25 research outputs found

    On directable nondeterministic trapped automata

    Get PDF
    A finite automaton is said to be directable if it has an input word, a directing word, which takes it from every state into the same state. For nondeterministic (n.d.) automata, directability can be generalized in several ways. In [8], three such notions, D1-, D2-, and D3-directability, are introduced. In this paper, we introduce the trapped n.d. automata, and for each i = 1,2,3, present lower and upper bounds for the lengths of the shortest Di-directing words of n-state Di-directable trapped n.d. automata. It turns out that for this special class of n.d. automata, better bounds can be found than for the general case, and some of the obtained bounds are sharp

    On random primitive sets, directable NDFAs and the generation of slowly synchronizing DFAs

    Full text link
    We tackle the problem of the randomized generation of slowly synchronizing deterministic automata (DFAs) by generating random primitive sets of matrices. We show that when the randomized procedure is too simple the exponent of the generated sets is O(n log n) with high probability, thus the procedure fails to return DFAs with large reset threshold. We extend this result to random nondeterministic automata (NDFAs) by showing, in particular, that a uniformly sampled NDFA has both a 2-directing word and a 3-directing word of length O(n log n) with high probability. We then present a more involved randomized algorithm that manages to generate DFAs with large reset threshold and we finally leverage this finding for exhibiting new families of DFAs with reset threshold of order Ω(n2/4) \Omega(n^2/4) .Comment: 31 pages, 9 figures. arXiv admin note: text overlap with arXiv:1805.0672

    Directable nondeterministic automata

    Get PDF

    Synchronizing weighted automata

    Full text link
    We introduce two generalizations of synchronizability to automata with transitions weighted in an arbitrary semiring K=(K,+,*,0,1). (or equivalently, to finite sets of matrices in K^nxn.) Let us call a matrix A location-synchronizing if there exists a column in A consisting of nonzero entries such that all the other columns of A are filled by zeros. If additionally all the entries of this designated column are the same, we call A synchronizing. Note that these notions coincide for stochastic matrices and also in the Boolean semiring. A set M of matrices in K^nxn is called (location-)synchronizing if M generates a matrix subsemigroup containing a (location-)synchronizing matrix. The K-(location-)synchronizability problem is the following: given a finite set M of nxn matrices with entries in K, is it (location-)synchronizing? Both problems are PSPACE-hard for any nontrivial semiring. We give sufficient conditions for the semiring K when the problems are PSPACE-complete and show several undecidability results as well, e.g. synchronizability is undecidable if 1 has infinite order in (K,+,0) or when the free semigroup on two generators can be embedded into (K,*,1).Comment: In Proceedings AFL 2014, arXiv:1405.527

    Using Sat solvers for synchronization issues in partial deterministic automata

    Full text link
    We approach the task of computing a carefully synchronizing word of minimum length for a given partial deterministic automaton, encoding the problem as an instance of SAT and invoking a SAT solver. Our experimental results demonstrate that this approach gives satisfactory results for automata with up to 100 states even if very modest computational resources are used.Comment: 15 pages, 3 figure

    Acta Cybernetica : Volume 12. Number 1.

    Get PDF

    Acta Cybernetica : Volume 14. Number 1.

    Get PDF

    Careful Synchronization of One-Cluster Automata

    Full text link
    In this paper we investigate careful synchronization of one-cluster partial automata. First we prove that in general case the shortest carefully synchronizing word for such automata is of length 2n2+12^\frac{n}{2} + 1, where nn is the number of states of an automaton. Additionally we prove that checking whether a given one-cluster partial automaton is carefully synchronizing is NP-hard even in the case of binary alphabet.Comment: 1 pages, 4 figure

    Acta Cybernetica : Volume 16. Number 1.

    Get PDF
    corecore