four options: drawing X, drawing Y, “neither of the drawings mim-

icked the style well”, or “both drawings mimicked the style well”. The study included

80

125 131
Neural Strokes

Neural Strokes

Neural Strokes

Neural Strokes

Artists

 SketchPatch

 SinCUT

NST
prefer left both/none are good prefer right

224

236

263

35

29

9

23

20

14

7

248 2110
[3]Neural Strokes

Figure 4.18: User study voting results.

the 31 styles from our dataset and each style consists of 3 test shapes. As a result,

there were total 93 test cases, each involving the above-mentioned 5 comparisons (465

total comparisons).

Each questionnaire was released via the MTurk platform. It contained 15 unique

questions, each asking for one comparison. Then these 15 questions were repeated in

the questionnaire in a random order. In these repeated questions, the order of com-

pared line drawings was flipped. If a worker gave more than 5 inconsistent answers for

the repeated questions, then the worker was marked as “unreliable”. Each participant

was allowed to perform the questionnaire only once to ensure participant diversity. A

total of 161 participants took part in the study. Among 161 participants, 68 workers

were marked as “unreliable”. For each of the 465 comparisons, we gathered votes

from 3 different “reliable” users.

Ablation study. We also compare with the following reduced variants of our

method. (1) No strokes: in this reduced variant, we remove the vector stroke

representation from our method and use only the surface geometry module to predict

81

(i) X

(ii) Y

(iii) Both

(iv) Neither

A

B X Y

Figure 4.19: Layout shown to participants of our user study.

the stroke geometry as a raster image. Specifically, the surface geometry module (a

2D fully convolutional network) takes the map V as input and produces the raster

drawing Ib directly without the use of the differentiable vector graphics renderer.

Since this reduced variant does not predict thickness or displacement, we remove the

displacement regularization Ls and only use Lb loss for the training of surface geom-

etry module. (2) No curve features: we remove the raw curve features from our

path geometry module. Specifically, we use the surface geometry module to produce

a 768 × 768 × 3 map, where each pixel contains the thickness and 2D displacement

prediction. Then the stroke attributes predictions are propagated to the geometric

curves directly without the use of raw curve features and our 1D CNN. (3) No sur-

face features: we exclude the 3D shape features from our path geometry module by

removing the 768× 768× 8 surface geometry renderings from the input of the surface

geometry module. We also remove them from the stroke texture module. (4) No

multi-scale crops: during training, instead of randomly choosing a crop size from

a set of scales, we use a fixed crop size 128 × 128 in this variant. (5) No regular-

ization: we remove the displacement regularization Ls in this variant. For all these

82

 Training artist’s drawing Test geometric curves Neural Strokes

 No strokes No surface features No curve features

Figure 4.20: Comparisons with variants of our method. Removing features from our
method result in noisy, incoherent strokes deviating from the training drawing style.

variants, the training and architecture of stroke texture module remain the same un-

less specified. Table 4.13 reports the evaluation measures for Neural Strokes and the

abovementioned reduced variants. The reduced variants result in worse performance.

Figure 4.20 shows characteristic comparisons with the reduced variants. We observe

degraded results, especially in the case of “No strokes” where several broken, noisy

strokes appear. In the case of “No surface features” and “No curve features”, we

observe incoherent strokes with unnatural thickness variation and deformation.

Intermediate results. Unlike purely raster image based methods that produce

strokes as pixel values, Neural Strokes predict stroke attributes (thickness, displace-

83

Method LPIPS ↓ FID ↓
No strokes 0.1082 75.65

No curve features 0.1006 67.74
No surface features 0.1022 72.86
No multi-scale crops 0.1056 73.70
No regularization 0.1107 71.73
Neural Strokes 0.0956 62.40

Table 4.13: Ablation study.

input geometric
curves

deformed
curves

deformed
strokes with

thickness

Neural
 Strokes

(with texture)
Figure 4.21: Left to right: Input geometric curves of a hand shape, deformed curves
with predicted displacement from the path geometry module, strokes with predicted
displacement and thickness from the path geometry module, final output textured
strokes.

ment, texture) in intermediate stages that can be visualized separately. Figure 4.21

shows intermediate results of our method.

Vector Graphics editing. Since our method is able to output the stylized drawing

in a vector representation, one can easily edit the strokes in vector graphics editing

84

 (a) (b) (c) (d) Input shape
 & curve

Figure 4.22: Given our output strokes (a) of a cat shape, we show three editing op-
erations: (b) rescale thickness, (c) add wiggliness, (d) move control points of strokes.

applications. In Figure 4.22, we show three examples of vector editing operations on

our output strokes: rescaling thickness, adding wiggliness, and move control points.

4.2.4 Summary

In this section, we presented a method that learns to stylize line drawings for 3D

models by predicting stroke thickness, displacement and texture. The model is trained

from a single raster drawing and produces output strokes in a vector graphics format.

Our experiments demonstrate that our method significantly improves over existing

image-based stylization methods and that our generated drawings are comparable

to artists’ drawing. There are still avenues for further improvements. An artist

may sometimes vary the style within the same drawing, make random choices, or

the style might be uncorrelated with any of the features we use. In this case, our

result may not reproduce well such stylistic choices. In addition, when there is a large

mismatch between input geometric curves and training drawing, the network may fail

to reproduce correctly the stroke thickness and displacement. Learning to predict the

correspondence between feature curves and the training drawing could help dealing

with this issue. Learning to transfer style for other types of drawings from a single

or few examples, such as hatching illustrations and cartoons, would also be another

interesting research direction.

85

CHAPTER 5

CONCLUSION

The thesis explored two approaches to controllable neural image synthesis: a

transformer-based model for synthesizing natural images with long-range interactions,

and a convolutional neural network for vector art synthesis and stylization with the

guidance of 3D shapes.

In Chapter 3, I presented an approach for automatically editing an input high-

resolution image according to a user’s edits on its semantic segmentation map. To

obtain realistic and consistent editing results, an effective system needs to consider

global context from across the full image. The proposed approach is based on trans-

formers that are well equipped to handle the long-range dependencies through their

attention mechanism allowing them to focus on distant image areas. To avoid paying

prohibitive computational costs of the attention operation at high resolutions, I pro-

posed an adaptively sparsified attention mechanism. The core idea is to efficiently

determine a small list of relevant locations that are worth attending to, and com-

pute the attention map only over these locations. This leads to a large reduction

in computational cost due to the highly sparse attention matrix. Compared to the

state-of-the-art, the proposed approach can obtain more realistic and consistent edits

while achieving high diversity in the outputs.

In Chapter 4, I presented a system for synthesizing editable vector drawings from

3D shapes. The proposed system consists of two stages. In the first stage, I com-

bine traditional geometric algorithms and modern neural architectures to produce a

state-of-the-art line drawing algorithm. A neural ranking network is trained to assess

86

the plausibility of the output drawing. To maximize the plausibility during testing,

the parameters of geometric algorithms are optimized through a novel differentiable

renderer for line drawings. In the second stage, the plain vector drawing from the

first stage is converted to a stylized vector drawing. The resulting drawings are in

the format of vector strokes. The style of vector drawings is represented by stroke

attributes including thickness, deformation and texture, capturing a variety of styles

such as wiggly strokes and spatially varying thickness. To learn the stylization of vec-

tor art from raster supervision, our model leverages a differentiable vector renderer

to propagate the gradient from raster mages to stroke attributes. Moreover, the pro-

posed model is trained on a single training drawing by using the multi-scale cropping

strategy. The better performance of the proposed system is demonstrated by com-

paring to the state-of-the-art methods and baselines via both numerical experiments

and perceptual user studies.

5.1 Future Work

Although this thesis tackled significant challenges in creating high-quality con-

tent in both the natural and artistic domain via exploiting model-efficient and data-

efficient methods, there are still many exciting directions for future work.

5.1.1 Diverse Synthesis of 3D Data and Video

In Chapter 3, the proposed method modeled long-range interactions in high-

resolution images. A promising future work direction is to investigate transformers

for long-term video editing and high-resolution 3D shape synthesis. In video edit-

ing, long-range dependencies are important to capture, e.g., editing of an object in a

keyframe may need to be propagated to the same object in a distant frame. In 3D

shape synthesis, the architectural style of a door in a building should be consistent

with other distant parts of the building, e.g., windows, balconies, and so on. More-

87

over, many tasks for 3D data and video are inherently multi-modal. The proposed

sparsified attention mechanism in Chapter 3 provides new insights for avoiding high

computational cost in transformers. To capture long-range dependencies in 3D data

and video, it will be useful to investigate more efficient representations and attention

mechanisms, such as coordinated-based representations and softmax-free attention

with linear complexity.

5.1.2 Generative Modeling of Vector Art

In Chapter 4, the vector drawing is generated from a 3D shape. Apart from

creating vector art from 3D shapes, there are many other interesting and challenging

scenarios, such as converting raster images to vector art, as well as unconditional

generation of vector art.

Vector art can represent a diverse range of objects and scenes in a non-photorealistic

style, involving different number of drawing curves and attributes, which can not eas-

ily modeled by VAEs or GANs. Recently, diffusion models have achieved wide success

in raster image generation, outperforming GANs in fidelity and diversity, without

training instability and mode collapse issues. The advantages of diffusion models

can also benefit generative modeling of vector graphics that tend to be quite diverse.

However, diffusion models for vector graphics generation remain largely unexplored.

There are several aspects that require further research: (i) neural representations of

vector graphics, (ii) the design of an effective denoising architecture, (iii) the condi-

tioning mechanism to fuse raster and curve representations.

An effective diffusion model for generative modeling of vector art can lead to

more creative applications such as translation of raster images into vector graphics

(see preliminary results in Figure 5.1), automatic vector graphics completion, vector

drawing beautification, and so on.

88

Figure 5.1: Preliminary results: translation of raster images into vector graphics with
a diffusion model based on [55] operating on control points of the curves.

5.1.3 Image Editing with Sketches

Sketching (Chapter 4) represents a more expressive and editable guidance for

image editing as opposed to semantic painting (Chapter 3). While a lot of progress

has been made in sketch-based image editing, there are still significant challenges.

First, these approaches are often trained on synthetic sketches in a single style. This

leads to poor generalization on real sketches that are usually drawn in various styles.

Second, sketches often convey the structure of the underlying 3D world, whereas

most approaches regard them as flat images. Leveraging users’ implicit guidance

often requires understanding the underlying 3D structure of the input sketches. I

believe the combination of 3D-aware sketch stylization (Chapter 4) and transformer-

based image synthesis (Chapter 3) is a promising future work direction for image

editing with sketches.

89

BIBLIOGRAPHY

[1] Abnar, Samira, and Zuidema, Willem. Quantifying attention flow in transform-
ers. arXiv preprint arXiv:2005.00928 (2020).

[2] Barnes, Connelly, Shechtman, Eli, Finkelstein, Adam, and Goldman, Dan B.
Patchmatch: A randomized correspondence algorithm for structural image edit-
ing. ACM Trans. Graph. 28, 3 (2009).

[3] Bau, David, Strobelt, Hendrik, Peebles, William, Wulff, Jonas, Zhou, Bolei,
Zhu, Jun-Yan, and Torralba, Antonio. Semantic photo manipulation with a
generative image prior. arXiv preprint arXiv:2005.07727 (2020).

[4] Beltagy, Iz, Peters, Matthew E, and Cohan, Arman. Longformer: The long-
document transformer. arXiv preprint arXiv:2004.05150 (2020).

[5] Bénard, Pierre, Cole, Forrester, Kass, Michael, Mordatch, Igor, Hegarty, James,
Senn, Martin Sebastian, Fleischer, Kurt, Pesare, Davide, and Breeden, Kather-
ine. Stylizing animation by example. ACM Trans. Graph. 32, 4 (2013).

[6] Bénard, Pierre, and Hertzmann, Aaron. Line drawings from 3D models. Foun-
dations and Trends in Computer Graphics and Vision 11, 1-2 (2019).

[7] Caesar, Holger, Uijlings, Jasper, and Ferrari, Vittorio. Coco-stuff: Thing and
stuff classes in context. In CVPR (2018), pp. 1209–1218.

[8] Cao, Chenjie, Hong, Yuxin, Li, Xiang, Wang, Chengrong, Xu, Chengming, Xue,
XiangYang, and Fu, Yanwei. The image local autoregressive transformer. In
NeurIPS (2021).

[9] Chan, Caroline, Durand, Frédo, and Isola, Phillip. Learning to generate line
drawings that convey geometry and semantics. In Proc. CVPR (2022).

[10] Chang, Angel X, et al. Shapenet: An information-rich 3d model repository.
arXiv:1512.03012, 2015.

[11] Chen, Jiawen, Adams, Andrew, Wadhwa, Neal, and Hasinoff, Samuel W. Bi-
lateral guided upsampling. ACM Trans. Graph. 35, 6 (nov 2016).

[12] Chen, Liang-Chieh, Papandreou, George, Kokkinos, Iasonas, Murphy, Kevin,
and Yuille, Alan L. Deeplab: Semantic image segmentation with deep convolu-
tional nets, atrous convolution, and fully connected crfs. IEEE transactions on
pattern analysis and machine intelligence 40, 4 (2017), 834–848.

90

[13] Chen, Mark, Radford, Alec, Child, Rewon, Wu, Jeffrey, Jun, Heewoo, Luan,
David, and Sutskever, Ilya. Generative pretraining from pixels. In icml (2020),
pp. 1691–1703.

[14] Chen, Qifeng, and Koltun, Vladlen. Photographic image synthesis with cas-
caded refinement networks. In iccv (2017), pp. 1511–1520.

[15] Cheng, Yu, Gan, Zhe, Li, Yitong, Liu, Jingjing, and Gao, Jianfeng. Sequential
attention gan for interactive image editing. In Proceedings of the 28th ACM
International Conference on Multimedia (2020), pp. 4383–4391.

[16] Child, Rewon, Gray, Scott, Radford, Alec, and Sutskever, Ilya. Generating long
sequences with sparse transformers. arXiv preprint arXiv:1904.10509 (2019).

[17] Choi, Jooyoung, Kim, Sungwon, Jeong, Yonghyun, Gwon, Youngjune, and
Yoon, Sungroh. Ilvr: Conditioning method for denoising diffusion probabilistic
models. In Proceedings of the IEEE/CVF International Conference on Com-
puter Vision (2021), pp. 14367–14376.

[18] Chu, Xiangxiang, Tian, Zhi, Wang, Yuqing, Zhang, Bo, Ren, Haibing, Wei,
Xiaolin, Xia, Huaxia, and Shen, Chunhua. Twins: Revisiting the design of
spatial attention in vision transformers. arXiv preprint arXiv:2104.13840 1, 2
(2021), 3.

[19] Chu, Xiangxiang, Tian, Zhi, Zhang, Bo, Wang, Xinlong, Wei, Xiaolin, Xia,
Huaxia, and Shen, Chunhua. Conditional positional encodings for vision trans-
formers. arXiv preprint arXiv:2102.10882 (2021).

[20] Cole, Forrester, Golovinskiy, Aleksey, Limpaecher, Alex, Barros, Heather Stod-
dart, Finkelstein, Adam, Funkhouser, Thomas, and Rusinkiewicz, Szymon.
Where do people draw lines? ACM Trans. Graph. 27, 3 (2008).

[21] Cole, Forrester, Sanik, Kevin, DeCarlo, Doug, Finkelstein, Adam, Funkhouser,
Thomas, Rusinkiewicz, Szymon, and Singh, Manish. How well do line drawings
depict shape? ACM Trans. Graph. 28, 3 (2009).

[22] Coleman, Patrick, Murphy, Laura, Kranzler, Markus, and Gilbert, Max. Mak-
ing souls: Methods and a pipeline for volumetric characters. In SIGGRAPH
Talks (2020).

[23] DeCarlo, Doug. Depicting 3d shape using lines. In Proc. SPIE Human Vision
and Electronic Imaging XVII (2012).

[24] DeCarlo, Doug, Finkelstein, Adam, Rusinkiewicz, Szymon, and Santella, An-
thony. Suggestive contours for conveying shape. ACM Trans. Graph. 22, 3
(2003).

91

[25] Dehghani, Mostafa, Zamani, Hamed, Severyn, Aliaksei, Kamps, Jaap, and
Croft, W. Bruce. Neural ranking models with weak supervision. In Proc. SIGIR
(2017).

[26] Dhamo, Helisa, Farshad, Azade, Laina, Iro, Navab, Nassir, Hager, Gregory D,
Tombari, Federico, and Rupprecht, Christian. Semantic image manipulation
using scene graphs. In cvpr (2020), pp. 5213–5222.

[27] Dosovitskiy, Alexey, Beyer, Lucas, Kolesnikov, Alexander, Weissenborn, Dirk,
Zhai, Xiaohua, Unterthiner, Thomas, Dehghani, Mostafa, Minderer, Matthias,
Heigold, Georg, Gelly, Sylvain, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[28] Esser, Patrick, Rombach, Robin, Blattmann, Andreas, and Ommer, Björn. Im-
agebart: Bidirectional context with multinomial diffusion for autoregressive
image synthesis. In NeurIPS (2021).

[29] Esser, Patrick, Rombach, Robin, and Ommer, Bjorn. Taming transformers for
high-resolution image synthesis. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (2021), pp. 12873–12883.

[30] Fankbonner, Edgar Loy. Art of Drawing the Human Body. Inc. Sterling Pub-
lishing Co., 2004.

[31] Ferstl, David, Reinbacher, Christian, Ranftl, Rene, Ruether, Matthias, and
Bischof, Horst. Image guided depth upsampling using anisotropic total gen-
eralized variation. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV) (December 2013).

[32] Fish, Noa, Perry, Lilach, Bermano, Amit, and Cohen-Or, Daniel. Sketchpatch:
sketch stylization via seamless patch-level synthesis. ACM Trans. Graph. 39, 6
(2020).

[33] Fǐser, Jakub, Jamrǐska, Ondřej, Lukáč, Michal, Shechtman, Eli, Asente, Paul,
Lu, Jingwan, and Sýkora, Daniel. Stylit: Illumination-guided example-based
stylization of 3d renderings. ACM Trans. Graph. 35, 4 (2016).

[34] Ganin, Yaroslav, Kulkarni, Tejas, Babuschkin, Igor, Eslami, SM Ali, and
Vinyals, Oriol. Synthesizing programs for images using reinforced adversarial
learning. In Proc. ICML (2018).

[35] Gastal, Eduardo SL, and Oliveira, Manuel M. Domain transform for edge-aware
image and video processing. ACM Trans. Graph. 30, 4 (2011).

[36] Gatys, Leon A, Ecker, Alexander S, and Bethge, Matthias. Image style transfer
using convolutional neural networks. In Proc. CVPR (2016).

[37] Gombrich, E. H. Art and Illusion: A Study in the Psychology of Pictorial
Representation. Princeton U. Press, 1961.

92

[38] Goodfellow, Ian, Pouget-Abadie, Jean, Mirza, Mehdi, Xu, Bing, Warde-Farley,
David, Ozair, Sherjil, Courville, Aaron, and Bengio, Yoshua. Generative adver-
sarial nets. Advances in neural information processing systems 27 (2014).

[39] Goodman, Nelson. Languages of Art: An Approach to a Theory of Symbols.
Bobbs-Merrill Company, 1968.

[40] Goodwin, Todd, Vollick, Ian, and Hertzmann, Aaron. Isophote distance: A
shading approach to artistic stroke thickness. In Proc. NPAR (2007).

[41] Grabli, Stéphane, Turquin, Emmanuel, Durand, Frédo, and Sillion, François X.
Programmable rendering of line drawing from 3d scenes. ACM Trans. Graph.
29, 2 (2010).

[42] Gryaditskaya, Yulia, Hähnlein, Felix, Liu, Chenxi, Sheffer, Alla, and Bousseau,
Adrien. Lifting freehand concept sketches into 3d. ACM Trans. Graph. 39, 6
(2020).

[43] Gryaditskaya, Yulia, Sypesteyn, Mark, Hoftijzer, Jan Willem, Pont, Sylvia,
Durand, Frédo, and Bousseau, Adrien. Opensketch: A richly-annotated dataset
of product design sketches. ACM Trans. Graph. 38, 6 (2019).

[44] Gu, Shuyang, Bao, Jianmin, Yang, Hao, Chen, Dong, Wen, Fang, and Yuan, Lu.
Mask-guided portrait editing with conditional gans. In cvpr (2019), pp. 3436–
3445.

[45] Guptill, Arthur Leighton. Rendering in Pen and Ink. Watson-Guptill Publica-
tions, 1997.

[46] Hall, Mark, Frank, Eibe, Holmes, Geoffrey, Pfahringer, Bernhard, Reutemann,
Peter, and Witten, Ian H. The weka data mining software: An update. SIGKDD
Explor. Newsl. 11, 1 (2009).

[47] He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. Deep residual
learning for image recognition. In Proc. CVPR (2016).

[48] Herbrich, R., Graepel, T., and Obermayer, K. Support vector learning for
ordinal regression. In Proc. ICANN (1999).

[49] Hertzmann, Aaron. Why do line drawings work? a realism hypothesis. Percep-
tion 49, 4 (2020).

[50] Hertzmann, Aaron, Jacobs, Charles E., Oliver, Nuria, Curless, Brian, and
Salesin, David H. Image analogies. In Proc. SIGGRAPH (2001).

[51] Hertzmann, Aaron, Oliver, Nuria, Curless, Brian, and Seitz, Steven M. Curve
analogies. In Proceedings of the 13th Eurographics Workshop on Rendering
(2002).

93

[52] Heusel, Martin, Ramsauer, Hubert, Unterthiner, Thomas, Nessler, Bernhard,
and Hochreiter, Sepp. Gans trained by a two time-scale update rule converge
to a local nash equilibrium. NeurIPS 30 (2017).

[53] Hinz, Tobias, Fisher, Matthew, Wang, Oliver, and Wermter, Stefan. Improved
techniques for training single-image gans. In wacv (2021), pp. 1300–1309.

[54] Hinz, Tobias, Heinrich, Stefan, and Wermter, Stefan. Generating multiple ob-
jects at spatially distinct locations. In ICLR (2019).

[55] Ho, Jonathan, Jain, Ajay, and Abbeel, Pieter. Denoising diffusion probabilistic
models. In Proc. NeurIPS (2020).

[56] Hodges, Elaine. The Guild Handbook of Scientific Illustration. Wiley, 2003.

[57] Holtzman, Ari, Buys, Jan, Du, Li, Forbes, Maxwell, and Choi, Yejin. The
curious case of neural text degeneration. In iclr (2019).

[58] Hong, Seunghoon, Yan, Xinchen, Huang, Thomas, and Lee, Honglak. Learning
hierarchical semantic image manipulation through structured representations.
In NeurIPS (2018), pp. 2713–2723.

[59] Huang, Xun, and Belongie, Serge. Arbitrary style transfer in real-time with
adaptive instance normalization. In Proc. ICCV (2017).

[60] Hui, Tak-Wai, Loy, Chen Change, and Tang, Xiaoou. Depth map super-
resolution by deep multi-scale guidance. In Proceedings of European Conference
on Computer Vision (ECCV) (2016).

[61] Isola, Phillip, Zhu, Jun-Yan, Zhou, Tinghui, and Efros, Alexei A. Image-to-
image translation with conditional adversarial networks. In Computer Vision
and Pattern Recognition (CVPR), 2017 IEEE Conference on (2017).

[62] Isola, Phillip, Zhu, Jun-Yan, Zhou, Tinghui, and Efros, Alexei A. Image-to-
image translation with conditional adversarial networks. In Proc. CVPR (2017).

[63] Jiang, Yifan, Chang, Shiyu, and Wang, Zhangyang. Transgan: Two transform-
ers can make one strong gan. arXiv preprint arXiv:2102.07074 (2021).

[64] Jo, Youngjoo, and Park, Jongyoul. Sc-fegan: Face editing generative adver-
sarial network with user’s sketch and color. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (2019), pp. 1745–1753.

[65] Johnson, Justin, Alahi, Alexandre, and Fei-Fei, Li. Perceptual losses for real-
time style transfer and super-resolution. In Proc. ECCV (2016).

[66] Jones, Thouis R., Durand, Frédo, and Desbrun, Mathieu. Non-iterative, feature-
preserving mesh smoothing. ACM Trans. Graph. 22, 3 (2003).

94

[67] Jongejan, J., Rowley, H., Kawashima, T., Kim, J., and Fox-Gieg, N. The quick,
draw dataset. https://quickdraw.withgoogle.com/, 2016.

[68] Judd, Tilke, Durand, Frédo, and Adelson, Edward. Apparent ridges for line
drawing. ACM Trans. Graph. (2007).

[69] Kalnins, Robert D., Markosian, Lee, Meier, Barbara J., Kowalski, Michael A.,
Lee, Joseph C., Davidson, Philip L., Webb, Matthew, Hughes, John F., and
Finkelstein, Adam. Wysiwyg npr: Drawing strokes directly on 3d models. In
Proc. SIGGRAPH (2002).

[70] Kalogerakis, Evangelos, Nowrouzezahrai, Derek, Simari, Patricio, McCrae,
James, Hertzmann, Aaron, and Singh, Karan. Data-driven curvature for real-
time line drawing of dynamic scene. ACM Trans. Graph. 28, 1 (2009).

[71] Kennedy, John M. A Psychology of Picture Perception: Images and Informa-
tion. Jossey-Bass Publishers, 1974.

[72] Kingma, Diederik P, and Ba, Jimmy. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014).

[73] Kitaev, Nikita, Kaiser, Lukasz, and Levskaya, Anselm. Reformer: The efficient
transformer. In ICLR (2020).

[74] Koch, Sebastian, Matveev, Albert, Jiang, Zhongshi, Williams, Francis, Arte-
mov, Alexey, Burnaev, Evgeny, Alexa, Marc, Zorin, Denis, and Panozzo,
Daniele. Abc: A big cad model dataset for geometric deep learning. In Proc.
CVPR (2019).

[75] Koenderink, Jan J, and van Doorn, Andrea J. The shape of smooth objects
and the way contours end. Perception 11, 2 (1982).

[76] Kopf, Johannes, Cohen, Michael F, Lischinski, Dani, and Uyttendaele, Matt.
Joint bilateral upsampling. ACM Transactions on Graphics (ToG) 26, 3 (2007),
96–es.

[77] Lee, Cheng-Han, Liu, Ziwei, Wu, Lingyun, and Luo, Ping. Maskgan: Towards
diverse and interactive facial image manipulation. In cvpr (2020), pp. 5549–
5558.

[78] Lee, Yunjin, Markosian, Lee, Lee, Seungyong, and Hughes, John F. Line draw-
ings via abstracted shading. ACM Trans. Graph. 26, 3 (2007).

[79] Lewis, Mike, Liu, Yinhan, Goyal, Naman, Ghazvininejad, Marjan, Mohamed,
Abdelrahman, Levy, Omer, Stoyanov, Ves, and Zettlemoyer, Luke. Bart:
Denoising sequence-to-sequence pre-training for natural language generation,
translation, and comprehension. arXiv preprint arXiv:1910.13461 (2019).

95

[80] Li, Tzu-Mao, Lukáč, Michal, Gharbi, Michaël, and Ragan-Kelley, Jonathan.
Differentiable vector graphics rasterization for editing and learning. ACM
Trans. Graph. 39, 6 (2020).

[81] Li, Yijun, Fang, Chen, Hertzmann, Aaron, Shechtman, Eli, and Yang, Ming-
Hsuan. Im2pencil: Controllable pencil illustration from photographs. In Proc.
CVPR (2019).

[82] Li, Yijun, Fang, Chen, Yang, Jimei, Wang, Zhaowen, Lu, Xin, and Yang, Ming-
Hsuan. Universal style transfer via feature transforms. In Proc. NeurIPS (2017).

[83] Ling, Huan, Kreis, Karsten, Li, Daiqing, Kim, Seung Wook, Torralba, Antonio,
and Fidler, Sanja. Editgan: High-precision semantic image editing. In NeurIPS
(2021).

[84] Liu, Difan, Fisher, Matthew, Hertzmann, Aaron, and Kalogerakis, Evangelos.
Neural strokes: Stylized line drawing of 3d shapes. In Proc. ICCV (2021).

[85] Liu, Difan, Nabail, Mohamed, Hertzmann, Aaron, and Kalogerakis, Evangelos.
Neural contours: Learning to draw lines from 3d shapes. In Proc. CVPR (2020).

[86] Liu, Difan, Shetty, Sandesh, Hinz, Tobias, Fisher, Matthew, Zhang, Richard,
Park, Taesung, and Kalogerakis, Evangelos. Asset: Autoregressive semantic
scene editing with transformers at high resolutions. ACM Trans. Graph. 41, 4
(2022).

[87] Liu, Guilin, Reda, Fitsum A, Shih, Kevin J, Wang, Ting-Chun, Tao, Andrew,
and Catanzaro, Bryan. Image inpainting for irregular holes using partial con-
volutions. In Proceedings of the European Conference on Computer Vision
(ECCV) (2018), pp. 85–100.

[88] Liu, Hongyu, Wan, Ziyu, Huang, Wei, Song, Yibing, Han, Xintong, and Liao,
Jing. Pd-gan: Probabilistic diverse gan for image inpainting. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2021), pp. 9371–9381.

[89] Liu, Hongyu, Wan, Ziyu, Huang, Wei, Song, Yibing, Han, Xintong, Liao, Jing,
Jiang, Bin, and Liu, Wei. Deflocnet: Deep image editing via flexible low-level
controls. In cvpr (2021), pp. 10765–10774.

[90] Liu, Ming-Yu, Tuzel, Oncel, and Taguchi, Yuichi. Joint geodesic upsampling of
depth images. In Proceedings of the IEEE conference on computer vision and
pattern recognition (2013), pp. 169–176.

[91] Liu, Ze, Lin, Yutong, Cao, Yue, Hu, Han, Wei, Yixuan, Zhang, Zheng, Lin,
Stephen, and Guo, Baining. Swin transformer: Hierarchical vision transformer
using shifted windows. arXiv preprint arXiv:2103.14030 (2021).

96

[92] Loshchilov, Ilya, and Hutter, Frank. Decoupled weight decay regularization.
arXiv preprint arXiv:1711.05101 (2017).

[93] Lu, Jingwan, Barnes, Connelly, DiVerdi, Stephen, and Finkelstein, Adam. Re-
albrush: Painting with examples of physical media. ACM Trans. Graph. 32, 4
(2013).

[94] Lu, Jingwan, Yu, Fisher, Finkelstein, Adam, and DiVerdi, Stephen. Helping-
hand: Example-based stroke stylization. ACM Trans. Graph. 31, 4 (2012).

[95] Lutio, Riccardo de, D’aronco, Stefano, Wegner, Jan Dirk, and Schindler, Kon-
rad. Guided super-resolution as pixel-to-pixel transformation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (2019), pp. 8829–
8837.

[96] Mao, Xudong, Li, Qing, Xie, Haoran, Lau, Raymond YK, Wang, Zhen, and
Paul Smolley, Stephen. Least squares generative adversarial networks. In Proc.
ICCV (2017).

[97] Meng, Chenlin, Song, Yang, Song, Jiaming, Wu, Jiajun, Zhu, Jun-Yan, and
Ermon, Stefano. Sdedit: Image synthesis and editing with stochastic differential
equations. In Proc. ICLR (2022).

[98] Nam, Seonghyeon, Kim, Yunji, and Kim, Seon Joo. Text-adaptive generative
adversarial networks: manipulating images with natural language. In NeurIPS
(2018), pp. 42–51.

[99] Ntavelis, Evangelos, Romero, Andrés, Kastanis, Iason, Van Gool, Luc, and
Timofte, Radu. Sesame: semantic editing of scenes by adding, manipulating or
erasing objects. In eccv (2020), pp. 394–411.

[100] Ohtake, Yutaka, Belyaev, Alexander, and Seidel, Hans-Peter. Ridge-valley lines
on meshes via implicit surface fitting. ACM Trans. Graph. 23, 3 (2004).

[101] Ohtake, Yutaka, Belyaev, Alexander, and Seidel, Hans-Peter. Ridge-valley lines
on meshes via implicit surface fitting. ACM Trans. Graph. 23, 3 (2004).

[102] Park, Jaesik, Kim, Hyeongwoo, Tai, Yu-Wing, Brown, Michael S., and Kweon,
Inso. High quality depth map upsampling for 3d-tof cameras. In 2011 Interna-
tional Conference on Computer Vision (2011), pp. 1623–1630.

[103] Park, Taesung, Efros, Alexei A., Zhang, Richard, and Zhu, Jun-Yan. Con-
trastive learning for unpaired image-to-image translation. In Proc. ECCV
(2020).

[104] Park, Taesung, Liu, Ming-Yu, Wang, Ting-Chun, and Zhu, Jun-Yan. Semantic
image synthesis with spatially-adaptive normalization. In cvpr (2019), pp. 2337–
2346.

97

[105] Park, Taesung, Zhu, Jun-Yan, Wang, Oliver, Lu, Jingwan, Shechtman, Eli,
Efros, Alexei, and Zhang, Richard. Swapping autoencoder for deep image ma-
nipulation. In Proc. NeurIPS (2020).

[106] Parmar, Niki, Vaswani, Ashish, Uszkoreit, Jakob, Kaiser, Lukasz, Shazeer,
Noam, Ku, Alexander, and Tran, Dustin. Image transformer. In icml (2018),
PMLR, pp. 4055–4064.

[107] Patashnik, Or, Wu, Zongze, Shechtman, Eli, Cohen-Or, Daniel, and Lischinski,
Dani. Styleclip: Text-driven manipulation of stylegan imagery. In ICCV (2021),
pp. 2085–2094.

[108] Phong, Bui Tuong. Illumination for computer generated pictures. Commun.
ACM 18, 6 (1975).

[109] Ramesh, Aditya, Dhariwal, Prafulla, Nichol, Alex, Chu, Casey, and Chen,
Mark. Hierarchical text-conditional image generation with clip latents. arXiv
preprint arXiv:2204.06125 (2022).

[110] Ramesh, Aditya, Pavlov, Mikhail, Goh, Gabriel, Gray, Scott, Voss, Chelsea,
Radford, Alec, Chen, Mark, and Sutskever, Ilya. Zero-shot text-to-image gen-
eration. arXiv preprint arXiv:2102.12092 (2021).

[111] Resource, VG. The models resource, https://www.models-resource.com/, 2019.

[112] Rusinkiewicz, Szymon. Estimating curvatures and their derivatives on triangle
meshes. In Proc. 3DPVT (2004).

[113] Rusinkiewicz, Szymon, and DeCarlo, Doug. rtsc library.
http://www.cs.princeton.edu/gfx/proj/sugcon/, 2007.

[114] Saharia, Chitwan, Chan, William, Saxena, Saurabh, Li, Lala, Whang, Jay, Den-
ton, Emily, Ghasemipour, Seyed Kamyar Seyed, Ayan, Burcu Karagol, Mah-
davi, S Sara, Lopes, Rapha Gontijo, et al. Photorealistic text-to-image diffusion
models with deep language understanding. arXiv preprint arXiv:2205.11487
(2022).

[115] Sangkloy, Patsorn, Burnell, Nathan, Ham, Cusuh, and Hays, James. The
sketchy database: Learning to retrieve badly drawn bunnies. ACM Trans.
Graph. 35, 4 (2016).

[116] Sayim, Bilge, and Cavanagh, Patrick. What line drawings reveal about the
visual brain. Frontiers in Human Neuroscience 5 (2011).

[117] Shaham, Tamar Rott, Dekel, Tali, and Michaeli, Tomer. Singan: Learning a
generative model from a single natural image. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (2019), pp. 4570–4580.

98

[118] Shaham, Tamar Rott, Gharbi, Michaël, Zhang, Richard, Shechtman, Eli, and
Michaeli, Tomer. Spatially-adaptive pixelwise networks for fast image trans-
lation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (2021), pp. 14882–14891.

[119] Sharma, Gopal, Goyal, Rishabh, Difan Liu, Kalogerakis, Evangelos, and Maji,
Subhransu. Csgnet: Neural shape parser for constructive solid geometry. In
Proc. CVPR (2018).

[120] Sharma, Gopal, Goyal, Rishabh, Difan Liu, Kalogerakis, Evangelos, and Maji,
Subhransu. Neural shape parsers for constructive solid geometry. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence (2020).

[121] Sharma, Gopal, Difan Liu, Maji, Subhransu, Kalogerakis, Evangelos, Chaud-
huri, Siddhartha, and Měch, Radomı́r. Parsenet: A parametric surface fitting
network for 3d point clouds. In Proc. ECCV (2020).

[122] Shocher, Assaf, Cohen, Nadav, and Irani, Michal. “zero-shot” super-resolution
using deep internal learning. In Proceedings of the IEEE conference on computer
vision and pattern recognition (2018), pp. 3118–3126.

[123] Su, Sitong, Gao, Lianli, Zhu, Junchen, Shao, Jie, and Song, Jingkuan. Fully
functional image manipulation using scene graphs in a bounding-box free way.
In Proceedings of the 29th ACM International Conference on Multimedia (2021),
pp. 1784–1792.

[124] Suvorov, Roman, Logacheva, Elizaveta, Mashikhin, Anton, Remizova, Anasta-
sia, Ashukha, Arsenii, Silvestrov, Aleksei, Kong, Naejin, Goka, Harshith, Park,
Kiwoong, and Lempitsky, Victor. Resolution-robust large mask inpainting with
fourier convolutions. arXiv preprint arXiv:2109.07161 (2021).

[125] Tan, Zhentao, Chai, Menglei, Chen, Dongdong, Liao, Jing, Chu, Qi, Liu, Bin,
Hua, Gang, and Yu, Nenghai. Diverse semantic image synthesis via proba-
bility distribution modeling. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (2021), pp. 7962–7971.

[126] Tay, Yi, Dehghani, Mostafa, Bahri, Dara, and Metzler, Donald. Efficient trans-
formers: A survey. arXiv preprint arXiv:2009.06732 (2020).

[127] Thibault, Aaron, and Cavanaugh, Sean. Making concept art real for border-
lands. In ACM SIGGRAPH 2010 Courses (2010).

[128] Tulsiani, Shubham, and Gupta, Abhinav. Pixeltransformer: Sample condi-
tioned signal generation. arXiv preprint arXiv:2103.15813 (2021).

[129] turbosquid. Turbosquid, https://www.turbosquid.com/, 2021.

99

[130] Ulyanov, Dmitry, Vedaldi, Andrea, and Lempitsky, Victor. Instance nor-
malization: The missing ingredient for fast stylization. arXiv preprint
arXiv:1607.08022 (2016).

[131] Vaswani, Ashish, Shazeer, Noam, Parmar, Niki, Uszkoreit, Jakob, Jones, Llion,
Gomez, Aidan N, Kaiser, Lukasz, and Polosukhin, Illia. Attention is all you
need. In Advances in neural information processing systems (2017), pp. 5998–
6008.

[132] Vinker, Yael, Horwitz, Eliahu, Zabari, Nir, and Hoshen, Yedid. Image shape
manipulation from a single augmented training sample. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (2021), pp. 13769–
13778.

[133] Wan, Ziyu, Zhang, Jingbo, Chen, Dongdong, and Liao, Jing. High-fidelity plu-
ralistic image completion with transformers. arXiv preprint arXiv:2103.14031
(2021).

[134] Wang, Sinong, Li, Belinda Z, Khabsa, Madian, Fang, Han, and Ma, Hao. Lin-
former: Self-attention with linear complexity. arXiv preprint arXiv:2006.04768
(2020).

[135] Wang, Ting-Chun, Liu, Ming-Yu, Zhu, Jun-Yan, Tao, Andrew, Kautz, Jan, and
Catanzaro, Bryan. High-resolution image synthesis and semantic manipulation
with conditional gans. In Proc. CVPR (2018).

[136] Wang, Wenhai, Xie, Enze, Li, Xiang, Fan, Deng-Ping, Song, Kaitao, Liang,
Ding, Lu, Tong, Luo, Ping, and Shao, Ling. Pyramid vision transformer: A
versatile backbone for dense prediction without convolutions. arXiv preprint
arXiv:2102.12122 (2021).

[137] Wang, Xiaolong, Girshick, Ross, Gupta, Abhinav, and He, Kaiming. Non-local
neural networks. In cvpr (2018), pp. 7794–7803.

[138] Wang, Zhou, Bovik, Alan C, Sheikh, Hamid R, and Simoncelli, Eero P. Image
quality assessment: from error visibility to structural similarity. IEEE transac-
tions on image processing 13, 4 (2004), 600–612.

[139] Wilber, Michael J, Kwak, Iljung S, and Belongie, Serge J. Cost-effective hits
for relative similarity comparisons. In Proc. HCOMP (2014).

[140] Winkenbach, Georges, and Salesin, David H. Computer-generated pen-and-ink
illustration. In Proc. SIGGRAPH (1994).

[141] Winkenbach, Georges, and Salesin, David H. Rendering parametric surfaces in
pen and ink. In Proc. SIGGRAPH (1996).

100

[142] Yang, Chao, Lu, Xin, Lin, Zhe, Shechtman, Eli, Wang, Oliver, and Li, Hao.
High-resolution image inpainting using multi-scale neural patch synthesis. In
Proceedings of the IEEE conference on computer vision and pattern recognition
(2017), pp. 6721–6729.

[143] Yang, Jianwei, Li, Chunyuan, Zhang, Pengchuan, Dai, Xiyang, Xiao, Bin, Yuan,
Lu, and Gao, Jianfeng. Focal self-attention for local-global interactions in vision
transformers. In NeurIPS (2021).

[144] Yang, Jingyu, Ye, Xinchen, Li, Kun, Hou, Chunping, and Wang, Yao. Color-
guided depth recovery from rgb-d data using an adaptive autoregressive model.
IEEE Transactions on Image Processing 23 (2014), 3443–3458.

[145] Yang, Qingxiong, Yang, Ruigang, Davis, James, and Nister, David. Spatial-
depth super resolution for range images. In 2007 IEEE Conference on Computer
Vision and Pattern Recognition (2007), pp. 1–8.

[146] Yi, Li, Huang, Haibin, Difan Liu, Kalogerakis, Evangelos, Su, Hao, and
Guibas, Leonidas. Deep part induction from articulated object pairs. ACM
Trans. Graph. 37, 6 (2019).

[147] Yu, Jiahui, Lin, Zhe, Yang, Jimei, Shen, Xiaohui, Lu, Xin, and Huang,
Thomas S. Generative image inpainting with contextual attention. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition
(2018), pp. 5505–5514.

[148] Yu, Jiahui, Lin, Zhe, Yang, Jimei, Shen, Xiaohui, Lu, Xin, and Huang,
Thomas S. Free-form image inpainting with gated convolution. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision (2019),
pp. 4471–4480.

[149] Yu, Tao, Guo, Zongyu, Jin, Xin, Wu, Shilin, Chen, Zhibo, Li, Weiping, Zhang,
Zhizheng, and Liu, Sen. Region normalization for image inpainting. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence (2020).

[150] Yu, Yingchen, Zhan, Fangneng, Wu, Rongliang, Pan, Jianxiong, Cui, Kaiwen,
Lu, Shijian, Ma, Feiying, Xie, Xuansong, and Miao, Chunyan. Diverse image
inpainting with bidirectional and autoregressive transformers. arXiv preprint
arXiv:2104.12335 (2021).

[151] Zaheer, Manzil, Guruganesh, Guru, Dubey, Kumar Avinava, Ainslie, Joshua,
Alberti, Chris, Ontanon, Santiago, Pham, Philip, Ravula, Anirudh, Wang, Qi-
fan, Yang, Li, et al. Big bird: Transformers for longer sequences. In NeurIPS
(2020).

[152] Zhang, Pan, Zhang, Bo, Chen, Dong, Yuan, Lu, and Wen, Fang. Cross-domain
correspondence learning for exemplar-based image translation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2020), pp. 5143–5153.

101

[153] Zhang, Pengchuan, Dai, Xiyang, Yang, Jianwei, Xiao, Bin, Yuan, Lu, Zhang,
Lei, and Gao, Jianfeng. Multi-scale vision longformer: A new vision transformer
for high-resolution image encoding. arXiv preprint arXiv:2103.15358 (2021).

[154] Zhang, Richard, Isola, Phillip, Efros, Alexei A, Shechtman, Eli, and Wang,
Oliver. The unreasonable effectiveness of deep features as a perceptual metric.
In CVPR (2018), pp. 586–595.

[155] Zhang, Richard, Isola, Phillip, Efros, Alexei A, Shechtman, Eli, and Wang,
Oliver. The unreasonable effectiveness of deep features as a perceptual metric.
In Proc. CVPR (2018).

[156] Zheng, Chuanxia, Cham, Tat-Jen, and Cai, Jianfei. Pluralistic image comple-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (2019), pp. 1438–1447.

[157] Zheng, Haitian, Lin, Zhe, Lu, Jingwan, Cohen, Scott, Zhang, Jianming, Xu,
Ning, and Luo, Jiebo. Semantic layout manipulation with high-resolution sparse
attention. arXiv preprint arXiv:2012.07288 (2020).

[158] Zhou, Bolei, Zhao, Hang, Puig, Xavier, Fidler, Sanja, Barriuso, Adela, and
Torralba, Antonio. Scene parsing through ade20k dataset. In CVPR (2017),
pp. 633–641.

[159] Zhou, Qingnan, and Jacobson, Alec. Thingi10k: A dataset of 10,000 3d-printing
models. arXiv:1605.04797, 2016.

[160] Zhou, Xingran, Zhang, Bo, Zhang, Ting, Zhang, Pan, Bao, Jianmin, Chen,
Dong, Zhang, Zhongfei, and Wen, Fang. Cocosnet v2: Full-resolution corre-
spondence learning for image translation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (2021), pp. 11465–
11475.

[161] Zhu, Jun-Yan, Park, Taesung, Isola, Phillip, and Efros, Alexei A. Unpaired
image-to-image translation using cycle-consistent adversarial networks. In Com-
puter Vision (ICCV), 2017 IEEE International Conference on (2017).

[162] Zhu, Jun-Yan, Park, Taesung, Isola, Phillip, and Efros, Alexei A. Unpaired
image-to-image translation using cycle-consistent adversarial networks. In Proc.
ICCV (2017).

[163] Zhu, Jun-Yan, Zhang, Zhoutong, Zhang, Chengkai, Wu, Jiajun, Torralba, An-
tonio, Tenenbaum, Josh, and Freeman, Bill. Visual object networks: Image
generation with disentangled 3d representations. Advances in Neural Informa-
tion Processing Systems 31 (2018), 118–129.

[164] Zhu, Peihao, Abdal, Rameen, Qin, Yipeng, and Wonka, Peter. Sean: Im-
age synthesis with semantic region-adaptive normalization. In cvpr (2020),
pp. 5104–5113.

102

	Controllable Neural Synthesis for Natural Images and Vector Art
	Recommended Citation

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Introduction
	Natural Image Synthesis Guided by Semantic Maps
	Vector Art Synthesis Guided by 3D Shapes
	Summary of Publications

	Literature Review
	Natural Image Synthesis Guided by Semantic Maps
	Vector Art Synthesis Guided by 3D Shapes

	Natural Image Synthesis Guided by Semantic Maps
	Method
	Image encoder
	Autoregressive transformer
	Image decoder
	Training
	Implementation Details

	Results
	Conclusion

	Vector Art Synthesis Guided by 3D Shapes
	Neural Contours: Line Drawing Synthesis
	Line Drawing Model
	Geometry branch
	Image translation branch
	Image translation branch implementation
	Neural Ranking Module
	Neural Ranking Module Implementation

	Dataset
	Training
	Results
	Additional Results
	Summary

	Neural Strokes: Line Drawing Stylization
	Model
	Curve Extraction
	Stroke geometry prediction
	Stroke Texture
	Architecture Details

	Training
	Experiments
	Summary

	Conclusion
	Future Work
	Diverse Synthesis of 3D Data and Video
	Generative Modeling of Vector Art
	Image Editing with Sketches

	Bibliography

