5,565 research outputs found

    Combining Quadratic Penalization and Variable Selection via Forward Boosting

    Get PDF
    Quadratic penalties can be used to incorporate external knowledge about the association structure among regressors. Unfortunately, they do not enforce single estimated regression coefficients to equal zero. In this paper we propose a new approach to combine quadratic penalization and variable selection within the framework of generalized linear models. The new method is called Forward Boosting and is related to componentwise boosting techniques. We demonstrate in simulation studies and a real-world data example that the new approach competes well with existing alternatives especially when the focus is on interpretable structuring of predictors

    Pairwise Fused Lasso

    Get PDF
    In the last decade several estimators have been proposed that enforce the grouping property. A regularized estimate exhibits the grouping property if it selects groups of highly correlated predictor rather than selecting one representative. The pairwise fused lasso is related to fusion methods but does not assume that predictors have to be ordered. By penalizing parameters and differences between pairs of coefficients it selects predictors and enforces the grouping property. Two methods how to obtain estimates are given. The first is based on LARS and works for the linear model, the second is based on quadratic approximations and works in the more general case of generalized linear models. The method is evaluated in simulation studies and applied to real data sets

    Tree-guided group lasso for multi-response regression with structured sparsity, with an application to eQTL mapping

    Full text link
    We consider the problem of estimating a sparse multi-response regression function, with an application to expression quantitative trait locus (eQTL) mapping, where the goal is to discover genetic variations that influence gene-expression levels. In particular, we investigate a shrinkage technique capable of capturing a given hierarchical structure over the responses, such as a hierarchical clustering tree with leaf nodes for responses and internal nodes for clusters of related responses at multiple granularity, and we seek to leverage this structure to recover covariates relevant to each hierarchically-defined cluster of responses. We propose a tree-guided group lasso, or tree lasso, for estimating such structured sparsity under multi-response regression by employing a novel penalty function constructed from the tree. We describe a systematic weighting scheme for the overlapping groups in the tree-penalty such that each regression coefficient is penalized in a balanced manner despite the inhomogeneous multiplicity of group memberships of the regression coefficients due to overlaps among groups. For efficient optimization, we employ a smoothing proximal gradient method that was originally developed for a general class of structured-sparsity-inducing penalties. Using simulated and yeast data sets, we demonstrate that our method shows a superior performance in terms of both prediction errors and recovery of true sparsity patterns, compared to other methods for learning a multivariate-response regression.Comment: Published in at http://dx.doi.org/10.1214/12-AOAS549 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Structured penalized regression for drug sensitivity prediction

    Full text link
    Large-scale {\it in vitro} drug sensitivity screens are an important tool in personalized oncology to predict the effectiveness of potential cancer drugs. The prediction of the sensitivity of cancer cell lines to a panel of drugs is a multivariate regression problem with high-dimensional heterogeneous multi-omics data as input data and with potentially strong correlations between the outcome variables which represent the sensitivity to the different drugs. We propose a joint penalized regression approach with structured penalty terms which allow us to utilize the correlation structure between drugs with group-lasso-type penalties and at the same time address the heterogeneity between omics data sources by introducing data-source-specific penalty factors to penalize different data sources differently. By combining integrative penalty factors (IPF) with tree-guided group lasso, we create the IPF-tree-lasso method. We present a unified framework to transform more general IPF-type methods to the original penalized method. Because the structured penalty terms have multiple parameters, we demonstrate how the interval-search Efficient Parameter Selection via Global Optimization (EPSGO) algorithm can be used to optimize multiple penalty parameters efficiently. Simulation studies show that IPF-tree-lasso can improve the prediction performance compared to other lasso-type methods, in particular for heterogenous data sources. Finally, we employ the new methods to analyse data from the Genomics of Drug Sensitivity in Cancer project.Comment: Zhao Z, Zucknick M (2020). Structured penalized regression for drug sensitivity prediction. Journal of the Royal Statistical Society, Series C. 19 pages, 6 figures and 2 table

    Using multiple classifiers for predicting the risk of endovascular aortic aneurysm repair re-intervention through hybrid feature selection.

    Get PDF
    Feature selection is essential in medical area; however, its process becomes complicated with the presence of censoring which is the unique character of survival analysis. Most survival feature selection methods are based on Cox's proportional hazard model, though machine learning classifiers are preferred. They are less employed in survival analysis due to censoring which prevents them from directly being used to survival data. Among the few work that employed machine learning classifiers, partial logistic artificial neural network with auto-relevance determination is a well-known method that deals with censoring and perform feature selection for survival data. However, it depends on data replication to handle censoring which leads to unbalanced and biased prediction results especially in highly censored data. Other methods cannot deal with high censoring. Therefore, in this article, a new hybrid feature selection method is proposed which presents a solution to high level censoring. It combines support vector machine, neural network, and K-nearest neighbor classifiers using simple majority voting and a new weighted majority voting method based on survival metric to construct a multiple classifier system. The new hybrid feature selection process uses multiple classifier system as a wrapper method and merges it with iterated feature ranking filter method to further reduce features. Two endovascular aortic repair datasets containing 91% censored patients collected from two centers were used to construct a multicenter study to evaluate the performance of the proposed approach. The results showed the proposed technique outperformed individual classifiers and variable selection methods based on Cox's model such as Akaike and Bayesian information criterions and least absolute shrinkage and selector operator in p values of the log-rank test, sensitivity, and concordance index. This indicates that the proposed classifier is more powerful in correctly predicting the risk of re-intervention enabling doctor in selecting patients' future follow-up plan

    A Cluster Elastic Net for Multivariate Regression

    Get PDF
    We propose a method for estimating coefficients in multivariate regression when there is a clustering structure to the response variables. The proposed method includes a fusion penalty, to shrink the difference in fitted values from responses in the same cluster, and an L1 penalty for simultaneous variable selection and estimation. The method can be used when the grouping structure of the response variables is known or unknown. When the clustering structure is unknown the method will simultaneously estimate the clusters of the response and the regression coefficients. Theoretical results are presented for the penalized least squares case, including asymptotic results allowing for p >> n. We extend our method to the setting where the responses are binomial variables. We propose a coordinate descent algorithm for both the normal and binomial likelihood, which can easily be extended to other generalized linear model (GLM) settings. Simulations and data examples from business operations and genomics are presented to show the merits of both the least squares and binomial methods.Comment: 37 Pages, 11 Figure

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues
    corecore