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Abstract 

Shading conveys information on 3-D shape and the process of recovering this 

information is called shape-from-shading (SFS). This thesis divides the process of 

human SFS into two functional sub-units (luminance disambiguation and shape 

computation) and studies them individually. Based on results of a series of 

psychophysical experiments it is proposed that the interaction between first- and 

second-order channels plays an important role in disambiguating luminance. Based on 

this idea, two versions of a biologically plausible model are developed to explain the 

human performances observed here and elsewhere. An algorithm sharing the same 

idea is also developed as a solution to the problem of intrinsic image decomposition in 

the field of image processing.  

 

With regard to the shape computation unit, a link between luminance variations and 

estimated surface norms is identified by testing participants on simple gratings with 

several different luminance profiles. This methodology is unconventional but can be 

justified in the light of past studies of human SFS. Finally a computational algorithm 

for SFS containing two distinct operating modes is proposed. This algorithm is 

broadly consistent with the known psychophysics on human SFS.  
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1. Introduction 

Both artificial and biological vision systems take as input 2-D arrays of light 

intensities transformed from the 3-D world according to the laws of optics. 

Interpreting these 2-D signals in terms of 3-D structures is an ill-posed, inverse 

problem but is nevertheless a crucial step in any visual processing algorithm. The 

ability of the human observer to see the world and understand it is so remarkable that 

no present machine vision algorithms are comparable in terms of versatility, 

robustness and accuracy.  

 

Since the 1970‘s, great efforts have been made towards describing the human visual 

system as an information processing system which can reconstruct a 3-D 

representation of the world based on its corresponding 2-D projection onto the retina. 

Probably the most influential in this regard is Marr‘s theory of computational vision 

(Marr, 1982). In his theory, Marr proposes that visual information is represented at 

different levels. Between the level of 2-D image based representation (primal sketch) 

and the level of 3-D object-based representation there lies a transition layer called the 

2.5-D sketch. This layer functions as a buffer to store information about the depth and 

orientation of local surface patches. The 2.5D sketch is the assembled output of many 

sub-modules each operating on separate sources such as shading, stereo, motion, 

texture and perceived contours. Underlying the 2.5D sketch is the idea that individual 

computational problems become solvable given constraints, and that they can be 

carried out more or less independent of each other (Marr, 1982, p103; Landy, 

Maloney, Johnston & Young, 1995; Bruce, Green & Georgeson, 1996, p137; Palmer, 

1999, p200).  
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The aim of this thesis is to investigate one particular (putative) sub-module within the 

2.5D sketch – shape-from-shading. This module is responsible for computing surface 

depth and orientation in space from the pictorial depth cue, monocular shading. In the 

language of Marr‘s theory, the thesis attempts to establish the following: what 

comprises the input, how information is represented, what constraints are needed in 

order to make the inverse problem solvable and finally what computations are carried 

out in each step to obtain the observed experimental output.  

1.1 Background  

1.1.1 3D vision 

The optical signal that is received by the retina is inherently 2-D. During the 

projecting process, information in the ‗distance‘ dimension is lost. But the fact that 

humans actually see a 3-D world rather than a 2-D image implies that one of the 

primary functions of our visual system is to reconstruct a 3-D space from the 2-D 

retinal image. But how this function is achieved had looked intractable until the 

emergence of Marr‘s computational theory of vision in the early 1980‘s (Marr 1982).  

 

Unifying discoveries from neurophysiology, psychophysics and computer vision, 

Marr proposed that the visual system can be characterised in terms of an information 

processing system. At the early stage of visual processing, the system generates a 

representation of the input image, describing its important 2-D features (the primal 

sketch; see Figure 1.1). Information then progresses from the primal sketch to the 

2.5D sketch which contains information about depth and surface orientation. The 

2.5D sketch is a view centred representation of the 3-D world. At the next stage, this 

view centred representation is transformed to an object centred 3-D representation 
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which is invariant to the viewing direction. The introduction of the 2.5D sketch is a 

major contribution of Marr‘s theory, being a key step in getting from the 2D primal 

sketch to the 3D object centred view. 

 
Figure 1.1 Modular description of the human visual system up to the level of 2.5D sketch, 

proposed by Marr (1982).  

 

Marr assumed that surface orientation and distance in space are the essential building 

blocks to the final 3-D perception. However, some have questioned how vital surface 

orientation and distance in space are to 3-D perception. Pizlo (2008) pointed out that 

Marr‘s theory would fail to account for phenomena such as constancy of perceived 3-

D shape. He proposed a computational theory of 3-D shape recovery which took a 

very different approach. Pizlo‘s model does not make use of surface orientations or 

depth information. Instead it is based on a few prior constraints such as symmetry and 

volume, i.e. most objects in the world are somewhat symmetrical and enclose a 

volume. Pizlo and his colleagues (Li, Pizlo & Steinman, 2009; Pizlo, Sawada, Li, 

Kropatsch & Steinman, 2010) then suggested that the human visual system could rely 

more on these priors to achieve a coherent visual representation of the 3-D world than 

on surface orientation and depth perception as suggested by Marr.  

 

The conflict discussed above seems to be due to the different objectives of the two 

theories. While Pizlo‘s theory is mostly concerned with recovering 3-D shape of 
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concrete objects, Marr‘s proposed vision system has the more general purpose aim of 

solving a wide range of visual problems rather than just understanding and 

interpreting 3-D shapes. After all, Pizlo cannot deny the observation that humans can 

derive surface orientations and depth even when no solid shape is presented. For 

example, it has been shown that human observers can perceive slanted surfaces from 

random dot disparity stimuli which do not signal the shape of any meaningful 3-D 

objects (Julesz, 1960). Whether surface orientations and depth are the primary 

ingredients of 3-D vision may be uncertain but it is hard to believe that such 

information is not used at all during the process of 3-D reconstruction.  

1.1.2 Depth perception 

Although information in the depth (z) dimension is lost during the process of 

projection, the 2-D retinal image still contains ―regularities‖ that reflect relative 

differences in distance between two points in a scene. These visual ―regularities‖ are 

called depth cues. Known static depths cues include stereoscopic disparity, 

deformation of contours, texture gradients, and shading. Earlier studies have shown 

that human observers can make effective use of these cues to infer depth. For 

example, Julesz (1960) reported that disparity alone can generate a strong depth 

perception with very little involvement of other visual information. Human observers 

have also been found capable of perceiving depth from texture gradients (Gibson, 

1950). It is worth emphasizing that the stimuli used in such studies contained the 

single cue of interest only. Despite this human observers were still able to obtain a 

depth percept from either disparity or texture gradient alone.  

 

Motivated by such discoveries, Marr (1982) proposed that there exist a number of 

independent computational modules each operating on a particular depth cue. Each 
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module can be described as an information processing system which has tailored 

algorithms built in to work on the specific type of input signal. The outcome of each 

module is a point-wise depth map that contributes information to the generalized 2.5D 

sketch. 

 

Marr‘s modular description of the early visual system is illustrated in Figure 1.1. By 

characterising the visual system as a modular system, one can divide it into many 

separate modules and study each independently. This so-called modular principle 

(Marr, 1982) is only a gross simplification of the complex system and does not 

prevent any possible interactions at a later stage where computed results from all 

modules are fused according to a certain scheme. Empirically, humans tend to be 

better at perceiving natural scenes containing multiple visual cues than experimental 

stimuli made of simple single cues, indicating the general plausibility of such a cue 

combination scheme. 

 

Studies of cue combination have shown that human observers indeed choose to 

combine depth cues via a number of structured routines (Hills, Watt, Landy & Banks, 

2004; Oruc, Maloney & Landy, 2003; Landy et al., 1995; Curran & Johnston, 1994; 

Bulthoff & Mallot, 1988). Moreover, it has been shown that modules are connected 

even before each computation is carried out such that the whole system can be 

described by a multivariate system with interactions existing between variables 

(Pankanti & Jain, 1995). For instance, Vuong, Domini and Caudek (2006) proposed 

that human observers use shading information to constrain the disparity module to 

arrive at a more precise estimation of depth. This cooperative relationship between 

modules is not surprising since each depth cue has its own ―domain of expertise‖ in 
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depth computation. For example, stereoposis reveals relative depth directly but 

shading contributes more to the surface orientation and curvature. Thus modules can 

complement each other in the sense that one module could provide vital constraints 

for the computation carried out in another module. Therefore, building a complete 

integrated vision system requires not only the knowledge of any individual module 

but also the necessary / likely exchanges of information between modules. The latter 

demands an in-depth investigation of each module including its computational theory, 

the constraints required to complete each computation and any assumptions that are 

adopted should the necessary constraints be missing. This thesis tackles one of the 

depth modules: shape from monocular shading.  

1.1.3 Shape from shading (SFS) 

The definition of shading sometimes can be confusing. In most works shading is 

defined as the variations in the amount of reflected light as a direct result of variations 

in the orientation of the surface relative to a light source (for example see Palmer, 

1999, p243). To see this process intuitively, imagine a curved surface lit by a single 

point light source (Figure 1.2). The parts of the surface facing towards the light source 

will appear brighter than the parts facing away from it. Thus surface orientation 

clearly plays a very important role in determining the surface brightness. 

 

However, a broader definition of shading can also be found which refers to shading as 

variations in the amount of reflected light due to any source other than the reflectance 

properties of the surface material (Olmos & Kingdom 2004). Cast shadows and 

luminance variations caused by inter-reflections between surfaces are included in this 

definition of shading. To distinguish these two definitions, the former definition is 

often called ―local shading‖ while the latter is termed ―global shading‖ (Forsyth & 
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Ponce, 2003, p70). In this thesis, unless explicitly emphasised, the term shading 

referrers to ―local shading‖, that is variations in light intensity that directly result from 

undulations of the surface in question.  

 
Figure 1.2 Surface brightness is dependent on surface orientation. Surface patches facing 

towards the light source (point b) will receive more irradiance thus look brighter than those 

facing away (point a and c). 

 

Although the study of shape-from-shading has a long tradition (see for example, 

Rittenhouse, 1786; Brewster 1826), it was not until the 1970‘s that the computational 

analysis of shading was first proposed to quantitatively study the relation between 

shading and surface orientation and to apply it in computer vision. Horn published a 

series of papers (1975; 1977; Ikeuchi & Horn, 1981) leading to the formulation of the 

problem which he termed shape-from-shading (SFS). Strictly speaking, ―surface 

orientation from shading‖ may better characterise the problem than ―shape-from-

shading‖ but the term SFS is used throughout this thesis in line with convention.  

 

Like most other problems in computational vision, SFS is an ill-posed problem that 

requires the application of many constraints in order to make it mathematically well-

posed. A typical way to solve SFS normally requires constraints on surface material, 

lighting direction, diffuseness of the lighting and so on. In early works on SFS 

constraints were often adopted to suit conditions that were not necessarily common in 

a 

brighter 

c 

b 

darker 

darker 
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daily life because early attempts to solve SFS were almost all dedicated to solving 

problems in specific areas such as aerospace, satellite surveillance and remote 

sensing. Some frequently imposed constraints include uniform surface material and 

uniform surface reflectance, Lambertian reflectance (Horn, 1975; Pentland, 1984; 

Pentland, 1988), distant light sources, and distant viewing positions (such that 

orthographic projection applies; Horn, 1975; Horn, 1977; Horn & Sjoberg, 1979; 

Ikeuchi & Horn, 1981). With the problem sufficiently constrained, SFS reduced to the 

solution of a relatively simple series of differential equations.  

 

Since the mid of 80‘s, the subject of SFS has split into two different but related sub-

fields. One stream continued to try to solve practical problems encountered in 

computer vision and thus focused on developing more powerful ways to solve the 

differential equations. For example, efforts have been made to ensure the robustness, 

existence and uniqueness of solutions by using methods such as numerical iteration, 

variational approaches, regularization and optimization (Durou, Falcone & Sagona, 

2008). The other stream took a very different objective— to study SFS in the human 

visual system. That is, to study the processes by which human observers deduce 

surface orientation based on shading. The remainder of this chapter (indeed thesis) 

addresses SFS in the human visual system. 

1.1.4 Perception of shape from shading 

Our ability to perceive depth from luminance variations can be illustrated by the very 

simple stimulus in Figure 1.3a where a linear luminance ramp is bounded by a 

circular outline. This linear ramp will appear as a convex bump raised from the 

background – and is evidence of SFS operating in the visual system. Moreover, the 

process of SFS is quite fast such that it could happen at an early stage of visual 
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processing (Sun & Perona, 1996). This property of SFS was observed in a visual 

search tasks. If the luminance ramp in Fig 1.3a is presented up-side-down alongside 

several copies of the original, the up-side-down version tends to stand out as a 

concave dent with convex bumps forming the background (Fig 1.3b). The time 

needed to spot on the odd-one-out can be as fast as only a few hundred milliseconds 

and does not increase with the number of display items (Kleffner & Ramachandran, 

1992); suggestive of pre-attentive, parallel search and the existence of a feature map 

for shape in early vision (Triesman & Gelade, 1980). On the other hand, when the 3-D 

impression of convexity v.s. concavity is not strong (e.g. opposite horizontally 

oriented luminance gradients), reaction times tends to be much longer and also 

increase drastically with display size (suggestive of attentive, serial search; Triesman 

& Gelade, 1980).  

 
Figure 1.3 (a) An example of SFS in the human visual system. A luminance ramp bounded by a 

circular boundary will give rise to a perception of a bump raised from the grey background. (b) 

several linear ramps are placed together, one of which is vertically inverted. (c) horizontally 

oriented linear ramps. (After Kleffner and Ramachandran 1992).  

 

1.1.4.1 Two early studies on the perception of SFS 

Acknowledging the empirical evidence for human SFS, Todd and Mingolla (1983) 

were among the first to quantitatively examine the salience and the role of shading in 

the perception of 3-D depth. Benefiting from advances in computer graphics, they 

were able to use computer rendered realistic 3D surface to test human responses to 

a b c 
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shading. More specifically, they tested how humans responded to the shading pattern 

of a cylindrical surface with a mixture of Lambertian (diffuse, matte) and mirror 

(glossy) reflectance lit by single distant light sources from a small number of distinct 

directions. 

 

Participants were shown the physical object which the stimuli would depict and were 

then asked to rate how curved the surface in the stimuli appeared to be. They 

confirmed the human ability to understanding shading in terms of 3-D shape and 

showed that this ability was not subject to the same constraints (e.g. surface being 

Lambertian) as required by most machine vision algorithms at that time. In addition, 

surface curvatures tended to be underestimated for pure Lambertian reflectance but 

overestimated when a mirror reflectance was added. Observers also responded 

differently when the cylinder was lit by light from different directions. That is 

perceived surface shape is dependent on the light source and thus not veridical to the 

object being depicted. 

 

In fear of having chosen an inappropriate measurement (curvedness) and a stimulus 

that was too simple, Mingolla and Todd (1986) used computer rendered ellipsoids as 

test stimuli and asked the participants to report the apparent slant and tilt at each of 

several measurement points on the simulated surface. Again, observers were able to 

interpret the shading pattern in a way that was coherent with the underlying 3D 

structure but settings also varied with the direction of the illumination. However, in 

this experiment, the glossiness of the surface did not have a noticeable impact on 

overall performance. Observers also responded differently as the eccentricity 

(deviation from spherecity) of the ellipsoid changed, with near spherical ellipsoids 
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being judged more accurately than ellipsoids with high eccentricity. For ellipsoids 

with high eccentricity, observer‘s judgements suggested that they could not even 

agree on overall perceived shape. Note, however, that the tasks used in these two 

early studies are both very abstract. In fact the researchers admitted that the 

participants found the tasks very difficult even after training had been provided.  

 

These two early studies raise a number of interesting questions. First, human 

observers underestimated the curvature defined by Lambertian shading in the first 

study and showed large inter-observer variance when estimating the surface 

orientation in the second study. This questions the overall effectiveness and 

veridicallity of shading as a cue to the underlying 3D structure. Second, both studies 

reported that subjects responded differently under different illuminant directions, 

questioning the veridicallity of shape judgements, although it remains to be seen if 

there is a systematic relationship between illumination direction and perceived shape.  

Third, contradictory results appeared in terms of how subjects responded to surfaces 

with different reflectance properties (matte vs glossy). No safe conclusion can be 

drawn regarding whether or not changes in reflectance can alter shape perception in 

humans given the different tasks involved in these studies. Fourth, these studies raise 

questions as to the most appropriate stimuli for studying SFS. Simple stimuli may 

make the task too easy revealing little about the genuine characteristics of human 

SFS. But complex stimuli risk introducing potential confounding variables, making 

the result less valid. Finally, the shape estimates were different in the two studies.  

Todd and Mingolla (1983) measured curvedness (a second-order cue) whereas 

Mingolla and Todd (1986) measured surface orientation (a first-order shape cue). It is 

not clear which measurement is the better choice studying SFS. 
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Answering the above questions would give insight into the computation of SFS in the 

human brain. For example, the second and the third questions are closely related to 

how humans constrain the problem of SFS in terms of lighting and surface 

reflectance. The final question actually asks what comprises the immediate output of 

the computational module for SFS. The majority of studies on SFS following that of 

Mingolla and Todd tend to focus on a subset of these unresolved questions.  

1.1.4.2 SFS is effective but shading cue is not 

In a study of depth cue integration, Bülthoff and Mallot (1988) found that the depth 

percept generated from disparity vetoed shading when these two cues were put into 

conflict. That is, when shading suggested curvature while stereo edges suggested 

flatness, observers tended to base their perceptions on stereo cue only and ignore the 

effect of the shading cue. Thus shading appears to be carried less weight than 

disparity for deducing 3-D structure. Similar results have also been found by others 

that the effect of shading can be dominated by other cues such as edge contours and 

surface contours (Ramachandran, 1988; Knill, 1992). This down rating of the 

reliability of shading in the visual system may reflect some limitations of shading as a 

carrier of 3-D information in the physical world.  

 

The computational analysis of shading reveals that it conveys only limited 

information on 3-D shape (Pentland, 1984). Assuming that all surfaces are 

approximately spherical, the sign of the principal curvatures cannot be determined by 

shading alone (Pentland, 1984). An immediate consequence of this limitation is that 

concavity, convexity, elliptic and hyperbolic shape can not be distinguished by 

shading alone (See Fig 1.4).  
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Figure 1.4 Example ambiguity in shaoe-from-shading. If a hemi-spherically convex surface with 

Lambertian reflectance is lit by directional light from above, it gives the same shading pattern as 

a hemi-spherically concave surface with Lambertian reflectance lit by the same type of light 

source.   

 

In an experiment of local shape categorization (Erens, Kappers & Koenderink, 

1993a), observers were very poor at differentiating elliptic shapes from hyperbolic 

shapes based on shading patterns when the occluding contours (outlines) of the shapes 

were obscured by random markings.  Among the elliptic shapes, observers were 

unable to distinguish between convex and concave shapes. After adding information 

on illumination to the stimuli, observers were able to break the ambiguity between 

concavity and convexity but they were still unable to identify elliptic vs. hyperbolic 

shapes. These results clearly demonstrate one deficiency in SFS: humans can not 

differentiate between elliptic shapes and hyperbolic shapes when shading is the only 

available cue. However, this deficiency is due to the physical limitation of shading as 

a cue to depth. Put simply information about the sign of surface curvature is not 

contained in shading. Thus the deficiency cannot be blamed on any computational 

inability in the human visual system. 

 

Mamassian, Kersten & Knill (1996) found a rather different result using a different 

experimental design to test observers‘ ability to categorize shapes based on shading. 
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In their experiment, observers viewed a computer generated croissant-shaped object 

rendered with Lambertian shading. The task was to label the points on the object 

surface according to whether they were in an elliptic or hyperbolic region. In this 

case, observers could separate the two regions very well and could even accurately 

locate where the parabolic curve (segregation line) was on the surface. However, a 

simple comparison between the two tasks reveals that the presence of object outlines 

as the cause of the discrepancy between the two results.   

 

Given the observation that the shading can be down weighed in the presence of other 

cues, it is reasonable to question the capability of computing SFS in the visual system. 

In other words, does the brain allocate enough computing resources to the SFS 

module given that shading is relatively a poor cue to 3-D shape? Recall that in the 

experiment by Mingolla and Todd (1986), judgements of surface orientation showed 

large differences across observers. So it is possible that the visual system can not 

make effective use of shading at all to derive 3-D structures. However, human 

observers showed high sensitivity to changes of surface curvatures defined by shading 

in a curvature discrimination task (Johnston & Passmore, 1994a). Here, observers 

viewed a patch of test surface which formed a fraction of the standard spherical 

surface defined by Lambertian shading. The curvature of the test patch was varied 

systematically. The task was to indicate if the test patch was more curved or less 

curved than a comparison sphere. The discrimination threshold for curvatures 

increased as the curvature of the standard sphere, revealing a low Weber fraction of 

only 0.1. This performance is comparable to the Weber fraction of around 0.07 

observed for curvature discrimination tasks in which curved surfaces defined by 

disparity were used (E B Johnston, 1991). The existence of a low Weber fraction 
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means that humans can detect a rather small change in curvature of a 3-D surface 

defined by shading. Thus, it can be concluded that humans use shading quite 

effectively to derive the underlying 3-D structure and this effectiveness is comparable 

to that of disparity in computing the curvature of 3-D surfaces. So perhaps the large 

variances in the results observed by Mingolla and Todd (1986) were not due to the 

inability of the visual system to analyse shading but rather, caused by some other 

factors such as the difficulty of the task and geometrical properties (slant and tilt) that 

were measured.  

 
Figure 1.5 The probe image used in Koenderink‘s experiment (1992). The combination of a 

straight line and an oval depicts a circular disk with a needle erecting from the centre. The disk 

can be rotated in the three dimensional space. 

 

Koenderink, vanDoorn and Kappers (1992) used a new method to evaluate human 

surface perception based on 2-D photographs of sculptures.  The stimuli were 

composed of test photographs and probe images. The probe image consisted of an 

oval and a straight line starting from the centre of the oval and pointing towards the 

shorter axis of the oval (Fig 1.5). This combination depicts a circular disk in a three 

dimensional space which has a needle standing at the centre of the disk, pointing in 

the direction perpendicular to the surface of the disk. Observers adjusted the probe 

until they felt that the disk was sitting on the tangent plane of the perceived surface. 

The setting for each position on the photograph can be translated in terms of 
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perceived slant (rotation around the vertical axis of the image plane) and tilt (rotation 

around the axis of depth in space). Alternatively it can also be translated into the 

gradient vector of the perceived 3-D surface. Repeated settings made by each subject 

correlated well, indicating good reproducibility of the data for individual observers. 

More importantly, depth differences computed along closed triangles across the entire 

surface summed to zero, which is equivalent to zero curl for a continuous gradient 

field. This means that the settings conformed well to a perceived surface. However, 

there were large inter-observer differences. While the perceived shapes were quite 

similar across observers, the depth values were very different, leading to significant 

scaling effect between observers. Koenderink‘s method is a relatively easy task 

compared to the one used by Mingolla and Todd (1986) and even naïve observers 

could perform the task very quickly without training. Thus it has become a commonly 

adopted method in the study of shape-from-shading.  

 

What is the significance of the large inter-observer variances reported in studies of 

SFS? Even when using an easier task and measuring more data points, researchers 

still failed to obtain consistent data across different observers (Koenderink et al., 

1992). But interestingly, these inter-observer variations were not randomly 

distributed. Rather, they seemed to follow some systematic pattern such as the scaling 

effect. It has been argued that these variances may correspond to some ambiguities 

lying within the structure of 2-D shading and that resolving these ambiguities requires 

observers to apply their own ―beholder‘s share‖ (Koenderink, vanDoorn & Kappers, 

2001). In psychophysics, a good method should avoid this ―beholder‘s share‖ as much 

as possible to exclude influences caused by individual differences. Unfortunately such 
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a method is not available for the study of SFS since no existing methods so far has 

managed to delivered consistent data across different observers.  

 

Rather than trying to eliminate inter-observer differences, Koenderink et al. (2001) 

used these variances to provide useful information regarding the ambiguities 

associated with the perception of SFS in the hope that understanding such ambiguities 

would provide insight into the underlying visual mechanisms. Koenderink et al. 

(2001) tested four observers‘ perceived 3-D shapes based on photographs of four 

different smoothly curved object using three different tasks. One object had slight 

textures on its surface but shading was still the primary feature in the photograph. 

Three objects had relatively simple surfaces such as egg-shaped or vase-shaped 

ecliptics. The other was a more complex human mask shape. The three tasks were a 

probe disk task as used by Koenderink et al. (1992), pair-wise depth judgements 

between points on the surface, and the adjustment of a cross-sectional drawing to 

match the perceived surface. The pair-wise comparison task involved computing 

relative depth between two local points whereas the cross-section adjustment asked 

for global shape judgements. Linear regression revealed that participants largely 

agreed on the shapes of the three simple objects. But, once again, observers differed 

in the scale of the perceived depth: the scaling factor was up to 2.13. Shape estimates 

for the complex object correlated less well across observers. In addition, the depth 

scaling effect was also present, with a scaling factor up to 2.17. Correlations between 

different tasks were weak for any single participant. However, in a multiple regression 

of one participant‘s depths 2z against depths 1z of another participant as well as the 

image coordinates x and y , the resulting coefficients of determination were 

significantly improved between different participants, even for the photograph of the 
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complex surface. Significantly stronger coefficients were also found for different 

tasks after conducting a similar multiple regression. This result suggests that despite 

individual differences and inconsistencies between tasks, different tasks conducted by 

different participants nonetheless produced consistent shape estimates under affine 

transformations of perceived shape. That is, the shading defined 3-D surfaces are 

coded in the visual system as a functional of an affine transform 

    dcybxyxazyxz  ,,ˆ where  yxz ,ˆ is depth function estimated by an observer 

in a particular task,  yxz , is the depth function of the 3-D structure represented in the 

visual system, yx, are the coordinates of the image plane, constant a represents the 

scaling factor, while cb, and d control a shearing transforms of the 3-D surface 

(Koenderink et al., 2001). The constants defining depth scaling and shear represent 

the ambiguities that the observers must resolve by applying their ―beholder‘s share‖. 

Thus each observer‘s response in any independent task was a sub-set of all the 

possible surface interpretations for affine transforms of the perceived 3-D structure. 

This theory can explain well the variances across observers reported by earlier studies 

as well as the variances of data obtained by different tasks.  

1.1.4.3 Effect of illumination and surface material on SFS 

Another interesting question about SFS concerns whether constancy can be achieved 

for the perceived 3-D structure under changes in lighting and surface reflectance. 

Lighting direction was varied in Johnston and Passmore‘s (1994a) curvature 

discrimination task, Sensitivity to changes in curvature did not vary as the 

illumination was rotated around the vertical axis of the image plane (tilt). But 

curvature thresholds increased as the illumination approached the viewing direction 

(reduced slant, frontal lighting). However this result can not safely support the 
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conclusion that the visual system analyses shading differently under different lighting 

conditions. Under frontal lighting, a Lambertian surface produces a luminance map 

that has considerably lower contrast than that produced by collimated lighting. 

Consequently the reduced sensitivity to curvature for frontal lighting condition could 

be due to poor detection of the luminance changes produced. On the other hand, an 

isotropic surface (sphere in this case) under collimated lighting with changing tilt 

direction will give rise to shading patterns that have about equal luminance contrast. 

Thus changes in surface curvature will produce similarly strong shading for all tilt 

directions. So it is not surprising that the curvature discrimination threshold were not 

affected when the tilt angle of the collimated lighting was varied. 

 

In a related study, Curran and Johnston (1996) also had observers indicate which of 

two spheres was more curved. The surface reflectance could either be glossy or matte. 

Observers were more accurate when lighting was oblique than when it was frontal. 

For a frontal lighting, surface curvatures were consistently underestimated. For 

oblique lightings, observers were most accurate when the lighting was from above. 

Observers tended to underestimate curvatures as the light source was below the 

viewing axis. This was true for both types of surface reflectance but the trend was 

slightly weaker for glossy surfaces.  

 

The effect of illuminant direction on SFS was also found in a complex scene 

understanding task (Koenderink, vonDoorn, Christou & Lappin, 1996a; 1996b). 

Observers adjusted pictorial reliefs of, respectively, photographs of sculptures (with 

shading), the silhouette of the original object, and a cartoon picture roughly equal to 

its contours (without shading). For the cartoon figure, observers produced a fully 
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articulated pictorial relief very similar to the actual photographs. But when viewing 

the photographs of the same sculpture under different lighting directions, the 

observers produced systematically deviated reliefs for individual stimuli. A similar 

phenomenon was also found by Todd, Koenderink, vonDoorn and Kappers (1996). 

The perceived picture relief from photographs of sculptures differed systematically 

between oblique and frontal light sources. Although large proportions of the variances 

(84%) could be accounted by affine transformations (cf, Koenderink et al., 2001), the 

residuals followed a systematic pattern. These residuals serve as an evidence that 

perceived shape is likely to vary with the lighting direction. Nefs, Koenderink and 

Kappers (2005; 2006) and Nefs (2008) also reported changes in perceived shapes 

from shaded objects under oblique lighting and frontal lighting. Applying an affine 

transform did not improve the coefficients of determination, suggesting substantial 

changes in perceived shape which could not be accounted by scaling or shear 

transforms. However, there were no obvious differences between matte and glossy 

surfaces 

 

In an attempt to study the effects of lighting direction more quantitatively, Christou 

and Koenderink (1997) showed to observers stimuli of computer rendered ellipsoids 

with Lambertian reflectance. Perceived shapes differed for three different light source 

directions in that the perceived shapes all bulged towards the position of the light 

source. That is, the brightest point appeared closer to the observer than should be the 

case for a veridical interpretation. This effect was most pronounced for the lighting 

that was close to the viewing direction. Here, perceived depth was well predicted by 

an algorithm based on the linear regression between surface depth and the luminance 

gradient. For the other two lighting directions, the linear regression was also present 
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but not a dominant trend. The effect of illuminant direction was slightly weaker for 

surfaces with lighter albedo than that with darker albedo. This discovery confirms the 

speculation that little shape constancy could be achieved for the perception of SFS 

under different illuminations. In addition, it also suggests that the computational 

algorithms employed by the visual system could be different for oblique and frontal 

illumination. For the two oblique illuminations, the way that 3-D shape was derived 

seemed similar and the perceptual difference was due to the difference in luminance 

patterns. In a more expanded study, Khang, Koenderink and Kappers (2007) asked 

observers to judge the shape of computer rendered ellipsoids under various lighting 

conditions, surface materials and degree of specularity. Perceived shapes differed 

across the lighting conditions and surface materials but remained consistent when the 

degree of specularity was varied. Observers‘ judgements were most accurate for 

specular surfaces illuminated by collimated light farthest away from the viewing 

direction, although the judgment under all conditions was accurate overall.  

 

To sum up, changes in illumination can influence perceived shape systematically. 

Therefore shape constancy should not be expected under changing illumination. But 

contradictory results have been reported for the effect of surface material. Matte and 

glossy surfaces are the most tested surface types. Perceptual differences were reported 

by some studies (Todd & Mingolla, 1983; Curran & Johnston, 1996; Khang et al., 

2007) whereas others found no obvious effect when surfaces changed from matt to 

gloss (Nefs et al., 2006; Nefs, 2008). It should be noted that Nefs et al. used unusual 

stimuli with more complex edges and contours whereas the other studies all employed 

simple sphere and ellipsoid stimuli which had simpler outlines. Thus it is possible that 
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outlines and contours provided more information to help the observers to achieve a 

constant perception for different surface materials in the studies by Nefs et al.  

1.1.4.4 Simple vs. complex stimuli: which are more suitable for SFS? 

It has already been shown that different test stimuli can lead to inconsistent results. 

Humans are more likely to achieve accurate 3-D perception from more complex 

stimuli. For instance, observers were able to distinguish between elliptic and 

hyperbolic surfaces for shading patterns computed from a more complex object 

(Mamassian et al., 1996). Observers also managed to achieve shape constancy under 

changing surface materials for complex (Nefs et al., 2006; Nefs, 2008) but not simple 

stimuli (Todd & Mingolla, 1983; Curran & Johnston, 1996; Khang et al., 2007; Nefs 

et al., 2006; Nefs, 2008). One possible explanation for this difference is that edges and 

outlines in complex stimuli help to break inherent ambiguities associated with 

shading. However, the study of SFS in humans could be invalid if the effect of object 

outlines are not taken into full consideration. In a study of local surface perception 

(Mamassian & Kersten, 1996), observers consistently underestimated the surface slant 

and this bias increased as the real surface slant increased. But at the end of the report, 

they had to conclude that shading was probably not used by the observers during their 

experiment because observers‘ responses to the silhouette of the object followed a 

similar pattern. Some studies went even further using more complicated and more 

meaningful objects. In one example (Koenderink et al., 1996a), observers obtained a 

very similar shape judgement for a photographed shaded sculpture of human bodies 

and a cartoon figure of the same sculpture without shading, making the effect of SFS 

difficult to measure. Complex stimuli tend to be rich in other visual cues and contain 

information that can lead to higher level object recognition. Consequently, responses 

to complex stimuli may be confounded by judgements based on familiarity with the 
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objects. For example observers might implicitly reason ―if it looks like a mug it must 

be cylindrical‖.  

 

Why did Koenderink et al. (1996a; 1996b) use complicated images and allow such 

apparently confounding factors to exist? After all, ―cue-reduction‖ is a common 

strategy for studying perception based on single cues. One reason may be the potential 

ineffectiveness of shading compare to other cues. Prior to Koenderink‘s study, it had 

been reported that the effect of shading could easily be overridden by other depth cues 

such as stereo (Bülthoff & Mallot, 1988), surface contours and outlines 

(Ramachandran, 1988; Knill, 1992). It was suspected therefore that alternative visual 

information had to be provided in order for SFS to function fully. Koenderink et al. 

(1996b) explained it with an analogue to clapping – it takes two hands to clap and 

shading alone may represent just one hand. Therefore it makes sense to use an object 

that is rich in visual information additional to shading to ensure the shading be made 

full use of.  

 

Taken together the results discussed above suggest that shading needs other visual 

information to fully function as a cue to 3D shape. But the presence of too many 

additional visual cues could confound the measurement of the full effects of shading. 

Thus it is desirable to have a methodology in which information other than shading is 

just about enough to stop SFS from becoming a broken system. A realistic complex 

stimuli is perhaps less suitable for this purpose as information additional to shading in 

those stimuli can be more difficult to identify and control for.  



 24 

1.1.4.5 Computational theories of human SFS 

Although many computational algorithms can solve the SFS problem well under 

certain restricted conditions, these algorithms do not necessarily characterise human 

performance. No existing model of SFS takes adequate account of human perceptual 

responses in the whole process of SFS and very few have claimed any psychophysical 

plausibility. An exception is Pentland‘s biological model (1989) in which surface 

slant is linearly related to the underlying luminance. Pentland conducted a simple 

psychophysical experiment which proved that shape perception was consistent with 

this linear relationship for shading patterns composed of sine-wave functions. Having 

identified its psychophysical plausibility, Pentland proposed a method of 

implementation based on forward and inverse linear transforms which could be 

carried out by cells in visual primary cortex. But the validity of this linear relationship 

has not been extensively tested in human observers with other shading patterns. The 

geometry of lighting suggests that the linear relationship should only hold for oblique 

lighting directions where shading profiles are dominated by linear components. 

Quadratic components dominate when lighting is frontal with respect to surface 

undulations. Although slightly less accurate, shape perceptions for shading computed 

under frontal lighting can satisfactorily describe 3-D structures of the surfaces 

presented (Khang et al., 2007; Nefs et al., 2006; Christou & Koenderink, 1997; Todd 

et al., 1996; Koenderink et al., 1996b). Therefore, Pentland‘s theory is not a full 

account of human SFS.  

 

In computer vision, solving SFS often involves finding the mathematical relationship 

between luminance and surface orientation. A classic way of describing such 

relationship is through a tool called the ―reflectance map‖ which links luminance to 
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surface orientation on a gradient plane (Horn, 1977; Horn & Sjoberg, 1979). On the 

gradient plane, each spatial position corresponds to a two-element vector representing 

an orientation in the 3-D space. The value associated with each position is the 

luminance value in the shading image. A reflectance map can be uniquely determined 

for a surface of known material under a fixed distant point light source. Inspired by 

this idea, Seyama and Sato (1998) attempted to find the reflectance map assumed by 

humans so as to develop a psychologically plausible, computational theory of SFS. 

They tested observers with spherical and cylindrical surfaces with a light source at the 

viewing position. The obtained reflectance map was similar for all participants. 

Working in reverse, rendered images based on this reflectance map were perceived 

very accurately without the underestimation commonly found for surfaces rendered 

with Lambertian reflectance. Unfortunately, human reflectance maps were not 

obtained for surfaces under other lighting conditions. Therefore Seyama and Sato‘s 

method did not lead to a complete computational theory of human SFS. 

 

Some hints as to how humans compute SFS can be drawn from past studies. Recall 

from section 1.1.4.3 that when the light source was close to the viewer, shape 

judgements could be explained by a linear regression model between the adjusted 

slant and decreasing luminance gradients, equivalent to the ‗dark-is-deep‘ 

interpretation (Christou & Koenderink, 1997). That is, the brightest part of the image 

was seen as closest to the viewer. But for stimuli lit by oblique point light sources, a 

linear regression model could barely explain the data at all. This ―dark is deep‖ 

strategy is similar to SFS algorithms developed to understand shading patterns under 

diffuse lighting (Langer & Zurker, 1992; Stewart & Langer, 1997). However, when 

testing human depth perception for shading patterns generated under diffuse lighting, 
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Langer and Bülthoff (2000) found that the observers utilized a strategy that was more 

powerful than the simple ―dark is deep‖ Rule. Nevertheless, none of above studies has 

conclusively established a theory for shape from shading. One important reason is that 

most studies used complex object realistically rendered by computer programs. 

Admittedly, the choice of realistically computer rendered object does not undermine 

any of those qualitative conclusions discussed above. But it is hard to form firm, 

quantitative computational theories of SFS based on results which are potentially 

confounded due to the presence of edge contours.  

1.1.5 Knowledge of Light source  

The perception of SFS is often studied alongside the estimation of light source 

direction. This is because it is impossible to judge one without knowledge of the other 

unless one is assumed. Many SFS algorithms in computer vision require the 

illuminant direction to be known because shading is a function of the angle between 

the surface normal and the light source direction. However, whether or not knowledge 

of the lighting direction is a prerequisite in the visual system when solving SFS is an 

open question. Mingolla and Todd‘s (1986) found that error data of light source 

estimation did not correlate with that of surface perception, indicative of two 

independent processes. Further, Mamassian and Kersten (1996) found large errors for 

the tilt of the light source computed from observers‘ responses even when light source 

tilt could be very easily determined from the image. This result led them to conclude 

that the illumination direction was probably not used to aid in SFS tasks.  But humans 

do seem to be able to infer the direction of a light source from cast shadows, specular 

reflections (Mingolla & Todd, 1986; Liu & Todd, 2004) and the second-order 

statistics of relief textures (ie finely rippled surfaces, Koenderink, vonDoorn & Pont, 
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2004; 2007; Pont & Koenderink, 2007). In addition, luminance gradients can also 

help human observers to indicate light source direction (Pentland, 1982).   

 

It seems necessary to differentiate these two types of knowledge on light source. One, 

implicit lighting, is the light source suggested by perceived surface orientation 

following SFS (Mamassian & Kersten, 1996). In other words, the observer decides on 

the surface shape and interprets the lighting direction accordingly.  The other, explicit 

lighting, is obtained directly from lighting cues in the image and can be assessed by 

tests of light source estimation. Humans also have a third type of knowledge 

regarding the light source, namely prior assumptions about where light is most likely 

to come from: lighting priors. Two known lighting priors are that lighting is 

directional (like the sun) and comes from above and slightly to the left of the observer 

(Ramachandran, 1988; Sun & Perona, 1998, Mamassian and Goutcher, 2001) and that 

lighting is diffuse and hemispherical, like the sky (Langer & Bülthoff, 2000; Tyler, 

1998). The question then becomes how these three types of knowledge on light source 

are related and what role each type plays in SFS.  

 
Figure 1.6 A demonstration of the global shading effect on breaking the convex & concave 

ambiguity. (a) Circular horizontal luminance ramps will appear a bump regardless of the 

direction of the gradient due to a bias of global convexity (Reichel & Todd, 1990; Langer & 

Bulthoff, 2001; Liu & Todd, 2004). (b) A smaller circular luminance ramp which has a gradient 

direction opposite to the larger circular appears a concave dent. (c) If the smaller circular is 

rotated 180 deg such that it has the same gradient orientation as the larger circular, it appears a 

convex bump (After Koenderink & vanDoorn, 2004) 

 

a b c 
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A known effect of light priors is that the preference that light comes above rather than 

below helps to break the ambiguities between concave and convex surfaces. But it has 

been shown that the preferred light source direction for humans is a wide spread of 

directions centred at above left with large individual differences across observers 

(Adams, 2007). However the estimation of light priors is normally defined in terms of 

tilt angles. Light priors regarding the slant angle are seldom investigated. The effects 

of explicit light sources have been studied in the context of global shading effects 

(Erens, Kappers & Koenderink, 1993b; Koenderink & vanDoorn, 2004). Shading or 

shadows in areas surrounding an object could indicate the illuminant direction. If so 

the perception of the object in question would be affected by the surrounding shading 

patterns. It has been reported that the convex & concave ambiguity can be broken by 

global shading (Koenderink & vanDoorn, 2004), as demonstrated in Figure 1.6. 

However the presence of global shading did not improve the accuracy of SFS in 

another experiment (Erens et al., 1993b). It seems that explicit light source 

information is not used as a prerequisite in human SFS. Instead, it had a similar role to 

lighting priors; breaking ambiguities associated with shading.  

 

So far there is no conclusive result available that could clarify the relationships 

between light priors, explicit light sources and implicit lighting. But a theory can be 

formulated to address this issue. Recall in section 1.1.4.3 it was shown that SFS relied 

on the luminance distributions. Since implicit lighting is computed from perceived 

shapes, it may be more related to luminance distributions as well. But explicit cues to 

lighting can be obtained from many sources such as cast shadow, specular highlight, 

edges, and 3-D structures induced by shading (e.g. Fig 1.6). Each of these cues has a 

different reliability and strength and cues can act against or in favour of each other. If 
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explicit light sources were not involved in shape computation in a point wise manner 

but helped to resolve shading ambiguities much as lighting priors do, then explicit and 

implicit light sources might appear mutually exclusive when the reliability assigned to 

the source of 3-D structure induced by luminance distribution is low. That is, explicit 

light sources and implicit light are drawn from independent sources of information. 

But when no other sources are available and the source of 3-D structure induced by 

shading is reliable, explicit light source should correlate with implicit light sources.  

1.1.6 Disambiguating origins of luminance variations 

Another constraint often imposed by SFS algorithms is that surface materials are 

Lambertian with constant reflectance. The benefit of applying such a constraint is that 

images contain shading only and so can be a direct input to the system. In reality, 

luminance variations can result from changes in reflectance as well as shading 

(surface orientation). The fact that the uniform reflectance constraint is seldom 

satisfied in natural scenes has significantly hampered the application of SFS 

algorithms in real world applications. On the other hand, human SFS seems to be 

robust to the natural environment. Does this mean that the human visual system has a 

stage responsible for disambiguating luminance in a scene? There is evidence to 

suggest that this is very possible.  

 

Humans do not judge the lightness of a surface simply based on the perceived 

brightness rather lightness perception is often affected by contextual information and 

spatial arrangement (Gilchrist, 1988; Gilchrist, 1977). Induced lightness can not be 

explained by low level inhibition but seems to suggest an awareness of how 

illumination and transmitting atmosphere affect the perceived brightness of 3-D 

structures (Knill & Kersten, 1991; Adelson & Pentland, 1996; Anderson & Winawer, 
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2005; Adelson, 1993). In addition, colour perception is also influenced by 3-D layout 

(Bloj, Kersten & Hubert, 1999). Perceived colour and perceived lightness are closely 

related to reflectance (capturing albedo and pigment respectively). The fact that 

humans take illumination into account when judging the reflective properties of a 

surface indicates separate representations for illumination and reflectance in the visual 

system. A generic theory has been formulated for lightness perception, the perception 

of transparency, and the perception of shading and shadows. This theory states that at 

a certain stage of visual processing, the image is decomposed and represented in 

different layers according to sources of origin such as illumination, reflectance and 

optical medium (Kingdom, 2008; Gilchrist, 2006, p189; Anderson & Winawer, 2005) 

– a process similar to that described as extracting the intrinsic image in machine 

vision  (Barrow & Tenenbaum, 1978).  

 
Figure 1.7 Effect of edge intersection. (a) luminance values along each edge obey the rule of 

―ratio invariance‖, i.e. xqyp //  , giving a shadow impression to either the central square or 

the left half of the figure. (b) If the sign of edges or the contrast sign changes, in this 

case   1
//


 xqyp , the shadow impression disappears and both edges look more like 

reflectance changes. (c) If edge intersections are removed, the impression of changes in 

illumination is weakened. (d) The sign of edges is same as (a) but the luminance ratio is changed 

such that xqyp //  . The central square now appears as a transparent surface over the 

background. (After Kingdom 2008) 
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Humans carry out layer decomposition with the help of a variety of cues (Kingdom, 

2008). When viewing a grey target and a white paper half in a shadow, observers 

assigned the target with higher grey levels than when the surrounding area was 

obscured (Gilchrist, 1988). Gilchrist suggested that humans identify the darker half of 

the white paper as a less illuminated area when contextual information containing 

edge intersections were available. In the real world, the effect of illumination is 

multiplicative so that any luminance ratios remain constant even when the 

illumination changes (see Fig 1.7a). Thus edge intersections should obey the rule of 

―ratio-invariance‖, corresponding to the situation where illumination edges intersect 

with reflectance edges (Gilchrist, 1988; Kingdom, 2008). In contrast, if the sign of 

edges change across edge intersections, both edges are unlikely to be caused by 

illumination (see Fig 1.7b). Moreover, the perceptual decomposition does not occur if 

the spatial arrangement of edge intersection is destroyed (Fig 1.7c). 

 

Figure 1.7a can be also perceived as a transparent square floating over the 

background. According to Metelli‘s transparency theory (1974), edge intersections 

with ―ratio invariance‖ also signature a non-reflective transparency. The restriction of 

―ratio invariance‖ can be relaxed to achieve a perception of transparency as long as 

the signs of edges remain consistent across intersections (Fig 1.7d). This combination 

typically corresponds to a background surface seen through a transparency with a 

reflective component (Kingdom, 2008; Singh & Anderson, 2002). Gilchrist (2006, 

p192) argued that the process of edge classification is critical to the process of 

lightness perception. But the nature of the computation that follows edge 

classification to achieve lightness has not been made explicit, although Gilchrist, 

Delman and Jacobsen (1983) suggested a process of edge integration. There is also a 
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weakness in ―ratio-invariance‖ as a cue for layer decomposition; while it signifies the 

existence of an illumination edge, it does not specify which edge of the intersection is 

due to reflectance and which is due to shading. As illustrated in Fig 1.7a, either the 

central square or the left half of the figure can be perceived as lying in the shadow.  

 

Edge sharpness is considered by some researchers as another cue to layer 

decomposition (Land & McCann, 1971; Horn, 1974). Land and McCann‘s Retinex 

theory (1971) assumes that illumination changes in a field are gradual and smooth 

such that they are invisible to a low-level edge detection scheme. Thus illumination 

and reflectance can be separated by thresholding luminance gradients. Horn (1974) 

extended the Retinex theory and developed an algorithm that could remove lightness 

from 2-D images. Horn‘s algorithm is based on the Laplacian operator and its inverse 

which he believes behave similarly to some cells in visual cortex. One problem with 

classifying gradients is that one has to reintegrate them afterwards: the gradient 

process needs an inverse. Horn‘s algorithm provides for reintegration and has served 

as a general framework for future algorithms for layer decomposition and intrinsic 

image separation. For example, Gilchrist et al. (1983) suggested that the rule of ―ratio 

invariance‖ could be added to make an edge classification unit together with the 

thresholding scheme proposed by the Retinex theory. However, the notion of gradual 

and smooth nature of illumination changes is more empirical than ecologically 

plausible. Edge shadows can be very sharp (Fig 1.7a) and sharp luminance changes 

due to shading are also frequent in natural scenes, e.g. at the corners or vertices of 3-D 

objects (Sinha & Addelson, 1993). More importantly, humans have no problems in 

interpreting shadows and shading with sharp edges (Kingdom, 2008; Gilchrist, 2006; 

Gilchrist, 1979; Adelson & Pentland, 1996). From this perspective, the ―illumination 
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change is smooth‖ rule is seen as more of a general guide than a reliable rule 

(Kingdom, 2008).  

 
Figure 1.8 colour brings even more clarity to shadow/shading. (a) Luminance changes along the 

border between the background and the central square but hue remains consistent. This 

produces even stronger shadow impression than Fig1.7a. (b) Both hue and luminance change 

along the border between the central square and the background.  The luminance in the central 

square is the same as in (a). (After Kingdom 2008) 

 

The cues described above are both suggestive of illumination changes. Changes in 

colour, on the other hand, suggest material changes. Kingdom, Beauce and Hunter 

(2004) showed that adding colour to luminance edge intersections facilitated 

identifications of shadows. The effect of colour in shadow identification is illustrated 

in Figure 1.8a where luminance changes achromatically between the background and 

central regions. Hue changes only along the middle edge. This combination produces 

an even stronger impression of illumination changes than that seen in Figure 1.7a. The 

central square in Figure 1.8b has the same luminance level as that in Fig 1.8a, but 

appears as a patch with different reflectance from the background because hue 

changes across the luminance border.  

 

Another related study (Kingdom, 2003) linked the human ability to disambiguate 

luminance variations in SFS. This study suggests that luminance variations classified 

as shading provide direct input into SFS. Stimuli consisted of a luminance-defined 

sinusoidal grating and a sinusoidal grating defined by isoluminant red-green shifts. 

The two components had the same orientation and were combined either in-phase or 

a b 
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out of phase. An orthogonal red-green grating was added to the main pair in a plaid 

configuration. The degree to which the luminance sinusoid appeared as shading was 

measured by ratings of the perceived depth of the apparent corrugation, a task that 

involves the process of SFS. Results showed that the perceived depth was enhanced 

when the phase alignment of the mixed colour and luminance component was 

destroyed or the contrast of an in-phase colour component was reduced. Thus 

luminance changes that are aligned with changes in hue are likely to be perceived as 

reflectance whereas non-aligned variations in hue and luminance trigger the 

impression of shading. 

 

The two studies above prove the importance of colour in disambiguating luminance, 

but they reveal different aspects of the process. The results of the shadow experiment 

are consistent with Gilchrist‘s idea of edge classification (1983). Thus colour can be 

an effective addition to the edge classification unit within the layer decomposition 

framework. Olmos and Kingdom (2004) exploited this idea to develop an algorithm 

that separates shading from reflectance. This algorithm finds edges via a classic edge 

detection method and categories them into illumination and reflectance edges, by 

applying the rules discovered in the shadow experiment (Kingdom et al., 2004). The 

edge types can then be reintegrated separately to obtain the corresponding layers. 

However, Kingdom‘s (2003) shading experiment provides a strong argument that 

layer decomposition may not be based on classified edges. Edge information in the 

sinusoidal gratings could not be easily detected by known edge detectors, but the 

separation of shading and reflectance was still effective, suggesting that the 

decomposition could be based on correlations between channel outputs rather than 

just edges.  
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Like hue, texture amplitude (or luminance amplitude) can be used by humans to 

differentiate shading from reflectance (Schofield, Hesse, Rock & Georgeson, 2006). 

Here the authors were interested in the relationship between modulations of local 

mean luminance (LM) and local luminance amplitude (AM). AM was calculated as 

the standard deviation of a local patch of luminance values, making up a textured 

pattern. This is a measure of the absolute difference in pixel values rather than local 

contrast which is a relative measure. The physics of shading suggest that, low light 

intensities will reduce LM as well as AM such that the two components are positively 

correlated. Local contrast (CM) meanwhile is constant. Figure 1.9 illustrates this 

relationship.  
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Figure 1.9 The relationship between LM, AM and CM under variations in light intensity. (a) A 

computer rendered image (256 by 256) depicting a corrugated surface with uniformly painted 

texture (the surface is smoothly corrugated) is lit by a single point source from above. (b) A 

portion of (a) cropped, rotated and magnified. (c) Cross sections along the central row through 

(b); thick dots represent the pixel values in the central row; the solid thick line represents the 

mean pixel values in each column (LM); the thin line represents the stand deviation of pixel 

values in each column (AM); the local contrast of pixel values in each column (CM) is defined by 

the ratio AM/LM and described by the thin dotted line. When the intensity of the light varies due 

to the surface corrugation, AM varies in pace with LM but CM remains almost constant. Images 

from Schofield et al., 2006, with permission from the authors.  

 

The relationship between LM and AM was found to be an effective cue in 

differentiating between shading and reflectance. Figure 1.10 shows one of the stimuli 

a b 

c 

Pixels 
 
LM 
 
AM 
 
CM 
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used in Schofield et al‘s experiments. It is composed of two visible sine wave gratings 

at two orthogonal orientations together with noise textures. In the right oblique, AM is 

varied in-phase with LM (LM+AM) such that the two signals are positively 

correlated, consistent with shading. In the left oblique, AM is varied in anti-phase 

with LM (LM-AM) in a way that is not consistent with variations in shading. When 

the two types of cue (LM+AM & LM-AM) are presented together (in a plaid), human 

observers tend to perceive LM+AM (right oblique in fig 1.10) as a shading pattern 

giving rise to the perception of a surface corrugated in one direction only. LM-AM 

(left oblique) is seen as flat stripes that are ‗painted onto‘ the surface. These percepts 

were measured by assessing perceived depth amplitude and (like Kingdom‘s 2003 

study) the result demonstrates that the disambiguated luminance variations are carried 

forward for the analysis of SFS in the visual system. Again this process does not seem 

based on edge operations. No algorithms have yet been developed to implement this 

kind of layer decomposition nor has a biologically plausible implementation been 

proposed with regard to the role of luminance amplitude in luminance disambiguation 

(Note Schofield, Rock, Sun and Georgeson, 2009 & Schofield, Rock, Sun, Jiang and 

Georgeson, 2010 in press, present such a model based on work, presented later in this 

thesis, carried out by the author).  



 38 

 
Figure 1.10 A plaid consisting of two orthogonal sine wave luminance gratings additively 

combined with two orthogonal amplitude modulations. From top let to bottom right, the 

luminance modulated sinusoid varies in-phase with the amplitude modulated sinusoid, equivalent 

(LM+AM). From bottom left to top right, the sinusoidal luminance grating varies in anti-phase 

with the amplitude modulated sinusoid (LM-AM). The right oblique was perceived as shading 

resulting from corrugated surface whereas the left oblique was perceived much flatter (image 

from Schofield et al., 2006, with permission from the autors). 

 

To summarize, human SFS is very robust in the natural environment in that it seldom 

confuses shading with reflectance variations. Accumulating evidence points towards 

the idea that image intensities are disentangled and represented in different layers 

according to their origin. The illumination layer can serve as a disambiguated input to 

SFS, as suggested by some studies (Kingdom, 2003; Schofield et al., 2006). A general 

framework has been proposed to tackle the algorithmatic level of the visual process of 

layer decomposition (Horn, 1974; Gilchrist et al., 1983; Gilchrist, 1988; 2006). 

Central to this framework is edge detection and edge classification followed by 

reintegration. Various cues are contained in the edge classification unit to guide the 

process. A number of algorithms have been implemented under this framework based 

on cues such as edge sharpness and colour alignment. But the framework will fail to 
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explain the observation that humans can separate shading from reflectance for 

luminance variations where edges are obscure and hard to detect.  

1.2 Towards a model of SFS in human 

The challenge of constructing a model of SFS in the human visual systems can be 

tackled in different stages and at different levels. More specifically, the whole process 

of SFS can be divided into a series of functional sub-units. For each sub-unit, a 

computational theory should be identified and a method by which neural mechanisms 

could implement it determined. But first, we should specify the role of each functional 

sub-unit.  

 

The most obvious sub-unit is the unit that computes surface orientation from shading 

(Shape recovery unit). It seems reasonable that this sub-unit should be preceded by 

luminance disambiguation which only passes shading variations into the shape 

recovery unit. Then, like most other visual models, there should be a pre-processing 

stage which mimics the very lowest level of visual processing: feature extraction. This 

framework is shown in Figure 1.11. In the following subsections, each sub-unit will 

be analysed and their transfer functions identified based on the required input-output 

relations.  

 

Figure 1.11 Proposed framework of SFS in human vision. The retinal image is first coded and 

represented as features. Coded representations are then classified into shading and reflectance 

with shading signals being passed onto the next stage of processing. The last unit operates on the 

shading signal and derives surface orientations from it.  
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1.2.1 The feature extraction unit 

1) Specifying the input and output 

It is widely accepted that one of the tasks involved in the early stage of feature 

representation in the visual system is to make explicit the important information 

contained in the retinal image (Bruce et al., 1996, p76). A representation of these 

features such as local changes in luminance is normally called the primal sketch 

(Marr, 1982) and obtaining such representation has become a common practice in 

both computer vision and human vision studies.  At this stage, the input signal is the 

original retinal image and the output signal should contain a full representation of the 

input under some coding scheme. Ideally these representations can fully characterise 

all the luminance variations present in the image. Furthermore, for the purpose of the 

next unit, the output should also provide information that is required to disambiguate 

the origin of luminance variations. Although the achromatic features serving to 

disambiguate luminance variations are not well specified, some hypotheses can be 

proposed. Recall that in Figure 1.10 the two luminance gratings were perceived 

differently but what made them distinct was the phase of AM. Thus it is very likely 

that the process of luminance disambiguation involves detecting AM: a second-order 

cue (see Schofield et al., 2006 & among others Schofield & Gerogeson, 1999). The 

hypothesis proposed here is that, as a second-order entity, AM is detected by second-

order mechanisms in visual systems and is exploited to help with the luminance 

disambiguation process in the next stage. This hypothesis isn‘t restricted to that 

particular type of stimuli only. It can be generalized to other achromatic cues as well. 

For example, the heuristic classification based on edge intersections discussed in 

section 1.1.6 (Fig 1.7) can be also thought as a second-order processing: local edge 

contrast is computed and then compared at a more global scale.  
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As a relatively independent processing in human vision (Zhou & Baker, 1996; 

Schofield & Gerogeson, 1999), second-order vision shows a number of characteristics 

distinctive from processing first-order luminance defined stimuli such as its 

modulation frequency dependency and carrier frequency dependency (Sutter, Sperling 

& Chubb, 1995; Dakin & Mareschal, 2000; Schofield & Georgeson, 2003). If this 

hypothesis is true, the effectiveness of the layer decomposition should show similar 

frequency dependencies as does the second-order vision. Chapter 2 and 3 of this thesis 

is dedicated to testing predictions based on this hypothesis and the result will be 

helpful in the formation of a complete the model for the feature extraction unit. 

2) Specifying the computational algorithm 

How the visual system codes the retinal image is a well studied subject and both the 

computational theory and neural implementation have been extensively explored. The 

process is typically modelled as a series of filtering processes which decompose the 

retinal image into different frequency channels and orientation bands. In this way, the 

entire luminance variations are fully coded by the energies (also called coefficients) in 

those frequency channels and orientation bands. Second-order signals, also known as 

non-Fourier cues (Chubb & Sperling, 1988), were first used by Cavanagh and Mather 

(1989) to describe modulations of a carrier signal that are themselves defined by non-

luminance variations such as contrast and orientation. Several models for detecting 

second-order cues have been proposed. A typical computational mechanism for 

detecting second-order signal contains two filtering processes; one responsive to the 

carrier and the other responsive to the modulation. These two filtering process are 

normally separated by a non-linear rectification stage. For this reason, models of 

second-order vision with the similar structure are called a Filter-rectifier-filter (FRF). 
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3) Possible implementation by known neural mechanisms 

The behaviour of some cells in area V1 can indeed be modelled as linear summation 

across their receptive field and the responses of such cells to visual stimuli can be 

predicted by a filtering process (Heeger, 1993; Campbell et al., 1968; Hubel & 

Wiesel, 1962). These cells are tuned to different orientations and frequencies and their 

responses are likely to correspond to important features such as edges and bars in real 

images (Marr & Hildreth, 1980). Cells responsive to second-order stimuli also have 

been found in early visual areas (Zhou & Baker, 1996). These cells tend to be tuned to 

lower frequencies and could conduct the same computation as the FRF channels in 

models of second-order vision.  

1.2.2 The classification unit 

1) Specifying the input and output 

One of the findings in Schofield et al‘s (2006) study is that as a cue for shading, the 

relation between LM and AM is most effective when LM+AM and LM-AM are seen 

together, intertwined within a single stimulus. That is, LM-AM is more likely to get 

rejected as shading when presented with LM+AM. Although slightly less depthy, 

LM-AM can be perceived as shading as well as LM+AM when they are presented 

individually. In a later experiment (Schofield et al., 2009 & 2010 in press), observers‘ 

perceived depths were recorded for LM+AM single oblique, LM-AM single oblique 

and plaids formed of the two combinations. The results are shown in Figure 1.12. 

The x axis represents the modulation depth of AM. Negative values indicate LM-AM. 

The perceived depth for the combination of LM and AM in a plaid appear to be a 

sigmoidal function with LM-AM being seen as flat. However, single oblique stimuli 

appear more depthy in general and decline only slightly when AM is out of phase 
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with LM. Thus it seems that at this stage the visual system operates on all the LM 

signals and picks up the signal that it believes most likely associated with shading. 

Since an LM signal is equivalent to the response of a stimulus to a filter, it can be 

regarded as a coefficient representing the energies at a particular frequency channel 

and orientation band. Thus this unit probably takes all those coefficients obtained 

from the previous unit as input and applies certain rules to enhance the energy in 

some channels while suppressing others. 
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Figure 1.12 The perceived depth as of function of AM modulation depth for plaid (diamond) and 

single (square). Negative AM indicates LM-AM. The plot is reproduced from data taken from 

Schofield, Rock, Sun and Georgeson, 2009 (VSS poster) . Note although the current author 

devised a model for these data presented later in this thesis he was not involved in data collection.  

 

2) Specifying the computational algorithm 

The result of Figure 1.12 indicates that there might be a selection scheme based on the 

relationship of LM and AM. Schofield and Georgeson (1999) found no sub-threshold 

summation between LM and AM (they use the term CM) which is a strong 

implication of two separate channels for the processing of luminance modulations and 

contrast modulations. But in a later study, Georgeson and Schofield (2002) reported 

transfer of aftereffects between the two signals, indicating a later stage of processing 

at which the two signals were integrated. So it is psychophysically plausible to 
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introduce some sort of integration between LM and AM. The sigmoid shape of 

perceived depth for the plaid stimuli suggests that this integration may be followed by 

an inhibitory network working across orientation bands. Such cross-orientation 

inhibition has been discovered in other behavioural studies. For example, human 

observers demonstrate similar cross-orientation masking for purely first-order stimuli 

(Foley, 1994; Meese & Hess, 2004; Meese & Holmes, 2007).  

3) Possible implementation by known neural mechanisms 

Some cells in cat areas 17 and 18 are responsive to both first-order and second-order 

stimuli (Zhou & Baker, 1996; Mareschal & Baker, 1998; Zhan & Baker, 2008). These 

cells respond to combinations of LM and AM as if computing a linear sum between 

the two cues (Hutchinson, Baker and Ledgeway, 2007) although their sensitivity to 

AM is much lower than that for LM. Furthermore, simple cells in V1 respond non-

linearly to single (Albrecht & Hamilton, 1982) as well as superimposed pairs of 

gratings (Bonds, 1989), which may be the neural basis for the aforementioned cross-

orientation inhibition observed behaviourally (Foley, 1994; Meese & Hess, 2004).  

1.2.3 The shape recovery unit 

1) Specifying the input and the output 

As the name suggests, this unit takes the shading information from the previous stage 

and computes the surface orientation for each point in the image which then leads to 

the computation of depth. The output of such a unit is a viewer-centred 3D 

representation equivalent to the 2.5 sketch proposed by Marr (1982).  
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2) Specifying the computational algorithm 

The shape recovery unit is the hardest of the three proposed units to characterise. To 

create a psychophysically plausible model, experimental data on human SFS must be 

available. Unfortunately, much of the data collected to date is not suitable for the 

purposes of this thesis.  One of the objectives of this thesis is to obtain data that is not 

confounded by object outlines and reflects more directly the computation that the 

visual system conducts to recover surface orientation from luminance variations (see 

section 1.1.4.5). The choice of test stimuli is vital: a computer generated, realistic 

object will provide unwanted visual information such as self-shadow, outlines, and 

object identity and hence will confound the results. In addition, any realistic shading 

pattern will be produced by some pre-defined mathematical rendering model, which is 

not necessarily the one that is assumed by the visual system. In theory, one could test 

many shading patterns produced by various mathematical models and find the one 

that is most consistent with observers‘ responses. But doing so would be impractical. 

In this thesis, a different methodology is proposed. Instead of viewing realistic 

objects, observers judged the orientation of the apparent surface based on luminance 

variations alone. These luminance variations are not subject to any pre-defined 

shading model, and did not represent objects, or present contour or occlusion cues. 

Thus the results presented later reflect an un-confounded mapping between shading 

and perceived surface orientation.  

1.3 Thesis structure 

Chapters 2 and 3 of this thesis test human performance with respect to luminance 

disambiguation. If second-order vision is indeed involved at this stage, we should 

expect to see an influence that is consistent with known properties of second-order 
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vision. Chapter 4 uses data from Schofield, et al., (2009 & in press) [data not 

collected by the author] to construct a model of the classification stage. This model is 

believed to be biologically plausible because 1) it fits well the psychophysical data, 2) 

it can predict the data obtained in chapter 3 reasonably well, and 3) it is consistent 

with known neurophysiology in early visual area of monkey and cat. Chapter 5 

introduces an algorithm which decomposes a real image into its shading and 

reflectance components. This algorithm is built upon the same principles as the model 

of chapter 4 but uses the edge classification framework. Experimental results on some 

real images show that the algorithm can separate shading and reflectance when a 

texture is present and the degree of shading is not so great as to reduce texture 

contrast below usable levels. Chapter 6 examines human shape judgments based on 

luminance variations only. A computational theory of shading analysis in the visual 

system is then proposed and some predictions made. Chapter 7 concludes the thesis 

highlighting possible improvements to the model and computational algorithm. 

 

 

 

 

 

 

 

 



 47 

2. The role of carrier frequency in shape-from-shading 

This chapter links the perception of shape-from-shading to second-order vision by 

showing that the carrier frequency of a texture affects the impression of shape-from-

shading in human observers. Second-order signals such as AM are detected by 

mechanisms that are sensitive to the composition of the carrier signal. Hence 

changing the carrier frequency may affect the detection of AM signal and, where the 

AM signal is rendered weak, reduce the perceptual difference between LM+AM and 

LM-AM.  

2.1 Introduction 

2.1.1 Second-order vision 

In the context of human vision, second-order signals refer to stimuli that are defined 

by local properties (e.g. contrast and texture) of first-order luminance defined carrier 

signals.  Many studies have suggested that such variations are detectable by the visual 

system in both humans (Chubb & Sperling, 1988; Cavanagh & Mather, 1989; Wilson 

et al., 1992; Sutter et al, 1995; Schofield & Georgeson, 1999; Dakin and Mareschal, 

2000; Ellemberg, Allen & Hess, 2006) and other animals (Zhou & Baker, 1993; Zhou 

& Baker, 1996; Mareschal & Baker, 1999; Mareschal & Baker, 1998a; 1998b; Zhan 

& Baker, 2008). There is also evidence to suggest that the mechanisms for detecting 

second-order stimuli have similar behaviour to first-order mechanisms. For example, 

Albright (1992) reported that certain neurons responded similarly to stimulus 

irrespective of the physical cues defining it, of which he termed the phenomenon 

form-cue invariance. Testing with moving second-order stimuli, Mareschal and Baker 

(1998b; 1999) recorded similar optimal orientation tuning and similar spatial and 

temporal bandwidth to envelope (second-order) and corresponding luminance (first-



 48 

order) signals. In psychophysical studies, Schofield and Georgeson (1999) found 

similarities in the shape of the modulation sensitivity functions (MSFs) for second-

order contrast modulations and first-order luminance modulations of the same type of 

carrier noise. Both MFS‘s were low pass. Jamar and Koenderink (1985) measured 

detection thresholds for sinusoidal amplitude modulations carried by noise patterns 

that had been band pass filtered according to the contrast sensitivity function. 

Modulation threshold increased with the spatial frequency of modulation, suggesting 

a reduction in sensitivity for high frequency modulations. More recently, in a 

discrimination task at detection threshold that was used to determine the number of 

channels making up early spatial frequency processing, Ellemberg et al. (2006) 

reported the same number of second-order channels and first-order channels at 

frequencies up to 2.0 c/d but fewer second-order channels at higher frequencies. 

Reconciliation of these findings suggest that mechanisms for processing second-order 

modulations probably have very similar behaviour, but are tuned to lower spatial 

frequencies compare to their first-order counterparts.  

 

The detection of second-order signals does not only depend on the properties of the 

envelope; detection also depends on the first-order signal that carries the second-order 

modulation (Mareschal & Baker, 1999; Sutter et al, 1995; Dakin & Mareschal, 2000; 

Schofield & Georgeson, 2003; Song & Baker, 2006; Zhan & Baker, 2008). There is 

some evidence showing that second-order mechanisms in human vision are tuned to 

carrier frequency such that each channel is responsive to its own optimal carrier 

frequency (Sutter et al, 1995). However this idea has been challenged by 

physiological studies in cat areas 17 and 18 where no fixed optimal carrier 

frequencies have been found (Mareschal & Baker, 1999). Moreover, later 
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psychophysical studies (Dakin & Mareschal, 2000) have also failed to find optimal 

tuning for carrier frequency. If second-order vision is mediated by a filter-rectifier-

filter structure (as suggested by Wilson et al., 1992), then Dakin and Mareschal‘s 

results suggest that the second-stage filter is connected to a broad range of first stage 

filters whose frequencies lie at least 3 octaves above the preferred frequency of the 

second-stage filter. Above this ratio (3~4 octaves as suggested in their work), the 

second stage filter receives input from first order stage filters across a broad range of 

orientations. Below this ratio, the second stage filter seems only wired to the first 

stage filter with orientations orthogonal to that of the second stage filter.  

2.1.2 Effect of textures on shape-from-shading 

Sakai (2006) has shown that adding random textures to luminance gradients can 

facilitate depth perception. In this experiment, the texture was band-pass noise with 

spatial frequencies distinct from that of shading patterns. Sakai hypothesised that 

facilitation might not have occurred had the texture been more low frequency such 

that the texture and the shading had similar Fourier spectra. The frequency 

dependency of LM & AM mixes as cues to shape-from-shading (Schofield et al., 

2006) has not been tested. However, given that AM is closely related to the contrast 

modulated signals used to study second-order vision (Schofield & Georgeson, 1999), 

and that second-order mechanisms have a preference towards high frequency carriers 

(Dakin & Mareschal, 2000), it can be predicted that the reliability of such cues 

depends on carrier frequency. Here I extend the previous work of Schofield et al. 

(2006) to include more carrier frequencies. Doing so is also valuable because (a) the 

results may verify the Sakai‘s hypothesis that low frequency textures might not 

facilitate depth perception and (b) it would help to marry the literature on second-
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order vision to recent shape-from-shading results giving a possible explanation as to 

why the human visual system is sensitive to second-order cues. 

2.2 General methods 

The method was similar to that of Schofield et al. (2006) except that binary noise 

textures were replaced with noises made of Gabor patterns. The dominant frequencies 

of the textures were varied to test the consistency of the role of AM in shape-from-

shading in relation to carrier frequencies.  

2.2.1 Stimuli 

All images were composed from the following basic components:  

First-order, luminance modulations (LM signal) 

),)sin(cos2cos())sin(cos2cos(),( bbbbaaaa yxflyxflyxnNLM     (1) 

Second-order, amplitude modulations (AM signal) 

 ,))sin(cos2cos())sin(cos2cos(),( ddddcccc yxfmyxfmyxnNAM    (2) 

where f is the spatial frequency of the modulation, 0.5 c/d for all experiments in this 

chapter, al and bl are the contrasts of LM component, cm and dm are the modulation 

depths of AM component. Having two LM and two AM terms means that each 

components can be presented as single oblique or cross-oriented plaid stimuli. AM 

modulation depths and LM contrast were made equal, as is the case when a 

corrugated uniform albedo texture surface is illuminated (Schofield et al., 2006), and 

fixed at 0.2. a and b are the orientations of LM obliques, a and b are their spatial 

phase, c and d are orientations of AM obliques, c and d are their spatial phase. a  = 

c  = 45 , b  = d  = 45 . Note that the AM component multiplies the noise texture 

(contrast modulates it) whereas the luminance component is added to it. 
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The N(x,y) term in the above equations represents Gabor noise texture carriers 

constructed in the following way: 

1) Create two Gabor patterns using the formula below: 
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Note that the two Gabor patterns are orthogonal to each other ( s differ by 90 ).  

was fixed to 0 . Two sets of Gabor orientations were used: 45 , 0 & 90 . Along 

with two bandwidth values b (1.5 & 0.5 octaves), these parameters were introduced to 

control the masking power of the noise, see section 2.3.  

2) Compute the Fourier transform of the image containing the two Gabor patterns 

3) Randomize the phase spectrum of the Fourier image. 

4) Compute the inverse Fourier transform. 

The resulting stimuli represent uniform textured surfaces composed of randomly 

displaced Gabor patterns whose frequencies matched the dominant frequencies of the 

carrier. In practice, two frequencies were tested: high frequency textures based on 4.0 

c/deg Gabors and low frequency textures based on 1.5 c/deg Gabors. These 

frequencies were chosen because significant variations in performance seemed to 

occur within that frequency range during the pilot study. See Figure 2.1 for 

demonstrations of texture carriers with these two dominant frequencies. Note that 

these Gabor textures were intended to represent reflectance or albedo textures not 

bumpy surfaces although it is possible to interpret them as the latter, see section2.6. 

for further discussion. 
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Figure 2.1 Carrier textures generated by randomizing phases of the Fourier coefficients of two 

Gabor patterns. Carrier dominant frequencies are determined by their corresponding Gabor 

spatial frequencies: 4.0 c/d (Left), 1.5 c/d (Right).  

 

The components listed above were combined according to the formula below:  

   AMLMLyxL  1, 0        (4) 

where 0L is the mean luminance of the monitor. The effect is to add noise, contrast 

modulated noise and luminance modulations together. LM and AM can be applied in 

phase to create a LM+AM component (that is, LM and AM are positively correlated) 

or they can be applied out-of-phase to create a LM-AM component (that is, LM and 

AM are negatively correlated). Both components can be presented alone or they can 

form a plaid. Figure 2.2 gives examples stimuli for LM+AM, LM-AM component 

presented alone and a plaid configuration stimulus. 

 

Figure 2.2 example stimuli for LM+AM (a), LM-AM (b) and the mix of the two combinations 

forming a plaid (c). Images are showing only a few cycles of the original stimuli for 

demonstration purpose.    

 

(a) (b) (c) 
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2.2.2 Equipment and calibration 

Stimuli were generated using VSG2/5 graphics card (Cambridge Research System, 

CRS Ltd, UK) and presented on a 21‖ Sony Flexscan GDM –F520 CRT monitor. 

Responses were made via a CRS-CB3 response box connected to the VSG. Images 

measured 13.312 by 13.312 degrees of arc (512 by 512 pixels) displayed inside a 

central window. Outside of the central window the display was set to mean luminance 

to the limits of the monitor. Viewing distance was 1 m, in a darkened room where the 

experimental monitor was the only significant light source.  

 

The calibration was based on the four parameter CRT model proposed by Brainard, 

Pelli and Robson (2002) 























0max

0

max jj

jj

kL

kL
       (6) 

where L is the luminance output of the monitor, j is the output or entries of the look-

up table (LUT), ,,, 0max jkL are parameters to be fitted. A set of luminance values was 

first measured from the monitor screen using a linear LUT and a CRS Colour Cal 

Luminance meter, for a range of j s including 0 and maxj . These values were used to 

estimate the four parameters and a new LUT generated. The process of calibration and 

parameter estimation was carried out with an in-house software.  

2.3 Control for masking 

Masking is the (normally inhibitory) affect of one stimulus on the detection of another 

where the stimuli are coincident in space and simultaneous in time (Legge & Foley 

1980). According to Harmon and Julesz (1973), noise frequencies that are adjacent to 

or overlapped with the picture spectrum, suppresses the detection of the target feature. 



 54 

When put into the context of the current study, the texture carrier used in AM may 

mask the detection of luminance signal thus inhibiting shape-from-shading via an 

uninteresting route. The problem is illustrated in Figure 2.3, which shows the Fourier 

spectra of a 0.5 c/deg sine wave and examples of our two texture elements. Therefore, 

masking power was controlled for by varying the orientation and spatial frequency 

bandwidth of the textures: textures with their dominant orientations tilted away from 

that of the luminance modulation should mask it less as channels are known to be 

orientation sensitive (Campbell & Kulikowski 1966). I varied carrier orientation as 

follows: ‗in-line‘ textures were made from Gabors with orientations +-45° to match 

the modulation, whereas the Gabors in the ‗out-of-line‘ textures were oriented at 0 

and 90°. Similarly, reducing the spatial frequency bandwidth of the textures should 

reduce the spectral overlap between signal and texture thus mitigating the effects of 

masking. More specifically, textures with bandwidth of 0.5 octaves should have less 

masking power than that with bandwidth of 1.5 octaves.  
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b) a) 

c) d) 

e) f) 

 

   
 

 

   
 

 

   
 

Figure 2.3 Demonstration of masking problems: a) example of sinusoidal luminance signal with 

spatial frequency of 0.5 c/d. b) spectrum of a), note that the two dots were slightly enlarged only 

for demonstration purposes.  C) Gabor pattern with spatial frequency of 1.5 c/d and bandwidth 

of 1.5 octaves. d) spectrum of c), note that d) has a high risks of overlapping b). e) Gabor pattern 

with spatial frequency of 4.0 c/d and bandwidth of 1.5 octaves. f) spectrum of e), which has 

comparably small risks of overlapping b). Thus masking alone could affect human performances 

for the two testing frequencies.  
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2.4 Experiment 1: single oblique 

2.4.1 Procedure 

The procedure was also similar to that used by Schofield et al. (2006). Observers 

viewed single oblique images and indicated which of two marked positions appeared 

closer to them (e.g. Figure 2.4; Marks were coloured in red or blue in practice but are 

shown as black and white on the figure). The effective distance (the phase difference 

within a cycle) between marked positions was 1/18th of a period (shown by black and 

white crosses in Figure 2.4, which were not shown in experiments) along one or other 

orientation (called the test diagonal). In practice, the distance between markers was 

increased by a (random) integer number of periods along both orientations in order to 

encourage global processing. 

 

Only one diagonal was tested in each trial. That is, the effective distance between 

markers took non-zero values in one direction while being fixed at zero along the 

orthogonal direction. One combination of LM and AM was presented alone (single 

oblique) on one diagonal while no modulation was present in the orthogonal direction. 

Only the modulated direction was tested. The absolute phase of each oblique was 

chosen at random. Then the markers were placed according to the following:  

1) First a reference location was given by the absolute phase of the oblique. 

2) The phase of each diagonal was added by an offset (phase of the test position) 

along the diagonal to get the nominal test location. Offsets were a set of 8 

possible distances at 1/8th of a cycle intervals relative to the reference point. 

Due to the periodic nature of the modulation, only 8 test locations were 

required to span a full cycle of modulation. The 0 and 1 whole cycle offsets 



 57 

were represented by the same nominal test position. Offsets were chosen 

separately for each diagonal. 

3) Nominal marker positions were chosen to be 1/36th of a cycle on each side of 

the nominal test location along the test diagonal. Along the non-test diagonal 

there was no displacement between the two marker positions.  

4) A further displacement of a random integer multiple of a cycle was added to 

both marker positions along both diagonals, to enforce a depth comparison at a 

more global scale.                   

5) Finally, marker locations were rounded to the nearest pixel.  

In addition, all positions and offsets were measured diagonally working from top-left 

to bottom-right or top-right to bottom-left depending on the diagonal under test. 

Masking was controlled for by applying the techniques described in section 2.3. 

Overall, there were  

8 (positions) 2 (modulation orientations) 2 (phase combinations) 2 (orientations of 

Gabor patterns) 8 (positions) 2 (modulation orientations) 2 (phase combinations) 

2 (bandwidths of Gabor patterns) 128  

trials per session and participants completed  8 sessions each.  
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Figure 2.4 Example single oblique stimuli: a) LM+AM alone. The test diagonal is from top right 

to bottom left (modulation diagonal). The white and black cross are shown to aid understanding 

the underlying offset between two marker positions but were not shown on the experiment 

stimuli. b) LM-AM alone. The test diagonal is again the modulation diagonal from top right to 

bottom left. The apparent effective distance between the two markers made here are for 

demonstration only. They are not representing the true distance values made in the experiment. 

 

a) 

b) 
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In total 3 observers took part in this experiment, all being naïve to the purpose of the 

experiment. All had normal or corrected to normal vision. Observers were asked to 

press an appropriately coloured key on a button box in response to which of the 

marked locations they thought appear closer to them in depth. Each condition was 

tested equally often in random order. Each individual undertook a short training 

session containing 50 random trials prior to testing. There was no restriction on 

viewing time although observers were encouraged to give their best guess ‗without 

thinking too much‘. No feedback was given.  

2.4.3 Analysis 

Recalling that all positions and offsets were measured working from top to bottom, 

the marker located lower down the screen (before the application of the integer 

wavelength displacement) was regarded as the positively shifted marker. A positively 

shifted marker seen as closer in depth indicates a positive value in gradient and was 

scored +1. Likewise, -1 was scored when a negatively shifted marker was seen closer. 

Average scores served as a metric for the perceived surface gradient for each test 

location. Observers may have been biased towards pressing one key more often than 

the other. Such biases would produce a non-zero DC gradient and were removed by 

taking the Fourier transform of each gradient profile and setting its DC component to 

zero. After applying the inverse Fourier transform, the resulting gradients were 

integrated to recover the perceived surface shape. The amplitude of the fundamental 

component for each recovered depth profile was recorded as a measure of the strength 

of the shape-from-shading percept. Phase shifts of the fundamental (relative to a 

cosine) were also recorded for further analysis. A minus 90° phase shift means that 

the fitted cosine function perfectly coincides with the underlying sinusoidal 

luminance.  
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2.4.4 Results 

Results for single oblique are shown in Figures 2.5, 2.6 and Tables 2.1 and 2.2. Figure 

2.5 gives some example traces for one participant. Thick solid lines indicate the 

underlying sinusoidal luminance modulation. Dots represent the perceived depth at 

each test location. Traces are grouped in two rows with the top row being for 

LM+AM and bottom row being for LM-AM respectively. In the top 8 panels, traces 

are divided into two columns of which the left associates with inline Gabor texture 

(more masking power) and the right associates with out-of-line Gabor texture (less 

masking power). In the bottom 8 panels, traces are divided into two columns of which 

the left associates with Gabor texture of narrower bandwidth (less masking power) 

and the right associates with Gabor texture of broader bandwidth (more masking 

power). Figure 2.6 shows mean depth amplitudes for both carrier frequencies and 

orientations. The left most bar of each frequency group represents the perceived depth 

for any particular combination when Gabor texture orientations are in-line with 

orientations of luminance signal and Gabor bandwidth is relatively large, thus 

producing more masking effects. The middle bars correspond to perceived depth 

when Gabor texture orientations are out-of-line with the luminance signal. The right 

most bars correspond to Gabor textures with relatively small bandwidth (0.5 

compared to 1.5). In both cases, carrier textures should produce less masking power. 

Tables 2.1 and 2.2 give details of depth amplitudes and phases for each individual 

observer in response to single oblique component under all conditions. Titles in the 

first column indicate the test cue and its orientation, as well as the underlying carrier 

frequency and masking condition. Although there were individual differences 

between absolute values of observers‘ perceived amplitudes, the drop in amplitudes 

seemed to be consistent.  
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In the case of higher carrier frequency, the results are consistent with that of Schofield 

et al., (2006). Briefly, observers interpreted corrugated surface from the sinusoidal 

luminance signal. The phase information in table 2.1 shows that perceived surface 

peaks tend to be below luminance peaks, indicating the operation of the lighting from 

above assumption. However the perception of shape-from-shading deteriorated when 

the carrier frequency was 1.5 c/d. Depth amplitude went down significantly. It‘s also 

noted that reducing masking power had very little effect, even in the low frequency 

condition. That is, regardless of the changes in masking power, the impression of 

shape-from-shading was considerably reduced on lower frequency carriers compared 

to high-frequency ones. Moreover, the inter-observer variability in phase was high for 

the lower carrier frequency. For example, Observer WXG‘s phase estimates at lower 

frequencies have a standard deviation of 36.4 deg while those at higher frequencies 

have a standard deviation of 15.8 deg, this further confirms the degradation of depth 

perception; people are less sure where the peaks lie. There is no significant difference 

between the LM+AM and LM-AM data, although the perceived depth amplitude for 

LM-AM was slightly lower and the phase for LM-AM contained larger inter-observer 

variability (consistent with Schofield et al., 2006).  
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Figure 2.5 Recovered depth traces under two masking conditions: change in orientation (top 

half) and change in bandwidth (bottom half). Thick solid lines indicate underlying luminance 

Inline texture 

(High masking) 

Depth amplitude 

Out-of-line texture 

(Low masking) 

LM + AM 

LM – AM  

Depth amplitude 

LM – AM  

LM +AM  
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modulations. Traces are divided into 4 slots and each contains two traces for two carrier 

frequencies to compare one against the other.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Averaged depth amplitudes for high and low carrier frequencies textures, under three 

masking conditions.  The left most bar in each cluster corresponds to the texture with most 

masking power.  
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Testing Conditions  JCY WYK WXG 

LM+AM Left 

Low frequency 

High masking 

Amplitude 0.429 0.833 0.221 

phase -76.9 -152.3 -157.5 

LM+AM Left 

High frequency 

High masking 

Amplitude 0.844 0.806 1.238 

Phase -168.2 -193.4 -154.3 

LM+AM Left 

Low frequency 

Out-of-line texture 

Amplitude 0.241 0.442 0.649 

phase -122 -129.3 -82.5 

LM+AM Left 

High frequency 

Out-of-line texture 

Amplitude 0.583 1.239 0.989 

Phase -167.2 -154.9 -130.6 

LM+AM Left 

Low frequency 

Narrow bandwidth 

Amplitude 0.465 0.259 0.415 

Phase -141.6 -141.9 -169.5 

LM+AM Left 

High frequency 

Narrow bandwidth 

Amplitude 1.103 0.854 1.150 

Phase -172.1 -126.3 -139.9 

LM+AM Right 

Low frequency 

High masking 

Amplitude 0.361 0.418 0.326 

Phase -169.4 -93 -172.6 

LM+AM Right 

High frequency 

High masking 

Amplitude 0.886 1.069 1.159 

Phase -173.1 -160.9 -171.4 

LM+AM Right 

Low frequency 

Out-of-line texture 

Amplitude 0.434 0.292 0.615 

Phase -142.1 -196.8 -175.0 

LM+AM Right 

High frequency 

Out-of-line texture 

Amplitude 1.096 0.867 0.998 

Phase -149.3 -182.1 -168.2 

LM+AM Right 

Low frequency 

Narrow bandwidth 

Amplitude 0.325 0.621 0.675 

Phase -203.4 -104.9 -126.9 

LM+AM Right 

High frequency 

Narrow bandwidth 

Amplitude 0.537 1.137 1.170 

Phase -181.0 -156 -152.7 

Table 2.1 Properties of perceived surfaces inferred from LM + AM single oblique experiment. 

The testing conditions are listed in the head for each row. Values are given for the amplitude and 

phase of the fundamental component for individual depth profiles.  
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Testing Conditions  JCY WYK WXG 

LM – AM Left 

Low frequency 

High masking 

Amplitude 0.569 0.279 0.452 

phase -135 -338 -194 

LM – AM Left 

High frequency 

High masking 

Amplitude 0.973 1.152 1.245 

Phase -142 -170 -150 

LM – AM Left 

Low frequency 

Out-of-line texture 

Amplitude 0.281 0.285 0.827 

phase -184.5 -191 -132 

LM – AM Left 

High frequency 

Out-of-line texture 

Amplitude 0.877 0.83 1.061 

Phase -196 -156.3 -151 

LM – AM Left 

Low frequency 

Narrow bandwidth 

Amplitude 0.407 0.39 0.817 

Phase -153.4 -7.86 -151.8 

LM – AM Left 

High frequency 

Narrow bandwidth 

Amplitude 0.754 0.518 1.103 

Phase -165.01 -153 -142.9 

LM – AM Right 

Low frequency 

High masking 

Amplitude 0.431 0.169 0.568 

Phase -161.3 -161.6 -160.9 

LM – AM Right 

High frequency 

High masking 

Amplitude 0.773 1.027 1.034 

Phase -200 -159.8 -145.2 

LM – AM Right 

Low frequency 

Out-of-line texture 

Amplitude 0.409 0.72 0.51 

Phase -133.2 -136.8 -165.3 

LM – AM Right 

High frequency 

Out-of-line texture 

Amplitude 0.782 1.174 0.974 

Phase -180.7 -185.9 -163.3 

LM – AM Right 

Low frequency 

Narrow bandwidth 

Amplitude 0.447 0.342 0.258 

Phase -201 -290.5 -278.3 

LM – AM Right 

High frequency 

Narrow bandwidth 

Amplitude 1.238 0.775 1.126 

Phase -189.5 -168.8 -171.8 

Table 2.2 Properties of perceived surfaces inferred from LM – AM single oblique experiment. 

Details are as for table 2.1 

 

2.4.5 Discussion 

Lower frequency textures suppressed shape-from-shading. The dominant orientation 

and spatial-frequency bandwidth of the textures were varied so as to reduce their 

ability to mask the shading pattern. But neither manipulation had any effect. Thus 

simple masking did not seem to account for the decline in depth percept. There maybe 

two other factors contributing to this suppression:  
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(a) As described in chapter 1, AM helps the human visual system to isolate shading 

signal and hence improve shape-from-shading impression. AM represents second-

order information and so may require second-order mechanism for detection. Such 

mechanism has been described by many using an F-R-F model (Wilson, Ferrera & 

Yo, 1992; Kingdom, Prins & Hayes, 2003). If second-order mechanisms are more 

sensitive to high frequency carriers, then AM was most likely detected less well and 

therefore the shading signal was less well isolated. (b) Alternatively, low frequency 

texture elements themselves could look like shading/shadows, which have interfered 

with the probe tasks: adding noise to individual judgements reduced the amplitude of 

the interpolated depth profile. In this case, large-scale undulations in the surface might 

still be observed but judgement of relative depth between two fine locations might be 

interrupted by small-scale undulations produced by the texture. However at this stage, 

it is not possible to ensure the action of either of the two, hence it is difficult to assess 

the role of second-order processing. Experiment 2 attempts to investigate this.  

2.5 Experiment 2: plaid configuration 

One reason that results from previous section are inconclusive is that the role of AM 

in shape-from-shading is less obvious for single oblique stimuli than it is for plaids 

(Schofield et al., 2006). When LM+AM and LM-AM are presented together in a plaid 

the latter cue looks flat despite the strong luminance signal. The procedure described 

above was then applied to the plaid configuration with the prediction that the 

influence of AM on plaid stimuli could be affected by changes in carrier frequency.  

2.5.1 Procedure 

For the plaid experiment  stimuli consisted of a LM+AM signal presented on one 

oblique and a LM-AM signal presented on the other oblique, either cue could be 
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placed under test. As with the single oblique experiment, only one diagonal was tested 

on each trial. There was no phase offset between markers on the non-test diagonal. 

For example in Figure 2.7, the effective displacement of markers (offset between 

white and black crosses) is in the bottom left to top right direction. Hence, it is the 

LM+AM grating whose depth is being tested. No control against masking was 

included for the plaid experiment since it had already been shown that masking was 

unlikely to be one of the major causes of suppressed depth perception in these 

experiments. In fact, result for the plaid configuration is a further weight to the 

argument that masking is not an issue. All other experiment settings were the same as 

the previous experiment. Orientations of Gabor patterns were ±45° and had the 

bandwidth of 1.5 octaves. Overall there were  

8 (positions) 2 (modulation orientations) 2 (phase combinations under test) 32  

trials in each session and each observer completed 8 trials all together. 
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Figure 2.7 Example stimuli for plaid configuration: LM+AM on the right oblique and LM – AM 

on the left oblique. The test diagonal is from top right to bottom left thus LM+AM is being tested. 

The white and black cross are shown to aid understanding the underlying offset between two 

marker positions but were not shown on the experiment stimuli. 

 

Results are shown in a similar format to those of section 2.4. Recovered depth profiles 

for one observer are shown in Figure 2.8. Thick solid lines indicate underlying 

luminance modulations. Each dot represents a recovered depth relative to 0 at each 

test location. Depth profiles for the two combinations are grouped into two columns. 

The amplitude of the fundamental component was recorded as a measure of depth 

amplitude. Figure 2.9 shows mean depth amplitude calculated across all observers. 

Within each frequency group, the left and right bars correspond to conditions where 

out-of-phase and in-phase combinations were under test respectively.  
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Figure2.8 Example of perceived depth profile when LM+AM and LM – AM are presented on a 

plaid. Thick solid lines indicate underlying luminance modulations. Slots are divided into two 

columns, with the left and right columns show perceived depth profiles when LM – AM and 

LM+AM were under test respectively.   

 

When tested against each other LM+AM had a much higher perceived depth 

amplitude than LM-AM, for high frequency carriers. Similar to what was found for 

single oblique stimuli, depth profiles for LM+AM on a plaid peaked below the 

luminance peak and was very stable across observers. It is worth pointing out that not 

only did LM-AM have much lower perceived amplitude than LM+AM on higher 

frequencies, but the position of the perceived peaks also varied considerably between 

observers. This is further evidence that LM-AM was perceived to be less corrugated 

than LM+AM. However the perceived depth amplitudes are higher than those 

obtained by Schofield et al. (2006).  

 

In contrast to the above result, when the modulations were carried by low frequency 

textures perceived amplitude for LM+AM dropped, although depth profiles still 

peaked below the luminance peak, much as for the single oblique case. Its counterpart 

LM-AM signal produced a similar result. That is, the perception of shape-from-

Depth 
amplitude 
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shading from LM+AM was reduced to be more like that for LM-AM when the texture 

frequency was reduced.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.9 Averaged depth amplitudes for low and high frequency carriers.  
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Table 2.3 Properties of perceived surfaces inferred from plaid experiment. The testing conditions 

are listed in the head for each row. The first line of each head indicates the component under test. 

e.g. in the first condition row, in-phase combination was under test. The phase values represent 

the phase shifts of fit cosine functions. Thus a minus 90° phase shift means that the fit cosine 

function perfectly coincides with the underlying sinusoidal luminance.  

 

2.5.3 Discussion 

In the plaid configuration, a strong shape-from-shading percept was found for 

LM+AM signals when the carrier frequency was high (Fig2.9). In contrast, LM-AM 

was seen as much less corrugated in this condition, though not as flat as what was 

found by Schofield et al. (2006). For example, in a similar plaid configuration, LM-

AM produced an even weaker depth percept as suggested by an even lower fit 

amplitude (average 0.1) obtained by the same method of analysis (Schofield et al., 

2006). So it can be argued that observers still gained considerable depth perception in 

the LM-AM direction during the experiment presented here. However LM+AM and 

LM-AM produced similar perceived depth profiles for low frequency texture carriers, 

suggesting that the distinction between these two signals was weakened in this case. 

LM + AM Left 

LM – AM Right 

Low frequency 

Amplitude 0.335 0.477 0.315 

phase -165.4 -64.6 -144.7 

LM – AM Left 

LM + AM Right 

Low frequency 

Amplitude 0.44 0.517 0.496 

Phase -166 -139.9 -167.6 

LM + AM Left 

LM – AM Right 

High frequency 

Amplitude 0.849 0.702 0.917 

phase -169.76 -156.5 -128.3 

LM – AM Left 

LM + AM Right 

High frequency 

Amplitude 0.89 0.254 0.367 

Phase -183.4 -102.1 -96.9 

LM + AM Right 

LM – AM Left 

Low frequency 

Amplitude 0.085 0.567 0.576 

Phase -186.2 -105.4 -153.4 

LM – AM Right 

LM + AM Left 

Low frequency 

Amplitude 0.683 0.308 0.525 

Phase -122.2 -69.7 -132.6 

LM + AM Right 

LM – AM Left 

High frequency 

Amplitude 0.88 0.969 0.86 

Phase -171.6 -156.5 -161 

LM – AM Right 

LM + AM Left 

High frequency 

Amplitude 0.569 0.359 0.359 

Phase -180.9 -188.5 -188.5 
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Meanwhile perceived depth for LM-AM was not further reduced as the carrier 

frequency decreased. Considering that the perceived depth for LM-AM can be even 

flatter as found elsewhere (Schofield et al., 2006), any masking effect would have 

simply reduced perceived depth amplitude and position stability for LM+AM while 

further weakening any depth precept gained from LM-AM as well. The same is true 

for any influence due to the fact that low frequencies textures can look like shading in 

their own right; shape-from-shading should be disrupted for both LM-AM and 

LM+AM not just LM+AM. Neither straight forward masking nor interference from 

apparent undulations in the texture can account for the reduction in perceived depth 

for LM+AM in the absence of a reduction for LM-AM, such that the two cues 

become indistinguishable. It can be argued that the information that makes them 

distinct is conveyed less well by low frequency carriers. As a second-order cue, AM 

requires a high frequency carrier for good detection (Dakin & Mareschal 2000). For 

low frequency carriers, AM may not have been detected well enough to help the HVS 

to distinguish the two signals. Thus both cue types were perceived as weakly 

corrugated.  

2.6 General discussion 

Together, the results from the single oblique and plaid experiments suggest that 

changing carrier frequency may affect shape-from-shading in human observers. In 

general, textures whose frequencies are below a certain level would give less support 

to shape-from-shading. Masking did not seem to account for this suppression. The 

degree of suppression was not reduced when the masking power of low frequency 

textures was reduced. Hence this suppression was probably carried out via one of two 

alternative routes: a), support to shape-from-shading that would normally arise from 

underlying texture is weakened; b), as the texture frequencies go down, the underlying 
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texture becomes more like shading/shadow, thus interfering with the global depth 

percept. Experiment 1 suggests that at least one of the above possibilities is true. 

Results from the plaid experiment suggest that a) dominates: the distinction between 

the percept for LM+AM and LM-AM vanished for low frequency carriers (this can be 

concluded from the similarity between their depth profiles). Although the decrease in 

depth amplitude for LM + AM on low frequency carriers was most likely due to b), b) 

alone is not sufficient to explain the absence of a reduction in perceived depth for LM 

– AM on low frequency carriers. Thus, a) must have been a factor also. The findings 

confirm the hypothesis by Saikai (2006) that low frequency textures do not facilitate 

depth perception. Instead, they have a negative impact on the perception of shape-

from-shading. As a second-order entity, AM is conveyed less well by low frequency 

carriers, which is consistent with the idea that second-order vision is most sensitive to 

high frequency carriers (Sutter et al.,1995; Dakin and Mareschal, 2000; Mareschal 

and Baker, 1999; Zhan and Baker, 2008).  
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3. The frequency dependency of AM cue in shape-

from-shading 

 

The experiments reported in chapter 2 tested perceived depth amplitude for LM+AM 

and LM-AM mixes based on just two carrier frequencies. The experiments described 

in this chapter tested the same mixes against a larger range of carrier frequencies. The 

relationship between LM and AM signals seems to determine perceived depth in the 

stimulus. Presumably AM must be detected if it is to have any influence on shape-

from-shading. If the AM component is detected by a second-order mechanism we 

should expect the influence of the AM signal to follow the known characteristics of 

second-order vision. Specifically in cases where the carrier signal is not able to act as 

an effective carrier for AM signals we should expect LM+AM and LM-AM cues to 

produce similar depth percept – because the AM cue will be ineffective in such cases. 

The results presented in this chapter show that this is the case. 

3.1 Introduction 

Results of chapter 2 showed qualitatively how shape-from-shading may be affected 

by carrier frequencies. The choice of the two frequencies was somewhat arbitrary, and 

it is not clear what carrier frequency should be considered as the division between 

‗high‘ and ‗low‘. In the experiments of this chapter, more carrier frequencies were 

tested in order to characterise more fully the influence of carrier frequency on shape-

perception.   

 

The strength of an AM signal determines the perceptual difference between LM+AM 

and LM-AM in a shape-from-shading task when the two are presented simultaneously 
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(Schofield et al., in press). AM is a second-order entity, closely related to contrast 

modulation. Hence the detection of AM should be dependent on the carrier frequency 

(Sutter et al, 1995; Dakin and Mareschal, 2000). If the visibility of the AM signal 

varies with carrier frequency then its effect on shape-from-shading should also vary. 

Testing shape-from-shading in LM/AM mixes using a wider range of carrier 

frequencies is not only interesting in terms of the shape-from-shading task itself; the 

result will also further expose the characteristics of the human second-order 

mechanism. 

 

There is some debate as to whether second-order signals are processed at all when 

conveyed by low frequency carriers. The disagreement arises from the argument that 

a second-order signal such as abutting line gratings could potentially activate 

conventional linear receptive fields thus would not require a non-linear detection 

mechanism (Skottun, 1994). For abutting line gratings stimuli, low frequency carriers 

have more visible luminance contrast and produce stronger luminance edges at the 

terminations of lines, which could serve to detect the modulation gratings (Song & 

Baker, 2006). Verification of this hypothesis came from the physiological study by 

Song and Baker (2006) which reported that a large population of cells in cat area 18 

responded bi-modally to abutting line gratings with one peak at low frequency carriers 

and the other at high frequency carriers. Responses to stimuli based on low frequency 

carriers varied with carrier phase, indicating that these cells were in fact responding to 

the luminance edges rather than second-order modulations. Although the detection of 

second-order signal was not discounted completely in this study, the involvement of a 

non-linear mechanism was not obvious in this context. On the other hand, Dakin and 

Mareschal (2000) believed that the detection of Gabor modulations conveyed by low 
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frequency noise combined the detection of both first-order artefacts and genuine 

second-order cues. These first-order artefacts were also called side-band effects. 

Although side-band effects were controlled in their experiment and little effect was 

found for high frequency carriers, the role of first-order luminance artefact could not 

be entirely discounted. An example of how first-order luminance feature can lead to 

detection of modulation is illustrated in Figure 3.1.  

   a)    b) 

   

Figure 3.1 Illustrations how first order luminance defined features may lead to modulation 

detection. a) abutting line gratings with low frequency carrier, image taken from a sample 

stimuli in Song and Baker‘s study (2006). Edges at the terminations of lines could serve to detect 

the vertical modulation. b) Low pass horizontal noise contrast modulated by a Gabor pattern.  

The image is taken from Dakin and Mareschal (2000). Luminance defined edges are visible in b). 

 

    

The experiments discussed in following sections address the question of whether the 

effect of AM on depth perception varies in accordance with any reported carrier 

frequency dependency in second-order vision. In addition, unlike in detection tasks 

where existence of luminance defined edges could well lead to an observer‘s decision, 

the perceptual difference of LM+AM and LM-AM in a probe-task is unlikely to be 

triggered by local luminance defined edges, because local edges would not boost or 

suppress a global impression of shape-from-shading. Hence, observers‘ performance 

in this task is an alternative verification of the existence of the processing of AM.  

3.2 General method 

Methods were same to those of described in chapter 2 except that more texture 

frequencies were tested. The same two point depth comparison method was used. 
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Four naïve observers took part in this experiment. One of them had done the plaid 

configuration experiment described in chapter two. The remainder had no previous 

experience of this type of experiment.  

3.2.1 Stimuli 

Images were made following the procedure outlined in chapter 2. Overall five carrier 

frequencies were tested: 1.0 c/d, 2.0 c/d, 4.0 c/d, 8.0 c/d and 16.0 c/d. Textures were 

made of ±45° Gabor elements as in chapter 2. It was not possible to test at higher 

frequencies due to the Nyquist sampling limit of the display system. Both modulation 

frequencies were fixed at 0.5 c/d.  

3.3.2 Equipment and calibration 

Monitors were calibrated using the same method as in chapter two. The viewing was 

changed to 2m to cater for a larger range of carrier frequencies.  

3.4 Experiment 1 Plaid configuration 

In this experiment, LM+AM and LM-AM mixtures were presented in a plaid. The 

procedure is same to that of plaid experiment in chapter two. Examples of stimuli are 

shown in Figure 3.2 
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Figure 3.2 Stimuli used in plaid configuration experiment. Top row from left to the right are 

textures with dominant carrier frequencies of 1.0 c/d and 2.0 c/d respectively. Bottom row from 

left to right are textures with dominant carrier frequencies of 4.0 c/d, 8.0 c/d and 16.0 c/d 

respectively. These examples are draw to give the correct spatial frequencies at a 50cm viewing 

distance.   

 

3.4.1 Results 

As before perceived surface gradient was measured at each test location. After 

removing biases, the gradients were then reintegrated to produce a perceived surface 

shape. The amplitude of the fundamental component was recorded as a measure of 

depth amplitude. Figure 3.3 shows mean depth amplitude calculated across all 

observers calculated as the amplitude of the fundamental component of the 

reconstructed depth profile. The perceptual difference between LM+AM and LM-AM 

in a plaid configuration was measured by the difference in their perceived depth 

amplitudes, which was done separately for each participant. Since any masking effect 

should produce same reductions in perceived depth in the two phase relationships, 

taking the difference between the two should remove this uniform effect while 

retaining the influence of the AM cue. The mean difference across four participants is 

depicted in Figure 3.4. The distribution of perceived surface phase (position) across 

participants can also provide information about the reliability of perceived depth.  A 

broad phase distribution together with low mean depth amplitude is a signature of a 

flat perceived surface. Phase can thus be combined with fundamental amplitude to 

produce a more reliable single measure of the perceived surface shape. A simple way 
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to achieve this is to add all fundamental sine wave functions together and divide the 

resulting sine wave function by the number of participants. Surface profiles that vary 

in phase will tend to cancel one another reducing the amplitude of the combined trace. 

If a surface is perceived flat, the phase of its fit sinusoidal function doesn‘t reveal 

anything meaningful but is evenly distributed among the entire phase range. On the 

other hand if a surface appears corrugated, although observers may differ in the 

position of the perceived surface peak (measured by the phase of its fit sinusoidal 

function), inter-observer variances tend to be relatively small compare to when the 

surface is flat. This combined measure is shown in Figure 3.5. The difference of 

LM+AM and LM-AM in the combined measurement is also provided in Figure 3.6. 

Table 3.1 gives details of depth amplitudes and phases for each individual observer in 

response to plaid configurations under all conditions.  
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Figure 3.3 Mean depth amplitude calculated across four participants for five frequency 

conditions. Phase information is not considered. Error bars represent 95% confidence level.  

 

 

 

 

 

Mean amplitudes of perceived depth for different carrier frequencies 
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Difference in perceived depth
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Figure 3.4 Perceptual difference between LM+AM and LM-AM presented in plaid configuration. 

Error bars represent 95% confidence level; n=4. 
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Figure 3.5 The amplitude of the sine function resulted from averaging the depth profiles.  

 

 

Amplitudes of averaged perceived depth for different carrier frequencies 
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Figure 3.6 Perceptual difference between LM+AM and LM-AM across different carrier 

frequencies. 

 

Carrier frequency 1.0 c/d 

LM+AM  LM-AM  Difference 

Fundamental 

Amplitude 
ID    

  

Fundamental 

Amplitude 

Fundamen

tal phase 

Fundamental 

Amplitude 

Fundamental 

Phase 

SL 

45 0.148 -151.3 0.787 -105.7 -0.639 

-45 0.558 -132 0.845 -116.2 -0.287 

WH 

45 0.529 -167 0.485 -183.7 0.044 

-45 0.852 -174.9 0.47 -190 0.382 

WXX 

45 0.624 -106.1 0.366 -140 0.258 

-45 0.429 -121.9 0.507 -117.7 -0.078 

YJY 

45 0.778 -150.2 0.226 -19.5 0.552 

-45 0.710 -159.8 0.315 -125.3 0.395 

Carrier frequency 2.0 c/d 

LM+AM  LM-AM  Difference 

Fundamental 

Amplitude 
ID    

  

Fundamental 

Amplitude 

Fundamen

tal phase 

Fundamental 

Amplitude 

Fundamental 

Phase 

SL 

45 0.757 -108.1 0.54 -95.7 0.217 

-45 0.699 -117.2 0.346 -126.1 0.353 

WH 

45 1.017 -161.4 0.874 -152.1 0.143 

-45 0.449 -177.2 0.392 -101.7 0.057 

WXX 

45 0.735 -151.1 0.283 -53 0.452 

-45 0.839 -140.2 0.618 -107.1 0.221 

YJY 

45 0.928 -157.5 0.311 -166.000 0.617 

-45 0.600 -137.1 0.494 -182.6 0.106 

 

Difference in averaged perceived depth 
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Carrier frequency 4.0 c/d 

LM+AM  LM-AM  Difference 

Fundamental 

Amplitude 
ID    

  

Fundamental 

Amplitude 

Fundamen

tal phase 

Fundamental 

Amplitude 

Fundamental 

Phase 

SL 

45 1.178 -127.7 0.51 -104.6 0.668 

-45 0.707 -110.6 0.602 -84.9 0.105 

WH 

45 1.004 -151.2 0.472 -168.1 0.532 

-45 1.026 -166 0.387 -131.7 0.639 

WXX 

45 1.261 -172.9 0.315 -22.5 0.946 

-45 0.773 -147.8 0.121 -90 0.652 

YJY 

45 1.011 -154.200 0.160 -266.700 0.851 

-45 0.620 -158.600 0.187 -166.400 0.433 

 

Carrier frequency 8.0 c/d 

LM+AM  LM-AM  Difference 

Fundamental 

Amplitude 
ID    

  

Fundamental 

Amplitude 

Fundamen

tal phase 

Fundamental 

Amplitude 

Fundamental 

Phase 

SL 

45 1.207 -120.5 0.162 -262.1 1.045 

-45 0.957 -113.2 0.305 -98.3 0.652 

WH 

45 1.277 -176.6 0.312 -184.1 0.965 

-45 1.116 -168.3 0.335 -255.4 0.781 

WXX 

45 1.387 -163.3 0.546 -160.5 0.841 

-45 1.421 -159.1 0.356 -48.6 1.065 

YJY 

45 1.219 -156.100 0.174 -352.700 1.0 

-45 1.221 -145.700 0.296 -25.800 0.9 

 

Carrier frequency 16.0 c/d 

LM+AM  LM-AM  Difference 

Fundamental 

Amplitude 
ID    

  

Fundamental 

Amplitude 

Fundamen

tal phase 

Fundamental 

Amplitude 

Fundamental 

Phase 

SL 

45 1.228 -117.1 0.751 -91.7 0.477 

-45 0.829 -139.6 0.657 -83.4 0.172 

WH 

45 1.448 -149.2 0.697 -135 0.751 

-45 1.185 -163.7 0.226 -225 0.959 

WXX 

45 1.319 -154.4 0.435 -155.3 0.884 

-45 1.133 -124.6 0.603 -78.5 0.53 

YJY 

45 1.409 -158.000 0.491 -196.300 0.9 

-45 1.023 -150.300 0.337 -116.600 0.7 

Table 3.1 details of depth amplitudes and phases for each individual observer in response to plaid 

configurations under all conditions. The difference in amplitude is the subtraction of LM-AM 
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from LM+AM. The phase values represent the phase shifts of the fitted cosine functions. Thus a 

minus 90° phase shift means that the fit cosine function perfectly coincides with the underlying 

sinusoidal luminance.   

 

 

Results are consistent with those of the plaid experiment described in chapter two. 

LM+AM had a much higher perceived depth amplitude than LM-AM on higher 

frequency carriers (4.0 and 8.0). In addition, depth profiles for LM+AM were offset 

from the luminance peaks by about 1/8~1/4th wavelength below the luminance peak 

and was very stable across observers whereas the position of the perceived peaks for 

LM-AM varied considerably between observers. Levene‘s test for equality of 

variance gives: 

 

005.0,6.22,4.113   pSTDSTD AMLMAMLM  for 8.0c/d carrier 

 033.0,4.20,0.73   pSTDSTD AMLMAMLM  for 4.0 c/d carrier 

 

On the other hand, LM+AM and LM-AM were less distinguishable on lower 

frequency carriers: their fundamental amplitudes were more similar and the phase of 

LM-AM became more stable, as if the LM-AM condition became more like the 

LM+AM condition for low frequency carriers.  This can be concluded by the 

decreasing standard deviations of phase values for LM-AM with the decrease in 

carrier frequency, as plotted in Figure 3.7. The difference in the standard deviations of 

LM-AM phases is significant between 8.0 c/d and 1.0 c/d carriers ( 044.0p ) and 

between 8.0 c/d and 2.0 c/d carriers ( 025.0p ), revealed by the Levene‘s test for 

equality of variance.  
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Figure 3.7 Standard deviations of phase values for recovered depth functions for all carrier 

frequencies. Phases of LM-AM were more sparsely distributed among observers for 8 c/d carrier.  

 

Figure 3.5 combines phase and amplitude information and provides a better 

illustration of perceived depth across all frequencies. Note that perceived depth in 

Figure 3.5 for LM-AM on 8.0 c/d carriers was even more reduced compare to that in 

Figure 3.3 whereas on 1.0 c/d and 2.0 c/d carriers, it was almost unaffected. The 

perceptual difference between LM+AM and LM-AM was most significant when 

carrier frequency was at 8.0 c/d and was least significant when carrier frequency was 

at 1.0 c/d (Figure 3.5). This distinction steadily declined with the decreasing carrier 

frequency. Figure 3.5 also shows that on 16.0 c/d, LM-AM seemed to appear more 

corrugated than that on 8.0 c/d.  
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Figure 3.8 Perceived depth plotted as functions of AM modulation depth. Negative AM values 

indicate anti phase combination i.e. LM-AM. Positive values indicate in phase combination i.e. 

LM+AM. (diamond) Perceived depth for plaid configuration. (square) Perceived depth for single 

oblique. Data taken from Schofield et al in press, not collected by the author. 

 

3.4.2 Discussion 

Even on very low frequency carriers (2.0 c/d), observers still perceived LM+AM to be 

more corrugated than LM-AM, suggesting that AM detection was functioning even at 

such low carrier frequencies. Whether AM was processed at all on carriers with 1.0 

c/d frequency is not clear due to the large errors.  

 

Schofield et al (in press) have shown that AM modulates shape-from-shading in 

textured surfaces. This modulation depends on the strength of AM signal. As the 

strength of AM approaches zero, the perceived depth of LM+AM reduces whereas 

that for LM-AM was enhanced so that they became less distinguishable and 

eventually meet at a medium depth level when AM is zero. Figure 3.8 describes this 

dependency. The x -axis represents the modulation depth of AM. Negative values 

indicate LM-AM. The perceived depth for the combination of LM and AM in a plaid 

appear to be a sigmoidal function with LM-AM being seen as flat. However, single 
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oblique stimuli appear more corrugated in general and decline only slightly when AM 

is out of phase with LM. This pattern has been produced in this experiment by varying 

the carrier frequency instead of AM signal strength. LM+AM and LM-AM best 

distinguished when AM is carried by 8.0 c/d Gabor textures, 4 octaves above the 

modulation frequency. The gap between the two closed with decreasing carrier 

frequency. This suggests that carrier frequency affects the strength of the de-

modulated AM signal.  

 

As shown in Figure 3.3, perceived depth for LM-AM was gradually enhanced as 

carrier frequency decreased, which excludes the possibility that masking or any other 

first-order artefacts simply inhibited the detection of LM. In Figure 3.4 and 3.6, the 

influence by AM seems to suggest a band pass characteristic with an optimal carrier 

to modulation ratio of 16. The result shown here is consistent with results from Sutter 

et al (1995) and partially similar to results reported by Dakin and Mareschal (2000) 

although the latter did not report a deterioration in performance at high ratios of 

carrier to modulation frequency (above 32:1). However, despite testing the same 

maximum carrier:modulation frequency ratio, the highest carrier frequencies tested in 

the two studies were different. Dakin and Mareschal only tested carrier frequencies up 

to 8.0 c/d whereas Sutter et al tested carrier frequencies up to 16.0 c/d and only 

reported a deterioration at such high frequencies. Indeed, in the present study, the 

highest carrier frequency tested is same as that of Sutter et al (1995) and a similar 

decline in AM visibility was found.  Sutter et al attributed the band pass property to a 

specific-mapping between carrier processing mechanism and modulation processing 

mechanism. On the other hand, because Dakin and Mareschal did not find 

deterioration at high ratios, they suggested a general mapping between these two 
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mechanisms and a broader tuning of the carrier frequency selectivity. To reconcile 

these studies, I argue that the detection of second-order signal will drop after it 

reaches its maximum but the deterioration is unlikely to be dependant on the ratio of 

carrier to modulation frequency. Instead, it depends on the absolute value of carrier 

frequencies (16.0 c/d as suggested by Sutter et al 1995 and the shape-from-shading 

task reported here). There are two possible explanations: One is that the carrier 

processing mechanism is band-pass in frequency. This idea has some support from 

physiological studies which reported that in cat area 18, cells responsive to second-

order stimuli were selective to a band of high carrier frequencies (Zhou & Baker, 

1996; Song & Baker, 2006). The other explanation is that the second-order stimuli are 

not detected well at high carrier frequencies due to the reduced visibility of the carrier 

itself at very high frequencies. Note that human contrast sensitivity drops 

considerably between 8.0 c/d to 16.0 c/d (Campbell & Robson, 1968). 

 

The reduced influence of AM at lower carrier frequencies is consistent with results 

from both studies and could be accounted by the idea that when the preferred 

frequencies of modulation processing and carrier processing mechanisms differ by 

less than 3 octaves, connections are made between first- and second-stage filters with 

orthogonal preferred orientations only (Schofield, 2000; Dakin & Mareschal, 2000) 

thus reducing the effective power of the carrier and hence its ability to support the 

detection of AM.  

 

Note that Schofield et al. (in press) report near symmetrical changes for both 

LM+AM and LM-AM when gradually reducing the strength of AM to zero. Using a 

haptic match method, they tested LM+AM and LM-AM in both a plaid configuration 
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and individually. Their results are shown in Figure 3.8 which depicts the perceived 

depths as a function of the strength of AM. Negative AM values indicate LM-AM 

while positive values indicate LM+AM. In Figure 3.3 however, the depth perceptions 

for LM+AM and LM-AM did not change symmetrically: the reduction in perceived 

depth for LM+AM was greater than the enhancement of perceived depth for LM-AM 

cues. This might be caused by the interference from the first-order carrier on the LM 

signal. The texture elements were enlarged as a result of reducing the carrier 

frequency, these elements may look like depth ripples at low frequencies. If this is the 

case, reducing the carrier frequency may have reduced the distinction between 

LM+AM and LM-AM due to inadequate AM detection and also reduced the overall 

reliability of the depth percept due to interference from the carrier. If this hypothesis 

is true then single oblique stimuli on low frequency carriers will also result in 

suppressed depth perception. This time however the suppression will be dominated by 

interference from the carrier. The next experiment attempts to verify this hypothesis.  

3.5 Experiment 2 Effect on single oblique 

The asymmetry of changes in perceived depth for LM+AM and LM-AM suggests that 

the carrier directly interferes with the perception of shape-from-shading process; 

affecting both LM-AM and LM+AM. If this was the case, we would expect to see a 

suppression in perceived depth for both LM+AM and LM-AM when presented as 

single oblique stimuli. This was tested in experiment 2. All experimental details were 

the same as the previous experiment except for the stimuli tested.  

3.5.1 Results and discussions 

Figure 3.9 shows mean depth amplitude averaged across four participants. Results for 

plaids are also included so as to make comparison easier between these two 
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configurations. As predicted, single obliques were perceived less reliably corrugated 

when carried by lower frequencies, regardless of the phase relationships between the 

components. Perceived depth for LM+AM and LM-AM dropped at the same rate. The 

effect of AM phase was not measurable. Therefore, any visible variations in perceived 

depth could well be due to the same source of interference which would enforce same 

impact on both combinations. Similar to what was found by Schofield et al. (in press), 

the perceived depth for single oblique was generally higher than that for plaid 

configurations. 
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Figure 3.9 mean depth amplitude averaged across four participants.  

 

 

3.6 General discussion 

3.6.1 Carrier frequency modulates depth perception 

Prior to estimating shape-from-shading, humans are likely to conduct a process to 

disambiguate luminance variations and select only those that are most likely due to 

shading in natural scenes (see Introduction). Along with other cues (e.g. colour), AM 

is believed to be involved in this selection process such that luminance signals that are 
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correlated with AM are preferentially weighted for later shape-from-shading analysis 

(Schofield et al., 2006). In this chapter, it has been shown that varying carrier 

frequencies has an impact on this disambiguation process via two identifiable routes. 

 

1) Classification based on frequencies of luminance variations 

Participants seemed to base their surface perception on luminance modulations while 

ignoring luminance variations caused by high frequency textures. However when the 

carrier was low frequency, carrier elements started to interfere the judgment of the 

surface gradient: they appear as random undulations in their own right. This was true 

for both plaid and single oblique configurations. Results for single oblique stimuli 

suggest that this interference starts when carrier frequency is less than 4 times the 

modulation frequency and continues to grow as carrier frequency decreases. Based on 

this observation, it is proposed that humans are able to exclude high frequency 

luminance variations from any subsequent shape analysis but retain low frequency 

luminance variations. The classification may be achieved by conventional linear 

spatial channel with a low pass band. In the single oblique experiment, low frequency 

carriers were not excluded but were carried through to future shape-from-shading 

analysis, due to carriers leaking through the channel that processes the low frequency 

luminance modulation signal. The idea that humans assume a low frequency 

characteristic for changes in illumination intensity is in agreement with a number of 

classic machine vision algorithms separating illumination from reflectance. 

Algorithms such as Retinex (Land & McCann, 1971) and its refined versions (Horn, 

1974; Blake, 1985) were based on the same assumption and are still in wide uses in 

many real world applications.  
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2) Classification based on accompanied luminance amplitude modulations 

Secondly, although AM helps to disambiguate luminance variations as either shading 

or reflectance changes, the effectiveness of the AM based classification is determined 

by the carrier frequency. This selection process is most effective when carrier to 

modulation frequency ratio falls into the range of 8:1~32:1, with a peak at 16:1.  

 

3.6.2 Implications for second-order vision 

Since it is the relationship between LM and AM that makes LM+AM and LM-AM 

distinct, examination of the perceptual difference of the two combinations reveals 

some characteristics of AM processing mechanisms in visual systems.  

 

1) Does second-order vision exist at all for low frequency carriers? 

First-order luminance artefact due to side-band signals may act as a cue for presence 

of second-order signal in a detection task, e.g. the luminance edges present in Figure 

3.1 (Henning, Hertz & Broadbent, 1975). Although this effect was controlled in many 

psychophysical studies, side-band effects could not be entirely excluded for low 

frequency carriers (Dakin & Mareschal, 2000). In the current study, it has been shown 

that the perceptual difference, although much less than its maximum value, still exists 

for carriers with frequencies as low as 2.0 c/d, 4 time the modulation frequency. Due 

to the nature of the probe task, the perceptual difference was unlikely due to 

luminance defined edges thus indicating that second-order vision operates under this 

condition. For 1.0 c/d carriers, evidence is not strong enough to support a processing 

of AM.  

 

2) The processing of AM is tuned to high frequency carriers 
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The influence of AM peaked for 8.0 c/d frequency carriers which is 16 times that of 

the modulation frequency. It was steadily reduced when carrier frequencies went 

below this value. Qualitatively, this finding is consistent with data obtained by Dakin 

and Mareschal (2000) and Sutter et al. (1995) which reported that contrast modulation 

processing was tuned to high frequency carriers and there was a smooth transition 

from low detection threshold for high carrier frequencies to high detection threshold 

for low carrier frequencies. Both studies suggested that the decline started when 

carrier frequencies dropped to around 8 times the modulation frequency, similar to 

what was reported in the present study. This ratio seems to be scale invariant since it 

holds true for both modulation frequencies tested in Dakin and Mareschal‘s 

experiment (0.35 c/d and 0.7 c/d) and the modulation frequency tested in current 

study (0.5 c/d). Whether it is true for even lower modulation frequencies remains 

untested. Thus a more modest conclusion is that the processing of AM is tuned to 

carrier frequencies that are at least 2 octaves above the modulation frequency. This 

ratio seems to be scale invariant for at least a range of modulation frequencies based 

on data from both present and previous studies. 

 

3) The carrier frequency tuning is also band-limited 

For 16.0 c/d carriers (carrier/modulation: 32/1), the influence of AM seemed to be 

reduced relative to 8.0 c/d carriers, which is consistent with the finding of Sutter et al. 

(1995). However this ratio does not seem to be scale-invariant as no deterioration was 

found at such ratio in a later psychophysical study (Dakin & Mareschal, 2000). The 

discrepancy could be due to the fact that the high end frequency tested (8.0 c/d) in the 

later study was not high enough to be significantly attenuated by the first order 

contrast sensitivity function.  
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Together with 1) and 2), it is thus proposed that the processing of AM shows carrier 

frequency dependence. Generally, the mechanism that processes AM is tuned to a 

band of higher frequencies. The lower bound of such pass band is at least 2 octaves 

above the modulation frequency so that the two frequency values remain in a fixed 

ratio. There should exist an upper bound of this pass band, although it was not 

quantitatively identified in this study. However, the upper bound should be above 

16.0 c/d and does not depend on modulation frequency. It may be due to the contrast 

sensitivity function or bandwidth restrictions in early visual processing. Some 

supporting evidence can be found from studies of envelope responsive cells in cat 

area 17/18 which demonstrated that responses driven by envelope signals were 

selective to carrier frequencies ranging from 4 or 5 times of the modulation 

frequencies to the upper resolution limit of the X-retinal ganglion cells at the same 

retinal eccentricity (Zhou & Baker, 1996; Mareschal & Baker 1999; Song & Baker 

2006; Song & Baker 2007).  
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4. A model that can account for human’s ability to 
disambiguate luminance changes for shape-from-

shading analysis 
 

 

This chapter describes a model to explain observers‘ performance in two different 

shape-from-shading tasks: a haptic matching experiment and the previously described 

two-point probe task. The model constitutes the feature extraction- and luminance 

classification units introduced, as a part of the general framework for the shape-from-

shading, in the introduction. The influence of AM on the perceived depth of LM 

signals was modelled by a summation between LM and AM channels. Inhibition 

across orientation channels models the exaggerated suppression of perceived depth for 

LM-AM when placed against LM+AM, as compared to when presented alone. The 

model predicts performance in a haptic depth matching experiment. With some 

further adjustments, it can also predict the results form the probe-point experiments of 

chapter 3. 

4.1 General structure 

The proposed general framework for shape-from-shading is illustrated in Figure 4.1, 

with the section modelled here enclosed in dashed lines. In unit 1, the retinal image is 

decomposed and represented as features at different frequencies and orientations. 

Conventionally this stage of visual processing is modelled by a bank of linear filters 

spanning a range of spatial frequencies and orientations, mimicking the known 

property of cells in area V1 of primate visual cortex (Marcelja, 1980). Another way to 

think about this first stage is that early processing in the visual system conducts a 

windowed Fourier transform and codes the retinal image with coefficients 

representing energies at different frequencies and orientations. In the current model, 
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second-order features are also extracted from the retinal images as they are important 

at the classification stage. The early extraction of such second order features is 

consistent with neurophysiology (Mareschal & Baker, 1998a; 1998b; Mareschal & 

Baker, 1999; Zhou & Baker, 1996). In unit 2, the features extracted by unit 1 are 

classified according to rules that have been discussed previously. The output of unit 2 

(the output of the model discussed here) represents the strengths of shading 

components from which the surface shape can be computed. The following 

subsections present the two units under discussion in detail. 

 

Figure 4.1 Shape-from-shading framework (redrawn from Fig 1.11). The model to be described 

in this enclosed within the dashed lines.  

 

4.2 Feature extraction unit 

4.2.1 First-order feature extraction 

First-order features are extracted by convolving the retinal image with a series of 

linear filters with a subsequent compressive nonlinearity limiting the amplitude of the 

response. This process has been accepted as a way to model the processing of first-

order stimuli in the early stage of visual perception (Carandini, Heeger & Movshon, 

1999) although it does not capture cross-channel inhibition. 

4.2.2 Second-order feature extraction 

Second-order features are extracted using a separate second-order mechanism. 

Hypothetical models have been developed in recent decades that can process second-
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order information. Wilson et al. (1992) proposed a filter-rectify-filter (FRF) model for 

second-order vision which comprised two filtering stages separated by a nonlinearity 

(see figure 4.2). The nonlinearity provides a full-wave or half-wave rectification to the 

responses from the first-stage filters such that simulated neural responses are positive. 

This nonlinear rectification is thought to model the responses of ON and OFF 

receptive fields (Malik & Perona, 1990) and functions as a demodulator for the 

carried signals (Schofield, 2000). The FRF model has been proposed to mediate the 

detection of illusory contours (Song & Baker, 2006) and the detection of signals that 

are modulations of orientation, contrast and spatial frequencies (Kingdom & Keeble, 

1996; Kingdom et al, 2003; Arsenault, Wilkinson & Kingdom, 1999). Although 

differing from each other in the specific choice of parameters, all of the above 

implementations seem to agree on the relative sizes of the two filters. The first-stage 

filter was normally tuned to relatively high frequencies such that the high frequency 

carrier components will be processed and low frequency modulations can be passed 

on to the second-stage filter.  

 

Figure 4.2 A FRF model that can process second-order information. The first stage filter is tuned 

to relatively high frequencies and processes carrier components while blocking low-frequency 

first-order signals. The rectifier (R) demodulates the second order signal. The second stage filter 

is tuned to relatively low frequencies to reject high frequency carrier component and pass the 

modulation components.  

 

4.2.3 An elaborated FRF model 

The original FRF model has been elaborated as psychophysical and physiological 

evidence regarding the nature of second-order vision has accumulated (Sutter et al, 

R 

First stage filter Rectifier  Second stage filter 
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1995; Graham & Sutter, 1998; Dakin & Mareschal, 2000; Graham & Sutter, 2000; 

Ledgeway, Zhan, Johnson, Song & Baker, 2005).  

 

The intermediate nonlinearity (rectifier) represents a gross nonlinear process in the 

second-order channel. Whilst the rectifier is piecewise linear in many FRF 

implementations (Malik & Perona, 1990; Schofield, 2000; Johnson & Baker, 2004), 

psychophysical studies on visual texture segregation suggest that it is probably an 

expansive power function with an exponent between 3 and 4 (Graham & Sutter, 

1998). In physiology, Ledgeway et al. (2005) recorded spike rates of cells in area 18 

of cat that were responsive to moving contrast modulations (second-order motion). 

When plotted as functions of either modulation contrast or carrier contrast, responses 

of these cells were expansive. Neurones typically require considerably more second-

order modulation than first-order luminance contrast to elicit the same response. 

Further whereas first-order responses are compressive at high contrast no such 

saturation is found for second-order signals.  Based on a comparison of the two 

contrast response functions (CRFs), Ledgeway et al. (2005) proposed three versions 

of the FRF mechanism. In the first version (shown here in Fig 4.3b), the intermediate 

nonlinearity is piecewise linear but the contrast response of the second stage filter has 

a much higher threshold than that of linear channels with similar tuning (e.g. preferred 

spatial frequency and orientation). Alternatively, the observed CRF for second-order 

motion could be a result of second-order channel being less sensitive than first-order 

channel by a scaling factor. The second stage filter in the second-order channel has 

the same contrast response as its counterpart in a first-order channel (Fig 4.3a) and the 

intermediate rectifier is also linear. However the responses from the first-stage filters 

are multiplicatively reduced such that only the expansive part of the CRF curve is 
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observed (see Fig 4.3c). The third version favours an expansive rectifier obeying a 

steep power law (Fig 4.3d). Ledgeway et al. (2005) were inclined to the third version 

as it was consistent with human psychophysics (Graham & Sutter, 1998).  

 

Figure 4.3 Diagram of a first-order channel (a) and possible second-order channel structures (b-

d).  (a) The response in first-order channel is intensively nonlinear at lower contrast, followed by 

an immediate acceleration and saturation at high contrasts. (b) The intermediate rectifier is a 

piecewise linear function. But the transfer function of the second-stage filter has a higher 

threshold and a deeper accelerating curve than that of (a). (c) The second filter has a transfer 

function similar to (a) but its input signal is reduced so that the second-stage filter only operates 

over the lower half of its transfer function. (d) The rectifier obeys a deep power law giving 

significant suppression for low contrast carriers or signals having weak modulation depths but 

the net transfer function of the mechanism is expansive. (After Ledgeway et al. 2005) 

 

Note that the intermediate nonlinearity is only a conceptual unit existing in the 

cortical process of second-order vision. It is not necessarily a unique neural 

mechanism nor does it have to functionally lie between the two filtering processes. It 

could in principle arise from any known nonlinearities existing in the relatively early 

visual processes (e.g. inhibition among channels), although it is unlikely to be due to 

(a) 

(b) 

(c) 

(d) 

G 
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very early nonlinearities (e.g. light adaption) in LGN and retina (Graham & Sutter, 

2000).  

 

There is now evidence suggesting that the first-stage filter should be a bank of 

orientation selective filters rather than one single isotropic filter (Dakin & Mareschal, 

2000). Further, the dependence of contrast modulation on carrier frequency has 

implications for the connections between the first- and second-stage filters (Sutter et 

al, 1995; Dakin & Mareschal, 2000). Two elaborated versions of the FRF model were 

implemented by Schofield (2000). In one of the models, first-stage filters were only 

connected to second-stage filters with preferred frequencies at least two octaves 

below their own. Connections were made between orthogonal filters only when the 

difference in the two preferred frequencies was three octaves or less. Above this 

threshold, second-stage filters received input from multiple orientation selective first-

order filters such that the assembly of the first-stage filters had broad orientation 

selectivity. This design is in agreement with the finding that when the carrier-to-

envelope frequency ratio drops below 3 octaves, the underlying second-order 

information becomes harder to detect (Sutter et al, 1995; Dakin & Mareschal, 2000; 

see also Chapter 3), and the mechanism as a whole becomes tuned to the carrier 

orientation – preferring those orientations orthogonal to the modulation (Dakin & 

Mareschal, 2000).  

 

I have adapted this model with a slight modification to the rules governing inter-

connections between first- and second-stage filters. In the new model, when the 

preferred frequencies of first- and second-stage filters differ by more than 3 octaves, 

the connections are as described by Schofield (2000). However, when the frequency 
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difference is exactly 3 octaves orientation tuning makes a smooth transition towards 

narrower tuning by the application of weights to each first-stage filter. The weights 

are calculated from a Gaussian function with a mean value at the orientation 

orthogonal to the modulation. This Gaussian function has standard deviation of 45°, 

reflecting Dakin and Mareschal‘s (2000) data. For frequency ratios below 3 octaves, 

the second-stage filters only receive input from orthogonal first-stage filters as per 

Schofield‘s model (2000). When the frequency difference is exactly 1 octave, second-

stage filters still receive input from orthogonal first-stage filters but a lower weight is 

applied to reflect the fact that the sensitivity of second-order vision reduces 

monotonically with carrier frequency (Dakin & Mareschal, 2000; Sutter, 1995). A 

graphical illustration of the adapted mode is shown in Figure 4.4 while Figure 4.5 

provides a summary of the feature extraction unit as a whole. 
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Figure 4.4 Model for second-order feature extraction used in this chapter. (a) when the two 

preferred frequencies differ by more than 3 octaves, second-stage filters receives input from a 

broad band of orientation selective first-stage filters. (b) when two frequencies differ by exactly 3 

octaves, input from first stage filters are weighted according to a Gaussian function with a mean 

value at the orientation orthogonal to that of the second-stage filters. (c) Below 3 octaves, second-

stage filters are wired to orthogonal first-stage filters only.  The sigmoid functions at the end of 

each channel represent possible nonlinear transfer functions and do not represent a particular 

shape.  R provides full-wave rectification but the choice of its shape will be further discussed 

later.  
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Figure 4.5 The content of the Feature Extraction Unit introduced in Section 4.1.  

 

4.3 Classification Unit 

The feature extraction unit does not differentiate between shading cues and 

reflectance changes; rather it treats all sources of luminance variation the same. The 

purpose of the classification unit is to mimic the ability of humans to disambiguate 

these features prior to a subsequent shape-from-shading analysis. Psychophysical 

studies have shown that humans use many cues to help with this disambiguation task 

but the current model only concerns the rules that were introduced in chapters 2 and 3.  
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4.3.1 Separation of shading and texture channels 

A number of studies have suggested separate shading- and texture-processing 

channels (Georgeson & Schofield, 2002; Saki, 2006). The existence of such channels 

can also be inferred from the results reported in previous chapters. At present too little 

is known about how the visual system makes such categorizations but some intuitive 

yet hypothetical rules can be established to fulfil the intended purpose. Intuitively, 

shading information tends to be low frequency (or smooth edged), therefore low 

frequency first-order features should be weighed more strongly as shading than high 

frequency ones. Ideally a threshold function should be applied to determine the cut off 

point between shading and non-shading components but at present there is no data 

available to constrain such a function. The machine vision algorithms mentioned in 

Section 1.1.6 (Retinex and similar) do not have well-defined values for such a 

threshold but rather determine an appropriate threshold value from example stimuli. 

Here the separation of the two signal types was done in a rather ad-hoc manner: for 

the sake of simplicity, the model contained only one frequency channel tuned to the 

luminance modulation. All other frequency channels were assumed to be associated 

with textures.  

4.3.2 Summation between shading and texture channels 

Classifications based on feature spatial frequency alone are not sufficient to explain a 

favourable weighing for LM when associated with in-phase AM. Whether a shading 

component is boosted or suppressed depends on the phase relationship between the 

shading component (i.e. LM) and the accompanying AM. Such interactions can be 

modelled by a weighed summation between the LM and AM channels with the same 

orientation selectivity and preferred spatial frequency. This model echoes previous 
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reports that shading and texture are processed in initially separate information 

channels but are then integrated at a later, but still relatively early stage (Georgeson & 

Schofield, 2002). Note that the summation serves to enhance or suppress shading 

components but does not mean that the information from the two channels is merged, 

they may provide separate inputs to other processes. Note that Baker (1999) proposed 

a model structure for cells responsive to both first- and second-order motion in which 

first- and second-order responses are summed. But the summation in that model was 

to provide a concept of a combined response rather than arithmetic operation.  

4.3.3 Need for a contrast gain control scheme 

A simple summation between LM and AM channels falls short of a complete account 

of the data in Figure 3.8 regarding the influence of AM in a shape-from-shading task. 

First, a summation would produce a function expansive at both ends whereas the 

perceived depth of LM+AM and LM-AM mixtures saturates for LM+AM. Second, 

the perceived depth of a single component is always higher than that for the same 

component when presented as part of a plaid; a simple summation would result in a 

consistent depth percept regardless of the context in which a cue is presented. Third, 

LM-AM stimuli are perceived as having much less depth when presented in a plaid 

with LM+AM than when presented alone. This also could not arise from simple 

summation. 

 

The behaviour mentioned above is reminiscent of similar nonlinear aspects of simple 

cell responses in area V1. For example, the amplitude of responses of simple cells 

saturate (Albrecht & Hamilton, 1982) similar to the saturation of perceived depth for 

plaids. Additionally, the fact that single components were perceived more depthy than 

components within a plaid is similar to the cross-orientation inhibition phenomenon 
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found in simple cells whose response to a superimposed pair of gratings is about half 

that for one grating alone (Bonds, 1989). To explain these nonlinearities Heeger and 

his colleagues (1993; 1994; 1996) have proposed a normalization model of simple cell 

responses that successfully predicts simple cell nonlinearities. I propose that a similar 

gain control scheme could account for the data plot in Figure 3.6.  

4.3.4 Heeger’s normalization model of simple cells 

This subsection introduces Heeger‘s normalization model of simple cells. The 

electrical behaviour of a cell‘s membrane can be typically modelled by a compartment 

circuit with conductors and capacitors (Carandini & Heeger, 1994; Carandini et al, 

1999), which is illustrated in Figure 4.6. The membrane potential changes over time 

and obeys Equation 4.1: 

       

leakshuntie

leakleakshuntshuntiieed

dleakleakshuntshunteeii
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dt
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



(4.1) 

where C represents the membrane capacitance, ie VV , and shuntV are excitatory, 

inhibitory and shunt equilibrium potentials, ie gg , and shuntg are the corresponding 

variable conductance resistors, and leakleak gV , together determine the leak current. The 

shunt variable resistor represents shunting inhibition which has been proposed to 

model how a cell‘s conductance changes with stimulation (Carandini & Heeger, 1994; 

Carandini et al, 1999). At the steady state, i.e. when 0
dt

dV
, the differential equation 

in 4.1 becomes: 

gIV d       (4.2) 
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Figure 4.6 Circuit model of a cortical cell.  The capacitance of the membrane is represented by 

the capacitor C. ie VV , and shuntV are excitatory, inhibitory equilibrium and shunt equilibrium 

potentials. ie gg , and shuntg are corresponding variable resistors. leakV and leakg determine the 

leak current. (After Carandini & Heeger, 1994) 

 

ie gg , are varied in a push-pull manner such that the linear inputs trade off against one 

another as in equation 4.3: 

0gggg leakei       (4.3) 

where 0g is a constant, representing the cell‘s conductance when there is no visual 

input. Then the cell‘s total conductance only depends on the shunt conductance shuntg , 

which varies with the normalization resulting from the activation of all the cortical 

neurons in the assembly. The activity of a cell, i.e. its firing rate, is approximately 

related to the membrane potential by equation 4.4: 

  2,0max Vr       (4.4) 

In Heeger‘s normalization model, the authors also assume that shunt equilibrium 

potential equals a cell‘s resting potential and assert this as the reference potential: 

0 restshunt VV      (4.5) 

which suggests that dI in equation 4.1 only depends on the visual input. Now it is clear 

that in the steady state, a cell‘s membrane potential depends on two sets of inputs: dI , 

the linear input from the visual stimuli, and g , the cell‘s total conductance which in 

turn depends on the activation of all cells in the assembly. This term represents 
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divisive inhibition. Because the activity of a cell is related to its membrane potential 

by equation 4.4, these variables are then dependant on each other in a recursive 

manner, as described in equation 4.6: 

  2

2

,0max LC

C

C
KR

j

j

i

i







      (4.6) 

where C is the squared response of the conventional linear model of a simple cell. The 

denominator is the sum of the squared responses of all cells in the normalization pool 

plus a non-zero constant 2 which is related to 0g in equation 4.3. The existence 

of 2 stops division-by-zero when there is no visual stimulus present. K  is an overall 

scaling factor. Figure 4.7 depicts the circuit diagram of equation 4.6: 

 

Figure 4.7 A circuit diagram for a normalization model of a simple cell at its steady state. The 

linear response is half squared and is normalized by responses from many other cells. (After 

Carandini & Heeger, 1994) 

 

4.3.5 The contrast gain control scheme after weighed summation 

A normalization loop similar to Heeger‘s normalization circuit was implemented after 

summing each first-order LM channel with its corresponding, weighed second-order 

AM channel. The amplitude of the response from a shading channel was squared and 

divided by responses from other shading channels tuned to different orientations and 

spatial frequencies. The final output represents the strength of the shading component 
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at each frequency and orientation. A diagram for the complete model is shown in 

Figure 4.8 illustrating the content of the classification unit.  

 

Figure 4.8 (a) The Classification Unit receives first-order features from the preceding unit and undertakes a 

crude shading and texture separation based on spatial frequency.  Responses from cells with larger receptive 

fields are categorized as shading features, forming shading channels. The amplitude of the response from a 

shading channel is then normalized by response amplitudes of all the shading channels. (b) The content of a 

shading channel. In each shading channel, the constituent first-order feature is added to a weighed second-

order feature tuned at the same orientation and frequency.  
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4.3.6 Possible neural basis of the proposed model structure 

In cat areas 17 and 18, some cells are responsive to both first-order and second-order 

stimuli (Zhou & Baker, 1996; Mareschal & Baker, 1998a; Mareschal & Baker, 1998b; 

Mareschal & Baker, 1999; Zhan & Baker, 2008). When responding to first-order 

luminance gratings these cells tend to have a unique pass-band. These cells can also 

respond to a second-order modulation carried by first-order gratings which normally 

fall out of the first-order pass-band and would not excite the cells alone. When 

responding to second-order signals, these cells can have two separated pass-bands, 

one tuned to carriers and one to the modulation. Although often different, the pass-

band for the modulation is close to the first-order pass-band. Moreover, when 

responding to the combination of LM and AM, the responses of these cells peaked 

when the two components were combined in-phase (LM+AM) and was much weaker  

for phase shifts of 180° (LM-AM), as if computing a linear sum of the two cues 

(Hutchinson, Baker and Ledgeway, 2007). Thus, these cells could serve as the neural 

mechanisms as described in Figure 4.8b and underlie the proposed computations.  

4.4 Using experimental data to fit the model 

The model illustrated in Fig 4.8 was implemented in two forms with different 

rectifying nonlinearities in the FRF network and subsequent nonlinear transfer 

functions.   

 

Model implementation: version one 

In this implementation, the intermediate rectifier obeyed a power law with an 

exponent of 3. Second-order channels had the same contrast response functions as 

first-order channels tuned to the same spatial frequencies and orientations. Second-
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order channels constructed in this way are similar to the structure illustrated in Fig 

4.3d.  

 

The normalized strength of each shading component in Figure 4.8 (a) can be 

expressed in equation 4.7:  
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where  yxr , is the response from one shading channel,  Var calculates its standard 

deviation as a measure of its amplitude, rC takes the squared amplitude, RC is the 

resulting amplitude after normalization which is in similar format to a normalized 

simple cell response described in equation 4.6. In practice,   yxrVar , was 

approximated by taking the linear combination of the standard deviations of LM and 

AM signals. Since the relation of LM and AM in question was either anti-phase or in-

phase, the sign of AM was either positive or negative accordingly:  

       
     yxAMVargyxLMVar
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


   (4.8) 

where  yxLM , and  yxAM , are responses from LM and AM channels respectively. 

Before the weighed summation, the responses from both LM and AM channels are 

subject to saturation with the following squashing function: 

5.0
1

{} 



vx

vx

e

e
SAT      (4.9) 

where v determines the saturation rate. The shape of the function is drawn in Figure 

4.9: 



 111 

 

Figure 4.9 The sigmoid function that was used to saturate amplitudes of LM and AM channels. 

Parameter v controls the saturating rate or steepness of the function.  

 

Overall, there are 3 free parameters to be determined: g is the multiplier of the second-

order channel, v adjusts the steepness of the saturating function and 2 prevents 

division by zero in the contrast gain control stage. K is an overall scaling factor 

making the system output fall into the region of human data. Noting that the 

maximum output prior to K is 1, K was fixed at 4 to match the human data presented 

in Schofield et al. (in press).  

 

Data from a haptic matching experiment was provided by Schofield (private 

communication; Schofield at al., in press) to fit those parameters. The depth 

amplitudes in the data were used to measure the strengths of corresponding shading 

components. In order to obtain  yxLM , and  yxAM , , images that were used in the 

haptic experiment were regenerated in a similar way to the stimuli described in 

previous two chapters, except that modulations were carried by binary noise instead 

of Gabor patterns. In each image the contrast of the luminance modulation at each 

orientation was fixed at 0.2, and the modulation depth of the amplitude modulation at 

each orientation was varied from 0.0 to 0.4. LM and AM signals had 6.5 cycles per 

image. The scale of binary noise was two-pixel wide thus the fundamental frequency 

of a square wave made by two adjacent white and black noise samples was 

approximately 128 cycles per image. Examples of these images are shown in Figure 

0.0 

0.5 
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4.10 and Figure 4.11.  yxLM , in equation 4.8 was produced by filtering the image 

with a Gabor filter tuned to 6.5 cycle/image frequency on ±45º 

orientations.  yxAM , was obtained by implementing a FRF model with a second-

stage filter tuned to the modulation frequency and four first-stage filters all tuned to 

128cycle/image spatial frequency but each tuned to 0º, 45º, 90º and 135º. Gabor 

filters‘ bandwidths were all fixed to 1.5 octaves, consistent with V1 cells (De Valois, 

Albrecht & Thorell, 1982). 

 

The search for optimal parameters was done by implementing the function 

fminsearch() iteratively in MATLAB subject to a cost function defined by the squared 

difference between the model responses and the data. The parameter set which 

resulted in the least cost values is as follows:  

g =70  the multiplier of second-order channel 

v =1.5  the steepness of the saturating function 

 =0.13 prevents division by zero 

 

Note that g is not the overall gain of the second-order channel. The large value 

of g means that the signal strength in the second-order channel after the nonlinear 

rectification is so small that the signal has to be amplified to meet the requirements. 

Given equal strengths of LM and AM both at modulation depth of 0.1, the response of 

AM channel is about 1/5
th

 of that of LM channel. This ratio is broadly consistent with 

psychophysical (Schofield & Georgeson, 1999) and physiological data (Ledgeway et 

al., 2005), if a little low. 
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Figure 4.10 images that contain the orthogonal mix of LM+AM and LM-AM. The strength of 

LM was fixed to 0.2. The strength of AM was varied from 0 to 0.1 (left to right on the top row) 

and 0.3 to 0.4 (left to right on the bottom row). Only half of the total cycles are shown here for 

demonstration purposes. 
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Figure 4.11 Images that contain LM+AM only (top row) and LM-AM only (bottom row). From 

left to right, the strength of AM was varied from 0.1 to 0.4. Only half of the total cycles are shown 

here for demonstration purpose. 

 
 

Model implementation: version two 

The nonlinear transfer function of simple cells can be largely accounted by a divisive 

normalization among the cells (Carandini et al., 1999). Similarly, psychophysical 

evidence suggests that the nonlinearities associated with second-order vision are 

caused by similar normalizations among channels (Graham & Sutter, 2000). In the 

second implementation, I removed the nonlinearity from the intermediate rectifier 

(making it piecewise linear) as well as the nonlinear transfer functions at the end of 

both types of channels. Another contrast gain control network was added between the 

first-order channel and the first stage filters in the second-order channel. This early 

normalization is expected to make both first- and second-order channel outputs 

nonlinear but the resulting transfer functions are not necessarily the same for the two 

channels. Figure 4.12 shows the modified model structure.  

AM depth 0.1 AM depth 0.2 AM depth 0.3 AM depth 0.4 
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Figure 4.12 Model implementation version two (in place of Fig 4.8b). Explicit nonlinearities are 

removed and additional early normalization network are added. Early normalizations take place 

among simple cells before information is passed on to the second filtering stage. 

 

 

The fitting was done analytically.  Var in Equation (4.7) was replaced with a more 

general operator representing the magnitude of the response in each shading 

component:  

  2

2

rMagC

C

C
KC

r

j

rj

ri

Ri







      (4.10) 

Since LM signals and AM signals were combined either in-phase or out-of-phase, the 

magnitude of the linear combination of LM and AM responses can be written as: 

     rAMMaggrLMMagrMag     (4.12) 

where rLM and rAM are responses of the LM pathway and AM pathway respectively.  

 

The magnitude of rLM is the direct product of the early normalization and can be 

expressed in a format similar to Eq 4.7 and 4.10: 

g 

+

+ 

 2  

 2  

+ 
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÷ 

÷ 

LM pathway 

AM pathway 
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   (4.13) 

where 2

E is the equivalent of in Eq 4.7 and Eq 4.10 for the early 

normalization,  yxL , is the linear response of a simple cell. w is the weight for the 

contribution of other simple cells to the normalization pool. w should vary with the 

spatial frequency ( fw ) and orientation tuning ( jw ) of the contributing cells (Foley, 

1994). In this implementation, the weights for cells tuned to the same spatial 

frequency as the excitatory cell were fixed to 1 ( jw =1), regardless of their orientation 

tuning. This is to reflect that the orientation tuning in the inhibitory term in the 

denominator of Eq 4.13 is very broad (Foley, 1994) and that substantial suppression 

can still be found in cross-orientation masking paradigm where mask and target differ 

significantly in orientation (Meese & Holmes, 2007). Studies concerning the weights 

for cross-frequency interactions are rare so fw was made a free parameter and 

depended on the differences in spatial frequency between the channels. Empirically 

the inhibitory power of a simple cell over a given excitatory cell is determined by the 

similarities of the two cells: the excitatory cell receives most inhibition from cells 

similar to itself (but see Meese & Hess, 2004). fC was the mean response of simple 

cells to the noise carrier thus its value was chosen to be the noise contrast. 

 

The next step is to analytically derive   yxLMag , . LM signals were generated using 

the formula below: 

 mMnNILM  10      (4.14) 
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where 0I is the mean luminance in the look-up table, N is the pattern of binary 

noise, n is the noise contrast, M is the modulation signal, in this case sinusoidal 

grating, m is the modulation depth. Suppose that noise does not fall into the passband 

of the filter tuned to the modulation. That is, the term nN in Eq 4.14 will not 

contribute to   yxLMag , . Let us introduce another symbol denoting the signals 

which will contribute to   yxLMag , : 

 mMIML  10       (4.15) 

Suppose that linear filters are perfectly DC balanced. Then the magnitude of the 

response of a linear filter tuned to LM is a linear function of the signal strength of 

ML  (one without binary noise). Here I take the difference between the maximum and 

minimum values of ML  as a measure of the signal strength. That is:  

     mkIMLMLkyxLMag MinMax 02,      (4.16) 

here k is a constant. For the sake of simplicity, I take the assumption that 12 0 kI . So 

Eq 4.16 can be rewritten as: 

  

12

,

0 



kI

myxLMag
       (4.17) 

Note, however, that Eq 4.17 does not mean that the magnitude of the linear response 

of a simple cell to its preferred optical pattern is the contrast of that particular pattern. 

The linear response is also dependent on the mean value 0I . We can substitute Eq 4.17 

back to Eq 4.13 to get  rLMMag . 

   

To derive the magnitude of rAM , we start from the linear responses of simple cells at 

the first filtering stage. AM signals were generated using the formula below: 

  mMnNIAM  110      (4.18) 
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Note that the addition of low frequency luminance modulation to the AM signal will 

not go through AM pathway, assuming linear filters are perfectly DC balanced. Thus 

in the AM pathway, the signal contributing to  rAMMag is exactly AM. It is clear 

from Eq 4.18 that the minimum and maximum amplitudes in the AM signal are: 

 

  0

0

1

1

ImnamMax

ImnamMin




     (4.19) 

Hence the corresponding minimum and maximum signal strengths are twice Eq 4.19: 

 

 mnIsMax

mnIsMin
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12

12

0

0
      (4.20) 

According to Eq 4.16 and Eq 4.17, the minimum and maximum magnitudes of the 

linear responses of the first stage filters are: 

  
   
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112

112

0

0
   (4.21) 

These linear responses will go through the same normalization network as does LC in 

Eq 4.13. Let rMin and rMax denote the normalized minimum and maximum responses 

of simple cells in the AM pathway. Then we have: 
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     (4.22) 

E is same as in Eq 4.13. fw also had the same value in the practice because only two 

frequencies were involved and fw was equal for the two interactions. The magnitude 

of the response after the second stage filter can be determined by the formula below: 
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 
2

rMinrMax
krAMMag


       (4.23) 

The derivation of  Eq 4.23 is explained graphically in Figure 4.13. k was absorbed into 

gain term g in Eq 4.12. In total there were 4 free parameters: wgE ,,, . The search 

for optimal parameters was done in the same way as for version one. The parameter 

set which resulted in the least cost values is as follows:  

23.0,3,24.0,029.0  wgE   

Again, g is not an overall gain of the AM pathway but a parameter adjusting the 

relative strength of the two pathways. Given LM and AM of equal modulation depth, 

the response of AM pathway is about 1/10
th

 of LM pathway under these parameter 

setting, matching the relative sensitivity to the cues for noise contrast 0.1 as found 

psychophysically (Schofield & Georgeson, 1999).  

Figure 4.13 Illustration of the derivation of Mag(rAM). Responses of simple cells in the AM 

pathway are rectified about the mean (the line in the middle). Thus the signal that will be picked 

up by the second stage filter is the variations in amplitudes. The contrast of this variation is half 

of the difference between the maximum and minimum responses. 

 

4.5 Model predictions 

The model was implemented in two ways as discussed in the last section. The results 

were compared with experimental data described in previous chapters.  

4.5.1 The perceived depth as a function of AM depth 

Figure 4.14 shows experimental data and the model prediction. Details of the haptic 

experiment can be found in Schofield et al. (2009 and in press) but is briefly described 

rMax  rMin  

2

rMinrMax 
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as follows. Note that the current author did not collect this data although the model 

described here is reported in the paper. Observers felt a surface undulating in one 

direction only using a haptic force feedback arm. The frequency of the surface 

matched that of the gratings with the peaks of the surface matched to each observer‘s 

preferred location. Observers were asked to adjust the amplitudes of the haptic surface 

to match perceived surface depth. Amplitudes of the haptic surface were recorded as a 

measurement of perceived depth amplitude.  
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Figure 4.14 Model predictions for perceived depth as a function of AM strength. Experimental 

data from Schofield et al (2009; in press) are provided to facilitate comparisons. Human 

perceived depth amplitudes for single oblique and plaids stimuli were given by diamond and 

squares symbols respectively. Model predictions are shown by the lines with the dashed line 

representing single oblique and the solid line plaids.    

 

 

 

Model implementation: Version one 

Model implementation: Version two (with early inhibition) 
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Figure 4.15 shows the resulting images based on the output of the model version one 

in response to some of the test images in Figure 4.10 and 4.11. Output images for 

model version two would look very similar if presented here. As discussed earlier on, 

the output of the classification unit represents strengths of shading component at 

various frequencies and orientations. Thus the shading image can be generated by 

rescaling each shading component to its normalized magnitude. Results show that 

when AM was weak (2a), the LM+AM stripe was preferentially weighed but the LM-

AM stripe still produced as identifiable shape-from-shading component (2b). 

However when AM was strong (3a), LM+AM completely dominated the output and 

the LM-AM stripe was almost completely flattened (eradicated from the output 

image) (3b).  For a single oblique, the LM-AM stripe (4a) still gave rise to a shading 

map on its orientation (4b), consistent with the observation that a LM-AM alone is 

perceived more corrugated than when it is in a plaid. 
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Figure 4.15 Input images (only half of total cycles are shown here) and images generated from 

the output of the model.  

(b) Output images (a) Input images 

1. Plaid 

AM = 0 

2. Plaid 

AM = 0.1 

Right: LM+AM 

Left: LM-AM 

3. Plaid 

AM = 0.4 

Right: LM+AM 

Left: LM-AM 

4. Single 

LM-AM  

AM = 0.1 

5. Single 

LM-AM  

AM = 0.4 
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4.5.2 Perceived depth as a function of carrier frequency 

Version one of the model was applied to the stimuli presented in chapter 3. Version 2 

was not exposed to these stimuli as a lot of the assumptions made in implementing 

this version do not hold for these stimuli. For example, the assumption leading to Eq 

4.15 no longer holds because low frequency carriers will also go through the LM 

pathway. Moreover, psychophysical evidence suggest that the cross-frequency 

weighting term w  would need to vary for carriers with different spatial frequencies 

(Meese & Hess, 2004) leading to a lot of additional free parameters that would 

weaken the predictive power of the model.  

 

The stimuli described in chapter 3 were processed by version one of the with similar 

parameter settings except that the first-stage filters were tuned to the dominant 

frequencies of the constituent Gabor patterns. The inter-connection between the two 

filter stages were established according to the rules described in section 4.2.3. As the 

carrier frequency approached the modulation frequency, interference due to the carrier 

leaking through the ‗high‘ frequency LM channel was no longer negligible. The 

model output is drawn in Figure 4.16. 
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Model output for plaid stimuli
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Human data for plaid stimuli
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Model output for single oblique stimuli
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Human data for single oblique stimuli
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Figure 4.16 Comparison of model predictions and human performance.  

 

The model captures the overall trends in the probe point data (see Fig 4.16). For 

example, the model output for single components is reduced at lower frequency 

carriers regardless of how LM and AM are combined. For the plaid configuration, the 

model output of LM+AM and LM-AM is well separated when carrier frequencies are 

high but start to merge as the carrier frequency is reduced. Direct comparison between 

human performance and model predictions are difficult for the probe point experiment 

for reasons outlined below. Thus in the next section I derive a suitable conversion 

algorithm that allows such a comparison. 
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4.5.3 Assessment of the model prediction 

In assessing the model‘s predictions it is important to note that the two-point probe 

task (See chapter 3) and the haptic match task used by Schofield et al. (in press) are 

very different. The model output RiC cannot be used to directly predict the perceived 

depth in the two-point probe task. A notable distinction between the two experiments 

is that in a two-point probe task, observer‘s decision regarding to which point on the 

test orientation appeared closer could be affected by the grating on the other 

orientation in the plaid condition. In the probe task two dots were placed with a small 

offset along the test orientation but no net offset along the orthogonal orientation. 

However observers could base their response on the non-test grating instead of the 

test pattern. Further the probe tasks measures relative depth not absolute depth and 

may also be affected by uncertainty such that estimated depth amplitudes are a 

measure of how reliable the depth percept is rather than perceived depth per say. 

Therefore the data from the two experiments cannot be compared on a piecewise basis 

and the model output (designed to match the haptic data) should not be compared 

directly to data obtained in a two-point probe task.  

 

It is possible however, to make a quantitative link between the model output and the 

human data from the two-point probe task, which requires estimating the distribution 

of the latter. The following subsections will introduce further corrections needed in 

order to link the model output with human performance in the two-point probe task. 

 

It is a common practice to model human responses by a joint likelihood function. In 

the problem of interest, observers‘ responses were dependent on three source of 

information: the gratings along both test (T) and foil (F) orientations and any texture 
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(N) that leaks through the LM filter. When the modulations were carried by high 

frequency textures, the two gratings were the major contributor to observer‘s 

response. Let us consider the case when the testing grating was the only information 

available. Assume first that an observer could tell the offset with the probability p at 

the three testing positions within half cycle of a sinusoidal grating (position B, C and 

D in Figure 4.17). Then the response to a given trial is given by a random 

variable x which obeys the Bernoulli distribution: 

        15.0,44,12,11Pr,1Pr 2  pppxVariancepxEpxpx  

The accumulated score for all three positions is a random variable X which is a sum of 

all attempts made in the 2438  repetitions. According to the central limit theorem, 

the distribution of X can be approximated by a Gaussian distribution 

with 22 9696,2448 ppp   . For position A and E, the accumulated score for 

each positionY  follows a similar Gaussian distribution but with 5.0p . That 

is  8,0~ NY . Thus the surface height that an observer reported would follow a 

Gaussian distribution. During the original data analysis, the final surface height was 

divided by half of the total number of samples within a cycle and approximated by the 

amplitude of a fitted sine function. So the final reported height (see Fig 4.17) is given 

by,
842

YXheight
hT





 :   2

5.05.15.0,36~  ppNhT , but note that this only 

holds if the test grating were the only information available.  

 

When viewing single gratings carried by high frequency textures, the reported depth 

values can be well described by Th . Thus p can be estimated by solving the equation 

below: 

  HphMean T  36        (4.24) 
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where H is the average perceived depth in the human data for single gratings carried 

by 8.0c/d and 16.0c/d textures. Solving Eq 4.24 yields 723.0p , which literally says 

that, on average, the chance of human observers making correct decisions on the 

depth comparison between two adjacent positions is 72.3% even when no other 

sources interfered with their decision.  

 

Figure 4.17 Surface height was computed by discrete integration along the testing direction. The 

sinusoidal trace represents a sinusoidal surface that an observer perceives from a sinusoidal 

grating.  

 

 

If the foil grating is the only source of information, then observer‘s attempts at each 

trial will again obey the same Bernoulli distribution as x due to the zero offset 

between the two positions in the direction of the foil grating. Thus the score for each 

position after eight repetitions also roughly followed the same Gaussian distribution 

as X . As a result, the reported surface height in this case ( Fh ) would follow a similar 

Gaussian distribution to that of Th but with 5.0p :  5.0,0~ NhF .  
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Figure 4.18 Human behavioural response is a joint distribution of all source of information 

including testing grating and false grating (distribution of the response based on textures is not 

shown). The distribution of h is scaled for demonstration purpose.  

 

The behavioral response h is a joint distribution of Th and Fh (plus Nh when textures 

start to interfere), as shown in Figure 4.18. The probability density function (pdf) 

for h has a shape close to Gaussian lying between FT hh , . Its mean is a linear 

combination of that of Th and Fh . The weights are inversely related to the variance of 

each distribution. Figure 4.18 describes the situation where the signal strengths of the 

two sources are equal. When they are not equal, the mean of the grating with greater 

signal strength should be weighted more. Taken together, the mean of h can be 

obtained using the formula below: 
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    (4.25) 

where the C s are the channel response for either test gratings or foil gratings, the  s 

and  s are means and standard deviations of the estimated distributions. 

 

When the carrier signal leaks though the LM filter, this signal would act as a third 

source of information affecting observer‘s response. Denoted Nh , the reported surface 

height if the observer only responded to the carrier texture. It is easy to see 

Th  Fh  

h  



 129 

that Nh obeys the same distribution as Fh except that the variance of Nh should be 

scaled properly based on its relative strength. Incorporating the influence of Nh into Eq 

4.25 gives: 
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        (4.26) 

 

Using Eq 4.26 and the estimated distributions for Th , Fh and Nh , a quantitative link 

between the model output and the human data can be established. Figure 4.19 shows 

the model curves as computed from Eq 4.26.  
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Model prediction for two-point probe task (single)
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Figure 4.19 The comparison between the model prediction and the experimental data after the 

model data have been transformed into the same ‗space‘ as the human data. Squares and 

diamonds represent human data. Predictions made by applying Eq 4.26 together with the model 

outputs (Fig 4.16) are represented by dashed and solid lines.  

 

Model predictions and human data can now be compared directly. In the plaid 

configuration, the tendency for the depth amplitudes of LM+AM and LM-AM to 

merge at low carrier frequency is retained, although the perceived depth amplitude of 

LM-AM signals is somewhat underestimated by the model. The difference between 

the model cues is slightly overestimated at low carrier frequencies and this may 

indicate that the reduction in the signal strength of second-order vision in the model is 

not as strong as that in humans. For single gratings, predicted depth amplitude is high 

for both LM+AM and LM-AM on high frequency carriers and starts to decrease as 

the carrier frequency approaches the frequency of the modulation. However the 

decrease takes place one octave sooner in the human data. Recall that cells responsive 

to both first-order and second-order signals have separated pass-bands (Zhou & 

Baker, 1996; Song & Baker, 2006). Although the first-order pass-band is close to the 

second-order pass-band and both are relatively low-frequency, the first-order pass-

band is often selective to slightly higher frequencies than the second-order pass-band 

(Zhou & Baker, 1996; Song & Baker, 2006). To reflect this in the model, the 

1.0 2.0 4.0 8.0 16.0  
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preferred frequency of the filter in the LM pathway should be slightly higher than the 

second filter in the AM pathway. This adjustment would shift the point at which the 

carrier starts leak through the LM pathway upwards in frequency and hence predicted 

depth amplitude would start to decrease at relatively higher carrier frequencies.  

4.6 Discussions 

4.6.1 Comparisons of the two versions 

The two versions of the model differ in how the nonlinearities in the second-order 

channel are achieved. Version one applies a deep power law to the intermediate 

rectifier and a nonlinear function to the channel response. Version two replaces those 

explicit nonlinear functions with an early normalization network. With less free 

parameters, version one provides a slightly better fit and can also be easily extended 

to predict human performance in the multi-carrier frequency experiment (Chapter 3). 

Version two however, provides an insight into the origins of the nonlinearities in the 

AM pathway and may be more biologically plausible. In comparison, version one 

only gives a functional description of the nonlinearity and achieves response 

saturation in a rather unrealistic way. However, both versions have support from 

human psychophysics in terms of the characteristics of the nonlinearities associated 

with second-order vision (Graham & Sutter, 1998; Graham & Sutter, 2000).  

4.6.2 The nonlinearities in the second-order vision 

The contrast transfer function measured for contrast responsive cells in cat area 18 is 

low for second-order contrast modulations with weaker signal strengths and 

expansively accelerates without saturation for stronger signals (Ledgeway et al., 

2005). Ledgeway et al. (2005) favoured an explanation in which weaker signals were 
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suppressed by an intermediate rectifier obeying a deep power law. However the large 

value of the multiplier g in version one suggests that this arrangement may over-

suppress the information such that it has to be amplified again by a great deal. This 

could risk a poor signal to noise ratio at the implementation level. In fact, from Eq 

4.14 and 4.18, it is clear that the ratio of the signal strengths of AM and LM is 1:n  

(where n is the noise contrast), given that their modulation depths are equal. Thus the 

high threshold found for second-order vision in early studies is more likely due to the 

inherently weak signal strengths in the stimuli, rather than some internal attenuation 

process within second-order vision. In version two, the deep power law rectifier was 

replaced with an early normalization network, which (perhaps counter intuitively) 

also provides acceleration for stronger signals. To verify the validity of this early 

normalization network, the second-order contrast response function of the model was 

constructed by plotting the AM channel response as a function of AM modulation 

depth based the parameters obtained earlier. As shown in Figure 4.19, the AM transfer 

function contains an early suppression followed by acceleration but with no saturation 

at high modulation depths. These properties are consistent with the nonlinear 

characters of the contrast response function of second-order cells (Ledgeway et al., 

2005). 
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Figure 4.20 The response of AM pathway as a function of AM modulation depth.  

 

4.6.3 The role of the model in shape-from-shading 

The model described in this chapter constitutes the feature extraction and luminance 

classification units of the general framework proposed for shape-from-shading in 

human vision. The feature extraction unit decomposes the input image into different 

frequency and orientation bands. In the mean time, second-order features were also 

extracted for future use. Coefficients at each band were subject to suppression or 

facilitation depending on the phase relationship between the underlying luminance 

signal and the corresponding second-order information. The output of the model 

represents the strengths of shading components at different orientations and different 

frequencies. This architecture attempts to explain the neural mechanisms underlying 

the known phenomenon of layer segmentation (Kingdom, 2008) with respect to the 

AM cues. The implementation could be carried out in early visual areas being broadly 

consistent with known psychophysics and physiology and does not require top down 

control. For example, some cells in cat area 18 are responsive to both first-order 

stimuli and second-order-stimuli (Mareschal and Baker, 1996) and seem to sum these 

signals linearly (Hutchinson et al, 2007). In studies of human psychophysics, first- 
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and second-order channels seem to integrate at some relatively early stage while 

retaining their own identities (Georgeson & Schofield, 2002). In the model, first-order 

channels and their corresponding second-order channels were summed, reflecting 

these links between the two channels. There is also ecological validity for the 

existence of a hard-wired connection between first- and second-order channels. 

Responses of biologically inspired first- and second-order channels were found to 

correlate in natural scenes (Johnson & Baker, 2004) but the sign of the correlation 

may vary between images (Schofield, 2000). This observation indicates that co-

varying first- and second-order signals convey valuable information in natural scenes 

(Schofield et al., in press). The summation between the two channels provides a 

solution to code this covariance thus extracting the information conveyed by the 

relationship between the cues.  

 

The model presented in this chapter could lead to a useful image processing algorithm 

working within the spatial frequency domain. The output of each shading channel 

represents the strength of shading component at the corresponding frequencies and 

orientations. The shading image can be recovered by multiplying each base 

component by their strengths, similar to the inverse operation of the linear 

decomposition at the initial stage. Natural images often contain numerous frequency 

and orientation components; thus a useful algorithm would require extra frequency 

and orientation channels to function well. However the relationship between LM and 

AM can be also be exploited in the spatial domain to serve as an image processing 

solution to real images. Such an image processing algorithm is described in next 

chapter.  
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5. Recovering shading and reflectance information 
from real images using texture 

 

 

This chapter presents a machine vision algorithm for separating shading components 

from reflectance components in greyscale images. The rule used to distinguish 

between these two components is similar to that used by humans to assist in shape-

from-shading tasks: luminance changes that are coincident with contrast changes are 

likely to be due to reflectance changes whereas those that are not associated with a 

change in contrast are likely to be due to shading (Schofield et al., 2006). This in turn 

arises from the multiplicative nature of shading (see section 5.2). Examples where the 

algorithm has been applied to experimental and real images are provided in the end of 

the chapter.  

5.1 Introduction 

The idea of separating the retinal image into layers in human visual processing (see 

section 1.1.6 in Introduction) has an equivalence in computer vision —intrinsic image 

decomposition. The term intrinsic image, first introduced by Barrow and Tenenbaum 

(1978), is used to describe information resulting from independent characteristics of 

the scene such as illumination, object / surface shape / orientation, and surface 

reflectance (see also Tappen et al 2005). The major difficulty of decomposing 

intrinsic images resides in the ill-posed nature of the problem–solving two unknowns 

(illumination and reflectance) with one known variable (pixel intensity). But natural 

scenes often contain visual regularities that could help to constrain the problem. 

Attempts had been made to achieve a similar purpose before the concept was formally 

developed. Land and McCann (1971) proposed the Retinex theory for removing 

lighting effect in photos of Mondrian patterns. The central idea was that the changes 
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between Mondrian patches form sharp edges whereas illumination causes gradual 

variations in luminance. The Retinex theory discounted these gradual variations while 

reintegrating sharp luminance changes to obtain only the reflectance component. The 

earliest Retinex theory was a 1-D implementation. Later on Horn (1974) extended it 

to be applicable to 2-D images. The process of finding luminance changes was 

modelled by filtering the input image with a 2-D Laplacian filter. The identification of 

reflectance changes from changes by illumination was based on the same idea as the 

original Retinex theory. The reintegration was conducted by applying an inverse 2-D 

Laplacian operator. Horn‘s extended Retinex algorithm has become a popular 

framework for intrinsic image decomposition. That is, a process of reconstruction 

from classified luminance edges or luminance derivatives. Many later studies on this 

topic tend to focus on developing new rules for classifying luminance edges. For 

example, a few studies have attempted to retrieve intrinsic images based on 

correlations with hue alone (Olmos & Kingdom 2004; Funt, Drew & Brockington, 

1992). In these methods, separation was based on the observation that co-incident 

(positively correlated) changes in hue and luminance tend to indicate a reflectance 

change whereas a luminance change without a co-incident change in hue tends to 

indicate shading. The algorithms first extract luminance gradients and hue edges from 

the original image. The luminance gradients are then classified as being due to 

shading or reflectance changes based on the existence of co-located hue edges. 

Having been classified as either due to shading or reflectance, luminance changes can 

then be reintegrated to recover the corresponding intrinsic components.  

 

In an alternative method, Finlayson, Hordley, Lu & Drew (2006) derived an 

illumination-invariant representation of a colour image based on a colour-calibrated 
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camera. By projecting the RGB values of a pixel in an image into a 2-D chromatic 

space, a direction in the space can be observed on which pixels remain constant under 

changing illumination, for any given surface for a calibrated camera. The 

illumination-invariant representation provides an additional constraint to help with the 

disambiguation of luminance derivatives. In fact Finlayson‘s illumination-invariant 

feature is a generalization of the rules employed by classic colour-based lightness 

recovery algorithms discussed above but delivers better performance for outdoor 

scenes taken by a specific camera at the cost of the additional calibration process. The 

improved performance results from the fact that Finlayson‘s illumination-invariant 

chromatic feature is immune to illumination colour and that natural and artificial 

lights often contain colour tints that confuse other algorithms. The hue based 

classification methods have a degree of biological plausibility. For example, Kingdom 

(2003) and Kingdom et al. (2004) has shown that changes in hue can help the human 

vision system to determine whether luminance changes are due to changes in 

reflectance or shadings. 

 

The general success of colour based separation methods is attributed to the constraint 

provided by the additional chromatic measurement associated with each pixel in the 

image. When colour is not available, constraints on pixel level are hard to determine. 

However illumination also causes regularities on a more global level in terms of 

spatial relationships between regions and such regularities have been proved helpful 

either in combination with colour or alone for intrinsic image decomposition. Sinha 

and Adelson (1993) proposed a strategy for separating reflectance from illumination 

in painted polyhedra. Their strategy first computed the 3-D layout of the surface by 

employing a number of heuristic rules applicable to 3-D objects that are made of 
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planar surfaces. Then each edge in an image can be assigned with an identity of either 

reflectance of illumination according to the 3-D layout of the object. Hence it is a 

typical example of using global information to constrain the local luminance changes. 

Tappen et al. (2005) developed an algorithm with gradient classification rules based 

on both hue and the spatial relationships between pixels in the corresponding 

greyscale image. The rules linking spatial layout to illumination were learned through 

a training algorithm, though the rules that were learnt were not explicit in the 

application.  

 

In another approach, Li, Tan & Lin (2008) observed that some global features of 

textures could be used as a cue to reflectance identification in addition to colour. 

Given a colour image, the global feature was obtained by assessing the similarities 

within like-textured regions. Thus each pixel in the image was assigned with a label in 

terms of which texture group it belonged to and a weight indicating the probability 

that this association could occur. Each texture group was assumed to have a unique 

reflectance value. The labelling and the weights could then help to further constrain 

the process of luminance classification. However, the number of different reflectances 

(i.e. number of different patches) must be determined in advance. This algorithm is 

another example of using global information to constrain the ill-posed problem. 

 

Finally, some researchers have proposed solutions to the separation problem using 

multiple, registered images (Weiss, 2001; Agrawl, Raskar & Chellappa, 2006). This 

family of methods take the advantage of having multiple measurements of image 

intensities under various illuminations which relieves the ill-posed problem. However, 

these methods require multiple images of the same scene under different illuminations 
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and hence are less favoured, for pragmatic reasons, than approaches requiring only a 

single image. 

 

Some of the methods described above echo the human ability to attribute luminance 

variations to the lightness of a surface and variations in surface norms based on the 

global 3-D layout (Knill, 1991; Sun & Perona, 1996). In this chapter, I will present an 

algorithm that also employs a new, non-local texture feature to classify luminance 

changes. The algorithm does not require colour information and thus provides a 

solution for intrinsic image decomposition when colour is not available. But, similar 

to the method proposed by Li et al. (2008), it can be used together with local features 

such as colour to provide further constraints on the inverse problem of image 

separation. In human vision studies, image texture provides a cue for interpreting 

luminance modulations as either due to shading or reflectance variations in a way that 

it analogous to the role of hue (Schofield et al., 2006).  

5.2 Generative model 

Assuming Lambertian surfaces, whenever a surface is shaded, the luminance at each 

point  yxI ,  is the product of the shading  yxS ,  and the reflectance  yxR , : 

     yxRyxSyxI ,,,       (5.1) 

The goal is to recover  yxS , and  yxR ,  from a gray image  yxI , where texture is 

the dominant reflectance feature. When a texture that is purely visual (i.e. painted 

onto the surface) and statistically uniform is shaded, the resulting change in 

luminance is accompanied by a correlated change in the local luminance properties of 

the texture such as the standard deviation of local luminance values (Schofield et al 

2006). This cue is, basically, the same as the AM variations discussed in chapters 2-4. 
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Dark and light pixels in the texture are multiplied by the illumination such that as 

illumination varies both the maximum and minimum luminances change resulting in 

a change in both mean luminance and in the range of luminances present.  Hence 

dividing the image by its local mean luminance profile will give rise to an image 

matrix with nearly uniform luminance properties (both mean luminance and standard 

deviation) so long as the texture is uniform. The division process will have effectively 

removed any variations due to shading. However, if there is more than one texture 

present in the scene then dividing by mean luminance will also remove luminance 

changes due to reflectance changes (albedo), but it will not remove changes in 

luminance standard deviation due to differences between textures. Let us define this 

residual luminance standard deviation as intrinsic texture amplitude (intrinsic here 

indicates that we are dealing with an intrinsic property of the scene). Intrinsic texture 

amplitude (ITA) is a measure of contrast; defined as the standard deviation of the 

pattern divided by the mean. The aim is to separate reflectance changes from 

luminance changes and we can now formulate a rule for this distinction, based on 

ITA, which is similar to that based on hue:  

Co-incident (positively correlated) changes in ITA (contrast) and luminance changes 

in the original image tend to indicate a reflectance change whereas a luminance 

changes without a co-incident change in ITA (contrast) tend to indicate shading. 

 

By applying the generative model in reverse, one can determine the origin of any 

luminance change in an image, and this information can be used to recover the 

intrinsic properties (images) for the scene. I have chosen to isolate luminance changes 

due to shading first and then apply an inverse method to recover the shading 

component. A graphical description of this process is illustrated in Figure 2.1. 
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Figure 2.1 Graphical illustration of decomposing intrinsic images based on Intrinsic Texture 

Amplitude (ITA). The original image (a) is decomposed into its mean luminance (b) and (c) 

resulting from dividing (a) by (b). Local contrast (d) is calculated from (c) and its edge is 

extracted to form (e). Partial derivatives (g) and (f) are then calculated from (b). These partial 

derivatives are linked to produce a link map (h) according to the region that the edge spans. (g) 

and (f) are classified according to information in (e) and (h) to give (i), from which the shading 

image (j) can be computed. Subtraction (j) from (a) will give (k).   
 

 

 

b) Local Mean luminance 
c) Divide by mean 

h) Link map 

g) Horizontal derivatives f) Vertical derivatives 

e) Edges of contrast 

i) Deleted 
derivative maps 

k) Reflectance map 

a) Carpet and painted surface are shaded 

j) Shading map 

d) Local contrast ITA 
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5.3 Image pre processing: low pass filtering 

It is believed that shading signals in natural images normally present a low spatial 

frequency profile (Land & McCann 1971; Horn 1974). While preserving most 

shading signals in the image, this step removes the fine luminance changes due to 

texture elements for future computational efficiency. As will be discussed later, every 

luminance change will go through a classifying process. Reducing the number of 

luminance changes to be processed, by removing those which are unlikely to be due 

to shading, increases the efficiency of the classification process. The original image is 

filtered with the use of a normalised Gaussian kernel such that the filtering process 

does not introduce any luminance scaling. The resulting image is one that mainly 

contains large scale luminance variations due to either shading or changes in texture. 

This process is described by Equation 2.2: 

     yxGyxIyxIblur ,,,       (2.2) 

5.4 ITA and its variations 

Recall that the term ITA refers to the standard deviation of local luminance values 

after dividing the original image by its local mean luminance map. If we denote 

 yxI div ,  as the image matrix after the division, an operator mask can be generated to 

move continuously across  yxI div ,  to calculate standard deviation (i.e. ITA) based on 

overlapped regions at each point. Equation 2.3 describes this operation: 

 
 
 

    stddiv

blur

div

fyxIyxITA

yxI

yxI
yxI

,,

,

,
,




     (2.3) 

where  yxIblur , is the low pass filtered image after conducting equation 2.2 and stdf is 

the operator mask calculating standard deviation of luminance values within the size 
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of the mask. The effect of dividing an image by its local mean luminance is illustrated 

in Figure 2.2.  

 

     (a) 

 

  

  (b)      (c) 

Figure 2.2 Effect of dividing an image by its low pass profile. (a) original image where two 

texture patches are shaded  yxI , . (b)  yxIblur , low pass profile of (a). Note that the two large 

variations in luminance are not distinguishable. (c)  yxI div , (a) has been divided by (b).  

 

As explained in section 2.2, ITA is invariant to large scale luminance changes but 

preserves the property of the underlying texture and therefore can be used as a feature 

to find boundaries of different textures. Note that ITA is not the reflectance 

component of the original image. The division removes albedo changes as well as 

illumination effects. These boundary locations indicate where reflectance changes 
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take place in low pass filtered images. For example in Figure 2.2, large scale variation 

in ITA arises from the boundary of the carpet and the painted texture.  

 

The next step is to locate these variations in ITA which is equivalent to detecting 

edges in the ITA map. This is accomplished by finding zero-crossings of the second 

derivatives of the ITA map. Subject to thresholding and appropriate choice of filter 

size, texture segmentation can be achieved which is invariant to illumination. The 

accuracy of this boundary localization process is not crucial for reasons that will 

become clear later. Let‘s term the resulting edge-map  yxTxtEdge , . Recall from 

section 2.2 that any luminance change without a co-incident change in ITA tends to 

indicate shading. Thus edge-map  yxTxtEdge , is useful for disambiguating luminance 

changes in  yxIblur , . 

 

It is worth pointing out that the actual edge detection algorithm to be employed is not 

critical. In fact, any method that is able to segment  yxITA , will suffice. The key 

point is to find locations where one texture-defined patch abuts another while 

disregarding any illumination effects. In the case of this implementation, it was ITA 

that served as a defining feature for locating the genuine texture boundaries.   

 

5.5 Classification of luminance changes 

Ideally, each luminance change will be labelled as due to shading if there is no 

corresponding edge in  yxTxtEdge , . However, the accuracy of the edge locations 

obtained at previous stage cannot be guaranteed. Furthermore, due to the 

characteristics of low spatial frequency variations, luminance changes induced by a 
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texture boundary in  yxIblur , tend to span in the direction orthogonal to the actual 

boundary. All these factors combined suggest that it make more senses to discount not 

only the luminance changes which have accompanied edges at the exact locations 

in  yxTxtEdge , but also the luminance changes close to or associated with them. This 

problem can be solved by constructing a group of links each of which consists of a set 

of associated luminance changes. If any element in a link is labelled as NOT due to 

shading, the entire link is rejected as candidates for shading. The proposed linking 

rule is that luminance changes, which form a smooth ramp in the gradient direction, 

are grouped to form one link. Figure 2.3 illustrates this idea.  

 

  (a)      (b) 

  

Figure 2.3 Illustration of one link consisting of associated luminance changes: (a) a Gaussian 

blurred curvature edge. The gray bar runs across the edge in the direction of its local norm 

(gradient). (b) Luminance values on the gray bar in (a). The gray bar is bounded and its length 

should not exceed the width of the edge. In this demonstration, all the luminance changes falling 

inline with the gray bar should be linked together.  

  

Step1 The widths of Gaussian edges 

An edge width estimation method (Georgeson, Freeman & Hess, 2007; Lindeberg 

1998; Lindeberg 1993) was used in order to construct the links described above. 

Traditionally, features such as edges in an image can be extracted using Gaussian 
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derivative filters with appropriate scales (Georgeson et al 2007; ter Haar Romeny 

2003; Lindeberg 1993). In the case of one dimensional signal, such filters can be 

expressed as 
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where n represents the order of the derivative operators. Without any prior knowledge 

about the scale of a feature, the choice of the filter scale can be arbitrary. Lindeberg 

(1998) has devised a framework for edge detection with automatic scale selection. 

Within Lindeberg‘s framework, responses of image features are multiplied by a scale-

dependent normalization factor  such that the normalized responses will peak at true 

scales of the features. Equation (2.4) then becomes 

   
 

n

n

n
x

xG
xIxN







  ,

,      (2.5) 

where  can be set equal to
2

n
when applied to Gaussian blurred edges, as is a 

reasonable assumption to make for  yxIblur , . Georgeson et al. (2007) used this 

method to explain how human vision system might code the blur of a given Gaussian 

edge in one dimension. More precisely, they have implemented the third derivative 

response  ,3 xN with a more biologically plausible model to locate the position of a 

Gaussian edge as well as estimate its blur (i.e. width). Since convolution and 

differentiation are linear operators, they can be applied in any order. Thus  ,3 xN can 

be expressed as:  
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     (2.6) 

where b is the standard deviation of the Gaussian function which had generated the 

edge (assuming the edge is Gaussian). Note that the two Gaussian expressions 

become one from step 2 to step 3 because Gaussian variances add under convolution. 

Applying some basic calculus to (2.6) and setting 0x (edge location) gives 

 
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




2
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5.122
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b
bN




 .     (2.7) 

From (2.7), it is apparent that  bN ,,03  peaks when b , as its derivative with 

respect to reaches zero at that point. Thus the value of at 

which  bN ,,03  achieves a local extrema can be used to estimate the width of a 

Gaussian edge.   

Step2 Construct linked coordinates 

Lindeberg (1998) has utilized both normalized first derivatives and normalized third 

derivatives measures and has claimed that both achieve the goal of automatic scale 

selection for diffuse edges. Georgeson et al. (2007) argued that  bN ,,03  has better 

resolution than  bN ,,01  . Moreover, they have made a modification to  bN ,,03  in 

which the differentiation is split into two stages and only positive parts of the 

response are transmitted at each stage (half rectification). They thus solved the 

problem that two extra peaks are generated by a third derivative operator in response 

to each edge. In the current algorithm, zero-crossings of second derivative filters are 
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first used to derive edge locations. At each edge location, a normalized third 

derivative response is examined across all scales. Where the normalized third 

derivative response achieves a local extrema, the value of the scale is recorded and 

serves as an estimate of the width. For example in Figure 2.2, the actual width of a 

diffuse edge is Max32 .  

 

In order to compute a higher order directional derivative of a 2D image  yxI , , it is 

more convenient to introduce two local orthogonal directions u and v with v parallel to 

the local gradient at each point andu orthogonal to it (Lindeberg 1998; Lindeberg 

1993). Thus derivatives in these two directions can be expressed in terms of partial 

derivatives in the original Cartesian coordinates system 
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where is the angle between the gradient and x axis and can be determined using the 

following formula  
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Here I use simplified notations xI and yI for
x
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
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
. Similarly xxI xxxI will denote 

higher order derivatives in the following discussion. The problem of finding zero-

crossings of second order derivative in gradient directions can hence be expressed as 
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Note that the n th order directional derivative of a 2D function I along the v axis is 
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Substituting vvI vvvI  in (2.10) with (2.11) and (2.9), gives: 
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Equation (2.12) shows that vvI vvvI are combinations of partial derivatives in the 

Cartesian coordinate system which can be computed by convolving with 

corresponding Gaussian derivative filters at appropriate scales. For instance, xyI is the 

convolution of an image I and a Gaussian partial derivative operator
 

yx

yxG



 ,,
. 

Once edge positions are located, the normalized third derivatives at those points are 

assessed across all the candidate scales and the true scale Max can be easily estimated. 

With the edge point, gradient direction  and estimated width all available, a link 

such as the gray bar in Figure 2.3 can be constructed. If the same process is carried 

out for every edge point, a group of such links will be established for the entire low 

pass filtered image  yxIblur , . If we compare  yxTxtEdge , with this group of linked 

positions, we will have estimation in regard to where luminance varies due to changes 

in texture and where luminance varies due to shading.  

Step 3 Labelling luminance changes 

In this section, we will look at how the classified luminance changes should be 

processed. Luminance changes can be modelled using linear operators such as 

gradient operator or Laplacian. Equation (2.1) can also be written in the log domain 

as: 
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     yxRyxSyxI ,ˆ,ˆ,ˆ        (2.13) 

where    yxSyxS ,log,ˆ  and    yxRyxR ,log,ˆ  such that the two intrinsic 

components are linearly separable. Consequently, applying a linear operator 

to  yxI ,ˆ is equivalent to applying the same operator to the intrinsic components 

individually and then adding the results together: 

     yxRLyxSLyxIL ,ˆ,ˆ,ˆ       (2.14) 

where L is a linear operator, representing changes in luminance. Those non-zero 

values in  yxIL ,ˆ whose locations have been classified as places where luminance 

varies due to changes in texture, are set to zero. All the rest of the non-zero values in 

 yxIL ,ˆ  are retained. In doing so, we hope to eliminate the reflectance component 

(the second term in (2.14)) and only retain the shading component (the first term in 

(2.14)).  

 

However problems may arise from treating all points lying on a link equally. Imagine 

at a location that is very close to the two boundaries of a link, the local gradient may 

lie on a direction very different to that of the link. This often occurs when two types 

of luminance variations intersect. Hence it is useful to compare the local gradient 

direction with the direction of the link before carrying out any labelling process. Only 

when the difference of the two directions falls below a threshold, are the 

corresponding derivatives set to zero.  

 

The remaining non-zero values in  yxIL ,ˆ should mostly represent  yxSL ,ˆ and should 

be ready for the reconstruction process. 
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5.6 Reconstruction: Inverse filtering 

Given an estimated  yxSL ,ˆ , the recovery of  yxS ,ˆ involves inverting a system: 

    yxILCyxSL ,ˆ,ˆ         (2.15) 

where  C represents the classification process. The problem of finding the inverse of 

an imaging system is very often an ill-posed one. Weiss (2001) and others (Olmos & 

Kingdom 2004, Tappen et al 2005) used the gradient operator in place of L . Solving 

(2.15) then involves calculating the integral: 

   ),ˆ(,ˆ

2

yxICyxS

R

        (2.16) 

where is a vector field. For discrete functions, differentiation can be approximated 

with the difference between the two adjacent samples. Written in the format of 

filtering and broken down to two scalar equations, (2.15) reads as follows 

 
   
   









yxDfyxS

yxDfyxS

yy

xx

.ˆ,ˆ

,ˆ,ˆ
      (2.17) 

where  yxDx , and  yxDy , are classified horizontal and vertical derivatives 

respectively. The two filters xf and yf are simply  1,1 and  T1,1 . Equation (2.17) can 

also be understood as an over-strained linear system where each scalar equation 

places a linear constraint on the image.  The solution to (2.17) can be found by 

working out its pseudo-inverse: 
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      (2.18) 

where T

xf T

yf are the transpose of xf and yf , is a Kronecker Delta Function-like 

metric with value 1 in the centre and 0 elsewhere. In practice, the calculation is often 

carried out in the frequency domain. Gradient based methods carry out the 
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reintegration along the fixed path (i.e. horizontal and vertical directions) hence are 

anisotropic. They take no consideration in the actual integrability of the gradient field 

as the operation is always valid given an initial condition. But in situations where the 

underlying gradient field is not conservative (cannot be integrated), the integrating 

path is vital and the horizontal and vertical direction may not be the path that gives 

rise to the best reintegration.  

 

Another widely used method is based on the Laplacian operator 2 : 

  
2

2

2

2
2 ,

y

f

x

f
yxf









       (2.19) 

Replacing L with 2 transfers the task into solving Poisson‘s equation: 

ES  ˆ2         (2.20) 

where E is the classified output of Laplacian operator (i.e. classified edges). The 

advantage of working with Laplacian operator is that finding the solution to Poisson‘s 

equation has been well studied. Second, being both a scalar function and isotropic, the 

inverse of a Laplacian is relatively straightforward to compute. However, from the 

information theory point of view, if a system results in loss of information, then the 

solution to the system is not unique because the lost information corresponds to many 

possible solutions. The more information the system dismisses, the more solutions it 

will have. Being a second-order derivative operator, a Laplacian throws away first 

order linear changes as well as the constant DC term of an image. For example, 

Horn‘s algorithm (1974) would fail to recover the reflectance of an image if it is not 

constant at the border. To counter this, Blake (1985) based the classification process 

on the gradient field (image obtained by applying gradient operator) but ran the 

inverse process by solving Poisson‘s equation similar to (2.20). He proved that when 



 153 

the gradient field was a conservative field and Neumann‘s condition was met, solving 

(2.16) is equivalent to solving: 

ES ˆˆ2         (2.21) 

where Ê is the divergence of the classified gradient field and is a scalar function. The 

algorithm introduced in this chapter was based on Blake‘s method but with a fast 

Poisson solver to solve the Poisson equation defined in (2.21). After having recovered 

the shading component of an image, its reflectance component can be obtained by 

subtracting the shading component from the original image in the log domain 

(equivalent to the division of linear images).  

5.7 Examples and discussion 

Some examples are shown at the end of the chapter. The results are not numerically 

accurate but still qualitatively acceptable. Limitations in each step of the algorithm 

have introduced different types of error as discussed below.  

 

 Reflectance edges must not coincide with shading edges, i.e. luminance 

changes must either be due to changes in reflectance or shading not both. This 

may be the major limitation of the algorithm, which is shared with its 

counterpart in algorithms based on hue. The consequence is obvious in Figure 

2.4 (1b) where the near-horizontal edge is disrupted in the middle where the 

two boundaries intersect. In fact, luminance changes in this area are 

combinations of the two factors. If transformed into the log domain, a 

luminance change is an addition of two vectors, each representing a change in 

reflectance or shading. However the current technique sets all luminance 

derivatives to zero, resulting in errors in the classification of luminance 
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changes. Another related limitation is that major luminance edges should not 

lie too close to each other – This is due to the limitation of the width 

estimation method. If two edges are too close to each other (e.g. ridges), pixels 

between the edges could be linked to points on both of them. In consequence, 

corresponding points on both edges are assigned with the same identity and 

will either both be deleted or retained. Perhaps two adjacent edges will have 

the same identity (i.e. both are shading or both are reflectance). But if not, one 

will be misclassified. A possible solution to this problem is that instead of 

setting luminance derivatives to zero, only remove the contribution of one 

component. The local curl values of the gradient field may be a guide to find 

the best way of decomposing the gradient vector to ensure the resulting curl is 

minimized.  

 

 The classification rule in this algorithm is based on the constant local contrast 

under changing illumination. However two different surface patches could 

have similar contrast and in this case they will be treated as the same surface 

by the algorithm. This problem could be overcome by examining more 

features that are invariant to illumination. For example, texture elements or 

textons are another feature which could be helpful to differentiate textured 

surfaces. More generically, any texture segmentation algorithm that can 

produce a successful segmentation to an image after dividing by its mean will 

provide a good solution. A more accurately determined texture edge will in 

turn improve the classification accuracy. Note however that texture 

segmentation in natural images is itself difficult.   
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 The resultant shading image is actually a low-pass filtered version of the true 

shading component. This tends to cause distortions in reflectance images in 

places along the shading/shadow edges. The problem deteriorates when 

shading/shadow edges in the original image is very sharp, as in the case of Fig 

2.4 (2c and 4c).  

 

In general the performance is satisfactory especially considering that this algorithm 

requires no colour information. The algorithm provides a solution at a global level but 

distortions are present in local regions. This was expected since no local constraints were 

applied to guide the classification process. When combined with local constraints such as 

colour, a better classification should be expected.       

5.8 Conclusion 

Luminance changes in a scene are often due to many sources such as shading and 

reflectance. Similar to the use of hue to assist the separate these two components, 

texture information can also be useful in this kind of task. An algorithm for separating 

shading/shadows from reflectance changes has been presented. This separation 

algorithm is based on characteristics of the textures in the scene. The idea of using 

texture to accomplish the task is inspired by the fact that humans also use textures to 

help with shape-from-shading tasks.  The performance of the algorithm is satisfactory 

when testing images contain large areas of shading and reflectance. Decompositions 

at local regions may suffer distortions due to the lack of local constraints such as 

colour. However the texture based algorithm could serve as a global constraint 

complementary to other local features to form a better solution to intrinsic image 

decomposition.  
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Figure 2.4 Examples of intrinsic image decomposition produced by the algorithm. Image set (1): 

a carpet surface meets a pained flat surface, both casted by a shadow. Image set (2) part of a ball 

hides in the shadow. Image set 3: Synthesized sinusoidal gratings containing binary noise. Local 

contrast is constant on the left half but undergoes the same undulation as the luminance on the 

right half. Image set (4) a brick wall. Shadow is casted over the top of the image.  

 

 

(a) Original image (b) Shading component (c) Reflectance component 

(1) 

(2) 

(3) 

(4) 
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6. Perception of shape-from-shading 

Chapter 4 and 5 introduced a method for extracting shading cues from an image. This 

Chapter addresses the issue of how human vision deduces surface shape from such 

shading cues. The chapter addresses the built-in rules that humans use to derive 3-D 

shape based on shading alone. In particular, the long-held assumption that perceived 

slant is proportional to luminance is tested experimentally. To test the validity of this 

assumption, the perceived shape of various types of luminance grating, including sine 

wave, square wave, periodic saw-tooth and cropped saw-tooth, were tested using a 

gauge figure task. The results show that the slant = luminance relationship only holds 

for gratings which are bounded by edges of equal strength and polarity. In the second 

experiment, the square wave and sine-wave gratings were cropped such that 

luminance variations were not bounded by edges with same polarity. Observers 

perceived cropped gratings differently from those surrounded by like-polarity edges. 

The interaction between shading and edges is further discussed at the end of the 

chapter, followed by a new theory for human SFS.  

6.1 Background 

This section reviews the historical background of shape-from-shading in human 

vision, starting with the formulation of the problem in the physical world, followed by 

an account of our understanding of shape-from-shading in humans. The section ends 

by outlining the motivation for the experiments in this chapter.   

6.1.1 Formulation of shading 

The subject of shape-from-shading has been extensively studied and is still an active 

area of research in both computer vision and human perception. Theories in both areas 

are based on the fact that shading (variations in reflected light intensity) on a surface 
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in 3-D space depends on the angle of the surface normal relative to the light source. 

Consider Figure 6.1, here a surface is inclined (with angle i ) with respect to the 

incident light and (with angle e ) with respect to the observer, this latter angle being 

termed the angle of reflectance. The incidence reflectance vectors form an angle . If 

we denote incident light intensity by 1I per unit area perpendicular to the incident ray 

and the reflected light intensity by 2I per unit solid angle per unit area perpendicular to 

the reflected light (Horn, 1975). Then the reflectivity function  
1

2,,
I

I
ei   

determines the relation between the incident light and the light received by a viewer 

(Horn, 1975). When the properties of light source and the surface reflectance are 

known,   ,,ei becomes a mapping between the image intensity and the three angles. 

That is, image intensity provides information about the 3 dimensional form of a 

surface and this information can be characterised by the reflectivity function   ,,ei . 

In computer vision, the study of shape-from-shading is concerned with establishing a 

mathematical mapping between these variables allowing one variable (the surface 

norm) to be solved given the other (image intensity) (Horn, 1975; Horn, 1977; Ikeuchi 

& Horn, 1981; Pentland, 1984; Pentland, 1988; Horn & Brooks, 1989; Horn, 1989). 

One of the most well established shading models is the uniform Lambertian surface lit 

by a distant light source. A perfect Lambertian surface reflects light equally in all 

directions. More intuitively, it means the image intensity at a point on the surface is 

constant regardless of the viewing direction, (i.e. independent of the reflectance 

angle e ). Under these restrictions the image intensity depends only on the angle 

between the surface norm and the incident ray (Horn, 1977; Marr 1982; Pentland, 

1988). Further, under these conditions, image intensity is proportional to the cosine of 

the angle i in Fig 6.1: that is, iIKL cos  where L is the image intensity, I is the light 
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source intensity, K is a constant. This model will be discussed in more depth later in 

this chapter.  

 

Figure 6.1The formulation of shading. The reflected light is related to the incidence angle i , 

reflectance angle e , resulting in degradation of luminance according to the normal of the surface 

(after Horn, 1975). 

 

6.1.2 Ambiguities of shading 

As the 2-D projection of a 3-D structure, shading is inherently ambiguous.  A well-

known ambiguity of shading is that principal curvatures of surfaces (assuming surface 

is locally spherical) can not be revealed by shading information alone (Pentland, 

1984). The traditional view regarding the shading ambiguity is that shading is a 

product of surface orientation, light source and surface reflectance. Any particular 

shading image can be due to infinite possible combinations of the three variables (See 

Fig 6.2). Fortunately the ambiguities of shading have been extensively investigated 

for cases where the surface is Lambertian. Belhumeur et al. (1999) proved 

mathematically that the ambiguities obey an affine transform or, as the authors called 

it, a ―Generalized bas-relief transformation (GBR)‖. Under this affine transform, 

    vyxyxfyxf   ,,ˆ       (6.1) 

2I  

  

e 

i 

Normal 1I
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where yx, are co-ordinates of the image plane,  yxf , is the depth function of the real 

3-D structure, is a scaling factor,  and v control shearing. In matrix form, a 

point   yxfyx ,p  on the surface becomes pp Gˆ where



















 v

G 010

001

. 

Given a light source l , the luminance intensity at a point p can be defined 

as     ln  yxayxL ,, where  Tyx ff 1n is the unit surface normal 

and  yxa , is the surface albedo. Belhumeur et al. (1999) proved that there exists a 

light source
ŝ

illuminating a GBR transformation of the original surface with 

albedo  yxa ,ˆ such that the luminance intensity at a point p̂ on the transformed surface: 

     yxLyxayxL ,ˆˆ,ˆ,ˆ  ln       (6.2) 

where 1ˆ  Gnn , ll Gˆ and  
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. Equation (6.2) 

means that given a shading image, the solution of the 3-D shape can be determined 

only up to a space of affine transformations.  

 

Figure 6.2 Demonstration of shading ambiguity—Generalized bas-relief transformation (GBR). 

(a) A triangular surface with Lambertian reflectance is lit by a directional illumination l .  The 

surface is frontally viewed. It is easy to see that the resulting shading pattern consists of two gray 

levels. (b) The surface shape is scaled. The illumination vector is manipulated to become l̂ so that 

the ratio of the two grey levels in the shading appearance remain constant. By adjusting the 

surface albedo, the shading image of (b) can be made identical to that of (a).  

(a) (b) 

l  

l̂  
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6.1.3 Human perception of shape-from-shading (SFS) 

Humans are capable of interpreting qualitative 3D-shapes from shading but the 

mechanism for this is poorly understood. The complexity of this visual function can 

be shown by the fact that results from previous studies on this topic often lead to 

contradictory conclusions. Major discoveries on human SFS are summarised in the 

following paragraphs. 

 

Ineffectiveness vs. effectiveness 

Shading has been considered a relatively weak cue to depth compared to other cues 

such as disparity and texture gradient and the effect of shading appears minor when 

those other cues are present (Bülthoff & Mallot, 1988). There is also evidence 

suggesting that the three dimensional structure inferred from shading by humans is 

inaccurate: Humans tend to underestimate surface slant in shading patterns compared 

to the slant that would be required in a Lambertian model (Todd & Mingolla, 1983; 

Mingolla & Todd, 1986; Mamassian & Kersten, 1996; Hann,  Erens & Noest, 1995; 

Norman & Todd, 1996). But when it comes to shading patterns containing highlights, 

the perceived slant tends to be overestimated (Todd & Mingolla, 1983).  

 

Further, human SFS is also ineffective in response to the shading ambiguities 

mentioned in 6.1.2. As expected, human observers cannot differentiate between an 

elliptic shape and a hyperbolic shape based on shading alone (Erens et al., 1993a). In 

addition, shape judgements from different observers differ significantly but in a 

systematic way; shape judgements for simple objects often differ by a scaling factor 

whereas those for complex objects can normally be accounted for by an affine 

transformation (see 1.1.4.2). This affine transformation echoes the bas-relief 
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ambiguity defined by equation (6.1). Koenderink et al. (2001) argues that human SFS 

is operational such that humans resolve the ambiguities by applying their ―beholder‘s 

share‖ when they respond to 2-D shading. In a parallel of the ―Generalized bas-relief 

transformation (GBR)‖, human SFS can also be characterised by a space of affine 

transformations: 

    dcybxyxazyxz  ,,ˆ      (6.3) 

where  yxz ,ˆ is depth function estimated by an observer in a particular task,  yxz , is 

the depth function of the 3-D structure as represented in the visual system prior to the 

affine transformation, yx, are the coordinates of the image plane, constant a represents 

the scaling factor, cb, and d control a shear transformation of the 3-D surface. Note 

that  yxz , does not have to be the ground truth depth profile of the surface. Rather, it 

may reflect a common coding strategy shared by all participants before they apply 

their ―beholder‘s share‖ (see also Battu, Kappers & Koenderink, 2007).  

 

The ineffectiveness of shading in 3D tasks can easily lead to the conclusion that 

shading is not a very useful cue and that it could be irrelevant in the tasks of 

understanding complex scenes rich in other visual information. But results from later 

studies have confirmed that this conclusion is not warranted. Using a curvature 

discrimination task, Johnston and Passmore (1994a) reported a low discrimination 

threshold (Weber fraction of 0.1), indicating that the observers made effective use of 

shading during the task. Furthermore, in contrast to their inability to differentiate 

between elliptic and hyperbolic shapes, humans have no problem segmenting the 

surface of a croissant-shaped object according to whether the region is hyperbolic or 

elliptic (Mamassian et al., 1996). The most pronounced evidence against the view that 

shading is irrelevant comes from a series of complex scene understanding tasks 
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published by Koenderink et al. (1996a; 1996b). In these tasks, human observers 

viewed photographs of human statues lit from various directions. The photographs of 

a particular stature contained very different shading patterns but all depicted the same 

relief. The observers demonstrated qualitatively accurate interpretations of the relief 

for all lighting directions. But the quantitative measurements of surface for each 

testing position on the sculpture appeared to undergo a systematic variation with 

regard to the shading pattern. This phenomenon is a strong sign that shading is not 

irrelevant, even in the situation where other visual information is rich, and that 

shading has a systematic effect on the perception of 3D surfaces.  

 

Shape constancy does not hold for SFS 

If the perceived shape of an object remains unaffected under different conditions, the 

perceptual output is said to possess shape constancy (Khang et al., 2007). While 

desirable for many visual functions, shape constancy does not seem to exist in SFS. 

The overestimation of the perceived slant of a shiny surface and its underestimation 

for Lambertian surfaces (Todd & Mingolla, 1983) demonstrate a lack of shape 

constancy: perceived shape changes with material properties. In addition, changes in 

lighting direction can also lead to changes in perceived shape (Christou & 

Koenderink, 1997). More recently, Khang et al. (2007) tested observers with objects 

under various lighting conditions and surface treatments. Consistent with previous 

findings, perceived shape varied with both lighting and material, suggesting that little 

shape constancy was achieved except when the degree of specularity was varied. 

However, from an experimental point of view, the lack of constancy in SFS means 

that it is possible to characterise SFS in the visual system. The SFS algorithm 

employed by the visual system is most likely simpler than that which would be 
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required to achieve shape constancy. The logic of this argument will be explained in 

section 6.1.4.  

 

Edges and shading 

Edges can arise from a variety of causes. Marr (1982) summarised the origins of 

edges as the following: 1) reflectance changes, 2) discontinuities in depth such as 

occluding boundaries 3) discontinuities in surface orientation and 4) illumination 

effects such as shadows and highlights. Edges caused by reflectance changes are 

irrelevant in SFS and have been dealt with in previous chapters: they are not 

considered further here. Occluding boundaries (see Figure 6.3a) are a direct result of 

discontinuities in depth but can be a cue to surface orientation. Edges falling into this 

category are thought to be the points where the surface normal is perpendicular to the 

viewing direction (Marr, 1977; Barrow & Tenenbaum 1981; Malik, 1987; DeCarlo et 

al., 2004; Lawlor et al., 2009). In fact there exist computer vision algorithms which 

produce edge maps of a 3-D object by searching for the points that meet the criteria 

for occlusion edges (DeCarlo et al., 2004). Edges due to changes in surface 

orientations are more relevant in the context of shape-from-shading. Edges of this 

type are formed by the same principle as shading and can be understood as special 

instances of shading for which the variations in luminance are more abrupt as they 

arise from discontinuities in surface orientation (Figure 6.3b). Edges caused by 

illumination effects are view point independent. An example is the boundary between 

an illuminated area and area of self-shadow (Figure 6.3c). A strict definition of this 

kind of edge requires that edges occur where the surface normal is orthogonal to the 

direction of the incident light (Marr, 1982; Barrow & Tenenbaum 1981; Ikeuchi & 

Horn, 1981).  
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Figure 6.3 Three types of edges in the context of shape-from-shading. (a) Edges that are due to discontinuities 

in depth. The occluding edge (dashed line) marks the two visible surfaces which are different in depth. (b) 

Edges that are caused by discontinuities in surface orientation. The surface is lit by directional light source. 

The crease in the middle (labelled with a dashed line) will produce a discontinuity in luminance as a result of 

a discontinuity in surface orientation. (c) Edges that segment the surface into illuminated area and self-

shadows (after Palmer, 1999, p245). The dashed line represents the edge points at which the surface normal is 

orthogonal to the incidence.  

 

 

 

(c) 

(b) 

(a) 
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The aforementioned edge types (2, 3 & 4 in Marr‘s 1982 classification) constitute 

object boundaries and edge contours which together can be termed outlines. Object 

outlines are important cues to surface-shape (Ramachandran, 1988; Todd, 2004) and 

can be exploited to compute the 3-D shape of an object (Guzman, 1969; Clowes, 

1971; Barrow & Tenenbaum 1981; Waltz, 1975; Marr, 1982; Malik, 1987). The shape 

cue provided by outlines is so strong that it can override other cues such as shading 

(Ramachandran, 1988; Bülthoff & Mallot, 1988). In such cases, object outlines alone 

can produce a 3D shape percept without any shading (see Figure 6.4). Indeed, humans 

can articulate a pictorial relief similar to that based on photographs from outlines 

alone (Koenderink et al., 1996a). Thus when outlines dominate shape perception, 

shading appears almost immaterial and its effect is either hard to measure or 

completely confounded by the outlines (Mamassian & Kersten, 1996). For this reason 

it is tempting to remove the confounding effect of outlines by cue reduction, but 

Koenderink et al. (1996b) argue that the methodology of cue reduction is 

inappropriate. In particular, Koenderink et al. (1996b) argue that SFS requires some 

other visual information in order to fully function, although the authors did not 

specify the form of the additional information required.  
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Figure 6.4 Outlines determine how humans interpret luminance variations.  (a) and (b) have the 

same pattern of luminance variations,  but these variations are interpreted differently: the 

brightest points in (a) appear the highest on the surface while in (b) the points with median 

brightness appear to be the peak of the surface. Their 3-D interpretations seem to follow what 

are suggested by their outlines (c) and (d), suggesting that outlines could act as a confounding 

factor in the perception of SFS (After Ramachandran, 1988) 

 

The three types of edges most closely related to shading are good candidates for the 

complementary visual information required to make SFS function. The interaction 

between edges and shading has also been utilised in computer vision. For example, 

classical computational approaches for shape-from-shading often involve solving 

partial differential equations. For these methods, edges and occluding boundaries can 

serve as initial curves or boundary conditions because the orientations of surface norm 

at these locations are known to be perpendicular to the viewing direction (Ikeuchi & 

Horn, 1981). The complementary relationship between edges and shading has not 

been thoroughly examined in terms of human perception. Figure 6.5 illustrates the 

importance of outlines in the perception of SFS even when outlines alone do not 

support unambiguous 3D perception.  

 

(d) (c) 

(b) (a) 
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In summary, shading needs other visual information to fully function as a cue to 3D 

shape and edges are likely to be a candidate for this information, since the formulation 

of certain types of edges is very closely related to that of shading. But the presence of 

excessive outlines could easily dominate shape perception, making the effect of 

shading difficult to measure. What is required is a methodology which introduces 

edges in a controlled way allowing the effects of pure shading and edges to be 

differentiated without allowing the edges to fully dominate the percept.  

 

Figure 6.5 Outlines (edges contours and object boundaries) modulate the perception of SFS. (a) A 

linear luminance ramp bounded by a circle appears to be a bump. (b) The same linear luminance 

ramp bounded by a square appears to be a cylinder. Neither outline (c, d) produces the 

impression of 3-D shape in the absence of shading.   

 

Estimating the direction of the light source 

An analysis of the generation of shading reveals that the information that shading 

conveys directly is an angle relative to the direction of the incident light. Thus from a 

computational point of view, the 3-D structure of the surface cannot be determined 

without the knowledge of the illumination. In computer vision, assumptions (often 

(a) (b) 

(c) (d) 
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unrealistic ones) have to be made about the properties of the illumination for the 

shape-from-shading algorithm to deliver a unique solution of the 3-D shape. 

Alternatively, illumination can be estimated using a method which is based on the 

patterns of luminance gradients in a scene (Pentland, 1982). Either way, the 

illumination has to be specified before a solution is obtained. As to the function of 

SFS in the visual system however, the role of light source estimation is rather 

complex: knowledge of the light source helps to break the convex / concave 

ambiguity (Ramachandran, 1988) but perceived shape can also affect the light source 

estimation (Koenderink et al., 2004; 2007). Humans can acquire the information about 

the light source through analysing shadows and highlights (Mingolla & Todd, 1986; 

Liu & Todd, 2004), luminance gradients (Pentland, 1982) and second-order statistics 

of relief texture (Koenderink et al., 2004; Koenderink et al., 2007; Pont & 

Koenderink, 2007). But the 3-D structure in such stimuli is probably estimated along 

side the light source direction. Thus, light source estimation and 3-D shape perception 

are likely to be two products of a full functional SFS method; arguments as to which 

is conducted first are likely to prove unproductive  

6.1.4 Algorithms for human SFS suggested by psychophysics 

Linear reflectance model (LRM) 

A commonly held (but often only implicitly articulated) view in the study of SFS is 

that the perceived slope is proportional to the luminance values of the shading pattern 

(slant luminance). The linear relationship between the luminance variation and the 

perceived slant can explain some observed characteristics of human SFS. For 

example, perceived slant is overestimated when the slant of a surface generated by a 

Lambertian shading model is small, but underestimated when the surface is more 

slanted and this bias rises as the real surface slant increases (Mamassian & Kersten, 
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1996). Suppose a Lambertian surface is lit by a distant source and has slant relative 

to the vertical axis in the image plane. Suppose the viewing vector overlaps 

with z axis and let incidence angle be i and the angle between incidence ray and the 

viewing direction be (see Fig 6.6). Then we have  i . should be less than 

90° to avoid cast shadows. Since perceived slant is linear to luminance, we 

have    ˆtan90sinˆtancos i , where̂ is the slant angle estimated by 

observers. If equals 90°, then  sinˆsinˆcossinˆsinsinˆtan  , so 

the slant angle should always be underestimated. As varies and let 090   , 

then    tansinˆtan  when is very small, but    tansinˆtan  as  

increase and the difference becomes even larger as approaches 90°, i.e. perceived 

slant is overestimated when the Lambertian surface is only slightly slanted but 

becomes underestimated when the slant gets larger. The underestimation will increase 

as the slant of the surface.  

 

Figure 6.6 The relation of image intensity and the orientation of a Lambertian surface lit by a 

single point source. The process is illustrated in 1D. ie, and represent the same angles as in 

Figure 6.1.  is the angle that the surface is inclined with in respect to the image plane. Without 

the loss of generalization, the viewing direction is set to perpendicular to the image plane.  Under 

this setting, e equals . 

i 

Image plane 

Surface 
Surface normal 

  
  

90° 

e 
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Surprisingly however, very few studies have experimentally investigated the empiric 

of slant = luminance. Some marginally related work can be traced to Pentland‘s 

biologically inspired model for recovering surface height from shading (1988) which 

is outlined below. Assuming a Lambertian surface lit by a distant light source and 

viewing direction fixed to be perpendicular to the image plane, the normalized image 

intensity will be: 

 
1

cossin
cos

2 




p

p
InixI


    (6.4) 

where is the angle between the incident ray and the viewing 

direction,   sin,cosI is the vector of the incident ray, p is the slope of the 

surface along the image plane, i.e. tanp and  pn ,1 is the vector of the surface 

norm (Fig 6.6). Note that the image plane has been simplified to be a 1-D signal in 

this expression.  Taking the Taylor series expansion of equation 6.4 up to its quadratic 

term will give: 

  2

2

cos
sincos ppxI


      (6.5) 

Pentland (1988) then argued that when 1p  (leading to a negligible quadratic 

term 2

2

cos
p


) and ignoring the DC term cos , the relationship between image 

intensity and the surface slope is linear.  

 

When this linear relationship holds, the shading image of a sinusoidal surface is a 

sinusoidal profile of the same frequency as the surface corrugation but with a 90° 

phase shift. But if the quadratic term in Eq 6.5 dominates, a sinusoidal surface will 

give rise to a sinusoidal luminance variation with twice the surface frequency 

(Pentland, 1988). In a follow-up experiment, Pentland showed that human observers 
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inferred a near sinusoidal surface from a sinusoidal shading and that the fundamental 

frequencies of the inferred surface profile and the shading are similar. It was as if 

human observers ignored the quadratic term and assumed a linear relationship 

between perceived slant and luminance.  

 

The derivation of this linear relationship can serve as a theoretical support for the 

LRM. Conversely, the LRM should operate most optimally when the conditions that 

lead to Eq 6.5 are satisfied and when Eq 6.5 can be best approximated by the linear 

relationship. That is to say, the LRM corresponds to the situation in which the 

illumination is directional and oblique (
2

cos
is small) and 1p . However, 

omitting the DC term in Eq 6.5 is a weakness in Pentland‘s model (1988). In fact the 

DC term is important as will be explained in section 6.1.4. 

 

The “dark is deep” rule 

In some circumstances perceived surface height correlates with luminance – a 

computation often described as ―dark is deep‖. For example, Christou and Koenderink 

(1997) reported that observers‘ slant judgement correlated with decreasing luminance 

gradients when viewing a rendered sphere with Lambertian shading—equivalent to 

―dark is deep‖. Langer and Bülthoff (2000) measured the accuracy of depth 

comparison between two positions on a surface rendered under collimated lighting 

and diffuse lighting. They called ―correlated‖ the condition where a brighter point on 

the surface happened to be higher and ―anti-correlated‖ the condition where a darker 

point is higher. Results showed that for surfaces rendered by collimated light, the 

accuracy was very high regardless of the correlation condition and human 

performances for ―correlated‖ and ―anti-correlated‖ conditions were similar. When 
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judging surfaces rendered by diffuse light however, observers favoured the 

―correlated‖ condition with much higher accuracy than the ―anti-correlated‖ 

condition. The accuracy for the ―correlated‖ condition under diffuse lighting was 

comparable to that under collimated lighting. This means that when surfaces were 

rendered under a diffuse light source, observer‘s depth setting correlated (to the first 

approximation) with the ―dark-is-deep‖ rule.  

 

Application of the ―dark is deep‖ rule has been found in a range of shape-from-

shading tasks (Nefs, Koenderink and Kappers, 2005; Christou & Koenderink, 1997; 

Langer & Bülthoff, 2000), although more so under some conditions than the others 

From this point of view, the ―dark is deep‖ rule seems to comprise part of the entire 

human SFS algorithm and may dominate in some circumstances. Unlike LRM 

however, ―dark is deep‖ lacks a solid theoretical support, although to a certain degree 

it is descriptive of a shading model under diffuse lighting. According to a model 

proposed by Langer and Zucker (1992), image intensities generated under diffuse 

lighting depends on how much a surface position is exposed to the ―sky‖. Thus under 

the diffuse lighting conditions, a periodical sinusoidal surface will generate a 

luminance trace that is a periodic grating with the same fundamental frequency and 

phase as the surface (Wright & Ledgeway, 2004). In this case, ―dark is deep‖ gives a 

qualitatively good description of the model (see Fig6.7a). However in many other 

cases, ―dark is deep‖ only provides a partial generalization. For example in the case of 

a single cycle of sine-wave (Fig6.7b), although the top half of the surface obeys ―dark 

is deep‖, the bottom half of the surface gives a near uniform luminance which is also 

the minimum luminance value of the whole shading image. Figure 6.7c and d give 
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two more examples where the diffuse model can not be generalized by the ―dark is 

deep‖ rule.  

 

Figure 6.7: (a) periodical sinusoidal surface is illuminated by diffuse light. The valley sees a 

portion of the sky which subtends angle a. From the valley to the hill, the subtended angle 

increases and reaches the maximum at the peak. (b): a single sinusoidal ripple is illuminated by 

diffuse light. The top of the hill sees all of the sky hence is the brightest. Moving towards the 

valley, surface positions only see a portion of the sky and subtended angle a. This angle decreases 

and reaches its minimum at half of the ripple height. (c): trapezoidal surface is illuminated by 

diffuse light. The top plane is exposed to the entire hemisphere while the side surface only sees 

part of the light source. (d): a surface of square wave under diffuse light source. The top plane is 

exposed to the entire sky. The exposure decreases as the height of the position until the height 

reaches the bottom. As the measuring position moves across the valley, the exposure increases 

again and achieves a local maximal at the centre of the valley.  

 

6.1.5 Motivation and aim of the study 

As mentioned in section 6.1.3, the study of shape-from-shading in computer vision is 

primarily interested in establishing a mathematical mapping, ―reflectance map‖ 

(d) 

a 

b 

b=180° 

a<180° 

c<a 

(a) 
(b) 

(c) 

a b=180° b=180° 

a<180° 

c<a 

d>c 
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(Horn, 1977) between the surface orientation and the shading pattern presented in the 

image. However, very few studies have had the clear aim of investigating whether 

humans assume a particular mapping or what mapping might be employed. The cause 

of this discrepancy probably comes from two sources. First, the same surface 

orientation will give rise to different patterns of shading under different lighting 

conditions and material properties, each corresponding to one particular mapping 

between shading and shape. If people are able to achieve shape constancy, the number 

of mappings available to humans is bound to be infinite: trying to measure any one 

mapping seems futile. Fortunately, Khang et al. (2007) discovered that when lighting 

or material properties change, leading to changes in the resultant shading patterns, 

observers‘ shape judgement also changes: humans do not have shape constancy. They 

concluded that 3-D shape judgment largely depends on the luminance pattern and less 

so on any other factors. This result suggests that humans may only utilise a limited 

number of mappings. Hence it is worth trying to characterise the mappings involved. 

Recall that human SFS is subject to an affine transformation defined by Equation 6.3. 

Thus the key question in studying human SFS is to find the common internal 3-D 

representation of Equation 6.3; that formed prior to the affine transformation (  yxz ,  

in Eq 6.3).  

 

Another reason why the study of SFS is less interested in characterising the built-in 

reflectance map is that even if a robust reflectance map does exist for humans, the 

linear mapping suggested by Pentland (1988) is taken for granted in spite of having 

not been sufficiently tested. A key problem with Pentland‘s mapping resides in the 

direct removal of the DC term cos in equation 6.5 which seems rather ad-hoc. A 

more justifiable way to decouple the DC term and the linear term is to differentiate 
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the two sides of the equation (supposing the quadratic term 2

2

cos
p


is small enough 

to be ignored): 

 
 
2

2

sin
dx

xzd
CpxI          (6.6) 

where sin is substituted by a constant C ,  xz  is the height of the surface. Therefore 

instead of associating the absolute value of image intensity to the slope of the 

underlying surface, equation 6.6 suggests that the first derivatives of image intensity 

and second-derivatives of the surface height are proportionally related. Compared to 

equation 6.5, equation 6.6 is more biologically plausible because the human visual 

system is more sensitive to changes in image intensity than to absolute image 

intensities (Pentland, 1982). If the perception of shape-from-shading is indeed based 

on equation 6.6, then the commonly held linear mapping is itself only one of an 

infinite number of possible mappings, each a solution to equation 6.6. For equation 

6.6 to have a single solution, two boundary values are required. Furthermore, in order 

for the solution to be a linear mapping between  xI and  xz , the two boundary 

values have to be equal – the so called fix-fix condition in solving ordinary 

differential equations. Inspired by the use of edges as boundary conditions in 

computer vision, I speculate that edges may provide necessary boundary information 

for human vision to resolve the problem posed by equation 6.6 in such a way as to 

produce a linear mapping in many cases.  

 

Distinct from many other studies, the research presented in this chapter attempts to 

investigate a fundamental question in the subject of human shape from shading. That 

is, what are the characteristics of the mapping used by humans to link surface 

orientation and luminance? Do we assume a linear relationship between the surface 
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orientation and luminance? Conventional approaches which involve testing with 

computer generated realistic 3-D objects are not practical for this purpose as they 

would require testing the many possible rendering models and find the one that is 

most consistent with human data. Besides, realistic 3-D objects contain outlines which 

could determine perceived shape, undermining the effects of shading. Therefore a 

different methodology has been taken: Instead of using computer rendered realistic 

3D objects, I have tested human observers with stimuli made up of several very 

simple luminance profiles without contextual outlines. By doing so, the underlying 

mapping can be revealed in a way that is not subject to any particular rendering 

model, while excluding the influence of other cues to surface shape. Using luminance 

profiles is also psychologically plausible because not only does human SFS mostly 

depend on luminance patterns (Khang et al., 2007) but also is it quite stable (See 

1.1.4.3).  

6.2 Experiment 1  

In the first experiment, observers viewed four patterns of luminance variations in 

three different orientations. The aim is to verify the commonly held view in respect to 

the linear relationship between perceived surface slants and the underlying image 

intensity.  

6.2.1 Equipment and calibration 

Monitors were calibrated using the same method as in chapter two. The viewing 

distance was 1 meter. Images measured 13.312 by 13.312 degrees of arc (512 by 512 

pixels) displayed inside a central window. Outside of the central window the display 

was set to mean luminance to the limits of the display. 
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6.2.2 Stimuli 

The stimuli were luminance gratings with or without superimposed isotropic textures 

(see Figure 6.8). The grating stimuli were luminance sine waves, square waves, 

periodic saw-tooth or cropped saw-tooth functions with only 2 cycles of modulation 

visible. The textures were made in the same way as those used in previous 

experiments. All gratings had the same minimum and maximum luminance values. 

Without loss of generality, the median values for all functions were referenced as 

value zero. Within each cycle of the saw-tooth function the luminance profile formed 

a straight line running from minimum to maximum (Figure 6.8 c). The frequency of 

the sine wave was fixed to 0.2 c/d. All luminance profiles had the same wavelength so 

the square wave and saw-tooth function both had a fundamental frequency of 0.2 c/d. 

Thus for all types of profile except cropped saw-tooth, a display image contained 3~4 

cycles. In this configuration, each stimulus contained either step edges in luminance 

or edges defined by zero crossings of the second derivative of luminance. Further, 

each periodical grating had at least two edges that were equal in magnitude and 

contrast polarity. The cropped saw-tooth stimuli, however, had only one edge between 

the two modulation cycles (although it also contained two edges that were shared 

between the figure and the background). When textures were superimposed, the 

combination of shading and texture was multiplicative such that the AM signal 

conveyed in the textures was positively correlated with the luminance profile 

conveyed in the shading. This is consistent with the shading of a Lambertian texture. 

The central frequency of the textures was 8 c/d. Stimuli were presented at three 

orientations (horizontal and ±45° relative to the right half of the horizontal axis). 

Figure 6.8 gives one example for each type of grating at 45° as well as their 

corresponding luminance cross-section measured on the diagonal indicated.  
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Figure 6.8 Four types of textured luminance profiles that observers viewed. The diagonal cross-sections (white 

dotted lines) of their LM component are plotted on the right of each stimulus. All gratings are at the orientation 

of 45deg. Sine wave (a) has a group of four (stars) and a group of three (circles) identical edges defined by zero-

crossings of second-order derivatives. The two groups are different in the sign of the corresponding first-

derivatives. Square wave (b) has a group of four (stars) and a group of three (circles) identical edges of the same 

contrast and the same polarity. One group differs from the other by the polarities of the edges (e.g. from dark to 

light vs. from light to dark). Periodical saw-tooth function (c) has three identical edges (circles) but the cropped 

saw-tooth (d) contains no identical edge pairs. The above four luminance patterns were also shown without 

textures and were tested separately.  

 

6.2.3 Procedure 

The cross-section of perceived shape was measured by using a gauge-figure 

comprising a disk (diameter 0.533 deg) and a perpendicular needle drawn at the centre 

of the disk (Koenderink et al., 1992). The aspect ratio of the disk and the direction and 

length of the needle were varied so as to represent the gauge-figure drawn at different 

slants according to linear perspective.  

 

Stimuli consisted of gratings (Figure 6.9) onto which the gauge-figure was pasted. 

The slope of the gauge-figure was randomly initialized and was adjustable only in the 

(d) (c) 

(b) (a) 
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direction of the luminance variation. Observers viewed the images and were asked to 

adjust the apparent slope of the gauge-figure so that it matched that of the underlying 

surface (Figure 6.9). The step size for these adjustments was 10°. One cycle of sine 

wave and square wave modulations were measured (from a circle to the next circle in 

the cross-section profile in Figure 6.8) but for the saw-tooth and the cropped saw-

tooth grating, two consecutive cycles of modulations were measured in order to make 

a valid comparison between the two saw-tooth functions. Testing points close to the 

edges in saw-tooth stimuli were moved by 1/24
th

 of the wavelength to avoid testing 

directly at the edge points. The measuring points were sampled at multiples of 1/8
th

 of 

a cycle of the grating (0.625 deg) but randomly displaced along the orthogonal 

direction. Thus the diameter of the disc (0.533 deg) was less than the sampling 

distance (0.625 deg). For the stimuli of sine-wave and square-wave, the measuring 

points also had a shift of integer cycles. The integer was randomly drawn from the 

set 1,0,1 .  

 

Each participant made 4 settings for each test position and the mean value of the 4 

gradients were taken as the perceived slant at that location. The mean gradients were 

also integrated to get an estimate of the perceived depth profiles. In total there were: 

2 (textured or non-textured) 3 (orientations) 8 (positions) 4 (repetitions) 192  

trials in the testing of sine wave and square wave luminance profile or  

2 (textured or non-textured) 3 (orientations) 18 (positions) 4 (repetitions) 432  

trials in the testing of saw-tooth and cropped saw-tooth profiles. For each trial the 

image was generated online and trials were presented in a random order. 



 181 

 

Figure 6.9 Images contained a stimulus and a probe. The probe was made adjustable along the 

direction in which the luminance is undergoing a variation (sinusoidal variation in this case).  

 

6.2.4 Results  

Three people took part in the experiment including two naïve participants (HW and 

JCY) and the author (PS). The naïve participants were paid for their efforts. The data 

for textured stimuli is given in Figure 6.10. The data for the non-textured stimuli are 

very similar to that for the textured case and are therefore not shown. The linear 

relationship between perceived slants and luminance as well as that between 

recovered surface heights and luminance were measured by calculating Pearson‘s 

correlation coefficients; see Tables 6.1 and 6.2.  

 

All three participants agreed qualitatively on the surface shape for periodical saw-

tooth gratings except for an ambiguity between concave and convex interpretations. 

The perceived slants appeared proportional to the luminance profiles of the stimuli 

(mean correlation 0.96). For the two naïve subjects, the sign of the relationship 

switched from positive to negative when the orientation of the saw-tooth gratings 

changed from 90° and +45° to -45° so that 90° and 45° periodical saw-tooth were 
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perceived as broad deep valleys with sharp ridges while -45° periodical saw-tooth was 

perceived as broad mounds with sharp valleys (Figure 6.10c). The other participant 

(PS) did not demonstrate this sign switch. For cropped saw-tooth gratings, when 

participants assumed concavity (the 90° and 45° gratings for JCY and HW but 

gratings in all three orientations for PS), gratings were no longer perceived as broad 

deep valleys with multiple ridges. The recovered surface looked more like a single 

crease formed by two curved surfaces. Departing from the middle ridge, gradients 

were initially proportional to luminance but quickly deviated from linearity towards 

stimulus borders. However when observers assumed convexity (the -45° grating for 

JCY and HW) gratings were still perceived as mounds with multiple values and the 

perceived gradients were still negatively proportional to the luminance. 
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Figure 6.10 Three participant‘s perceived slant and perceived surface profile for sine wave 

gratings (a), square wave gratings (b), periodical saw-tooth (c) and cropped saw-tooth (d).  

Results for stimuli with the same orientation are grouped in the same column. Solid lines 

represent the luminance profile. The observer‘s response is represented by dots. The horizontal 

axis is the spatial location in the unit of grating cycles. The black arrow indicates the direction of 

the luminance variation. 

 

For sine-wave gratings, the two naïve subjects also assumed an approximately linear 

relationship between the perceived slants and the luminance (mean correlation 0.94). 

The recovered depth profiles for these two participants look like phase-shifted sine 

waves, which is consistent with what was reported in the previous two-point probe 

experiments (Chapter 2 and 3). For -45° sine-wave gratings, the other participant (PS) 

assumed a mapping that could not be accounted by a linear relationship between the 

perceived slants and the luminance values (correlation = 0.2). The recovered surface 

height for PS, however, appears to be in proportion to the luminance (correlation = -

0.95). For 90° and 45° sine-wave grating, the correlations for PS‘s perceived slant and 

luminance values are 0.58 and 0.67 and those for PS‘s perceived height and 

luminance are 0.62 and 0.5.  

 

PS and JCY perceived 90° and 45° square-wave stimuli as a triangle surface, a result 

of the linear relationship between the perceived slants and the luminance of the 

stimuli (mean correlation =  0.81). HW did not assume a linear relationship between 

the perceived slants and the luminance of 90° and 45° square-wave stimuli as the 

other two participants do (mean correlation = 0.25). But the relationship between the 

recovered surface height and the luminance is roughly linear (correlation = -0.73). For 

the -45° square wave, the recovered surface heights for all three participants do not 

display any observable patterns and the perceived slants appear to be distributed 

around zero.  
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To summarize, from table 6.1, data for saw-tooth gratings are very consistent across 

all participants. All three people set their perceived gradients proportional to the 

luminance profile, as indicated by the correlation coefficients extremely close to 

either 1 or -1. The sign of the relationship varied with the orientation of the grating. 

When the same saw-tooth gratings were cropped such that no equal edge pairs were 

present in the figure, the recovered surface profiles were qualitatively different for all 

participants and the linear relationship between the perceived slants and the 

luminance did not always hold. 

 

Sine wave gratings were perceived quite depthy too, with the perceived gradients 

roughly proportional to the luminance profile under most conditions. The exception is 

PS‘s data for -45° sine-wave where the perceived heights rather than gradients were 

correlated to the luminance. The square wave looked the least depthy compare to the 

other two gratings but when they did look depthy to the observers, either their 

perceived gradients or perceived heights were still highly correlated with the 

luminance. Responses for the -45° square wave are as if they contained very little 

signal at all.  

 

    Luminance 

 

Participants 

Sine wave Periodical saw-tooth Cropped saw-tooth Square wave 

-45° 0° 45° -45° 0° 45° -45° 0° 45° -45° 0° 45° 

JCY (Naïve) 0.98 0.99 0.90 -0.9 0.99 0.99 -0.97 0.74 0.70 -0.61 0.85 0.86 

HW (Naïve) 0.9 0.9 0.96 -0.94 0.97 0.97 -0.95 0.53 0.46 -0.25 0.44 0.06 

PS (Author) 0.2 0.58 0.67 0.93 0.99 0.99 0.7 0.71 0.7 0.66 0.84 0.75 

Table 6.1 Correlation coefficients between each observer‘s perceived gradients and the luminance profiles for all three 

types of stimuli. Most coefficients are quite high, suggesting the perceived gradients are highly correlated with the 

luminance profiles.  
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    Luminance 

 

Participants 

Sine wave Periodical saw-tooth Cropped saw-tooth Square wave 

-45° 0° 45° -45° 0° 45° -45° 0° 45° -45° 0° 45° 

JCY (Naïve) 0.2 0.23 0.09 -0.23 0.05 0.04 -0.33 -0.17 -0.15 -0.28 0.002 0.03 

HW (Naïve) 0.1 0.004 0.34 -0.29 -0.03 0.17 -0.19 0.04 0.04 -0.73 -0.66 -0.81 

PS (Author) 0.95 0.62 0.5 -0.05 0.07 0.03 -0.08 0.02 0.02 0.58 0.04 0.16 

Table 6.2 Correlation coefficients between each observer‘s perceived surface heights and the luminance for all three 

types of stimuli. Most coefficients are quite low but high correlations are found for when the corresponding cells in table 

6.1 are low.  

 

6.3.5 Discussion 

The direction of luminance variations provides a cue for the direction of the 

illumination (Pentland, 1982). For the stimuli used in this experiment, the suggested 

illumination should be inline with the direction of the luminance variations (that is, 

perpendicular to lines of constant luminance in the non-textured stimuli). However, 

the sign of the direction of the illumination should be determined by the lighting 

assumptions of individual observers in order to resolve problems such as the convex / 

concave ambiguity (Ramachandran, 1988; Sun & Perona, 1998; Mamassian & 

Goutcher, 2001). Thus the direction of the assumed light source can be obtained from 

the convexity or concavity of the perceived surface. When interpreting horizontal 

gratings, results showed that all observers clearly used a light from above prior (see 

Figure 6.10). For all 45° gratings, the suggested direction of the illumination (inline 

with the direction of the luminance variation) should be either above-left or below-

right. The results suggest when perceiving 45° gratings, observers preferred light from 

above-left. For -45° gratings, the suggested illumination directions should be either 

from above-right or below-left to be inline with the luminance variation. But results 

were not very consistent for this orientation. For -45° sine wave gratings, observer 

JCY and HW seemed to prefer light from below-left. In contrast JCY preferred the 

light from above-right for -45° square wave and saw-tooth gratings. HW also 
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preferred the light from above-right for -45° saw-tooth gratings. PS‘s judgments for -

45° saw-tooth gratings were consistent with light from below-left but his light 

assumption for -45° sine-wave could not be explained by oblique lighting. Generally 

speaking, neither light from above-right nor below-left is the most favourite lighting 

prior so observers did not demonstrate a strong preference for one against the other.  

In fact, the flattened recovered surface for -45º square wave grating may well be due 

to the action of two contradictory lighting assumptions working against one another. 

Since a new image was generated during each trial, there might be a flip between the 

two contradicting lighting assumptions, resulting in the perceived gradients cancelling 

one another out making mean gradients much lower than might have been the case on 

individual trials.  

 

Edges played an important role for perceiving saw-tooth gratings. When luminance 

gradients were bounded by equal polarity edges, human performance can be predicted 

by a linear solution to equation 6.6. For cropped saw-tooth stimuli, edges between 

figure and background may be still active during the task but the strengths of the 

edges were not equal. Under this condition, the linear relationship broke for concavely 

perceived surfaces but still held for when surfaces were perceived as convex. For sine 

waves and square waves, for which both of equal edge pairs and edge pairs with 

opposite signs coexist, some observers mapped luminance to perceived slant with a 

linear function, but not all of the time. However in the cases where this linear 

relationship did not hold and perceived depth was not flat, the recovered surface 

height tended to be proportional to the luminance, consistent with the ―dark is deep‖ 

rule.  
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6.4 Experiment 2  

It was shown above that for the three types of luminance variations that were bounded 

by equal polarity edges, perceived gradients were approximately proportional to 

luminance. But when the boundary condition was violated as was the case of cropped 

saw-tooth stimuli, the linear relationship no longer held, at least when they were 

perceived as concave. In some cases, however, perceived gradients did not correlate 

with luminance, but luminance did correlate with perceived height. These two 

relationships represent two distinct computations associated with human SFS: 

slant luminance and dark is deep. It is expected that edges are important in deciding 

which computation to carry out. However in experiment 1, equal edges and edges 

with opposite polarity coexist in periodical sine-wave and square-wave gratings, 

which could have been the cause of the fact that both types of computations were 

observed for those stimuli. The effect of edge polarities were further investigated in 

this experiment.  

6.4.1 Stimuli 

The stimuli were made from the same sine-wave and square wave gratings as in 

experiment 1 but were always superimposed with isotropic textures. Some gratings 

were cropped and the retained section contained 1.2 cycles such that the only 

remaining visible edges had opposite polarities (see Figure 6.11). For cropped 

gratings, phases were fixed such that peak luminance always appeared in the centre of 

the screen and the background was set to the medium luminance. Stimulus orientation 

was fixed at 45°.  
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6.4.2 Procedure 

Perceived shape was measured by the same gauge figure task as in experiment 1 

except that the disk had a smaller diameter of 0.48 deg. Steps of adjustment were 

made either 1° or 10° so that observers could choose either the coarse or fine 

adjustment. The measuring points were sampled at multiples of 1/10
th

 of a cycle of the 

grating (0.5 deg) but randomly displaced along the orthogonal direction. Thus the 

diameter of the disc (0.48 deg) was less than the sampling distance (0.5 deg). The 

measuring positions were arranged in a way that edges in square wave gratings were 

excluded. Measuring positions started at 1/20
th

 of a cycle from the top left edge of the 

cropped stimuli and at a similar position relative to the centre of the un-cropped 

stimuli (see Figure 6.11). Each type of stimulus remained on the screen and the gauge 

figure appeared in random order at the measuring positions. Observers made four disk 

settings per position. Unlike experiment 1, each stimulus remained on the screen until 

the participant completed all the trials for that stimulus. The four types of stimuli were 

displayed in random order. Mean gradients were integrated to provide an estimate of 

the perceived depth profiles. In total each participant completed: 

10 (positions) 4 (repetitions) 4 (stimuli) 160   

trials during the experiment. Observers were likely to reset their ―beholder‘s share‖ 

when viewing new images in each trial during experiment 1. The effect of such 

resetting was minimised in experiment 2 to avoid the possible cancellations found in 

the results of experiment 1.  

6.4.3 Results and discussions 

Three naïve participants were tested in experiment 2. None of them had participated 

in experiment 1. Figure 6.12 describes the data in a similar format to Figure 6.10. 
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Table 6.3 gives the Pearson correlation coefficients between perceived slant and 

luminance, and between perceived height and luminance respectively.  

 

Perceived surface profiles for un-cropped sine wave gratings were similar to those of 

experiment 1: Two observers (TT and ZXQ) produced a gradient profile linearly 

related to luminance (correlations = 0.98 and 0.87). The correlations between their 

perceived heights and luminance were both low (-0.44 and -0.28). The two 

coefficients for the other observer (KL) were both at a medium level (0.67 and 0.58). 

For cropped sine waves, no participants assumed a linear relationship between 

perceived gradients and luminance (correlations = -0.23, -0.2 and -0.27). However the 

correlation between perceived height and luminance all increased (correlations = 0.96, 

0.76 and 0.94). When viewing un-cropped square waves, all participants agreed on a 

linear relationship between gradients and luminance (correlations = 0.98, 0.97 and 

0.98). The correlations between heights and luminance were consistently low 

(correlations = -0.32, -0.64 and -0.5). But for the cropped square-wave this pattern 

was destroyed (correlations between gradient and luminance = -0.26, -0.23 and -0.37). 

Instead perceived height and luminance were correlated (0.76, 0.69 and 0.73).  

 

For sine wave gratings, a linear gradient model will produce a sinusoidal surface with 

a 90° phase shift to the luminance whereas a ―dark is deep‖ model will produce a near 

sinusoidal profile that is in-phase with luminance.  The perceived shape of un-cropped 

sine wave could be explained by the linear gradient model for two observers however 

they both switched to a ―dark is deep‖ model when the sine wave was cropped. From 

the graph (bottom left in Fig 6.12a), shape judgment for the other participant also 

appeared as a sinusoidal surface but with a smaller phase shift than predicted by a 
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linear gradient model. As if it were a combination of the two model predictions. But 

this participant also switched to the ―dark is deep‖ model when judging cropped sine 

waves. 

 

For un-cropped square waves, all participants‘ performance could be explained by the 

linear gradient model. Removing edge pairs with equal polarities made all observers 

changed their strategy. Although correlations between luminance and perceived 

surface heights increased significantly, they were not as high as for cropped sine wave 

gratings. Graphically, it is also very clear that shape perceptions for cropped square 

waves did not exactly follow the luminance trace. However observers qualitatively 

agreed on their perceived shapes which appeared approximately as trapezoidal 

surfaces. This also suggests that the adopted new strategy should be consistent across 

all observers.  

 

Whether the new strategy was the same as that for cropped sine waves is open to 

discussion. By comparison, perceived shapes for these two types of stimuli were 

qualitatively similar except that one was smoothly curved and the other was made of 

planar surfaces. Considering the similarities of the two luminance traces, it is possible 

that observers switched to the same strategy when edges with equal polarities were 

removed. If this was true, the ―dark is deep‖ rule would not serve as a perfect model 

to characterise the unknown strategy, though it might provide an approximate model.  
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    Luminance 

 

Participants 

Sine  Cropped Sine Square  Cropped square 

Gradient Height Gradient Height Gradient Height Gradient Height 

TT 0.98 -0.44 -0.23 0.96 0.98 -0.32 -0.26 0.76 

ZXQ 0.87 -0.28 -0.2 0.76 0.97 -0.64 -0.23 0.69 

KL 0.66 0.58 -0.27 0.94 0.98 -0.5 -0.37 0.73 

Table 6.3 Pearson coefficients between each observer‘s perceived gradients and the luminance, as well as between 

perceived surface heights and luminance for all stimuli.  

 

Figure 6.11 Stimuli in experiment 2. sinewave (a) and square wave (b) are the same as in experiment 1 except 

their phase were fixed during the experiment. (c) and (d) are cropped version of (a) and (b) respectively. The 

visible portions in (c) and (d) are 1.2 cycles of the periodical gratings.  (a) and (c), (b) and (d) are shifted by 90°. 

The dots mark the ten measuring positions within a cycle of the test gratings.  

(b) (a) 

(c) (d) 



 196 

 

 

Perceived 

slant 

Perceived 

surface profile 

Perceived 

slant 

Perceived 

surface profile 

Perceived 

slant 

Perceived 

surface profile 

TT 

ZXQ 

KL 

(a) 



 197 

 

Figure 6.12 Three participants‘ perceived slants and perceived surface profiles for sine wave 

gratings (a), square wave gratings (b).  Legends are same as in Fig 6.8 
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6.5 General discussion 

The major finding in experiment 1 was that observers assumed a linear relationship 

between luminance and perceived slant for periodic saw-tooth gratings when 

luminance was bounded by equal edges. The relationship no longer held when these 

boundary condition were violated, at least when the surface was perceived as concave. 

The linear relationship for the other two gratings was most pronounced when the 

suggested light source directions were consistent with the light from above left prior. 

Results for other stimuli may have been compromised by the concave / convex 

ambiguity. But other patterns of behaviour were also found; some suggesting a ―dark 

is deep‖ model. In these stimuli, edge pairs with equal and opposite polarities 

coexisted and this may have confounded the results. Experiment 2 was conducted to 

examine the role of edge polarities in determining the computation of SFS, while 

reducing the cancellations caused by unfavourable assumed lighting directions. 

Results in experiment 2 suggested that when edges with equal sign were removed, 

perceived slant was no longer linear but indicated a computation that can be 

approximated by a ―dark is deep‖ model. Taken together, two types of computations 

could be identified and are discussed in the following subsections. 

6.5.1 The linear reflectance mode (LRM) 

Human SFS is operated a linear reflectance model (LRM) at least when the polarities 

of two boundary edges are the same. This model is based on solving equation 

 
 xI

dx

xzd
C 

2

2

.        (6.7) 

The solution is given by: 

    cbxdxxIaxz         (6.8) 
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where  xz is the depth function of a surface,  xI is shading image, cba ,, are 

coefficients to be determined by observers. Equation (6.8) is a 1-D version of the 

ambiguity function of human SFS defined in equation (6.3). Humans must resolve the 

ambiguities during SFS. To determine b , the difference in height between two 

boundary positions is required. With equal boundary conditions, the perceived 

gradients will be linearly related to luminance, i.e. b equals zero. On a surface, equal 

boundary condition means that two surface positions are at the same height relative to 

the image plane. Other things being equal, edges with similar contrast under LRM are 

likely to be treated by humans as being at roughly equal height. ca, are left to 

individuals to resolve using their ―beholder‘s share‖. But when information on the 

relative heights of two boundary positions is not available, all three parameters are left 

completely to the individuals ―beholder‘s share‖. This ―Beholder‘s share‖ appeared 

quite different across observers when cropped saw-tooth grating appeared concave, as 

can be concluded by the different relative distances between the two boundary 

positions on the recovered surface. When surfaces appeared convex, observers still 

resolved the ambiguity by assigning roughly same surface height to boundary 

positions, resulting in linear relationships between perceived slant and luminance. The 

central idea of LRM is that surface shape is coded in the format of equation (6.7). The 

behavioural response to SFS tasks under this mode is concerned with a specific 

realization of equation (6.8), that is, assigning values to the three 

coefficients cba ,, based on visual cues in the image as well as observers‘ ―beholder‘s 

share‖. This idea is consistent with the claim that the visual system codes surface 

curvature in the process of SFS (Johnston & Passmore, 1994b), because  xz  is a 

good approximation of surface curvature.  
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The idea that slant is proportional to luminance when bounded by equal edges is also 

consistent with the bumpy perception of 1D luminance gradient bounded by a circular 

contour. Take the luminance gradient as the gradient of the surface and integrate 

column by column along the vertical direction between the boundaries. The 

integration will give rise to a series of quadratic curves with domes at different height, 

approximating a bumpy sphere. In comparison, when a 1D gradient is bounded by a 

square, the same process will give rise to a series of quadratic curves with domes at 

the same height, leading to a cylindrical perception (See Figure 6.13).  

 

Figure 6.13 1D luminance gradient can be perceived as bump when it is bounded by a circular 

contour (a) but also be perceived as cylindrical when it is bounded by a square (c).  (c) and (d) 

were obtained by solving the ordinary differential equation 6.7 with equal boundary conditions 

at their surrounding contours. Results were produced using a simple algorithm based on the 

descriptions in the text.  

 

6.5.2 “Diffuse or frontal” lighting mode  

When luminance variations are not bounded by equal polarity edges, observers are 

likely to adopt a different strategy. Cropped sinusoids were perceived as sinusoidal 

(c) 

(a) (b) 

(d) 
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surfaces without a phase shift, in contrast to the phase shifted sinusoidal surfaces 

observed elsewhere (Schofield et al., 2006; Pentland, 1988; chapter 2, 3). Cropped 

square waves were perceived as trapezoid shapes in contrast to triangle shaped 

surfaces found for un-cropped square waves. Perceived shape for cropped sine-wave 

can be explained by a ―dark is deep‖ model. Perceived shape for cropped square-wave 

didn‘t fully obey ―dark is deep‖ but was broadly consistent with a Lambertian surface 

illuminated by diffuse lighting (see Fig6.7c). Under diffuse lighting a trapezoidal 

surface will produce three patches of uniform luminance because points on each 

planar surface see the same portion of the lighting hemisphere. But the planar surface 

on top will appear lighter than the other because it is exposed to the entire light 

source. The two surfaces on the side are less bright as back planes stop light coming 

in from behind. However this doesn‘t mean that the new computational strategy is 

designed exclusively for the condition of diffuse lighting. For example a trapezoidal 

surface will produce similar shading patterns under collimated frontal lighting as well. 

Also, the ―dark is deep‖ rule reported by Christou and Koenderink (1997) is most 

pronounced when the direction of the light source was close to the viewing direction 

(frontal lighting). But what is certain is that this new strategy corresponds to a lighting 

condition which is either diffuse or, if collimated, frontal.  

 

The computation under the new strategy is not very clear either. While the ―dark is 

deep‖ rule predicted sinusoidal stimuli well, it does less well for square waves. In 

Langer and Bülthoff‘s experiment (2000), the accuracy of the depth comparison task 

performed with diffusely lit surface was still above chance level for the ―anti-

correlated‖ condition (see 6.1.4). If human SFS under diffuse lighting completely 
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obeyed ―dark-is-deep‖ rule, the accuracy would have been close to zero. Thus ―dark-

is-deep‖ rule doesn‘t fully describe human SFS under diffusing lighting.  

6.5.3 Human SFS operates in distinct modes 

Given a shading image, the visual system should first decide through which 

computational strategy the shading will be interpreted. The two known operational 

modes correspond to two lighting conditions: collimated oblique illumination and an 

illumination that is either diffuse or collimated but frontal. Edge polarities are likely 

to play a role in making the decision. Luminance variations bounded by edges with 

same polarity are likely to trigger the implementation of LRM but otherwise a ―dark-

is-deep‖ rule or a variant of it might prevail. An example is the equilateral triangle 

wave (Fig 6.14) which has similar luminance profiles as a sine-wave grating but does 

not have any zero crossing in the second-derivative and therefore does not have any 

edges. As shown in Figure 6.14, the perception of this luminance variation seems to 

follow the ―dark is deep‖ rule instead of the ―slant proportional to luminance‖ rule. 

When edge pairs with both equal an opposite polarities are present in an image, 

humans may decide in accordance with probabilities of each mode in natural scenes. 

Data suggests that LRM tends to be preferably weighed which is consistent with what 

was found for a natural scene interpretation task (Pentland, 1988). But some 

participants seemed to combine the two modes. The product of LRM operating on a 

sinusoid is a sinusoid with 90° phase shift. But under the other mode, no phase shift is 

obtained. A linear combination of the two operations will give rise to a sinusoid with 

a phase shift in the range of 0°-90°, consistent with PS and KL‘s responses for 45° 

sine wave gratings.  
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Figure 6.14 An equilateral triangle wave appears an equilateral triangle surface. 

 

6.5.4 Psychological plausibility of distinct modes in human SFS 

Shading is ambiguous. For each possible lighting direction, there exists a 

corresponding surface in a family of affine transformation to generate the same 

shading pattern (Belhumeur et al., 1999). To obtain a unique solution of the surface, 

humans must have a unique and stable prior knowledge on light source tilt and slant 

(together they form light source direction). Unfortunately, human lighting priors are 

thought to span a wide range of tilt angles and priors for slant remain unknown. When 

estimating light source direction, humans demonstrate very poor accuracies and 

individual differences are huge. Thus it is unlikely that human SFS can achieve a 

unique surface representation with a specific light source direction. Rather it is more 

plausible that human SFS interprets shading in terms of a set of 3-D surfaces. To 

achieve this, the interpretation has to be conducted without precise knowledge of light 

source. In other words, human SFS is mostly dependent on shading patterns and is 

insensitive to small changes in light source directions. This is exactly what has been 

reported regarding to the lack of shape constancy under changing lighting directions 

in the literature (Khang et al., 2007; Christou & Koenderink, 1997; Todd et al., 1996). 
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On the other hand, humans should be more sensitive to changes in lighting patterns or 

large changes in lighting directions under which the formulation of shading may also 

change. Thus it is reasonable that human SFS switches its operational mode in 

response to apparent changes in the illumination pattern. Indeed, different behaviours 

have been reported for different lighting conditions during a curvature discrimination 

task (Johnston & Passmore, 1994a; Curran & Johnston, 1996), surface attitude 

judgement tasks on rendered images (Christou & Koenderink et al., 1997; Langer & 

Bulthoff, 2000; Nefs, 2008) and surface attitude judgement tasks for photographs of 

real objects (Todd et al., 1996). For simple images like those used here, the decision 

on which mode to operate is based on the polarities of edge pairs bounding the 

luminance variations. But it may not be as straight forward for natural images. 

However it is still possible that switching between the operational modes is cued by 

distributions of edges. There is evidence suggesting that the activities of edge 

detectors in a complex images made up of Gaussian textures can be decisive in light 

field estimation tasks (Koenderink et al., 2007).  
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7. Conclusion 

The human visual system is thought to comprise a series of modules each specializing 

in a particular task, one of which is SFS. The aim of the thesis was to investigate the 

operation of the two sub-modules within the SFS module. The two stages studies are 

luminance disambiguation and the estimation of surface height from shading 

components. The major findings about each computational stage and their validity are 

summarised in the following sections. 

7.1 Second-order vision in luminance disambiguation 

This stage is closely related to the theory that luminance variations are separated into 

layers by visual system according to their origins in the scene (e.g. changes due to 

illumination and surface reflectance might be separated at this stage; Kingdom, 2008). 

The theory of layer segmentation coincides well with SFS as ideally human SFS is 

based on intrinsic shading instead of raw luminance variations. Among many others, 

texture amplitude is an effective cue used by humans to differentiate changes in 

reflectance from illumination (Schofield et al., 2006). The first three chapters of this 

thesis were dedicated to further examining the characteristics of this cue as well as 

proposing a neural mechanism to explain the computations involved.  

 

It is well known that humans are sensitive to stimuli consisting of second-order 

signals (Chubb & Sperling, 1988; Cavanagh & Mather, 1989; Wilson et al, 1992). 

Moreover, it is now clear that the visual system dedicates a separate multi-channel 

mechanism to processing second-order signals (see for example, Schofield & 

Georgeson, 1999). Studies of the distribution of first-order and second-order signals 

in natural scenes point towards the idea that second-order signals (more precisely the 
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relationship between first- and second-order signals) may convey important 

information about the scene. However, the role of second-order vision in our daily 

experiences is not well understood. Schofield et al. (2006) proposed that the 

relationship between first-order luminance signal (LM) and a second-order entity AM 

determine whether the luminance variations have the appearance of shading or 

reflectance. Further, the effectiveness of differentiating illumination from reflectance 

changes was found to vary with the underlying strength of the AM signal (Schofield 

et al., 2010), suggesting second-order vision could play a role in luminance 

disambiguation. To further verify this hypothesis, chapters 2 and 3 tested the effect of 

carrier frequency on the impression of SFS. The results showed that the impression of 

corrugations versus flatness varied with the carrier frequency in a similar way to 

second-order vision, providing further evidence of the active role of second-order 

vision in the process of luminance disambiguation. Through another route, reducing 

the frequency of the texture components gradually made them appear more like 

shading. This finding is consistent with another heuristic that shading in natural 

scenes are normally made of low frequency components (Kingdom, 2008). Taking 

these results together, it is proposed that layer decomposition based on texture 

amplitude is conducted by retrieving second-order signals through a second-order 

channel.  

 

Based on Schofield et al.‘s data (2010), Chapter 4 established a computational 

strategy to differentiate between changes in illumination and reflectance. First-order 

luminance variation and second-order amplitude modulations were extracted 

separately and were then combined at a later stage. A contrast gain control circuit then 

applied cross-inhibition among multiple channels. The output of the model is a set of 
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scalar values representing the strength of shading at each frequency and orientation 

(the model was only implemented with two such channels). The inverse operation 

then multiplied the component strengths with their corresponding basis functions to 

recover the full shading image. The whole process is analogue to applying a linear 

operation (e.g. Fourier transform) decomposing the image into bands of different 

frequencies and orientations. The coefficients of these bands are either suppressed or 

boosted according to the accompanying second-order information, followed by a final 

cross-inhibition stage before transforming the retained components back into the 

spatial domain. A parallel process can be used to extract reflectance components to 

form a reflectance image. Chapter 4 also suggested a neural mechanism which could 

conduct the proposed computation. The neural mechanism consisted of multiple 

shading channels each containing two separate sub-channels to retrieve first-order and 

second-order information respectively. The two sub-channels within each shading 

channel were tuned to the same frequency and orientation. Responses of both sub-

channels were summed and the squared energy of the summation was taken as the 

strength of the shading channel. The proposed neural mechanism is consistent with 

known physiology in early visual area. Cells have been found in cat area 17 and 18 

that are responsive to both first-order gratings and second-order contrast modulated 

envelopes (Mareschal and Baker, 1998a; 1998b). Further, when presented with a 

combination of first-order and second-order signals, the response of such cells varied 

with the phase relationship of the two components with response peaks at zero phase 

differences and troughs at 180° of phase shift (Hutchinson et al., 2007). The 

characteristic of such cells are similar to the proposed neural mechanism.  
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Not only did the model provide a good fit to Schofield et al.‘s data (2010), it could 

also capture the trend of the data obtained in Chapters 2 and 3, after some adjustment. 

The adjustment was made to the output of the model without any changes to its inner 

structure and parameter settings. The analysis of the difference between the two types 

of studies proved that such adjustments were justifiable.  

7.2 Application in Intrinsic image separation 

The biologically inspired model proposed in Chapter 4 was competent for images 

consisting of one or a very small number of frequency bands, as demonstrated by the 

output images in Chapter 4. But it is not a mature solution for real images which are 

broadband in frequency and orientation. The reason for this is that the experimental 

data are only available for stimuli made of single frequency component and two 

orientation components. The study of cross-frequency inhibition is also rather 

incomplete in the literature (see Meese, 2004). Therefore the parameters for inhibitory 

terms acting across frequency channels can not be determined.  

 

To provide a solution for image processing, Chapter 5 adopted a framework similar to 

the classic Retinex algorithm (Land & McCann 1971; Horn 1974) and replaced the 

original gradient classification rule with the one derived from psychological 

experiments on second-order cues (Schofield et al., 2006). The algorithm assumed 

that local contrast should be constant within a uniform flat surface under changing 

illumination. Thus any changes in local contrast should be due to reflectance. The 

algorithm compared luminance edges in the original image with edges in local 

contrast and deleted those luminance edges whereby edges in local contrast were also 

found. Due to the fact that edges in local contrast and edges in luminance never 

coincided exactly, a width estimation algorithm was used which provided tolerance 
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for such mismatch. Results showed that the algorithm performed reasonably well on 

images containing large patch of shadows, with distortions along sharp shadow 

boundaries. Possible improvements include using a more accurate texture 

segmentation algorithm to find the edges in local contrast or adding other local 

features and using texture edges as a global constraint. Note that the output from 

either type of the model comprised components due to generalised changes in 

illumination. The models do not distinguish shading from cast shadows.  

7.3 Computing 3-D shape from shading 

The module for computing of 3D shape from shading assumes that its input contains 

only shading information. Human SFS has been an active research topic for more than 

two decades. Yet it is still far from determining the computational algorithm for this 

aspect of human vision. The impression that humans can achieve a coherent 

representation of the 3-D world under changing illumination and surface material 

suggests that the computation of human SFS is not unique (no single and simple 

computation can suit all situations) and may be too complicated to determine. 

However studies on the shape constancy of SFS have alleviated this concern as 

humans are incapable of deriving a constant shape perception under changing 

illumination and surface reflectance (Khang et al., 2007; Christou & Koenderink, 

1997). Instead, SFS was largely dependent on the underlying shading patterns (Khang 

et al., 2007). This suggests that human SFS may in fact rely on a rather simple, if 

fallible, computation. Thus chapter 6 used a different methodology aimed at 

establishing a computational theory for human SFS—testing human shape perception 

with non-naturalistic luminance variations. These stimuli did not provide any 

information about the identity of the object thus prevented interferences from high 
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level object recognition. Image outlines were not indicative of any 3-D information 

either refraining other depth cues to override shading.  

 

Chapter 6 also introduced a computational scheme to explain the SFS data. The 

scheme proposed two distinct computational modes for human SFS. In the linear 

reflectance model (LRM), the recovered surface height is one of a family of solutions 

to an ordinary differential equation. When human observers assumed equal height at 

the two boundaries, the solution is consistent with the traditionally held view that 

―perceived slant is proportional to luminance‖. This mode is consistent with 

collimated lighting from an oblique angle. In the other mode, recovered surface height 

is indicative of a surface under a lighting that is not ―collimated and oblique‖. To 

some extent, the computation under this mode could be accounted for by the ―dark is 

deep‖ rule. Switching between these two modes was related to the sign of the two 

edges at the boundaries of the stimulus. LRM was switched on when two boundary 

edges had the same sign of contrast. The dark-is-deep mode operated when two 

boundary edges had oppositely signed contrasts. When both types of edge boundaries 

existed, human SFS preferred LRM but could demonstrate a combination of the two 

operations.  

 

The proposed theory could explain a number of known characteristics of human SFS. 

The computations in the two modes do not require precise knowledge of the lighting 

direction. This is consistent with the discovery that the process of SFS was 

independent of light source estimation (Mingolla & Todd, 1986; Mamassian et al., 

1996) and that perceived curvature remained constant under small changes in lighting 

directions as long as the lighting was not frontal (Curran & Johnston, 1994). But 
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humans do need a rough idea of the lighting in terms of whether it is directionally 

oblique or not. One cue for obtaining this rough knowledge could be the sign of edge 

boundaries. This is consistent with the report that distributions of edges were decisive 

in the light source estimations by humans (Koenderink et al., 2007). Human observers 

were found to overestimate surface slant when the actual slant was small but 

immediately started to underestimate it when the actual slant increased. This can be 

explained by the LRM model. An examination of those stimuli for which such 

performance was reported reveals that those stimuli were indeed under oblique 

lighting conditions and were bounded by edges with same polarities.  

 

Due to the bas-relief ambiguity (Belhumeur et al., 1999), any given shading pattern 

corresponds to a family of depth functions and a set of illuminations. Only when the 

precise direction of the illumination is available, can the solution of the 3-D shape be 

uniquely determined. Thus the proposed SFS theory implies that the exact 3-D shape 

is not represented uniquely in the visual system. Given shading alone human SFS 

must derive a family of functions to describe the 3D shape.  Under LRM, this family 

of functions are solutions to an ordinary differential equation which codes the second 

derivative of the surface with differences in luminance, consistent with the claim that 

it is the surface curvature that is coded in the 3-D vision (Johnston & Passmore, 

1994b). Humans then need to place further constraints to choose from among the 

family of solutions. This can explain the large individual differences often found 

during SFS experiments despite the tendency for observers to agree on the qualitative 

shape perceived.  
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Questions still remain regarding to the exact computation of the other mode and how 

the two modes should be combined. However the proposed theory is pioneering in 

that it is the first attempt to establish a computational theory for human SFS and it 

disassociates the shape computation with precise light source estimation and surface 

material, which is seemingly how human behaved in the reported studies of SFS.  
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Abstract 

 

The human visual system is sensitive to second-order modulations of the local 

contrast (CM) or amplitude (AM) of a carrier signal. Second-order cues are detected 

independently of first-order luminance signals; however it is not clear why vision 

should benefit from second-order sensitivity. Analysis of the first- and second-order 

content of natural images suggests that these cues tend to occur together but their 

phase relationship varies. We have shown that in-phase combinations of LM and AM 

are perceived as a shaded corrugated surface whereas the anti-phase combination can 

be seen as corrugated when presented alone or as a flat, material change when 

presented in a plaid containing the in-phase cue. We now extend these findings using 

new stimulus types and a novel haptic matching task. We also introduce a 

computational model based on initially separate first- and second-order channels that 

are combined within orientation and subsequently across orientation to produce a 

shading signal. Contrast gain control allows the LM+AM cue to suppress responses to 

the LM-AM when presented in a plaid. Thus the model sees LM-AM as flat in these 
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circumstances. We conclude that second-order vision plays a key role in 

disambiguating the origin of luminance changes within an image.
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Introduction 

The human visual system is sensitive to variations of second-order cues such as 

modulations of  the local contrast (CM) of textured stimuli. This is true for both 

moving (see Baker, 1999 for an early review) and static (Badcock, Clifford & Khuu, 

2005; Dakin & Mareschal, 2000; Georgeson & Schofield, 2002; Graham & Sutter, 

2000; Henning, Hertz and Broadbent, 1975; Larsson, Landy & Heeger 

(2006);Nachmias, 1989; Nachmias & Rogowitz, 1983; Schofield & Georgeson, 1999, 

2003; Sutter, Sperling, & Chubb, 1995) stimuli, although here we concentrate on 

static cues. There is strong psychophysical evidence to suggest that static CM is 

detected separately from first-order luminance modulations (LM). For example, there 

is no sub-threshold facilitation between the cues (Schofield & Georgeson, 1999), they 

can be distinguished at detection threshold (Georgeson & Schofield, 2002), lateral 

interactions are different for the two cues (Ellemberg, Allen, & Hess, 2004), their 

channel structure is different (Ellemberg, Allen & Hess, 2006), noise masking is 

doubly-dissociated (Allard & Faubert, 2007), they make separate contributions to 

global form detection (Badcock, et al., 2005) and different contributions to contour 

linking processes (Hess, Ledgeway & Dakin, 2000). Finally although most retinotopic 

visual areas respond to both LM and CM there is preferential fMRI adaptation for CM 

in the higher areas (specifically VO1, LO1 and V3a; Larsson, et al., 2006). 

 

It is also clear, however, that CM and LM are integrated or partially integrated in 

some cases. For example, contrast modulations of a high-contrast grating carriers 

mask LM signals (Henning et al., 1975; Nachmias & Rogowitz, 1983) but 

modulations of low contrast noise carriers do not (Schofield & Georgeson, 1999).  

LM masks the detection of CM in noise carriers but not vice versa (Ellemberg, Allen, 

& Hess, 2006; Schofield & Georgeson, 1999), and similar asymmetric interference 

has been found for global form detection (Badcock, et al., 2005). The orientation of 

first order stimuli affects the perceived orientation of second-order stimuli (Morgan, 

Mason & Baldassi, 2000). The signal types combine at low contrasts to improve 

perceptual accuracy (Smith & Scott-Samuel, 2001). Further, tilt and contrast 

reduction after-effects transfer between LM and CM (Georgeson & Schofield, 2002), 
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as does the tilt illusion (Smith, Clifford & Wenderoth, 2001). Finally, we have 

previously shown that LM and CM interact in the perception of shape-from-shading 

(Schofield, Hesse, Rock & Georgeson, 2006). 

 

The physiological evidence for independent first- and second-order mechanisms is 

less clear-cut and comes mainly from studies using moving stimuli. Mareschal & 

Baker (1998) found cells in cat area 18 that are responsive to second-order stimuli, 

but these also responded to first-order stimuli: suggesting early integration. However, 

typically, preferred frequencies for the two cues were slightly different. They 

concluded that such cells were likely to take their input from independent first- and 

second-order sub-mechanisms (see also Zhou & Baker, 1996, and Song & Baker, 

2006). Further, in physiology, it is common to search for cells using first-order 

stimuli. Any cell that is then found to be sensitive to second-order cues will, by 

definition, also be sensitive to first-order stimuli. Finally, Second-order signals may 

be extracted in another visual area; V3a has been implicated in second-order 

processing for both static (Larsson et al, 2006) and moving stimuli (Ashida, Lingnau, 

Wall & Smith, 2007). Perhaps second-order signals are extracted in V3a and fed back 

to V1/V2. 

 

Despite the above evidence for separate but interacting first- and second-order 

mechanisms, psychophysically human vision is an order of magnitude less sensitive to 

CM than LM (Schofield & Georgeson, 1999) and similar, if less extreme, results have 

been found for motion in cat area 17/18 (Mareschal and Baker, 1998;  Zhou and 

Baker, 1996; Ledgeway, Zhan, Johnson, Song & Baker, 2005; Hutchinson, Baker and 

Ledgeway, 2007)  and monkey MT (Albright, 1992). This suggests that CM is 

something of a secondary cue, and it is not yet clear why the independent detection of 

static second-order cues is beneficial to human vision. We now address this question. 

 

Human vision presumably obtains some advantage from processing first- and second-

order cues independently and indeed from detecting second-order cues at all. Johnson 

and Baker (2004) measured the relationship between patterns of LM and CM in 

natural scenes and found the two cues to be highly correlated on an unsigned 

magnitude metric. This implies that CM variations tend to occur alongside LM. 

However, Schofield (2000) performed a similar analysis using a signed metric and 
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found that whereas the two cues may be strongly correlated within a single image the 

sign of the correlation varies between images, such that they are uncorrelated over an 

ensemble of images. Taken together these results suggest that CM is an informative 

cue in natural images but that information may be conveyed by its relationship with 

LM rather than its mere presence. 

 

In this paper (as previously, Schofield, et al.,  2006) we prefer to use the term 

amplitude modulation (AM) over CM because although they are mathematically 

equivalent when presented alone, when combined with LM they can be interpreted as 

distinct image properties with AM being the better description for our purposes. 

Schofield et al. (2006) showed that LM and AM are yoked whenever an albedo-

textured surface is shaded or in shadow (see Figure 1 for a natural example of such 

shading and Schofield et al., 2006, for a full account of the yoking between these 

cues). Albedo textures represent locally smooth surfaces whose local reflectance 

changes creating a visual texture. So LM+AM represents a strong cue to shading / 

shadows when certain textured surfaces are present. 

 

 

 

Figure 1. a) a natural image showing part of a building on the University of 
Birmingham campus. The building ‘steps’ out twice working left to right and 
the orientation of the faces produces shading but not cast shadows. The brick 
sections are, approximately, a reflectance texture of the type described in the 
text. The image also shows gross reflectance changes, most notably the 
strips of sandstone among the red brick sections. The red and blue boxes 
show approximate sampling regions for the traces of panels b) and c) 
respectively. The red section of a) was extracted and rotated so that the 
shading edges were vertical. The blue section of a) was extracted and rotated 
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so that the sandstone edges were vertical. Sample sections were also 
converted to greyscale. b) Mean (blue line) and standard deviation (red line) 
of the gray level values in each column of the rotated red section. Mean  pixel 
values are a measure of luminance whereas their standard deviation 
measures luminance amplitude or range. Transitions of high to low luminance 
(LM) are clearly mimicked by changes in luminance amplitude (AM) and the 
two cues are positively correlated. c) mean and standard deviation for the 
columns in the rotated blue section of a)  here the transition to high luminance 
in the sandstone section is not mirrored by a change in standard deviation.  
 

 

People see sinusoidal shading patterns as sinusoidally undulating surfaces (Kingdom , 

2003; Pentland, 1988; Schofield et al., 2006; Schofield, Rock & Georgeson, 

submitted) even though such surfaces only give rise to sinusoidal shading in restricted 

circumstances. We presume that the luminance component of the LM+AM signal is 

coded as a shading pattern and then interpreted as a corrugated surface via shape-

from-shading (Christou & Koenderink, 1997; Erens, Kappers & Koenderink, 1993; 

Horn & Brooks, 1989; Kleffner & Ramachandran, 1992; Langer & Bülthoff, 2000; 

Ramachandran, 1988; Todd & Mingolla, 1983; Tyler, 1998) whereby luminance level 

is equated with surface gradient such that the parts of the surface that are most 

luminous are seen as being oriented towards the illuminant. When the direction of the 

illuminant is unknown humans assume a lighting-from-above prior (Adams, Graf & 

Ernst; 2004; Brewster, 1826; Mamassian and Groucher (2001); Ramachandran, 1988; 

Rittenhouse, 1786; Sun & Perona, 1998). Our earlier results (Schofield et al, 2006) 

with LM+AM sinusoids are consistent with this interpretation, except that we now 

propose an illumination prior that is a mixture of diffuse and point source lighting 

(Schofield, Rock. Georgeson & Yates, 2007; Schofield, Rock, & Georgeson, 

submitted).  

 

The filter-rectify-filter model used by Schofield (2000) to extract second-order cues 

from natural images was sensitive to AM, and it seems likely that natural images 

containing positively correlated first- and second-order cues are dominated by 

shadows and shading. But what of those images that contain negatively correlated 

cues? 

 

Transparent overlays also give rise to second-order cues in natural stimuli (Fleet and 

Langley, 1994). The specific case of a semi-opaque, light (or milky) transparency is 
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pertinent here. Those parts of a textured surface that are obscured by such a 

transparency suffer an increase in mean luminance (e.g. if the base colour of the 

overlay is white its luminance will be higher than the mean luminance of the texture) 

but a decrease in local amplitude (the difference between the light and dark parts of 

the texture will fall due to the blurring caused by the semi-transparent medium). This 

configuration exhibits negatively correlated LM and AM (LM-AM: Note however 

that if the transparency is dark LM and AM will again be positively correlated). The 

notion that LM-AM is a possible cue for transparency is supported by the qualitative 

description of such stimuli given by Georgeson & Schofield (2002; they used the term 

LM-CM). If LM-AM is seen as a cue to transparency then the overall perception is 

likely to be of flat surfaces although the semi-transparent regions may be seen as 

being in front of the main surface. LM-AM might also be interpreted as a material 

change, as there is no restriction on the relationship between LM and AM when two 

surfaces comprising materials with different textures are abutted (see Figure 1). 

 

The idea that LM-AM may be interpreted as either a material change or as an overlaid 

transparency was given empirical support by our previous finding that this cue is seen 

as flat when presented in a plaid with LM+AM (Schofield et al., 2006). LM+AM is, 

by contrast, seen as a shading cue and is therefore perceived as corrugated in depth 

via shape-from-shading. However, when presented alone LM-AM is also seen as 

corrugated albeit less strongly (less reliably) than LM+AM. Why might LM-AM be 

seen as flat in some cases and corrugated in others? There are cases where undulating 

surfaces can produce negatively correlated LM and AM. An example of such a 

surface would be a physically textured (rough) surface under certain illumination 

conditions (see Figure 2 of Schofield et al., 2006). Thus we previously concluded that 

whereas LM+AM is a strong cue to shading, LM-AM is rather ambiguous when seen 

alone. However, when intimately associated with LM+AM as in the case of a plaid 

stimulus where the two cues are necessarily presented with the same texture carrier 

the interpretation of LM+AM as being due to shading seems to force the 

interpretation of LM-AM as being due to some sort of material change (Schofield et 

al., 2006). 

 

The notion that the relationship between LM and AM provides a key for separating 

shading and shadows from material changes has important implications for human 
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vision and applications in machine vision. In principle, a given image can arise from 

an infinite number of scene and lighting combinations. Human vision may make 

considerable use of stored knowledge about the world in a top-down fashion to 

correctly interpret visual scenes. However, natural images may also contain cues that 

can be used to disambiguate the incoming luminance variations via bottom-up 

processes. Specifically, luminance variations are ambiguous; they may result from 

changes in illumination (shadows and shading) or changes in surface reflectance. If 

human vision were only sensitive to luminance its ability to distinguish these 

possibilities on the basis of low-level cues would be greatly restricted. Barrow and 

Tannenbaum (1978) showed how some progress can be made towards the separation 

of illumination and reflectance in a ‗luminance only‘ system, but they also highlighted 

the potential benefits of being sensitive to other cues and the importance of 

understanding how cues relate to one another in real world stimuli. Others have 

shown that hue can be used to separate illumination from reflectance changes (see for 

example Kingdom 2003; Olmos and Kingdom, 2004; Tappen, Freeman and Adelson, 

2005). Here we consider the use of AM as a cue to separate the luminance changes 

due to variations in surface reflectance from those due to variations in illumination or 

shading, and we provide a simple bottom up model - based on both the filter-rectify-

filter model of second order vision (Wilson, Ferrera, & Yo, 1992) and the processing 

scheme for envelope neurons proposed by Zhou & Baker (1996) - that can account for 

our psychophysical results.  

 

In our earlier study (Schofield et al., 2006) we asked observers to make relative depth 

judgements about pairs of probe points from which we derived normalised gradients 

before reconstructing perceived surface profiles: we did not measure perceived depth 

directly. Thus we were unable to express perceived depth in absolute terms, unable to 

measure differences in depth between stimuli with very different signal strengths and 

unable distinguish between low-relief and unreliable depth percepts. Further, 

participants in our earlier experiments reported that the depth probe task felt artificial 

because the probe markers did not appear to be attached to the surface. We avoided 

these problems here by asking observers to match the properties of a haptic surface to 

the perceived corrugations in a co-located visual stimulus. This task felt natural to 

participants and gave direct, and absolute estimates of perceived depth amplitude.  
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We report three experiments. In the first experiment we fixed the position of the 

haptic cue based on the results of a pilot study and asked observers to set the 

amplitude of the haptic undulations to match the perceived surface undulations. Our 

previous study (Schofield et al., 2006) only measured depth profiles at two levels on 

LM (for fixed AM) and found little difference between these conditions.   We now 

measure perceived depth amplitude (PDA) as a function of signal strength, varying 

LM and AM together (Experiment 1) yielding a better understanding of how LM and 

AM interact at different signal strengths. In Experiments 2 and 3, we fixed the 

contrast of the LM cue and measured PDA as a function of AM signal strength in both 

plaid (Experiment 2) and single component (Experiment 3) stimuli, exploring the role 

of AM in more detail. We also present a biologically plausible model providing a 

good fit to the data suggesting that human performance in this task can be explained 

by a bottom up system that first detects and then integrates first- and second-order 

information. 

 

General methods 

We introduce a new method for assessing shape-from-shading. Observers viewed 

sinusoidal visual stimuli while stroking a sinusoidally corrugated haptic stimulus and 

were asked to set the depth amplitude of the haptic stimulus to match the visually 

perceived surface. Visual stimuli comprised various combinations of LM and AM as 

described below. After a short training session this method felt very natural to the 

observers. However, the method relies on the assumption that observers would 

perceive sinusoidal luminance patterns as sinusoidal corrugations with the same 

spatial frequency. This assumption is supported by our previous depth mapping 

experiments (Schofield et al., 2006), the findings of Pentland (1988), and results from 

a gauge figure experiment reported elsewhere (Schofield et al., submitted). There is 

also a danger that the haptic stimulus might alter the visual experience, perhaps acting 

as a training stimulus (Adams, Graf and Ernst, 2004). We think that this is unlikely 

partly because results from the haptic match task are similar to those obtained with 

other methods (Schofield et al., 2006 and Schofield et al., submitted). Further, while 

we do not doubt that haptic stimuli can be used to alter visual perception we see no 

reason why such cross-modal influence should be mandatory. Here we made it clear 
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that observers should treat the visual stimulus as the fixed reference and set the haptic 

stimulus to match it. Other than being a sinusoid of the same frequency as the visual 

cue, there was no systematic manipulation of the haptic stimulus to entrain the visual 

percept. 

 

Visual stimuli. 

We follow Pentland (1988), and Kingdom (2003) in using sinusoidal shading patterns 

with no occluding boundaries. Stimuli were not rendered surfaces. Studies of shape 

perception more typically use images of rendered (or real) objects, irregular shapes, or 

sections thereof. We used grating stimuli and random noise textures for the following 

reasons;  1) Shading is known to be a relatively weak or secondary cue to shape and 

can be dominated by other cues including object outlines. Thus the outlines of 

rendered objects or blobs can influence both the perceived surface shape (see Knill, 

1992) and the strength of the depth percept. 2) We need to simulate textured surfaces 

in our stimuli, but if these had been rendered then geometric distortions in the texture 

would have been an additional cue to shape. Our noise textures were isotropic, 

providing no cue to shape. 3) With gratings it is very easy to control the phase 

relationship between LM and AM and the amount of AM. 4) The use of gratings 

made it easy for us to cue which component was to be matched to the haptic probe.  

 

Visual stimuli were formed from isotropic, binary visual noise with a Michelson (and 

r.m.s.) contrast of 0.1, onto which we imposed sinusoidal modulations of luminance 

and amplitude. Noise elements comprised 2x2 screen pixels and subtended 0.06 

degrees of arc at the 57cm viewing distance. We imposed five types of sinusoidal 

modulation onto these noise textures: (a) LM-only (Figure 2a) comprising luminance 

modulations added to the noise pattern with no variation in AM, (b) AM-only (Figure 

2b) comprising amplitude modulated noise, (c) LM+AM alone (Figure 2c), (d) LM-

AM alone (Figure 2d), and (e) plaid stimuli comprising LM+AM on one oblique and 

LM-AM on the other (Figure 2e). Except when AM modulation depth was zero we 

did not test plaids composed of the same cues (ie both LM+AM) on both diagonals. In 

the case of plaids either the LM+AM or LM-AM component could be designated as 

the test cue making a total of 6 test conditions in all (but not all conditions were tested 

in every experiment). Test cues were presented in one of two orientations; left oblique 

or right oblique (45). The wavelength of the modulations was 25mm (spatial 
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frequency = 0.4 c/deg). The contrast of the LM signals and the modulation depth of 

the AM signals varied between experiments and conditions. Stimuli were presented in 

a modified ReachIN
TM

 haptic workstation (Reachin AB, Sweden) depicted in Figure 

3. Visual stimuli were presented on a 17‖ Sony Trinitron CPD G200 CRT monitor 

(Sony Inc, Japan) mounted at an angle of 45 above a horizontal half-silvered mirror. 

Observers looked into the mirror at a downward angle and thus perceived the visual 

stimulus to be beneath the mirror and approximately perpendicular to their line of 

sight. A hood prevented the observer from viewing the monitor directly. Observers 

were asked not to tilt their heads to one side but, except for the need to sit close to the 

workstation and the limitations imposed by the hood, viewing position was not 

physically constrained. Stimuli were viewed in the dark such that observers could not 

see their own hand beneath the mirror. Viewing was binocular and so the visual 

stimulus provided stereoscopic cues to flatness. However, a robust percept of shape-

from-shading can be derived from such stimuli (Schofield at al., 2006). 
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Figure 2. Extracts from example stimuli: a) LM-only, formed by arithmetically 
adding a luminance grating to spatial, binary noise; b) AM-only, formed by 
modulating the amplitude (standard deviation) of the noise; c) LM+AM only, 
formed by combining the cues of a) and b) in-phase, equivalent to 
multiplicative shading; d) LM-AM only, formed by combining the cues of a) 
and b) in anti-phase; e) LM+AM and LM-AM in a plaid configuration; here 
LM+AM is on the right oblique. Note noise contrast has been increased to 
from 0.1 to 0.3 to aid presentation. 
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Figure 3. Sketch of the ReachINTM workstation with additional hood; support 
structure not shown. 
 

Stimuli were calibrated against the monitor‘s gamma characteristic using look up 

tables in a BITS++ attenuation device (CRS Ltd, UK) which also served to enhance 

the available grey level resolution to the equivalent of 14 bits. Values in the look up 

tables were determined by fitting a four-parameter monitor model to luminance 

readings recorded with a CRS ColourCal photometer. Problems in presenting AM 

stimuli associated with the adjacent pixel non-linearity (Klein, Hu, & Carney, 1996) 

were avoided by using a high bandwidth monitor, and noise samples with relatively 

low contrast, but relatively large element size. However, the noise elements were 

unlikely to be large enough to produce a noticeable clumping artefact (Smith and 

Ledgeway, 1997; see Schofield & Georgeson, 1999, for a full discussion of these 

issues). 

 

Haptic stimuli. 

Haptic stimuli were presented via a Phantom-Desktop
TM

 (SensAble Technologies Inc, 

MA, USA) force feedback device located beneath the mirror and consisted of a virtual 

surface collocated with the visual stimulus. Haptic surfaces had sinusoidal 

undulations in the direction of the visual test cue. The spatial frequency of the 

undulations matched that of the visual stimuli. Observers held the Phantom‘s stylus 

like a pen with their dominant hand and stroked the surface. The Phantom provided 

physical resistance whenever the observer tried to move the stylus tip through the 

virtual surface. Three markers were added to the visual stimulus: one at the centre and 

two at opposite corners of the stimulus, so that the alignment of the three markers 

indicated the direction in which observers should stroke the haptic surface in order to 

feel the undulations. We verified that distances specified in the haptic stimuli were 
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faithfully reproduced by the Phantom. Visual and haptic stimuli were generated on the 

same PC. 

 

Visual cursor. 

We ensured that the location, orientation and spatial frequency of the haptic stimuli 

matched the visual stimuli well. However, we also conducted a pilot experiment to 

verify that observers could reliably match the position of the haptic undulations to 

visual features. In this experiment the visual stimuli consisted of a horizontal 

luminance grating and observers were asked to adjust the position of the peaks in the 

haptic stimuli to match the position of the luminance peaks. In the absence of any 

visual feedback as to the location of the stylus tip observers were unable to match the 

positions on the visual and haptic stimuli with any reliability (standard deviation of 

match positions = 0.288 wavelengths). However, reliable position matches were 

possible on the introduction of a visual cursor that tracked the tip of the stylus 

(standard deviation of match positions = 0.041 wavelengths). A cursor was therefore 

included in all the experiments.  We conclude that co-registration of the haptic and 

visual stimuli is not sufficient to allow reliable position matching in the absence of 

visual feedback. Further, although we have not tested this directly, we suspect that 

precise co-registration is not necessary if feedback is provided. We note, for example, 

that computer users can reliably place a pointer at a specified screen location despite a 

gross mismatch between the physical positions of the pointer and ‗mouse‘. 

 

Position of haptic stimulus. 

Prior to the main experiments we asked observers to adjust the position of a haptic 

stimulus to match that of the perceived corrugations in the visual stimuli. These 

settings were then used to determine the precise relative position of the visual and 

haptic stimuli in the main experiments such that haptic peaks were always aligned 

with perceived surface peaks. Typically perceived surface peaks (and hence haptic 

peaks) are offset from the luminance peaks (see Schofield et al., 2006). Details of how 

these measurements were performed can be found in experiment 1 of Schofield et al. 

(submitted). We measured offsets (the difference between the position of the 

luminance peaks and the haptic peaks) for LM+AM, LM-AM, LM-only & AM-only 

in the single oblique condition and LM+AM when presented as part of a plaid 

stimulus. AM-only offsets were measured relative to peaks in the amplitude signal. 
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We then applied the appropriate offsets between our visual and haptic stimuli on a per 

condition and observer basis. However, we could not measure offsets for LM-AM 

stimuli in the plaid configuration as observers saw this cue as flat and therefore could 

not identify any surface peaks against which to make a match. Instead we used the 

LM+AM offsets when testing LM-AM in a plaid. 

 

Main adjustment task. 

The text experiments reported below observers adjusted the amplitude of the haptic 

surface up or down by pressing one of two keys on a numeric keypad. A third key 

toggled the step size for adjustments between 2 and 0.5 mm (half-height amplitude). 

Observers heard a long tone for each 2mm adjustment and a short tone for each 

0.5mm adjustment. Observers could not drive the amplitude of the haptic surface 

below zero and received an auditory warning of any attempt to do so. Estimates of 

PDA were calculated as the median of at least 5 measurements.  

 

Observers. 

Five observers took part in the experiments. With the exception of author PR, 

observers were naïve to the purposes of the experiment and were paid for their time. 

Author PS was a naïve observer at the time of the study. Author AJS contributed 

some additional data to Experiment 2. All observers had normal or corrected-to-

normal vision and no physical disability or injury. Observers held the stylus in their 

dominant hand: JG is left handed; the remaining observers are right handed.  

 

Experiment 1: Perceived depth amplitude versus 

overall signal strength 

In this experiment we considered the effect of overall signal strength on the PDA of 

visual stimuli. We also varied the relative phase of the LM and AM cues at the test 

orientation, and we compared two components (plaids) with single component stimuli 

(gratings). The LM contrast and AM modulation depth were equal in any given 

stimulus, consistent with multiplicative shading for in-phase pairings. 

 

Method 
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Signal strength, governing both LM component contrast and AM component 

modulation depth, was varied in multiples (0.1, 0.4, 0.8, 1.6, 3.2 & 4.0) of each 

observer‘s AM detection threshold as measured in separate sessions using a staircase 

method (Levitt, 1971) and a two interval forced choice design. In this pilot 

experiment, stimuli consisted of AM gratings presented alone. Note that our AM 

gratings are identical to the CM gratings often used to study second-order vision. The 

mean AM threshold across observers was 0.086, and this is consistent with the 

literature on second-order vision (Schofield & Georgeson, 1999). Stimuli consisted of 

plaids comprising LM+AM on one diagonal and LM-AM on the other (Figure 2e), 

LM+AM presented alone (Figure 2c), or LM-AM presented alone (Figure 2d). 

Because they contain two orientation components, plaids had greater overall contrast 

and modulation depth than single component stimuli. Many of the stimuli in this 

experiment contained sub-threshold levels of AM, but their LM components were 

likely to be supra-threshold because thresholds for LM in visual noise are about an 

order of magnitude lower than AM (CM) thresholds (Schofield & Georgeson, 1999).  

 

Results and discussion 

Figure 4 shows the results of Experiment 1 averaged over the five observers. Mean 

PDA was low for weak stimuli regardless of their composition and remained low for 

LM-AM at all signal levels when this cue was part of a plaid (squares in Figure 4b). 

However, when LM-AM was presented alone (squares in Figure 4a) PDA increased 

with signal strength. PDA also increased with signal strength for LM+AM whether 

presented alone (circles in Figure 4a) or in a plaid (circles in Figure 4b). Although the 

variances were high, we note that PDA rises to a level significantly above zero for all 

cues except LM-AM presented in a plaid (error bars on Figure 4 represent 95% 

confidence intervals). PDAs for strong LM+AM gratings tend to be greater than those 

for LM+AM presented as part of a plaid despite the fact that overall luminance 

contrast was higher for the latter stimulus. This trend can also be seen in weaker 

stimuli where components of a plaid produced lower PDAs than single grating 

stimuli. For single obliques, strong LM+AM gratings produced somewhat greater 

PDAs than LM-AM gratings, but only when AM was above threshold.  Perceived 

depth for  LM+AM was also greater than for LM-AM in plaid stimuli and this seemed 

to hold down to signal levels where AM was below threshold (between 0.4 and 1 x 

AM-threshold). Lines in Figure 4 show predictions of the model described later. 
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Figure 4. Experiment 1. Perceived depth amplitude as a function of overall 
signal strength: (a) single oblique stimuli, (b) plaid stimuli. Blue circles show 
the perceived amplitude of LM+AM mixes; Red squares LM-AM mixes. X-axis 
shows signal strength as a multiple of AM threshold. Error bars represent 95% 
confidence intervals and are drawn single-sided to aid interpretation. Lines 
show predictions of the 'shading-channel' model; blue and red for LM+AM and 
LM-AM respectively (see description of model for details). 
 

Noting that the plots of Figure 4 are approximately linear against log signal strength, 

we estimated (with linear regression) the slope of the relationship between log signal 

strength and PDA separately for each participant and each stimulus type. Figure 5 

plots the mean slope for each stimulus type and their associated 95% confidence 

intervals. Slopes for LM-AM were not significantly different from zero regardless of 

the configuration used (one-sample, one-way  t-test: LM-AM only, t=2.55, df=4, 

p>0.05; LM-AM in plaid, t=1.16, df=4, p>0.05). LM+AM  stimuli produced 

significant slopes (LM+AM only, t=4.26, df=4, p<0.05; LM+AM in plaid, t=3.74, 

df=4, p<0.05). A repeated measures ANOVA (with Greenhouse-Geisser correction) 



 242 

showed that there were significant differences between the mean slopes across the 

four conditions (F=8.57, df=1.6,6.38, p<0.05). Bonferroni corrected post-hoc paired 

comparisons showed that slopes for LM-AM in a plaid were significantly lower than 

those for the LM+AM conditions (LM-AM in a plaid vs LM+AM in plaid, t=6.2, 

df=4, p<0.05; LM-AM in plaid vs LM+AM only, t=5.32, df=4, p<0.05). The 

difference in slopes between LM-AM in a plaid and this cue presented alone was 

significant prior to Bonferroni correction but not after (t=3.1). None of the other 

pairings were significantly different suggesting that LM-AM presented alone 

produces behaviour similar to that of LM+AM.   

 

 
Figure 5. Mean slopes for regression fits to individual data from Experiment 1 
for each of the four test conditions. Error bars represent 95% confidence 
intervals. 
 

Taken together, these results show that LM-AM is seen as a shape-from-shading cue 

when presented on its own. PDAs for this cue are about the same as those for 

LM+AM in a plaid but below those for LM+AM presented alone. When LM-AM is 

presented as part of a plaid, however, it is seen as quite flat. Inspecting individual data 

revealed that most observers saw this condition as almost completely flat even at high 

signal strength and that the slope observed in Figure 4 is largely due to one observer 

who saw this stimulus as conveying some depth. By contrast LM-AM alone was seen 

as quite corrugated by all but one observer and the two LM+AM conditions were seen 

as corrugated by all observers. PDAs naturally converge toward zero as signal 
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strength is reduced. PDAs for single components converge at about the point where 

the AM signal falls below threshold. PDAs for the two members of a plaid converge 

at a point below the measured AM detection threshold; this could be due to 

probability summation which may serve to increase the visibility of AM in plaid 

stimuli above that of single orientation components. It is clear that LM is the 

dominant cue for depth perception in shaded textures but that its relationship with AM 

and the overall configuration of the stimulus is also important. We now investigate the 

specific role of AM in more detail. 

 

Experiments 2 and 3. Effect of AM modulation depth 

on perceived depth amplitude. 

In these experiments we varied AM strength while keeping LM contrast constant. We 

thus assessed the ability of AM to influence perceived depth.  

 

Method. 

Visual stimuli were diagonally oriented gratings and plaids with a fixed LM contrast 

of 0.2 and several AM modulation depths (0, 0.1, 0.2, 0.4). Again we varied the phase 

relationship between LM and AM. In Experiment 2 we tested plaid stimuli only. 

Experiment 3 tested single component stimuli including AM-only gratings (see Figure 

2b). When we devised Experiment 2 we considered the LM+AM and LM-AM 

components to be distinctly different stimulus types. We therefore did not test the case 

where the AM signal was zero (i.e. an LM-only vs LM-only plaid). We later realised 

that these cues form a continuum running from strong negative AM to strong positive 

AM, with LM-only (AM modulation depth = 0) representing the midpoint on this 

continuum. We thus added the AM=0 case to the test battery for Experiment 3 and 

tested an additional observer in Experiment 2 including the AM=0 case.  

 

Results. 

Figure 6 shows PDA as a function of AM modulation depth. Blue squares show the 

results for plaid stimuli (Experiment 2); Red circles and green triangles the single 

component results (Experiment 3). There was no effect of test orientation (left or right 

oblique) so we averaged across this condition. 
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Figure 6. Experiments 2 & 3. Perceived depth amplitude as a function of AM 
modulation depth and sign. X-axis shows AM modulation depth; negative 
values mean that the AM cue was in anti-phase with the LM cue (LM-AM). 
Green triangles, AM-alone. Red circles, single oblique LM and AM signals. 
Blue squares, LM and AM presented as a plaid.  Note that when AM was in 
anti-phase with LM on the test oblique (negative values) the non-test oblique 
had an in-phase mix with an equally strong AM cue (and vice versa). Open 
squares, results for observer AJS for plaid stimuli including the case where 
AM modulation depth was zero – ie. LM-only on both obliques. Lines 
represent model fits for the ‘shading-channel’ model. Except for the open 
squares, data points are the means of 5 observers and error bars represent 
95% confidence intervals. For AJS (open blue squares) error bar represents 
the standard deviation of individual depth estimates.  
 

Experiment 2: Plaids. For plaid stimuli PDA increased with signed modulation depth 

such that stimuli were seen as increasingly flat for negative modulation depths (LM-

AM) and increasingly corrugated for positive modulation depths (LM+AM). There 

was a pronounced increase in PDA around AM=0. A repeated measures ANOVA 

(with Greenhouse-Geisser correction) showed that the overall change in PDA was 

significant (F=42.468, df=1.493,7.464, p<0.01 ) and Bonferroni corrected post-hoc 

paired-samples t-tests showed that antiphase stimuli (LM-AM) produced significantly 

lower PDAs than in-phase stimuli (LM+AM). Results from the one observer (AJS) 

tested with AM=0 (open square symbols in Figure 6) suggest that PDAs for LM-only 

plaids fall nicely on the continuum from LM-AM to LM+AM.  
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Experiment 3: Single components. There was much less variation in PDA with AM 

modulation depth in the single component stimuli. Here we found only a gradual 

increase in PDA with AM modulation depth and hardly any increase at all among 

LM+AM stimuli. The overall trend was not significant (Greenhouse-Geisser corrected 

ANOVA, F=4.013, df=1.583,7.916, p=0.069). There were no significant differences 

between any of the levels tested for the single component stimuli (based on 

Bonferroni corrected paired t-tests). Paired sample t-tests between AM-only stimuli 

(triangles) and single component mixed stimuli (filled circles) with equivalent levels 

of AM suggest that the AM-only simuli were seen as  significantly flatter than 

LM/AM mixes regardless of the phase relationship in the mix (based on paired 

samples t-tests corrected using Horn‘s multistage Bonferroni method). Similarly 

PDAs for LM+AM in a plaid were significantly greater than their AM-only 

counterparts. In contrast, PDAs for  LM-AM stimuli in a plaid were not significantly 

greater than those for AM-only. Finally we note that LM-AM stimuli in a plaid are 

seen as significantly less corrugated than the equivalent single component stimuli but 

that the differences between LM+AM in plaid and single component configurations 

are not significant. 

 

Discussion. 

Taken together the results of Experiments 2 and 3 show that LM-AM was seen as flat 

when shown in a plaid with LM+AM but was seen as corrugated otherwise. PDAs for 

LM-AM and LM+AM stimuli tend to be similar at low AM modulation depths. This 

result is to be expected because these cues become identical as AM modulation depth 

approaches zero. However, while PDAs for the LM+AM and LM-AM gratings (at a 

single orientation) were almost identical for AM modulation depth in the range -0.1 to 

+0.1, those for the plaid stimuli varied significantly over this range.  

 

We note that LM+AM stimuli also appear a little less corrugated in a plaid than they 

do as single components and although these differences are not significant some 

discussion is merited. We note particularly that plaid stimuli with little or no AM 

signal have a doubly corrugated or ‗egg box‘ appearance. The PDA of such stimuli in 

a given direction is likely to vary with position along the orthogonal axis and this may 

reduce the average PDA. Single component stimuli appear as single corrugations 

whose PDA does not vary with position in the direction orthogonal to the 
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modulations. It is possible that the ‗egg-box‘ effect accounts for the observed 

difference between plaid and single component stimuli in the LM+AM case. 

However, there is an alternative explanation based on mutual suppression between 

obliques and we discuss this next.   

 

Model 

We constructed a model to explain our data. The purpose of the model is to 

demonstrate that the observed effects can be predicted by bottom up mechanisms 

involving biologically plausible second-order processes. The model (shown in Figure 

7) is intended to represent one spatial frequency tuned ‗shading channel‘ within a 

multi-channel scheme. It is based on the processing scheme for envelope sensitive 

neurons proposed by Zhou & Baker (1996) and the filter-rectify-filter (FRF) model of 

second-order vision (Wilson, Ferrara and Yo, 1992), and has similarities with the 

three stage model proposed by Henning et al. (1975). The first-stage comprises a bank 

of linear filters tuned to multiple spatial frequencies and orientations. These filters 

share a gain control mechanism. The second-stage consists of a bank of  rectifiers 

followed by linear filtering (the RF of the FRF scheme) taking their input from high-

frequency first-stage filters. This stage extracts the AM cue and is not directly subject 

to gain control. At the third-stage we take a weighted sum of the outputs of like-

oriented linear and FRF channels; producing behaviour like that of Zhou & Baker‘s 

(1996) envelope neurons.  This final stage is subject to gain-control. We envisage that 

separate signals for first- and second-order cues are available at the points marked LM 

and AM respectively and that these signals support the detection of these cues. 
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Figure 7. a) Schematic diagram of the ‘shading-channel’ model; see text for 
description. b) input-output response for first-order (LM) sub-channel. c) input-
output response for second-order (AM) sub-channel. 
 

We now address the biological plausibility of the proposed scheme, considering the 

following components: Linear first-stage filtering with gain control, rectification, 

independent outputs, weighted summation between sub-mechanisms, final gain 

control. 

 

Linear first-stage filtering with gain control: Linear spatial frequency channels were 

first proposed by Campbell and Robson (1968) and are now accepted as the basis for 

early visual processing. More recent evidence suggests that while such mechanisms 

are approximately linear they have a non-linear transfer function which is expansive 
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for low-input values and compressive for larger inputs (Legge & Foley, 1980). This 

compression is now thought to be due a contrast gain control mechanism that pools 

input from many channels and across space (Foley, 1994) and has been proposed as 

an explanation for the compressive behaviour of simple cells in primary visual cortex 

(Albrecht & Geisler, 1991; Heeger, 1992). However, the pooling process is far from 

uniform: masking (and indeed facilitation) depends on the relative, frequency, 

orientation and spatial locations of the test and mask stimuli giving rise to complex 

patterns of behaviour (Foley, 1994; Meese, Challinor, Summers & Baker, 2009; 

Meese, 2004). Specifically, a given channel receives most masking from channels 

tuned to similar frequencies and  orientations although the orientation tuning of 

masking is very broad (Foley, 1994). Thus we apply cross-channel gain control to our 

first-stage filters. Each filter has its own gain control pool with equal weight being 

given to all orientations in the pool but less weight given to frequencies distant from 

the preferred frequency of the filter in question.  Because of the simple nature of our 

stimuli, we only modelled first-stage filters tuned to the image equivalent of 0.4 and 

16c/deg and ±45°. First-stage responses are given by Equation 1. 
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Where Ci is the pre-gain control response of the ith filter, Ca the response of all filters 

with the same preferred frequency as the ith filter, Cb the response of filters with 

preferred frequency different to that of the ith filter, w is the weight applied to off-

frequency filters in the gain pool, p and q represent exponents on the forward and gain 

control terms respectively and s1 is the semi saturation constant. In line with other 

similar models we set p and q to 2.0 (e.g. Meese et al, 2009); s1 and w were free 

parameters. Application of this gain control mechanism results in a first-stage transfer 

function that initially accelerates and then saturates (Figure 7b) broadly consistent 

with both psychophysical ‗dipper‘ experiments (Legge & Foley, 1980) and 

physiology (Albrecht & Geisler, 1991; Ledgeway et al., 2005) .  

 

Rectification: Non-linear, FRF channels similar to our rectification stage (where the 

first filters are found in the first-stage of our model) have been proposed to explain 
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the detection of contrast modulations (our AM; Wilson, Ferrara and Yo, 1992) and 

various texture segmentation phenomena (Landy & Bergen, 1991; Graham & Sutter, 

2000). Although the FRF mechanism is now widely accepted as the means by which 

second-order cues are detected, debates continue about the wiring between first- and 

second-stage filters and the shape of the rectifying non-linearity. Within the context of 

our limited model and following Sutter, Sperling & Chubb (1995) and Dakin & 

Mareschal (2000) we connect our second-stage filters to only the high-frequency first 

stage filters according to Equation 2.  
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Where fi is a second-stage filter with the same spatial frequency and orientation as the 

ith first-stage filter (but only low frequency second-stage filters are implemented), fhf 

are the high frequency first-stage filters,   represents rectification and γ governs the 

shape of the rectifier. We sum first-stage filter responses across orientation and after 

application of the gain control (Equation 1). Graham & Sutter (2000) suggest that γ 

should be about 3.5 however this is based on psychophysical results that depend on 

the operation of the whole mechanism. Ledgeway et al. (2005) note that cells 

responsive to second-order cues demonstrate an accelerating transfer function and do 

not saturate. We used a linear rectifier (γ=1) but tested the transfer function of our 

model in respect of AM signals and found it to accelerate as the cube of input strength 

with no saturation  (see Figure 7c). This lack of saturation can explain why CM 

stimuli do not mask themselves (Schofield & Georgeson, 1999). We believe that the 

early gain control mechanism and linear rectifier serve to produce the a cubic transfer 

function in the FRF network. It should be noted that cell responses to second-order 

stimuli are likely to saturate at some point if both the carrier and modulation signals 

are high enough. Due to the simplicity of our stimuli we only implemented second-

stage filters at 0.4 c/deg and ±45°. 

 

Independent outputs: It should be noted at this point that second-order detection could 

in principle be achieved by a single stage of non-linear filtering but that this would 

prevent the independent processing of first- and second-order cues. In the introduction 
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we describe a considerable body of evidence to suggest that the cues are detected 

independently. We will not rehearse that argument here but it is our basis for 

proposing a separate second-order mechanism. However, the finding that cells 

responsive to first- and second-order cues have different preferred frequencies for the 

two cues strongly suggests the existence of separate sub-mechanisms (Mareschal & 

Baker, 1998). Given that we will shortly propose the integration of first- and second-

order cues the evidence for independent detection also leads us to propose that the 

outputs of the mechanisms are separately available. If the first-order signals were 

extracted prior to the summation stage this would explain why CM does not mask LM 

as second-order signals have no direct access to the first-stage gain control 

mechanism. This ‗separate signals‘ hypothesis is somewhat at odds with the 

physiological evidence. Although cells responsive to only first-order and both first- 

and second-order cues have been found there is little or no physiological evidence for 

the existence of cells responsive to second-order signals only, but (as discussed in the 

introduction) this may be due to sampling biases. 

 

Weighted summation between sub-mechanisms: For motion at least there is 

compelling physiological evidence for cells which linearly sum first- and second-

order information (Mareschal and Baker, 1998;  Zhou and Baker, 1996; Ledgeway, et 

al., 2005; Hutchinson, et al., 2007). Hutchinson, et al. (2007) explicitly tested for 

interactions between the two cues and found that cell responses were dependent on 

the phase relationship between the two cues, strongest for in-phase stimuli and 

considerably weaker for anti-phase stimuli. They used stimuli that produced equally 

strong responses when presented alone. Our AM cues were weaker (compared to 

threshold) than our LM cues so we should expect a weaker interaction. We note that 

our second-order mechanism is inherently insensitive. That is, by the time our 

relatively weak carrier has been filtered and the envelope extracted the response to the 

AM cue is very low - about 1/30
th

 of the equivalent LM response. In order to provide 

some differentiation between LM+AM and LM-AM and to give the model more 

flexibility we introduced a gain term (or weight) on the output of the second-stage 

filters. However, it is the overall sensitivity to AM relative to that for LM which 

matters. The output of each ‗shading channel‘ after the sum is given simply by: 
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iii gSRD            (3) 

 

where g is the gain term for the second-order mechanisms. Only low frequency first-

stage filters and their corresponding second-stage filters are included at this stage. 

 

Final gain-control: The final gain-control process is the most speculative part of the 

model but its existence and position are fundamental to the successful operation of the 

model. It is this mechanisms which turns the relatively poor differentiation between 

LM+AM and LM-AM for single gratings into the relatively strong differences found 

for plaids. Its position , after summation, is key to this. If it acted before LM and AM 

were summed then there would be no difference in signals to drive the ‗winner take 

all‘ behaviour that the model needs to describe the plaid data. External justification 

for late gain control is provided by late interactions between the cues as noted in the 

introduction; most notably the transfer of the contrast-reduction after-effect and the 

tilt after-effect (Georgeson & Schofield, 2002). Several authors have linked 

simultaneous masking with sequential adaptation (Foley & Chen, 1997; Meese & 

Holmes, 2002). So evidence for a cross-over of adaptation could be taken as evidence 

of gain control. But, based on the evidence for independent detection this would have 

to take place after an initial detection stage. The final response of the model is given 

by Equation 4, 
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where Di is the output from the ith ‗shading channel‘, Dj is jth channel's input to the 

gain control pool, s2 is the semi-saturation constant and  exponents p and q were again 

set to 2.0. K is a final scaling factor used to equate the range of model outputs to the 

human data but with no influence on the shape of the model output curves. 

 

Implementation 

For the purpose of fitting the data, the model was implemented analytically. That is 

we calculated ideal filter responses based on the stimulus parameters: we did not 

actually filter images. We subsequently implemented a ‗filter-based‘ version of the 
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model that was capable of processing natural images (see later text). A final 

consideration is how to relate model output to measured PDAs. If we assume that the 

final output of the model described above is fed into a shape-from-shading module 

then the model output up to that point can be thought of as a conditioned shading 

signal. That is, LM is assumed to be a shading signal but its efficacy is modulated 

both by the presence of AM with the same orientation and the context provided from 

other orientations. For the purposes of model fitting we assume a linear relationship 

between the input and output of the hypothesised shape-from-shading module 

(Pentland, 1988) such that the contrast of the input signal at any orientation gives the 

perceived depth of surface undulations in that direction up to a scale factor; K in 

Equation 4. 

 

Operation of the model 

When an LM/AM mix is presented on only one oblique the action of the 

normalisation stage is largely irrelevant as there are only two channels, one of which 

has no output. In this case AM will have a slight modulatory effect on the shading 

signal determined by the overall sensitivity of the AM channel. LM-AM will hence be 

seen as less corrugated than LM+AM but the difference will be small. When an 

LM/AM plaid is presented to the model the stronger LM+AM signal will dominate 

the weaker LM-AM signal at the final gain control stage, driving its output down but 

the mutual inhibition will also limit the LM+AM signal to a value below that which 

would be obtained for LM+AM alone. 

 

Model fits 

The model described above has four free parameters: w, the weight applied to off-

frequency maskers in the gain control of Equation 1, the semi-saturation constants s1 

and s2, and the second-stage gain term g. Noting that, due to arbitrary scaling, the 

maximum theoretical output of the model prior to the multiplier K is 1 we simply set 

K=4 to match the maximum mean PDA.  The remaining parameters were fit to the 

data for Experiments 2 & 3 using the fminsearch function in Matlab (The Mathworks 

Inc, MA). Fitted parameter values are shown in Table 1 and the fits are shown as lines 

in Figure 6. The model fits the data well. A key characteristic of the model is that it 

allows LM-AM to be seen as relatively strongly modulated in depth when presented 

alone but flat when presented in a plaid. The model highlights the continuous nature 
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of the relationship between LM and AM. Even in the plaid case adding weak AM 

does not produce an abrupt change in perceived depth amplitude.  

 

 

Parameter Value 

w 0.23      
s1 0.029  
s2 0.25  
g 3.0         
 

Table 1: Model parameters 

 

We also used the model to predict the results of Experiment 1. Here PDA was 

measured as a function of AM threshold. The model has no concept of threshold so 

we added an extra parameter T which represents the base AM modulation depth from 

which model ‗threshold‘ multiples were calculated. This parameter was used to fit the 

model to the data of Experiment 1 but with no further adjustment of the other 

parameters. Model predictions are shown as lines in Figure 4. The model provides a 

good fit to the data.  

 

The gain term g is of interest only because it relates to the overall sensitivity of the 

second-order mechanism. Of more interest is the relative sensitivity of the two 

mechanisms. We recorded output strengths for LM-only and AM-only gratings at 

contrast / modulation depth = 0.2. These were 0.93, and 0.09 respectively, making 

second-order sensitivity 1/10
th

 that of first-order, and correctly  predicting the ratio 

found by Schofield & Georgeson (1999) on noise carriers with contrast = 0.1 (as used 

here). 

 

Processing natural images 

It is useful to fit an analytical model to data, as done here. In particular restricting the 

complexity of the model reduces the number of free parameters and this is useful for 

fitting purposes. However, it does not follow that the model will produce meaningful 

results when applied to real world images such as that in Figure 1. Even if 

implemented with filters the model described above would be useless in such an 

application because it has only two oriented channels at one spatial frequency. At best 
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it would produce plaid-like outputs for every image. We therefore implemented a 

more complete model with multiple orientation and frequency channels (both first- 

and second-order) carried through to the final output.  We used 3 frequency bands and 

16 orientations; 48 channels in all. Apart from having multiple channels the structure 

of the model was very similar to that of Figure 7, a key difference being that we 

dispensed with the early gain-control stage and replaced it with a simple sigmoidal 

transfer function. We did this because we felt unable to model the subtle spatial 

interactions required of a full blown gain control mechanism (Meese 2004). This 

model captures the spirit of the ‗shading-channels‘ described above. As might be 

expected we find the model to be most effective in cases where LM+AM and LM-

AM co-exist in the same scene. Figure 8a shows an example input image and the 

resulting model output (Figure 8b). Figure 8c show the result of processing the 

stimulus example shown if Figure 2e. In both cases the model successfully separates 

shading (or perceived shading) from reflectance changes. 

 

 
Figure 8. b) Results of applying the multi-channel shading model to an image 
of a section of wall (a) similar to that shown in Figure 1. c) results of applying  
the model to the plaid stimulus of Figure 2e. 
 

General discussion 

The results presented here extend those of Schofield et al. (2006) by introducing a 

more natural depth matching task, new test conditions, and a computational model. 

Observers had to set the amplitude of haptic stimuli to match the properties of a 

visually perceived surface. Perceived depth amplitude increased with overall 

modulation strength (Experiment 1) for all stimuli containing LM except LM-AM in a 

plaid. LM-AM in a plaid was perceived as nearly flat across a range of signal 
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strengths but, consistent with our previous findings, LM-AM was seen as modulated 

in depth when presented alone. Note that, as we found previously, LM-AM alone was 

seen corrugated, but less so than LM+AM alone. This difference is smaller when 

measured with the haptic task. Keeping LM contrast constant while varying AM 

modulation depth (Experiments 2 & 3) allowed us to study the influence of AM on 

LM cues. Increased AM modulation depth did not greatly affect the PDA of LM when 

the two were presented in-phase and alone (LM+AM, circles to right of  Figure 6). 

Anti-phase AM did reduce the PDA of the associated LM signal (LM-AM) but only 

slightly (circles to left of Figure 6). However, AM had a more marked influence on 

PDAs in the plaid configuration. Here increasing AM in-phase with LM produced a 

marked but saturating increase in PDA while anti-phase AM reduced PDA (squares in 

Figure 6). We stress that in these plaids LM+AM and LM-AM were seen together 

such that as AM was stronger in the LM-AM component it also became stronger in 

the associated LM+AM component and vice versa. The pattern of results observed 

would not necessarily hold if say the LM-AM member of a plaid were fixed while the 

AM part of the LM+AM cue was allowed to vary, although the model would allow us 

to make predictions for this case. Amplitude modulations presented alone produced 

only a weak depth percept but perceived depth amplitude did increase a little with AM 

modulation depth (triangles in Figure 6). 

 

It is tempting to suggest that higher-level cognitive processes must be at work in the 

interpretation of stimuli when, as here, the stimulus context is relevant to the 

interpretation of a particular cue:  here LM-AM was seen as flat only when present in 

a plaid with LM+AM. However, we have successfully modelled the data with an 

architecture that requires no top down control and which could well be implemented 

in early visual areas such as V1 or V2 with the possible aid of V3a to process AM. 

The model combines LM and AM responses in an additive fashion within a given 

orientation / frequency band and then combines those responses across different 

orientations with gain control governing the balance between them. The resultant 

shading signal tends to be stronger when AM is presented in-phase with LM, but is 

very weak when the anti-phase combination occurs in a plaid alongside an LM+AM 

component.  A multi-channel version of the model was tested on natural images and 

worked well in conditions were LM+AM and LM-AM cues co-existed.       
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The model presents some challenges to our previous work on cue independence. We 

have previously argued quite strongly that LM and CM (in our current terminology 

AM) are detected independently (Schofield & Georgeson, 1999; Georgeson & 

Schofield, 2002), but our current model suggests relatively early summation and a 

lack of independence. We suggest that LM and AM are indeed detected independently 

and are thus (for example) discriminable at threshold but that they are summed for the 

purpose of disambiguating the role of the luminance cue at some stage beyond simple 

detection. Such a configuration would allow the two cues to interact in various ways 

both with each other and with other cues such as disparity and texture. Our proposal 

here is that the two cues are summed to aid the computation of shape-from-shading, 

and perhaps in other situations too, but we don't suppose that this summation is either 

ubiquitous or mandatory.  

 

The model makes some clear predictions about interaction of LM and AM in shape-

from-shading. If such processing is based on the early channel-like mechanisms with 

gain control then we should expect interactions along the lines of those described 

above for a variety of interleaved stimuli. For example, we might expect it to be 

possible for LM-AM to be seen as corrugated if presented alone in one part of a 

stimulus but flat in some other part of the same stimulus if it overlapped with 

LM+AM in that region. We might expect some degree of spatial overlap to be 

necessary between LM+AM and LM-AM for the latter cue to be seen as flat but that 

the overlap need not be complete. We predict that plaids should behave as described 

above when their components are not orthogonal, but only if there is sufficient 

separation between the orientations that they fall into different orientation channels. 

We similarly expect LM+AM and LM-AM to dissociate if handled by different 

spatial frequency channels. Finally, adding an additional LM+AM component at 

another orientation should further suppress PDA for an LM-AM cue. We have yet to 

test these interesting predictions. 

 

We presume that if AM is used to disambiguate LM in the way described above then 

this interaction should be driven by ecologically valid constraints. That is, LM-AM 

should be a reliable cue to a material change but only in the context of LM+AM cues. 

We have previously noted that visual texture can arise from a variety of sources and 

that the yoking of LM and AM (LM+AM) is only guaranteed for shaded albedo 
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textures (Schofield et al., 2006). LM-AM can arise when a rough, corrugated surface 

is shaded, although such an outcome is not guaranteed. However, it is highly unlikely 

that a doubly corrugated, locally rough surface could give rise to LM-AM on one 

oblique and LM+AM on the other. We therefore conclude that the co-presentation of 

LM+AM and LM-AM confirms the former cue as shading of an albedo texture and 

the latter cue as due to reflectance changes within that texture.  

 

Conclusion 

In conclusion, second-order modulations (specifically modulations of local luminance 

amplitude / contrast) can affect the perception of shape-from-shading from 

luminance-modulated textures. In some cases this influence is profound with the 

phase relationship between LM and AM determining the perceptual role of the 

luminance cue, flipping it from being used as a shading cue to a cue for material 

change. Given that luminance changes are ambiguous about their environmental 

causes, second-order vision may play an important role in the interpretation of 

luminance variations. Perhaps the need to compare these two cues is one reason why 

human vision is configured to detect AM (CM) cues separately from LM in the first 

place. In general, when AM varies in anti-phase with LM (LM-AM) surfaces are seen 

as flatter than when the two cues co-vary in phase (LM+AM). The flattening observed 

in LM-AM stimuli is most pronounced when it is presented in a plaid configuration 

with an LM+AM cue. However, this context effect does not require a top-down 

interpretation because it was possible to model key features of our data using bottom-

up channel-like mechanisms. 
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Appendix 2: Published Conference Abstracts 

High frequency textures provide better support for shape-from-shading than low 

frequency textures 

 

Peng Sun and Andrew Schofield 

 

Abstract. Observers perceive a sinusoidally shaded texture as a corrugated surface 

even when the texture elements themselves undergo no geometric distortions 

(Schofield, Heese, Rock & Georgeson, 2006, Vision Research, 46, 3462–3482). Using 

a similar two-point probe task but Gabor noise textures, we varied the dominant 

spatial frequency of the texture (from 1.5 to 12 c/deg) and found that high frequency 

textures support a more robust percept of shape-from-shading than do low frequency 

textures. Given that our sinusoidal shading patterns were themselves low frequency 

(0.5 c/deg) we were concerned that this difference may be due to masking. That is, the 

low frequency textures might simply have reduced the visibility of the shading 

patterns. To control for this we varied the dominant orientation of the textures so as to 

reduce their ability to mask the shading pattern; this had no affect. Reducing the 

spatial-frequency bandwidth of the textures, which should reduced masking, also had 

no affect. Multiplicative shading of an albedo textured surface produces a change in 

local mean luminance coupled with a change local luminance amplitude (AM). 

Schofield et al. (2006) showed that this AM cue modulates the perception of shape-

from-shading. Given that AM is a second-order cue requiring comparisons across 

pairs of pixels, our results are consitent with the idea that second-order processes 

receive most of their input from high-frequency channels (Dakin & Mareschal, 2000, 

Vision Research, 40, 311–329). We speculate that when the carrier texture is high 

frequency, AM is detected well and thus supports shape-from-shading. When the 

carrier is low frequency AM is detected less well and consequently shape-from-

shading is inhibited.  

 

 

Shape-from-shading for grating stimuli: Slant is proportional to luminance, with 

some exceptions 

 

Andrew Schofield and Peng Sun 

 

Abstract. Humans are able to interpret luminance variations as changes in shading 

which are in turn interpreted as due to undulations of an illuminated surface. In 

general, we seem to adopt the implicit assumptions that surfaces are Lambertian and 

illuminated by a point source such that luminance in proportional to the angle 

between the surface normal and the direction of the illuminant. Thus, perceived 

surface slant depends on luminance. Most studies of shape-from-shading use stimuli 

based on simulations of solid objects viewed under a specified light source. We took 

an alternative approach; measuring the perceived shape of a range of grating stimuli 

(horizontal sine-wave, square-wave, and saw-tooth gratings). Observers set the slant 

of a probe disk to match the slant of the perceived surface at various points on each 

grating. In most cases perceived slant was proportional to luminance with mean 

luminance equal to zero slant (surface locally fonto-parallel). Sinusoidal luminance 

modulations produced sinusoidal perceived surfaces even though sinusoidal 

corrugations seldom produce sinusoidal shading patterns in real scenes. Square-wave 
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luminance profiles produced triangular perceived surface profiles. Saw-tooth 

luminance profiles with several repetitions produced perceived surfaces that were 

dished or bowed (depending of the direction of the luminance ramps) with surface 

sections meeting at localised ridges/troughs. We found one notable exception to the 

general result that slant is proportional to luminance. Stimuli consisting of just two 

linear ramps in a saw-tooth configuration were mapped as a largely flat surface with a 

single central crease. The regions at the top and bottom of such stimuli were 

perceived to have zero slant even though luminance varied linearly in these regions 

and was not close to mean luminance. This result suggests that luminance edges and 

boundaries affect the perception of shape-from-shading even for relatively simple 

grating stimuli.  

 

 

Using texture amplitude to recover shading and reflectance image 

 

Peng Sun and Andrew Schofield 

 

Abstract. In the computer vision society, shape-from-shading is a process to recover 

surface orientation from luminance changes in a scene. In the real world however, 

luminance changes due to real shading are often confounded with changes in surfaces 

reflectance such as hue and texture. Such ambiguity in luminance changes has been a 

difficulty that is confronted by many shape-from-shading algorithms which would 

always assume uniform surface albedo. Here we present an algorithm for separating 

the shading and reflectance components in grayscale images. Our algorithm exploits 

the same rule as appear to be used by humans to assist in shape-from-shading tasks: 

luminance changes that are coincident with contrast changes are likely to be due to 

reflectance changes whereas those that are not associated with a change in contrast are 

likely to be due to shading (Schofield et al, 2006). This in turn arises from the 

multiplicative nature of shading. The mean luminance of an image is computed first 

and then classified by changes in contrast, which can be obtained by applying a 

texture segmentation algorithm. Compare to its counterpart which is based on hue 

alone, this method faces the difficulty resulted from the unreliability and inaccuracy 

of any existing texture segmentation algorithm. We have solved this problem by 

introducing an edge width estimation mechanism which provides tolerance to the 

inaccuracy of the texture segmentation algorithm employed. The final shading 

component is obtained by reconstructing the classified mean luminance map, while 

the reflectance component is obtained by subtracting the shading component from the 

original image.  

 

 

 

 

 

 

 

 

 

 

 

 


