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ABSTRACT 

 This study is an analysis of terrestrial remote sensing data sets collected at the University 

of Tennessee’s Anthropology Research Facility (ARF). The objective is to characterize human 

burial signatures using spectroscopy and laser scanning technologies. The development of remote 

human burial detection methodologies depends on basic research to establish signatures that 

inform forensic investigations. This dissertation provides recommendations for future research on 

remote sensing of human burials, and for investigators who wish to apply these technologies to 

case work.  

 Data used in this study include terrestrial spectra, aerial hyperspectral imagery, satellite 

multispectral imagery, terrestrial light detection and ranging (LIDAR), and aerial LIDAR. In 

February 2013, ten individuals donated through the Forensic Anthropology Center body donation 

program were buried in three differently sized graves at the ARF. The graves contain one, three, 

and six bodies, respectively. An empty experimental control grave was also created. Terrestrial 

data collections were made from two-days pre-burial to 21-months post-burial. Aerial data were 

collected from 19 to 27-months post-burial. Satellite imagery was collected from six-months pre-

burial to 23-months post-burial. Analytical emphasis is placed on the terrestrial data sets, which 

are of the highest spatial and spectral fidelity. Results of terrestrial data analysis reveal separable 

spectral and topographic signatures between the disturbed locations and surrounding undisturbed 

area. Aerial and satellite data were used to attempt validation of terrestrial data analysis findings, 

but findings were inconclusive. 

 This study demonstrates that live vegetation spectral samples can be correctly classified as 

disturbed or undisturbed groups at rates from 52.0 – 78.3% using statistically-based classification 

models. Additionally, this study documents localized elevation change at burial surfaces as a result 
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of initial digging activity, subsequent soil settling and subsurface decomposition. The findings of 

this research are significant to both researchers and practitioners. It is the first study to compare 

live vegetation spectra associated with human burials and is the first to document burial elevation 

change using LIDAR. This work contributes to a collective understanding of human burial 

signatures that can be used together or with other geophysical methods to assist in locating 

unmarked human burials. 
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CHAPTER 1: INTRODUCTION 

 Unmarked burials containing human remains are often difficult to locate due to natural 

environmental processes or deliberate concealment. Such burials, and any associated contextual 

evidence, are valuable to communities searching for missing loved ones, to investigators who are 

building cases for criminal prosecution, and for post-conflict accounting of missing persons 

(Gassiot and Steadman 2008; Skinner 2002). If located, unmarked burials can be excavated to help 

establish an accurate narrative of events (Wright 2010). If graves are located and subsequently 

excavated, the victims' remains can be returned to their next of kin or communities, if that is 

desirable, so the living can perform culturally specific funerary rituals (Eppel 2014). Without 

knowledge of burial locations, victimized family or community members can endure significant 

distress over the unknown status of their missing family members (Rosenblatt 2015; Stover et al. 

2003; Wagner 2008). Moreover, without a body or other evidence of their crimes, perpetrators 

may benefit from impunity (Wright 2010). Therefore, a reliable method to locate unmarked human 

burials is important for addressing these significant problems. 

 Unmarked burials are difficult to find because, after a period of time, they can appear the 

same as their undisturbed surroundings. Natural processes, such as vegetation regrowth or organic 

debris accumulation obscure burials over time (Bevan 1991; Owsley 2001). Moreover, individuals 

will sometimes deliberately conceal a burial by attempting to mimic these natural processes as 

camouflage (Hanson 2012; Hunter and Simpsons 2007). Yet, the presence of buried human 

remains fundamentally changes the immediate environment, leaving subtle clues of their existence. 

Understanding the effects of human burials on the nearby environment is foundational to 

developing methodologies for their detection after they have become difficult to identify (Gaffney 

et al. 2015).  
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 Environmental responses to human burial decomposition processes can inform the study 

of burial detection. Timing of human decomposition within a burial is widely variable due to 

environmental factors, such as precipitation and temperature (Mann et al. 1990; Rodriguez and 

Bass 1985; Schotsman et al. 2011). Eventually though, reduction of buried mass (the body), and 

subsequent redistribution of soil into those voids, may be observable at the ground surface as an 

elevation change or as modified plant chemistry. As a result of this subsurface activity, burial 

depressions can form at the surface. However, surface depressions are not always obvious and may 

not persist indefinitely, so they are easily overlooked by search parties (Killam 2004; Morse et al. 

1983; Owsley 2001; Steadman 2009). Additionally, human decomposition below the surface is 

known to influence above ground vegetation. Throughout the decomposition process, nutrients are 

released into the soil and are absorbed by surface vegetation (Mundorff et al. 2014). Such changes 

in nutrient levels influence plant chemistry, but much like surface depressions, may not always be 

visible to humans.  

 Surface elevation change and vegetation spectra are potential indicators of burial presence, 

but few studies have attempted to observe these relationships. Most researchers use spectral 

analysis to visualize non-human burials, and have attempted burial detection before first 

establishing a characteristic burial signature (Kalacksa and Bell 2006; Kalacska et al. 2009; 

LeBlanc et al. 2014; Snirer 2013). Far fewer studies have evaluated the use of elevation 

measurements for visualizing burial surfaces, conducting synchronic studies, rather than 

diachronic studies of elevation change (Weitman 2012). Not all burial surfaces express 

topographic relief (i.e., small mounds or depressions), but those that do may appear consistent with 

surrounding topography at any single point in time. Therefore, diachronic observations may be the 
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more advantageous approach by measuring the range of activity throughout time – activity that 

likely does not occur at undisturbed locations subject to the same environmental conditions.  

 Many other approaches to burial detection have been attempted, with varying degrees of 

reliability. Unmarked burials can and have been located through pedestrian survey (i.e., 

systematically walking the landscape), ground probing to gauge relative soil mixture and 

compaction, exploratory excavation, or the use of more involved geophysical techniques. 

Geophysical technologies can include ground penetrating radar (GPR), electrical resistivity, or 

magnetometry – all of which record sub-surface observations. These ground-based methods, 

however, require people and sensors to operate in close proximity – if not at the precise location – 

of the burial, a requirement that remote sensing technologies do not necessarily demand. 

Moreover, many of these ground-based methods are time-limited, as established through 

controlled research experiments (Salsarola et al. 2015). The success of remote sensing 

technologies may also be time-dependent, which this dissertation attempts to address. However, it 

is important to note that no single technology is expected to locate all unmarked burials, including 

the technologies tested in this study, but continued experimentation will help determine how new 

technologies can be used in combination with others for a more comprehensive approach to burial 

detection.  

 Prior to developing additional methodology capable of assisting with unmarked burial 

detection, the relationship between burials and their immediate environment must be understood. 

Research and testing will help characterize burial signatures that are unique to a specific 

methodology. Once these signatures are identified, they can be applied to the interpretation of 

landscapes, presumably containing unmarked human burials (Gaffney et al. 2015). However, since 

the nature and extent of the effects of human burials on surface topography and surface vegetation 
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is not well understood, forensic remote sensing researchers have not been successful outside 

experimental scenarios.  

1.1 Research Objectives 

  The purpose of this research is to characterize burial signatures using high fidelity 

terrestrial (i.e., ground-based) data that may be used for the development of a remote sensing 

human burial detection method. The goal of this research is to examine whether spectral and 

ground surface signatures can be used to separate burials from non-burials, and aims to achieve 

three objectives: 

1. Statistically separate burial and non-burial vegetation spectra.   

Terrestrial data: Live vegetation reflectance spectra associated with human burials, a 

control unit (disturbed ground without human remains, herein after referred to as a 

"control"), and undisturbed ground will be statistically evaluated to determine if 

vegetation groups are spectrally separable, and if so, which wavelengths are best suited 

for their classification.    

2. Measure and compare burial and non-burial elevation change.   

Terrestrial data: Surface elevation measurements throughout the study area, including 

over human burials, a control, and undisturbed areas will be compared over time to 

establish the extent of net elevation change at those surfaces.   

3. Evaluate potential scalability of terrestrial findings in airborne/satellite data.  

Guided by Objectives 1 and 2: Statistical models derived from terrestrial spectra will 

be applied to spectral imagery collected from airborne and satellite sensing platforms 

to determine if the same separation is achievable at lower spatial and spectral 

resolution. Elevation change measurements observed in terrestrial LIDAR data will 
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help determine whether ongoing elevation change activity is also observable at lower 

spatial resolution. 

 The analysis of two data types, spectra and elevation change, to characterize multiple burial 

signatures may prove to be an advantage over using any single data type that might only provide 

partial information about a burial (Kvamme et al. 2006). Moreover, because the optimal 

timeframes for observing signatures have not yet been established – assuming signatures exist and 

are measurable – multiple data sets may improve the likelihood that at least one signature will be 

observed during the data collection period.  

 The analytical emphasis for this research is on high resolution terrestrial data to establish 

whether burial signatures exist and are measurable (Objectives 1 and 2). High resolution data are 

necessary for preliminary research because human burials may only slightly modify their 

immediate environment so that vegetation spectra or elevation change measurements do not 

significantly differ from their non-burial counterparts. If burial signatures only represent a small 

deviation from the mean distributions of either data set, the results may not be statistically 

significant. Such small differences could be diluted by sensors with low spatial or spectral 

resolution (e.g., satellite imagery), or be nested within a sensor's normal functioning error range 

(van der Meer and de Jong 2011). Terrestrial data sets possess higher spatial and spectral resolution 

than aerial or satellite data and represent the highest spatial and spectral resolution of all data 

collected for this study. The instruments used to collect the terrestrial data sets have specifications 

of accuracy, precision, and signal-to-noise ratios that offer the best chance to position any potential 

burial signals outside the sensors' error range. If a signature can be established, the next step will 

be to search for that signature in airborne or satellite data collections (Objective 3).  
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 This study addresses research questions that focus on the relationship between human 

burials and their immediate environment. The established relationship between soil nutrient 

concentrations and vegetation spectra (Sims and Gamon 2002; Yoder and Pettigrew-Crosby 1995) 

present the foundation upon which to observe and understand the influence of human body 

decomposition processes on nearby vegetation. Additionally, human decomposition and the 

subsequent reduction of body mass leads to redistribution of mass within a burial, providing an 

opportunity to observe the overall trend of burial surface elevation changes (Mann et al. 1990; 

Owsley 2001; Rodriguez and Bass 1985).  

 Among the rules of international humanitarian law, the right of families to know the fate 

of the missing, in particular, is legally supported by customary law (i.e., general practice accepted 

as law) (ICRC 2016), in addition to three international treaties: the Geneva Conventions IV 

(Article 26)/Additional Protocol I (Article 32), the African Charter on the Rights and Welfare of 

the Child (Article 19:3), and the Convention on Enforced Disappearances (Article 24). However, 

the ability for any organization or agency to enforce such a right in practice is limited by current 

technology, economic resources, political motivations, and the survival needs of the living. This 

study represents the first attempt to use existing sensing technologies to characterize vegetation 

and elevation change signatures specific to human burials. This study is a necessary step to 

understanding these signatures for the purpose of developing a reliable burial detection 

methodology. The findings of this research may be used by anyone with proper training to assist 

in the location of unmarked human burials.      

1.2 Research Questions and Hypotheses 

 This study addresses three central research questions: 1) Do human burials influence 

nearby vegetation spectra, and if so, how? 2) Does burial surface elevation change over time, and 
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if so, how? 3) If spectral and elevation changes are separable, are the differences unique to human 

burials or indicative of similar disturbance without interred human remains? The following 

hypotheses are framed by these research questions. 

 This study focuses on the effects of human decomposition within a burial on nearby 

vegetation and surface elevation. Considering these relationships, this research tests four 

hypotheses: 

1. Vegetation associated with disturbed ground containing human remains (human 

burials), disturbed ground containing no remains (control unit), and undisturbed ground 

are statistically separable groups as indicated by differences in reflectance spectra. 

 

2. Ground surfaces at burials, the control unit, and undisturbed locations exhibit 

differences as measured by net elevation gain or loss. 

 

3. Vegetation associated with burials, the control unit, and undisturbed areas exhibit 

spectral separability for the duration of the study.   

 

4. Ground surfaces associated with burials, the control unit, and undisturbed locations 

exhibit differences in elevation change for the duration of the study.   

 

 Findings in full support of the first or second hypotheses would reveal differences between 

all three comparison samples (i.e., burial, control, undisturbed). Full support of the first and second 

hypotheses would suggest that the combined effects of ground disturbance and body 

decomposition processes influence burial signature differences. Findings in partial support of the 

first and second hypotheses would reveal no difference between human burials and the control 
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unit. However, this scenario would indicate a difference between the undisturbed sample and both 

of the disturbed samples. Partial support of the first and second hypotheses would suggest that 

spectral and/or topographic differences are influenced by non-specific ground disturbance.  

 Findings that do not support the first hypothesis would suggest that vegetation is not 

measurably affected by ground disturbance or body decomposition and may be interpreted as 

having no influence on vegetation nutrient uptake or nutrient storage processes. Findings that do 

not support the second hypothesis would suggest that elevation changes are not the result of buried 

human remains, but are instead a uniform and natural change in elevation throughout the study 

area. Moreover, findings that reveal no differences in high resolution terrestrial data between 

burial, control, or undisturbed vegetation spectra or elevation change can be interpreted as a lack 

of support for the scalability of those effects to airborne or satellite data.    

 Findings in support of the third and fourth hypotheses would suggest that differences are 

independent of temporal factors, such as seasonality, plant phenology (i.e., growth cycles), or the 

human body decomposition process. Support for these hypotheses would suggest that such factors 

do not influence the timing of initial divergence, maximum difference, or final convergence of 

burial and non-burial signatures. Findings that do not support the third and fourth hypotheses 

would suggest that these temporal factors do influence the timing of initial divergence, maximum 

difference, or final convergence of burial and non-burial signatures, and the timing of those 

expressions will inform optimal data collection windows in future research. 

1.3 Dissertation Organization 

 This dissertation contains eight chapters. Chapter 2 is a discussion of unmarked burials, 

and reviews factors that contribute to the challenges of locating unmarked buried remains. Chapter 

3 introduces the science of remote sensing, and describes two types of remote sensing technology 
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used in this research – passive and active. Chapter 4 provides a comprehensive overview and 

critique of existing ground-based and remote sensing methods used to locate unmarked burials. 

Chapter 5 details the study's data sets and presents the analytical methods applied to each data set 

to attempt characterization of burial signatures. Chapter 6 presents the results of this study. Chapter 

7 discusses the results and how they relate to the phenomenology that drives each signature, 

including the potential application of findings to forensic casework and future research as it relates 

to refining burial detection methods. Chapter 7 also discusses research limitations, potential future 

research directions, and revisits the research questions to draw final conclusions. 
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CHAPTER 2: UNMARKED BURIALS  

 This chapter focuses on the social, political, and environmental challenges of unmarked 

burials and the benefits of locating them. It begins with a brief introduction to international 

humanitarian law as it relates to two complementary concepts, 1) the legal rights of families of the 

missing and 2) the responsibilities of parties to conflict to search for and recover the dead. This 

chapter also explores human remains as evidence, to establish an accurate historical narrative or 

as a means of truth-seeking. The final section describes the varied anthropogenic and 

environmental factors that contribute to the challenges of locating unmarked burials.   

 Humans bury their dead for a myriad of reasons. However, the geophysical qualities of 

burials exist independent of the context, or reason for interment. Context, for the purpose of this 

discussion, refers to the combination of timing and burial location, and circumstances leading to 

death. Context can inform a burial location investigation, such as defining search parameters, but 

context does not influence the geophysical signatures of a human burial. For example, the 

geophysical signatures of a burial created with the intention of hiding a body would not vary from 

the geophysical signature of a documented burial in a cemetery. While the first burial would be 

considered a forensic context and the latter would not, the burial signatures would be identical, 

regardless of the intent behind each burial's creation. This statement is true if all other parameters 

except context are equal, such as if the bodies were interred at the same time, in the same location, 

and buried in the same manner (i.e., without a coffin, same depth, same soil or other conditions). 

This distinction is important because, as the science of burial detection develops, incidental or non-

forensic burials may be identified. However, while geophysical signatures of a burial exist 

independent of context, a hidden burial is often associated with a context that drives an 

investigation for its location. The scope of this dissertation includes unmarked burials that are not 
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documented or are deliberately concealed. Burials that were once documented, but are now "lost" 

may potentially share similar geophysical signatures with other unmarked burials for the reasons 

stated above, but fall outside the contextual scope of this research. 

2.1 International Humanitarian Law as a Legal Foundation for the Current Study 

 International humanitarian law (IHL) is comprised of treaty law and customary 

international law, made up of military manuals, national legislation and case-law, UN resolutions, 

or other protocol and general practice of states accepted as law. In the context of international and 

non-international armed conflict, IHL establishes the families' right to know the fate of their 

missing relatives and the obligation of parties to the conflict to search for and recover the dead 

(Petrig 2009), providing a legal foundation for the application of remote sensing to unmarked 

burial detection.  

 When bodies are deliberately hidden or burial locations are not documented, communities 

and families of the missing often have unanswered questions. In both domestic and international 

scenarios, the living often chooses to locate unmarked burials to recover the remains (Stover et al. 

2003). Preferences for how to facilitate peace and reconciliation vary among communities, so the 

need or desire to recover the remains of the missing is not universal (Stover and Shigekane 2002; 

Wagner 2008). Regardless of preference, the rights of family members to know the fate of their 

missing relatives is codified under the combined protections known as Rule 117, Section D, or the 

right of families to know the fate of their relatives (Henckaerts 2005; Petrig 2009), hereafter in this 

dissertation as the "right to know." The international treaties that establish the legal right to know 

are the 1949 Geneva Convention IV (Article 26) and 1977 Additional Protocol I (Article 32), the 

1990 African Charter on the Rights and Welfare of the Child (Article 19), and the 2006 Convention 

on Enforced Disappearance (Article 24). A breadth of instruments and protocol that make up 
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customary IHL exist for this purpose, as well (ICRC 2016). The families' right to know is described 

throughout IHL and customary international law as the right to know the fate of missing relatives 

in circumstances such as conflict, displacement, or forced disappearance.  

 IHL also establishes Rule 112, which states that, "whenever circumstances permit, and 

particularly after an engagement, each party to the conflict must, without delay, take all possible 

measures to search for, collect and evacuate the dead without adverse distinction" (Henckaerts 

2005). This protection is interpreted such that parties having a direct or indirect role in the conflict 

must, to the extent that available resources will allow, search for and recover the dead, without 

preferential treatment (ICRC 2016; Petrig 2009). The international treaties that establish the 

parties' responsibility to search for and collect the dead are the 1929 Geneva Convention (Article 

3), the 1949 Geneva Convention I (Article 15), 1949 Geneva Convention II (Articles 18 and 21), 

1949 Geneva Convention IV (Article 16), 1977 Additional Protocol I (Articles 17 and 33), and 

1977 Additional Protocol II (Article 8). Additionally, several instruments make up customary IHL 

for this purpose (ICRC 2016). Enforcing the right to know through the search and recovery of 

remains is not straightforward, as circumstances may prove logistically difficult where wartime 

resources are limited, and the needs of the living must take priority (Petrig 2009). Additionally, 

the parties responsible for accounting for the dead are often the parties responsible for the loss of 

life in the first place, sometimes contributing to complicated post-conflict political circumstances 

that make implementation difficult.  

 The right to know and the recovery of the dead are closely linked concepts. Searching for 

and recovering the physical remains of the deceased is a sine qua non in the process of ensuring 

the families' right to know, if that right is to be met through direct evidence of an individual's death 

(Henckaerts et al. 2005; Petrig 2009). Under IHL, parties to conflict are shouldered with the 
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responsibility of recovering the missing as a result of international or non-international armed 

conflict, and that parties "shall be prompted mainly by the right of families to know the fate of 

their relatives" (AP I/Article 32). Therefore, where search and recovery yields a lack of evidence, 

families are effectively denied their right to know.  

 International humanitarian law is designed to protect wartime cemeteries, but extends to 

formally establish legal responsibility of parties in the context of armed conflict. The breadth of 

IHL protections suggests that there is a wide range of circumstances that can lead to death during 

conflict, leading to the spectrum of possibilities for human body disposition. In the case of burials, 

human remains can be buried in unmarked graves following conflict with an opposing party, but 

they can also be buried under different circumstances related to conflict (Hunter and Simpson 

2007; Rugg 2000). Community or family members may bury a dead body they have discovered 

out of respect for the dead, for environmental or hygienic reasons, or to prevent desecration of 

bodies caused by necroviolence, animal scavenging, or weathering (DeLeon 2015; Eppel 2014; 

Hunter and Simpson 2007). Hastily buried remains, even those interred by the victim's family or 

community, can be equally challenging to locate after the conflict has officially ended, particularly 

if the location is not marked.  

 Given the challenges of locating unmarked burials, which will be discussed later in this 

chapter, the families' right to know is difficult to guarantee. Confounding these challenges are the 

negative effects of conflict, such as a depressed economy (Collier 2000) and weakened 

infrastructure limiting progress (Addison and Bruck 2008). Continued rule by offending 

governments hinders investigations (Gassiot and Steadman 2008), and the welfare of survivors 

will, and should, take priority over recovery of the dead (Brinkerhoff 2005; Petrig 2009). However, 

as each of these complicating factors is introduced, guaranteeing the right to know becomes easier 
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to delay, which effectively denies families their right. For these reasons, the involvement of 

independent international organizations is often necessary to search for and recover the physical 

remains of missing persons. Few organizations are equipped to support such an endeavor, but with 

technology-assisted search efforts on the rise, the recovery of human remains may soon become 

less costly and more efficient, rendering the process less demanding of the limited resources that 

are available in a post-conflict environment.  

 There are social, political, and environmental obstacles in areas where bodies have been 

interred that hinder search and recovery. Former conflict zones often continue to pose safety 

hazards, even after conflict has officially ended, preventing investigators' safe access to burial 

sites. Skinner and colleagues (2003) report that some workers in the former Yugoslavia were 

exposed to armed grenades and other unexploded ordnance at grave sites, and also comment on 

the danger of traveling to and from the field. The Guatemalan Forensic Anthropology Foundation 

team members and their families have received death threats and have been targets of other types 

of harassment for their involvement in forensic investigations of state violence (Lloyd 2002). 

Moreover, the physical safety of investigators is sometimes in question through gestures that imply 

risk, such as when armed officers were sent by government officials to an Andalusian cemetery to 

prevent the previously approved exhumations of Spanish Civil War dead from an already exposed 

grave (Gassiot and Steadman 2008). Such scenarios pose real physical and psychological threats 

to workers on the ground that must be balanced with efforts to meet the responsibilities of parties 

and ensure the families' right to know.  

 Physical safety concerns are not only limited to investigators. Witnesses, too, can receive 

threats to physical safety, as well as constant political pressure, so surviving witnesses may have 

reservations about coming forward with information about the location of human remains. Eppel 
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(2014) describes a witness account from Zimbabwe, where a woman was killed by soldiers for 

hiding schoolgirls to protect them from rape. The soldiers forced the witness to bury the woman's 

body in an unmarked grave near a tree. Following the burial, the witness marked the tree with a 

shovel so he could keep track of the burial location over time. The witness was afraid to tell the 

victim's relatives about her fate until other excavations and reburials had begun, at which time he 

came forward with the location of the burial and the woman's remains were recovered and reburied 

by investigators (Eppel 2014).  

 Forensic investigations are also political. Gassiot and Steadman (2008) describe obstacles 

that have prevented investigators from adequately addressing human rights violations that occurred 

in Spain during the Civil War. The extent of political influence on the investigation has included 

forced amnesia where powerful stakeholders promote a culture of forgetting. Moreover, 

inconsistent government policies can cause confusion between agencies and hinder investigations 

(Gassiot and Steadman 2008). For example, Kovras (2008) outlines a dilemma over the 

exhumation of the famous poet and playwright, Federico Garcia Lorca, who was executed and 

buried in an unmarked mass grave during the Spanish Civil War. Lorca's family initially rejected 

the idea of exhumation, as they felt it would disturb his remains. However, some argue that not 

exhuming his remains would serve to "forgive and forget" past offenses during the conflict. 

Proponents to exhumation believe inaction diminishes the government's repressive role in the 

conflict (Kovras 2008). Navigating the politics of burial exhumations is not always 

straightforward, though Gassiot and Steadman (2008) argue that the political nature of 

investigations is often what dictates where and when they can occur. Logistical and political 

challenges often prevent parties of conflict from fulfilling their responsibilities to account for the 
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dead. These often unavoidable obstacles subsequently affect the families' right to know the fate of 

their missing relatives.  

2.2 Human Remains Recovery as a Form of Truth-Seeking 

Truth-seeking approaches to justice can focus on the past and on accountability, or on the 

future and community recovery or reintegration. The two perspectives are not mutually exclusive, 

but researchers are often divided on whether victims and perpetrators should be encouraged to 

agree on past events. A dead human body is evocative, so some argue that backwards-looking 

perspectives on reconciliation, which could include the exhumation of human remains, may dredge 

up mutual feelings of resentment and promote renewed conflict (Mendelhoff 2004; Thoms et al. 

2010). Conversely, others argue that an exclusively forward-looking perspective on reconciliation 

ignores past offenses, passively legitimizing the oppressive actions of the perpetrator (Kovras 

2008). However, communities are not homogenous, and individual opinions vary on which 

approach to take. Moreover, post-conflict recovery through truth-seeking can be complicated by 

the fact that some victims of conflict were also perpetrators compelled to act violently against 

members of their own community and, therefore, represent both groups (Nwogu 2010), such as 

the many cases of child soldier abductees in Uganda (Veale and Stavrou 2007). Acknowledging 

that conflict is complicated and communities are heterogeneous, some argue against blanket 

approaches to truth-seeking and recovery, instead focusing on individuals directly affected by 

violence (i.e., victims and perpetrators) to truly understand the conflict and how best to promote 

reconciliation (Nwogu 2010).  

Acknowledging the circumstances of death by recovering physical remains is an important 

element for meeting the needs and legal rights of families during post-conflict recovery. Post-

conflict recovery often includes truth-seeking efforts focused on establishing accountability for 
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past offenses and correcting a false narrative of events with an aim to prevent recurring conflict 

(Gonzalez and Varney 2013). In circumstances that are amenable to exhumation, recovering the 

dead can be a valuable avenue for truth-seeking, but may include complex and sometimes 

conflicting narratives and agendas. Seeking truth through the recovery of human remains is rarely 

straightforward, and may even compete with social norms, evoking controversy and mixed 

emotions. For example, in 1941, hundreds of Jews were killed in Jedwabne, Poland, and for many 

years it was accepted that Nazi occupiers were responsible for the deaths (Rosenblatt 2015). 

However, a book published by Gross (2001) contested that widely held belief, arguing that the 

Jews were killed by Polish members of their own community – an unpopular idea met with 

criticism. Polish anthropologists working for the Polish Institute of National Remembrance, along 

with Dr. William Haglund, performed exhumations at two mass graves from the massacre. The 

anthropologists found evidence supporting Gross's claim that the Polish townspeople played a 

crucial role in the premeditated violence, but also found evidence of German involvement 

(Ignatiew 2002), sparking contentious debate (Rosenblatt 2015). Exhumations were stopped by 

Orthodox Jews who claimed the digging disturbed the dead bodies, and any further exhumations 

would violate Jewish law. Ultimately, the extent of Polish and German involvement and the 

number of people killed will remain unknown because religious law forbids further exhumations. 

Recovering the dead through exhumations may not always be the best method of truth-seeking 

because, as in the case with Jedwabne, family or community members may object to exhumation 

for its potential to disturb the dead or linger on past offenses (Kovras 2008; Rosenblatt 2015).   

Coordinated efforts aimed at guaranteeing the right to know, such as organized truth and 

reconciliation commissions, generally assume all participants want the truth, and that everyone 

wants to arrive at that truth at the same time (Mendelhoff 2004; Thoms et al. 2010). Truth 
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commissions are usually established with general goals of truth-seeking in mind – truths that are 

believed to set the record straight or lead to additional knowledge, but these efforts are sometimes 

made in the immediate wake of violence, possibly before survivors are ready to share their realities 

of conflict (Hayner 1996; Shaw 2007). Truth and reconciliation commissions can also encourage 

reconciliation that is focused on mutual peace-building efforts in coordination with efforts aimed 

at holding the accused accountable for perceived wrongdoing. Truth-seeking efforts can aim to 

restore peace and guarantee the families' right to know using incentives to promote information 

gathering. For example, Colombia's Justice and Peace Law (JPL) offers reduced sentences to 

paramilitaries in exchange for a commitment to demobilize and provide confessions containing 

valuable information about the fate of missing relatives, including – if bodies were buried – the 

locations of human graves (CCC 2005, 2006). The JPL, however, has been criticized for its lenient 

penalties for violent crimes, while supporters argue the law promotes reconciliation, and is 

consistent with international law (Garcia-Godos and Lid 2010). Reconciliation is a debated 

concept in post-conflict studies, however, as there is an apparent lack of consensus about what 

reconciliation means, what are its goals, and can parties to conflict ever actually agree on those 

ideas (Skaar 2012). Tied to this debate is the matter of whether the recovery of human remains is 

an essential step toward reconciliation, particularly if the families' right to know can be satisfied 

through other means. Aronson (2011) argues that in post-Apartheid South Africa the justice 

process has focused on social and political reconstruction, but if individuals are to benefit from the 

process of truth-seeking, which included the search for and recovery of missing persons, survivors 

of conflict should first be consulted. With pressure, and not without challenges, reconciliation 

efforts can still result in apologies, commemorations, or formal peace agreements, sometimes as a 

complement to amnesty or prosecution (Olsen et al. 2010).  
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 Some researchers see truth-seeking efforts, including the recovery of human remains, as 

posing potential obstacles to reconciliation efforts between recently opposing parties (Shaw 2007), 

while others see truth-seeking as an opportunity to facilitate reconciliation (Wierzynska 2004). 

During the genocide in Rwanda, which has been called an "intimate genocide" (Staub and 

Pearlman 2001: 206), neighbors and people in ethnically mixed families turned on each other, and 

in some cases killed their own children (des Forges 1999; Mamdani 2002; Staub 2006). Death toll 

estimates include over 700,000 Tutsis and 50,000 Hutus, resulting in more Rwandans left affected 

by this event than unaffected (des Forges 1999; Mamdani 2002; Prunier 1995). The scale of the 

Rwandan genocide meant that no court system could feasibly prosecute every perpetrator (Stover 

and Shigekane 2002), and attempting to do so would overburden an already weakened economy 

(Wierzynska 2004). To address the sheer scale of the genocide, the Gacaca court – a community 

justice system based on traditional Rwandan values – was formed to bring together perpetrators, 

victims, and the government as active participants in their own post-conflict reconciliation 

(Wierzynska 2004). Human Rights Watch (2011) has reported that the Gacaca process has had a 

positive effect on some genocide survivors' lives (Connor 1996; Haglund et al. 2001).  For 

example, the Gacaca system created a forum for families to learn the truth about the fate of their 

missing relatives, which involved the exhumation of missing persons in unmarked graves, 

allowing families to perform burials according to their own customs (HRW 2011). 

 Locating and exhuming human remains has been often described as a way to help establish 

an accurate historical record. History is sometimes revised or blatantly denied by the perpetrators 

(Wright 2010). The continued existence of deliberately hidden bodies can contribute to a legacy 

of denial and impunity, perpetuating the existing tensions between perpetrators and victims 

(Gassiot and Steadman 2008). Locating unmarked burials may facilitate access to physical 
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evidence contained within a burial, substantiating victims' claims on history (Klinkner 2008; 

Sanford 2006; Stover 1995). For example, during the early stage of his war crimes trial, former 

Serbian President Slobodan Milošević invoked his nation's right to self-defense – referring to his 

effort and the effort of his people as "heroic" (Milošević 2002) – against perceived terrorists posing 

a threat to his people stating, "here the struggle against terrorism in the heart of one's own country, 

one's own home, is considered to be a crime" (Milošević 2002).  

 Milošević's account was a powerful message of ethnic nationalism that was widely 

embraced and unquestioned by many of his supporters at the time (Gagnon 1994). If left 

unchallenged, this fictional narrative may have suppressed accurate historical accounts, further 

marginalizing the victims. Fortunately, developments in the forensic investigation and subsequent 

legal proceedings revealed that Milošević had been jointly responsible for the targeted killing of 

many thousands of people including women and children found executed in mass graves (ICTY 

2004). Women and children do not fit into the militarized narrative presented by Milošević at his 

trial. These actions were, by their sweeping nature, characteristic of war crimes, not self-defense. 

Milošević died before his trial concluded, so a verdict was never rendered. However, the 

presentation of forensic evidence at the International Criminal Tribunal for the former Yugoslavia 

(ICTY) overwhelmingly supported Milošević's involvement in the coordinated actions carried out 

by Serbs against non-Serbs during the conflict. This evidence directly influenced the 2016 

conviction of Radovan Karadzic, who was found guilty of genocide, war crimes, and crimes 

against humanity, resulting in a 40-year prison sentence (ICTY 2016).   

2.3 The Benefits of Locating Human Remains 

 In cases where missing persons are believed to be deceased, the absence of physical 

remains to confirm death or perform funerary rites can bring about significant and lasting 
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economic, emotional, or spiritual distress for families (Eppel 2006; Stover et al. 2003; Wagner 

2008). Attempts to locate human remains may ameliorate the uncertainty felt by family members 

and friends of the missing (ICRC 2016; Rosenblatt 2015). For example, following the 

disappearance of their husbands during the 1995 – 2006 Maoist insurgency, Nepalese women are 

neither widows nor wives and face severe social stigmas (Robins 2011). Typically not self-

sufficient, Nepalese women live with their husband and his family. However, the wife of a 

disappeared man is viewed as an economic burden to his family if she stays on without him present, 

or as disloyal to her husband and his family if she chooses to leave and remarry. Men are the 

primary income earners in Nepalese society, so it is uncommon for women to independently 

support themselves or their children. Robins (2011) emphasizes the particular importance of either 

recovering the physical remains or having "absolute evidence of death in order to complete rituals," 

(2011:87) in the form of a definitive test, such as a DNA comparison. Such evidence serves two 

purposes; absolute evidence of death enables families to carry out funerary rituals and evidence of 

death helps resolves ambiguity about the social status of the wives of deceased men (Robins 2011).    

 Eppel documented the benefits of locating and recovering the physical remains of missing 

persons following years of state violence in Zimbabwe, reporting that "reburials had 

transformative outcomes at the individual, family and community levels" (Eppel 2014:2). The 

Argentine Forensic Anthropology Team conducted burial exhumations in Zimbabwe from 1999 

to 2001, resulting in the reburial of exhumed remains. Collaboration with EAAF also provided a 

training opportunity for local Zimbabweans to learn forensic anthropological techniques. Eppel's 

follow up with the communities in 2014 revealed through interviews with community members 

that the recovery effort encouraged witnesses to share information, which provided details about 

locations of the dead.  In Zimbabwe, wandering spirits are credited with family hardship, but spirits 
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cannot be appeased until burial rituals are appropriately performed, which includes burying the 

body in a carefully selected location (Eppel 2006; Eppel 2014). The ambiguity of a disappeared 

person's status and the disrespectful nature in which remains are disposed of during conflict are 

difficult traumas to overcome and, therefore, disrupt the normal psychological and cultural 

processes of grieving (Eppel 2014). Recovery, identification, and reburial of physical remains are 

credited with resolving family conflict "linked to unresolved grief, displaced anger and fear" 

(Eppel 2014:8), and provide a burial site for families to visit and commemorate their deceased 

relatives. Following reburial, hardships experienced by families are no longer attributed to the 

wandering spirits, but to other causes, and most families claimed they had been healed by the 

reburials (Eppel 2014). Community members now attribute their hardships to God disowning the 

government that is overrun with poor leadership. In Zimbabwe, the outcome of reburial, then, is 

one of healing, and if hardship still exists it can be separated from the existence of poorly treated 

dead bodies (Eppel 2014). 

 Conflict has far-reaching and often immeasurable effects on living individuals, 

communities, and entire societies. Affected individuals include victims, perpetrators, or people 

who represent aspects of both groups simultaneously. Victims and perpetrators may be directly or 

indirectly affected by conflict in more than one way, whether economically, physically, 

emotionally, or spiritually in both the short and long-term. Post-conflict recovery is a complex 

process that involves many stakeholders who may have different motivations and expectations that 

are often shaped by their experiences with conflict. Coordinated efforts to move past conflict, 

which may or may not include searching for missing persons buried in unmarked graves, should 

be guided by the input of people directly involved in the conflict. This input can be supplemented 
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by the guidance and resources of the international community (Aldana 2006; Antkowiak 2011; 

Lundy and McGovern 2008). 

2.4 Accounting for the Dead 

 Many different governmental bodies or non-governmental organizations exist for the 

purpose of accounting for the dead. Some are managed at the international level, addressing 

multiple conflicts in different regions of the world, while others are run at national, state, or local 

levels focusing on individual conflicts. This section focuses on three well-known organizations 

that facilitate recovery efforts in various countries, as well as a brief description of the domestic 

agencies that search for missing persons in the United States.   

2.4.1 Missing Persons Accounting Organizations 

 Several organizations exist for post-conflict casualty accounting, including the Defense 

POW/MIA Accounting Agency (DPAA), the Argentine Forensic Anthropology Team (Equipo 

Argentino de Antropología Forense, or EAAF), and the International Commission on Missing 

Persons (ICMP). While these organizations are independent of each other and embody very 

different scopes of work, each was established with missions to account for missing persons, and 

each with a unique contextual and geographic scope. The history of formal US post-conflict 

accounting dates back over 40 years. The DPAA mission is to account for the remains of nearly 

42,000 recoverable (i.e., those not lost at sea) missing US service personnel lost between 1941 to 

2010, usually as ground burials or aircraft crash sites in former US conflict zones throughout the 

world (DPAA 2016). The DPAA finds burial sites through survey or reconnaissance either when 

an artifact or other evidence is turned in without association to a specific site or through local 

knowledge of a likely burial site (DPAA 2016). The DPAA reports on finding the remains of 
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missing US service personnel in unmarked burials located in Cambodia, North Korea, Germany, 

France, and most other territories having strategic geographic significance in World War II, the 

Korean, Vietnam, and Cold Wars, and more recent conflicts in the Middle East (DPAA 2016). 

 The National Commission on the Disappearance of Persons (CONADEP) was formed in 

1983 by then-recently inaugurated Argentine President Raúl Alfonsín to investigate over 8,000 

forced disappearances, or desaparecidos from what is known as Argentina's "Dirty War" (1976 – 

1983). In 1984, CONADEP released, "Nunca Más" (Never Again), a public report detailing the 

accounts of torture, disappearances, and killings by the Argentine military forces against political 

dissidents during the period of the Dirty War. The following year, CONADEP committee members 

and the Grandmothers of the Plaza de Maya, who were searching for their missing grandchildren, 

requested assistance from the Science and Human Rights Program at the American Association 

for the Advancement of Science (AAAS). A delegation of scientists, including renowned forensic 

anthropologist Dr. Clyde Snow and then-director of the AAAS Science and Human Rights 

Program, Eric Stover, traveled to Argentina to assist with the investigation and documentation of 

human rights violations. Dr. Snow returned to Argentina during the following years to train a 

cohort of anthropologists, archaeologists and medical professionals in forensic anthropological 

and archaeological techniques, thus helping to form the EAAF. The team is credited with finding 

and identifying the remains of hundreds of desparacidos throughout Argentina (EAAF 2016). The 

EAAF now operates globally, assisting other countries with post-conflict missing persons recovery 

efforts and training other national teams to perform recoveries, such as in Guatemala, Peru, and 

Chile (EAAF 2016). 

 The ICMP was formed as part of the 1996 Dayton Peace Agreement that formally ended 

the conflict in the former Yugoslavia. The four-year conflict resulted in over 40,000 missing 
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persons (ICMP 2016). Since 1996, the ICMP has recovered and identified over 27,000 missing 

persons, but nearly 30% have still not been found (ICMP 2016). The ICMP has since expanded 

operations to serve countries across five continents, which includes offering DNA expertise for 

responding to human rights violations, armed conflict, and disaster victim identification (ICMP 

2016). The ICMP continues to locate unmarked burials throughout the western Balkans, but the 

rate of recovery has rapidly decreased because, according to ICMP Director General Kathryne 

Bomberger (2015), burials are "getting harder to find" and additional resources, such as remote 

sensing, may soon become necessary to locate the remaining clandestine graves. 

 Unmarked burials have been a central focus of investigation for each of these 

organizations, but such burials are not an exclusively international or post-conflict problem. Local, 

state, and federal law enforcement agencies in the United States attempting to locate and identify 

missing persons face similar challenges (Christensen et al. 2009; Harrison and Donnelly 2009; 

Schultz and Dupras 2008). As of year-end 2013, over 84,000 people in the United States were 

considered missing persons (FBI 2016), many of whom were thought to have disappeared 

involuntarily or who went missing under circumstances indicating they were in physical danger at 

the time of their disappearance (FBI 2016). An unknown percent of these missing persons are 

likely to be deceased, and of the deceased, even fewer are buried in clandestine graves. However, 

domestic missing persons buried in unmarked graves are no less challenging to find than graves 

located in an international or post-conflict context.  

2.4.2 Evidence-based vs. Humanitarian Investigations 

 Families of the missing, communities, governments, tribunals, or international 

organizations may attempt to search for and recover the dead, or they may choose to enlist the help 

of trained forensic specialists. Recovery efforts by trained professionals may serve a legal purpose, 
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where bodies and associated grave contents are exhumed in a systematic manner, usually following 

the Minnesota Protocol (UN 1991), to preserve the integrity of the evidence. In rare instances, 

bodies may be exhumed for the sole purpose of repatriation. Indeed, the two approaches are 

compatible, as evidence can be preserved for prosecution with repatriation in mind, even if that is 

not the initial focus.  

 While excavations can have humanitarian or evidence-based goals, they are not mutually 

exclusive – although their approaches may differ, the two overlap quite often. Regardless of the 

mandate, archaeological techniques are well suited for systematically exposing, documenting, 

recovering, and preserving buried evidence, including human remains. In 2005, the Minnesota 

Protocol was created to establish the best-practices for conducting investigations of violent or 

suspicious death, which includes possible extra-legal, arbitrary, and summary executions. These 

non-binding guidelines outline methods for carrying out investigations under standards of 

competence, thoroughness, promptness, and impartiality (UN 1991). Created by the Minnesota 

Lawyers International Human Rights Committee, with input from other notable human rights 

experts, including Eric Stover, Dr. Clyde Snow, and Dr. Karen Burns, the Minnesota Protocol 

includes valuable guidelines on identifying victims, recovering and preserving evidence, 

identifying witnesses, determining the circumstances of death, identifying individuals involved in 

the death, and bringing perpetrators before a court. Many of these standards rely on the strengths 

of impartial forensic experts, where their vetted techniques are applied within a legal framework. 

Internationally, evidence-based investigations following conflict have led to legal proceedings 

against perpetrators of war crimes, genocide, crimes against humanity, and other grave breaches 

of IHL. For example, members of the Guatemalan Forensic Anthropology Foundation (FAFG) 

used the Minnesota Protocol as a guide for documenting evidence and providing expert witness 
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testimony during the trial of José Efraín Ríos Montt, the former military general and President of 

Guatemala during the Guatemalan Civil War. The evidence and expert witness testimony helped 

build a strong case against Ríos Montt, resulting in his conviction on charges of genocide and 

crimes against humanity (Stuesse 2013). 

 Forensic investigators document and recover evidence and other material associated with 

a grave. Forensically significant evidence includes clothing, which may identify individuals to a 

specific protected group; blindfolds, ligatures, and bullet casings possibly indicating cause or 

manner of death; or other items, such as identifying building material, which has been used to link 

the execution location with the buried victims (Cheetham and Hanson 2009). Evidence also 

includes features within the grave, such as tool marks or digging scars left by heavy machinery on 

the grave walls. In court, prosecutors have used this type of evidence to illustrate how a grave was 

created (Skinner et al. 2003). Digging scars from heavy machinery can also be evidence of the 

effort put forth by the perpetrators to conceal a crime or may indicate premeditation. Forensic 

evidence can help establish a sequence of events, contribute to victim identification or group 

affiliation and provide indications of cause and manner of death. Forensic evidence recovered from 

within a grave can indicate that a body has been moved postmortem, assist with crime scene 

reconstruction, link a grave to a crime scene, or a perpetrator, and – as clearly illustrated during 

crime scene investigation and recovery in the former Yugoslavia – can link primary, secondary, 

and tertiary graves to one another (Cheetham and Hanson 2009).  

 Forensic anthropological techniques also offer a rigorous approach to humanitarian 

projects. Humanitarian investigations are those that actively promote the welfare of surviving 

families and community members by encouraging participation in their own recovery process, or 

participating on their behalf. Family and community participation can take many forms, 
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including providing witness testimony, selecting sites for commemoration, or even acting as co-

plaintiffs with the prosecution (Crettol and La Rosa 2006). Additionally, burial excavations can 

and do involve family members, such as in Guatemala where anthropologists with the Guatemalan 

Foundation for Forensic Anthropology worked alongside family members who observed many of 

the excavations (Lloyd 2002; Stover and Shigekane 2002). In both Guatemala and Argentina, some 

family members even participated as workers in burial excavations (Doretti and Fondebrider 2002; 

Juhl and Olsen 2006; Stover and Shigekane 2002). The successful outcome of an investigation is 

not necessarily dependent on families actively participating in the recovery of human remains, but 

it is important to maintain an open dialogue between investigators and communities to ensure that 

efforts meet the needs of the people they are intended to help.  

 Addressing the needs of the living and accounting for the dead means striking a balance 

between short-term and long-term goals of individuals, families, communities, and nations. 

Families of the missing may want their relatives' remains returned immediately after the conflict 

ends, but they may also want criminal prosecutions. Hastily conducted excavations, by 

inexperienced persons in Iraq and Cambodia, resulted in long-term problems for both evidence-

based and humanitarian investigations (Klinkner 2008; Stover et al. 2003). Following conflicts in 

those regions, untrained individuals opened graves in an attempt to find the remains of their 

missing family members. In Iraq, bodies were exhumed with heavy machinery, resulting in 

recovery-induced trauma to the skeletal remains that was unrelated to the cause of death (Stover 

et al. 2003). Moreover, the manner in which excavations were conducted induced commingling of 

skeletal remains from multiple individuals, further challenging the identification process (Klinkner 

2008; Stover et al. 2003).  
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 Where resources allow, investigations can simultaneously meet evidence-based and 

humanitarian goals, although this may not be the initial approach. For example, in 1999, ICTY 

Deputy Prosecutor Graham Blewitt explained the primary goal of investigators was to establish 

patterns to prove command responsibility of President Slobodan Milošević by linking sites of mass 

civilian death to each other (Abrahams et al. 2002). Teams of forensic scientists working in the 

former Yugoslavia had begun mass grave exhumations with the goal of establishing categorical 

identification (e.g., ethnic or religious groups), as opposed to individual identifications. Their 

mandate was set by the newly created ICTY, to demonstrate an "intent to destroy, in whole or in 

part, a national, ethnic, racial or religious group," in accordance with the Convention on the 

Prevention and Punishment of the Crime of Genocide (Article 2). Thousands of bodies were 

exhumed from clandestine graves, then released to Bosnian authorities who, instead of identifying 

and repatriating the remains, disposed of them in an abandoned tunnel and in storage containers 

(Stover and Shigekane 2002). This evidence-focused process effectively ignored a large segment 

of the families’ humanitarian needs (Stover and Shigekane 2002) until they demanded that the 

identification and repatriation of their relatives was equally as important as evidence gathering for 

criminal prosecution. In 2000, the ICMP established a number of facilities to better manage the 

human remains and address the needs of the living (Stover and Shigekane 2002). Ultimately, the 

families of the missing influenced policy change.     

 Deliberately hidden or undocumented burials deny the living the right to know the fate of 

the missing and limit the investigator's capacity to search for and recover the remains of missing 

persons. If a grave cannot be located, investigators are also limited in their capacity to collect 

evidence. Despite the demand for locating unmarked burials, the challenges are significant, and 

will be discussed in the following section.    
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2.5 Unmarked Burials 

 This section describes the reasons for marking burials, the visual transformation of burials 

as a result of natural and deliberate concealment, and examples of factors that contribute to the 

difficulty of locating unmarked burials.  

 The energy invested in marking and maintaining a burial or a cemetery can be an 

expression of respect, and often one that is embedded in cultural tradition. For example, fences or 

walls may delineate the perimeter of a family cemetery, while stones are often placed at surfaces 

of historic and archaeological burials. In managed cemeteries, graves are often conspicuously 

marked and their surfaces and surroundings well maintained (Rugg 2000). Marking and 

maintaining burial sites can also be a gesture of commemoration (Bevan 1991). Marked burial 

grounds, such as Holocaust cemeteries in Europe and the Srebrenica Genocide Memorial, are 

important symbols of community loss and are places for survivors and visitors to commemorate 

the dead (Francaviglia 1971; Rugg 2000). Therefore, burial markers serve two intertwined 

purposes: 1) to mark the location of a burial for future reference, to ensure that people are able to 

successfully locate the same burial site each time they visit, and 2) to name and commemorate the 

dead and their families.  

 The disposal or deliberate concealment of a body can be as straightforward as covering the 

remains with debris, or it may involve more effort, such as planting vegetation over the surface of 

buried remains to disguise the location (Hunter and Simpson 2007). For example, in Branjevo 

State Farm, Bosnia and Herzegovina, perpetrators planted corn to disguise the new burial as 

agricultural disturbance (Hanson 2012). Perpetrators also dispose of bodies in remote locations, 

such as caves and ravines, to avoid accidental discovery (Hunter and Simpson 2007). 
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 The 1995 Srebrenica massacre resulted in over 8,000 disappeared persons in a few days; a 

devastating event nested within a larger conflict that ultimately led to over 40,000 missing persons 

(ICMP 2016). The disposal of bodies was both organized and haphazard. Thousands of bodies 

were buried in mass graves, hundreds were disposed of in caves, ravines, and wells, and countless 

others were left on the ground surface to decompose in plain view (Wagner 2008). Upon learning 

of an international investigation, the perpetrators attempted to hide the bodies buried in mass 

graves by exhuming and moving the remains to secondary and tertiary gravesites (ICMP 2004; 

Skinner et al. 2001). This act destroyed evidence and commingled remains and other material 

evidence to such a degree that victim identification continues to be a challenge (Skinner et al. 

2001; Wagner 2014). 

When digging a grave the displaced soil is usually set aside until it is used to cover the 

body and backfill the pit. Typically, the surface of a newly constructed burial appears mounded, 

due to additional interred body mass and loosened soil (Steadman 2009). The mound may be 

reduced manually or with heavy machinery at the time of interment by compressing or distributing 

the soil (Steadman 2009). Unless the overlying sod is preserved and replaced back on top of the 

grave, this process typically results in a scar of exposed soil with the original vegetative cover 

mixed into the backfill matrix. Therefore, a new burial appears markedly different from its 

surroundings, particularly if exposed soils are surrounded by vegetation (Steadman 2009). 

However, such stark visual differences (i.e., upturned soil among vegetation) do not persist 

indefinitely. If the mound is not manually compacted, or compacted using heavy machinery, it will 

settle naturally over time. Eventually, vegetation will begin to regrow, blending the burial surface 

with the surrounding vegetation (Bock and Norris 1997; Carter and Tibbett 2003; Steadman 2009), 

effectively making the burial difficult to discern from the surrounding environment (Bevan 1991).  
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 This rate of visual transformation at a burial's surface varies considerably. Some of the 

factors that influence how quickly or slowly a burial surface heals include the time of year of 

interment, the natural environment in which the interment occurred, the burial's physical 

dimensions and bodily contents, vegetation species present, precipitation, and amount of available 

sunlight (Anderson et al. 2013; Bock and Norris 1997; Carson and Barrett 1988; Carter and Tibbett 

2003). The visible degree of transformation may be affected by vegetation growth rate differences 

attributed to changes in burial soils driven by the body decomposition process (Anderson et al. 

2013; Meyer et al. 2013). In addition, opportunistic plant species may populate the burial surface 

differently than surrounding areas (Caccianiga et al. 2012; Callahan 2009; France et al. 1992; 

Hunter et al. 1996; Killam 2004; Watson and Forbes 2008). Further camouflaging a burial is dry 

leaf litter and other debris that accumulates at the surface naturally over time (Owsley 2001).   

 Witness testimony can facilitate locating unmarked burials that have become camouflaged. 

Yet, witness testimony can be fraught with complicating factors. Aside from false testimony or an 

ulterior motive, a reliable witness may feel intimidated if there is reason to believe their reputation, 

physical safety or the safety of their relatives and friends might be at risk (Trotter 2012). As 

witnesses age, they may have difficulty recalling or describing specific details of an event, 

including the burial location (Wald 2002), which can be further complicated by changing 

landscapes. In some instances, there are no witnesses to an event, or the witness has passed away 

before sharing information (Larson et al. 2011). Where witness testimony is available and reliable, 

the information can be invaluable to an investigation. Reliable witness testimony can help clarify 

event timelines, lead investigators to unmarked burial locations, and provide estimates on the 

number of buried victims (Larson et al. 2011; Schmitt 2001; Stover 2011; Wald 2002). In El 

Salvador, the El Mozote massacre resulted in the deaths of hundreds of civilians at the hands of 
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the Salvadoran Army (Danner 1993). Estimates of the number of people killed during the massacre 

range from approximately 200 to over 900. The lower number is based on the number of people 

thought to be living in El Mozote at the time. However, a witness who escaped during the massacre 

claims that, in the days preceding the violence, people in the area were warned of impending 

conflict with the guerrillas by a member the Salvadoran Army. According to the witness, at the 

time of the attack, El Mozote was overwhelmed with people who traveled from nearby villages 

believing that El Mozote would provide shelter from the impending conflict because it did not 

support the guerrillas and would, therefore, be passed over by the Salvadoran Army. In addition 

to the minimization – or outright denial – of violence stemming from various political agendas, 

the failure to consider the movement of people within the region has resulted in a continually 

debated death toll. In 1993, less than a week after the Truth Commission for El Salvador published 

its report, estimating over 500 people were killed in El Mozote and surrounding villages during 

the massacre, Salvadoran legislature passed a blanket amnesty law preventing prosecution of 

anyone responsible. While the remains of over 100 victims were recovered by forensic 

anthropologists, the law effectively put a stop to investigations, including the search for and 

recovery of the remaining victims (Danner 1993).  

 The political and logistical challenges of unmarked burial location and human remains 

recovery can be significant. These challenges often limit what can be done in the field, so forensic 

professionals have begun investigating the potential for remote technologies to help narrow down 

areas of interest and remotely monitor sites by adopting technologies developed for other 

disciplines, which are discussed in the following chapter. 
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CHAPTER 3: REMOTE SENSING 

 This chapter focuses on the science of remote sensing. The following discussion explores 

different types of remote sensing and the strengths and limitations of each with respect to 

scalability of each type, as well as respective environmental compatibilities. The term "remote 

sensing" refers to a general approach to data collection, where sensors record observations without 

making physical contact with an object. This chapter discusses two types of sensing systems: 

passive and active. These two types of remote sensing technology are scalable, meaning 

instrumentation can be designed for operation at one of three scales: terrestrial (ground-based), 

aerial (aircraft-based), and orbital (satellite-based), with distance and data resolution sharing in 

inverse relationship. Specifically, the discussion of sensing technologies focuses on the strengths 

and limitations of each sensing type and the influence of scale on overall data fidelity for each. 

The review concludes with an explanation of how the successful application of any sensing 

configuration (i.e., combinations of sensor type and scale) may be affected by different landscapes.   

3.1 Passive Sensing  

 Passive sensing instruments record electromagnetic energy, such as sunlight, that is 

naturally available to a sensor (Schott 2007). Examples of passive sensors are common cameras 

(without flash) and multi-channel spectrometers. A natural example of a passive optical sensor is 

the human eye, which collects naturally available light. The sun's constant incident energy stream 

interacts with Earth's atmosphere and with objects at Earth's surface as absorption, emission, 

transmission, or reflection. Absorbed energy is the transformation of energy to another type of 

energy, (e.g., light to heat), where heat is energy emission. Transmission is the transfer of energy 

through one material to another, (e.g., light passing through transparent glass). Reflection is energy 

that is returned in the general direction from which it originated; its direction dependent on an 
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object's surface properties, such as texture or curvature. Passive sensors in this study are used to 

measure reflected energy in the visible and near infrared regions of the electromagnetic spectrum, 

and are discussed in Chapter 5.  

 Because solar geometry (i.e. the sun's position in the sky) and atmospheric light scattering 

are variables that influence the magnitude and direction of incident sunlight, the sun's reflected 

energy is most reliably measured and compared to other data as a percentage of incident energy; 

the unit-less value of reflectance (Goetz et al. 1985; Schott 2007). Reflectance is calculated by 

dividing the amount of measured reflected light from a surface by the total amount of measured 

incident sunlight. This process normalizes measurements of energy to help control for the effects 

of solar geometry and atmospheric scattering, allows for data collection in sub-optimal lighting 

and atmospheric conditions, and allows for comparisons of spectra collected under different 

lighting and atmospheric conditions (Goetz et al. 1985; Schott 2007).  

 Spectral data sets are commonly referred to as "data cubes," and can be thought of as a 

stack of images, where each image in the stack is sensitive to a narrow region of light and each 

image pixel contains the reflectance value at a geographic location on the ground. The collection 

of all reflectance values at a single pixel location down through all images is referred to as a 

"spectral profile." This research makes use of four different spectrometers that are discussed in 

Chapter 5. 

3.2 Active Sensing 

 Active sensing instruments operate in much the same way as passive sensors, but rather 

than rely on naturally available energy, they provide their own constant energy source (Schott 

2007). Examples of active sensing technologies are common cameras (with flash), Sound 
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Navigation and Ranging (SONAR), and Light Detection and Ranging (LIDAR); each designed to 

emit an energy pulse away from the sensor. Ranging instruments emit pulses that are intended to 

interact with objects in the environment, and then return to the sensor as reflected energy. When a 

pulse returns, the instrument measures distance between the energy source and surrounding objects 

as a function of the time it takes for the signal to return. Object distance, combined with the known 

direction of the emitted pulse, allows the instrument to calculate the object's position in the 

environment as a three-dimensional data point.  

 LIDAR data sets are commonly referred to as "point clouds," and are dense collections of 

millions of three-dimensional points that represent the location coordinates of pulse-object 

interaction. This research makes use of three different LIDAR systems that are discussed in 

Chapter 5. 

3.3 Data Resolution and Scale 

 The visibility of differently sized features in data is largely determined by data quality and 

available analytical tools (Schott 2007). Since LIDAR is an active sensing technology, multiple 

fly-overs can help build up the ground point density that contributes to final data resolution. In 

contrast, the optical parameters, altitude, and viewing geometry of an imaging spectrometer drives 

image resolution, which determines the minimum visible feature size in airborne spectral imagery. 

While many existing remote sensing technologies perform exceedingly well in a variety of 

industries and sciences, most image processing and analytical methods have been developed for 

scientific disciplines concerned with identifying relatively large or high contrast surface features 

like buildings, roadways, or geologic features. However, even the most rigorous analytical 

methods cannot compensate for a feature not captured by a sensor, or a small signature nested 
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within the normal operating error range of a sensor. To achieve desired results, both data quality 

and analytical tools must be appropriate for the application.  

Spectroscopy 

 Spectrometers are designed for operation at one of three scales: terrestrial (ground-based), 

aerial (aircraft-based), and orbital (satellite-based). While the technological concepts of 

spectroscopy are scalable, the actual sensors designed for operation at a specific scale are not 

scalable due to wide ranging configurations of the detector, such as field of view and array size, 

that determine the image size (Weng 2014). For spectral data, data resolution includes spatial and 

spectral resolution, which should both be taken into consideration when selecting data for any 

application.  

 Spatial resolution refers to the amount of area on the ground that fills each image pixel, 

where higher resolution spectral images appear sharp and features well-defined, and lower 

resolution images appear blurry or pixelated. Spatial resolution of spectral data is determined by 

sensor altitude (i.e., scale), viewing geometry, and the sensor’s optical configuration, including 

detector size and focal length (Weng 2014). In terms of sensor scale, the spatial resolution of data 

collected by a spectrometer is inversely related to the distance between the sensor and its target 

(e.g., Earth's surface), so as distance increases, spatial resolution decreases. Ground-based 

spectrometers are operated in close proximity to an object of interest, yielding the highest spatial 

resolution data at up to a centimeter or less (PANalytical; Spectra Vista Corp.), but cover only as 

much area as a sensor operator can reach in-person. Satellite-based spectral sensors provide the 

most rapid data collection and produce imagery containing large areas due to swath widths ranging 

from 13 km (WorldView-3, DigitalGlobe, Inc.) to 185 km (Landsat missions, NASA/USGS), at 

nadir. The best commercial or public imaging satellites orbit Earth at approximately 500 km 
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altitude or higher, resulting in spatial resolution of image bands ranging from approximately 1.2 

m to over 1000.0 m. This range includes the WorldView-3 sensor at 1.2 m (DigitalGlobe, Inc.), 

the Landsat and Hyperion instruments at 30 m, the Visible/Infrared Imager Radiometer Suite 

(VIIRS) system at 750 m (NASA), and the Moderate Resolution Imaging Spectroradiometer 

(MODIS) at 1000 m (NASA). Airborne sensors, however, cover a greater amount of area than 

ground-based spectrometers and, because flight altitude is variable, airborne spectrometers can 

generate higher spatial resolution imagery than satellite sensors can provide, ranging from 0.5 m 

resolution at 150 m flight altitude (G-LiHT, NASA-GSFC, unmanned aerial systems) to 

approximately 20.0 m at 11 km altitude (AVIRIS, NASA-JPL).     

 Spectral resolution refers to the number of spectral bands and the sensitivity of each band 

to variations in radiation within an instrument's spectral range. Imaging spectrometers typically 

cover a spectral range of visible (400 – 750 nm) and near infrared (750 – 1400 nm) wavelengths, 

but some sensors will also cover the shortwave infrared wavelengths (1400 – 2500 nm). Spectral 

response functions for each spectral band typically follow Gaussian distributions and are measured 

by their full width at half the maximum wavelength response (FWHM), also known as bandwidth 

(Weng 2014), where lower FWHM values indicate higher spectral sensitivity. Ground-based 

spectrometers have the highest spectral resolutions with hundreds or thousands of bands with 

FWHM ranging from 3.0 – 10.0 nm (PANalytical; Spectra Vista Corp.). Satellite sensors have the 

lowest spectral resolution, with 4 – 220 bands with FWHM ranging from approximately 10 - 100 

nm. This range includes sensors such as GeoEye-1 which contains four bands (DigitalGlobe, Inc.), 

MODIS which contains 36 bands (NASA), and Hyperion which contains 220 bands (USGS). 

Similar to spatial resolution, airborne spectrometers provide a compromise for spectral resolution, 
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with hundreds of bands with FWHM ranging from 7 – 16 nm (G-LiHT, NASA-GSFC; AVIRIS 

NASA-JPL). Data resolutions for each spectrometer used in this study are discussed in Chapter 5.   

LIDAR 

 LIDAR data are collected from terrestrial or aerial platforms. For LIDAR data, spatial 

resolution refers to the density of a point cloud, where high point density helps generate accurate 

surface elevation images. Density of LIDAR point data is primarily driven by the pulse rate and 

the number of scans performed (Weng 2014). Because LIDAR is an active sensing technology, 

data sets are cumulative and each new scan increases overall point density. Point cloud density can 

be increased by scanning an area multiple times from different positions to fill in data gaps. 

Multiple scans can be merged to create a single, high density point cloud that can be filtered to 

include only a specific type of point (e.g., ground points). Once filtered, points are used to create 

surface images, where the more points, the higher the spatial resolution of the image. Data 

resolutions for each LIDAR scanner used in this study are discussed in Chapter 5. 

3.4 Landscape Considerations 

 Landscapes exhibit varying levels of complexity that influence the effectiveness of some 

remote sensors in certain environments or circumstances. For example, spectrometers require an 

unobstructed line-of-sight to a surface to measure its reflectance (Weng 2014). Objects that restrict 

an airborne or satellite sensor's line-of-sight can include tall buildings and tree canopy. Foreground 

objects may themselves be visible and measurable, but they obstruct the surfaces behind or beneath 

them, keeping those background surfaces from being observed. The challenge of vertical 

obstructions blocking a ground surface may be exacerbated by off-nadir viewing geometry, where 

an oblique image is captured by a sensor that is not positioned directly overhead and aimed 
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perpendicular to the ground surface. Additionally, visible but shaded surfaces (e.g., areas inside a 

shadow cast by a building or tree) reflect more scattered light than reflected incident sunlight 

needed to measure reflectance, which is effectively a data noise measurement that cannot be used 

in analysis. These challenges can be overcome by capturing images from different viewing 

positions or at different times of day to avoid objects and shadows, but unconditionally obstructed 

surfaces such as ground beneath tree canopy are not so easily observable from airborne or satellite 

sensor platforms, no matter the viewing geometry (Pu and Gong 2011).      

 LIDAR scanners are well suited for complex environments in that data sets are cumulative, 

and multiple scans from different positions can fill in data gaps behind obstructions, such as 

buildings. Additionally, since naturally reflected light is not a requirement for LIDAR systems, 

which supply their own energy, shaded and unshaded areas are equally measurable (Shan and 

Sampath 2006). LIDAR pulses can pass through narrow spaces between canopy leaves and 

branches that would otherwise limit light that is naturally reflected at the ground surface from 

reaching a spectrometer's detector. This capability permits LIDAR scanners to overcome certain 

obstructions that spectrometers cannot, and in general requires that a direct pulse path exist 

between a surface and a sensor, even if through a small space. For this reason, active sensors are 

used by archaeologists in densely forested areas to simultaneously measure the ground and canopy 

surfaces (Chase et al. 2011), while imaging spectrometers are used to measure canopy reflectance 

spectra (Saturno et al. 2007) – applications that are discussed in Chapter 4. 

 Whether a sensor is passive or active, or designed for use at a particular scale, remote 

sensing technologies are able to record observations rapidly and in a non-destructive manner. 

Instruments mounted on aerial or orbital platforms have the added advantage of collecting data 

over large swaths of land, making remote sensing one of the most time-wise efficient data 
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collection methods available. In the right environment, remote sensing holds the potential to 

augment existing data collection approaches without interfering in them and can be used in 

addition to, rather than as a replacement for, existing burial detection methods. 
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CHAPTER 4: CURRENT METHODS FOR LOCATING HUMAN BURIALS  

 This chapter focuses on current methods used to locate unmarked burials. The strengths 

and limitations of existing ground-based survey methods will be followed by a review of remote 

survey methods used in both archaeological and contemporary contexts.  

 Defining the search area is one of the first priorities for locating an unmarked burial. To 

define a search area, investigators may rely on witness or perpetrator testimony or other types of 

documentary evidence (Areh and Umek 2004; Komar 2008; Larson et al. 2011; Schmitt 2001). 

Selecting which search method or combination of methods to start with depends on a number of 

factors such as available witness testimony, resources, and access to the search area. In preparation, 

search areas may be narrowed down using other types of documentation such as maps, plans, and 

records, or by applying models developed from other known burials in cases of patterned violence 

(Congram 2010; Komar 2008). However, without such information, searches can prove 

significantly more challenging.    

4.1 Ground-based Survey Methods 

 Ground-based survey methods require people and/or equipment to be present at the 

approximate, if not precise, location of inspection. Pedestrian survey is used in a defined search 

area to acquire the lay of the land and identify areas of interest, such as surface-scattered human 

remains or evidence of disturbed ground. In practice, a team of individuals spaced equally apart 

will systematically move across the landscape, searching for signs of disturbance or other evidence 

indicative of human activity. The team will attempt to identify signs of digging, such as exposed 

soil, a remnant backfill pile or changes in the appearance of the ground surface (Christensen et al. 

2014; Killam 2004). Cadaver dogs trained to identify the scent of human decomposition may be 
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incorporated at this phase to augment the investigation if the post mortem interval is not extensive 

(Lasseter et al. 2003). However, the success of ground-based surveys depends on accessible 

surface evidence and relies on the ability of search party members to recognize evidence or signs 

of disturbance. Taphonomic processes may camouflage evidence or obscure disturbance activity, 

diminishing the effectiveness of a pedestrian survey.   

 When a search area is defined, ground probing may be used to identify potentially disturbed 

soil. Systematic probing assesses soil consistency, identifying areas with loosened soil relative to 

surrounding compact soil (Christensen et al. 2014; Killam 2004, Owsley 1995). A probe is inserted 

into the ground at shallow depth to gauge near surface soil compaction. A methodically slow and 

tedious process, probing can offer valuable subsurface information not discernable during 

conventional pedestrian survey (Owsley 1995). Probing should be performed on a grid pattern, 

where probe holes are created at pre-defined intervals. The coarseness of this method is a clear 

disadvantage in that a burial could be missed, or worse – impacted by the tip of the probe, 

mimicking or obscuring trauma or other types of evidence. This type of investigative artifact can 

cause evidentiary problems during trial (Boyd 1979). Moreover, the method relies on the presence 

of loose soil and on the ability of each person using a probe to correctly assess the soil compaction 

at each location.  

 When pedestrian survey or probing fails to provide sufficient evidence, investigators may 

attempt a more invasive approach, such as soil cores, shovel test pits or surface scraping (Ubelaker 

1999). Eventually, systematic excavations, ranging from shallow hand-dug test units or large 

trenches using heavy machinery may be attempted (Bass 1963; Bass & Birkby 1978; Owsley 1995; 

Ubelaker 1999). Any type of systematic excavation may expose patterns in soil stratigraphy 

indicating a natural soil profile (undisturbed) or otherwise. An undisturbed, natural soil profile 
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typically exhibits one or more intact layers containing mostly homogenous soil types that share 

similar pigments and textures (Holliday 2004). Undisturbed layers may appear discrete with clear 

boundaries or a continuous gradient of change, depending on the natural formation processes. A 

disturbed soil profile will lack any patterned stratigraphic quality, and may even contain evidence 

of commingled soil types and textures, or plant material that would otherwise be found at the 

ground surface. Mixed soil stratigraphy is a sign of general ground disturbance activity, not just 

caused by a burial interment, but through any process necessitating removal and replacement of 

soil for any purpose (Holliday 2004). While excavation is the only method to definitively confirm 

the presence or absence of a burial, it is time and labor-intensive and destructive by the nature of 

the process. Therefore, caution is advised when employing this method as an exploratory measure, 

rather than as a method for verification.  

4.2 Geophysical Techniques 

 Ground-based sensing technologies like ground penetrating radar (GPR) (Barone et al. 

2015; Bladon et al. 2011; Buck 2003; Schultz 2012), electrical resistivity (Nero et al. 2016; Scott 

and Hunter 2004), and magnetometry (Dalan et al. 2010) have assisted with subsurface human 

burial detection (Büyüksaraç et al. 2013; Cheetham 2005; Christensen et al. 2014; Clark 2000; 

Cox et al. 2008; Killam 2004). A GPR instrument emits microwave radiation into the ground. As 

the energy leaves the instrument, it interacts with material boundaries or buried objects, where a 

portion of the signal is returned to the sensor (Barone et al. 2015; Bladon et al. 2011; Buck 2003; 

Schultz 2012). Electrical resistivity survey is a method of detecting subsurface anomalies, where 

an electrical current is delivered through the soil using shallow probes. Features that are buried in 

uniformly resistant soil will either attract or repel the current, depending on its own resistance. 

Measurements of electrical current are interpreted as relatively low or high density. GPR and 
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electrical resistivity survey anomalies are interpreted as generic features until excavation can 

verify their material properties (Nero et al. 2016; Scott and Hunter 2004). Similarly, 

magnetometers are used to record the strength of a magnetic field, including disturbances caused 

by disturbed soils (Dalan et al. 2010).  

 For all three of these geophysical approaches, subsurface materials are not specifically 

identifiable solely from signal strength or quality, but their location can be marked as anomalous 

for follow-up investigation, usually through excavation. Researchers are beginning to explore 

potential time limitations for applying GPR to human burials and have learned that, after buried 

remains have skeletonized, signals are noticeably diminished and eventually indistinguishable 

(Salsarola et al. 2015). Electrical resistivity and magnetometry tend to result in poor spatial 

resolution, where individual graves may be too small to detect using these techniques. The 

advantages to these methods are that they are non-destructive and non-intrusive, so buried 

evidence is not disturbed due to their application. The equipment necessary for applying each 

technique is specialized, but fairly common, and therefore easy to obtain. While these approaches 

are useful for isolating the presence of potential subsurface anomalies in environments and 

circumstances that permit access to areas of interest, they share two common disadvantages: 1) the 

techniques are associated with high omission and commission errors (i.e. false negatives and false 

positives) as they are sensitive to certain soil types (Christensen et al. 2014) and 2) they require a 

trained instrument operator to have a somewhat precise idea of where to collect data, since these 

instruments must be placed on the surface directly above the burial to sense it (Christensen et al. 

2014; Clark 2000; Cox et al. 2008; Killam 2004).  
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4.3 Remote Survey Methods 

 Remote survey methods are those that do not require people or equipment to be present at 

the location of a burial, but at a point approximately overhead – either from an unmanned or piloted 

aircraft, or from an orbiting satellite. These methods include aerial and satellite photography, 

multispectral or hyperspectral imaging, or laser scanning. These methods are useful for instances 

where ground-based methods cannot be applied due to inaccessibility or have proven unsuccessful, 

or where only limited information exists to narrow the general location of a burial. Aerial and 

satellite photography are among the most commonly used remote survey methods since archived 

remote photography is sometimes created to serve other, unrelated purposes, such as land use 

mapping or natural resource management, and is often stored in public archives like those curated 

by the U.S. Geological Survey, the Bureau of Land Management, or even local and regional 

agencies.  

 Remote photography offers a wide view of landscapes, allowing the viewer to observe 

patterns that are sometimes difficult for investigators to make sense of from a ground-based 

vantage point. Some features, such as gradients in vegetation greenness or exposed ground features 

surrounded by overgrown vegetation, are more visible from above, where contrasting features 

stand out against surroundings. Remote photography can reveal recent or past changes to the 

landscape that may indicate soil or vegetation disturbance, or other isolated or patterned features 

that are most visible from a distance (Christensen et al. 2014; Killam 2004). Interpretation of aerial 

and satellite photography, however, is somewhat subjective and relies on surface anomalies being 

visible in red/green/blue (RGB) or color infrared images and unobstructed from overhead view.  

 Most photographic cameras employ light filters to capture and display broadband red, 

green, and blue wavelengths as a composite color image. While independent inspection and 
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reordering of image data for image analysis and interpretation are possible, photographic cameras 

are not usually designed for scientific application, and light filters do not provide the reliability of 

a calibrated radiometric measurement instrument. However, the usefulness of remote photography 

is expanded if collections are made at times of day that present shadows revealing topographic 

relief (France et al. 1992). Additionally, stereo images – two or more overlapping images taken 

near simultaneously – can be used to photogrammetrically reconstruct three-dimensional surfaces 

(Wolf et al. 2014). For example, CORONA satellite stereo image pairs have been used by 

archaeologists to visualize archaeological features, including burial mounds, using 

photogrammetry (Goossens et al. 2006). Unfortunately, because aerial and satellite photography 

are passive sensing technologies, they are limited to environments with clear line-of-sight to the 

target, thereby reducing the applicability of remote photography to very specific environments and 

conditions. Moreover, limiting image collection to include only broadband or only visible light is 

to miss potentially useful information about a landscape. Valuable information may be observed 

as signals in narrow spectral wavelengths or the invisible infrared region. Ignoring this spectral 

information can result in false negatives at locations where anomalies might have been observed 

at high spectral resolution or outside the normal spectral range.     

 Multiple published reports describe examples of aerial and satellite photography and 

multispectral imaging for helping to visualize sites of suspected human burials as a result of large 

scale violent conflict, usually in tandem with witness testimony. Among the best known examples, 

aerial photography was captured by the United States in the days following the disappearance of 

several thousand men in Srebrenica, Bosnia and Herzegovina. The imagery was of high enough 

spatial resolution to reveal heavy machinery, an open grave pit, and a nearby pile of elongated 

features that were interpreted as human bodies. The images were used to demonstrate the 
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systematic violence in Bosnia, and prompted Western nations to add pressure to the Bosnian Serb 

leadership to end the conflict. The images were later used as evidence by the ICTY in the trial of 

Slobodan Milošević (Willum 2000; Marx and Goward 2013). The imagery was significant in that 

it helped demonstrate the effectiveness of remote sensing as a technology capable of identifying 

and combating human rights violations.  

 In a similar application of remote sensing for corroborating witness testimony, the Harvard 

Humanitarian Initiative developed the Ground Reporting through Imagery Delivery (GRID) 

methodology. The methodology provided a way for witnesses of the crisis in Darfur to participate 

in the process of identifying potential areas containing evidence of mass atrocities in remotely 

sensed data (Card and Baker 2014; Satellite Sentinel Project 2011). Through the process, witnesses 

were shown high-resolution satellite imagery collected before an event took place, to avoid the 

visual influence of physical anomalies that might be present in the “after” image. Once the witness 

provided the general location of an area where they recalled a mass grave location, higher 

resolution imagery was sent to help narrow down a more precise location. After a more precise 

area was identified and confirmed by the witness, the researchers performed change detection 

analyses to reveal disturbed earth consistent with the location and timeframe of the event reported 

by the witness – in this case, the creation of an unmarked mass grave (Card and Baker 2014; 

Satellite Sentinel Project 2011). While these examples demonstrate the effectiveness of remote 

sensing for documenting evidence of human rights violations, the successful application of remote 

imagery has relied heavily on eyewitness accounts, such as the aerial images in Bosnia and the 

satellite images in Sudan used to confirm the locations of mass graves. The imagery itself is most 

commonly used as a tool to confirm existing information, rather than as a tool to lead investigators 

to new information.  
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  Remote imagery can be valuable tool for visualizing suspected burial sites within the 

context of their larger environment if the disturbance is recent enough for the scars to still be 

visible. The technology, however, has limitations that are attributable to instrument capability, 

vantage point, and time-of-day. Surveying a landscape from an overhead platform will have 

drawbacks due to a potentially limited line-of-sight and increased observation distance, resulting 

in lowered spatial resolution. However, aerial and satellite platforms can offer a tremendous 

advantage to investigators by covering large areas of land compared to ground-based technologies, 

and have potential to allow investigators to narrow areas of interest for more efficient and well-

informed ground-based follow up investigations. 

4.3.2 Archaeological Remote Sensing  

 The closest conceptual neighbor to forensic remote sensing is archaeological remote 

sensing, where the differences between burial targets of interest are context and time-depth. 

Contextually, forensic burials bear inherent legal relevance to an active investigation, while 

archaeological burial sites do not. With respect to timing, forensic sites are more contemporary 

than archaeological sites. While archaeological and forensic targets may differ in these two 

respects, remote sensing technologies were first adopted by archaeologists and later used as a 

forensic tool. Since the use of remote sensing in archaeology is well established, the forensic 

community has much to draw from the archaeological literature.  

 The scope of archaeology is much wider than the scope of a forensic investigation, in that 

the time-depth of archaeology is greater and objects of interest include a wider range of features, 

but there is some overlap. Remote sensing has been used by archaeologists to attempt to locate 

anthropogenic features, which can include features associated with human body interments, such 

as burials, burial mounds, and tombs. The time difference between archaeological and forensic 
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targets may not be comparable, but the collection, processing, and analysis of remotely sensed data 

for both applications are similar. Finally, since the geophysical qualities of human burials are 

context-independent, a review of key archaeological remote sensing studies provides a foundation 

for discussing remote sensing as a technology for locating forensically-relevant human burials. 

Archaeologists have used different types of remotely sensed data, including multispectral and 

hyperspectral imagery, and light detection and ranging (LIDAR).  

 Multispectral and hyperspectral instruments are sensitive to a range of visible and infrared 

wavelengths that are recorded in multiple discrete channels. This capability provides an advantage 

over conventional cameras that are sensitive to a broad range of visible or near infrared light. Due 

to this advantage, spectral imaging is a discovery technology used by professionals in a wide 

variety of disciplines, including archaeology. The scientific appeal for archaeologists is that 

spectral imaging has the potential to reveal objects that reflect light differently from their 

surroundings as anomalous features that require increased sensitivity to observe them. Such objects 

might otherwise appear consistent with their surroundings in broad range imagery or across an 

invisible region, rendering them unidentifiable to broadband cameras and to the human eye.  

 Archaeologists adopted spectral imaging as a tool in the 1970s, when the technology was 

still relatively new (NASA 2011). At the time, archaeological applications were still limited by 

poor data quality, as well as the high cost for imagery (Gumerman and Lyons 1971; Miller et al. 

1974). The continually improving quality and accessibility of spectral imagery now allows for its 

use as a common archaeological tool. Archaeology is currently well supported by the public and 

private sectors, with a large selection of spectral imaging platforms offering a wide range of 

spectral and spatial resolutions. These platforms include low-altitude unmanned aerial vehicles 

(UAVs), piloted aircraft, and Earth-orbiting satellites. Using remote sensing technologies, 
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archaeologists investigate features of varying size and spectral qualities, ranging from expansive 

continuous landscapes to small discrete objects. Features can include remnant structures, such as 

roads or paths (White 2007), house mounds (Johnson and Haley 2011), or evidence of terraforming 

(Evans et al. 2016). Features can also include mortuary structures, such as burial mounds or tombs 

(Artz et al. 2013; Riley 2009; Sobotkova and Ross 2010).     

 Visualizing archaeological features using remotely sensed data typically takes one of two 

general directions before following more specific analytical workflows. The first approach is 

somewhat exploratory, highlighting generic anomalies by making general, but informed, 

assumptions about archaeological features (unsupervised approach). This approach does not 

account for spectral signatures of known features. The second is an a priori approach that searches 

for spectra that closely match a reference spectrum belonging to a known archaeological feature 

(supervised approach). Both approaches are met with advantages and disadvantages and neither is 

without some degree of error. Therefore, despite the increasing quality of imagery and the growing 

body of analytical techniques available to users, it still remains important for archaeologists to 

perform ground-based investigations to verify the existence of archaeological sites and associated 

features predicted using remote sensing. Validation will be equally important for forensic remote 

sensing surveys, as remote sensing is a supplemental tool, not a replacement, for fieldwork.  

 In one of the earliest applications of hyperspectral analysis for archaeology, White (2003) 

attempted both unsupervised and supervised approaches to site prediction using 224-band 

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS, JPL) imagery to identify 

archaeological pithouses lacking surface relief in Arizona. The unsupervised approach, which 

assumed archaeological sites were spectral endmembers (i.e., n-dimensionally clustered), was 

unsuccessful. However, the supervised approach, which involved extracting spectral data from 
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known, verified features, did produce promising results. The supervised approach made the 

assumption that archaeological features contain mixtures of natural material that are slight spectral 

deviations from their surroundings, but are spectrally consistent with other features of the same 

type – an assumption that also can be applied to human burial environments because human burials 

and the materials used to disguise their surfaces are mixtures of rearranged organic material. By 

applying the Mixture Tuned Match Filtering (MTMF) tool in ENVI to the known site spectra, 

White (2003) was able to locate all of the pithouses to within 70 m of their known locations. 

Additionally, several other locations were identified through this process that may be unrecorded 

sites or false positives that, in either case, require follow up fieldwork. While these sites are not 

funerary in nature, White’s study (2003) is relevant to the current research since the pithouses 

present no surface expression and are otherwise not visible to observers.  

 Sobotkova and Ross (2010) took a similar supervised approach, using QuickBird satellite 

multispectral imagery to identify burial mounds in Bulgaria. The authors used the normalized 

difference vegetation index (NDVI) to simplify imagery analysis. Terrestrial spectra were 

collected simultaneously at anomalous locations in imagery to confirm the presence or absence of 

archaeological sites, and to provide immediate feedback of imagery analysis. The terrestrial 

spectra allowed for a supervised classification, where locations and spectral signatures were 

known, resulting in the positive identification of 107 burial mounds in the QuickBird imagery. The 

study reports 117 misclassified burial mounds and further states that the method failed for burial 

mounds with a height and radius of less than 0.5 m and 10 m, respectively. However, the authors 

reiterate that the technology is low-cost and the study demonstrates the technology's usefulness as 

a preliminary aid to site prospection (Sobotkova and Ross 2010). 
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 Spectral imaging in archaeology has become so pervasive that several edited volumes are 

available on the topic. Among the best-known volumes are Remote Sensing in Archaeology, by 

Wiseman and El-Baz (2007), Satellite Remote Sensing: A New Tool for Archaeology, by 

Lasaponara and Masini (2012), and Mapping Archaeological Landscapes from Space, by Comer 

and Harrower (2013), each presenting several case studies in archaeological remote sensing. For 

example, in the Wiseman and El-Baz (2007) edited volume, Saturno and colleagues hypothesized 

that spectral change in vegetation are observable at the Maya archaeological site of San Bartolo in 

Guatemala. The authors suggest that these changes may be the result of humans using limestone 

and lime plasters as building material, which continues to influence the moisture and nutrition 

levels of the immediate environment. Under this assumption, the authors took an unsupervised 

approach by displaying the 4-band visible and near infrared IKONOS satellite multispectral 

imagery as near infrared, green, and blue rather than the default red, green, and blue. Their 

approach resulted in bright features in the imagery that, through follow up fieldwork, corresponded 

to previously undocumented archaeological sites. The authors acknowledged that the moisture and 

nutrient modifications, likely causing high contrast spectral anomalies in the near infrared band, 

are not yet proven and may be difficult to apply in other environments with different site formation 

characteristics. However difficult it may be to scale these results to different environments for the 

same application, their work illustrates the larger idea that is relevant to the current research, that 

anthropogenic modifications to the environment can influence canopy vegetation spectra. 

 These studies, and dozens more like them, illustrate the utility and limitations of applying 

remote sensing to anthropological questions. Archaeologists have adopted remote sensing 

technology, and use data collected with sensors not specifically designed for this application, 

which is a testament to the resourcefulness of archaeologists and to the power of remote sensing 
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technology. Throughout the archaeological literature (Masini and Lasaponara 2009; Saturno et al. 

2007; White 2003), researchers demonstrate that natural materials used by ancient peoples to 

modify their landscapes are spectrally similar to the surrounding area from which those materials 

originated, and therefore difficult to visually separate. In modified environments that contain 

commingled natural materials, a spectral anomaly can represent an observation of human activity, 

but may not always provide a distinctive signal to make spectral imaging a reliable indicator of 

anthropogenic site modification. As a result, archaeologists are sensitive to the scientific and 

technical challenges of isolating features that tend to be reconfigurations of natural materials in an 

image scene. These studies demonstrate that unsupervised approaches that are successful in one 

environment may be difficult to scale to other areas (Saturno et al 2007). Therefore, if data 

resources allow for supervised approaches to site prospection, a priori data should be incorporated 

into the research methodology to enhance results (Sobotkova and Ross 2010; White 2003).  

 Active sensors, such as LIDAR scanners, provide their own energy source. As such, 

LIDAR scanners can take advantage of gaps in dense vegetation through which pulses pass to 

measure the positions of solid features underneath. This capability provides an advantage over 

passive sensors that measure only unobstructed, solar illuminated objects in direct view of the 

sensor. LIDAR technology is used by professionals in a variety of disciplines, including 

archaeology. The appeal for archaeologists is that LIDAR has the potential to reveal objects that 

are located underneath dense vegetation, such as tree canopy, allowing for the visualization of 

surface features by digitally removing the canopy. Such objects may be otherwise completely 

obscured by tree cover during certain seasons or year-round, effectively limiting the opportunities 

for observing forest floors or other difficult environments. 
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 Archaeologists adopted LIDAR for site prospection in the early 2000s, after the technology 

had been well established for several decades. Given the limited availability and great expense of 

LIDAR systems, data were difficult to come by until the cost of collection was reduced. Data 

become even more available as web-based public archives, such as Open Topography, USGS Earth 

Explorer, NOAA Digital Coast, and as various state-level data repositories have become more 

prevalent. Much like airborne spectral imagery, LIDAR data can be collected specifically for 

archaeological survey, or it can be collected for another purpose and stored for public use. While 

the cost of collection remains the primary barrier of entry for guaranteeing detailed coverage, the 

availability of LIDAR data has increased, so its use as an archaeological tool has and will continue 

to become more common.  

 LIDAR can reveal subtle elevation changes and is used by archaeologists to digitally 

remove physical obstructions, such as trees, to identify underlying morphological anomalies in a 

landscape. Among the best examples of landscape archaeology, Chase and colleagues (2011), 

conducted an aerial LIDAR survey of Caracol in Belize to visualize the Maya archaeological 

landscape beneath the dense canopy.  Their data revealed a larger and more detailed archaeological 

site than previously documented by ground-based mapping surveys. Moreover, their analysis 

revealed individual structures, causeways, and agricultural terraces, some of which exhibited 

topographic relief as low as 5 – 30 cm – features that are potentially similar in topographic relief 

to human burials. Their study highlights the advantage that LIDAR data provide researchers 

hoping to learn more about modifications to obstructed ground surface, possibly including human 

burials. Chase and colleagues demonstrate that, in addition to large prehistoric monuments, 

relatively small anthropogenic features situated under dense tree canopy can be visualized using 

airborne LIDAR technology (2011).   
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 Archaeologists have also used LIDAR to locate and map human burials, in particular, 

burial mounds. Artz and colleagues (2013) and Riley (2009) have used LIDAR to help map known 

burial mounds and predict the locations of unknown burial mounds to facilitate archaeological site 

preservation efforts. Riley (2009) developed an automated model for detecting conical burial 

mounds in Iowa with 86% success for mounds known at the time, indicating there is a degree of 

morphological predictability to burial mounds in the Midwest. Riley's approach potentially 

identified two previously unrecorded mounds that require follow up investigation for confirmation. 

Artz (2013) performed a larger scale, but manual inspection of imagery for identifying burial 

mounds in Minnesota using hillshading and contour lines to emphasize topographic features. 

While only 36% of recorded burial mounds were identifiable using LIDAR, an additional 118 

locations of potentially unrecorded burial mounds were also documented. Clearly, the range of 

performance depends on the analytic approach taken, but Artz (2013) argues that certain burial 

mounds will be more difficult to discern in LIDAR data because they exhibit decreased 

topographic relief as a result of erosion or human tampering. Artz (2013) found that, since 

hillshading and contour lines were used to aid human image interpretation, mound size was the 

greatest contributing factor to mapping a mound. Riley (2009) concluded that poor results 

corresponded with the presence of dense vegetation, which can be difficult to automatically filter 

out from LIDAR point clouds. Forensic investigators will face similar challenges when attempting 

to locate clandestine burials, affecting the longer-term performance of remote sensing for human 

grave detection.     

 Weitman (2012) conducted a LIDAR survey to map two historic cemeteries in Georgia, 

(US) which were in use between the years 1813 and 2011. According to Weitman (2012), the 

abundance of low-lying vegetation at the burial surfaces obstructed the emitted laser pulse, 
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resulting in insufficient information to determine burial locations. However, Weitman’s LIDAR 

data collection is limited to only one day for each cemetery, so the data are synchronic. Yet, she 

remarks on the presence of burial surface depressions in areas lacking grave markers (2012), which 

indicates that an elevation change study complete with multiple LIDAR collections may reveal 

localized net elevation losses that persist for an unknown period of time after a burial is created 

and vegetation has regrown at the surface.  

  The successful application of using remote sensing in archaeology demonstrates that 

anthropogenic change is spectrally and topographically measurable, setting a precedent for other 

anthropological applications. However, using remote sensing to identify archaeological mortuary 

features, even burial mounds, is different from its application in a contemporary context. Features 

that tend to be the focus of discussion in the archaeological remote sensing literature are often 

discrete objects with vertical relief that might be considered anomalous for the environment (e.g., 

pyramids, house mounds, burial mounds). These features may have low relief, but span a large 

area or may be identifiable by their linear qualities (e.g., buried walls, agricultural fields). It is still 

uncertain whether spectral imaging technologies or LIDAR can help identify smaller discrete 

features, such as an unmarked burial, with low topographic relief and possessing spectral or 

topographic qualities approximating their undisturbed surroundings.  

4.3.3 Forensic Remote Sensing 

 Remote sensing is well established in archaeology, however, our understanding of more 

contemporary and small-scale human changes to the earth surface is still lacking. To date, most 

studies exploring the potential benefits of airborne hyperspectral imagery in forensic contexts rely 

on exposed soil to separate spectral signatures of non-human buried remains (Kalacska and Bell 

2006; Kalacksa et al. 2009; LeBlanc et al. 2014; Snirer 2013). Exposed soil following a recent 
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interment is a temporary state before vegetation regrowth and other surface changes take place. 

Moreover, high contrast anomalies such as exposed soil may not provide enough information to 

narrow a search area, particularly if a landscape’s vegetation cover is highly variable or if a burial 

is truly hidden among materially similar surroundings. Even more problematic is the lack of 

established signatures in association with burials, specifically, or ground disturbance, generally.  

 Kalascka and Bell (2006) observed experimental cattle burials in Costa Rica as spectral 

samples collected using a portable field spectroradiometer and spectral imagery collected using 

the MODIS/ASTER (MASTER) airborne simulator. They compared ground-based spectra from 

the cattle burials to empty control units at one and five-months post-burial. From these data, the 

authors assert spectral separability between the control and cattle burials using forward feature 

selection and pattern classification techniques. Comparisons between the control and cattle burials 

using airborne MASTER image pixels from one-month post-burial reveal that separability was 

achieved using the infrared bands, but there is no report on comparisons made between each burial 

and surrounding spectral samples of undisturbed vegetation or soil. Further, the authors note that 

vegetation failed to regrow at both disturbed surfaces by the five-month mark. In the same study, 

the authors also tested their approach using an archived six-band ASTER satellite multispectral 

image of a known human mass burial thought to contain up to 96 bodies buried in 1982, but 

spectral resolution was deemed too low for successful detection.     

 Kalacska and colleagues (2009) also collected ground-based visible to shortwave infrared 

spectra and HyMap airborne hyperspectral imagery in an attempt to classify the cattle burial and 

the control containing no cattle. Similar to their earlier work, the authors do not report on whether 

they made comparisons of either group to surrounding undisturbed spectra. Using forward feature 

selection, they reduced ground-based spectra from 500 bands to 10, 20, and 30 band sets for 
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analysis. Separation was then determined using three nonparametric methods: a binary decision 

tree, a multilayer neural network, and the k-nearest neighbor (k-NN) classifier. Data were divided 

equally into training and validation datasets and the band sets of 10, 20, and 30 were evaluated in 

all three models. The authors do not elaborate on which bands comprise each of the 10, 20, or 30 

band sets, but do present the results of simultaneous Bhattacharrya's tests indicating spectral 

regions with greatest separability between groups, which shift from visible to infrared wavelengths 

throughout the course of the study. 

 The authors were not able to separate the burial and control immediately after interment 

using any of the classifiers (Kalacska et al. 2009). One-month post-burial the authors were able to 

separate the two groups using a neural network and 10 bands, reporting greatest separability in the 

visible region from 400 – 550 nm and greater than 850 nm. At five-months post-burial the control 

surface presented more than 50% vegetation regrowth, but the cattle burial had none; increasing 

separation performance as a direct result. The authors report separation in peaks around 450 and 

550 nm, but also note that these differences are characteristic of visible differences between soil 

and vegetation. At sixteen months, the two features are reported as perfectly separable from each 

other above 700 nm using all classifiers (Kalaksca et al. 2009), however, the authors acknowledge 

that the exposed soil still covered 30% of the burial surface.  

 The presence of exposed soil is not an experimental design flaw, and the rate of natural 

vegetation regrowth is not within the researchers' control, but material composition affects spectral 

response and must be recognized as a contributor to the results and interpretation. The presence of 

soil will influence the mean spectral response of a vegetation feature (Gibson 2013). It is also 

possible that exposed soil renders a burial poorly matched for remote sensing survey, particularly 

if a traditional pedestrian might have accomplished as much without the financial investment. Cost 
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is a limiting factor for law enforcement agencies and piloted-aircraft remote sensing campaigns 

are expensive. The studies by Kalacksa and colleagues (2006; 2009) reveal discernible differences 

in the spectral signatures between burials with 100% vegetation regrowth and burials with 70% 

vegetation regrowth; a difference that investigators may be able to visualize without the assistance 

of advanced remote sensing technologies. Truly clandestine burials are often obscured by 

vegetation or other deliberate camouflage and appear, to the naked eye, no different from non-

burials or undisturbed areas. 

 Kalacksa's studies lay important groundwork for future forensic remote sensing research 

by establishing that recent disturbance with some exposed soil can be visualized as a high contrast 

material anomaly in aerial hyperspectral imagery. Their studies confirm that additional research is 

needed to understand the differences between like-materials as part of a vegetation-specific or soil-

specific burial study, and also how burials and similar disturbance (control unit) are spectrally 

different from each other and from undisturbed surroundings. Only when these two phenomena 

are better understood should the scientific community promote remote sensing as a tool for 

predictive modeling and monitoring of human burial locations. Paradoxically, it appears they 

attempted grave detection without first characterizing unique burial signatures and, therefore, may 

be unable to deliberately search for those signatures in non-experimental burial scenarios.  

 Norton (2010) followed previous work by conducting a lab-based pilot study to determine 

whether burial soils were spectrally separable from non-burial soils. Using principle component 

analysis (PCA), Norton concluded that soil spectra associated with buried minced beef were 

separable from untreated control soil as distinctive component clusters by six-days post-burial. 

Norton (2010) also determined that these results were not solely attributable to an increase in soil 

moisture, but likely directly associated with buried matter decomposition (2010). The pilot phase 
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of Norton's study involved the use of wooden boxes containing soils, some with buried minced 

beef and some without. The lab-based nature of the experiment indicates that all soils were 

inherently disturbed, and therefore, spectral comparisons were made between disturbed soils with 

and without decomposing matter; no comparisons were made between the disturbed soil samples 

and undisturbed or completely unaffected soils.         

 Norton found mixed results when attempting to validate her lab results in the field (2010). 

Due to U.K. legislative restrictions on the use of human remains for scientific research, Norton 

was limited to collecting soil spectra from burials in modern cemeteries, in which human remains 

are enclosed in biodegradable caskets – an atypical scenario for conflict related graves. Clustering 

was less structured for the cemetery burial soil spectra and the author reasonably concludes that 

more research is necessary to better understand the relationship between burial age and spectral 

separability (2010). 

 Norton's work (2010) is the first forensic remote sensing study to evaluate spectral 

separation of comparable materials, (i.e., burial soil versus non-burial soil), associated with 

decomposing matter before attempting separation in a field setting. However, using non-human 

remains and not performing comparisons to undisturbed soils limits the application of Norton’s 

findings. In addition, Norton does not indicate which wavelengths or wavelength regions 

contribute most to the separation of the experimental soil groups, rendering the interpretation of 

nutrient influence or other factors on overall spectral signatures somewhat challenging. 

 Snirer (2013) observed chemical and spectral properties of pig grave soils and vegetation 

in an open grassy field in Canada. More specifically, Snirer evaluated vegetation pigments, 

terrestrial spectra of soil and vegetation, and airborne hyperspectral imagery of twelve individual 

pig burials of various depths, six surface depositions, six empty control units, and undisturbed 
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ground. Analytical methods for pigment and spectral data were the one-way analysis of variance 

(ANOVA), a t-Test, and eight classifiers. The pigment analysis resulted in separation between 

disturbed and undisturbed vegetation, but no separation between disturbed vegetation types (i.e., 

pig graves and control units). Terrestrial soil and vegetation spectra separated surface placements 

from disturbed areas, but proved unreliable for separation of disturbed group types. The results 

were scaled to airborne HSI to reveal similar results – separation of disturbed areas from 

undisturbed areas, but no discernable difference between disturbance types. Snirer's work is a clear 

contribution to forensic science in that it will undoubtedly help narrow down areas of potential 

disturbance. A potential drawback, however, is that during analysis, terrestrial vegetation spectra 

were reduced from 451 spectral bands to sixteen pre-established spectral indices, effectively 

limiting the analysis to include a small fraction of available data without first testing them for 

significance. The inherent problem with this approach is that, while the spectral indices used in 

Snirer's study were developed for vegetation spectral research, they were each developed for broad 

application (e.g., vegetation stress or health) rather than to identify specific anomalies, such as 

human burials. While these spectral indices may still reveal differences between groups, unmarked 

burials are a nuanced type of disturbance that likely influence vegetation uniquely, due to 

subsurface body decomposition and the subsequent redistribution of nutrients to the soil. However, 

none of the spectral indices used in Snirer's study help fully characterize burial, or generally 

disturbed, vegetation spectral signatures. It is also important to note that Snirer does not clarify 

whether surface vegetation regrowth was complete when the HSI collections were acquired. 

Additionally, outside of the spectral indices, which follow pre-established calculations with 

prescribed wavelengths, there is no mention of individual wavelength contributions to group 

separation, so the work will be difficult to independently validate.            
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 LeBlanc et al. (2014) report a 100% success rate for pig burial detection using airborne 

visible to shortwave infrared hyperspectral imaging. They conducted a blind test in an undisclosed 

location in Canada, where they were able to identify two unmarked pig burials. Their analysis 

relied on the presence of exposed soil and included reflectance data at 2200 nm to isolate hydroxyl 

(OH –), a spectral indicator of clay. In addition to this signature, three spectral indices – Normalized 

Difference Vegetation Index (NDVI), Sum Green Index (SGI), and Structure Insensitive Pigment 

Index (SIPI) – were used together to identify common anomalous pixels using a Bayesian model. 

The authors reported finding three anomalous features, two of which were pig burials and the third 

a possible false positive. The possible false positive suggests their model excels at isolating 

exposed soil features, which may be characteristic of unmarked burials in certain – but not well 

camouflaged – scenarios.          

4.4 Rationale for Human Burial Remote Sensing Research 

 Relying on non-human remains as proxies for humans in burial research is problematic 

throughout forensic studies. Pigs and other animals differ from humans in body plan, diet, skin 

thickness and other factors that influence decomposition. Recent research shows that 

decomposition rates and patterns between animals and humans are highly variable (Dautartas et 

al. 2015; Dautartas et al. 2016; Steadman et al. 2016). These results further confound the fact that 

individual burials differ from one to the next, depending on location, number of interred bodies, 

depth of interment, environment, and many other variables (Jessee and Skinner 2005; Mann et al. 

1990). Therefore, when designing experimental research, it is important to minimize as many 

confounding variables as possible, such as interring human bodies instead of animal remains.   

 There are only a few published studies on the application of remote sensing to burial 

detection, limiting the research community's overall understanding of the topic. Yet there is an 
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emergent demand for an efficient and reliable human burial detection methodology. This demand 

may directly contribute to the premature application of remote sensing technology to the 

challenges of human burial detection. Despite LIDAR's overwhelming success as an 

archaeological survey tool, there are no systematic studies evaluating its use for measuring human 

burial surface changes. Before non-experimental unmarked human burials can become targets for 

detection, the measurable characteristics that render them separable must first be established and 

the underlying phenomenology understood by conducting more basic research. Only after 

establishing human burial signatures will researchers have the opportunity to reliably separate 

burials from their surroundings or from other anomalous features with greater confidence.  
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CHAPTER 5: MATERIALS AND METHODS 

 This chapter describes the experimental study site, anticipated burial signatures, and data 

sets. Additionally, this chapter presents the detailed data collection, processing, and analytical 

strategy used to address the research questions and hypotheses presented in Chapter 1. Results are 

presented in Chapter 6. 

 This study investigates a group of experimental human burials in a controlled study area, 

rather than non-experimental human burials. An experimental approach to the research was taken 

to limit the effects of environmental variables, as well as control for the effects of differences in 

burial depths and burial ages found at non-experimental sites. While natural vegetation and 

topographic relief exists within the experimental study site and between experimental burials, 

mimicking non-experimental sites, using a known, experimental site can minimize additional 

confounding effects. If not controlled, these effects could influence the magnitude and timing of 

potential burial signatures, thereby complicating direct comparisons between sites and the direct 

application of experimental findings to non-experimental sites.   

5.1 The Experimental Study Site 

 The study area is contained in a newly fenced portion of the outdoor Anthropology 

Research Facility (ARF), managed by the University of Tennessee’s Forensic Anthropology 

Center (FAC), in Knoxville, TN (Figures 5.1-1 and 5.1-2). The ARF is located on the south bank 

of the Tennessee River and is surrounded by two security fences. The experimental graves were 

created in a relatively level area away from rainwater flows; all burials are exposed to equal gross 

environmental conditions (e.g., precipitation, temperature). The experimental graves are located 

minimally 10 m from other forensic experiments and foot traffic near the research site is limited  
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Figure 5.1-1: The study area in relation to Knox County, TN. 

  

Figure 5.1-2: The study area, adjacent to the William M. Bass Forensic 

Anthropology Building (west) and the Tennessee River (northeast). 
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by fencing. The study area is densely populated with mixed tree, underbrush, and grass species of 

both native and non-native origins. The soils are primarily topsoil (0 – 10 cm below surface) and 

red clay (10+ cm below surface). During Spring and Summer seasons, the dense tree canopy 

obscures the study area view from above. During Autumn and Winter seasons, the study area is 

visible from above, but decomposing leaves cover all ground surfaces.  

5.1.1 The Experimental Human Graves 

 During 13 – 15 February 2013, four grave units were hand-dug at the experimental study 

site with shovels and pickaxes, each to approximately 0.70 m in depth and at least 2 m apart from 

each other (Figures 5.1-3 and 5.1-4). To assist with the mapping of body placement, and to ensure 

consistency between units, a datum was set in the southwestern-most corner of each unit, along 

with pins in the remaining three corners. String was tied to each datum or pin to delineate grave 

boundaries. In cooperation with another research study, the surface layer of sod on each grave unit 

surface was removed and set aside before excavation. The horizontal dimensions of each grave 

unit are a) 1 x 2 m, b) 2 x 2 m, c) 2 x 4 m, and d) 2 x 4 m. The volume of displaced soil for each 

grave unit is approximately a) 1.4 m2, b) 2.8 m2, c) 5.6 m2, and d) 5.6 m2. The interred bodies are 

individuals whose remains have been self- or family-donated to the FAC for forensic research. On 

14 February 2013, one male individual was placed inside the 1 x 2 m grave unit and three 

individuals (one female, two males) were placed inside the 2 x 2 m grave unit. On 15 February 

2013, six individuals (two females, four males) were placed inside one of the 2 x 4 m grave units. 

The combined body mass interred in the one, three, and six-person burials is 178, 403, and 618 

lbs., respectively. The second 2 x 4 m grave unit serves as an experimental control for the effects 

of disturbance without interred human remains. 
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Table 5.1-1: The experimental units by number of bodies, dimensions, and total body mass. 

 Control Grave-1 Grave-3 Grave-6 

# Donated 

Human Bodies 

0 1 3 6 

Horizontal 

Dimensions (m) 

2 x 4 1 x 2 2 x 2 2 x 4 

Depth (m) 0.70 0.70 0.70 0.70 

Total Body 

Mass (lbs) 

0 178 403 618 

 

 
Figure 5.1-3: The study area extent (main), with burial locations (inset); Numbers indicate 

the number of buried bodies in each grave, C indicates 'Control'.  
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Figure 5.1-4: The author helping dig the 2 x 2 m grave unit; 13 February 2013. 
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The bodies were placed in the graves without coffins or other type of protective boundary. 

Hands and feet were wrapped in durable plastic mesh to prevent commingling of small skeletal 

elements. Additionally, a piece of thin plastic mesh was placed between overlapping bodies. To 

simulate an actual forensic scenario, some bodies were partially clothed and/or bound with 

ligatures and material artifacts such as bullet casings, keys, gloves, and other personal effects were 

added to the soil matrix. The units were backfilled with the removed soil and the grass sod was 

replaced on each unit (Figure 5.1-5). All interments and backfilling were completed on 15 

February 2013 (Figure 5.1-6).   

5.1.2 Anticipated Burial Signatures 

 This research investigates potential burial signatures using two types of remotely sensed 

data collected at the experimental study site: 1) reflectance spectra sampled from live vegetation 

and 2) ground surface elevation measurements derived from LIDAR point clouds.  

Vegetation Reflectance Spectra 

 Plants depend on many different nutrients to thrive, such as carbon, nitrogen, and 

potassium. However, this section focuses on the relationship between human burials, nitrogen, and 

vegetation spectra for two reasons. The first reason is that nitrogen is currently the only vegetation 

nutrient to be studied in a forensic context using human remains (Mundorff, et al. 2014). The 

second reason is that nitrogen has a strong link to chlorophyll production and overall plant health 

(Blankenship 2014), which is supplemented by a large body of existing spectroscopic research to 

support the findings of this study.  
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Figure 5.1-5: The author helping backfill the 2 x 4 m control unit soil while A. 

Mundorff takes photos; 15 February 2013.  

 

 

Figure 5.1-6: Eastward-facing image of burial surfaces on 15 February 2013; six 

bodies (foreground); control unit (background). 
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The Relationship between Nitrogen and Chlorophyll 

 The anticipated effect of human burials on vegetation reflectance spectra depends on the 

existing relationship between soil and vegetation. Soils contain naturally occurring nutrients that 

rooted plants use to fuel photosynthesis (Blankenship 2014). Through photosynthesis, a plant 

produces the chlorophyll that allows it to absorb light and is associated with green, healthy 

vegetation. Chlorophyll concentration is directly affected by the presence or absence of certain 

soil nutrients, and abnormal levels of nitrogen, oxygen, or other nutrients can impose changes to 

chlorophyll concentration in plants. Specifically, the relationship between nitrogen and 

chlorophyll concentration is observed as a positive curvilinear relationship, ranging from r2=0.43 

in maples leaves (Yoder and Pettigrew-Crosby 1995) to r2=>0.96 in coffee leaves (Netto et al. 

2005), where higher nitrogen concentration drives higher chlorophyll concentration, the magnitude 

depending on plant species. Following this logic, the nutrients released from decomposing human 

remains, such as nitrogen, are redistributed to nearby soils. 

Nitrogen Uptake in Burial Vegetation  

 Vegetation naturally absorbs nutrients that are present in the soil. Within a grave, available 

nutrients are elevated by decomposing human remains. The effect of human decomposition on soil 

nutrient enrichment, particularly nitrogen, is poorly understood. However, non-human 

decomposition research demonstrates that soil nitrogen concentrations become elevated over 

natural soil nitrogen values (Benninger et al. 2008; Carter et al. 2007; Hopkins et al. 2000). Given 

that humans are tertiary consumers (i.e., highest on the food chain) we typically have higher levels 

of nitrogen concentration than do primary or secondary consumers, such as pigs (Carter et al. 

2007), buried human bodies are likely to influence the relationship between soil and vegetation 

chemistry in a similar and measurable way.    
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 A recent study by Mundorff and colleagues (2014) supports the phenomenon of elevated 

soil nitrogen concentration as a result of human decomposition. The authors demonstrate 

significantly elevated nitrogen isotope (δ15N) values from vegetation sampled at the surface of a 

recent human burial compared to values from the surrounding off-burial vegetation. Moreover, 

this difference persists for several years post-burial, including in current data from ongoing 

collections made six years into the study (Mundorff et al. forthcoming). Similar analyses of 

nitrogen isotope values from other non-burial enriched environments, such as farms and 

archaeological middens within ancient Norse settlements, reveal that elevated plant nitrogen 

isotope values can persist hundreds of years (Commisso and Nelson 2008; 2010). Anthropogenic 

disturbance has a demonstrated, if general, effect on vegetation nitrogen content. However, given 

that Mundorff and colleagues' (2014) study observes a contemporary human burial and Commisso 

and Nelson's (2008; 2010) studies observe non-burial archaeological features, it is still unclear if 

the same long-term elevated nutrient signature persists in live vegetation that is specifically 

associated with human burials.  

Nitrogen, Chlorophyll, and Vegetation Spectra 

 The positive curvilinear relationship between plant nitrogen and chlorophyll (Netto et al. 

2005; Yoder and Pettigrew-Crosby 1995) provides the basis for vegetation studies that use 

spectrometers to estimate nutrient and pigment concentration in leaves. Reflectance spectra are not 

a direct measurement of vegetation nitrogen or chlorophyll content in leaves, but visible spectral 

wavelengths between 400 – 700 nm (Sims and Gamon 2002; St.-Jacques and Bellefleur 1991; 

Tsay et al. 1982; Yoder and Pettigrew-Crosby 1995) and infrared wavelengths between 2000 – 

2200 nm (Yoder and Pettigrew-Crosby 1995) share a relationship with nitrogen and chlorophyll 

concentration. For example, leaf pigments – such as chlorophyll – are widely used in spectral 
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research to estimate the effects of plant stress, such as over or under-fertilization. Leaf stress 

caused by nitrogen fertilization in crops is observable as anomalous reflectance values in the 

visible region of the spectrum, where at 540, 610, and 700nm, which are nitrogen-correlated 

wavelengths, an increase in nitrogen results in a decrease in reflectance (St.-Jacques and Bellefleur 

1991; Tsay et al. 1982; Yoder and Pettigrew-Crosby 1995). Chlorophyll concentration can be 

similarly estimated in the visible region, due to the co-correlation of nitrogen and chlorophyll, but 

correlations between chlorophyll and spectra tend to be stronger than for nitrogen (Knipling 1970; 

Yoder and Pettigrew-Crosby 1995). The effects of nutrient levels on plant health, then, can be 

observed and interpreted as variations of chlorophyll or nitrogen concentration across the 

reflectance spectrum (Knipling 1970; Rouse et al. 1973; Sims and Gamon 2002).  

 The vegetation nitrogen isotope research by Commisso and Nelson (2008; 2010) and 

Mundorff et al. (2014), combined with current understandings of the relationship between 

chlorophyll, nitrogen, and plant spectra (St.-Jacques and Bellefleur 1991; Tsay et al. 1982; Yoder 

and Pettigrew-Crosby 1995) supports an investigation of vegetation spectral responses in this 

experimental human burial study. Previous forensic and plant science research suggests the most 

promising spectral wavelengths in this research may be those that correlate with nitrogen and 

chlorophyll. Decomposing human bodies act as fertilizer, supplying nitrogen and other nutrients 

to surrounding soil, which are subsequently taken up by nearby vegetation. Therefore, vegetation 

reflectance spectra may reveal the effects of buried human decomposition on vegetation 

chlorophyll and nitrogen concentration.   
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Ground Surface Elevation 

Digging Activity and Body Decomposition Effects on Surface Topography 

 The anticipated effect of buried human remains on ground surface elevation will depend 

on the decomposition process and the redistribution of the buried mass. Topographic changes are 

an unavoidable consequence of creating a human burial. During the interment process, soil is first 

displaced, creating enough space for a body or bodies. Excavations can be done manually and/or 

using shovels or heavy machinery. Human remains are then deposited within the grave pit and the 

soil is usually replaced over the body. Backfilling can sometimes result in a temporary mound due 

to the effects of excess mass (the body) in the ground, leaving less room to replace the once-

compacted and now loosened soil (Steadman 2009). To date, no published studies document 

localized elevation activity at burial surfaces to investigate the immediate elevation changes as a 

direct result of interment.   

 Eventually, gravitational forces and precipitation cause the backfilled soil to settle, 

sometimes visible lower than the surrounding undisturbed soil. After this initial settling, the burial 

surface will continue changing, depending on environmental factors. Buried bodies undergo varied 

decomposition processes influenced by environmental conditions, such as precipitation and soil 

composition (Mann et al. 1990; Rodriguez and Bass 1985). In Knoxville, TN active decomposition 

has been shown to begin anytime from one to ten weeks after interment (Rodriguez and Bass 

1985), followed by a more gradual decomposition phase lasting approximately one year (Mann et 

al. 1990). Subsurface decomposition processes may result in observable surface elevation changes, 

as redistribution of body mass and soil takes place. Once a body skeletonizes, soil matrix fills the 

voids created where soft tissue once existed (Rodriguez and Bass 1985). This secondary settling 

may result in a depression, localized over the buried remains, which is discernable from the 
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generalized settling over the entire disturbed area following backfilling (Killam 2004; Morse et al. 

1983; Owsley 2001; Steadman 2009; Weitman 2012).    

 The forensic archaeological literature describes burial surfaces as depressions (Owsley 

2001; PHR 1998), but these descriptions are anecdotal and not all burials exhibit depressions at 

their surfaces (Davenport and Harrison 2011). If a depression develops following interment, it may 

not be visible indefinitely due to accumulation of organic debris over time. To isolate a burial 

surface depression, or mound, researchers must first understand the range of elevation change at 

the surface, measurable as net elevation gains or losses over time.  

Topographic Activity and Change Detection 

 Active Light Detection and Ranging (LIDAR) systems generate three-dimensional models 

of environments, where each data set can contain millions of points (point clouds) that can be 

filtered to visualize obstructed surfaces, including the ground surface beneath some vegetation. 

Multiple terrestrial LIDAR collections made over time are commonly used by researchers to 

compare surfaces to each other and measure topographic change over time, such as estimating 

volumetric changes of beaches or hillsides before and after storms or landslides (Schürch et al. 

2011; Zeibak and Filin 2007). Change comparisons are useful because the topographic variation 

of any landscape can range from subtle to conspicuous. An example of the former, an unmarked 

burial may blend in to its immediate surroundings, appearing at any given time an unremarkable 

feature in a naturally variable landscape. Moreover, outdoor environments are dynamic and 

undergo change as a result of natural taphonomic processes, such as erosion or accumulation of 

organic debris (Harris 2014). However, the extent of elevation change at a burial surface may be 

expressed over a period of time as localized gain or loss that is independent of the apparent natural 

processes acting on the entire environment. In the case of burials, such localized change could be 
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attributable to the decomposition process, to soil settling, or to both. Point cloud data collected 

from research grade terrestrial LIDAR systems can be compared to each other to measure such 

localized surface changes over time, if they exist.  

Data Sets 

 Five remote sensing data sets are evaluated in this study; three spectral and two LIDAR. 

The remote sensing data sets used to observe the study area were collected from multiple scales; 

terrestrial (spectral and LIDAR), aerial (spectral and LIDAR), and satellite (spectral only). Passive 

sensors (spectrometers) recorded each data point (e.g., leaf surface or image pixel, depending on 

sensor scale) as a reflectance spectrum, as described in Chapter 3. Active sensors (LIDAR) 

recorded each data point as a discrete three-dimensional coordinate to model the study area 

topography, also as described in Chapter 3. Data collection, processing, and analytic strategies 

specific to each data set are described in the following sections. 

  The analytical emphasis of this dissertation is on the high fidelity terrestrial spectra and 

terrestrial LIDAR data that are used to characterize vegetation reflectance and surface elevation 

change signatures, respectively. Aerial hyperspectral images (HSI), aerial LIDAR data, and 

satellite multispectral images (MSI) were used to assess the potential scalability of the terrestrial 

data analysis findings, but are not the central focus of this study.    

5.2 Terrestrial Spectra 

 This section describes the methodologies employed to collect, process, and statistically 

analyze terrestrial vegetation spectral samples. Terrestrial vegetation spectra were collected to 

address Hypotheses 1 and 3: 
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1. Vegetation associated with disturbed ground containing human remains (burials), 

disturbed ground containing no remains (control unit), and undisturbed ground are 

statistically separable groups as indicated by differences in reflectance spectra. 

3. Vegetation associated with burials, the control unit, and undisturbed areas exhibit 

spectral separability for the duration of the study.   

The terrestrial spectral analysis addresses Hypothesis 1 by separating vegetation spectra into 

human burial and non-burial comparison groups, where the non-burial group included the control 

unit and undisturbed ground. Hypothesis 3 is addressed by further separating those vegetation 

spectra into two temporal groups. 

 High fidelity spectral data help characterize vegetation properties by measuring reflectance 

and can assist with the interpretation of airborne and satellite spectral imagery by providing a 

"ground-truth" observation (Schott 2007; Yoder and Pettigrew-Crosby 1995). Due to the 

portability of field instruments, ground-based spectrometers can collect data beneath dense 

canopied environments, such as the study area, which is problematic for overhead airborne and 

satellite sensing instruments that cannot overcome such line-of-sight obstructions. As discussed in 

Chapter 3, spectrometers are passive sensing instruments that record only naturally available 

energy that reaches the detector, meaning any visual obstructions will influence data. For this 

reason, terrestrial spectra are not intended to perfectly simulate spectral observations made by 

airborne or satellite imaging spectrometers. Instead, a terrestrial spectrometer is used in this study 

to characterize burial signatures, which may then be applied to remote imagery in search of similar 

signatures in more open environments. The terrestrial spectral findings may prove difficult to scale 

to airborne or satellite spectral images, due to the dense tree canopy that obstructs overhead line-

of-sight. However, understanding the general spectral characteristics of human burial vegetation 
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at high spectral and spatial resolution is necessary to advance future research in unmarked human 

burial detection. The challenges of scalability will be significant, to be sure, but establishing a 

human burial reference spectrum will be valuable as future research expands to different locations, 

environments, and sensing platforms.   

5.2.1 Terrestrial Spectral Collection and Processing  

 Vegetation reflectance spectra were collected in the field using a FieldSpec® 4 Standard-

Res Spectroradiometer (PANalytical, Boulder, CO). The portable sensor is designed for collecting 

spectra on the ground, and covers a spectral range from 350 – 2500 nm in 2151  1 nm spaced 

spectral bands. Sensor accuracy is reported to be ±0.5nm across all bands. The Noise Equivalent 

Delta Radiance (NEdL), or signal-to-noise ratio, for the instrument in a known light-source setting 

is 1.0 x 10-9 W/cm2/nm/sr at 700 nm, 1.2 x 10-9  W/cm2/nm/sr at 1400 nm, and 1.9 x 10-9  

W/cm2/nm/sr at 2100 nm. The reported spectral resolution is 3 nm at 700 nm and 10 nm at 

1400/2100 nm (PANalytical). The default sensor fiber optic field of view (FOV) is 25˚, but a 5˚ 

lens was used during collection to achieve a more focused sample that minimizes the possibility 

of spectral mixture with non-plant materials.  

 Samples (spectra) were collected over the course of two one-month collection windows:  

24 March to 25 April 2014 ("Spring") and 17 October to 21 November 2014 ("Autumn"). Spectra 

were recorded mid-day to benefit from as much direct sunlight as possible within the densely 

vegetated study area. Only leaves that received direct sunlight were sampled. The effects of 

atmospheric scattering were minimized by calibrating the sensor using a 3.62 in. diameter 

Spectralon® white reference panel at approximately ten-minute collection intervals, as 

recommended by PANalytical.   
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 Live vegetation reflectance spectra were collected throughout the study area. Each 

vegetation spectrum is associated with a categorical feature: human burial, control unit, or 

undisturbed. For vegetation near the edge of a disturbance feature (i.e., a burial or control), the 

plant soil/stem location was first verified as being associated with the disturbance feature or 

undisturbed ground before sampling; if an origin was uncertain, no sample was taken. During the 

Spring collection period, the burial containing three bodies lacked enough surface vegetation to 

provide enough data for reliable comparison on its own (n=1), due to lack of direct sunlight, but is 

included as part of the combined human burial dataset. During the Autumn collection period, the 

control surface received minimal direct sunlight, limiting the data collection opportunities for 

control vegetation (n=5).  

 Collections of spectra were sorted by categorical group and stored as spectral libraries and 

ASCII text files. For all data, the full 2151 bands were reduced to 1803 bands, omitting 

wavelengths surrounding 1400 and 1900 nm that are associated with spectral noise or light-

scattering atmospheric water: 1331 – 1439 nm and 1801 – 1989 nm (Goetz et al. 1985). Remaining 

bands retain their original spectral resolution. Spectral sample sizes are presented in Tables 5.2-1 

and 5.2-2. Mean spectral signatures of each live vegetation group are presented in Figures 5.2-1 

– 5.2-3.  

5.2.2 Terrestrial Spectral Analysis 

 Analyses included live vegetation samples because those samples contain the pigment 

necessary to attempt separation potentially influenced by human burials, or similar disturbance 

(Yoder and Pettigrew-Crosby 1995), as described in Section 5.1.2. Moreover, the ability to 

differentiate human burial, generally disturbed (control), and undisturbed live vegetation spectra 

has been one of the most understudied questions in published forensic remote sensing research  



  

81 

 

Table 5.2-1: Sample sizes for live vegetation FieldSpec samples from Spring 2014; N=154. 

Category Live Vegetation Spectra Sample Size 

Single burial (G1) n = 16 

Three-person burial (G3) n = 1 

Six-person burial (G6) n = 36 

All Human n = 53 

Control n = 17 

All Disturbance n = 70 

Undisturbed n = 84 

 

 

 

Table 5.2-2: Sample sizes for live vegetation FieldSpec samples from Autumn 2014; N=133. 

Category Live Vegetation Spectra Sample Size 

Single burial (G1) n = 11 

Three-person burial (G3) n = 8 

Six-person burial (G6) n = 30 

All Human n = 49 

Control n = 5 

All Disturbance n = 54 

Undisturbed n = 79 
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Figure 5.2-1: Mean spectral signatures of disturbed and undisturbed live vegetation during Spring 

and Autumn 2014 collection periods; 400 – 2500 nm.  

 

 

 

Figure 5.2-2: Mean spectral signatures of live vegetation groups during the Spring 2014 FieldSpec 

collection period; 400 – 2500 nm. 
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Figure 5.2-3: Mean spectral signatures of live vegetation groups during the Autumn 2014 

FieldSpec collection period; 400 – 2500 nm.    
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(Kalacska and Bell 2006; Kalacska et al. 2009; LeBlanc et al. 2014; Norton 2010). 

 To enable temporal comparisons and maximize inter-season comparisons, spectral samples 

were separated by season (Spring and Autumn) and grouped in four ways: 1) combined human 

burial vegetation (spectra from all three human burials), 2) control unit vegetation, 3) combined 

disturbed vegetation (spectra from all three human burials and the control unit), and 4) undisturbed 

vegetation. Depending on the requirements of each method, group comparisons were made as a) 

the combined human burial group (all human burials) and the undisturbed group, b) the combined 

disturbance group (all human burials and the control unit) and the undisturbed group, and c) the 

combined human burial group, the control group, and the undisturbed group. Respective 

comparisons are explained in each section. Combining data into these groups was necessary 

because, due to uneven sunlight throughout the study area caused by the tree canopy, some sample 

sizes are too small for separate analysis.  

 Spectra were first analyzed in ENVI using the Spectral Angle Mapper (SAM) tool and the 

Spectral Information Divergence (SID) tool to establish quantitative support for separating 

dependent variables into discrete categories for statistical analysis. Statistical analyses between 

those groups include binary logistic regression (BLR) and discriminant function analysis (DFA) 

in SPSS (IBM, Inc.) and partial least squares regression (PLS) using the 'plsdepot' package 

(Sanchez 2012) in R (R Core Team 2015), for selecting wavelengths to differentiate between two 

or more dependent variables. For both Spring and Autumn live vegetation datasets, 70% of the 

cases are used to train each BLR and DFA model, and 30% are used to validate their performance. 

For PLS, 100% of the data are used to confirm the contribution of variables selected by the BLR 

and DFA statistical methods. 
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 Multiple analyses were performed to triangulate results because the spectral data include 

over 1800 independent variables and are too highly dimensional for most statistical tests to 

adequately manage. Additionally, there are more independent variables than dependent variables 

and most independent variables are collinear; data qualities for which there is no perfect-fit 

statistical test.   

5.2.2.1 Spectral Angle Mapper and Spectral Information Divergence 

 Spectral Angle Mapper (SAM) is an analytical tool in ENVI (Harris Corp.) that treats each 

spectral signature like a vector in n-dimensional space, where n equals the number of spectral 

bands along each signature. The program calculates the angle between two vectors and reports the 

measurement in radians where smaller values indicate spectral similarity, and larger values 

indicate difference (Kruse et al. 1993). Remote sensing convention tends to treat two spectra with 

SAM values ≥ 0.10 radians as two distinct classes, though there is no available documentation to 

account for the significance of this threshold (Schwarz and Staenz 2001), so values are simply 

treated as relative difference for this study.  

 Spectral Information Divergence (SID) is a tool that calculates the probability that each 

spectral signature is equal to that of a reference spectrum. Probability distributions are used to 

calculate overall similarity between groups where, like Spectral Angle Mapper, smaller divergence 

values indicate spectral similarity and larger values indicate greater spectral divergence (Du et al. 

2004). Similar to SAM, convention states the SID classification threshold value is ≥ 0.05, but this 

value is not empirically supported (Schwarz and Staenz 2001).  

 For SAM and SID, individual vegetation reflectance spectral profiles from a) combined 

human burials (all three burials) and b) general disturbance (all burials and control) were compared 

to the mean undisturbed spectrum. Separate comparisons were made for Spring and Autumn data 
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sets, and each comparison was made by its full spectrum (400 – 2500, 1803 bands) and as spectral 

regions: blue (400 – 500 nm), green (500 – 600), red (600 – 750 nm), near infrared (750 – 1330 

nm), and shortwave infrared (1440 – 1800, 1990 – 2500 nm). 

5.2.2.2 Binary Logistic Regression  

 Binary logistic regression (BLR) is a statistical method for using independent variables to 

estimate the probability of membership of a binary categorical group, or dependent variable. The 

test measures the relationship between a dependent variable and one or more independent variables 

using a logistic function (Menard 2002), and has been used for predictive modeling of prehistoric 

human land use using multivariate geospatial data, including remotely sensed data (Vaughan and 

Crawford 2009). The logistic regression model is different from a linear regression model in that 

it will tolerate categorical dependent variables. All 1803 variables (bands) were entered stepwise, 

and are each evaluated based on their contribution to the overall model. If a wavelength 

significantly improves the model, it is retained; if a wavelength does not significantly improve the 

model, it is removed.  

 For both Spring and Autumn live vegetation reflectance data sets, comparisons were made 

between a) the combined human burial group (all human burials) and the undisturbed group, and 

b) the combined disturbance group (all human burials and the control unit) and the undisturbed 

group. Models were trained using wavelengths in the full spectral range  (400 – 2500 nm) and 

wavelengths within a spectral subset that includes only the spectral range of the airborne 

hyperspectral sensor used to collect imagery in this study (418 – 919 nm). Using this strategy, six 

possible models for each season were evaluated, for a total of twelve possible models. For all BLR 

comparisons, 70% of the samples were used to train each model, and 30% were used to validate 

the model's performance.  
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 The results of training a logistic regression model produce a constant and one or more 

variable coefficients that are applied to reflectance values at specific wavelengths. Regression 

Formula 5.2-1 is used for validation sample classification, where α is a scalar coefficient and λ is 

the reflectance value of an associated wavelength. Applying this formula to a reflectance spectrum 

results in a value ranging from 0.0 – 1.0, where values ≥ 0.50 are classified as a burial or general 

disturbance, depending on the model, and values < 0.50 are classified as undisturbed.  

Formula 5.2-1:  p = 1/1+e-(Constant + α1*λ1 + α2*λ2 + … + αn*λn)     

5.2.2.3 Discriminant Function Analysis 

 Like logistic regression, discriminant function analysis (DFA) is a statistical method for 

predicting membership of two or more categorical groups. The procedure generates functions that 

maximize group differences by creating linear combinations of independent variables (Quinn and 

Keough 2002). The maximum number of functions is equal to n-1 groups or n predictor variables, 

whichever is less. All 1803 wavelength variables are entered stepwise, and evaluated based on 

their contributions to the overall model. If a wavelength significantly improves the model, it is 

retained; if a wavelength does not significantly improve the model, it is removed. 

 For both Spring and Autumn live vegetation reflectance data sets, comparisons were made 

between a) the combined human burial group (all human burials) and the undisturbed group, b) 

the combined disturbance group (all human burials and the control unit) and the undisturbed group. 

A separate attempt was made to produce a three-class model using the combined human burial 

group, the control unit, and the undisturbed group, which instead produced a binary result that is 

presented in Chapter 6. Models were trained using wavelengths in the full spectral range  (400 – 

2500 nm) and wavelengths within a spectral subset that includes only the spectral range of the 

airborne hyperspectral sensor used to collect imagery in this study (418 – 919 nm). Using this 
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strategy, six possible models for each season were evaluated, for a total of twelve possible models. 

For all comparisons, 70% of the samples were used to train each model, and 30% were used to 

validate the model's performance.   

 The training procedure generates two sets of coefficients that are both used in Formula 

5.2-2: 1) discriminant function coefficients for each category, which produce a binary result for 

each validation sample (True/False), and 2) classification function coefficients, which produce a 

continuous result for each 'True' binary result.   

 Formula 5.2-2:  D = Constant + α1*λ1 + α2*λ2 + … + αn*λn      

 

 The two sets of discriminant function coefficients are applied to each new spectrum in the 

30% validation sample. Each spectrum is classified depending on whichever of the two results is 

largest. For instance, if a model is designed to separate between human burial vegetation and 

undisturbed vegetation, two equations are applied to each test case – D1 (human burial vegetation) 

and D0 (undisturbed vegetation). If the result of applying equation D0 to a reflectance spectrum is 

greater than that produced by applying equation D1 to the same reflectance spectrum, then the 

spectrum is classified as undisturbed vegetation. If the opposite is true, then the spectrum is 

classified as human burial vegetation. This formula is used to first make a binary classification, 

followed by the application of a separate set of discriminant function coefficients applied only to 

the spectra classified as D1, revealing variation among spectra that have been classified as either 

human burial vegetation or generally disturbed vegetation.  

5.2.2.4 BLR and DFA Model Development Workflow 

 The BLR and DFA model development workflows are the same (Figure 5.2-4), where 

70% of Spring and Autumn data sets are used to train binary statistical models and the remaining  
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MODEL DEVELOPMENT WORKFLOW – TERRESTRIAL SPECTRAL DATA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2-4: Diagram of the predictive model workflow. Includes training, validation, and testing 

of FieldSpec data.  
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30% are used to validate the same models. If a model correctly classifies the 70% training data set 

for both groups at ≥ 50.0%, the model is advanced to the remaining 30% validation sample. 

Successful validation requires meeting the same ≥ 50.0% performance standard for the 70% 

sample as well as the 30% sample. Successfully validated models are later advanced to spectral 

imagery as a preliminary assessment of terrestrial model scalability to canopy spectra.  

5.2.2.5 Partial Least Squares Regression 

 When data contain a large number of predictor variables, traditional regression methods 

are likely to develop a model that fits training data perfectly, but performs poorly at predicting 

new data; an issue known as over-fitting. Additionally, regression methods are often intolerant of 

multicollinearity among predictor variables, where each variable is highly correlated with each 

other. Partial Least Squares Regression (PLS) is a useful approach for evaluating datasets that 

contain more independent variables than recorded samples (high dimensionality), but most 

importantly, in scenarios where independent variables are collinear. These advantages make PLS 

a popular method to support spectral research, as spectral data usually violate the statistical 

assumptions of multicollinearity and high dimensionality. PLS also permits dependent variables 

to be categorical. PLS combines concepts of principle components analysis and linear regression 

by reducing both dependent and independent variables to a smaller set of uncorrelated factors, to 

which PLS performs a least squares regression (Geladi and Kowalski 1986; Hoskuldsson 1988).

 The PLS routine explains variance within data by constructing new independent variables, 

known as factors, as linear combinations of the original variables. PLS factors consider the 

relationship between dependent and independent variables by explaining data variability for both 

variables (Geladi and Kowalski 1986; Hoskuldsson 1988). Principle component analysis (PCA), 

which is another common analytical approach, only explains variability of independent variables 
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and largely ignores the dependent variable, which is why PCA is not used in this study. As a result, 

PLS factors can model the dependent-independent variable relationship with fewer factors than 

would PCA (Maitra and Yan 2008).  

 For both Spring and Autumn live vegetation reflectance data sets, comparisons were made 

between a) the combined human burial group (all human burials) and the undisturbed group, b) 

the combined disturbance group (all human burials and the control unit) and the undisturbed group, 

and c) the combined human burial group, the control unit, and the undisturbed group. PLS factors 

were derived using wavelengths in the full spectral range  (400 – 2500 nm) and wavelengths within 

a spectral subset that includes only the spectral range of the airborne hyperspectral sensor used to 

collect imagery in this study (418 – 919 nm), for a total of twelve comparisons. For all 

comparisons, 100% of the samples were used to derive each PLS factor. 

 A PLS analysis generates values of variable importance (or variable influence on 

projection, VIP) where the first factor VIP tends to explain the most variance in the data set. PLS 

output was limited to a set of four factors for each test, where in all tests the first factor explained 

at least 83.4% data variance. It is convention to exclude variables with a VIP score less than 1.0 

since this value is the mean of squared VIP scores, though this approach still retains a large number 

of predictor variables (wavelengths). Since PLS is used in this research to support BLR and DFA 

variable inclusion, rather than as the sole method for wavelength selection, the focus of PLS results 

and discussion is on the extent of agreement between ≥ 1.0 VIP values and BLR and DFA model 

variables.  
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5.3 Airborne Hyperspectral Imagery 

 While the analytical emphasis of this dissertation is on terrestrial data sets, this section 

discusses the methodology used to collect, process, and analyze airborne hyperspectral imagery 

(HSI) to address Objective 3, which is to evaluate the potential scalability of terrestrial findings in 

airborne data. Airborne hyperspectral imagery was collected by the NASA Goddard Space Flight 

Center (GSFC) using the Headwall Hyperspec (Headwall Photonics, Inc.) is an imaging 

spectrometer in Goddard's LIDAR, Hyperspectral, and Thermal Imager (G-LiHT) airborne sensing 

system (Cook et al. 2013).    

 The spatial resolution of HSI is largely determined by aircraft altitude, but at any altitude, 

resolution is still lower than that of the ground-based point spectra, such as the data collected using 

the FieldSpec® 4 Standard-Res Spectroradiometer (PANalytical, Boulder, CO). The primary 

advantage of HSI over ground-based sensors, however, is that it permits rapid collection of large 

swaths of land and does not necessarily require personnel to physically operate on the ground. The 

relative disadvantage of HSI, compared to ground-based spectra, is a lower spectral resolution, 

which is discussed below. 

5.3.1 Airborne Hyperspectral Imagery Collection and Processing  

 The Hyperspec sensor is designed for aircraft-mounted overhead collections, and covers a 

spectral range from 418 - 919 nm in 114 resampled spectral bands each spaced at approximately 

4.5 - 5 nm (Figure 5.3-1). Images were collected as at-sensor radiance within one hour of solar 

noon on 23 March, 17 April, and 07 May 2015 and delivered by NASA-GFSC at 1.0 m pixel 

ground sample distance (GSD) for March and April collections and 0.5 m resolution for the May 

collection. All images were georeferenced by NASA using GPS/INS flight data and align with  
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Figure 5.3-1: The approximated spectral response for the Headwall Hyperspec imaging 

spectrometer. Wavelength centers and bandwidths at full-width at half-maximum (FWHM) were 

fitted to Gaussian curves for each of the 114 bands to demonstrate the instrument spectral 

resolution, which is lower than terrestrial spectra and higher than the satellite multispectral 

imagery used in this study. 
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each other to maximum of approximately one-meter spatial offset. Timing of data collection was 

constrained by the availability of NASA resources and personnel on short notice due to an 

unforeseen change in data partners. Under different circumstances, planned collections would 

likely have been distributed more evenly through the calendar year.  The effects of atmospheric 

scattering were minimized by collecting reflectance spectra of airport tarmac ground targets, both 

before take-off and after landing, for each flight. These reflectance spectra were used to apply an 

empirical line correction that converted at-sensor radiance to surface reflectance. A standard 

resolution FieldSpec 4® spectroradiometer was used for this purpose, and was calibrated 

immediately before each data collection using a 3.62-inch diameter Spectralon® white reference 

panel. 

5.3.2 Airborne Hyperspectral Imagery Analysis 

 Hyperspectral imagery analysis involved two separate approaches. First, the two scalable 

DFA models developed using FieldSpec data were applied directly to HSI using ENVI. The second 

approach uses the built-in ENVI spectral index function to calculate seven vegetation indices. A 

third approach, where tree canopy directly above the known burial locations is defined as a fixed 

region of interest (ROI) to be compared to a nearby known undisturbed ROI, was considered but 

not performed. This step was omitted because of the ambiguity in the association between area 

canopy tree roots in relation to burials, resulting in further uncertainty in whether a user-defined 

ROI will align with a potentially affected canopy sample. 

5.3.2.1 Statistical Models 

 Seven statistical models were developed using field spectra: two binary logistic regression 

(BLR) models and five discriminant function (DFA) models. Of the seven models, only DFA 

models 4 and 9 can be applied to hyperspectral imagery because their wavelength variables are all 
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contained within the 418 – 919 nm spectral range of the Hyperspec imagery. The remaining five 

models incorporate shortwave infrared bands that are not covered by the HSI sensor and, therefore, 

cannot be testing using HSI. DFA models 4 and 9 were input as ENVI Band Math expressions 

(Formulas 5.3-1 and 5.3-3) and applied to each full reflectance image. Binary results are then used 

as an image mask when applying the second set of formulas (Formulas 5.3-2 and 5.3-4) to reveal 

continuous variation among image pixels classified as human burials or general disturbance.     

 

DFA Model 4:  

Binary (TRUE/FALSE, 1/0) Human Burial Classification, if: 

 Formula 5.3-1: D1 = -1.866 + 19.252*R707 > D0 = -4.335 + 33.926*R707  

 

Continuous Among TRUE (1) Results from Formula 5.3-1:  

 Formula 5.3-2: D = -2.258 + 12.570*R707 

 

 

DFA Model 9:  

Binary (TRUE/FALSE, 1/0) Disturbance Classification, if:  

 Formula 5.3-3: D1 = -2.004 + 19.555*R708 > D0 = -4.294 + 32.412*R708 

 

Continuous Among TRUE (1) Results from Formula 5.3-3:  

 Formula 5.3-4: D = -2.260 + 12.078*R708 

 

5.3.2.2 Vegetation Indices 

 Spectral indices can be used to emphasize vegetation anomalies (e.g., stress) in airborne or 

satellite imagery. Vegetation indices have been developed for the purpose of monitoring vegetation 

by estimating concentrations of pigments correlated with vegetation health (Curran et al. 1995; 

Penuelas et al. 1995) or estimating vegetation nutrient concentration (Rouse et al. 1973; Sims and 

Gamon 2002). Indices vary in their rationale and complexity, but they generally play at least one 
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band known to be associated with a specific vegetation phenomenon against a different band that 

is not.  

 Dozens of vegetation indices are used in vegetation health studies, so to maintain the scope 

of this analysis, indices applied to HSI are limited to those that incorporate a spectral wavelength 

within ±5 nm of a wavelength included in a statistical model derived using terrestrial spectra, and 

indices used in published forensic remote sensing work. Leblanc et al. (2014) used three indices – 

NDVI, SGI, and SIPI – in a study evaluating remote sensing to identify clandestine pig burials. In 

addition to these indices, their results depend on shortwave infrared spectral data to isolate a clay 

signature. However, shortwave infrared spectra are not available for this dissertation research and, 

therefore, cannot be evaluated at this time. The seven vegetation indices evaluated in the current 

study include NDVI, SGI, and SIPI, which are presented in Table 5.3-1.  

5.4 Satellite Multispectral Imagery 

 This section discusses the methodology use to collect, process, and analyze satellite 

multispectral imagery to evaluate the potential scalability of terrestrial findings in satellite data 

(Objective 3). Much like airborne hyperspectral imagery (HSI), satellite multispectral imagery 

(MSI) is used to determine whether spectral anomalies observed in terrestrial data are also 

observable using long-range sensors. Satellite images are among the most cost-effective remote 

sensing data sets, and are often collected and delivered to consumers within a day or two. An added 

benefit of incorporating MSI in this study is that archived baseline data are usually available. 

Companies that own imaging satellites tend to collect and archive imagery even if there is no 

current demand, because many researchers who work with satellite imagery use MSI for landscape 

change comparison.      
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Table 5.3-1: Spectral indices used to estimate vegetation health in HSI collections; (*) denotes 

indices used by Leblanc et al. (2014). Formulas for calculating vegetation indices from reflectance 

spectra are available in Appendix D, Tables D.1 – D.3. 

Index Abbreviation Estimates 

Normalized Difference Vegetation Index 

Red Edge NDVI 

Modified Red Edge Simple Ratio Index 

Modified Red Edge NDVI  

Sum Green Index 

Red Edge Position Index 

Structure Insensitive Pigment Index 

NDVI* 

RENDVI 

MRESRI 

MRENDVI 

SGI* 

REPI 

SIPI* 

Vegetation Health 

Vegetation Health 

Vegetation Health 

Vegetation Health 

Vegetation Pigment 

Chlorophyll 

Carotenoid Pigment 

 

 The primary advantage of MSI over ground-based or airborne sensors is that it provides 

the most rapid collection rate. Additionally, orbiting sensors are not subject to the same degree of 

spatial error caused by turbulence that aircraft-based sensors must account for during a flight. The 

significant disadvantage of using MSI is that the spatial and spectral resolutions cannot compete 

with that of either terrestrial or airborne collections. The best performing commercial satellite 

multispectral scanners offer up to 1.24 m ground sample distance (GSD, or pixel size), and eight 

spectral bands. 

5.4.1 Satellite Multispectral Imagery Collection and Processing 

 Four multispectral satellite images are used in this study that span from July 2012 – March 

2015 (Table 5.4-1). Two satellite sensors are used to collect imagery for this study: WorldView-

2 and WorldView-3 (DigitalGlobe, Inc.). Both sensors are sun- synchronous, meaning that image 

collections by each sensor are made at approximately the same local time. Consistency of image 

acquisition time helps limit variation between images collected at different dates with the same 

sensor due to solar geometry. WorldView-2 and WorldView-3 are 8-band multispectral scanners 
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that orbit Earth at 770 and 617 km, respectively. These altitudes result in respective 1.84 and 1.24 

m multispectral GSD, at nadir.  

 Sensor specifications for WorldView-2 are presented in Table 5.4-2 and Figure 5.4-1, and 

for WorldView-3 in Table 5.4-3 and Figure 5.4-2. In addition to the four images included in this 

analysis, several more satellite images were made available for this work, but they were either 

collected during poor atmospheric/weather conditions or collected within days of the images that 

are included in this study. Images with the best atmospheric conditions and viewing geometry were 

selected from contemporaneous collections. MSI scenes were radiometrically calibrated, then 

corrected for the effects of atmospheric scattering and converted to reflectance using the Fast Line-

of-Sight Atmospheric Analysis of Hypercubes (FLAASH) tool in ENVI. Reflectance images were 

orthorectified using scene-specific rational polynomial coefficients (RPCs).  

5.4.2 Satellite Multispectral Imagery Analysis 

5.4.2.1 Vegetation Index 

 The two DFA models developed using terrestrial spectral data were not applied to MSI 

because the Red Edge band is too wide (40 nm) to isolate the narrow spectral feature located at 

707/708 nm. Also due to the width of MSI spectral bands, only one vegetation index (Normalized 

Difference Vegetation Index) among the seven indices performed using HSI, can also be 

performed using MSI, so the analysis is limited. The image co-registration process yielded poor 

results, with spatial offset between images at 1m or more. Therefore, MSI images were not 

compared to each other as part of a change comparison due to a lack of confidence in the alignment 

of burial location pixels.   
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Table 5.4-1: Satellite imagery used in this dissertation research, chronological; dashed line 

indicates boundary between baseline and post-burial collections. 

Acquisition Date Sensor 

30 Jul 2012 WorldView-2 

29 Nov 2012 WorldView-2 

04 Mar 2013 WorldView-2 

25 Mar 2015 WorldView-3 
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Table 5.4-2: WorldView-2 sensor spectral and spatial specifications; 770 km altitude. 

WV-2 Band  Spectral Range (nm) Spectral Center (nm) GSD at Nadir (m)  

Panchromatic 450 – 800 - 0.46 

Coastal  400 – 450 427.00 1.84 

Blue 450 – 510 478.50 1.84 

Green 510 – 580 546.00 1.84 

Yellow  585 – 625 608.00 1.84 

Red 630 – 690 659.00 1.84 

Red Edge 705 – 745 724.00 1.84 

NIR1 770 – 895 833.00 1.84 

NIR2 860 – 1040  949.50 1.84 

 

 

 

Figure 5.4-1: WorldView-2 spectral response for each band. 

 



  

101 

 

Table 5.4-3: WorldView-3 sensor spectral and spatial specifications; 617 km altitude. 

WV-2 Band   Spectral Range (nm) Spectral Center (nm) GSD at Nadir (m)  

Panchromatic 450 – 800 - 0.31 

Coastal  400 – 450 425.50 1.24 

Blue 450 – 510 481.00 1.24 

Green 510 – 580 546.50 1.24 

Yellow  585 – 625 604.50 1.24 

Red 630 – 690 661.00 1.24 

Red Edge 705 – 745 723.50 1.24 

NIR1 770 – 895 832.00 1.24 

NIR2 860 – 1040  948.00 1.24 

 

 

 

 

 

Figure 5.4-2: WorldView-3 spectral response for each band. 
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5.5 Terrestrial LIDAR  

 This section discusses the methodology used to collect, process, and analyze terrestrial 

light detection and ranging (LIDAR) elevation data. The terrestrial LIDAR analysis addresses 

Hypotheses 2 and 4 by evaluating human burial and non-burial surface elevation change over time. 

Specifically, hypotheses 2 and 4 state: 

2. Ground surfaces at burials, the control unit, and undisturbed locations exhibit differences 

as measured by net elevation gain or loss. 

4. Ground surfaces associated with burials, the control unit, and undisturbed locations 

exhibit differences in elevation change over a 21-month period.   

 Terrestrial light detection and ranging (LIDAR) is used in this study to establish a localized 

pattern of elevation change at the surfaces of each experimental burial and the control unit. 

Terrestrial sensors are operated on the ground within the study area environment. The most 

accurate terrestrial LIDAR data are collected using stationary scanners tied to a known geographic 

location. The tripod-mounted scanner rotates horizontally, emitting pulses that reflect off object 

surfaces within the environment. Upon encountering objects, pulses are returned to the sensor. The 

precise positions of those interactions are recorded as three-dimensional point data, and are 

calculated as a function of pulse direction and travel time.  

 The orientation of terrestrial LIDAR scanners results in a point cloud with an uneven point 

distribution where point density decreases as distance from the sensor increases. Uneven point 

distribution can be overcome by performing scans from multiple positions throughout the 

environment to densify the point cloud and fill in data gaps behind solid objects in the scene that 

interrupt pulse paths. Multiple scans can be aligned to each other to produce a larger point cloud 
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that represents the entire environment. The advantage of a multi-scan terrestrial LIDAR strategy 

is that unlimited scans can be performed to generate a point cloud as dense as is desirable for any 

practical application. This study took advantage of that capability to generate sub-centimeter point 

density at each burial surface to monitor surface elevation changes over time. Terrestrial LIDAR 

data are used to address the question of whether burial surface elevation change exists, and if so, 

whether change is localized (burial surfaces only) or generalized (entire study area).      

5.5.1 Terrestrial LIDAR Data Collection and Processing 

 Terrestrial LIDAR data were collected using a Riegl VZ-400 tripod-mounted laser scanner 

(Riegl USA, Orlando, FL). The sensor is designed to collect three-dimensional points in panoramic 

fashion as it rotates horizontally on a stationary platform. Scanner accuracy and precision are 

reported to be ±5 mm and ±3 mm, respectively, for measurements up to 600 m at a rate of up to 

122,000 measurements per second at 1550 nm. The scanner's vertical and horizontal fields-of-view 

are 100˚ (+60˚/-40˚ off-horizon) and 360˚, respectively. Beam divergence is 0.35 (1/e2), and 

corresponds to an increase of 35 mm in beam diameter per 100 m distance.   

 For clarity, this section will discuss entire point clouds that are collections of individual 

scans made from different scan positions. LIDAR data collections and point cloud sizes are 

presented in Table 5.5-1. A terrestrial laser scanner was placed in at least three positions 

throughout the study area for each data collection, Figure 5.5-1, with all scan positions keeping at 

least one experimental human burial in the sensor's field-of-view. Cylindrical reflectors were 

placed throughout the study area, with a minimum of three in view of the scanner at all scan 

positions. Reflectors help tie scans to each other through triangulation so they can be later merged 

into one comprehensive point cloud. Additional steps are taken to more precisely align scans to  
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Table 5.5-1: Point cloud sizes for each terrestrial LIDAR data collection. 

Collection Date # Points, Entire Cloud # Points, Limited to Fence Line/  

<1m AGL 

12 February 2013 44,809,070 33,277,648 

15 February 2013 56,111,989 31,975,234 

03 June 2013 40,838,607 11,168,278 

20 November 2014 119,214,901 40,143,940 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5-1: Diagram of a hypothetical terrestrial LIDAR survey; multiple scan 

positions to fill in 3-D data behind obstructions. (Image credit: Don Wood/Knoxville 

New Sentinel, modified by the author, used with permission). 
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each other using the Iterative Closest Point (ICP) point cloud registration algorithm, where this 

initial correction is inadequate. 

 Under optimal field conditions, GPS data can be collected to register point clouds to global 

coordinate space. To ensure precise registration, it is best to allow the GPS system to gather data 

for several hours then directly relate those data to the sensor. Due to time and weather constraints, 

only the baseline collection was tied to coincident GPS data, which means that all subsequent 

collections are manually co-registered, or aligned, to that first collection. Alignment algorithms 

perform well enough to reconcile the remaining collections with a high degree of confidence, and 

are described in this section.  

5.5.1.1 Point Cloud Alignment 

 Scans made from the same position are well-aligned to each other, but scans between scan 

positions often need a 'nudge' to precisely align them. Alignment, or point co-registration, is 

important because if there is an offset to one scan, the subsequent ground point filtering process 

will be intolerant of that offset. For instance, in the case of a vertical offset, filtering algorithms 

will classify an artificially elevated blanket of ground points as non-ground points, unnecessarily 

removing hundreds or thousands of useful points that are representative of the ground surface. 

Point registration is performed using the Iterative Closest Point (ICP) algorithm (Besl and McKay 

1992) in CloudCompare (Figure 5.5-2).  

 To align point clouds, one point cloud is treated as a reference for the remaining point 

clouds that will require a rigid transformation. The first scan of the baseline collection is registered 

to a global coordinate system using coincident GPS data, and the others are not, therefore the 

subsequent scans are registered to the first scan. The ICP algorithm assumes all objects in a scene 

are stationary and rigid, but wind at the study area causes objects in the scene to move and must  
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POINT CLOUD ALIGNMENT WORKFLOW – TERRESTRIAL LIDAR 

 

 

 

 

 

 

 

Figure 5.5-2: Diagram of the point alignment workflow. 
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be temporarily removed, or they will result in poor overall point cloud alignment. Point cloud 

subsets containing only rigid and stationary objects in the scene are used to calculate 

transformation matrices. A transformation matrix is calculated by measuring the distances between 

points within point cloud subsets and relating them to the point distances measured in the reference 

point cloud (CloudCompare). Transformations include translation, rotation, and scale. If subset 

alignment is satisfactory, the transformation matrix is applied to the entire point cloud. If results 

need improvement, further iterations are performed. The results of this process produce well-

aligned scans that can be merged as one point cloud.  

5.5.1.2 Point Filtering  

 Laser scanners emit millions of pulses per scan that are returned – in full or in part – to the 

scanner upon encountering objects in their path. In the study area, objects can be any physical 

material such as a tree, rock, or fence. The sensor does not recognize these materials by category; 

it records the three-dimensional coordinates at the location of pulse/object interaction. For this 

reason, sensor geometry becomes important for determining point classification. Differing 

geometries of terrestrial and airborne LIDAR datasets are a central point of interest for this study 

because most ground point filtering methodologies rely on assumptions of point-to-scanner 

orientation or the number of times a pulse is returned to the sensor. For stratified environments, a 

first return to an aircraft-based sensor is usually canopy and a last return is usually ground. Unlike 

in airborne LIDAR, returns in terrestrial LIDAR are less useful than location values because any 

return can be a ground point if a pulse travels parallel, rather than perpendicular, to terrain.  

 There is a lack of comprehensive terrestrial LIDAR filtering tools available to the public. 

Of those that do exist, few are sufficiently concerned with removing low-lying vegetation, which 

is a significant problem for this application because vegetation obscures burial surfaces. In 
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response to the lack of adequate filtering tools, an existing Block Minimum algorithm originally 

developed for airborne LIDAR data (Wack and Wimmer 2002) was modified slightly for use with 

terrestrial LIDAR data in this research. After all point clouds are aligned, filtering is performed to 

reduce them to mostly ground points (Figure 5.5-3). Before filtering begins, the point cloud is 

cropped to remove points located outside the horizontal boundary of the study area fence line. QT 

Modeler is then used to approximate an initial ground surface by selecting the lowest point in each 

2 m grid cell, which is reduced from 9 m due to increased point density. Points located at a height 

greater than 1 m above this surface are removed, a modification that eliminates most of the large 

vegetation and fencing in the scene and narrows the range of elevation values for more accurate 

surface approximations in later steps. To adapt the Block Minimum algorithm for terrestrial data, 

remaining points are thinned using LAStools (rapidlasso) to produce a point cloud that includes 

only the single lowest elevation point in every 5 cm grid cell. Since point density is highest in the 

circular area immediately surrounding a terrestrial scanner, thinning simulates a more even point 

distribution seen in airborne collections.   

 The thinned point cloud is then used to approximate a new ground surface at 50 cm GSD. 

Approximating a new surface is performed because the thinned point cloud now contains a higher 

proportion of ground points than the original point cloud, meaning the new approximated surface 

is more reliable for filtering than the first. Height statistics for the new surface are calculated and 

used to remove points with height values greater than the remaining point cloud's own statistical 

mean, plus one standard deviation. The point cloud is then visually inspected to verify that no 

obvious non-ground points remain in the data set and no large data gaps were created during the 

process. Generally, the method performs well after the first iteration, but the process can be   
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POINT FILTERING WORKFLOW – TERRESTRIAL LIDAR 

 

 

 

 

 

 

 

 

 

Figure 5.5-3: Diagram of the Block Minimum point filtering workflow. 
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repeated if needed. The modified algorithm is straightforward, performs well for removing low-

lying vegetation, is independent of return values, and its geometric assumptions can be applied to 

terrestrial and airborne point cloud data.  

5.5.2 Terrestrial LIDAR Data Visualization 

 The experimental burials are presented as images in two forms: 1) as absolute elevation 

measurements at each of four collection dates, and 2) as elevation changes over time (Figure 5.5-

4), where each of the absolute elevation images are subtracted from each other to reveal net 

changes between each collection date. Elevation images and change images were run through the 

Sky-View Factor surface visualization tool (Kokalj et al. 2011; Zaksek et al. 2011), which excels 

at highlighting subtle features in variable terrain. The method measures the percentage of sky that 

is visible from each pixel location and accounts for visual obstructions within a user-specified 

radius. The radius used for this research is 2.25 m, to allow all burial surface pixels to 'see' beyond 

their respective burial extents in as many directions as possible. The hypotenuse of the largest 

burial feature is 4.47 m. Therefore, the radius is set to approximately one half that length so the 

visibility of the centermost pixels of the largest features reach their own burial surface extents 

where relevant topographic outliers would be anticipated, if they exist. 

 Localized elevation changes are emphasized using density slicing, a tool in ENVI that 

allows the user to highlight pixels within user-specified value ranges. Density slicing is used in 

this research strictly as a visualization tool to emphasize distinctive spatial clustering at disturbance 

feature locations. Values used to define ranges of elevation change at these locations are extracted 

from change images at regions of interest (ROI), i.e., control unit and burial surfaces, and the same 

values are highlighted throughout each image. Density slices help illustrate that change values 
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ELEVATION CHANGE COMPARISONS – TERRESTRIAL LIDAR 

 

 

 

 

 

 

 

 

Figure 5.5-4: Elevation change comparisons, terrestrial data set pairings; blue comparisons make 

a baseline data availability assumption, orange comparisons do not. 

 

 

 

 

 

 

 

 

Baseline: 12 Feb. 2013 

Post-Burial: 20 Nov. 

2014 

Post-Burial: 03 Jun. 

2013 

Post-Burial: 15 Feb. 

2013 

Baseline: 12 Feb. 2013 

Post-Burial: 20 Nov. 

2014 

Post-Burial: 03 Jun. 

2013 

Post-Burial: 15 Feb. 

2013 



  

112 

 

present at burial surfaces are unique to those specific locations and are not the result of uniform 

site processes.  

 The 15 February 2013 elevation data set analysis focuses on the control unit and the single 

and triple graves. At the time the scans were taken, the grave containing six-bodies had not been 

completely backfilled. 

5.6 Airborne LIDAR 

 While the analytical emphasis of this dissertation is on terrestrial data sets, this section 

discusses the methodology used to collect, process, and analyze airborne LIDAR data. Airborne 

LIDAR data are used to address Objective 3, which is to evaluate the potential scalability of 

terrestrial findings in airborne data.  

 If the terrestrial LIDAR dataset establishes that burial surfaces undergo spatially clustered 

elevation changes that are observable at the ground surface at different times, then airborne LIDAR 

can be used to help determine whether those elevation change patterns are also observable using 

more remote sensors. The geometry of airborne LIDAR is inherently different from that of 

terrestrial LIDAR because the airborne sensor is positioned overhead for perpendicular viewing 

from a mobile platform, rather than panoramic viewing from a stationary platform. However, like 

the terrestrial LIDAR approach, multiple scans can help densify an airborne LIDAR point cloud. 

Since LIDAR pulses can pass between gaps in dense tree canopy, attempts were made to 

accumulate a dense ground point cloud across the entire study area to observe the clustered 

elevation change patterns, if observed, in terrestrial LIDAR.  
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5.6.1 Airborne LIDAR Data Collection and Processing 

 The airborne LIDAR data set includes four data collections (Table 5.6-1). The first 

collection was made by the Johns Hopkins University Applied Physics Laboratory (JHUAPL). 

The remaining three collections were made by NASA Goddard Space Flight Center (GSFC) 

Goddard's LIDAR Hyperspectral and Thermal Imager (G-LiHT) system to specifically 

accommodate this research.  JHUAPL's survey used an Optech Gemini (Teledyne Optech) laser 

scanner and GSFC used an Riegl VQ-480i (Riegl USA) laser scanner. Instruments are mounted to 

the underside of a piloted aircraft, and record three-dimensional points by rapidly scanning 

laterally as the aircraft passes overhead. The Optech Gemini, operated by JHUAPL, is a scanner 

with reported accuracy of ± 5 – 35 cm, depending on operating parameters. Dual beam divergence 

is 0.25 mrad (1/e) or 0.8 mrad (1/e). The Riegl VQ-480i is a scanner with reported accuracy of ± 

20 mm at 150 m range. Beam divergence is 0.3 mrad (1/e2).  

 The airborne LIDAR data analysis is limited to points contained within the study area 

fence, within which, points range from ground surface to canopy. The difference in tree canopy 

density at the time of each airborne collection is the primary driver of ground point density. For  

 

Table 5.6-1: Sample sizes for aerial LIDAR data collections; based on a study area of 3493 m2. 

Collection Date # Points, Limited to  

Fence Line/ <1m AGL 

# 'Ground' 

Points 

# Ground Points  

per m2 

18 September 

2014  

971,349 172,352 49.34 

23 March 2015 437,753 227,631 65.17 

17 April 2015 661,258 132,405 37.91 

07 May 2015 358,257 64,744 18.54 
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instance, the March 2015 collection contains the most ground points because canopy is at its lowest 

density, so more pulses could pass through to the ground surface. By contrast, April and May 2015 

collections contain the least ground points because canopy is at its highest density, and fewer 

pulses could pass through to the ground surface. The airborne LIDAR data sets include empty data 

patches at the ground surface throughout the study area for the September 2014 and April and May 

2015 collections. Despite making eight overhead passes from eight directions, there are few ground 

points – in some cases, zero – at the burial surfaces for the April and May collections, which means 

comparisons between full canopy collections and the minimal canopy March 2015 collection are 

effectively made between interpolated and actual elevation data. 

5.6.1.1 Point Cloud Alignment and Filtering  

 Airborne LIDAR data were subjected to the same alignment process described for 

terrestrial LIDAR, using CloudCompare (Figure 5.5-1). The iterative point filtering process is the 

same as that used for terrestrial LIDAR, where a ground surface is approximated using the full 

cloud with QT Modeler (Applied Imagery, Inc.) and points above a statistically-defined height 

above that surface are removed using QT Modeler (Figure 5.5-2).    

5.6.2 Airborne LIDAR Data Visualization 

 The study area is presented as images in two forms: 1) as elevations measurements at each 

of four collection dates, and 2) as elevation changes over time (Figure 5.6-1), where each of the 

absolute elevation images are subtracted from each other to reveal net changes between each 

collection date. Due to the low density of ground points at the burial surfaces in three of the four 

airborne LIDAR collections, neither Sky-View Factor nor density slices were used to visualize 

them, as those surfaces include interpolated, rather than actual, elevation values.   
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ELEVATION CHANGE COMPARISONS – AIRBORNE LIDAR 

 

 

 

 

 

 

 

 

Figure 5.6-1: Elevation change comparisons, airborne data set pairings. 
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CHAPTER 6: RESULTS 

 This chapter presents the results of all five remote sensing data sets analyses described in 

Chapter 5. Analytical emphasis is on the terrestrial spectra and terrestrial LIDAR data, which are 

used to establish vegetation reflectance spectral signatures and ground elevation change activity 

patterns.  

 Results for terrestrial spectral analysis include support for separating vegetation groups 

into categorical dependent variables using the Spectral Angle Mapper (SAM) and the Spectral 

Information Divergence (SID) tools in ENVI. SAM and SID results presented in this chapter are 

limited to combined human burial spectra (all three burials), combined disturbance spectra (all 

human burials and the control unit), and undisturbed spectra. Detailed SAM and SID results, 

including those of individual burials and the control, are presented in Appendix A. Results for 

statistical analysis of categorical dependent variables include models developed using binary 

logistic regression (BLR) and discriminant function analysis (DFA). Detailed statistical model 

development results are presented in Appendix B. Results also include a post hoc analysis of 

wavelength variables using partial least squares regression (PLS) to confirm variable inclusion in 

validated BLR and DFA models. Partial Least Squares results between additional pair comparisons 

that do not correspond with validated BLR or DFA model are presented in Appendix C.  

 The results of terrestrial spectral analyses are applied to airborne hyperspectral imagery 

(HSI), as were seven vegetation indices. One vegetation index was applied to satellite multispectral 

imagery (MSI). Each result is presented in this chapter using color ramping. Detailed vegetation 

indices and their calculations are presented in Appendix D. 
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 Terrestrial LIDAR results include absolute ground elevation images and elevation change 

images. Absolute elevation images are presented using traditional color ramping of elevation 

values and of Sky-View Factor results. Sky-View Factor is a tool that measures the percentage of 

sky that is visible from each pixel in a user-defined radius. Elevation change images are presented 

using traditional color ramping of elevation values and of Sky-View Factor results. Mean elevation 

changes for each burial and control are presented in Appendix E, which establish ranges for 

density slicing, a feature enhancement tool in ENVI that is used in this research to highlight image 

pixels that fall within a user-defined range to emphasize spatial clustering of specific values.  

 All terrestrial LIDAR images are presented at 5 cm GSD. Data resolutions of terrestrial 

LIDAR images ranging from 10 – 50 cm GSD are presented in Appendix F. All airborne LIDAR 

elevation images presented are 10 cm GSD. Results presented in this chapter are interpreted and 

discussed in Chapter 7.  

6.1 Terrestrial Spectra 

6.1.1 Spectral Angle Mapper and Spectral Information Divergence  

 Spectra were analyzed in ENVI using the Spectral Angle Mapper (SAM) tool and the 

Spectral Information Divergence (SID) tool to support the validity of separating vegetation groups 

into discrete categories for statistical analysis. For SAM and SID, individual vegetation reflectance 

spectral profiles from a) human burials and b) general disturbance (burials and control) were 

compared to the mean undisturbed vegetation spectrum. Separate comparisons were made for 

Spring and Autumn data sets, and each comparison was made by its full spectrum (400 – 2500) 

and as spectral regions: blue (400 – 500 nm), green (500 – 600), red (600 – 750 nm), near infrared 

(750 – 1330 nm), and shortwave infrared (1440 – 1800, 1990 – 2500 nm). The results of those 
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comparisons are presented in Figures 6.1-1 – 6.1-12. Individual bars in each figure represent the 

results of those comparisons; four total, one set of results for each season.  

 While the SAM and SID comparisons (each bar) are intended to be interpreted 

independently to support sorting the dependent variable into discrete categories, additional patterns 

are observable in comparisons between bars. For Figures 6.1-1 – 6.1-12, within and between 

seasonal comparisons of each set of four bars offers a cursory assessment of the spectral 

differences between burial and general disturbed vegetation (within seasons), as well as the 

potential effects of seasonality or burial age (between seasons). However, any apparent differences 

between SAM and SID results do not necessarily indicate a causal relationship between features 

or age/season and spectral difference.  

 SAM results for Burial and Undisturbed Spring vegetation spectra include an overall 

difference of 0.0965 radians across the full spectrum (Figure 6.1-1), with regional differences 

ranging from 0.0396 radians in the near infrared region (Figure 6.1-5) to 0.0885 radians in the red 

region (Figure 6.1-4). Results for Disturbed and Undisturbed Spring vegetation spectra include an 

overall difference of 0.0893 radians across the full spectrum (Figure 6.1-1), with regional 

differences ranging from 0.0356 radians in the near infrared region (Figure 6.1-5) to 0.0880 

radians in the red region (Figure 6.1-4). Results for Burial and Undisturbed Autumn vegetation 

spectra include an overall difference of 0.0914 radians across the full spectrum (Figure 6.1-1), 

with regional differences ranging from 0.0228 radians in the near infrared region (Figure 6.1-5) 

to 0.1245 radians in the shortwave infrared region (Figure 6.1-6). Results for Disturbed and 

Undisturbed Autumn vegetation spectra include an overall difference of 0.0934 radians across the 

full spectrum (Figure 6.1-1), with regional differences ranging from 0.0241 radians in the near 

infrared region (Figure 6.1-5) to 0.1250 radians in the shortwave infrared region (Figure 6.1-6).  
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Figure 6.1-1: SAM results of full spectrum comparisons between 1) Burial vs. Undisturbed 

vegetation, Spring, n=137; 2) Disturbed vs. Undisturbed vegetation, Spring, n=154; 3) Burial vs. 

Undisturbed vegetation, Autumn, n=128; and 4) Disturbed vs. Undisturbed vegetation, Autumn, 

n=133. Larger values indicate greater spectral difference between vegetation groups in each 

comparison. The conventional arbitrary discrete classification threshold for SAM is 0.10. 
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Figure 6.1-2: SAM results of blue region comparisons between 1) Burial vs. Undisturbed 

vegetation, Spring, n=137; 2) Disturbed vs. Undisturbed vegetation, Spring, n=154; 3) Burial vs. 

Undisturbed vegetation, Autumn, n=128; and 4) Disturbed vs. Undisturbed vegetation, Autumn, 

n=133. Larger values indicate greater spectral difference between vegetation groups used in each 

comparison. These results demonstrate a greater mean spectral difference in the blue region 

between Autumn samples (3 and 4) than Spring samples (1 and 2). The conventional arbitrary 

discrete classification threshold for SAM is 0.10. 
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Figure 6.1-3: SAM results of green region comparisons between 1) Burial vs. Undisturbed 

vegetation, Spring, n=137; 2) Disturbed vs. Undisturbed vegetation, Spring, n=154; 3) Burial vs. 

Undisturbed vegetation, Autumn, n=128; and 4) Disturbed vs. Undisturbed vegetation, Autumn, 

n=133. Larger values indicate greater spectral difference between vegetation groups used in each 

comparison. These results demonstrate a greater mean spectral difference in the green region 

between Autumn samples (3 and 4) than Spring samples (1 and 2). The conventional arbitrary 

discrete classification threshold for SAM is 0.10. 
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Figure 6.1-4: SAM results of red region comparisons between 1) Burial vs. Undisturbed 

vegetation, Spring, n=137; 2) Disturbed vs. Undisturbed vegetation, Spring, n=154; 3) Burial vs. 

Undisturbed vegetation, Autumn, n=128; and 4) Disturbed vs. Undisturbed vegetation, Autumn, 

n=133. Larger values indicate greater spectral difference between vegetation groups used in each 

comparison. These results demonstrate a greater mean spectral difference in the red region between 

Autumn samples (3 and 4) than Spring samples (1 and 2). The conventional arbitrary discrete 

classification threshold for SAM is 0.10. 
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Figure 6.1-5: SAM results of near infrared region comparisons between 1) Burial vs. Undisturbed 

vegetation, Spring, n=137; 2) Disturbed vs. Undisturbed vegetation, Spring, n=154; 3) Burial vs. 

Undisturbed vegetation, Autumn, n=128; and 4) Disturbed vs. Undisturbed vegetation, Autumn, 

n=133. Larger values indicate greater spectral difference between vegetation groups used in each 

comparison. These results demonstrate a greater mean spectral difference in the near infrared 

region between Spring samples (1 and 2) than Autumn samples (3 and 4).  The conventional 

arbitrary discrete classification threshold for SAM is 0.10. 
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Figure 6.1-6: SAM results of shortwave infrared region comparisons between 1) Burial vs. 

Undisturbed vegetation, Spring, n=137; 2) Disturbed vs. Undisturbed vegetation, Spring, n=154; 

3) Burial vs. Undisturbed vegetation, Autumn, n=128; and 4) Disturbed vs. Undisturbed 

vegetation, Autumn, n=133. Larger values indicate greater spectral difference between vegetation 

groups used in each comparison. These results demonstrate a greater mean spectral difference in 

the shortwave infrared region between Autumn samples (3 and 4) than Spring samples (1 and 2). 

The conventional arbitrary discrete classification threshold for SAM is 0.10. 
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Figure 6.1-7: SID results of full spectrum comparisons between 1) Burial vs. Undisturbed 

vegetation, Spring, n=137; 2) Disturbed vs. Undisturbed vegetation, Spring, n=154; 3) Burial vs. 

Undisturbed vegetation, Autumn, n=128; and 4) Disturbed vs. Undisturbed vegetation, Autumn, 

n=133. Larger values indicate greater spectral difference between vegetation groups used in each 

comparison. These results demonstrate a greater mean spectral difference across the full spectrum 

between Autumn samples (3 and 4) than Spring samples (1 and 2). The conventional arbitrary 

discrete classification threshold for SID is 0.05. 
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Figure 6.1-8: SID results of blue region comparisons between 1) Burial vs. Undisturbed 

vegetation, Spring, n=137; 2) Disturbed vs. Undisturbed vegetation, Spring, n=154; 3) Burial vs. 

Undisturbed vegetation, Autumn, n=128; and 4) Disturbed vs. Undisturbed vegetation, Autumn, 

n=133. Larger values indicate greater spectral difference between vegetation groups used in each 

comparison. These results demonstrate a greater mean spectral difference in the blue region 

between Autumn samples (3 and 4) than Spring samples (1 and 2). The conventional arbitrary 

discrete classification threshold for SID is 0.05. 
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Figure 6.1-9: SID results of green region comparisons between 1) Burial vs. Undisturbed 

vegetation, Spring, n=137; 2) Disturbed vs. Undisturbed vegetation, Spring, n=154; 3) Burial vs. 

Undisturbed vegetation, Autumn, n=128; and 4) Disturbed vs. Undisturbed vegetation, Autumn, 

n=133. Larger values indicate greater spectral difference between vegetation groups used in each 

comparison. These results demonstrate a greater mean spectral difference in the green region 

between Autumn samples (3 and 4) than Spring samples (1 and 2). The conventional arbitrary 

discrete classification threshold for SID is 0.05. 
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Figure 6.1-10: SID results of red region comparisons between 1) Burial vs. Undisturbed 

vegetation, Spring, n=137; 2) Disturbed vs. Undisturbed vegetation, Spring, n=154; 3) Burial vs. 

Undisturbed vegetation, Autumn, n=128; and 4) Disturbed vs. Undisturbed vegetation, Autumn, 

n=133. Larger values indicate greater spectral difference between vegetation groups used in each 

comparison. These results demonstrate a greater mean spectral difference in the red region between 

Spring samples (1 and 2) than Autumn samples (3 and 4). The conventional arbitrary discrete 

classification threshold for SID is 0.05.  
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Figure 6.1-11: SID results of near infrared region comparisons between 1) Burial vs. Undisturbed 

vegetation, Spring, n=137; 2) Disturbed vs. Undisturbed vegetation, Spring, n=154; 3) Burial vs. 

Undisturbed vegetation, Autumn, n=128; and 4) Disturbed vs. Undisturbed vegetation, Autumn, 

n=133. Larger values indicate greater spectral difference between vegetation groups used in each 

comparison. These results demonstrate a greater mean spectral difference in the near infrared 

region between Spring samples (1 and 2) than Autumn samples (3 and 4). The conventional 

arbitrary discrete classification threshold for SID is 0.05. 
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Figure 6.1-12: SID results of shortwave infrared region comparisons between 1) Burial vs. 

Undisturbed vegetation, Spring, n=137; 2) Disturbed vs. Undisturbed vegetation, Spring, n=154; 

3) Burial vs. Undisturbed vegetation, Autumn, n=128; and 4) Disturbed vs. Undisturbed 

vegetation, Autumn, n=133. Larger values indicate greater spectral difference between vegetation 

groups used in each comparison. These results demonstrate a greater mean spectral difference in 

the shortwave infrared region between Autumn samples (3 and 4) than Spring samples (1 and 2). 

The conventional arbitrary discrete classification threshold for SID is 0.05. 
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The near infrared region is the least different across all four SAM comparisons (Figure 6.1-5), 

while the red region is the most different for both Spring comparisons (Figure 6.1-4) and the 

shortwave infrared region is the most different for both Autumn comparisons (Figure 6.1-6).

 SID results for Burial and Undisturbed Spring vegetation spectra include an overall 

difference of 0.0157 across the full spectrum (Figure 6.1-7), with regional differences ranging 

from 0.0055 in the green region (Figure 6.1-9) to 0.0326 in the shortwave infrared region (Figure 

6.1-12). Results for Disturbed and Undisturbed Spring vegetation spectra include an overall 

difference of 0.0146 across the full spectrum (Figure 6.1-7), with regional differences ranging 

from 0.0047 in the green region (Figure 6.1-9) to 0.0334 in the shortwave infrared region (Figure 

6.1-12). Results for Burial and Undisturbed Autumn vegetation spectra include an overall 

difference of 0.0629 across the full spectrum (Figure 6.1-7), with regional differences ranging 

from 0.0071 in the green region (Figure 6.1-9) to 0.2512 in the blue region (Figure 6.1-8). Results 

for Disturbed and Undisturbed Autumn vegetation spectra include an overall difference of 0.0635 

across the full spectrum (Figure 6.1-7), with regional differences ranging from 0.0070 in the green 

region (Figure 6.1-9) to 0.2366 in the blue region (Figure 6.1-8). The green region is the least 

different across all four SID comparisons (Figure 6.1-9), while the shortwave infrared region is 

the most different for both Spring comparisons (Figure 6.1-12) and the blue region is the most 

different for both Autumn comparisons (Figure 6.1-8). 

 When comparing between Spring and Autumn results, SAM results demonstrate overall 

similar separation of groups in vegetation spectra for the full spectrum comparison (Figure 6.1-

1). Smaller regional SAM comparisons, however, reveal greater separability of Autumn data over 

Spring data, with the sole exception of the near infrared region that demonstrates greater 

separability in Spring data over Autumn data (Figure 6.1-5). SID comparisons between seasons 
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confirms the greater separability of Autumn data over Spring data in the full spectrum (Figure 

6.1-7) and in most regional comparisons, with two exceptions being the red (Figure 6.1-4) and 

near infrared (Figure 6.1-5) regions where there is greater separability of Spring data over Autumn 

data. 

 When comparing within season results, SAM results reveal a small, but consistently greater 

spectral difference between burial and undisturbed vegetation over generally disturbed and 

undisturbed vegetation during the Spring season, with the only exception being the blue region 

(Figure 6.1-2). SAM results unanimously agree on a greater spectral difference between generally 

disturbed and undisturbed vegetation over burial and undisturbed vegetation during the Autumn 

season for the full spectrum (Figure 6.1-1) and for all spectral regions (Figures 6.1-2 – 6.1-6). 

Spring SID comparisons agree with SAM Spring results in that there is a consistently greater 

spectral difference between burial and undisturbed vegetation; a trend that is observed across the 

full spectrum (Figure 6.1-7) and for all spectral regions (Figures 6.1-8 – 6.1-12). SID comparisons 

within Autumn data reveal greater difference between generally disturbed and undisturbed 

vegetation over burial and undisturbed vegetation, with two exceptions being the blue (Figure 6.1-

8) and green (Figure 6.1-9) regions of the spectrum.  

 Differences revealed through within seasonal comparisons are small, ranging from 0.0004 

– 0.0072 radians for SAM Spring data, 0.0005 – 0.0034 radians for SAM Autumn data, 0.0005 – 

0.0036 for SID Spring data, and 0.0001 – 0.0146 for SID Autumn data. The more remarkable trend 

appears to be separation of vegetation groups between seasons. Differences revealed in between 

seasonal comparisons of vegetation groups range from 0.0038 – 0.0484 radians for SAM Burial 

versus Undisturbed vegetation, 0.0041 – 0.0533 radians for SAM generally Disturbed versus 
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Undisturbed vegetation, 0.0016 – 0.2389 for SID Burial versus Undisturbed vegetation, and 0.0023 

– 0.2253 for SID generally Disturbed versus Undisturbed vegetation.  

 The results (individual bars, as opposed to within or between seasonal results comparisons) 

provide quantitative support for separating spectral samples into discrete classification groups for 

statistical tests (logistic regression and discriminant function analysis) that require categorical 

dependent variables. The SAM and SID results support categorical separation as a statistical 

approach by revealing spectral regions with measurably greater differences (blue, red, and 

shortwave infrared), and by demonstrating the consistency of those regional spectral differences 

for vegetation groups and seasons.  

6.1.2 Logistic Regression  

 Logistic regression was used to statistically evaluate the contribution of each wavelength 

to the separation of vegetation groups. Twelve possible logistic regression models were reduced 

to two models by following a prescribed training and validation workflow (Figure 5.2-4). The 

twelve possible models included two redundant models and one statistically unviable model that 

produced only a model constant with no wavelength variables, resulting in nine unique models. 

Models 2, 5, 6, 7, and 8 correctly classified the 70% training samples at greater than 50%, and 

were tested using a separate 30% validation sample comprised of new vegetation spectra not used 

for training the models.  

 Results derived from the validation process indicate that burial and generally disturbed 

vegetation spectra can be separated from undisturbed vegetation spectra during Autumn months 

using validated BLR models 2 and 6, which are both statistically significant (p<0.001). Both 

models include visible and shortwave infrared wavelengths. Overall correct classification 
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performance of logistic regression models 2 and 6 range from 67.5 – 71.1%, with individual group 

membership prediction success ranging from 52.9 – 78.3%. BLR models are better at predicting 

membership of undisturbed vegetation than either burial or generally disturbed vegetation in the 

validation sample, with a performance difference within each model ranging from 18.3 – 25.4 

percentage points. Model progression is presented in Figure 6.1-13, model performance in Table 

6.1-1 and Figure 6.1-14, and models in Tables 6.1-2 and 6.1-3. 

6.1.3 Discriminant Function Analysis  

 Twelve possible discriminant function models were reduced to five models by following 

the same prescribed training and validation workflow used to develop the logistic regression 

models (Figure 5.2-4). The twelve possible models included three redundant models, resulting in 

nine unique models. All nine models correctly classified the 70% training samples at greater than 

50%, and were further tested using a separate 30% validation sample containing new vegetation 

spectra not used for training the models.  

 Results derived from the validation process indicate that burial and similar disturbance 

vegetation spectra can be separated from undisturbed vegetation spectra using any of the five 

validated DFA models. Four of the models are derived from Autumn data and one from Spring 

data. All five models are statistically significant (p<0.001). All five models include visible 

wavelengths, and of those models, three also include shortwave infrared wavelengths. Overall 

correct classification performance of discriminant function models 2, 3, 4, 6, and 9 ranges from 

58.5 – 65.8%, with individual group membership prediction success ranging from 52.0 – 73.3%. 

Four of the five DFA models are better at predicting membership of burial or generally disturbed 

vegetation than undisturbed vegetation in the validation sample, with performance differences 

within those models ranging from 5.8 – 16.8 percentage points. Model progression is presented in  
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LOGISTIC REGRESSION MODELS – TERRESTRIAL SPECTRAL DATA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1-13: Logistic regression model workflow results; nine models reduced to two. 
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Table 6.1-1: BLR model validation performance summary; 30% validation data set; 'Disturbed' 

refers to combined Burial and Control samples. 

BLR Model Season Known Group n= % Correct % Overall Correct 

2 Autumn Burials 15 60.0 71.1 

  Undisturbed 23 78.3  

6 Autumn Disturbed 17 52.9 67.5 

  Undisturbed 23 78.3  

  

 

Figure 6.1-14: Graphical representation of BLR model performance presented in Table 6.1-1. 
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Table 6.1-2: Validated model wavelengths; all models correctly classify both validation data 

groups at ≥ 50.0%. Detailed BLR classification results presented in Appendix B, Tables B.1 – 

B.27. 

BLR Model Wavelengths (nm) 

2: Burials/Undisturbed λ1 = 707  

λ2 = 2423  

6: Disturbed/Undisturbed λ1 = 708  

λ2 = 1993  

 

 

 

 

 

 

Table 6.1-3: Validated model coefficients. 

BLR Model Coefficients 

2: Burials/Undisturbed Constant = 3.027 

α1= -42.345 

α2= 37.510 

6: Disturbed/Undisturbed Constant = 2.591  

α1= -33.417 

α2= 36.306 
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Figure 6.1-15, model performance in Table 6.1-4 and Figure 6.1-16, and models in Tables 6.1-5 

and 6.1-6. 

6.1.4 Partial Least Squares Regression 

 The PLS results highlight individual wavelengths and broad regions along the spectrum 

that contribute to separation of discrete live vegetation groups. Among first and second factor PLS 

results are wavelengths with corresponding peak Variable Importance (VIP) values and their 

surrounding important regions. These results support the presence of variables used in the logistic 

regression and discriminant function models (Figures 6.1-17 – 6.1-28).  

 First factor PLS results account for variance ranging from 83.4 – 89.0%, and emphasize 

the importance of the visible and near infrared wavelengths for correctly predicting group 

membership. All seven statistical models include a visible wavelength that falls within a ±5 nm 

range of a PLS first factor VIP peak, indicating agreement between the statistical models and PLS 

variable importance results. Five of the seven statistical models also include at least one shortwave 

infrared wavelength. None of the first factor PLS results that directly correspond with statistical 

models suggest shortwave infrared wavelengths are important for predicting group membership.  

 Second factor PLS results, which account for a smaller amount of variance in the data – 

but contributing to a cumulative variance percentage point increase ranging from 3.0 – 9.6 – do 

support the inclusion of shortwave infrared wavelengths. Second factors are also in agreement with 

all first factors with respect to the inclusion of the visible wavelengths. Second factor variable 

importance ranges support the inclusion of the majority of shortwave infrared wavelengths in 

models that include them, with the few exceptions of 2498 nm in DFA Model 2, 2448 and 2480 

nm in DFA Model 3, and 2412 nm in DFA Model 6.  
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DISCRIMINANT FUNCTION MODELS – TERRESTRIAL SPECTRAL DATA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1-15: Discriminant function model workflow results; nine models reduced to five. 
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Table 6.1-4: DFA model validation performance summary; 30% validation data set. The 

first model was trained using three groups, but correctly classifies validation data into two 

groups at ≥ 50.0%; 'Disturbed' refers to combined Burial and Control samples. 

DFA Model Season Known Group n= % Correct % Overall Correct 

2 Autumn Burials  15 73.3 (BCU) 62.5 

  Control 2 0.0 (BU) 65.8 

  Undisturbed 23 60.9  

3 Spring Burials 16 68.8 58.5 

  Undisturbed 25 52.0  

4 Autumn Burials 15 66.7 63.2 

  Undisturbed 23 60.9  

6 Autumn Disturbed 17 52.9 62.5 

  Undisturbed 23 69.6  

9 Autumn Disturbed 17 70.6 62.5 

  Undisturbed 23 56.5  



  

141 

 

 

Figure 6.1-16: Graphical representation of DFA model performance presented in Table 6.1-4. 
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Table 6.1-5: Validated model wavelengths; all models correctly classify both validation data 

groups at ≥ 50.0%. Detailed classification results presented in Appendix B, Tables B.28 – B.67. 

DFA Model Wavelengths (nm)   

2:            

Burials/Control/Undist. 

λ1 = 708  

λ2 = 2053  

λ3 = 2407 

λ4 = 2445 

λ5 = 2498 

 

3:                         Burials/Undist. λ1 = 761  

λ2 = 1440 

λ3 = 2015 

λ4 = 2291 

λ5 = 2355 

λ6 = 2401 

λ7 = 2405 

λ8 = 2417 

λ9 = 2448  

λ10 = 2459 

λ11 = 2467 

λ12 = 2480 

4:                         Burials/Undist. λ1 = 707     

6:                    Disturbed/Undist. λ1 = 708  

λ2 = 2006 

λ3 = 2412  

  

9:                     Disturbed/Undist. λ1 = 708    
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Table 6.1-6: Validated model coefficients. 

DFA Model Coefficients   

2:     Burial 

 

 

Control 

 

 

Undisturbed 

Constant = -2.546  

α1 = 6.821 

 

Constant = -12.925 

α1 = 23.758 

 

Constant =  -4.883 

α1 =  29.896 

α2 = 41.962 

α3 = -0.652 

 

α2 = 374.836 

α3= -566.458 

 

α2 =  33.399 

α3 = -24.752 

α4 = -26.439 

α5 = 0.651 

 

α4  = 175.919 

α5 = 21.366 

 

α4 = -10.314 

α5 = 3.159 

3:     Burial 

 

 

 

 

 

Undisturbed 

Constant = -6.820  

α1 = 36.497 

α2 = -116.559 

α3 = 214.436  

α4 = 400.097 

 

Constant = -10.577 

α1 = 80.630 

α2 = 306.794 

α3 = -173.959 

α4 = -441.858 

α5 = -573.899 

α6 = -273.600 

α7 = 332.210 

α8 = 27.292 

α9 = 62.280 

 

α5 = 73.052 

α6 = 61.779 

α7 = -160.127 

α8 = -193.261 

α9 = 214.378 

α10 = 64.624 

α11 = -78.656 

α12 = -77.477 

 

 

 

α10 = 257.155 

α11 = 50.646 

α12 = -5.480 

4:     Burial 

 

 

Undisturbed 

Constant = -1.866 

α1 = 19.252 

 

Constant = -4.335 

α1 = 33.926 

  

6: Disturbed 

 

 

Undisturbed 

Constant = -2.142 

α1 = 11.724 

 

Constant = -4.419 

α1 = 28.427 

α2 = 20.546 

α3 = -1.968 

 

α2 = -49.066 

α3 = 52.454 

 

9: Disturbed 

 

 

Undisturbed 

Constant = -2.004 

α1 = 19.555 

 

Constant = -4.294 

α1 = 32.412 
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Figure 6.1-17: PLS first factor variable importance (VIP) to group separation; Autumn data 

(n=128); test for separation of Burial vs. Undisturbed vegetation groups; VIP ≥ 1.0 intercepts as 

indicated by vertical lines; VIP peaks at 559, 705 and 1657 nm; Corresponds with BLR Model 

2 and DFA Model 2.  
 

Figure 6.1-18: PLS second factor VIP, Autumn data (n=128); test for separation of Burial vs. 

Undisturbed vegetation groups, 92.2% cumulative variance of the independent variables explained 

by the first two latent factors; graphical emphasis on Factor 2 ≥ 1.0 VIP wavelengths. Factor 1 

highlighted in Figure 6.1-17. Corresponds with BLR Model 2 and DFA Model 2. 
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Figure 6.1-19: PLS first factor variable importance (VIP) to group separation; Autumn data 

(n=133); test for separation of Burial vs. Control vs. Undisturbed vegetation groups; VIP ≥ 1.0 

intercepts as indicated by vertical lines; VIP peaks at 559, 705 and 1657 nm; Corresponds with 

DFA Model 2. 

 

Figure 6.1-20: PLS second factor VIP, Autumn data (n=133); test for separation of Burial vs. 

Control vs. Undisturbed vegetation groups, 92.2% cumulative variance of the independent 

variables explained by the first two latent factors; graphical emphasis on Factor 2 ≥ 1.0 VIP 

wavelengths. Factor 1 highlighted in Figure 6.1-19. Corresponds with DFA Model 2. 
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Figure 6.1-21: PLS first factor variable importance (VIP) to group separation, Spring data 

(n=137); test for separation of Burial vs. Undisturbed vegetation groups; VIP ≥ 1.0 intercepts as 

indicated by vertical lines; VIP peaks at 555 and 756 nm; Corresponds with DFA Model 3. 

 

  

Figure 6.1-22: PLS second factor VIP, Spring data (n=137); test for separation of Burial vs. 

Undisturbed vegetation groups, 93.0% cumulative variance of the independent variables explained 

by the first two latent factors; graphical emphasis on Factor 2 ≥ 1.0 VIP wavelengths. Factor 1 

highlighted in Figure 6.1-21. Corresponds with DFA Model 3.   
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Figure 6.1-23: PLS first factor variable importance (VIP) to group separation, Autumn data 

(n=128); test for separation of Burial vs. Undisturbed vegetation groups; VIP ≥ 1.0 intercepts as 

indicated by vertical lines; VIP peaks at 559 and 705 nm; Corresponds with DFA Model 4. 

 

Figure 6.1-24: PLS second factor VIP, Autumn data (n=128); test for separation of Burial vs. 

Undisturbed vegetation groups, 88.7% cumulative variance of the independent variables explained 

by the first two latent factors; graphical emphasis on Factor 2 ≥ 1.0 VIP wavelengths. Factor 1 

highlighted in Figure 6.1-23. Corresponds with DFA Model 4. 
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Figure 6.1-25: PLS first factor variable importance (VIP) to group separation, Autumn data 

(n=133); test for separation of Disturbed vs. Undisturbed vegetation groups; VIP ≥ 1.0 intercepts 

as indicated by vertical lines; VIP peaks at 559, 705, and 1657 nm; Corresponds with BLR Model 

6 and DFA Model 6.  

  

Figure 6.1-26: PLS second factor VIP, Autumn data (n=133); test for separation of Disturbed vs. 

Undisturbed vegetation groups, 92.0% cumulative variance of the independent variables explained 

by the first two latent factors; graphical emphasis on Factor 2 ≥ 1.0 VIP wavelengths. Factor 1 

highlighted in Figure 6.1-25. Corresponds with BLR Model 6 and DFA Model 6.  
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Figure 6.1-27: PLS first factor variable importance (VIP) to group separation, Autumn data 

(n=133); test for separation of Disturbed vs. Undisturbed vegetation groups; VIP ≥ 1.0 intercepts 

as indicated by vertical lines; VIP peaks at 559 and 705 nm; Corresponds with DFA Model 9. 

 

Figure 6.1-28: PLS second factor VIP, Autumn data (n=133); test for separation of Disturbed vs. 

Undisturbed vegetation groups, 88.8% cumulative variance of the independent variables explained 

by the first two latent factors; graphical emphasis on Factor 2 ≥ 1.0 VIP wavelengths. Factor 1 

highlighted in Figure 6.1-27. Corresponds with DFA Model 9. 
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6.2 Hyperspectral Imagery 

6.2.1 Validated Statistical Models 

 Hyperspectral imagery (HSI) is analyzed to evaluate the potential scalability of terrestrial 

findings. Applying the two discriminant function models (Formulas 5.2-1 and 5.2-3) developed 

using terrestrial spectral data to the three airborne HSI reflectance spectral collections resulted in 

unanimous classification for 100% of all study area pixels as either vegetation associated with a 

burial (Figure 6.2-1) or generally disturbed vegetation (Figure 6.2-2). Applying the secondary 

Formulas 5.2-2 and 5.2-4 to the same reflectance values reveals continuous variation throughout 

the study area (Figures 6.2-3 – 6.2-8), where lesser values (greater negative values) indicate 

predictions of a burial or general disturbance. The values produced by applying the DFA models 

range from -2.2 – -0.4. Applying both DFA models to all three HSI collections yields no 

discernable pattern of disturbance to indicate the study area location is spectrally anomalous from 

its surroundings. In fact, the results of applying the two DFA models indicate that the study area 

location is spectrally unremarkable. Moreover, the two DFA model results suggest that the site is 

visually out-competed by several apparently unrelated anomalies throughout the study area shown 

as dark blue patches, suggesting vegetation disturbance might be observable at those locations.  

6.2.2 Vegetation Indices  

 Seven common vegetation spectral indices were applied to each of the three HSI collections 

(Table 5.3-1). The normalized difference vegetation index (NDVI), sum green index (SGI), and 

structure insensitive pigment index (SIPI) used by Leblanc et al. (2014) to isolate unmarked pig 

burials, are among those tested in this research. Results of these three indices are presented first 

(Figures 6.2-9 – 6.2-17), and grouped by index. Results from the remaining four spectral indices:  
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Figure 6.2-1: HSI binary classification result from Formula 5.2.1; DFA 

model 4; 07 May 2015 (same DFA model 3 binary result for all three 

HSI collections).  

 

 
Figure 6.2-2: HSI binary classification result from Formula 5.2.3; DFA 

model 9; 07 May 2015 (same DFA model 5 binary result for all three 

HSI collections). 
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Figure 6.2-3: DFA model 4; 23 March 

2015; linear stretch; higher values indicate 

lower likelihood of a burial. 

 

Figure 6.2-5: DFA model 4; 17 April 2015. 

 

Figure 6.2-7: DFA model 4; 07 May 2015. 

 

Figure 6.2-4: DFA model 9; 23 March 

2015; linear stretch; higher values indicate 

lower likelihood of disturbance. 

 

Figure 6.2-6: DFA model 9; 17 April 2015. 

 

Figure 6.2-8: DFA model 9; 07 May 2015. 
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Figure 6.2-9: NDVI; 23 March 2015 ; 

Gaussian stretch; higher NDVI values 

indicate increased vegetation health. 

          

Figure 6.2-11: NDVI; 07 May 2015. 

 

 

Figure 6.2-13: SGI; 17 April 2015. 

Figure 6.2-10: NDVI; 17 April 2015. 

  

 

 
Figure 6.2-12: SGI; 23 March 2015; 

Gaussian stretch; higher SGI values indicate 

increased vegetation health. 

 

Figure 6.2-14: SGI; 07 May 2015. 
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Figure 6.2-15: SIPI; 23 March 2015; 

Gaussian stretch; higher SIPI values indicate 

increased vegetation stress. 

 

Figure 6.2-17: SIPI; 07 May 2015. 

 

Figure 6.2-16: SIPI; 17 April 2015. 
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red edge normalized difference vegetation index (RENDVI), modified red edge simple ratio index 

(MRESRI), modified red edge normalized difference vegetation index (MRENDVI), and red edge 

position index (REPI), are presented next (Figures 6.2-18 – 6.2-29) and are also grouped by index. 

 NDVI is a measure of healthy green vegetation, where possible values range from 0.0 – 

1.0 where higher values indicative of increased vegetation health. The common range for healthy 

vegetation is 0.2 – 0.8. The NDVI range for the entire study area is 0.07 – 0.78 for the March 2015 

HSI collection, 0.16 – 0.93 for the April 2015 HSI collection, and 0.06 – 0.96 for the May 2015 

collection (Figures 6.2-9 – 6.2-11). 

 SGI is a measure of vegetation greenness. Possible SGI values range from 0.0 to 0.5, where 

higher values indicate an increase in vegetation health. The common range for healthy vegetation 

is 0.1 – 0.25. The SGI range for the entire study area is 0.01 – 0.08 for the March 2015 HSI 

collection, 0.02 – 0.08 for the April 2015 HSI collection, and 0.00 – 0.07 for the May 2015 

collection (Figures 6.2-12 – 6.2-14).  

 SIPI is a measure of canopy vegetation stress. Possible SIPI values range from 0.0 – 2.0, 

where higher values indicate an increase in canopy stress. The healthy range for green vegetation 

is 0.8 – 1.8. The SIPI range for the entire study area is 0.00 – 1.59 for the March 2015 HSI 

collection, 0.00 – 1.63 for the April 2015 HSI collection, and 0.00 – 1.64 for the May 2015 

collection (Figures 6.2-15 – 6.2-17).  

 RENDVI is a modification of NDVI, and is also a measure of vegetation health. Possible 

RENDVI values range from 0.0 – 1.0, where higher values indicate increased vegetation health. 

The common range for healthy vegetation is 0.2 – 0.9. The RENDVI range for the entire study
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Figure 6.2-18: RENDVI; 23 March 2015; 

Gaussian stretch; higher values indicate 

increased vegetation health. 

 

Figure 6.2-20: RENDVI; 07 May 2015. 

 

Figure 6.2-22: MRESRI; 17 April 2015. 

Figure 6.2-19: RENDVI; 17 April 2015. 

 

Figure 6.2-21: MRESRI; 23 March 2015; 

Gaussian stretch; higher values indicate 

increased vegetation stress. 

 

Figure 6.2-23: MRESRI; 07 May 2015. 
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Figure 6.2-24: MRENDVI; 23 March 2015; 

Gaussian stretch; higher values indicate 

increased vegetation health.  

 

Figure 6.2-26: MRENVDI; 07 May 2015.  

 

 

Figure 6.2-28: REPI; 17 April 2015.

Figure 6.2-25: MRENDVI; 17 April 2015.  

 

 

Figure 6.2-27: REPI; 23 March 2015; max 

slope at ±7 nm of DFA model wavelengths.  

 
 

Figure 6.2-29: REPI; 07 May 2015. 
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area is 0.04 – 0.47 for the March 2015 HSI collection, 0.08 – 0.60 for the April 2015 HSI collection, 

and 0.03 – 0.75 for the May 2015 collection (Figures 6.2-18 – 6.2-20).  

 MRESRI is a measure of vegetation stress, where higher values indicate increased 

vegetation stress. Possible MRESRI values range from 0.0 – 30.0. The common range for healthy 

vegetation is from 2.0 – 8.0. The MRESRI range for the entire study area is 1.14 – 6.01 for the 

March 2015 HSI collection, 1.27 – 4.92 for the April 2015 HSI collection, and 1.09 – 15.87 for 

the May 2015 collection (Figures 6.2-21 – 6.2-23).  

 MRENDVI is another modification of NDVI, and is a measure of vegetation health. 

MRENDVI values range from 0.0 – 1.0, where higher values indicate increased vegetation health. 

The common range for green vegetation is 0.2 – 0.7. The MRENDVI range for the entire study 

area is 0.07 – 0.71 for the March 2015 HSI collection, 0.12 – 0.66 for the April 2015 HSI collection, 

and 0.04 – 0.88 for the May 2015 collection (Figures 6.2-24 – 6.2-26).  

 REPI is an indicator of the wavelength position of maximum slope in the red edge (690 – 

780 nm) region of the spectrum. REPI values surrounding the variables used in DFA models 4 and 

9 (707 and 708 nm) are highlighted in red. There is no apparent spatial clustering of pixels with 

REPI values from 700 – 715 nm at or near the burial locations within the study area (Figures 6.2-

27 – 6.2-29). 

 Applying the seven spectral indices to all three HSI collections yields no discernable 

spatially clustered pattern of either health or stress to indicate the general burial location is 

anomalous from its surroundings.  
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6.3 Multispectral Imagery  

6.3.1 Vegetation Index 

 NDVI is a measure of healthy green vegetation, where values range from 0.0 – 1.0 with 

higher values indicative of increased vegetation health. The common range for healthy vegetation 

is 0.2 – 0.8. The normalized difference vegetation index (NDVI) was applied to each of the four 

MSI collections (Figures 6.3-1 – 6.3-4). The NDVI range for the entire study area is 0.0 – 1.0 for 

all four MSI collections. Applying NDVI to all four MSI collections yields no discernable spatially 

clustered pattern of vegetation health to indicate the general burial location is spectrally anomalous 

relative to its surroundings.  

6.4 Terrestrial LIDAR  

6.4.1 Elevation  

 Grave surfaces were visualized using terrestrial LIDAR to establish whether the surfaces 

exhibit mounds, depressions, or no topographic relief. For each image, every pixel contains one 

elevation value. Elevation data at 5 cm ground sample distance (GSD) are presented in Figures 

6.4-1 – 6.4-4, one for each of the four collection dates. At 5 cm GSD, all the burial surfaces are 

not visible because they compete with the overall positive slope of the study area from the 

northwest to the southeast. Only the grave containing six bodies is distinctive in all post-burial 

elevation images (Figures 6.4-3 and 6.4-4). The Sky-View Factor approach is a measure of sky 

visibility, and is tolerant of overall uneven terrain, but like absolute elevation data, fails to 

emphasize the smaller graves as distinctive features, even at 5 cm GSD (Figures 6.4-5 – 6.4-8).   
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Figure 6.3-1: NDVI; 30 July 2012 

(baseline); Gaussian stretch; higher 

values indicate increased vegetation 

health. 

 

 

Figure 6.3-3: NDVI; 04 Mar 2013 

(post-burial). 

  

 

 

Figure 6.3-2: NDVI; 29 Nov. 2012 

(baseline).  

 

 

  

 

 
Figure 6.3-4: NDVI; 25 Mar 2015  

(post-burial).   
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Figure 6.4-1: Elevation measurements of 

study area on 12 Feb. 2013 (baseline); values 

indicate actual ground elevation (m); ROI 

overlays used here for referencing burial 

locations in Figures 6.4-2 – 6.4-8. 

        

Figure 6.4-3: Elevation measurements of 

study area on 03 June 2013 (post-burial). 

 

Figure 6.4-2: Elevation measurements of 

study area on 15 Feb. 2013 (post-burial). 

   

 

        

Figure 6.4-4: Elevation measurements of 

study area on 20 Nov. 2014 (post-burial). 
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Figure 6.4-5: Sky-View Factor results of 

study area for 12 Feb. 2013 (baseline) 

elevation data; Gaussian stretch; higher 

values indicate higher visibility.  

 

 

 

        

Figure 6.4-7: Sky-View Factor results of 

study area for 03 June 2013 elevation data. 

 

Figure 6.4-6: Sky-View Factor results of 

study area for 15 Feb. 2013 elevation data. 

 

         

 

 

Figure 6.4-8: Sky-View Factor results of 

study area for 20 Nov. 2014 elevation data. 
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6.4.2 Elevation Change  

 Grave surfaces were visualized using terrestrial LIDAR to establish whether the surfaces 

exhibit elevation gain, elevation loss, or no change. Elevation change is determined by subtracting 

elevation measurements at an early date from elevation measurements at a later date. Comparisons 

are made with and without baseline data to simulate both ideal and realistic data scenarios (see 

Figure 5.5-4). The four collections include one pre-burial baseline observation and three post-

burial observations. Each of the three post-burial collections is compared to the baseline collection 

to establish the extent of change over time under the experimental conditions (Figures 6.4-10 – 

6.4-15). Since a typical forensic investigation will not include a baseline dataset, logical 

comparisons between all post-burial collections are made and are presented in Figures 6.4-16 – 

6.4-21. Elevation change images were also run through the Sky-View Factor tool to emphasize 

differences (Figures 6.4-22 – 6.4-27).  The original 15 February 2013 elevation image includes 

the grave containing six bodies, which was not completely backfilled when scans were made. 

Therefore, results that were derived using the 15 February 2013 elevation change images focus on 

the graves containing one and three individuals, respectively, and the control unit.  

 The elevation change data illustrate an important concept to be fully explored in Chapter 7 

– that there are probably optimal temporal windows for observing burial surface features, 

indicating burial footprints emerge and then fade as taphonomic processes act on the grave and its 

surroundings (Figures 6.4-10 – 6.4-21). These windows are seen here only as an immediate 

elevation gain at the burial surface followed by an elevation loss at the same location. A final, 

gradual elevation gain is the result of organic debris accumulating in the burial surface depressions.  
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Figure 6.4-9: ROI overlays shown here for 

referencing burial locations in Figures 6.4-

10 – 6.4-12 and for extracting change data for 

Figures 6.4-28 – 6.4-31 (no new data). 

 

 

 

 

 

Figure 6.4-11: Net elevation changes of 

study area between 12 Feb. – 03 June 2013.    

 

Figure 6.4-10: Elevation changes of study 

area between 12 Feb. – 15 Feb. 2013; linear 

stretch; values indicate net elevation change 

(m).   

 

 
 

       

Figure 6.4-12: Net elevation changes of 

study area between 12 Feb. – 20 Nov. 2014. 
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Figure 6.4-9: ROI overlays shown here for 

referencing burial locations in Figures 6.4-

16 – 6.4-18 and for extracting change data for 

Figures 6.4-28 – 6.4-31 (no new data). 

 

 

 

 

Figure 6.4-14: Elevation changes of study 

area between 12 Feb. – 03 June 2013.    

 

Figure 6.4-13: Elevation changes of study 

area between 12 Feb. – 15 Feb. 2013; 

Gaussian stretch; values indicate net 

elevation change (m).  

 

 

 

       

Figure 6.4-15: Elevation changes of study 

area between 12 Feb. – 20 Nov. 2014. 
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Figure 6.4-9*: ROI overlays shown here for 

referencing burial locations in Figures 6.4-

13 – 6.4-15 (no new data).  

 

 

 

 

        

Figure 6.4-17: Elevation changes of study 

area between 15 Feb. 2013 – 20 Nov. 2014. 

 

Figure 6.4-16: Elevation changes of study 

area between 15 Feb. – 03 June 2013; linear 

stretch; values indicate net elevation change 

(m).   

 

 

 
 

       

Figure 6.4-18: Elevation changes of study 

area between 03 June 2013 – 20 Nov. 2014. 
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Figure 6.4-9*: ROI overlays shown here for 

referencing burial locations in Figures 6.4-

13 – 6.4-15 (no new data).  

 

 

 

         

Figure 6.4-20: Elevation changes of study 

area between 15 Feb. 2013 – 20 Nov. 2014. 

 

Figure 6.4-19: Elevation changes of study 

area between 15 Feb. – 03 June 2013; 

Gaussian stretch; values indicate net 

elevation change (m).   

 

 

        
 

Figure 6.4-21: Elevation changes of study 

area between 03 June 2013 – 20 Nov. 2014. 
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Figure 6.4-9: ROI overlays shown here for 

referencing burial locations in Figures 6.4-

22 – 6.4-24 and for extracting change data for 

Figures 6.4-28 – 6.4-31 (no new data). 

 

 

 

Figure 6.4-23: Sky-View Factor results of 

study area elevation changes between 12 Feb. 

– 03 June 2013. 

   

  

 

Figure 6.4-22: Sky-View Factor results of 

study area elevation changes between 12 Feb. 

– 15 Feb. 2013; Gaussian stretch; higher 

values indicate higher visibility. 

 
 

       

Figure 6.4-24: Sky-View Factor results of 

study area elevation changes between 12 Feb. 

– 20 Nov. 2014. 
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Figure 6.4-9*: ROI overlays shown here for 

referencing burial locations in Figures 6.4-

25 – 6.4-27 (no new data).  

 

 

 

         

Figure 6.4-26: Sky-View Factor results of 

study area elevation changes between 15 Feb. 

2013 – 20 Nov. 2014. 

 

Figure 6.4-25: Sky-View Factor results of 

study area elevation changes between 15 Feb. 

– 03 June 2013; Gaussian stretch; higher 

values indicate higher visibility.   

 

 
 

        

Figure 6.4-27: Sky-View Factor results of 

study area elevation changes between 03 

June 2013 – 20 Nov. 2014. 
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The elevation change activity measured by terrestrial LIDAR are quantifiable and represent 

distinctive surface activity relative to the undisturbed surroundings. The surface elevation changes 

measured for each burial are distinctive to the extent that they can be spatially isolated using the 

density slice tool in ENVI. Density slices highlight image pixels with values falling within a user-

specified range. Density slices were added to each grayscale elevation change image at 2 cm 

intervals within ranges determined from mean elevation change data presented in Figures 6.4-28 

– 6.4-31. In this experimental context, grave surface elevation changes are predictable enough that 

certain elevation changes cluster spatially at precise burial locations, as shown in Figures 6.4-32 

– 6.4-37. The progression of spatial clustering visibility is presented in (Table 6.4-1). 

 Change comparisons made using baseline elevation measurements, as visually emphasized 

using density slices (Figures 6.4-32 – 6.4-37), show clustered elevation changes at all grave and 

control unit surfaces as a net elevation gain concentrated in the 3.0 – 11.0 cm range for all graves 

and the control unit by 15 February 2013 (one-day post-burial). Clustered surface activity then 

changes direction to present an elevation loss concentrated in the 4.0 – 12.0 cm range at the grave 

containing six bodies by 03 June 2013 (four-months post-burial), particularly in the northern 

portion of the grave that contains all six buried bodies. A similar clustered elevation loss is 

concentrated in the 0.0 – 8.0 cm range at the grave containing six bodies by 20 November 2014 

(21-months post-burial) (Table 6.4-1).  

 The exclusively post-burial comparisons demonstrate a clustered elevation loss 

concentrated in the 4.0 – 12.0 cm range at the one-grave, three-grave, and control unit surfaces 

between 15 February – 03 June 2013. The visibility begins to diminish by 03 June 2013, but 

clustered elevation loss is concentrated in the 1.0 – 9.0 cm range at the three-grave and control unit 

surfaces between 15 February 2013 – 20 November 2014. Finally, there is no evidence of clustered  
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Figure 6.4-28: Control minimum, mean, and maximum surface elevation changes from 12 Feb. 

2013 (baseline); data extracted from ROIs depicted in Figure 6.4-9.  

 

 

 

Figure 6.4-29: Six-person grave minimum, mean, and maximum surface elevation changes from 

12 Feb. 2013 (baseline); data extracted from ROIs depicted in Figure 6.4-9.  
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Figure 6.4-30: Three-person grave minimum, mean, and maximum surface elevation changes 

from 12 Feb. 2013 (baseline); data extracted from ROIs depicted in Figure 6.4-9. 

 

 

 

 

Figure 6.4-31: One-person grave minimum, mean, and maximum surface elevation changes from 

12 Feb. 2013 (baseline); data extracted from ROIs depicted in Figure 6.4-9. 
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Figure 6.4-9*: ROI overlays shown here for 

referencing burial locations in Figures 6.4-

32 – 6.4-34 (no new data).  

 

 

     

 

     

Figure 6.4-33: Elevation changes of study 

area between 12 Feb. – 03 June 2013; 2 cm 

density slices added for -0.12 - -0.04 m. 

Figure 6.4-32: Elevation changes of study 

area between 12 Feb. – 15 Feb. 2013; 2 cm 

density slices added to emphasize elevation 

change clustering at 0.03 – 0.11 m; values 

follow means from Figures 6.4-16 – 6.4-19. 

 
 

     

Figure 6.4-34: Elevation changes of study 

area between 12 Feb. 2013 – 20 Nov. 2014; 2 

cm density slices added for -0.08 – 0.00 m. 
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Figure 6.4-9*: ROI overlays shown here for 

referencing burial locations in Figures 6.4-

35 – 6.4-37 (no new data).  

 

 

 

        

Figure 6.4-36: Elevation changes of study 

area between 15 Feb. 2013 – 20 Nov. 2014; 2 

cm density slices added for -0.09 - -0.01 m. 

 

Figure 6.4-35: Elevation changes of study 

area between 15 Feb. – 03 June 2013; 2 cm 

density slices added to emphasize elevation 

change clustering at -0.12 - -0.04 m; values 

follow means from Figures E.4 – E.6. 

 
    

Figure 6.4-37: Elevation changes of study 

area between 03 June 2013 – 20 Nov. 2014; 

2 cm density slices for 0.02 – 0.06 m. 
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Table 6.4-1: Spatial clustering of net elevation change, as observed for each entire grave 

surface using density slicing (Figures 6.4-32 – 6.4-37); green and red cells indicate visible 

clustering of elevation gain or loss, respectively, at each grave surface; no highlighting 

indicates a lack of visible spatial clustering for that location and date combination; "N/A" 

indicates no data.  

 Control Grave-1 Grave-3 Grave-6 

Baseline to 15 Feb. 2013 0.07 0.04 0.04 N/A 

Baseline to 03 June 2013 0.00 -0.02 -0.02 -0.05 

Baseline to 20 Nov. 2014 0.06 0.04 0.03 -0.02 

15 Feb. to 03 June -0.06 -0.06 -0.06 N/A 

15 Feb. to 20 Nov. -0.01 0.01 -0.00 N/A 

03 June to 20 Nov. 0.05 0.06 0.05 0.03 
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elevation change between 03 June 2013 and 20 November 2014 (Table 6.4-1). 

The grave containing six bodies was further evaluated using two additional approaches. 

First, elevation change values were extracted along a 5 cm-wide north-south midline transect 

depicted in Figures 6.4-38 – 6.4-43 as elevation change profiles. Second, the entire largest grave 

surface was divided into the northern portion of the grave directly over the buried bodies and the 

southern portion which contains no bodies, to separate the overall surface elevation change 

distributions for each half (Tables 6.4-2 – 6.4-4). 15 February collections are included in the 

elevation profiles to illustrate the extent of change, but are omitted from tables because the 

collection is dominated by elevation change resulting from uneven and incomplete backfilled soil.  

The grave surface activity exhibits an overall ramp-like quality, where the elevation change 

measurements deviate the most in the northern half of the grave surface. Of the three elevation 

change profiles that do not include the problematic 15 February collection, two reveal concentrated 

elevation loss features that are greatest in the northern portion of the grave directly over the buried 

bodies and another feature in the southern portion of the same grave containing no buried bodies. 

When compared to baseline elevation, the 03 June 2013 transect (Figures 6.4-41) and 20 

November 2014 transect (Figure 6.4-42) illustrate this trend, while the comparison between 03 

June 2013 and 20 November 2014 does not (Figure 6.4-43). Elevation loss along the midline 

transect ranges from 0.6 – 8.6 cm between 12 February and 03 June 2013, with the greatest 

elevation loss occurring directly over the buried bodies. Similarly, elevation loss along the same 

transect ranges from 0.5 – 8.3 cm between 12 February 2013 and 20 November 2013, with the 

greatest elevation loss observed directly over the buried bodies. The difference between the 

maximum elevation loss along the transect for the northern elevation loss feature and southern 

elevation loss feature is 1.5 cm for 12 February – 03 June 2013 (Figure 6.4-41) and 3.2 cm for 12  
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Figure 6.4-38: Net elevation change profile along the north-south midline transect of the largest 

grave between 12 – 15 February 2013. The dashed horizontal line represents zero net elevation 

change. Vertical lines represent approximate north/south grave walls. The largest grave was not 

completely backfilled when the 15 February 2013 collection was made, as observed by the extent 

of elevation loss between the two dates.  

 

 

 

Figure 6.4-39: Net elevation change profile along the north-south midline transect of the largest 

grave between 115 February – 03 June 2013. The dashed horizontal line represents zero net 

elevation change. Vertical lines represent approximate north/south grave walls. The largest grave 

was not completely backfilled when the 15 February 2013 collection was made, as observed by 

the extent of elevation gain between the two dates. 
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Figure 6.4-40: Net elevation change profile along the north-south midline transect of the largest 

grave between 15 February 2013 – 20 November 2014. The dashed horizontal line represents zero 

net elevation change. Vertical lines represent approximate north/south grave walls. The largest 

grave was not completely backfilled when the 15 February 2013 collection was made, as observed 

by the extent of elevation gain between the two dates. 

 

 

Figure 6.4-41: Net elevation change profile along the north-south midline transect of the largest 

grave between 12 February – 03 June 2013. The dashed horizontal line represents zero net 

elevation change. Vertical lines represent approximate north/south grave walls. The greatest 

elevation change is observed directly over the concentration of buried bodies in the northern half 

of the grave, followed by elevation loss to a lesser extent directly over the southern half which 

contains disturbed soil only.  
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Figure 6.4-42: Net elevation change profile along the north-south midline transect of the largest 

grave between 12 February 2013 – 20 November 2014. The dashed horizontal line represents zero 

net elevation change. Vertical lines represent approximate north/south grave walls. The greatest 

elevation change is observed directly over the concentration of buried bodies in the northern half 

of the grave (left), followed by elevation loss to a lesser extent directly over the southern half 

(right) which contains disturbed soil only. 

 

 

 

Figure 6.4-43: Net elevation change profile along the north-south midline transect of the largest 

grave between 03 June 2013 – 20 November 2014. The dashed horizontal line represents zero net 

elevation change. Vertical lines represent approximate north/south grave walls. Localized 

elevation change is absent, and replaced with generalized elevation change.  
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Table 6.4-2: Statistical distributions of net elevation change for the northern and southern halves 

of the largest grave, generally illustrating the elevation change differences observed directly over 

a concentration of six buried bodies (North) and directly over disturbed soil (South) between 12 

February and 03 June 2013.  

12 Feb. – 03 June 2013 Min. Mean Max. St. Dev. 

North -0.118301 -0.056474 0.079102 0.025264 

South -0.125595 -0.042945 0.049438 0.021171 

 

 

 

Table 6.4-3: Statistical distributions of net elevation change for the northern and southern halves 

of the largest grave, generally illustrating the elevation change differences observed directly over 

a concentration of six buried bodies (North) and directly over disturbed soil (South) between 12 

February 2013 and 20 November 2014.  

12 Feb. 2013 – 20 Nov. 2014 Min. Mean Max. St. Dev. 

North -0.093796 -0.035028 0.046524 0.032901 

South -0.078506 -0.010140 0.085419 0.023931 

 

 

 

 

Table 6.4-4: Statistical distributions of net elevation change for the northern and southern halves 

of the largest grave, generally illustrating the elevation change differences observed directly over 

a concentration of six buried bodies (North) and directly over disturbed soil (South) between 03 

June 2013 and 20 November 2014.  

03 June 2013 – 20 Nov. 2014 Min. Mean Max. St. Dev. 

North -0.065231 0.021446 0.081558 0.018071 

South -0.058029 0.032805 0.103745 0.016397 
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February 2013 – 20 November 2014 (Figure 6.4-42). No apparent spatial pattern of elevation 

change is present along the transect between 03 June 2013 and 20 November 2014 (Figure 6.4-43 

and Table 6.4-4). These trends are supported by the north-south statistical distributions for the 

same date comparisons, where the mean elevation change between northern and southern surfaces 

of the largest grave is 1.35 cm for the 12 February – 03 June 2013 comparison (Table 6.4-2), 2.49 

cm for the 12 February 2013 – 20 November 2014 comparison (Table 6.4-3), and 1.14 cm for the 

03 June 2013 – 20 November 2014 comparison (Table 6.4-3). 

6.5 Airborne LIDAR 

6.5.1 Elevation  

 Airborne LIDAR is analyzed to evaluate the potential scalability of terrestrial findings. For 

each airborne LIDAR image, every pixel contains one elevation value. Elevation images at 10 cm 

GSD are presented in Figures 6.5-1 – 6.5-4, one for each of the four collection dates, with images 

showing the full study area extent and insets zoomed to the immediate area surrounding burial 

locations. None of the airborne LIDAR elevation images reveal distinctive surface anomalies at 

any of the burial locations.   

6.5.2 Elevation Change  

 Airborne LIDAR elevation change images are derived using the same image subtraction 

process used for terrestrial LIDAR elevation change images, where one elevation image at an early 

date is subtracted from another at a later date to produce a net elevation change image. 

Comparisons are made between all four airborne LIDAR collections and are presented in Figures 

6.5-5 – 6.5-10. None of the elevation change images reveal distinctive anomalies at any of the 

burial locations.  
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Figure 6.5-1: Elevation measurements of fenced study area (main) with immediate burial 

area (inset) on 18 September 2014; 10 cm GSD; values indicate ground elevation (m).  
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Figure 6.5-2: Elevation measurements of fenced study area (main) with immediate burial 

area (inset) on 23 March 2015; 10 cm GSD; values indicated ground elevation (m).   
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Figure 6.5-3: Elevation measurements of fenced study area (main) with immediate burial 

area (inset) on 17 April 2015; 10 cm GSD; values indicate ground elevation (m).  
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Figure 6.5-4: Elevation measurements of fenced study area (main) with immediate burial 

area (inset) on 07 May 2015; 10 cm GSD; values indicate ground elevation (m).   
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Figure 6.5-5: Elevation changes within fenced study area (main) with immediate burial 

area (inset) between 18 Sept. 2014 – 23 Mar. 2015; 10 cm GSD; values indicate elevation 

change (m).    
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Figure 6.5-6: Elevation changes within fenced study area (main) with immediate burial 

area (inset) between 18 Sept. 2014 – 17 April 2015; 10 cm GSD; values indicate elevation 

change (m)   
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Figure 6.5-7: Elevation changes within fenced study area (main) with immediate burial 

area (inset) between 18 Sept. 2014 – 07 May 2015; 10 cm GSD; values indicate elevation 

change (m).   
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Figure 6.5-8: Elevation changes within fenced study area (main) with immediate burial 

area (inset) between 23 Mar. – 17 Apr. 2015; 10 cm GSD; values indicate elevation change 

(m).   
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Figure 6.5-9: Elevation changes within fenced study area (main) with immediate burial 

area (inset) between 23 Mar. – 07 May 2015; 10 cm GSD ; values indicate elevation 

change (m).  
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Figure 6.5-10: Elevation changes within fenced study area (main) with immediate burial 

area (inset) between 17 April – 07 May 2015; 10 cm GSD; values indicate elevation change 

(m).   
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CHAPTER 7: DISCUSSION 

 This chapter discusses the results presented in Chapter 6, focusing on two central notions: 

1) human burials chemically influence their environment, and 2) human burials topographically 

influence their environment. As such, this chapter will discuss the interaction between human 

burials and their environment using vegetation spectra and surface elevation measurements, and 

then discuss whether the results support the four hypotheses proposed in Chapter 1.  

 Hypotheses 1 and 2 presented in Chapter 1 anticipated that human burials, the control unit, 

and undisturbed ground will show statistically separable vegetation reflectance spectra 

(Hypothesis 1) and spatially clustered surface elevation changes (Hypothesis 2). Hypotheses 3 and 

4 further stated that the reflectance and elevation changes, respectively, would persist throughout 

the duration of the study. The following chapter is organized by data type, first addressing the 

spectral findings (Hypotheses 1 and 3), followed by a discussion of the elevation change findings 

(Hypotheses 2 and 4). 

7.1 Vegetation Spectra 

 Hypotheses 1 and 3 state that vegetation associated with disturbed ground containing 

human remains (human burials), disturbed ground containing no remains (control unit), and 

undisturbed ground are statistically separable groups as indicated by differences in reflectance 

spectra (Hypothesis 1), and that vegetation associated with burials, the control unit, and 

undisturbed areas exhibit spectral separability for the duration of the study (Hypothesis 3). 

 Based on the results presented in Chapter 6, these hypotheses are supported. Results show 

a difference between the undisturbed sample and both of the disturbed sample types (human burials 

and the control unit) for the duration of the observation period, suggesting that vegetation spectral 
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differences are influenced by non-specific ground disturbance. The effect of human burials, 

specifically, on vegetation spectra is undetermined. In terrestrial data, live vegetation spectra 

associated with human burials or similar disturbance can be reliably separated from undisturbed 

live vegetation spectra using narrow regions of the spectrum. Moreover, spectral separation was 

achieved during the entire observation period from March to November 2014, resulting in one 

model derived from Spring vegetation spectra and six models derived from Autumn vegetation 

spectra. Model performance appears to vary by wavelength and season, suggesting an optimal 

spectral range and timeframe for data collection, which are explored in this chapter.  

 Leaf pigments, but primarily chlorophyll, determine the level of energy absorption in the 

visible portion of the spectrum, where higher nitrogen concentration results in higher chlorophyll 

production and increased energy absorption (Knipling 1970). As discussed in Chapter 3, energy 

that is not absorbed is either transmitted or reflected, and absorption shares an inverse relationship 

with both reflectance and transmission (which share a positive relationship with each other). These 

relationships are significant in the application of these findings to human burial detection because 

as soil and vegetation nitrogen concentrations increase as a result of the body decomposition 

process, so too does chlorophyll production. As chlorophyll production increases, leaves reflect 

less solar energy. This trend is observed in the mean reflectance curves of human burial, control 

unit, and undisturbed vegetation, where vegetation spectra over human burials exhibit the least 

overall magnitude (indicating increased energy absorption) and undisturbed vegetation spectra 

exhibit the greatest magnitude (indicating decreased energy absorption).  

 During the Autumn and Winter months, the sun tracks a relatively low altitude in the 

southern sky. The tree population at the study area is densest just south of the experimental graves, 

the combination of which results in an abundance of diffuse sunlight throughout the study area 
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during that timeframe. Such diffuse lighting conditions present limited opportunities to capture the 

direct solar illumination of plant leaves required to minimize spectral noise. As a result, the control 

vegetation spectral sample size is too small to establish whether a difference exists between 

vegetation associated with human burials versus non-burial disturbance. This shortcoming may be 

avoided in future work if using an open, unobstructed study area that allows for more direct 

sunlight. Some predictive models from the current study separate human burial vegetation cases 

from undisturbed vegetation better than general disturbance cases (grouped human burial and 

control unit cases) from undisturbed vegetation. While this better separability does not necessarily 

mean the two types of disturbance vegetation are different, it is worth further investigating with 

larger sample sizes.  

 To a forensic anthropologist using a spectrometer to search for a hidden grave, an atypically 

high or low reflectance spectrum for a particular plant species with a known reflectance curve may 

represent ground disturbance. However, overall reflectance curves can vary in magnitude even 

between samples taken from the same leaf surface, depending on the viewing angle of the sensor 

or rapidly changing light conditions. Moreover, despite the clear ordered trend of mean reflectance 

curves mentioned above, the distribution of individual reflectance curves tend to overlap between 

groups. This overlap between groups means that magnitude alone would ultimately fail to reliably 

predict vegetation disturbance if used in the field as a sole metric for human burial detection. 

Therefore, in addition to the magnitude of an entire reflectance curve, it is important to consider 

the greatest contributing individual wavelengths along the spectrum in terms of how, why, and to 

what degree those important wavelengths can help investigators predict disturbed vegetation.  
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Red Wavelengths  

 Narrow red, near infrared, and shortwave infrared wavelengths are included in the seven 

statistical models developed in this study. The narrow red wavelengths present in the Autumn 

models (707/708 nm) are consistent with studies that demonstrate – with foci on the contributions 

of specific wavelengths (as opposed to wide regions) – the positive relationship between nitrogen 

and chlorophyll concentration (Netto 2005; Yoder and Pettigrew-Crosby 1995), the inverse 

relationship between nitrogen concentration and reflectance spectra (St.-Jacques and Bellefleur 

1991; Thomas and Oerther 1972), and the inverse relationship between chlorophyll concentration 

and reflectance spectra (Knipling 1970; Sims and Gamon 2002; Yoder and Pettigrew-Crosby 

1995). Specifically, St.-Jacques and Bellefleur (1991) identified a nitrogen-correlated wavelength 

in the red region at 700 nm (r2=0.70); a wavelength that is positioned on the steep Red Edge 

vegetation feature only 7-8 nm from the red wavelengths included in the Autumn models, 707 and 

708 nm. Additionally, Sims and Gamon (2002) report a chlorophyll-correlated spectral feature 

located at 705 nm (r2=0.92), only 2-3 nm from the visible wavelengths included in Autumn 

models. The relationships between these spectral wavelengths, leaf nitrogen concentration, and 

leaf chlorophyll concentration are central to the argument that reflectance spectra observed in this 

study – particularly the 707/708 nm wavelengths – are influenced by an increase in nitrogen that 

results in an increase in chlorophyll production and a subsequent decrease in reflected energy. As 

previously illustrated by Mundorff and colleagues (2014), increased nitrogen is likely caused by 

the human body decomposition process releasing additional nitrogen into the soil. Though, given 

the lack of evidence to separate the human burial spectra from the control unit spectra, another 

explanation for the increase may be the mixing of uprooted surface vegetation and soil during the 

digging activity, where the uprooted vegetation decomposes in the soil, releasing nitrogen for live 
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plant consumption. Further studies examining the long-term relationship between nitrogen 

concentration in burial and non-burial disturbed ground may help explain the direction and 

magnitude of nutrient differences caused by different types of disturbance, and their influence on 

reflectance spectra.   

Near Infrared Wavelengths 

 The narrow near infrared wavelength included in the Spring model at 761 nm is explained 

by two phenomena: 1) the Fraunhofer absorption lines and 2) chlorophyll fluorescence. As the 

sun's energy passes through the atmosphere, that energy interacts with suspended particles at 

predictable wavelength locations. The Fraunhofer absorption lines are locations of scattered solar 

energy along the electromagnetic spectrum, expressed as valleys between radiance peaks that are 

linked to specific elements. There are several thousand mapped Fraunhofer lines depicting 

absorption features, and among them is a major feature known as the O2-A band, which represents 

the atmospheric interaction between O2 and 760 nm (Fraunhofer 1817). As energy passes through 

the atmosphere to Earth's surface, a portion of the energy at 760 nm is absorbed by O2 before it 

arrives. This energy absorption feature would otherwise be unremarkable in a normalized 

reflectance spectrum for many other materials, except that the vegetation radiance curve (LV) 

contains a slightly shallower O2-A absorption feature than observed in the white reference radiance 

curve (LWR) used for calibration. When the white reference radiance curve is used to normalize the 

vegetation radiance curve (R = LV/LWR), the product is a reflectance curve with a distinctive spike 

at 760 nm. This spike indicates excess energy, or fluorescence infilling of the O2-A absorption 

feature depth (Cogliati et al. 2015; Raychaudhuri 2012). Fluorescence is the emission of radiation 

at a particular wavelength as a result of incident radiation at shorter wavelengths, and chlorophyll 

is a known fluorescent biomolecule (Cogliati et al. 2015; Raychaudhuri 2012). Human burial, 
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control unit, and undisturbed vegetation spectra all exhibit a distinctive reflectance spike at 761 

nm, indicating chlorophyll fluorescence in each sample. It appears the amount of fluorescence 

emission differs between each vegetation group, contributing to group separation, but the 

contribution is difficult to measure spectrally in the field, and without known chlorophyll 

concentration. The 761 nm wavelength is but one variable of twelve in the only Spring statistical 

model, which is the poorest overall performing model. Therefore, future work examining the 

relationship between disturbed vegetation and chlorophyll concentration may help explain the 

extent of the contribution that chlorophyll fluorescence makes to, or takes away from, the 

classification of different types of disturbed vegetation.  

Shortwave Infrared Wavelengths 

 The presence of some narrow shortwave infrared wavelengths in Spring and Autumn 

models is generally supported by Yoder and Pettigrew-Crosby (1995), who report the relationship 

between vegetation nitrogen concentration and a series of narrow shortwave infrared wavelengths 

ranging from 2000 – 2200 nm that are also correlated with, but weaker indicators of, chlorophyll 

concentration. However, of the 19 shortwave infrared wavelengths included in the seven statistical 

models produced in this study, only three individual model wavelengths fall within the 2000 – 

2200 nm range (2006, 2015, 2053 nm) reported by Yoder and Pettigrew-Crosby (1995). Of the 

remaining 16 shortwave infrared wavelengths, 14 are situated between 2200 – 2500 nm, which are 

wavelengths that approach the edge of a window where atmospheric transmission (i.e., the 

percentage of incident solar energy to pass through the atmosphere) of the Sun's energy is suddenly 

and drastically reduced. Such windows are the reason wavelengths surrounding 1400 and 1900 nm 

were removed from the data set before analysis. For this research, the shortwave infrared 

wavelengths were retained for analysis because, while atmospheric transmission is decreasing at 



  

198 

 

those wavelengths, it does not approach zero until approximately 2600 nm (Joseph 2005). The 

effect of reduced atmospheric transmission paired with a decrease in available solar energy in 

longer wavelengths (Planck's law as a function of temperature at 5772 K), results in the demand 

for a greater number of lesser contributing wavelengths to adequately classify vegetation groups. 

However, these physical limitations of the longer wavelength variables may render them unreliable 

in future work.   

 In practical terms, subtle differences between disturbed and undisturbed vegetation may be 

observed in non-experimental contexts using the red, near infrared, and shortwave infrared 

wavelengths isolated in this study. The validation of these wavelengths using three independent 

statistical tests indicates that they may perform well in the field, at minimum, as a supplement to 

other human burial detection methods, such as pedestrian survey, soil probing, or ground-based 

geophysical technologies. With minimal training, a portable field spectrometer is easily operated 

in the field and could be used to map spectra along grid points throughout an area of interest to be 

overlaid with other data types. The limited number of narrow wavelengths used in each statistical 

model also suggests that instrumentation designed specifically for this application may be worth 

developing in the future. An instrument sensitive to a few narrow wavelengths would likely be less 

expensive and more portable than the instrument used in this study, thus making the technology 

more accessible to a wider range of consumers, such as non-governmental organizations. An 

application-specific instrument may be configured to generate an instantaneous probability value 

in the field based on the classification formulas used in this study. Further research fine-tuning our 

understanding of chlorophyll concentration and chlorophyll fluorescence in a forensic context may 

eventually facilitate rapid decision making in the field. Such results could be readily interpreted 

by anyone with intermediate-level training in spectral data collection and analysis.   
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Timing of Spectral Separability 

 Six of the seven statistical models were developed using Autumn vegetation spectra, and 

one was developed using Spring vegetation spectra. All Autumn models perform better than the 

Spring model in the overall classification of disturbed vegetation spectra. The analytical methods 

used in this study agree that Autumn spectra are more separable than Spring spectra. No 

chlorophyll or soil nutrient data were compared to vegetation spectra to confirm the link in the 

current study. However, the emerging conclusion regarding the performance differences between 

Spring and Autumn spectra is that spectral divergence occurred sometime between the Spring 

spectral data collection at 13 months post-burial and the Autumn spectral collection at 20 months 

post-burial. The difference in separability of vegetation spectra at 13 months (Spring) and 20 

months (Autumn) post-burial could be influenced by ongoing human decomposition, plant 

phenology, plant species population distribution changes throughout the study area, or 

contributions from two or more of these factors.  

 While there are no studies on decomposition rates within a mass grave in East Tennessee, 

decomposition rates of surface remains and individual burials have been studied (Mann et al. 

1990). Decomposition timing for buried remains is highly variable, depending on environmental 

factors, such as temperature and precipitation, to which the current study area was equally exposed 

at any point in time. It is possible that the buried bodies had not fully decomposed by the time 

spectral data collection began at 13 months post-burial. Without verifying the decomposition 

stages of each human burial in this study, the degree and timing of decomposition activity 

contributing to soil nutrient concentrations remains unknown. This is an important point to make 

because spectral differences between Spring and Autumn samples may or may not be due to a 

sudden accumulation of soil nutrients (greater than ambient levels) as a result of annually 
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reactivated decomposition taking place between the two data collection windows at 13 and 20 

months post-burial. It is unclear if decomposition had terminated by 13 months post-burial. 

However, it is likely that decomposition had at least begun to modify soil nutrient concentrations 

by this point, based on previous decomposition research on individual burials in east Tennessee 

(Mann et al. 1990).  

 Spectral data collection began at approximately 13 months post-burial, so the digging 

activity had over one full annual cycle to influence surface vegetation in all samples. Moreover, 

aside from shaded areas, rapid vegetation regrowth was observed at most burial and control 

surfaces in the two months following interment with minimal difference in the regrowth rate 

between the disturbance features. Environmental factors known to promote plant growth, such as 

temperature and precipitation, fluctuate seasonally in east Tennessee. During the terrestrial spectral 

collection year (2014), temperature and precipitation peaked during the summer months in June 

and July, respectively (NOAA 2014). While the Autumn spectra were treated to a longer exposure 

window than the Spring spectra, both samples represent vegetation that had greater than a full year 

of exposure time to the ground disturbance. What remains to be addressed by this study is whether 

1) modified soil nutrients resulting from digging activity or decomposition are consistently 

influencing plant chlorophyll concentration throughout the year, and there is a delay slightly longer 

than one year for initial nutrient uptake to occur, or 2) the same modified soil nutrients present a 

renewed increase in plant chlorophyll concentration each year during certain months that include 

the Autumn months, but not the Spring months. Therefore, the question at hand is whether seasonal 

spectral performance differences are driven solely by the timing of soil nutrient availability (i.e., 

digging activity and decomposition), or also by the timing of nutrient uptake (i.e., seasonality and 

plant phenology).      
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 The effect of plant phenology, or seasonality, on vegetation reflectance spectra is well 

documented. The effects of seasonal plant cycles, such as new plant growth, reproduction, 

senescence, and dormancy, are seen throughout the study area. The onset of each phase is known 

to be linked to latitude and climate, where mid-latitude climates such as that of East Tennessee are 

relatively mild, and therefore exhibit less extreme seasonality with wider vegetation growth and 

reproduction windows (Zhang et al. 2003). However, there is considerable variation for the timing 

of these phases both within and between species (Polgar and Primack 2011). Moreover, most 

studies are species-specific or represent low temporal resolution that fail to fully explain whether 

the Knoxville study area vegetation chlorophyll might be higher in Autumn than in Spring. While 

studies on plant phenology cannot currently explain the potential for chlorophyll timing at the East 

Tennessee study area, specifically, it does help explain spectral differences. Image scientists draw 

on documented plant phases to explain a range of issues, including the effects of phenology on the 

performance of vegetation indices (Zhang et al. 2003), and monitoring vegetation to track seasonal 

shifts influenced by global warming (Badeck et al. 2004). Zhang and colleagues (2003) used the 

Moderate Resolution Imaging Spectroradiometer (MODIS) to demonstrate that vegetation 

reflectance is sensitive to seasonal change corresponding with the annual growth, maturity, 

senescence, and dormancy phases that vary based on latitude and climate. In the current study, all 

sampled leaves were still green during the Autumn collection window (October-November), which 

may be a qualitative metric, but still a clear indicator of growth and maturity. Pigment differences 

may have been present between Spring and Autumn (Zhang et al. 2003), but not obvious in the 

visible wavelengths apparent to the human eye. This point calls back to the earlier discussion on 

the effect of chlorophyll concentration changes on leaf reflectance, where a subtle increase in 

chlorophyll results in reduced reflectance. Given that sampling methodology was the same for 
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Spring and Autumn collection windows, it is clear that plant phenology is at least partially 

influencing the Autumn-leaning outcome by exhibiting greater differences in reflectance during 

those months than observed in Spring samples. While it is unexpected that Autumn models would 

outnumber Spring models, as the abundance of new growth occurs during Spring, perhaps the 

more advantageous window for forensic investigators to use spectroscopy for unmarked burial 

detection is during the maturity phase when vegetation has reached a certain level of nutrient 

stability prior to Autumn senescence. 

 Seasonal differences that favor the Autumn months in statistical models by a ratio of 6:1 

indicate that the Autumn months may be a better window for observing spectral differences 

between disturbed and undisturbed vegetation. In a clandestine grave scenario, it may be more 

favorable to prioritize the systematic spectral mapping survey described in the previous section 

during the Autumn months to maximize differences between disturbed vegetation and vegetation 

in areas that are not of interest to investigators searching for an unmarked grave. Since spectral 

differences are subtle and can be difficult to separate under certain circumstances, such as at low 

instrument resolution or during particular seasonal windows, it may prove important to take 

advantage of known optimal data collection windows, to exploit those differences when they are 

expressed in their peak state. Unfortunately, spectral data were not collected continuously for this 

study, so it is still uncertain whether October and November are the best months to observe those 

differences. In addition, a closer look at plant physiological activity and its relationship to 

chlorophyll production and leaf reflectance will help disentangle the effects of the phenology and 

disturbance.  

 Spectral differences may also be attributed to changes in population density of 

opportunistic species at different feature surfaces (i.e., plants that prefer disturbed soil or human 
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burial soil), as observed in animal experiments (Caccianiga et al. 2012; Callahan 2009; Watson 

and Forbes 2008). While such population changes may have been present throughout the study 

area, plant species and their location were not well enough documented to confirm or refute their 

influence on the spectral results. If such spectral differences were present during the observation 

period, however, it is possible they were attributable to generic soil disturbance, human 

decomposition, preference for sunlight, or multiple other uncontrollable factors. This study 

provides a foundation for future work to explore those questions further.  

 A lack of observable canopy-level evidence for human burial or similar disturbance 

signatures in airborne hyperspectral imagery (HSI) is probably due to a combination of factors. 

The successful application of ground spectra to canopy spectra is dependent on uncontrollable 

factors, such as canopy structure and solar geometry, favorable atmospheric conditions, and 

instrument capabilities. The airborne and satellite images were collected under clear atmospheric 

conditions and were carefully calibrated using a ground target with a known spectral signature, 

which minimized spectral noise in the data set. Prior to addressing the remaining concerns, the 

successful application of terrestrial findings first assumes the signature is present in both terrestrial 

and canopy vegetation. However, this assumption is potentially inaccurate, as the study area 

canopy is comprised of many large and well established trees that may not be influenced by the 

human burials or control unit, or have not been exposed to those disturbances for a long enough 

period of time to be affected by measurable change. If tree canopy remains unaffected by ground 

disturbance, airborne and satellite imaging will prove unhelpful to investigators searching for 

unmarked human burials in similar environments. With respect to canopy leaf-off seasons (i.e., 

months where canopy leaf density is low), a network of bare tree branches extend across the view 

of the ground surface, contributing to the spectral signature of each image pixel. Moreover, the 
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overall concentration of live ground vegetation is low during these months, resulting in a low 

contribution of live vegetation spectra to image pixels. Therefore, canopy leaf-off months tend to 

be a poor match for testing the statistical models developed using live green vegetation as a training 

sample, and due to their lack of pigments, dry leaf scatter is likely to provide an inadequate spectral 

sample for future modeling.  

 Canopy structure is probably playing a role in poor scalability since the entire canopy and 

individual leaf surfaces are non-lambertian. A lambertian surface is one that reflects light evenly 

in all directions, rendering its apparent reflectance value the same regardless of the viewing angle 

(Lambert 1760; Schott 2007). Canopies are highly textured, and leaves are oriented in many 

different directions, which affect their apparent brightness from any single overhead viewing 

position (Lee and Kaufman 1986). By contrast, all terrestrial spectra data were collected under 

unobstructed solar illumination in the field, and the instrument was in close range of, and aimed 

near-perpendicular to, each leaf surface to limit variation in data due to sampling methodology. 

While it is not possible to record data from an aircraft-based platform in the same manner described 

for terrestrial spectral data, it is possible to estimate the reflectance of a non-lambertian surface as 

a function of illumination and viewing geometry using a bidirectional reflectance distribution 

function (BRDF) (Nicodemus et al. 1977). NASA-GSFC has not yet developed a BRDF product 

for their customers, but it is a possibility for future work. Therefore, it is currently unknown 

whether or not canopy structure will influence the performance of airborne or satellite imagery for 

identifying signs of ground disturbance in canopy spectra. 

 The difference in spectral and spatial resolution between the terrestrial sensor and the 

airborne and satellite sensors are likely contributors to poor scalability. The 707/708 nm spectral 

feature is narrow, and due to the airborne Hyperspec spectral resolution of 11.00 nm full width at 
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half maximum (FWHM) of the 706.12 nm wavelength band (versus 1.4 nm for the ASD FieldSpec 

4 instrument) may ultimately escape detection by the airborne Hyperspec sensor. Furthermore, 

terrestrial instruments allow the operator to collect spectra close to its target, resulting in very high 

spatial resolution; easily as small as a centimeter, if using a lens and sampling at a distance of a 

few centimeters. Alternatively, for the current study, the Headwall Hyperspec, passing overhead, 

produced images with pixels ranging 0.5 – 1.0 m. The same principles hold true for the satellite 

images, where spatial and spectral resolutions are further decreased due to distance and instrument 

design. Spatial resolution is relevant to the issue of scalability because in all overhead spectral 

images, each pixel includes the reflectance value of all the materials located inside each of those 

areas, resulting in the spectral mixture of several materials. A challenge posed by spectral mixing 

is that signatures that contribute proportionately less to the spectrally mixed pixel are overwhelmed 

by the signatures contributing a greater proportion to the pixel, and pixels are not easily unmixed. 

There is still promise for the future scalability of findings to larger graves, such as those found in 

Bosnia, spanning tens of meters and containing hundreds of bodies. Additionally, future research 

may successfully identify smaller burials using high spectral resolution airborne sensors flown at 

low altitude, perhaps as part of a remotely controlled unmanned aerial system (UAS), to help 

understand if positional or technological constraints are responsible for poor scalability of 

terrestrial findings.  

  Another consideration for the failure to scale may simply be data collection timing. The 

two terrestrial models advanced to HSI were developed using Autumn vegetation samples, but the 

HSI were collected during Spring months; a season for poor spectral separability of target groups, 

as established by the terrestrial spectral findings. As discussed in the previous section, plant 

phenology has a demonstrated influence on vegetation reflectance (Badeck et al. 2004; Zhang et 
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al. 2003), and the Spring imagery may not represent peak timing for chlorophyll concentration 

differences at the canopy level, if they exist. Other factors worth considering in additional research 

are the differences between species comprising the ground vegetation and canopy, which may have 

different spectral responses contributing to the classification results. It is also possible that the 

experimental burials do not influence canopy spectra in measurable quantities, perhaps due to the 

burials being too small, too recent (or old), or located too far from large rooted trees to cause 

observable spectral changes at the canopy scale.  

 These hyperspectral imagery results are applicable only for this experimental context. The 

same methods and technologies should be tested in other environments and scenarios, including 

unobstructed environments, and using higher spectral resolution airborne sensors at low altitude. 

The terrestrial data in the study area environment demonstrate separability of disturbed and 

undisturbed vegetation spectra and should be used to inform future airborne hyperspectral 

campaigns that may still hold the potential to assist forensic investigators in the search for 

unmarked burials in similar environments.  

7.2 Topographic Changes 

 Hypotheses 2 and 4 state that ground surfaces at burials, the control unit, and undisturbed 

locations exhibit differences as measured by net elevation gain or loss (Hypothesis 2), and that 

ground surfaces associated with burials, the control unit, and undisturbed locations exhibit 

differences in elevation change for the duration of the study (Hypothesis 4).  

 Based on the results presented in Chapter 6, hypothesis 2 is supported and hypothesis 4 is 

not supported. In terrestrial data, elevation activity associated with human burials and similar 

disturbance without interred bodies (i.e., the control unit) can be visually separated from 

undisturbed elevation, and is observed as localized elevation change at those locations. The current 
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findings do not provide evidence that differences in surface elevation changes for human burials 

and the control unit persist for the duration of the study. Localized elevation change at disturbed 

surfaces appears to have slowed to a rate that approximates the ambient study area elevation 

change by the 108 days post-burial collection date. Elevation change direction and magnitude 

appears to be influenced by the rate of decomposition, suggesting there are optimal collection 

timeframes for forensic casework that are environmentally dependent. Additionally, the findings 

reveal that LIDAR may be useful in forensic scenarios that may or may not include baseline 

elevation data sets. 

 After a body is buried, loosened soil and buried mass simultaneously occupy the original 

ground space once filled in with undisturbed, compacted soil (Steadman 2009). The initial post-

interment burial surface elevation will depend on the amount of soil replaced during backfilling. 

If attempts are made to backfill all of the displaced soil, an initial mound will be visible due to 

loosened soils and the addition of the body mass to the space once occupied only by soil. However, 

backfilling may cease once the surrounding ground surface is reached, leaving the remaining soil, 

displaced by the space now occupied by the interred body, on the ground surface off the burial. 

Over time, the loosened soil gradually settles as a result of gravity and precipitation. As a body 

decomposes, its mass is redistributed into the soil as nutrients, eventually reducing the 

concentration of soft tissues. Consequently, grave soil is further redistributed, filling in the areas 

once occupied by soft body tissue. These volumetric changes cause the surface elevation to 

increase and/or decrease, depending on the rate of soil compaction and the timing of human 

decomposition (Mann et al. 1990; Rodriguez and Bass 1985). Rodriguez and Bass (1985) 

documented the timing of buried human body temperatures in Knoxville, TN, concluding – 

through the use of temperature as a proxy for decomposition timing – that the most active stages 
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of the decomposition process begin as early as one week-post burial and can continue for up to ten 

weeks post-burial, depending on season and climate. Also in East Tennessee, Mann and colleagues 

reported that timing, for full skeletonization to occur within a burial, could range from "a few 

months to a year or more" (1990: 107). Similar trends were observed in the current study, at the 

experimental human burials and control unit, where immediately after the units were backfilled, 

the loosened soil formed a mound at each surface. This phenomenon is likely due to attempts to 

backfill as much of the displaced soil as possible, although for the six-person grave it was not 

possible to backfill all of the removed soil. Within four months post-burial, the mounds settled. 

The current study reveals the following trends in disturbed ground surface elevation change: 1) 

between two days pre-burial and one day post-burial, all disturbance surfaces except the six-person 

grave, for which there is no one day post-burial elevation data, exhibit a sudden elevation gain, 

indicating initial ground disturbance. 2) Between 1 day and 108 days post-burial, all disturbance 

features exhibit elevation loss, indicating soil settling and possible human decomposition. 3) 

Between 108 days and 643 days post-burial, no additional localized change was apparent at any of 

the human burial or control unit surfaces. This outcome may indicate that, by 108 days post-burial, 

localized soil settling and human decomposition have slowed, or potentially stopped.  

 The net elevation changes observable at the burial surfaces are the result of a combination 

of factors that are most active in the weeks and months immediately following burial, including 

soil settling and body decomposition. The result is a localized net elevation loss at the burial 

surface that is not observed at undisturbed locations. Elevation changes that are observed at 

undisturbed locations are smaller, amorphic (i.e., not elongated features), and not clustered in the 

same spatial density as seen at the disturbance locations. The localized changes in elevation extend 

to the linear edges of each disturbance feature, clearly illustrating the precise location of each 
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human burial and the control unit. Given the agreement between the observed elevation changes 

and the likely timing of decomposition (Rodriguez and Bass 1985; Mann et al. 1990), as well as 

observations of common (though not universal) burial surface activity (Owsley 2001; Steadman 

2009), the elevation changes observed in this study confirm that burials and disturbance without 

interred remains possess a degree of generally predictable elevation activity, such as immediate 

elevation gain followed by gradual elevation loss, then stagnation.   

 Variation in elevation change is observed at disturbance feature surfaces, where the greatest 

elevation changes, whether gain or loss, is generally observed near the center of each feature and 

the least elevation change near the edges. The concentration of greatest elevation change at the 

approximate centers of each feature is likely due to the distribution of disturbed soil during backfill, 

where the peak of each surface mound is located near the center. This trend is observed in elevation 

gain and elevation loss images of all disturbance features, including the control unit, so it is likely 

that the vertical dimension of displaced soil volume is a factor in the magnitude of elevation loss 

as the soil settles. The volume and distribution of backfilled soil for each human grave and the 

control unit was not controlled as part of the interment process. However, elevation gain 

measurements between baseline and one day post-burial reveal that the volume and spatial 

distribution of soils for each feature were not equal at each surface, nor were they proportionate 

for each feature's volumetric dimensions.  

 It is unknown how much elevation loss is attributable to soil settling and decomposition, 

respectively. Since the six-person grave and the control unit were not observed equally throughout 

the study period, there is not enough evidence to support differences between human burial and 

similar disturbance elevation changes. However, the six-person grave exhibits a unique trend, 

where elevation loss is greatest in the northernmost-center portion of the grave surface where the 
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buried bodies are concentrated. This gradual increase in elevation loss from the south to the north 

presents no clear boundary between the area containing the human bodies (north) and the area that 

contains no bodies (south). Since the southern portion of the grave is not isolated, which means 

there is no separation of experimental treatment and control, the grave surface was arbitrarily 

separated into two halves – the northern half containing all six bodies, and the southern half 

containing none – to establish approximate differences in elevation change between the northern 

and southern portions of the six-person grave. The statistical distributions of the northern and 

southern grave surfaces are consistent with the trends illustrated in elevation change profiles, 

where a greater elevation loss is observed at the surface directly over the concentration of six 

bodies. The more important finding, however, is that southern elevation loss – observed along the 

transect and the statistical distribution of the entire southern half – falls within the extremes of 

elevation change observed at the actual experimental control, but is several centimeters off from 

the mean. This finding demonstrates that, while the northern portion of the largest grave was likely 

influenced by human body decomposition over and above the effects of soil settling alone, as seen 

in the differences between the northern and southern halves, the southern half is not an adequate 

analytical substitute for the actual control unit. These findings hint at differences between human 

burial and control elevation changes, but the extent of these changes should be explored in future 

research. 

 The temporal resolution of data collection does not support definitive conclusions about 

the individual contributions of soil settling and decomposition to surface elevation loss. The 

northernmost elevation loss at the location of the six bodies is observable as early as 108 days 

post-burial (the first post-burial collection to record elevation data at this burial surface), the same 

date the southern elevation loss is first observed. The overall elevation loss continues to be visible 
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as a surface depression at 643 days post-burial, but not as additional elevation change, so it is 

unclear if the timing of soil settling and human decomposition differ. The difference in elevation 

loss between the northern and southern halves of the largest burial at two post-burial dates suggest 

that the rates of change for a human burial and similar disturbed soil may differ at certain times 

post-burial. However, two comparisons are insufficient to meaningfully describe those rates of 

change. Future research that controls the interment process and monitors subsurface 

decomposition activity will help shed light on the extent and timing of soil settling and 

decomposition and the influence of these factors on the expression of surface elevation change. 

Future research that includes more complete data, such as equal and more frequent observations 

of burial disturbance and disturbance without interred remains, will help establish if differences 

exist. Until direct comparisons between human burials and similar disturbance can establish a 

usable elevation change pattern, forensic investigators will need to rely on separating disturbed 

ground from undisturbed ground, which – depending on recent land use – will still help isolate 

areas of interest for follow up investigation. 

 The size of each disturbance feature appears to have little influence on the magnitude of 

surface elevation change. As mentioned, the six-person grave surface elevation was not measured 

at one day post-burial, and it was not possible to backfill all of its removed soil, which likely 

contributes to the formation of the surface depression. However, there is complete data for the 

remaining two human graves and the control unit which demonstrate that, during each comparison 

of elevation gain and elevation loss, the one-person and three-person graves exhibited 

approximately the same elevation change. While containing no interred human remains, but being 

twice the size in volume of the three-person grave, the control unit exhibited almost twice the 

elevation gain immediately post-burial and the same elevation loss 108 days post-burial as both 
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the one-person and three-person graves. If it were the case that the vertical dimension of displaced 

soil volume is the sole factor in the magnitude of elevation loss as the soil settles, then the control 

would be expected to exhibit greater elevation loss than either of the smaller human graves. This 

finding resulting from the one-person and three-person comparison suggests that the magnitude of 

elevation change may not be dependent on grave size. However, if the effects of soil settling and 

decomposition to elevation change can be sufficiently disentangled by future research that seeks 

to document those factors, differences between human grave and non-grave disturbance may 

become more evident.         

 The trends in elevation change are significant in the application of LIDAR findings to 

human burial detection because surface elevation increases or decreases can be simultaneously 

compared to ambient elevation changes of the surrounding area, which will generally occur to a 

lesser degree than at the disturbance locations. This trend is observed at the human burials, control 

unit, and undisturbed ground surfaces, where human burial and control unit surfaces exhibit 

spatially clustered elevation change in the 108 days following interment, while the surrounding 

undisturbed surfaces, for the most part, do not.  

 The precise timing of peak elevation change differences between disturbance surfaces and 

undisturbed areas are still unknown, as data collection was infrequent and irregularly spaced. For 

example, in the current study, 107 days passed between the first and second post-burial data 

collections, and 535 days passed between the second and third post-burial data collections. Either 

of these two windows may have contained the maximum elevation change, as compared to the 

surrounding undisturbed ground surfaces. Multiple data collections made between 1 and 108 days 

following interment may reveal localized elevation changes at the burials' surfaces, even when a 

mound or surface depression was nonexistent or not evident to an observer. Future research may 
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narrow the optimal windows for capturing maximum elevation gain and elevation loss. Until 

elevation change phenomena are better understood in different environmental and contextual 

conditions, including graves containing more bodies that may decompose more slowly, it is 

currently advisable to collect data early and often until localized elevation change becomes 

evident.  

 These results offer promise for forensic scenarios where a rapid response to an unmarked 

burial is possible. However, because the temporal resolution of data collection was low, the 

elevation activity expiration date of 108 days post-burial should be treated as an approximation, 

but especially so in conditions that drastically differ from the experimental study (e.g., soils, 

climate, season, grave size, grave depth, size of individuals). Such variables may affect the rate of 

soil settling, the human body decomposition rate and, subsequently, the expression of surface 

elevation change. While the exact ranges of elevation change will likely vary based on time-since-

burial and environment, to the investigator, the disturbance features will likely appear localized 

because the subsurface processes are mostly independent of the uniform extrinsic processes that 

influence the entire study area.   

 This study demonstrates that surface mounds or depressions (as opposed to elevation gain 

or loss) are unreliable topographic features for identifying unmarked burial surfaces due to the 

extent of topographic variation within the study area that helps disguise the disturbance features. 

Previous research has attempted to identify burial surfaces by measuring elevation data in an area 

of interest at a single point in time (Weitman 2012), which has failed to demonstrate the existence 

of topographic anomalies. The findings of the current study illustrate the problematic nature of 

collecting only one data set, as single collections can fail to normalize generalized change to 

highlight localized change. Naturally occurring mounds and depressions are common in different 
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landscapes, and can easily be mistaken for human burials during an investigation, or overlooked 

as natural landscape variation. All disturbance features (excluding the largest human burial, which 

was not included in the first post-burial scan) exhibited a surface mound immediately following 

interment, but only the largest human burial formed a surface depression, and was discussed 

previously. The depressed surface renders that burial visible as an elevation loss in comparisons 

with pre-burial data until leaf litter accumulates within the depression, effectively bringing the 

surface up to the surrounding elevation. This finding, and the lack of surface depressions at any 

other disturbance location, confirms that there is a measure of variability to the elevation activity 

based on poorly understood factors. It may not be possible to visualize burial surfaces with just 

one data set, no matter when a collection takes place, which is consistent with Weitman's (2012) 

conclusion following a single LIDAR survey performed in a Georgia cemetery, where she found 

burial surface elevations were too similar to that of their surroundings to adequately isolate the 

individual burial locations. The current study also confirms the accounts of forensic 

anthropologists who have reported that a lack of consistent topographic evidence adds to the 

difficulty of locating unmarked human burials (Davenport and Harrison 2011; Steadman 2009), 

which upholds the current elevation change approach as the most viable topographic method for 

identifying disturbed surfaces.  

 Elevation change differences between disturbed and undisturbed ground surfaces have 

clear application in non-experimental contexts. The spatial clustering of elevation change indicates 

this method may perform well in the field as an addition to other burial detection methods, such 

as pedestrian survey, soil probing, or ground-based geophysical technologies. In addition, findings 

from this study indicate that an approach combining spectral and LIDAR data may significantly 

improve overall results, particularly where vegetation and topographic anomalies spatially agree. 
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Point cloud data require a more involved data management workflow than spectra to produce a 

result, and the window of opportunity appears to be relatively narrow at this study area location 

for graves of this size. However, localized elevation change in a landscape – particularly if it 

follows the disturbance trend previously outlined – is an especially strong sign of disturbance. 

While it seems that vegetation spectra may be the more viable long-term indicator of disturbance, 

less predictable factors, such as soil nutrient variation, are known to influence chlorophyll 

production, as discussed previously. On the other hand, fewer phenomena help explain localized 

elevation change, suggesting that observed elevation change that is consistent with the directional 

trends presented in this study may indicate ground disturbance, thus presenting a strong argument 

for follow up investigation.    

 With training, a tripod-mounted laser scanner is easily operated in the field and can be used 

to measure ground surface throughout an area of interest to be combined with other data types. 

The recent development of multispectral LIDAR scanning technology holds promise for the future 

development of sensors that can accomplish 3D spectral data collection. Such a technology will 

potentially reduce the time and monetary investments into forensic investigations and would make 

the technology more accessible to a wider range of consumers.    

  The patterns established in terrestrial LIDAR data are not observed in the airborne LIDAR 

data for three possible reasons. The first and most certain reason is that, for some collections, no 

pulses were returned at the ground surface. For the April and May 2015 aerial collections, very 

few – and in some cases, zero – ground points were recorded at the burial surfaces due to the 

density of tree canopy that obscures the study area. The exception was the March collection, which 

included very high point density and evenly distributed ground points at all burial and control 

surfaces. The September 2014 collection resulted in a relatively even ground point distribution, 
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but the density was lower than the March 2015 data set, likely because canopy leaf density in 

September is not at peak levels, but not as low as in March, leaving fewer gaps between canopy. 

Low ground point density limits the spatial resolution of image products produced using point 

cloud data because there are fewer samples across the landscape with which to populate image 

pixels. Moreover, comparisons between two collections are computationally limited to the lowest 

spatial resolution image in any pair comparison, as two images of different spatial dimensions 

cannot be directly compared; the higher resolution data must be down-sampled to match the lower 

resolution data. For collections where no points populate the ground surface at a disturbance 

feature surface, data gaps are interpolated based on surrounding point data, rendering illogical 

comparisons between measured data and approximated data. The most straightforward way to 

overcome this issue in canopied environments is to acquire airborne LIDAR collections 

exclusively during leaf-off months, which – depending on the environment – still presents a 

periodic collection window recurring annually.  

 Second, the elapsed time since burial may contribute to why burial surfaces are not 

visualized with airborne LIDAR data. The terrestrial LIDAR data establish that elevation changes 

decrease with time and that elevation change activity no longer clustered at disturbance surfaces 

by 108 days post-burial. Given the airborne LIDAR collections were made approximately two 

years post-burial suggests that all activity had subsided. Third, due to sensor motion and distance 

from the ground surface targets, the cumulative geopositional error (i.e., error attributed to the 

scanner, navigation unit, and flight turbulence) may have exceeded the magnitude of elevation 

change at the disturbance features. However, with the issue of low density – or zero – points 

reaching the ground surface, the second and third reasons are theoretical and cannot be confirmed.  
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 Like the airborne hyperspectral and satellite multispectral imagery results, the airborne 

LIDAR data findings are applicable only for this experimental context. These same methods and 

technologies should be tested in other environments and scenarios, including data from 

unobstructed landscapes collected at low altitude to generate high density ground point clouds, 

particularly in the few months immediately following interment. The terrestrial data demonstrate 

remarkable visual separability of disturbed and undisturbed elevation change and should be used 

to inform future airborne LIDAR campaigns that may still hold the potential to assist forensic 

investigators in the search for unmarked burials.  

7.3 Remote Sensing as a Tool for Unmarked Burial Detection 

 At present, remote sensing does not offer stand-alone human burial detection capability, 

but it is a promising supplement to existing grave detection methods. The direction, magnitude, 

and timing of peak disturbance signatures – both spectral and topographic – are not fully 

understood, which temporally limits the application of these remote sensing signatures. However, 

the agreement of findings derived from these two very different remote sensing data types 

demonstrates the potential effectiveness of a multi-modal, (i.e., "data fusion,") data collection 

strategy for assisting with the detection of small or subtle features, such as a human grave. With 

the current data set, any similarity or difference between human burials and the control unit are 

speculative, due to data gaps discussed previously, and will require additional testing to establish 

whether quantifiable differences between the different types of disturbance exist and whether they 

can be used to isolate human burials. Though, the ability to identify disturbance, whatever the 

cause, is still an important advancement for the forensic community to help prioritize areas of 

interest for follow-up field investigation, particularly when the search area is defined by reliable 

information, but the size of the area is too large for traditional methods. 
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7.4 Limitations 

 Describing the study limitations will hopefully assist future researchers in their design 

ofsimilar experimental research in forensic remote sensing.  

 Line-of-Sight Limiting Tree Canopy 

 The experimental human burials and the control unit are located in a study area covered by 

dense tree canopy, which means their surfaces are unobservable using passive sensors like airborne 

imaging spectrometers. The canopy also limits the amount of ground points that active sensors can 

generate. The canopy leaf density is reduced during the winter months after the leaves have fallen, 

which means greater ground visibility. The winter season, however, minimizes the amount of live 

vegetation on the ground or at the canopy level to apply the ground-based spectral findings 

developed using live vegetation. The lack of direct burial visibility means that the terrestrial data 

findings cannot be validated in remote imagery until experimental research is performed in an open 

environment. Terrestrial findings should be applied to remote imagery containing unobstructed 

targets, as remote sensing may still be capable of isolating burial signatures in more open 

environments.  

The Timing of Peak Signature Disparities 

 The results of this research indicate that differences exist between signatures of the 

experimental disturbance groups and undisturbed samples. Unfortunately, the previously 

mentioned data gaps prevented a full analysis, resulting in a poor understanding of the timing of 

vegetation spectra and topographic signatures. The portable spectroradiometer was not available 

until 13-months post-burial, so vegetation spectra during the first year are undocumented. As a 

result, the emergence, peak disparity, and re-convergence of disturbed and undisturbed vegetation 
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spectra and surface elevation changes are unknown. It is also uncertain if signatures fluctuate 

throughout the year due to seasonal cycles, or if signatures consistently diminish up to a final 

convergence point with undisturbed samples. It would prove most valuable to understand the 

timing for each of the signatures by performing a multi-year study that follows a more evenly 

distributed and more frequent data collection strategy.  

Unequal Human Burial and Control Unit Samples Sizes 

 Spectral classification results reveal that human burial and control unit vegetation spectra 

may not be reliably separable from each other. Previous research demonstrates that nutrient uptake 

is affected by human decomposition (Mundorff et al. 2014) and non-burial nutrient-modified 

disturbance (Commisso and Nelson 2008; Commisso and Nelson 2010; Vitousek 1982), but the 

magnitude and directional effects of nitrogen concentration and their source on different types of 

disturbed vegetation spectra have not been adequately studied. Unfortunately, all studies – 

including previous research and the current study – fail to make direct comparisons of signatures 

between human burials and non-burial disturbance. All Autumn models developed during this 

research, whether they were developed using only human burial vegetation spectra or all 

disturbance vegetation spectra, include the same 707 or 708 nm wavelength feature. The consistent 

presence of that spectral feature between all Autumn models may be explained by the fact that the 

human burial spectral sample is disproportionately larger than that of the control unit vegetation 

spectral sample due to a lack of direct sunlight at the control unit. A similar data issue exists in the 

LIDAR data, where the largest human burial was not completely backfilled in time for the first 

post-burial scan, resulting in a considerable data gap. Unequal sample sizes limited opportunities 

to draw defensible conclusions on the uniqueness of a human burial signature.  
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CHAPTER 8: CONCLUSION 

 The purpose of this study was to establish if spectral and topographic signatures are unique 

to human graves for the development of a human burial detection methodology. This study 

contributes valuable information to the fields of anthropology and remote sensing by establishing 

signatures of human graves and a control unit. Further, the results highlight eight broad findings 

regarding human grave signatures: 

1. Differences exist in narrow red, near infrared, and shortwave infrared reflectance spectra 

between disturbed vegetation and undisturbed vegetation, such that they can be used to 

separate vegetation into discrete groups at a rate greater than random chance. The 

differences are likely due to digging activity. Digging activity may modify soil nutrient 

concentrations, thereby influencing the chlorophyll concentration in leaves. Changes in 

chlorophyll concentration results in predictable changes in reflected solar energy, which 

may be used as an indicator of ground disturbance.  

2. With respect to these differences, wavelengths in the red spectral region perform better 

than longer wavelengths in the near infrared and shortwave infrared regions at separating 

disturbed and undisturbed vegetation. Better separability in the red spectral region is likely 

due to the greater availability of incident solar energy that can be reflected at those 

wavelengths, thus increasing the signal strength, as dictated by established Planck curve 

characteristics and atmospheric transmission windows. 

3. Spectra sampled in Autumn months perform better at separating disturbed and undisturbed 

vegetation than spectra sampled in Spring months. Seasonally specific separability may 

be due to a phenologically driven leaf pigment response during the Autumn months. In 

Autumn, live plants are approaching an annual dormancy phase when chlorophyll 



  

221 

 

concentration differs due to seasonal changes soil nutrient uptake, which influence the 

amount of reflected solar energy that can be measured spectrally. 

4. The terrestrial spectral wavelengths fail to differentiate between disturbed and undisturbed 

vegetation when applied to airborne hyperspectral imagery (HSI) and satellite 

multispectral imagery (MSI). The failure of terrestrial spectra to scale well to airborne or 

satellite imagery is likely due to more than one factor. Differences between ground and 

canopy vegetation influence the reflectance spectral response likely due to species-

correlated pigment concentration levels and sensor viewing geometry that contributes to 

greater data variability. Models trained with terrestrial vegetation spectra sampled at nadir 

(perpendicular to the leaf surface) may generate false positives or false negatives in canopy 

vegetation that cannot be sampled with the same consistent viewing geometry. 

Additionally, airborne and satellite imagery possess reduced spectral and spatial 

resolutions compared to terrestrial spectra collected in situ, where remote instruments are 

probably not sensitive enough to separate disturbance from non-disturbance spectra 

without diluting the signal, suggesting those instruments may not be useful for human 

grave detection. Finally, it is possible that a canopy disturbance signature does not exist 

due to the human burials and the control unit being too old, too recent, or not significant 

enough to influence canopy level spectra, suggesting airborne and satellite instruments are 

not useful for detecting small-scale disturbance under tree canopy. 

5. Differences exist in the elevation change measurements between disturbed and 

undisturbed ground surfaces, such that ground disturbance can be separated visually as 

distinct, spatially clustered topographic anomalies. Identifiable topographic anomalies are 
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likely due to initial digging activity and the subsequent redistribution of soil and buried 

mass, revealing elevation loss. 

6. Net elevation change measurements perform better at differentiating between disturbed 

and undisturbed ground surfaces than absolute elevation measurements (i.e., mounds, 

depressions) because elevation change comparisons effectively normalize the naturally 

occurring topographic variation that exists throughout the study area and helps disguise 

the disturbance features. 

7. Elevation change activity does not persist indefinitely as localized elevation change at 

human burial and similar disturbance locations. Evidence of elevation changes, such as 

elevation loss, dissipates over time and is likely due to the slowing of soil settling and 

human decomposition activity over time. Any possible ongoing elevation change not 

observed in this research may be the result of accumulated ground surface debris, such as 

dry leaves, that obstruct the laser pulse. 

8. Localized elevation change activity is not visible at disturbance locations in elevation 

change data derived from airborne LIDAR. Airborne LIDAR's inability to detect elevation 

change is due to intrinsic and extrinsic factors. The dense tree canopy resulted in 

significant data gaps at the burial surfaces that prevented meaningful data analysis. 

Logistically, the airborne surveys did not begin until approximately two years post-burial, 

at which point terrestrial LIDAR analysis indicates a decline in surface elevation activity.  

 This study presents the likely drivers of disturbance signatures, as observed by two remote 

sensing technologies. The results indicate that disturbance signatures can be separated spectrally 

and topographically. A disturbance signature is characterized by diminished reflectance values 

located at 707/708 nm, 761 nm, and a series of shortwave infrared wavelengths. The disturbance 
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spectral signature, as captured at nearly every model wavelength during Autumn months, is likely 

expressed as an increase in chlorophyll concentration, which increases solar energy absorption 

(and decreases solar energy reflection). The disturbance signature is also likely expressed as a 

difference in the magnitude of chlorophyll fluorescence infilling at 761 nm during the Spring 

months. Disturbance signatures are further characterized by localized net elevation changes at the 

human burial and control unit surfaces. These surface changes follow a general pattern of elevation 

gain immediately after burial, then an elevation loss during the next few months, the timing of 

which appears to correspond with the documented timeline of decomposition processes in East 

Tennessee. Elevation loss is then followed by stagnation of further elevation change. These 

signatures, with refinement of detection methods through additional research, are potentially 

measurable in non-experimental settings.  

 The findings of this study have immediate application to humanitarian and evidence-based 

efforts in locating unmarked human burials. As discussed in Chapter 2, international humanitarian 

law (IHL) dictates that families of missing persons have a right to know the fate of their missing 

relatives. Similarly, IHL establishes that parties of conflict have a responsibility to account for the 

dead. The findings of this study establish two previously undocumented ground disturbance 

signatures that, in combination with each other or with existing methods for burial detection, can 

help prioritize areas that are under active investigation. The documented signatures discovered in 

the current study are not necessarily indicative of human burials; rather, they are signatures 

consistent with ground disturbance and present an evidence-based probative tool for detection. The 

ability to remotely investigate a large swath of land to identify ground disturbance signatures will 

improve the efficiency of human burial detection by isolating potential disturbance for additional 

targeted ground-based investigation.  
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 The humanitarian and evidence-based implications of an improved rate of human grave 

detection are significant. Some families wish to know the truth about past events, the fate of their 

missing loved ones, and desire the return of the physical remains of the dead. Recovering a body 

once declared disappeared serves an important role in providing evidence for those needs and 

desires. For example, recovering the mortal remains of disappeared Nepalese men allows their 

widows who must otherwise reside – often with significant resentment and abuse – with her 

husband's family, to remarry (Robins 2011). Locating hidden graves and the subsequent recovery 

of human remains allows families to carry out funerary rituals otherwise prohibited without the 

physical remains of the missing. In Zimbabwe, the performance of funerary rituals is necessary for 

families to cope with loss, where ambiguity of a disappearance disrupts the grieving process. 

Location of hidden graves and subsequent recovery of human remains allows the process to move 

forward (Eppel 2014). A similar desire for the physical remains is expressed by families of US 

military service personnel who have gone missing during wartime. Fulfilling the needs of these 

families is perpetually hindered by the difficulties of locating unmarked human burials, which is 

precisely the information gap this research has attempted to address.      

 Some unmarked burials are already identifiable using existing detection methods. In such 

cases, remote sensing may assist those methods, adding valuable data to the mosaic, thus reducing 

the ground time required by a search team. Remote sensing has the advantage of covering more 

land than terrestrial methods, and remote sensing does not require positioning a sensor directly 

above a grave (e.g., active sensors), which again translates to less time a recovery team needs to 

be on the ground and, sometimes, in harm's way. Additionally, remote sensing has the added utility 

of monitoring known but inaccessible graves during ongoing conflict. Monitoring grave sites can 

provide evidence needed for the international community to apply political pressure to offending 
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governments (Willum 2000; Marx and Goward 2013) or to document attempts to hide evidence, 

such as the case in Bosnia, where perpetrators relocated bodies buried in mass graves to secondary 

and tertiary grave sites (ICMP 2004; Skinner et al. 2001)  

 The current study represents an improvement on previous forensic remote sensing studies 

that attempted to use spectroscopy to visualize non-human burials from airborne platforms 

(Kalacska and Bell 2006; Kalacska et al. 2009; LeBlanc et al. 2014). Separation in those cases is 

attributable to exposed burial soils, and no attempts were made to establish burial signatures for 

later use as a reference sample during non-experimental unmarked burial detection. The current 

study is the first to compare spectra between burial and undisturbed vegetation to help separate 

human burials lacking exposed surface soils. Adding to the science of forensic remote sensing, the 

current research represents the first ever burial surface elevation change study using LIDAR point 

cloud data. Using terrestrial remote sensing technologies, this dissertation establishes spectral and 

topographic burial signatures to be referenced in non-experimental circumstances. These new 

signatures can be used as a supplement to existing burial detection methods, and further studies 

may eventually lead to stand-alone remote sensing burial detection methods.   

 From a practical standpoint, human burial detection will likely remain multi-disciplinary 

and multi-modal for the foreseeable future. As future studies such as this one continue to bring 

together fragments of information about disturbance signatures, we will better understand what 

makes different types of disturbance uniquely identifiable, and ultimately, detectable. The findings 

of this work will be most useful as a methodological supplement to improve upon existing 

methods, or as a component of a predictive modeling approach to locating human burials. These 

findings are also foundational building blocks with which additional research can develop and 

refine remote detection methods. This research establishes that anomalies are visible in terrestrial 
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spectral and topographic data, and investigators are encouraged to begin integrating those 

technologies into their existing field survey protocol, when possible.  

Summary 

 This is the first study to specifically compare live vegetation spectra from human burial 

disturbance, non-burial disturbance, and undisturbed ground. It is also the first to use LIDAR as a 

tool for measuring human burial surface elevation changes over time. At present, the findings of 

terrestrial data analyses are enough to strongly support non-experimental field testing and 

additional experimental research into remote sensing as a forensic tool. Current burial detection 

methods can be augmented with these findings to help forensic investigators make more informed 

decisions about locating buried human remains. Fine tuning these methods, and establishing 

additional signatures indicative of buried human remains to facilitate their location will reduce 

costly and time-consuming fieldwork, further limiting investigators exposure to safety hazards on 

the ground. From an accounting perspective, the results of this study suggest that terrestrial 

spectroscopy and LIDAR may be useful technologies for identifying disturbed vegetation spectra 

and surface elevation changes, respectively. Given the rapid collection of remote sensing data, it 

may be worthwhile to integrate these technologies into existing burial detection protocol.    

8.1 Future Directions   

 This study is a preliminary investigation of the relationship between human burials and 

their immediate environment, but inevitably, additional questions have emerged from the findings. 

More research is needed to understand the relationship between human burials, grave soils, 

regrowth of vegetation over human remains, the distribution of buried decomposing mass, the 
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timing of signature expressions, differences between grave sizes and number of interred 

individuals, and differences between human burials and non-burial disturbance.    

 Future research will benefit most from an unobstructed experimental setting that is 

conducive to simultaneous passive and active remote sensing. Passive sensor line-of-sight is 

severely restricted by the tree canopy during leaf-on months, and is a poor spectral match for leaf-

off months when the ground surface is unobstructed, due to the low volume of live vegetation. In 

leaf-on conditions, LIDAR performs better than HSI due to its ability to provide an energy source 

that passes through gaps in tree canopy. It is perhaps the case that airborne remote sensing is poorly 

matched for burial detection in densely canopied environments. However, the terrestrial findings 

of the current study provide an adequate foundation for future research in unobstructed 

environments using ground-based and airborne sensing platforms.   

 Given the time-sensitive nature of human decomposition, particularly in warmer climates, 

future studies will benefit from a more frequent and evenly spaced data collection schedule to 

monitor the timing of potentially optimal windows for exploiting spectral or topographic 

signatures associated with human burials. This study presents snapshots of the longer timeline of 

burial signature expressions and it is not yet clear if signatures between groups were captured at 

their peak disparity or if peak disparity has yet to occur. Additional data collections not acquired 

in this study, such as recording a botanical inventory map, measuring gaseous emissions, or 

monitoring sub-surface temperature will help pinpoint decomposition stages, which may help 

determine which temporal windows are useful for applying remote sensing technologies.        

 Five of the seven statistical models developed to separate disturbed and undisturbed 

vegetation spectra include at least one shortwave infrared wavelength. Many of those individual 

wavelengths are potentially poor classifiers in reality, due to Planck curve characteristics and 
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reduced atmospheric transmission at longer wavelengths. However, several of those shortwave 

infrared wavelengths – namely, those in the 1440 – 2200 nm range – would be mostly unaffected 

by these two phenomena and are potentially valid and useful contributors to vegetation 

classification for this application. This research could not verify the performance of shortwave 

infrared wavelengths using airborne HSI because the imaging spectrometer range was limited to 

400 – 1000 nm. Therefore, given the findings of this study, it is worth evaluating the contribution 

of shortwave infrared wavelengths as disturbed vegetation classifiers in future research.  

 Finally, this research took advantage of several frequentist statistical methods for spectral 

classification and visualization methods for establishing topographic patterns. As more data are 

collected to support predictive modeling, and as signatures are better understood as functions of 

time and circumstance, a Bayesian statistical approach will help more fully model the geophysical 

and contextual variables that indicate human burial presence. Additional data variables, such as 

soil nitrogen concentration, leaf chlorophyll concentration, or plant species density and location 

will help establish the drivers of vegetation spectral differences between samples. Similarly, 

subsurface data indicative of active decomposition, such as temperature and gaseous emissions, 

will help determine whether elevation change is primarily driven by soil settling or the 

redistribution of decomposing mass.   
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Appendix A: Spectral Comparisons per Individual Burial/Control  

Spectral Angle Mapper (SAM)  
 

Figure A.1: Spectral Angle Mapper (SAM) results; Spring FieldSpec samples; all individual G1 

spectra (n=16) vs. Control spectral mean (derived from n=17) mean; comparisons of full spectrum 

and regions (left to right).  

 

 

 

Figure A.2: Spectral Angle Mapper (SAM) results; Spring FieldSpec samples; all individual G6 

spectra (n=36) vs. Control spectral mean (derived from n=17); comparisons of full spectrum and 

regions (left to right). 
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Figure A.3: Spectral Angle Mapper (SAM) results; Spring FieldSpec samples; all individual 

human Burial spectra (n=53) vs. Control spectral mean (derived from n=17); comparisons of full 

spectrum and regions (left to right). 

 

 

 

 

 

Figure A.4: Spectral Angle Mapper (SAM) results; Spring FieldSpec samples; all individual G1 

spectra (n=16) vs. Undisturbed spectral mean (derived from n=84); comparisons of full spectrum 

and regions (left to right). 
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Figure A.5: Spectral Angle Mapper (SAM) results; Spring FieldSpec samples; all individual G6 

spectra (n=36) vs. Undisturbed spectral mean (derived from n=84); comparisons of full spectrum 

and regions (left to right). 

 

 

 

 

 

Figure A.6: Spectral Angle Mapper (SAM) results; Spring FieldSpec samples; all individual 

human Burial spectra (n=53) vs. Undisturbed spectral mean (derived from n=84); comparisons of 

full spectrum and regions (left to right). 
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Figure A.7: Spectral Angle Mapper (SAM) results; Spring FieldSpec samples; all individual 

Control spectra (n=17) vs. Undisturbed spectral mean (derived from n=84); comparisons of full 

spectrum and regions (left to right). 

 

 

 

 

 

Figure A.8: Spectral Angle Mapper (SAM) results; Spring FieldSpec samples; all individual 

human burial and control ('Disturbed') spectra (n=70) vs. Undisturbed spectral mean (derived from 

n=84); comparisons of full spectrum and regions (left to right). 
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Figure A.9: Spectral Angle Mapper (SAM) results; Autumn FieldSpec samples; all individual G1 

spectra (n=11) vs. Control spectral mean (derived from n=5) mean; comparisons of full spectrum 

and regions (left to right). 

 

 

 

 

 

 

Figure A.10: Spectral Angle Mapper (SAM) results; Autumn FieldSpec samples; all individual 

G3 spectra (n=8) vs. Control spectral mean (derived from n=5) mean; comparisons of full spectrum 

and regions (left to right). 
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Figure A.11: Spectral Angle Mapper (SAM) results; Autumn FieldSpec samples; all individual 

G6 spectra (n=30) vs. Control spectral mean (derived from n=5) mean; analyses by full spectrum 

and by region (left to right). 

 

 

 

 

 

Figure A.12: Spectral Angle Mapper (SAM) results; Autumn FieldSpec samples; all individual 

human Burial spectra (n=49) vs. Control spectral mean (derived from n=5) mean; comparisons of 

full spectrum and regions (left to right). 
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Figure A.13: Spectral Angle Mapper (SAM) results; Autumn FieldSpec samples; all individual 

G1 spectra (n=11) vs. Undisturbed spectral mean (derived from n=79) mean; comparisons of full 

spectrum and regions (left to right). 

 

 

 

 

 

 

Figure A.14: Spectral Angle Mapper (SAM) results; Autumn FieldSpec samples; all individual 

G3 spectra (n=8) vs. Undisturbed spectral mean (derived from n=79) mean; comparisons of full 

spectrum and regions (left to right). 
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Figure A.15: Spectral Angle Mapper (SAM) results; Autumn FieldSpec samples; all individual 

G6 spectra (n=30) vs. Undisturbed spectral mean (derived from n=79) mean; comparisons of full 

spectrum and regions (left to right). 

 

 

 

 

 

 

Figure A.16: Spectral Angle Mapper (SAM) results; Autumn FieldSpec samples; all individual 

human Burial spectra (n=49) vs. Undisturbed spectral mean (derived from n=79) mean; 

comparisons of full spectrum and regions (left to right). 
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Figure A.17: Spectral Angle Mapper (SAM) results; Autumn FieldSpec samples; all individual 

Control spectra (n=5) vs. Undisturbed spectral mean (derived from n=79) mean; comparisons of 

full spectrum and regions (left to right). 

 

 

 

 

 

Figure A.18: Spectral Angle Mapper (SAM) results; Autumn FieldSpec samples; all individual 

human burial and control ('Disturbed') spectra (n=54) vs. Undisturbed spectral mean (derived from 

n=79) mean; comparisons of full spectrum and regions (left to right). 
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Spectral Information Divergence (SID) 

 

Figure A.19: Spectral Information Divergence (SID) results; Spring FieldSpec samples; all 

individual G1 spectra (n=16) vs. Control spectral mean (derived from n=17) mean; comparisons 

of full spectrum and regions (left to right).  

 

 

 

Figure A.20: Spectral Information Divergence (SID) results; Spring FieldSpec samples; all 

individual G6 spectra (n=36) vs. Control spectral mean (derived from n=17) mean; comparisons 

of full spectrum and regions (left to right).  
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Figure A.21: Spectral Information Divergence (SID) results; Spring FieldSpec samples; all 

individual human Burial spectra (n=53) vs. Control spectral mean (derived from n=17) mean; 

comparisons of full spectrum and regions (left to right).  

 

 

 

 

 

 

Figure A.22: Spectral Information Divergence (SID) results; Spring FieldSpec samples; all 

individual G1 spectra (n=16) vs. Undisturbed spectral mean (derived from n=84) mean; 

comparisons of full spectrum and regions (left to right).  
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Figure A.23: Spectral Information Divergence (SID) results; Spring FieldSpec samples; all 

individual G6 spectra (n=36) vs. Undisturbed spectral mean (derived from n=84) mean; 

comparisons of full spectrum and regions (left to right).  

 

 

 

 

 

 

Figure A.24: Spectral Information Divergence (SID) results; Spring FieldSpec samples; all 

individual human Burial spectra (n=53) vs. Undisturbed spectral mean (derived from n=84) mean; 

comparisons of full spectrum and regions (left to right). 
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Figure A.25: Spectral Information Divergence (SID) results; Spring FieldSpec samples; all 

individual Control spectra (n=17) vs. Undisturbed spectral mean (derived from n=84) mean; 

comparisons of full spectrum and regions (left to right). 

 

 

 

 

 

Figure A.26: Spectral Information Divergence (SID) results; Spring FieldSpec samples; all 

individual human burial and control ('Disturbed') spectra (n=70) vs. Undisturbed spectral mean 

(derived from n=84) mean; comparisons of full spectrum and regions (left to right). 

  



  

265 

 

Figure A.27: Spectral Information Divergence (SID) results; Autumn FieldSpec samples; all 

individual G1 spectra (n=11) vs. Control spectral mean (derived from n=5) mean; comparisons of 

full spectrum and regions (left to right). 

 

 

 

 

Figure A.28: Spectral Information Divergence (SID) results; Autumn FieldSpec samples; all 

individual G3 spectra (n=8) vs. Control spectral mean (derived from n=5) mean; comparisons of 

full spectrum and regions (left to right). 
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Figure A.29: Spectral Information Divergence (SID) results; Autumn FieldSpec samples; all 

individual G6 spectra (n=30) vs. Control spectral mean (derived from n=5) mean; comparisons of 

full spectrum and regions (left to right). 

 

 

 

 

Figure A.30: Spectral Information Divergence (SID) results; Autumn FieldSpec samples; all 

individual human Burial spectra (n=49) vs. Control spectral mean (derived from n=5) mean; 

comparisons of full spectrum and regions (left to right). 
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Figure A.31: Spectral Information Divergence (SID) results; Autumn FieldSpec samples; all 

individual G1 spectra (n=11) vs. Undisturbed spectral mean (derived from n=79) mean; 

comparisons of full spectrum and regions (left to right). 

 

 

 

 

Figure A.32: Spectral Information Divergence (SID) results; Autumn FieldSpec samples; all 

individual G3 spectra (n=8) vs. Undisturbed spectral mean (derived from n=79) mean; 

comparisons of full spectrum and regions (left to right). 
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Figure A.33: Spectral Information Divergence (SID) results; Autumn FieldSpec samples; all 

individual G6 spectra (n=30) vs. Undisturbed spectral mean (derived from n=79) mean; 

comparisons of full spectrum and regions (left to right). 

 

 

 

 

Figure A.34: Spectral Information Divergence (SID) results; Autumn FieldSpec samples; all 

individual human Burial spectra (n=49) vs. Undisturbed spectral mean (derived from n=79) mean; 

comparisons of full spectrum and regions (left to right). 
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Figure A.35: Spectral Information Divergence (SID) results; Autumn FieldSpec samples; all 

individual Control spectra (n=5) vs. Undisturbed spectral mean (derived from n=79) mean; 

comparisons of full spectrum and regions (left to right). 

 

 

 

 

Figure A.36: Spectral Information Divergence (SID) results; Autumn FieldSpec samples; all 

individual human burial and control ('Disturbed') spectra (n=54) vs. Undisturbed spectral mean 

(derived from n=79) mean; comparisons of full spectrum and regions (left to right). 
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Appendix B: Detailed Statistical Model Development Process  

Logistic Regression 

Table B.1: Logistic regression training results summary; 70% training data; full spectral range 

(400 – 1330, 1440 – 1800, 1990 – 2500 nm). Green indicates models advanced to validation where 

correct classification of both groups ≥ 50.0%. Detailed results presented in Tables B.3 – A.14. 

Model: 

Season 

Known 

Group 

n= Wavelengths 

(nm) 

Chi-square Sig. % Overall 

Correct 

1: Spring Burial 

 

Undisturbed 

37 

 

59 

761, 764 15.273 0.000 65.6 

2: Autumn Burial 34 707, 2423 37.663 0.000 76.7 

 Undisturbed 

 

56     

3: Spring Control 12 2492 11.458 0.001 84.5 

 Undisturbed 

 

59     

4: Autumn Control 3 2492 5.522 0.019 93.2 

 Undisturbed 

 

56     

5: Spring Disturbed 49 554 11.263 0.001 60.2 

 Undisturbed 

 

59     

6: Autumn Disturbed 37 708, 1993 34.434 0.000 71.0 

 Undisturbed 56     

 

 

 

 

 



  

271 

 

Table B.2: Logistic regression validation results summary; 30% test data; full spectral range 

(400 – 1330, 1440 – 1800, 1990 – 2500 nm). Green indicates models advanced to imagery where 

correct classification of both groups ≥ 50.0%. Detailed results presented in Tables B.15 – B.17. 

Model: 

Season 

Known Group n= % Correct % Overall Correct 

1: Spring Burial 16 - - 

 Undisturbed 

 

25   

2: Autumn Burial 15 60.0 71.1 

 Undisturbed 

 

23 78.3  

3: Spring Control 5 - - 

 Undisturbed 

 

25   

4: Autumn Control 2 - - 

 Undisturbed 

 

23   

5: Spring Disturbed 21 52.3 50.0 

 Undisturbed 

 

25 48.0  

6: Autumn Disturbed 17 52.9 67.5 

 Undisturbed 23 78.3  
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Training Model #1: Spring 2014 – FieldSpec Data (2-groups: Undisturbed vs. Burials) 

 

 Advancement criterion: Correct classification ≥ 50.0% across all categories  

o Model NOT advanced to validation 

 

 

 

Table B.3: BLR training results using full resolution Spring FieldSpec reflectance spectra; 2-group 

analysis; overall 65.6% correct classification of training cases. Regression equation values are 

listed in Table B.4. 

N=96  Predicted Membership  

Total 
State Undisturbed Burial 

Known 

Membership 

(Count)       Undisturbed 

 

Burial 

48 

 

22 

11 

 

15 

59 

 

37 

(%)       Undisturbed 

 

Burial 

81.4 
 

59.5 

18.6 

 

40.5 

100.0 

 

100.0 

 

 

Table B.4: Logistic regression equation values. 

Variable Coefficient 

Constant 1.803 

761 nm -452.641 

764 nm 444.948 
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Training Model #2: Autumn 2014 – FieldSpec Data (2-groups: Undisturbed vs. Burials) 

 

 Advancement criterion: Correct classification ≥ 50.0% across all categories  

o Model ADVANCED to validation 

 

 

 

Table B.5: BLR training results using full resolution Autumn FieldSpec reflectance spectra; 2-

group analysis; overall 76.7% correct classification of training cases. Regression equation values 

and validation results are listed in Tables B.6 and B.15. 

N=90  Predicted Membership  

Total 
State Undisturbed Burial 

Known 

Membership 

(Count)       Undisturbed 

 

Burial 

48 

 

13 

8 

 

21 

56 

 

34 

(%)       Undisturbed 

 

Burial 

85.7 
 

38.2 

14.3 

 

61.8 

100.0 

 

100.0 

 

 

 

Table B.6: Logistic regression equation values. 

Variable Coefficient 

Constant 3.027 

707 nm -42.345 

2423 nm 37.510 
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Training Model #3: Spring 2014 – FieldSpec Data (2-groups: Undisturbed vs. Control) 

 

 Advancement criterion: Correct classification ≥ 50.0% across all categories  

o Model NOT advanced to validation 

 

 

Table B.7: BLR training results using full resolution Spring FieldSpec reflectance spectra; 2-group 

analysis; overall 84.5% correct classification of training cases. Regression equation values are 

listed in Table B.8. 

N=71  Predicted Membership  

Total 
State Undisturbed Control 

Known 

Membership 

(Count)       Undisturbed 

 

Control 

58 

 

10 

1 

 

2 

59 

 

12 

(%)       Undisturbed 

 

Control 

98.3 
 

83.3 

1.7 

 

16.7 

100.0 

 

100.0 

 

 

 

Table B.8: Logistic regression equation values. 

Variable Coefficient 

Constant 0.375 

2492 nm -33.503 
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Training Model #4: Autumn 2014 – FieldSpec Data (2-groups: Undisturbed vs. Control) 

 

 Advancement criterion: Correct classification ≥ 50.0% across all categories  

o Model NOT advanced to validation 

 

 

Table B.9: BLR training results using full resolution Autumn FieldSpec reflectance spectra; 2-

group analysis; overall 93.2% correct classification of training cases. Regression equation values 

are listed in Table B.10. 

N=59  Predicted Membership  

Total 
State Undisturbed Control 

Known 

Membership 

(Count)       Undisturbed 

 

Control 

55 

 

3 

1 

 

0 

56 

 

3 

(%)       Undisturbed 

 

Control 

98.2 

 

100.0 

1.8 

 

0.0 

100.0 

 

100.0 

  

 

 

Table B.10: Logistic regression equation values. 

Variable Coefficient 

Constant -2.935 

2492 -11.044 
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Training Model #5: Spring 2014 – FieldSpec Data (2-groups: Undisturbed vs. Disturbed) 

 

 Advancement criterion: Correct classification ≥ 50.0% across all categories  

o Model ADVANCED to validation 

 

 

Table B.11: BLR training results using full resolution Spring FieldSpec reflectance spectra; 2-

group analysis; overall 60.2% correct classification of training cases. Regression equation values 

and validation results are listed in Tables B.12 and B.16. 

N=108  Predicted Membership  

Total 
State Undisturbed Disturbed 

Known 

Membership 

(Count)       Undisturbed 

 

Disturbed 

40 

 

24 

19 

 

25 

59 

 

49 

(%)       Undisturbed 

 

Disturbed 

67.8 
 

49.0 

32.2 

 

51.0 

100.0 

 

100.0 

  

 

 

Table B.12: Logistic regression equation values. 

Variable Coefficient 

Constant 1.623 

554 (nm) -18.007 
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Training Model #6: Autumn 2014 – FieldSpec Data (2-groups: Undisturbed vs. Disturbed) 

 

 Advancement criterion: Correct classification ≥ 50.0% across all categories  

o Model ADVANCED to validation 

 

 

Table B.13: BLR training results using full resolution Autumn FieldSpec reflectance spectra; 2-

group analysis; overall 71.0% correct classification of training cases. Regression equation values 

and validation results are listed in Tables B.14 and B.17. 

N=93  Predicted Membership  

Total 
State Undisturbed Disturbed 

Known 

Membership 

(Count)       Undisturbed 

 

Disturbed 

43 

 

14 

13 

 

23 

56 

 

37 

(%)       Undisturbed 

 

Disturbed 

76.8 
 

37.8 

23.2 

 

62.2 

100.0 

 

100.0 

  

 

 

Table B.14: Logistic regression equation values. 

Variable Coefficient 

Constant 2.591 

708 nm -33.417 

1993 nm 36.306 
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VALIDATION – Training Model #2 

 

 Advancement criterion: Correct classification ≥ 50.0% across all categories  

o Model ADVANCED to imagery test 

 

 

Table B.15: BLR validation results using full range Autumn FieldSpec reflectance spectra; 2-

group analysis; overall 71.1% correct classification of test cases. 

N=38  Predicted Membership  

Total 
State Undisturbed Burial 

Known 

Membership 

(Count)       Undisturbed 

 

Burial 

18 

 

6 

5 

 

9 

23 

 

15 

(%)       Undisturbed 

 

Burial 

78.3 
 

40.0 

21.7 

 

60.0 

100.0 

 

100.0 
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VALIDATION – Training Model #5 

 

 Advancement criterion: Correct classification ≥ 50.0% across all categories  

o Model NOT advanced to imagery test 

 

 

Table B.16: BLR validation results using full range Spring FieldSpec reflectance spectra; 2-group 

analysis; overall 50.0% correct classification of test cases. 

N=46  Predicted Membership  

Total 
State Undisturbed Disturbed 

Known 

Membership 

(Count)       Undisturbed 

 

Disturbed 

12 

 

10 

13 

 

11 

25 

 

21 

(%)       Undisturbed 

 

Disturbed 

48.0 
 

47.6 

52.0 

 

52.3 

100.0 

 

100.0 
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VALIDATION – Training Model #6 

 

 Advancement criterion: Correct classification ≥ 50.0% across all categories  

o Model ADVANCED to imagery test 

 

 

Table B.17: BLR validation results using full range Autumn FieldSpec reflectance spectra; 2-

group analysis; overall 67.5% correct classification of test cases. 

N=40  Predicted Membership  

Total 
State Undisturbed Disturbed 

Known 

Membership 

(Count)       Undisturbed 

 

Disturbed 

18 

 

8 

5 

 

9 

23 

 

17 

(%)       Undisturbed 

 

Disturbed 

78.3 
 

47.1 

21.7 

 

52.9 

100.0 

 

100.0 
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Table B.18: Logistic regression training results summary; 70% training data; spectral subset (418 

– 919 nm) to match spectral range of the Headwall Hyperspec data. Gray indicates redundant 

models already presented in Tables B.1 and B.2. Green indicates models advanced to validation 

where correct classification of both groups ≥ 50.0%. Detailed results presented in Tables B.20 – 

B.25. 

Model: 

Season 

Group n= Wavelengths (nm) Chi-square Sig. % Overall 

Correct 

1: Spring Burial 

 

Undisturbed 

37 

 

59 

761, 764 15.273 0.000 65.6 

7: Autumn Burial 34 707 29.580 0.000 71.1 

 Undisturbed 

 

56     

8: Spring Control 

 

Undisturbed 

12 

 

59 

545, 546, 551, 895, 

900, 909, 912, 913, 

917 

64.513 0.000 100.0 

N/A: 

Autumn 

Control 3 No viable model - - - 

 Undisturbed 

 

56     

5: Spring Disturbed 49 554 11.263 0.001 60.2 

 Undisturbed 

 

59     

9: Autumn Disturbed 37 708 25.251 0.000 67.7 

 Undisturbed 56     
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Table B.19: Logistic regression validation results summary; 30% test data; spectral subset (418 – 

919 nm) to match spectral range of the Headwall Hyperspec data. Gray indicates redundant models 

already presented in Tables B.1 and B.2. Green indicates models advanced to imagery where 

correct classification of both groups ≥ 50.0% (none are advanced). Detailed results presented in 

Tables B.26 – B.27.  

Season Known Group n= % Correct % Overall Correct 

1: Spring Human 16 - - 

 Undisturbed 

 

25   

7: Autumn Human 15 46.7 63.2 

 Undisturbed 

 

23 73.9  

8: Spring Control 5 40.0 86.7 

 Undisturbed 

 

25 96.0  

4: Autumn Control 2 - - 

 Undisturbed 

 

23   

5: Spring Disturbed 21 - - 

 Undisturbed 

 

25   

9: Autumn Disturbed 17 - - 

 Undisturbed 23   
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Training Model #7: Autumn 2014 – FieldSpec Data (2-groups: Undisturbed vs. Burials) 

 

 Advancement criterion: Correct classification ≥ 50.0% across all categories  

o Model ADVANCED to validation 

 

 

Table B.20: BLR training results using 418 – 919 nm Autumn FieldSpec reflectance spectra; 2-

group analysis; overall 71.1% correct classification of training cases. Regression equation values 

and validation results are listed in Tables B.21 and B.26. 

N=90  Predicted Membership  

Total 
State Undisturbed Burial 

Known 

Membership 

(Count)       Undisturbed 

 

Burial 

46 

 

16 

10 

 

18 

56 

 

34 

(%)       Undisturbed 

 

Burial 

82.1 

 

47.1 

17.9 

 

52.9 

100.0 

 

100.0 

  

 

Table B.21: Logistic regression equation values. 

Variable Coefficient 

Constant 2.702 

707 nm -20.189 
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Training Model #8: Spring 2014 – FieldSpec Data (2-groups: Undisturbed vs. Control) 

 

 Advancement criterion: Correct classification ≥ 50.0% across all categories  

o Model ADVANCED to validation 

 

 

Table B.22: BLR training results using 418 – 919 nm Spring FieldSpec reflectance spectra; 2-

group analysis; overall 100.0% correct classification of training cases. Regression equation values 

and hold-out sample validation results are listed in Tables B.23 and B.27. 

N=71  Predicted Membership  

Total 
State Undisturbed Control 

Known 

Membership 

(Count)       Undisturbed 

 

Control 

59 

 

0 

0 

 

12 

59 

 

12 

(%)       Undisturbed 

 

Control 

100.0 
 

0.0 

0.0 

 

100.0 

100.0 

 

100.0 

  

 

Table B.23: Logistic regression equation values. 

Variable Coefficient  Variable Coefficient 

Constant -42.510  900 nm -58878.891 

545 nm 503375.665  909 nm -38235.606 

546 nm -587359.907  912 nm -217993.189 

551 nm 83508.731  913 nm 231044.990 

895 nm 71120.327  917 nm 13075.695 

 

 



  

285 

 

Training Model #9:Autumn 2014 – FieldSpec Data (2-groups: Undisturbed vs. Disturbed) 

 

 Advancement criterion: Correct classification ≥ 50.0% across all categories  

o Model NOT advanced to validation 

 

 

Table B.24: BLR training results using 418 – 919 nm Autumn FieldSpec reflectance spectra; 2-

group analysis; overall 67.7% correct classification of training cases. Regression equation values 

are listed in Table B.25. 

N=93  Predicted Membership  

Total 
State Undisturbed Disturbed 

Known 

Membership 

(Count)       Undisturbed 

 

Disturbed 

45 

 

19 

11 

 

18 

56 

 

37 

(%)       Undisturbed 

 

Disturbed 

80.4 
 

51.4 

19.6 

 

48.6 

100.0 

 

100.0 

 

 

Table B.25: Logistic regression equation values. 

Variable Coefficient 

Constant 2.323 

708 nm -16.086 
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VALIDATION – Training Model #7 

 

 Advancement criterion: Correct classification ≥ 50.0% across all categories  

o Model NOT advanced to imagery test 

 

 

Table B.26: BLR validation results using 418 – 919 nm Autumn FieldSpec reflectance spectra; 2-

group analysis; overall 63.2% correct classification of test cases. 

N=38  Predicted Membership  

Total 
State Undisturbed Burial 

Known 

Membership 

(Count)       Undisturbed 

 

Burial 

17 

 

8 

6 

 

7 

23 

 

15 

(%)       Undisturbed 

 

Burial 

73.9 
 

53.3 

26.1 

 

46.7 

100.0 

 

100.0 
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VALIDATION – Training Model #8 

 

 Advancement criterion: Correct classification ≥ 50.0% across all categories  

o Model NOT advanced to imagery test 

 

 

Table B.27: BLR validation results using 418 – 919 nm Spring FieldSpec reflectance spectra; 2-

group analysis; overall 86.7% correct classification of test cases. 

N=30  Predicted Membership  

Total 
State Undisturbed Control 

Known 

Membership 

(Count)       Undisturbed 

 

Control 

24 

 

3 

1 

 

2 

25 

 

5 

(%)       Undisturbed 

 

Control 

96.0 
 

60.0 

4.0 

 

40.0 

100.0 

 

100.0 
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Discriminant Function Analysis (DFA) 

 

Table B.28: DFA training results summary; 70% training data; full spectral range (400 – 1330, 

1440 – 1800, 1990 – 2500 nm). Green indicates models advanced to validation where correct 

classification of 2 groups ≥ 50.0% or 3 groups at ≥ 33.3%. Detailed results presented in Tables 

B.30 – B.47. 

Season Group n= Wavelengths (nm) Wilk's 

Lambda 

Sig. % Overall 

Correct 

1: Spr. Human 37 551 0.895 0.003 50.9 

 Control 12     

 Undist. 59     

2: Aut. Human 34 708, 2053, 2407, 2445, 2498 (1) 0.475 0.000 80.6 

 Control 3  (2) 0.748 0.000  

 Undist. 56     

3: Spr. Human 

 

Undist. 

37 

 

59 

761, 1440, 2015, 2291, 2355, 

 2401, 2405, 2417, 2448, 

2459, 2467, 2480 

0.371 0.000 88.5 

4: Aut. Human 34 707 0.753 0.000 75.6 

 Undist. 56     

5: Spr. Dist. 49 554 0.904 0.001 60.2 

 Undist. 59     

6: Aut. Dist. 37 708, 2006, 2412 0.706 0.000 72.0 

 Undist. 56     
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Table B.29: DFA validation results summary; 30% test data; full spectral range (400 – 1330, 1440 

– 1800, 1990 – 2500 nm). Green indicates models advanced to imagery where correct classification 

of 2 groups ≥ 50.0% or 3 groups at ≥ 33.3%. Detailed results presented in Tables B.48 – B.53. 

Season/Model Known Group n= % Correct % Overall Correct 

1: Spring 3-groups Human 16 12.5 32.6 

 Control 5 60.0  

 Undisturbed 25 40.0  

2: Autumn 3-groups Human 15 73.3 62.5 

 Control 2 0.0 65.8 

 Undisturbed 23 60.9  

3: Spring 2-groups Human 16 68.8 58.5 

 Undisturbed 25 52.0  

4: Autumn 2-groups Human 15 66.7 63.2 

 Undisturbed 23 60.9  

5: Spring 2-groups Disturbed 21 57.1 47.8 

 Undisturbed 25 40.0  

6: Autumn 2-groups Disturbed 17 52.9 62.5 

 Undisturbed 23 69.6  
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Training Model #1: Spring 2014 – FieldSpec Data (3-groups: Undist. vs. Burial vs. Control) 

 

 Advancement criterion: Correct classification ≥ 33.3% across all categories  

o Model ADVANCED to validation 

 

Table B.30: DFA training results using full resolution Spring FieldSpec reflectance spectra; 3-

group analysis; overall 50.9% correct classification of training cases. Classification function 

coefficients and validation results are listed in Tables B.31, B.32 and B.48. 

N=108   Predicted Membership  

 

Total State Undisturbed Burial Control 

Known 

Membership 

(Count)        Undisturbed 

 

Burial 
 

Control 

32 

 

9 

 

4 

9 

 

15 

 

0 

18 

 

13 

 

8 

59 

 

37 

 

12 

 (%)        Undisturbed 

 

Burial 
 

Control 

54.2 
 

24.3 

 

33.3 

15.3 

 

40.5 
 

0.0 

30.5 

 

35.1 

 

66.7 

100.0 

 

100.0 

 

100.0 

 

Table B.31: Model #1 Unstandardized Discriminant Function Coefficients. 

Variable D1 Coefficient 

Constant -2.641 

551 nm 25.925 

 

Table B.32: Model #1 Fisher's Classification Function Coefficients. 

Variable (U) Coefficient (H) Coefficient (C) Coefficient 

Constant -5.407 -3.906 -3.116 

551 (nm) 76.099 61.431 52.722 
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Training Model #2: Autumn 2014 – FieldSpec (3-groups: Undist. vs. Burial vs. Control) 

 

 Advancement criterion: Correct classification ≥ 33.3% across all categories  

o Model ADVANCED to validation 

 

 

Table B.33: DFA training results using full resolution Autumn FieldSpec reflectance spectra: 3-

group analysis; overall 80.6% correct classification of training cases. Classification function 

coefficients and validation results are listed in Tables B.34, B.35 and B.49. 

N=93   Predicted Membership  

 

Total State Undisturbed Burial Control 

Known 

Membership 

(Count)        Undisturbed 

 

Burial 
 

Control 

38 

 

0 

 

0 

18 

 

34 

 

0 

0 

 

0 

 

3 

56 

 

34 

 

3 

 (%)        Undisturbed 

 

Burial 
 

Control 

67.9 
 

0.0 

 

0.0 

32.1 

 

100.0 
 

0.0 

0.0 

 

0.0 

 

100.0 

100.0 

 

100.0 

 

100.0 

 

 

Table B.34: Model #2 Unstandardized Discriminant Function Coefficients. 

Variable D1 Coefficient D2 Coefficient  Variable D1 Coefficient D2 Coefficient 

Constant -1.282 -1.487  2407  -117.585 76.992 

708 (nm) 8.653 15.627  2445  43.777 -21.515 

2053  63.955 -63.538  2498  5.235 -0.692 
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Table B.35: Model #2 Fisher's Classification Function Coefficients. 

Variable (U) Coefficient (H) Coefficient (C) Coefficient 

Constant -4.883 -2.546 -12.925 

708 (nm) 29.896 6.821 23.758 

2053 33.399 41.962 374.836 

2407 -24.752 -0.652 -566.458 

2445 -10.314 -26.439 175.919 

2498 3.159 -0.651 21.366 
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Training Model #3: Spring 2014 – FieldSpec Data (2-groups: Undisturbed vs. Burial)  

 

 

 Advancement criterion: Correct classification ≥ 33.3% across all categories  

o Model ADVANCED to validation 

 

 

 

Table B.36: DFA training results using full resolution Spring FieldSpec reflectance spectra; 2-

group analysis; overall 88.5% correct classification of training cases. Classification function 

coefficients and validation results are listed in Tables B.37, B.38, and B.50. 

N=96   Predicted Membership  

Total 
State Undisturbed Burial 

Known 

Membership 

(Count)       Undisturbed 

 

Burial 

53 

 

5 

6 

 

32 

59 

 

37 

(%)       Undisturbed 

 

Burial 

89.8 
 

13.5 

10.2 

 

86.5 

100.0 

 

100.0 

 

 

Table B.37: Model #3 Unstandardized Discriminant Function Coefficients. 

Variable D1 Coefficient  Variable D1 Coefficient  Variable D1 Coefficient 

Constant -1.723  2355 244.397  2459 72.732 

761 (nm) 16.672  2401 126.695  2467 48.846 

1440 159.929  2405 -185.989  2480 27.198 

2015 -146.723  2417 -83.318    

2291 -318.063  2448 57.457    
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Table B.38: Model #3 Fisher's Classification Function Coefficients. 

Variable (U) Coefficient (H) Coefficient  Variable (U) Coefficient (H) Coefficient 

Constant -10.577 -6.820  2405 -160.127 332.210 

761 (nm) 80.630 36.497  2417 -193.261 27.292 

1440 306.794 -116.559  2448 214.378 62.280 

2015 -173.959 214.436  2459 257.155 64.624 

2291 -441.858 400.097  2467 50.646 -78.656 

2355 73.052 -573.899  2480 -5.480 -77.477 

2401 61.779 -273.600     
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Training Model #4: Autumn 2014 – FieldSpec Data (2-groups: Undisturbed vs. Burial) 

 

 Advancement criterion: Correct classification ≥ 33.3% across all categories  

o Model ADVANCED to validation 

 

 

Table B.39: DFA training results using full resolution Autumn FieldSpec reflectance spectra; 2-

group analysis; overall 75.6% correct classification of training cases. Classification function 

coefficients and validation results are listed in Tables B.40, B.41, and B.51. 

N=90   Predicted Membership  

Total 
State Undisturbed Burial 

Known 

Membership 

(Count)       Undisturbed 

 

Burial 

38 

 

4 

18 

 

30 

56 

 

34 

(%)       Undisturbed 

 

Burial 

67.9 
 

11.8 

32.1 

 

88.2 

100.0 

 

100.0 

 

Table B.40: Model #4 Unstandardized Discriminant Function Coefficients. 

Variable D1 Coefficient 

Constant -2.258 

707 nm 12.570 

 

Table B.41: Model #4 Fisher's Classification Function Coefficients. 

Variable (U) Coefficient (H) Coefficient 

Constant -4.335 -1.866 

707 (nm) 33.926 19.252 
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Training Model #5: Spring 2014 – FieldSpec Data (2-groups: Undisturbed vs. Disturbed) 

 

 Advancement criterion: Correct classification ≥ 33.3% across all categories  

o Model ADVANCED to validation 

 

 

Table B.42: DFA training results using full resolution Spring FieldSpec reflectance spectra; 2-

group analysis; overall 60.2% correct classification of training cases. Classification function 

coefficients and validation results are listed in Tables B.43, B.44, and B.52. 

N=108   Predicted Membership  

Total 
State Undisturbed Disturbed 

Known 

Membership 

(Count)       Undisturbed 

 

Disturbed 

32 

 

16 

27 

 

33 

59 

 

49 

(%)       Undisturbed 

 

Disturbed 

54.2 
 

32.7 

45.8 

 

67.3 

100.0 

 

100.0 

 

Table B.43: Model #5 Unstandardized Discriminant Function Coefficients. 

Variable D1 Coefficient 

Constant -2.641 

554 nm 25.702 

 

Table B.44: Model #5 Fisher's Classification Function Coefficients. 

 Variable (U) Coefficient (D) Coefficient 

Constant -5.000 -3.307 

554 (nm) 75.430 58.766 
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Training Model #6: Autumn 2014 – FieldSpec Data (2-groups: Undisturbed vs. Disturbed) 

 

 Advancement criterion: Correct classification ≥ 33.3% across all categories  

o Model ADVANCED to validation 

 

 

Table B.45: DFA training results using full resolution Autumn FieldSpec reflectance spectra; 2-

group analysis; overall 72.0% correct classification of training cases. Classification function 

coefficients and validation results are listed in Tables B.46, B.47, and B.53. 

N=93   Predicted Membership  

Total 
State Undisturbed Disturbed 

Known 

Membership 

(Count)       Undisturbed 

 

Disturbed 

37 

 

7 

19 

 

30 

56 

 

37 

(%)       Undisturbed 

 

Disturbed 

66.1 
 

18.9 

33.9 

 

81.1 

100.0 

 

100.0 

 

Table B.46: Model #6 Unstandardized Discriminant Function Coefficients. 

Variable D1 Coefficient  Variable D1 Coefficient 

Constant -1.878  2006 -53.329 

708 (nm) 12.796  2412 41.692 

 

Table B.47: Model #6 Fisher's Classification Function Coefficients. 

Variable (U) Coefficient (D) Coefficient  Variable (U) Coefficient (D) Coefficient 

Constant -4.419 -2.142  2006 -49.066 20.546 

708 (nm) 28.427 11.724  2412 52.454 -1.968 
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VALIDATION – Training Model #1 

 

 Advancement criterion: Correct classification ≥ 33.3% across all categories  

o Model NOT advanced to imagery test 

 

 

 

Table B.48: DFA validation results using full range Spring FieldSpec reflectance spectra; 3-group 

analysis; overall 32.6% correct classification of test cases.  

N=46  Predicted Membership  

 

Total State Undisturbed Burial Control 

Known 

Membership 

(Count)        Undisturbed 

 

Burial 
 

Control 

10 

 

6 

 

2 

2 

 

2 

 

0 

13 

 

8 

 

3 

25 

 

16 

 

5 

 (%)        Undisturbed 

 

Burial 
 

Control 

40.0 
 

37.5 

 

40.0 

8.0 

 

12.5 
 

0.0 

52.0 

 

50.0 

 

60.0 

100.0 

 

100.0 

 

100.0 
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VALIDATION – Training Model #2 

 

 Advancement criterion: Correct classification ≥ 33.3% across 3 categories or   

≥ 50.0% across 2 categories 

o Model ADVANCED to imagery test 

 

 

 

Table B.49: DFA validation results using full range Autumn FieldSpec reflectance spectra; 3-

group analysis; overall 62.5% correct classification of test cases. 

N=40  Predicted Membership  

 

Total State Undisturbed Burial Control 

Known 

Membership 

(Count)        Undisturbed 

 

Burial 
 

Control 

14 

 

4 

 

1 

8 

 

11 

 

1 

1 

 

0 

 

0 

23 

 

15 

 

2 

 (%)        Undisturbed 

 

Burial 
 

Control 

60.9 
 

26.7 

 

50.0 

34.8 

 

73.3 
 

50.0 

4.3 

 

0.0 

 

0.0 

100.0 

 

100.0 

 

100.0 

 

 

 

 

 

 

 

 

 

 

  



  

300 

 

VALIDATION – Training Model #3 

 

 Advancement criterion: Correct classification ≥ 50.0% across all categories 

o Model ADVANCED to imagery test 

 

 

 

Table B.50: DFA validation results using full range Spring FieldSpec reflectance spectra; 2-group 

analysis; overall 58.5% correct classification of test cases.  

N=41  Predicted Membership  

Total 
State Undisturbed Burial 

Known 

Membership 

(Count)       Undisturbed 

 

Burial 

13 

 

5 

12 

 

11 

25 

 

16 

(%)       Undisturbed 

 

Burial 

52.0 
 

31.2 

48.0 

 

68.8 

100.0 

 

100.0 
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VALIDATION – Training Model #4 

 

 Advancement criterion: Correct classification ≥ 50.0% across all categories 

o Model ADVANCED to imagery test 

 

 

 

Table B.51: DFA validation results using full range Autumn FieldSpec reflectance spectra; 2-

group analysis; overall 63.2% correct classification of test cases. 

N=38  Predicted Membership  

Total 
State Undisturbed Burial 

Known 

Membership 

(Count)       Undisturbed 

 

Burial 

14 

 

5 

9 

 

10 

23 

 

15 

(%)       Undisturbed 

 

Burial 

60.9 
 

33.3 

39.1 

 

66.7 

100.0 

 

100.0 
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VALIDATION – Training Model #5 

 

 Advancement criterion: Correct classification ≥ 50.0% across all categories  

o Model NOT advanced to imagery test 

 

 

 

Table B.52: DFA validation results using full range Spring FieldSpec reflectance spectra; 2-group 

analysis; overall 47.8% correct classification of test cases.  

N=46  Predicted Membership  

Total 
State Undisturbed Disturbed 

Known 

Membership 

(Count)       Undisturbed 

 

Disturbed 

10 

 

9 

15 

 

12 

25 

 

21 

(%)       Undisturbed 

 

Disturbed 

40.0 
 

42.9 

60.0 

 

57.1 

100.0 

 

100.0 
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VALIDATION – Training Model #6 

 

 Advancement criterion: Correct classification ≥ 50.0% across all categories 

o Model ADVANCED to imagery test 

 

 

 

Table B.53: DFA validation results using full range Autumn FieldSpec reflectance spectra; 2-

group analysis; overall 62.5% correct classification of test cases.  

N=40  Predicted Membership  

Total 
State Undisturbed Disturbed 

Known 

Membership 

(Count)       Undisturbed 

 

Disturbed 

16 

 

8 

7 

 

9 

23 

 

17 

(%)       Undisturbed 

 

Disturbed 

69.6 

 

47.1 

30.4 

 

52.9 

100.0 

 

100.0 
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Table B.54: DFA training results summary, 70% training data; spectral subset (418 – 919 nm) 

to match spectral range of the Headwall Hyperspec data. Gray indicates redundant models already 

presented in Tables B.28 and B.29. Green indicates models advanced to validation where correct 

classification of 2 groups ≥ 50.0% or 3 groups at ≥ 33.3%. Detailed results presented in Tables 

B.56 – B.64. 

Season Group n= Wavelengths 

(nm) 

Wilk's 

Lambda 

Sig. % Overall 

Correct 

1: Spring Human 37 551 0.895 0.003 50.9 

 Control 12     

 Undist. 

 

59     

7: 

Autumn 

Human 34 708 0.755 0.000 61.3 

 Control 3     

 Undist. 

 

56     

8: Spring Human 

 

Undist. 

37 

 

59 

761 0.906 0.002 59.4 

4: 

Autumn 

Human 34 707 0.753 0.000 75.6 

 Undist. 

 

56     

5: Spring Dist. 49 554 0.904 0.001 60.2 

 Undist. 

 

59     

9: 

Autumn 

Dist. 37 708 0.783 0.000 72.0 

 Undist. 56     
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Table B.55: DFA validation results summary; 30% test data; spectral subset (418 – 919 nm) to 

match spectral range of the Headwall Hyperspec data. Gray indicates redundant models already 

presented in Tables B.28 and B.29. Green indicates models advanced to validation where correct 

classification of 2 groups ≥ 50.0% or 3 groups at ≥ 33.3%. Detailed results presented in Tables 

B.65 – B.67. 

Season/Model Known Group n= % Correct % Overall Correct 

1: Spring 3-groups Human 16 12.5 32.6 

 Control 5 60.0  

 Undisturbed 

 

25 40.0  

7: Autumn 3-groups Human 15 58.8 52.5 

 Control 2 0.0  

 Undisturbed 

 

23 47.8  

8: Spring 2-groups Human 16 75.0 58.5 

 Undisturbed 

 

25 48.0  

4: Autumn 2-groups Human 15 66.7 63.2 

 Undisturbed 

 

23 60.9  

5: Spring 2-groups Disturbed 21 57.1 47.8 

 Undisturbed 

 

25 40.0  

9: Autumn 2-groups Disturbed 17 70.6 62.5 

 Undisturbed 23 56.5  

 

 

 

 

 

 

 

 

 

 

 



  

306 

 

Training Model #7: Autumn– FieldSpec Data (3-groups: Undist. vs. Burials vs. Control) 

 

 Advancement criterion: Correct classification ≥ 33.3% across all categories  

o Model ADVANCED to validation 

 

 

Table B.56: DFA training results using 418 – 919 nm Autumn FieldSpec reflectance spectra; 3-

group analysis; overall 61.3% correct classification of training cases. Classification function 

coefficients and validation results are listed in Tables B.57, B.58, and B.65. 

N=93   Predicted Membership  

 

Total State Undisturbed Burial Control 

Known 

Membership 

(Count)        Undisturbed 

 

Burial 
 

Control 

26 

 

0 

 

1 

17 

 

30 

 

1 

13 

 

4 

 

1 

56 

 

34 

 

3 

 (%)        Undisturbed 

 

Burial 
 

Control 

46.4 
 

0.0 

 

33.3 

30.4 

 

88.2 
 

33.3 

23.2 

 

11.8 

 

33.3 

100.0 

 

100.0 

 

100.0 

 

Table B.57: Model #7 Unstandardized Discriminant Function Coefficients. 

Variable D1 Coefficient 

Constant -2.289 

708 nm 12.233 

 

Table B.58: Model #7 Fisher's Classification Function Coefficients. 

Variable (U) Coefficient (H) Coefficient (C) Coefficient 

Constant -4.792 -2.301 -4.615 

708 (nm) 33.247 18.966 32.442 
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Training Model #8: Spring 2014 – FieldSpec Data (2-groups: Undisturbed vs. Burials)  

 

 Advancement criterion: Correct classification ≥ 50.0% across all categories  

o Model ADVANCED to validation 

 

 

Table B.59: DFA training results using 418 – 919 nm Spring FieldSpec reflectance spectra; 2-

group analysis; overall 59.4% correct classification of training cases. Classification function 

coefficients and validation results are listed in Tables B.60, B.61, and B.66. 

N=96   Predicted Membership  

Total 
State Undisturbed Burial 

Known 

Membership 

(Count)       Undisturbed 

 

Burial 

33 

 

13 

26 

 

24 

59 

 

37 

(%)       Undisturbed 

 

Burial 

55.9 
 

35.1 

44.1 

 

64.9 

100.0 

 

100.0 

 

Table B.60: Model #8 Unstandardized Discriminant Function Coefficients. 

Variable D1 Coefficient 

Constant -3.462 

761 (nm) 9.731 

 

 

Table B.61: Model #8 Fisher's Classification Function Coefficients. 

Variable (U) Coefficient (H) Coefficient 

Constant -7.590 -5.377 

761 (nm) 36.139 29.781 
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Training Model #9: Autumn 2014 – FieldSpec Data (2-groups: Undisturbed vs. Disturbed)  

 

 Advancement criterion: Correct classification ≥ 50.0% across all categories  

o Model ADVANCED to validation 

 

 

Table B.62: DFA training results using 418 – 919 nm Autumn FieldSpec reflectance spectra; 2-

group analysis; overall 72.0% correct classification of training cases. Classification function 

coefficients and validation results are listed in Tables B.63, B.64, and B.67.  

N=93   Predicted Membership  

Total 
State Undisturbed Disturbed 

Known 

Membership 

(Count)       Undisturbed 

 

Disturbed 

36 

 

6 

20 

 

31 

56 

 

37 

(%)       Undisturbed 

 

Disturbed 

64.3 

 

16.2 

35.7 

 

83.8 

100.0 

 

100.0 

 

Table B.63: Model #9 Unstandardized Discriminant Function Coefficients. 

Variable D1 Coefficient 

Constant -2.260 

708 (nm) 12.078 

 

Table B.64: Model #9 Fisher's Classification Function Coefficients. 

Variable (U) Coefficient (D) Coefficient 

Constant -4.294 -2.004 

708 (nm) 32.412 19.555 
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VALIDATION – Training Model #7 

 

 Advancement criterion: Correct classification ≥ 33.3% across 3 categories or   

≥ 50.0% across 2 categories 

o Model NOT advanced to imagery test 

 

 

 

Table B.65: DFA validation results using 418 – 919 nm Autumn FieldSpec reflectance spectra; 3-

group analysis; overall 52.5% correct classification of test cases.   

N=40  Predicted Membership  

 

Total State Undisturbed Burial Control 

Known 

Membership 

(Count)        Undisturbed 

 

Burial 
 

Control 

11 

 

3 

 

0 

9 

 

10 

 

2 

3 

 

2 

 

0 

23 

 

15 

 

2 

 (%)        Undisturbed 

 

Burial 
 

Control 

47.8 

 

20.0 

 

0.0 

39.1 

 

66.7 
 

100.0 

13.1 

 

13.3 

 

0.0 

100.0 

 

100.0 

 

100.0 
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VALIDATION – Training Model #8 

 

 Advancement criterion: Correct classification ≥ 50.0% across all categories 

o Model NOT advanced to imagery test 

 

 

 

Table B.66: DFA validation results using 418 – 919 nm Spring FieldSpec reflectance spectra; 2-

group analysis; overall 58.5% correct classification of test cases.  

N=41  Predicted Membership  

Total 
State Undisturbed Burial 

Known 

Membership 

(Count)       Undisturbed 

 

Burial 

12 

 

4 

13 

 

12 

25 

 

16 

(%)       Undisturbed 

 

Burial 

48.0 
 

25.0 

52.0 

 

75.0 

100.0 

 

100.0 
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VALIDATION – Training Model #9 

 

 Advancement criterion: Correct classification ≥ 50.0% across all categories  

o Model ADVANCED to imagery test 

 

 

 

Table B.67: DFA validation results using 418 – 919 nm Autumn FieldSpec reflectance spectra; 2-

group analysis; overall 62.5% correct classification of test cases.  

N=40  Predicted Membership  

Total 
State Undisturbed Disturbed 

Known 

Membership 

(Count)       Undisturbed 

 

Disturbed 

13 

 

5 

10 

 

12 

23 

 

17 

(%)       Undisturbed 

 

Disturbed 

56.5 

 

29.4 

43.5 

 

70.6 

100.0 

 

100.0 
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Appendix C: Partial Least Squares, Comparisons Unmatched to Models 

Partial Least Squares Regression (PLS) 

 

 
Figure C.1: PLS first factor variable importance (VIP) to group separation, Spring data (n=154); 

test for separation of Burials vs. Control vs. Undisturbed vegetation groups; VIP ≥ 1.0 intercepts 

as indicated by vertical lines; VIP peaks at 408, 554, 733, and 2494 nm.  
 

 
Figure C.2: PLS second factor VIP; Spring data (n=154); test for separation of Burial vs. 

Control vs. Undisturbed vegetation groups, 93.0% cumulative variance of the independent 

variables explained by the first two latent factors; graphical emphasis on Factor 2 ≥ 1.0 VIP 

wavelengths. Factor 1 highlighted in Figure C.1. 
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Figure C.3: PLS first factor variable importance (VIP) to group separation, Spring data (n=154); 

test for separation of Burials vs. Control vs. Undisturbed vegetation groups; VIP ≥ 1.0 intercepts 

as indicated by vertical lines; VIP peaks at 554 and 733 nm. 

 

Figure C.4: PLS second factor VIP, Spring data (n=154); test for separation of Burial vs. Control 

vs. Undisturbed vegetation groups, 94.4% cumulative variance of the independent variables 

explained by the first two latent factor; graphical emphasis on Factor 2 ≥ 1.0 VIP wavelengths. 

Factor 1 highlighted in Figure C.3.  
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Figure C.5: PLS first factor variable importance (VIP) to group separation, Spring data (n=154); 

test for separation of Disturbed vs. Undisturbed vegetation groups; VIP ≥ 1.0 intercepts as 

indicated by vertical lines; VIP peaks at 408, 551, 726, and 2494 nm.  

 

 

Figure C.6: PLS second factor VIP, Spring data (n=154); test for separation of Disturbed vs. 

Undisturbed groups, 92.8% cumulative variance of the independent variables explained by the first 

two latent factors; graphical emphasis on Factor 2 ≥ 1.0 VIP wavelengths. Factor 1 highlighted in 

Figure C.5. 
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Figure C.7: PLS first factor variable importance (VIP) to group separation, Spring data (n=154); 

test for separation of Disturbed vs. Undisturbed vegetation groups; VIP ≥ 1.0 intercepts as 

indicated by vertical lines; VIP peaks at 551 and 726 nm.  

 

Figure C.8: PLS second factor VIP, Spring data (n=154); test for separation of Disturbed vs. 

Undisturbed vegetation groups, 93.9% cumulative variance of the independent variables explained 

by the first two latent factors; graphical emphasis on Factor 2 ≥ 1.0 VIP wavelengths. Factor 1 

highlighted in Figure C.7.  
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Figure C.9: PLS first factor variable importance (VIP) to group separation, Spring data (n=137); 

test for separation of Burial vs. Undisturbed vegetation groups; VIP ≥ 1.0 intercepts as indicated 

by vertical lines; VIP peaks at 555 and 749 nm.  

 

Figure C.10: PLS second factor VIP, Spring data (n=137); test for separation of Burial vs. 

Undisturbed groups, 94.5% cumulative variance of the independent variables explained by the first 

two latent factors; graphical emphasis on Factor 2 ≥ 1.0 VIP wavelengths. Factor 1 highlighted in 

Figure C.9.  

 

 



  

317 

 

Figure C.11: PLS first factor variable importance (VIP) to group separation, Autumn data 

(n=133); test for separation of Burial vs. Control vs. Undisturbed vegetation groups; VIP ≥ 1.0 

intercepts as indicated by vertical lines; VIP peaks at 559 and 705 nm. 

 

Figure C.12: PLS second factor VIP, Autumn data (n=133); test for separation of Burial vs. 

Control vs. Undisturbed vegetation groups,88.7% cumulative variance of the independent 

variables explained by the first two latent factors; graphical emphasis on Factor 2 ≥ 1.0 VIP 

wavelengths. Factor 1 highlighted in Figure C.11.  
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Appendix D: Spectral Index Calculations 

Table D.1: Formulas for calculating vegetation indices from reflectance spectra, R, at certain 

wavelengths; (*) indicates indices used by LeBlanc et al. (2014). Sub-calculations, including 

which wavelengths are used for 'NIR,' 'Red,' or 'Blue' values in general formulas, are available in 

Tables D.2 and D.3. 

Index Calculation 

NDVI* 

RENDVI  

MRESRI 

MRENDVI 

SGI* 

REPI 

SIPI* 

(NIR – Red) ÷ (NIR + Red) 

(R750 – R705) ÷ (R750 + R705)  

(R750 – R445) ÷ (R705 – R445)  

(R750 – R705) ÷  (R750 + R705 – 2* R445) 

Mean of all bands 500 – 600 nm 

Wavelength of the maximum derivative of reflectance in 690 – 740 nm 

(R800 – R445) ÷ (R800 – R680) 

 

 

Table D.2: ENVI definitions for each wavelength range used for calculating spectral indices. 

Region Min (nm) Center (nm) Max (nm) 

Blue 

Green 

Red 

NIR 

SWIR1 

SWIR2 

400 

500 

600 

760 

1550 

2080 

470 

550 

650 

860 

1650 

2220 

500 

600 

700 

960 

1750 

2350 

 

 

 

Table D.3: Default ENVI logic for selecting wavelengths used in spectral index calculations 

Step Condition 

1: 

 

2:  

 

3: 

 

Find the center wavelength for each input file band 

 

Determine if the center wavelength falls within the ranges in Table D.2 

 

If more than one band meets Step 2 condition, ENVI chooses the 

 band nearest the relevant band center listed Table D.2  
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Appendix E: Elevation Surface Changes per Burial 

 

Table E.1: Minimum, mean, and maximum elevation changes at burial surfaces between 12 Feb. 

2013 and 15 Feb. 2013 using elevation change data from ROIs depicted in Figure 6.4-9. Gray 

indicates data from the G6 burial before it was completely backfilled. 

15 Feb. 2013 vs. Baseline Min (m) Mean (m) Max (m) 

2 x 4 m (Control) -0.024399 0.066561 0.189835 

2 x 4 m (Burial, 6) -0.627548 -0.214229 0.104797 

2 x 2 m (Burial, 3) -0.130157 0.041221 0.167236 

1 x 2 m (Burial, 1) -0.015884 0.039124 0.339127 

 

 

Table E.2: Minimum, mean, and maximum elevation changes at burial surfaces between 12 Feb. 

2013 and 03 June 2013 using elevation change data from ROIs depicted in Figure 6.4-9. 

03 June 2013 vs. Baseline Min (m) Mean (m) Max (m) 

2 x 4 m (Control) -0.074402 0.003205 0.192825 

2 x 4 m (Burial, 6) -0.125595 -0.049756 0.079102 

2 x 2 m (Burial, 3) -0.094223 -0.015283 0.488342 

1 x 2 m (Burial, 1) -0.058685 -0.016381 0.048172 

 

 

 

Table E.3: Minimum, mean, and maximum elevation changes at burial surfaces between 12 Feb. 

2013 and 20 Nov. 2014 using elevation change data from ROIs depicted in Figure 6.4-9. 

20 Nov. 2014 vs. Baseline Min (m) Mean (m) Max (m) 

2 x 4 m (Control) -0.040421 0.05884 0.185181 

2 x 4 m (Burial, 6) -0.093796 -0.022477 0.085419 

2 x 2 m (Burial, 3) -0.057739 0.032038 0.260101 

1 x 2 m (Burial, 1) 0.001038 0.041151 0.134689 
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Table E.4: Minimum, mean, and maximum elevation changes at burial surfaces between 15 Feb. 

2013 and 03 June 2013 using elevation change data from ROIs depicted in Figure 6.4-9. Gray 

indicates data from the G6 burial before it was completely backfilled. 

03 June vs. 15 Feb. Min (m) Mean (m) Max (m) 

2 x 4 m (Control) -0.120773 -0.063356 0.101486 

2 x 4 m (Burial, 6) -0.147507 0.164474 0.623871 

2 x 2 m (Burial, 3) -0.146042 -0.056505 0.453262 

1 x 2 m (Burial, 1) -0.371094 -0.055505 0.009369 

 

 

 

Table E.5: Minimum, mean, and maximum elevation changes at burial surfaces between 15 Feb. 

2013 and 20 Nov. 2014, using elevation change data from ROIs depicted in Figure 6.4-9. Gray 

indicates data from the G6 burial before it was completely backfilled. 

20 Nov. vs. 15 Feb. Min (m) Mean (m) Max (m) 

2 x 4 m (Control) -0.078827 -0.005065 0.127686 

2 x 4 m (Burial, 6) -0.132233 0.196748 0.638397 

2 x 2 m (Burial, 3) -0.132187 -0.004755 0.228455 

1 x 2 m (Burial, 1) -0.321686 0.005541 0.115112 

 

 

 

Table E.6: Minimum, mean, and maximum elevation changes at burial surfaces between 03 June 

2013 and 20 Nov. 2014, using elevation change data from ROIs depicted in Figure 6.4-9. 

20 Nov. vs. 03 June Min (m) Mean (m) Max (m) 

2 x 4 m (Control) -0.153595 0.054696 0.172150 

2 x 4 m (Burial, 6) -0.058029 0.027295 0.103745 

2 x 2 m (Burial, 3) -0.397125 0.046957 0.241394 

1 x 2 m (Burial, 1) 0.002228 0.057402 0.152573 
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Appendix F: Low Resolution Elevation Change Images, Terrestrial LIDAR 

 

Figure F.1: ROI overlays shown here for 

referencing burial locations in Figures F.2 – 

F.4 (no new data).  

 

         

 

 

Figure F.3: Elevation changes of study area 

between 12 Feb. – 03 June 2013.  

 

 

 

 

Figure F.2: Elevation changes of study area 

between 12 Feb. – 15 Feb. 2013; values 

indicate net elevation change (m). 

 

 

 
      

Figure F.4: Elevation changes of study area 

between 12 Feb. 2013 – 20 Nov. 2014.  
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Figure F.1*: ROI overlays shown here for 

referencing burial locations in Figures F.5 – 

F.7 (no new data).  

 

 

         

 

Figure F.6: Elevation changes of study area 

between 12 Feb. – 03 June 2013; 2 cm density 

slices added for -12 - -4.0 cm. 

 

Figure F.5: Elevation changes of study area 

between 12 Feb. – 15 Feb. 2013; 2 cm density 

slices added to emphasize elevation change 

clustering at 3.0 – 11.0 cm; values follow 

means from Figures 4.4-16 – 4.4-19.  

 

 

       

Figure F.7 Elevation changes of study area 

between 12 Feb. 2013 – 20 Nov. 2014; 2 cm 

density slices added for -8.0 – 0.0 cm. 
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Figure F.1*: ROI overlays shown here for 

referencing burial locations in Figures F.8 – 

F.10 (no new data). 

        

 

 

 

 

Figure F.9: Elevation changes of study area 

between 15 Feb. 2013 – 20 Nov. 2014. 

 

Figure F.8: Elevation changes of study area 

between 15 Feb. – 03 June 2013; values 

indicate net elevation change (m). 

 

 

 

   

Figure F.10: Elevation changes of study area 

between 03 June 2013 – 20 Nov. 2014. 
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Figure F.1*: ROI overlays shown here for 

referencing burial locations in Figures F.11 

– F.13 (no new data). 

 

 

 

        

Figure F.12: Elevation changes of study area 

between 15 Feb. 2013 – 20 Nov. 2014; 2 cm 

density slices added for -9.0 - -1.0 cm. 

 

Figure F.11: Elevation changes of study area 

between 15 Feb. – 03 June 2013; 2 cm density 

slices added to emphasize elevation change 

clustering at -12.0 - -4.0 cm; values follow 

means from Figures E.4 – E.6. 

 

     

Figure F.13: Elevation changes of study area 

between 03 June 2013 – 20 Nov. 2014; 1 cm 

density slices for 2.0 – 6.0 cm. 

   



  

325 

 

Figure F.14: ROI overlays shown here for 

referencing burial locations in Figures F.15 

– F.17 (no new data). 

          

 

 

 

Figure F.16: Elevation changes of study area 

between 12 Feb. – 03 June 2013. 

 

Figure F.15: Elevation changes of study area 

between 12 Feb. 15 Feb. 2013; values 

indicate net elevation change (m).  

 

 

 

      

Figure F.17: Elevation changes of study area 

between 12 Feb. 2013 – 20 Nov. 2014. 
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Figure F.14*: ROI overlays shown here for 

referencing burial locations in Figures F.18 

– F.20 (no new data). 

 

 

 

         

Figure F.19: Elevation changes of study area 

between 12 Feb. – 03 June 2013; 2 cm density 

slices added for -12.0 - -4.0 cm. 

 

Figure F.18: Elevation changes of study area 

between 12 Feb. – 15 Feb. 2013; 2 cm density 

slices added to emphasize elevation change 

clustering at 3.0 – 11.0 cm; values follow 

means from Figures 4.4-16 – 4.4-19. 

            

  

Figure F.20: Elevation changes of study area 

between 12 Feb. 2013 – 20 Nov. 2014; 2 cm 

density slices added for -8.0 – 0.0 cm. 
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Figure F.14*: ROI overlays shown here for 

referencing burial locations in Figures F.21 

– F.23 (no new data). 

          

 

 

 

Figure F.22: Elevation changes of study area 

between 15 Feb. – 20 Nov. 2014. 

 

Figure F.21: Elevation changes of study area 

between 15 Feb. – 03 June 2013; values 

indicate net elevation change (m). 

 

 

 

     

Figure F.23: Elevation changes of study area 

between 03 June 2013 – 20 Nov. 2014. 
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Figure F.14*: ROI overlays shown here for 

referencing burial locations in Figures F.24 

– F.26 (no new data). 

     

 

 

      

 

Figure F.25: Elevation changes of study area 

between 15 Feb. 2013 – 20 Nov. 2014; 2 cm 

density slices added for -9.0 - -1.0 cm. 

 

Figure F.24: Elevation changes of study area 

between 15 Feb. – 03 June 2013; 2 cm density 

slices added to emphasize elevation change 

clustering at -12.0 - -4.0 cm; values follow 

means from Figures E.4 – E.6. 

    

       

  

Figure F.26: Elevation changes of study area 

between 03 June 2013 – 20 Nov. 2014; 1 cm 

density slices for 2.0 – 6.0 cm. 
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Figure F.27: ROI overlays shown here for 

referencing burial locations in Figures F.28 

– F.30 (no new data). 

         

 

 

 

Figure F.29: Elevation changes of study area 

between 12 Feb. – 03 June 2013. 

 

Figure F.28: Elevation changes of study area 

between 12 Feb. – 15 Feb. 2013; values 

indicate net elevation change (m).  

 

 

 

       

Figure F.30: Elevation changes of study area 

between 12 Feb. 2013 – 20 Nov. 2014. 
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Figure F.27*: ROI overlays shown here for 

referencing burial locations in Figures F.31 

– F.33 (no new data). 

         

 

 

 

 

Figure F.32: Elevation changes of study area 

between 12 Feb. – 03 June 2013; density 

slices added for -12.0 - -4.0 cm. 

 

Figure F.31: Elevation changes of study area 

between 12 Feb. – 15 Feb. 2013; 2 cm density 

slices added to emphasize elevation change 

clustering at 3.0 – 11.0 cm; values follow 

means from Figures 4.4-16 – 4.4-19. 

 

        
  

Figure F.33: Elevation changes of study area 

between 12 Feb. 2013 – 20 Nov. 2014; 2 cm 

density slices added for -8.0 – 0.0 cm. 
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Figure F.27*: ROI overlays shown here for 

referencing burial locations in Figures F.34 

– F.36 (no new data). 

         

 

 

 

Figure F.35: Elevation changes of study area 

between 15 Feb. 2013 – 20 Nov. 2014. 

 

Figure F.34: Elevation changes of study area 

between 15 Feb. – 03 June 2013; values 

indicate net elevation change (m). 

  

 

       

Figure F.36: Elevation changes of study area 

between 03 June 2013 – 20 Nov. 2014. 
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Figure F.27*: ROI overlays shown here for 

referencing burial locations in Figures F.37 

– F.39 (no new data). 

         

 

 

 

Figure F.38: Elevation changes of study area 

between 15 Feb.  2013 – 20 Nov. 2014; 2 cm 

density slices added for -9.0 - -1.0 cm. 

 

Figure F.37: Elevation changes of study area 

between 15 Feb. – 03 June 2013; 2 cm density 

slices added to emphasize elevation change 

clustering at -12.0 - -4.0 cm; values follow 

means from Figures E.4 – E.6. 

      

    

Figure F.39: Elevation changes of study area 

between 03 June 2013 – 20 Nov. 2014; 1 cm 

density slices for 2.0 – 6.0 cm. 
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Figure F.40: ROI overlays shown here for 

referencing burial locations in Figures F.41 

– F.43 (no new data). 

        

 

 

 

Figure F.42: Elevation changes of study area 

between 12 Feb. – 03 June 2013. 

 

Figure F.41: Elevation changes of study area 

between 12 Feb. – 15 Feb. 2013; values 

indicate net elevation change (m).  

 

 

 

   

Figure F.43: Elevation changes of study area 

between 12 Feb. 2013 – 20 Nov. 2014. 
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Figure F.40*: ROI overlays shown here for 

referencing burial locations in Figures F.44 

– F.46 (no new data).   

 

 

 

 

          

Figure F.45: Elevation changes of study area 

between 12 Feb. – 03 June 2013; 2 cm density 

slices added for -12.0 - -4.0 cm. 

 

Figure F.44: Elevation changes of study area 

between 12 Feb. – 15 Feb. 2013; 2 cm density 

slices added to emphasize elevation change 

clustering at 3.0 – 11.0 cm; values follow 

means from Figures 4.4-16 – 4.4-19. 

     

 
 

Figure F.46: Elevation changes of study area 

between 12 Feb. 2013 – 20 Nov. 2014; 2 cm 

density slices added for -8.0 – 0.0 cm. 
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Figure F.40*: ROI overlays shown here for 

referencing burial locations in Figures F.47 

– F.49 (no new data).   

 

 

 

 

 

Figure F.48: Elevation changes of study area 

between 15 Feb. 2013 – 20 Nov. 2014.      

Figure F.47: Elevation changes of study area 

between 15 Feb. – 03 June 2013; values 

indicate net elevation change (m).  

 

 

 

 

     

Figure F.49: Elevation changes of study area 

between 03 June 2013 – 20 Nov. 2014. 
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Figure F.40*: ROI overlays shown here for 

referencing burial locations in Figures F.50 

– F.52 (no new data).  

 

 

 

 

        

Figure F.51: Elevation changes of study area 

between 15 Feb. 2013 – 20 Nov. 2014; 2 cm 

density slices added for -9.0 - -1.0 cm. 

 

Figure F.50: Elevation changes of study area 

between 15 Feb. – 03 June 2013; 2 cm density 

slices added to emphasize elevation change 

clustering at -12.0 - -4.0 cm; values follow 

means from Figures E.4 – E.6.  

 

 

        

Figure F.52: Elevation changes of study area 

between 03 June 2013 – 20 Nov. 2014; 1 cm 

density slices added for 2.0 – 6.0 cm. 
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Figure F.53: ROI overlays shown here for 

referencing burial locations in Figures F.54 

– F.56 (no new data).  

 

 

 

 

      

Figure F.55: Elevation changes of study area 

between 12 Feb. – 03 June 2013. 

 

Figure F.54: Elevation changes of study area 

between 12 Feb. – 15 Feb. 2013; values 

indicate net elevation change (m).  

 

 

 

      

Figure F.56: Elevation changes of study area 

between 12 Feb. 2013 – 20 Nov. 2014. 
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Figure F.53*: ROI overlays shown here for 

referencing burial locations in Figures F.57 

– F.59 (no new data).  

 

 

 

 

      

Figure F.58: Elevation changes of study area 

between 12 Feb.  – 03 June 2013; 2 cm 

density slices added for -12.0 - -4.0 cm. 

 

Figure F.57: Elevation changes of study area 

between 12 Feb. – 15 Feb. 2013; 2 cm density 

slices added to emphasize elevation change 

clustering at 3.0 – 11.0 cm; values follow 

means from Figures 4.4-16 – 4.4-19. 

 

     
      

Figure F.59: Elevation changes of study area 

between 12 Feb. 2013 – 20 Nov. 2014; 2 cm 

density slices added for -8.0 – 0.0 cm. 
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Figure F.53*: ROI overlays shown here for 

referencing burial locations in Figures F.60 

– F.62 (no new data).  

 

 

 

 

      

Figure F.61: Elevation changes of study area 

between 15 Feb. 2013 – 20 Nov. 2014. 

 

Figure F.60: Elevation changes of study area 

between 15 Feb. – 03 June 2013; values 

indicate net elevation change (m). 

 

 

 

      

Figure F.62: Elevation changes of study area 

between 03 June 2013 – 20 Nov. 2014. 
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Figure F.53*: ROI overlays shown here for 

referencing burial locations in Figures F.63 

– F.65 (no new data).  

 

 

 

 

          

Figure F.64: Elevation changes of study area 

between 15 Feb. 2013 – 20 Nov. 2014; 2 cm 

density slices added for -9.0 - -1.0 cm. 

 

Figure F.63: Elevation changes of study area 

between 15 Feb. – 03 June 2013; 2 cm density 

slices added to emphasize elevation change 

clustering at -12.0 - -4.0 cm; values follow 

means from Figures E.4 – E.6. 

 

      
          

Figure F.65: Elevation changes of study area 

between 03 June 2013 – 20 Nov. 2014; 1 cm 

density slices added for 2.0 – 6.0 cm. 
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the help of a band of traveling hippies at the age of seven. Under the tutelage of Bernard the Junior, 

Katie learned the way of the flip flop, of alligator avoidance, and of “fixin’” to do things. These 

important skills prepared her for the rigors of life at the Florida Academy of Not-Quite Capable 

Youths, where she studied the ancient human arts, eventually earning a degree in humaning. 

Acclimated to the unforgiving Florida heat, Katie embarked on the journey of journeys and spent 

two years digging precisely 14,385,921 holes in the Florida sand until, with a stroke of luck and 

minimal skill, famed anthropologist Dorothy Block hit her in the face with a shovel handle. The 

impact rattled Katie’s brain, and the circling stars spelled out a fateful message: “Graduate student 

offices sometimes have air conditioning.” With that revelation, she bequeathed her trowel to the 

earth and traveled north to Tennessee, which proved a welcome change for Katie. While avoiding 

her studies, she frequented all four corners of Knoxville and could be seen scampering to and fro 

across those Great Smoky Mountains.  
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