80 research outputs found

    A Characterization of Human Burial Signatures using Spectroscopy and LIDAR

    Get PDF
    This study is an analysis of terrestrial remote sensing data sets collected at the University of Tennesseeā€™s Anthropology Research Facility (ARF). The objective is to characterize human burial signatures using spectroscopy and laser scanning technologies. The development of remote human burial detection methodologies depends on basic research to establish signatures that inform forensic investigations. This dissertation provides recommendations for future research on remote sensing of human burials, and for investigators who wish to apply these technologies to case work. Data used in this study include terrestrial spectra, aerial hyperspectral imagery, satellite multispectral imagery, terrestrial light detection and ranging (LIDAR), and aerial LIDAR. In February 2013, ten individuals donated through the Forensic Anthropology Center body donation program were buried in three differently sized graves at the ARF. The graves contain one, three, and six bodies, respectively. An empty experimental control grave was also created. Terrestrial data collections were made from two-days pre-burial to 21-months post-burial. Aerial data were collected from 19 to 27-months post-burial. Satellite imagery was collected from six-months pre-burial to 23-months post-burial. Analytical emphasis is placed on the terrestrial data sets, which are of the highest spatial and spectral fidelity. Results of terrestrial data analysis reveal separable spectral and topographic signatures between the disturbed locations and surrounding undisturbed area. Aerial and satellite data were used to attempt validation of terrestrial data analysis findings, but findings were inconclusive. This study demonstrates that live vegetation spectral samples can be correctly classified as disturbed or undisturbed groups at rates from 52.0 ā€“ 78.3% using statistically-based classification models. Additionally, this study documents localized elevation change at burial surfaces as a result of initial digging activity, subsequent soil settling and subsurface decomposition. The findings of this research are significant to both researchers and practitioners. It is the first study to compare live vegetation spectra associated with human burials and is the first to document burial elevation change using LIDAR. This work contributes to a collective understanding of human burial signatures that can be used together or with other geophysical methods to assist in locating unmarked human burials

    Remote sensing and machine learning for prediction of wheat growth in precision agriculture applications

    Get PDF
    This thesis focuses on remote sensing and machine learning for prediction of wheat growth in precision agriculture applications. Agriculture is the primary productive force, which plays an important role in human activities. Wheat, as one of the essential sources of food, is also a widely planted crop. The impact of weather and climate and some other uncertain factors on wheat production is crucial. Therefore, it is necessary to use reliable and statistically reasonable models for crop growth and yield prediction based on vegetation index variables and other factors, so as to obtain reliable prediction for efficient production. Applying certain artificial intelligence algorithms to the precision agriculture can significantly improve the efficiency of traditional agriculture in crop planting and reduce the consumption of human and natural resources. Remote sensing can objectively, accurately and timely provide a large amount of information for ecological environment and crop growth in agriculture applications. By combining the image and spectral data obtained by remote sensing technology with machine learning, information about wheat growth, yield and insect pests can be learned in time. This thesis focuses on its applications in agriculture, particularly using effective prediction models such as the back propagation neural network and some optimisation algorithms for predicting wheat growth, yield and aphid. The work presented in this thesis address the issues of wheat growth prediction, yield assessment and aphid validation by model building and machine learning algorithm optimisation by means of remote sensing data. Specifically, the following objectives are defined: 1. Analyse multiple vegetation indexes based on the TM 1-4 band data of Landsat satellite and use regression algorithms to train the models and predict wheat growth; 2. Analyse and compare multiple vegetation indexes models by means of spectral data and use regression algorithms to predict wheat yield; 3. Combine spectral vegetation indexes and multiple regression algorithms to predict wheat aphid; 4. Use accurate evaluation criteria for validating the efficacy of the various algorithms. In this thesis, the remote sensing data from the satellite has been applied instead of the airborne-based remote sensing data. Based on the TM 1-4 band image data of Landsat satellite, multiple vegetation indexes were used as the input of regression algorithms. After that, four kinds of regression algorithms such as the multiple linear regression (MR) algorithm, back propagation network (BPNN) algorithm, genetic algorithm (GA) optimised BPNN algorithm and particle swarm optimisation (PSO) optimised BPNN algorithm were used to train the model and predict the LAI and SPAD. The prediction results of each algorithm were compared with the ground truth information collected by hand held instruments on the ground. The relationship between wheat yield and spectral data has been studied. Based on the BPNN algorithm, four kinds of models such as visible hyperspectral index (VHI) model, hyperspectral vegetation index (HVI) model, difference hyperspectral index (DHI) model and normalized hyperspectral index (NHI) model have been utilized to predict wheat yield. For the optimal NHI model, three regression algorithms such as back propagation network (BPNN) algorithm, genetic algorithm (GA) optimised BPNN algorithm and particle swarm optimisation (PSO) optimised BPNN algorithm, were compared to predict wheat yield, and RMSE and R-square of the three algorithms were compared and analysed. Finally, the relationship between wheat aphid and spectral data has been investigated. Nine vegetation indexes related to aphid have been estimated from spectral data as the input of regression algorithms. Five kinds of regression algorithms such as back propagation network (BPNN) algorithm, genetic algorithm (GA) optimised BPNN algorithm, particle swarm optimisation (PSO) optimised BPNN algorithm, ant colony (ACO) optimisation algorithm optimised BPNN algorithm and cuckoo search (CS) optimised BPNN algorithm have been implemented to predict wheat aphid, which was validated with the ground truth information measured by hand-held instruments on the ground. The prediction results of each algorithm have been analysed. The major original contributions of this thesis are as follows: 1. A variety of optimisation algorithms are used to improve the regression analysis of the BPNN algorithm, so that the prediction results of each model for wheat growth, yield and aphid are more accurate. 2. The spectral characteristics of winter wheat canopy have been analysed. The correlation between the absorption band and the associated physical and chemical properties of crops, specially the red edge slope, with the crop yield and wheat aphid damage is established. 3. Adjusted MSE and un-centered R-square, as accurate evaluation criteria for practical applications, are used to compare the prediction results of the models under different dimensions of the observed data. 4. Improve algorithm training by using the cross-validation method to obtain reliable and stable models for the prediction of wheat growth, yield, and aphid. Through repeated cross-validation, a better model can be obtained in the last. Key wordļ¼šPrecision agriculture; BP network, wheat growth assessment; wheat yield prediction, wheat aphid validationThis thesis focuses on remote sensing and machine learning for prediction of wheat growth in precision agriculture applications. Agriculture is the primary productive force, which plays an important role in human activities. Wheat, as one of the essential sources of food, is also a widely planted crop. The impact of weather and climate and some other uncertain factors on wheat production is crucial. Therefore, it is necessary to use reliable and statistically reasonable models for crop growth and yield prediction based on vegetation index variables and other factors, so as to obtain reliable prediction for efficient production. Applying certain artificial intelligence algorithms to the precision agriculture can significantly improve the efficiency of traditional agriculture in crop planting and reduce the consumption of human and natural resources. Remote sensing can objectively, accurately and timely provide a large amount of information for ecological environment and crop growth in agriculture applications. By combining the image and spectral data obtained by remote sensing technology with machine learning, information about wheat growth, yield and insect pests can be learned in time. This thesis focuses on its applications in agriculture, particularly using effective prediction models such as the back propagation neural network and some optimisation algorithms for predicting wheat growth, yield and aphid. The work presented in this thesis address the issues of wheat growth prediction, yield assessment and aphid validation by model building and machine learning algorithm optimisation by means of remote sensing data. Specifically, the following objectives are defined: 1. Analyse multiple vegetation indexes based on the TM 1-4 band data of Landsat satellite and use regression algorithms to train the models and predict wheat growth; 2. Analyse and compare multiple vegetation indexes models by means of spectral data and use regression algorithms to predict wheat yield; 3. Combine spectral vegetation indexes and multiple regression algorithms to predict wheat aphid; 4. Use accurate evaluation criteria for validating the efficacy of the various algorithms. In this thesis, the remote sensing data from the satellite has been applied instead of the airborne-based remote sensing data. Based on the TM 1-4 band image data of Landsat satellite, multiple vegetation indexes were used as the input of regression algorithms. After that, four kinds of regression algorithms such as the multiple linear regression (MR) algorithm, back propagation network (BPNN) algorithm, genetic algorithm (GA) optimised BPNN algorithm and particle swarm optimisation (PSO) optimised BPNN algorithm were used to train the model and predict the LAI and SPAD. The prediction results of each algorithm were compared with the ground truth information collected by hand held instruments on the ground. The relationship between wheat yield and spectral data has been studied. Based on the BPNN algorithm, four kinds of models such as visible hyperspectral index (VHI) model, hyperspectral vegetation index (HVI) model, difference hyperspectral index (DHI) model and normalized hyperspectral index (NHI) model have been utilized to predict wheat yield. For the optimal NHI model, three regression algorithms such as back propagation network (BPNN) algorithm, genetic algorithm (GA) optimised BPNN algorithm and particle swarm optimisation (PSO) optimised BPNN algorithm, were compared to predict wheat yield, and RMSE and R-square of the three algorithms were compared and analysed. Finally, the relationship between wheat aphid and spectral data has been investigated. Nine vegetation indexes related to aphid have been estimated from spectral data as the input of regression algorithms. Five kinds of regression algorithms such as back propagation network (BPNN) algorithm, genetic algorithm (GA) optimised BPNN algorithm, particle swarm optimisation (PSO) optimised BPNN algorithm, ant colony (ACO) optimisation algorithm optimised BPNN algorithm and cuckoo search (CS) optimised BPNN algorithm have been implemented to predict wheat aphid, which was validated with the ground truth information measured by hand-held instruments on the ground. The prediction results of each algorithm have been analysed. The major original contributions of this thesis are as follows: 1. A variety of optimisation algorithms are used to improve the regression analysis of the BPNN algorithm, so that the prediction results of each model for wheat growth, yield and aphid are more accurate. 2. The spectral characteristics of winter wheat canopy have been analysed. The correlation between the absorption band and the associated physical and chemical properties of crops, specially the red edge slope, with the crop yield and wheat aphid damage is established. 3. Adjusted MSE and un-centered R-square, as accurate evaluation criteria for practical applications, are used to compare the prediction results of the models under different dimensions of the observed data. 4. Improve algorithm training by using the cross-validation method to obtain reliable and stable models for the prediction of wheat growth, yield, and aphid. Through repeated cross-validation, a better model can be obtained in the last. Key wordļ¼šPrecision agriculture; BP network, wheat growth assessment; wheat yield prediction, wheat aphid validatio

    Hyperspectral analysis of selected fabrics submerged in the Indian Ocean: An innovative way to aid in the estimation of the time human remains have spent in water

    Get PDF
    Estimating the time since death (minimum Post-Mortem Interval, minPMI) is crucial in forensic investigations. In an aquatic environment, this process is particularly challenging because of the complexity of a corpseā€™s decomposition process and the many factors related to the environment. Furthermore, there is a general paucity of research in this field. Recently, the use of the clothing discovered alongside a corpse has come under scrutiny: clothing has a high chance to be present, and their colonisation rate by aquatic organisms could be used to estimate the victimā€™s minimum Post-Mortem Submersion Interval (minPMSI). Besides a biological/zoological-based estimation, no other avenues to age clothing in an underwater context have been tested. This research is the first to focus on the use of Hyperspectral Imaging (HSI) to age fabrics, considering the modification of their optical properties as a result of exposure to a marine environment. Cotton, neoprene, satin, and velvet were submerged underwater over a period of six months off the coast of Perth, Western Australia. In a pilot study, the fabrics were analysed using two different light scenarios (VIS-NIR and VIS-NIR + VIS-H) to identify which one would provide the best reflectance profiles. Results demonstrated that the additional halogen illumination (VIS-NIR + VIS-H) did not provide any extra information with respect to VIS-NIR. In the main study, the fabricā€™s spectral profiles were therefore captured using only VIS-NIR lighting. Profiles were generated for all submerged samples as well as controls (N=112), and the resulting data were compared within and between fabrics. The most significant differences were observed for the cotton and satin, with a strong negative regression observed between the months spent submerged and the profiles generated. These fabrics showed a significant change of the colour, texture, and structure, as marine organisms were highly attracted to them. Neoprene and velvet, instead, showed minimal significant changes, with the first few months showing similar profiles to the controls and differences toward the end of the experiment. As opposed to cotton and satin, neoprene and velvet were less affected by the marine organisms. Overall, in a forensic context, when investigated via HSI technology, thin and natural fabrics can provide the most information to the investigators. This study is the first to provide data to support the estimation of minPMSI based on the use of remote sensing, HSI, on different fabric types placed in Western Australian marine waters, providing the potential for a new tool in estimation of the minPMSI for forensic investigation

    The role of phytophthora in predisposing Corymbia calophylla (marri) to a canker disease

    Get PDF
    Corymbia calophylla (marri), a keystone tree species in the global biodiversity hot spot of south-western Australia, is suffering decline and mortality due to canker disease caused by the endemic fungus Quambalaria coyrecup. Phytophthora species, fine root oomycete pathogens, are frequently isolated from the rhizosphere of dying C. calophylla, raising the possibility that a Phytophthora infection predisposes C. calophylla to this endemic canker pathogen by compromising its defence mechanisms. Field surveys conducted across the C. calophylla range, found Phytophthora to be present in the rhizosphere of C. calophylla. Five Phytophthora species (P. cinnamomi, P. elongata, P. multivora, P. pseudocryptogea and P. versiformis) were recovered from healthy and cankered C. calophylla. Phytophthora incidence was significantly higher in anthropogenically disturbed areas. Pot infestation trials were conducted where the C. calophylla plants were inoculated with the recovered Phytophthora species. A significant reduction in root volume and even seedling death were observed, demonstrating that Phytophthora can adversely affect C. calophylla health. In a follow-up trial, C. calophylla plants were inoculated with both P. cinnamomi and Q. coyrecup and subjected to a drought stress treatment. Results indicated that neither P. cinnamomi nor the drought stress treatments exacerbated the pathogenic effect of Q. coyrecup on the plants. During these trials, weekly reflectance spectroscopic measurements with a portable high-resolution spectroradiometer, were also taken to investigate its potential to track biochemical changes in the C. calophylla leaves due to these treatments. Reflectance values displayed differences between treatments, as well as a seasonal trend in the leaves. Bandwidths in the visible and shortwave infrared regions of the electromagnetic spectrum were demonstrated to be important regions for characterising C. calophylla response to the Phytophthora, Q. coyrecup, waterlogging and drought stress treatments. More work is required to identify the optimum wavelengths for C. calophylla. Once the optimum bandwidths have been determined, reflectance spectroscopy measurements can be scaled up to canopy level, using unmanned vehicles or fixed-wing aircraft; thus, aiding in the management of this canker disease in C. calophylla

    Land Surface Monitoring Based on Satellite Imagery

    Get PDF
    This book focuses attention on significant novel approaches developed to monitor land surface by exploiting satellite data in the infrared and visible ranges. Unlike in situ measurements, satellite data provide global coverage and higher temporal resolution, with very accurate retrievals of land parameters. This is fundamental in the study of climate change and global warming. The authors offer an overview of different methodologies to retrieve land surface parametersā€” evapotranspiration, emissivity contrast and water deficit indices, land subsidence, leaf area index, vegetation height, and crop coefficientā€”all of which play a significant role in the study of land cover, land use, monitoring of vegetation and soil water stress, as well as early warning and detection of forest ļ¬res and drought

    Hyperspectral Imaging for Landmine Detection

    Get PDF
    This PhD thesis aims at investigating the possibility to detect landmines using hyperspectral imaging. Using this technology, we are able to acquire at each pixel of the image spectral data in hundreds of wavelengths. So, at each pixel we obtain a reflectance spectrum that is used as fingerprint to identify the materials in each pixel, and mainly in our project help us to detect the presence of landmines. The proposed process works as follows: a preconfigured drone (hexarotor or octorotor) will carry the hyperspectral camera. This programmed drone is responsible of flying over the contaminated area in order to take images from a safe distance. Various image processing techniques will be used to treat the image in order to isolate the landmine from the surrounding. Once the presence of a mine or explosives is suspected, an alarm signal is sent to the base station giving information about the type of the mine, its location and the clear path that could be taken by the mine removal team in order to disarm the mine. This technology has advantages over the actually used techniques: ā€¢ It is safer because it limits the need of humans in the searching process and gives the opportunity to the demining team to detect the mines while they are in a safe region. ā€¢ It is faster. A larger area could be cleared in a single day by comparison with demining techniques ā€¢ This technique can be used to detect at the same time objects other than mines such oil or minerals. First, a presentation of the problem of landmines that is expanding worldwide referring to some statistics from the UN organizations is provided. In addition, a brief presentation of different types of landmines is shown. Unfortunately, new landmines are well camouflaged and are mainly made of plastic in order to make their detection using metal detectors harder. A summary of all landmine detection techniques is shown to give an idea about the advantages and disadvantages of each technique. In this work, we give an overview of different projects that worked on the detection of landmines using hyperspectral imaging. We will show the main results achieved in this field and future work to be done in order to make this technology effective. Moreover, we worked on different target detection algorithms in order to achieve high probability of detection with low false alarm rate. We tested different statistical and linear unmixing based methods. In addition, we introduced the use of radial basis function neural networks in order to detect landmines at subpixel level. A comparative study between different detection methods will be shown in the thesis. A study of the effect of dimensionality reduction using principal component analysis prior to classification is also provided. The study shows the dependency between the two steps (feature extraction and target detection). The selection of target detection algorithm will define if feature extraction in previous phase is necessary. A field experiment has been done in order to study how the spectral signature of landmine will change depending on the environment in which the mine is planted. For this, we acquired the spectral signature of 6 types of landmines in different conditions: in Lab where specific source of light is used; in field where mines are covered by grass; and when mines are buried in soil. The results of this experiment are very interesting. The signature of two types of landmines are used in the simulations. They are a database necessary for supervised detection of landmines. Also we extracted some spectral characteristics of landmines that would help us to distinguish mines from background

    Evaluating and Developing Methods for Non-Destructive Monitoring of Biomass and Nitrogen in Wheat and Rice Using Hyperspectral Remote Sensing

    Get PDF
    Aboveground plant biomass and plant nitrogen are two important parameters for plant growth monitoring, which have a decisive influence on the final yield. Mismanagement of fertilizer or pesticide inputs leads to poor plant growth, environmental pollution, and accordingly, yield loss. Biomass development is driven by nutrient supply, temperature, and phenology. Crop biomass reaches its highest weight at the harvest time. In contrast, plant nitrogen is dependent from fertilizer inputs to the soil and from biomass. Destructive measurement of both parameters is time-consuming and labor-intensive. Remote sensing offers remotely non-direct observation methods from outer space, air space, or close-range in the field by sensors. This dissertation focuses on non-destructive monitoring of plant biomass (the primary parameter) and plant nitrogen (the secondary parameter) using hyperspectral data from non-imaging field spectrometers and the imaging EO-1 Hyperion satellite. The study was conducted on two field crops: winter wheat of two growing seasons of the Huimin test site in the North China Plain; and rice of three growing seasons of the Jiansanjiang test site in the Sanjiang Plain of China. Study fields were set up in different spatial scales, from small experimental scale to large farmers' scale. Extensive field measurements were carried out, including both destructive measuring and non-destructive hyperspectral remote sensing of biomass and plant nitrogen. Besides, two years' Hyperion images were acquired at the Huimin test site. Four different approaches were used to develop the estimation models, which include: vegetation indices (VIs), band combinations, Optimum Multiple Narrow Band Reflectance (OMNBR) and stepwise Multiple Linear Regression (MLR), and derivatives of reflectance. Based on these four approaches, models were constructed, compared, and improved step by step. Additionally, a multiscale approach and a new VI, named GnyLi, were developed. Since experimental and farmers' fields were differently managed, several calibration and validation methods were tested and the field datasets were pooled. All tested approaches and band selections were greatly influenced by single growth stages. The broad band VIs saturated for both crops at the booting stage at the latest and were greatly outperformed by the narrow band VIs with optimized band combinations. Model applications from experimental to farmers' scale using the narrow bands measured by field spectrometers mostly failed due to the effects of different management practices and crop cultivars at both spatial scales. In contrast, the multiscale approach was successfully applied in winter wheat monitoring to transfer data and knowledge from field spectrometer measurements from the experimental scale to the farmers' field scale and the scale that is covered by the Hyperion imagery. The GnyLi and the Normalized Ratio Index (NRI) based on the optimized band combinations performed the best in the up-scaling process in the winter wheat study. In the rice study, MLR or OMNBR models based on 4ā€“6 narrow bands better explained biomass variability compared to VIs based on broad bands and optimized band combinations. The models were more robust when data from different scales were pooled and then randomly divided into calibration and validation datasets. Additional model improvements were obtained using derivatives of reflectance. This dissertation evaluates different hyperspectral remote sensing approaches for non-destructive biomass and plant nitrogen monitoring, with the main focus on biomass estimation. The results and comparisons of different approaches revealed their potentials and limits. Development of new VIs, such as GnyLi, is advantageous due to the saturation problem of broad band VIs. However, the developed VIs need to be tested and improved for different crops and sites. Detection of optimized band combinations facilitates the development of new VIs, which are site-specific and crop-specific. MLR-based models may better explain the biomass variability; nevertheless, with more bands, they are prone to the issues of over-fitting and collinearity. Hence, no more than six bands were recommended to select from the hyperspectral data. Derivatives of reflectance were beneficial at the early growing season of rice when the canopy was strongly influenced by background signals from soil and water. However, their benefits were reduced when more bands were used

    Spectral LADAR: Active Range-Resolved Imaging Spectroscopy

    Get PDF
    Imaging spectroscopy using ambient or thermally generated optical sources is a well developed technique for capturing two dimensional images with high per-pixel spectral resolution. The per-pixel spectral data is often a sufficient sampling of a material's backscatter spectrum to infer chemical properties of the constituent material to aid in substance identification. Separately, conventional LADAR sensors use quasi-monochromatic laser radiation to create three dimensional images of objects at high angular resolution, compared to RADAR. Advances in dispersion engineered photonic crystal fibers in recent years have made high spectral radiance optical supercontinuum sources practical, enabling this study of Spectral LADAR, a continuous polychromatic spectrum augmentation of conventional LADAR. This imaging concept, which combines multi-spectral and 3D sensing at a physical level, is demonstrated with 25 independent and parallel LADAR channels and generates point cloud images with three spatial dimensions and one spectral dimension. The independence of spectral bands is a key characteristic of Spectral LADAR. Each spectral band maintains a separate time waveform record, from which target parameters are estimated. Accordingly, the spectrum computed for each backscatter reflection is independently and unambiguously range unmixed from multiple target reflections that may arise from transmission of a single panchromatic pulse. This dissertation presents the theoretical background of Spectral LADAR, a shortwave infrared laboratory demonstrator system constructed as a proof-of-concept prototype, and the experimental results obtained by the prototype when imaging scenes at stand off ranges of 45 meters. The resultant point cloud voxels are spectrally classified into a number of material categories which enhances object and feature recognition. Experimental results demonstrate the physical level combination of active backscatter spectroscopy and range resolved sensing to produce images with a level of complexity, detail, and accuracy that is not obtainable with data-level registration and fusion of conventional imaging spectroscopy and LADAR. The capabilities of Spectral LADAR are expected to be useful in a range of applications, such as biomedical imaging and agriculture, but particularly when applied as a sensor in unmanned ground vehicle navigation. Applications to autonomous mobile robotics are the principal motivators of this study, and are specifically addressed

    Sustainable Agriculture and Advances of Remote Sensing (Volume 1)

    Get PDF
    Agriculture, as the main source of alimentation and the most important economic activity globally, is being affected by the impacts of climate change. To maintain and increase our global food system production, to reduce biodiversity loss and preserve our natural ecosystem, new practices and technologies are required. This book focuses on the latest advances in remote sensing technology and agricultural engineering leading to the sustainable agriculture practices. Earth observation data, in situ and proxy-remote sensing data are the main source of information for monitoring and analyzing agriculture activities. Particular attention is given to earth observation satellites and the Internet of Things for data collection, to multispectral and hyperspectral data analysis using machine learning and deep learning, to WebGIS and the Internet of Things for sharing and publishing the results, among others
    • ā€¦
    corecore