313,137 research outputs found

    Business fluctuations in a behavioral switching model: Gridlock effects and credit crunch phenomena in financial networks

    Get PDF
    In this paper we characterize the evolution over time of a credit network in the most general terms as a system of interacting banks and firms operating in a three-sector economy with goods, credit and interbank market. Credit connections change over time via an evolving fitness measure depending from lenders’ supply of liquidity and borrowers’ demand of credit. Moreover, an endogenous learning mechanism allows agents to switch between a loyal or a shopping-around strategy according to their degree of satisfaction. The crucial question we investigate is how financial bubbles and credit-crunch phenomena emerge from the implemented mechanism

    Multi-agent evolutionary systems for the generation of complex virtual worlds

    Full text link
    Modern films, games and virtual reality applications are dependent on convincing computer graphics. Highly complex models are a requirement for the successful delivery of many scenes and environments. While workflows such as rendering, compositing and animation have been streamlined to accommodate increasing demands, modelling complex models is still a laborious task. This paper introduces the computational benefits of an Interactive Genetic Algorithm (IGA) to computer graphics modelling while compensating the effects of user fatigue, a common issue with Interactive Evolutionary Computation. An intelligent agent is used in conjunction with an IGA that offers the potential to reduce the effects of user fatigue by learning from the choices made by the human designer and directing the search accordingly. This workflow accelerates the layout and distribution of basic elements to form complex models. It captures the designer's intent through interaction, and encourages playful discovery

    Scale-free memory model for multiagent reinforcement learning. Mean field approximation and rock-paper-scissors dynamics

    Full text link
    A continuous time model for multiagent systems governed by reinforcement learning with scale-free memory is developed. The agents are assumed to act independently of one another in optimizing their choice of possible actions via trial-and-error search. To gain awareness about the action value the agents accumulate in their memory the rewards obtained from taking a specific action at each moment of time. The contribution of the rewards in the past to the agent current perception of action value is described by an integral operator with a power-law kernel. Finally a fractional differential equation governing the system dynamics is obtained. The agents are considered to interact with one another implicitly via the reward of one agent depending on the choice of the other agents. The pairwise interaction model is adopted to describe this effect. As a specific example of systems with non-transitive interactions, a two agent and three agent systems of the rock-paper-scissors type are analyzed in detail, including the stability analysis and numerical simulation. Scale-free memory is demonstrated to cause complex dynamics of the systems at hand. In particular, it is shown that there can be simultaneously two modes of the system instability undergoing subcritical and supercritical bifurcation, with the latter one exhibiting anomalous oscillations with the amplitude and period growing with time. Besides, the instability onset via this supercritical mode may be regarded as "altruism self-organization". For the three agent system the instability dynamics is found to be rather irregular and can be composed of alternate fragments of oscillations different in their properties.Comment: 17 pages, 7 figur

    On Cournot-Nash equilibria with exogenous uncertainty

    Get PDF
    A large body of literature has accumulated which examines how the optimal solution of an agent maximizing the expectation of a real-valued function, depending on a random parameterp and the agent's behaviorx, reacts to perturbations in the first and second moments ofp. Here, by an approximation valid for small uncertainty, we allow many agents and consider their behavior in a Cournot-Nash equilibrium. We also allowp to depend on the behaviors of the participating agents. We apply the analysis to two models, one of a Cournot oligopoly, the other of a cooperative of individuals where there is uncertainty in the return to communal work

    Properties of interaction networks underlying the minority game

    Get PDF
    The minority game is a well-known agent-based model with no explicit interaction among its agents. However, it is known that they interact through the global magnitudes of the model and through their strategies. In this work we have attempted to formalize the implicit interactions among minority game agents as if they were links on a complex network. We have defined the link between two agents by quantifying the similarity between them. This link definition is based on the information of the instance of the game (the set of strategies assigned to each agent at the beginning) without any dynamic information on the game and brings about a static, unweighed and undirected network. We have analyzed the structure of the resulting network for different parameters, such as the number of agents ( N ) and the agent's capacity to process information ( m ) , always taking into account games with two strategies per agent. In the region of crowd effects of the model, the resulting networks structure is a small-world network, whereas in the region where the behavior of the minority game is the same as in a game of random decisions, networks become a random network of Erdos-Renyi. The transition between these two types of networks is slow, without any peculiar feature of the network in the region of the coordination among agents. Finally, we have studied the resulting static networks for the full strategy minority game model, a maximal instance of the minority game in which all possible agents take part in the game. We have explicitly calculated the degree distribution of the full strategy minority game network and, on the basis of this analytical result, we have estimated the degree distribution of the minority game network, which is in accordance with computational results.Fil: Caridi, Délida Inés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Democracy versus dictatorship in self-organized models of financial markets

    Get PDF
    Models to mimic the transmission of information in financial markets are introduced. As an attempt to generate the demand process, we distinguish between dictatorship associations, where groups of agents rely on one of them to make decision, and democratic associations, where each agent takes part in the group decision. In the dictatorship model, agents segregate into two distinct populations, while the democratic model is driven towards a critical state where groups of agents of all sizes exist. Hence, both models display a level of organization, but only the democratic model is self-organized. We show that the dictatorship model generates less-volatile markets than the democratic model

    Epidemics and chaotic synchronization in recombining monogamous populations

    Get PDF
    We analyze the critical transitions (a) to endemic states in an SIS epidemiological model, and (b) to full synchronization in an ensemble of coupled chaotic maps, on networks where, at any given time, each node is connected to just one neighbour. In these "monogamous" populations, the lack of connectivity in the instantaneous interaction pattern -that would prevent both the propagation of an infection and the collective entrainment into synchronization- is compensated by occasional random reconnections which recombine interacting couples by exchanging their partners. The transitions to endemic states and to synchronization are recovered if the recombination rate is sufficiently large, thus giving rise to a bifurcation as this rate varies. We study this new critical phenomenon both analytically and numerically
    • …
    corecore