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Generalized DOL trees* 

Lila Kari* Grzegorz Rozenberg* Arto Salomaa ' 

Abstract 
Infinite unlabeled trees having a finite number of different subtrees (also 

called infinite regular trees) arise in a natural way from a DOL system which 
also gives a natural labeling for the tree. A much more compact representation 
for the tree often results from a DOL system with fragmentation. 

Keywords: formal languages, DOL system, fragmentation, tree labeling. 

1 Introduction 
One of the simplest, if not the simplest, models extensively investigated in the 
theory of computing is the DOL system. By definition, a DOL system is a triple 
G = (E, h, to), where E is a finite alphabet, h : E*—»E* is a morphism, and to € E* 
is a word (usually called the axiom). The DOL system G generates the sequence 
5(G) of words tt>oi f i , u>2> • • •» where 

wq = w and Wi = h'(w) = /i(u>j_i) for » > 1. 

Thus, 5(G) is obtained from the axiom by iterating the morphism. (Our exposition 
is largely self-contained. If need arises, [3] can be consulted, [lj and [4] are some 
of the recent papers concerning DOL systems.) 

As an example, consider the DOL system with the alphabet E = {a, 6}, axiom 
w = a and the morphism h defined by the rules 

a—•£>, b—>ab. 

This is the well-known 8 Fibonacci system", where the lengths of the words in the 
generated sequence 

a, b, ab, bab, abbab, bababbab,... 
form the sequence of Fibonacci numbers. The following tree, labeled by the letters 
of E, depicts the generation process: 

'Research partially supported by the Academy of Finland, project 11281. All corre-
spondence to Lila Kari. 

^Department of Mathematics, University of Western Ontario, London, Ontario, N6A 
5B7 Canada 

^Department of Computer Science, Leiden University, 2300 RA Leiden, The 
Netherlands 

'Academy of Finland and Department of Mathematics, University of Turku, 20 500 
Turku, Finland 

1 



2 Li/a Kari, Grzegorg Rosenberg, Arto Salomaa 
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a 6 

Figure 1. 

For the DOL systems G considered in this paper, we assume that |tu| = 1 (that 
is, the axiom is a letter) and that h is nonerasing (that is, we are dealing with 
PDOL systems). These assumptions guarantee that tne sequence 5(<7) can always 
be represented as an infinite tree labeled by letters of E, where all branches continue 
ad infinitum. 

Remark. If we allow ltu| > 1, we are dealing with forests instead of trees. An 
additional letter used only as the axiom brings us back to trees. Moreover, our 
main result remains valid for general DOL systems as well. Consequently, our 
assumptions do not exclude any interesting cases. 

Infinite (labeled) trees obtained in the way described above are referred to as 
DOL trees. The formal definition of a DOL tree should be clear and is omitted 
here. It is also clear that if you begin with an infinite unlabeled tree that possesses 
only finitely many different subtrees (such trees are often referred to as regular), 
then you can label it with finitely many labels and view the result as a DOL tree. 
The labels constitute the alphabet of the corresponding DOL system. 

The arity of each letter is the length of the right side of the rule for the letter. 
Regular trees play a central role in the theory of automata, nonrecursive pro-

gram schemes, etc. Such matters are of no direct concern to us in this paper. 
For the sake of later reference, we summarize the above discussion in the following 
lemma. Thus, an infinite unlabeled tree is regular if it possesses only finitely many 
different subtrees. The unlabeled version of a DOL tree is obtained from a DOL 
tree by removing the labels. 

Lemma 1.1 The unlabeled version of a DOL tree is regular. Conversely, every 
regular tree can be labeled to become a DOL tree. 

If we do not make the convention above (to the effect that all branches of the trees 
continue ad infinitum), then the DOL systems should containg also erasing rules. 

As a further example, consider the tree 
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Figure 2. 

Thus, a new branch is born at every third node of the stem. Clearly, the DOL 
system with the axiom a and the rules 

a—•6d, b—>c, c—>a, d — 

provides the labeling. 
Let us modify the example in such a way that the new branches are born at 

nodes whose distance from the root is a prime number. Then it is not possible to 
label the tree in such a way that it becomes a DOL tree. Indeed, infinitely many 
different subtrees arise. 

2 Fragmentation 
Consider the DOL system with the axiom a and rules 

(1) a—*bc,b—*bd.c,c—>b<Pc,d—*bd*c. 

The beginning of the tree is as in Figure 3. We obviously need four labels for 
the simple reason that we have nodes of four different degrees; 2, 3, 4 and 6. 

Figure 3. 
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However, we can represent the tree in the following much more compact way. 
The idea resembles DOL systems with fragmentation, introduced originally in [2]. 

Assume that the alphabet E contains a special letter viewed as a marker 
or separator. Then we speak of #-guarded subwords of words y over E. They are 
the maximal parts of y separated by For instance, if y = ab#a#bab#b, then 
the guarded subwords are at, a, bob, b. Formally, a word x not containing # is 
a guarded subtuord of y iff is a subword of 

Consider a marked DOL systemG# = (E, h, to), where the alphabet contains the 
marker for which the rule is # — ( A l s o now we assume that h is nonerasing 
and |tu| = 1.) We now associate to a tree labeled by words over (E — { # } ) * . 
The labels of the tree will be the guarded subwords of the words in S(G#). In 
this process, several consecutive # ' s will be identified with one Trees obtained 
in this fashion will be referred to as generalized DOL trees. Let us consider some 
examples. 

If the marker # does not occur in the sequence, the generalized DOL tree has 
no branches. The generalized tree associated to the Fibonacci system is: 

a 

b 

ab 

bab 

abbab 

a 

Figure 5. 
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We observe that the unlabeled tree is exactly the same as the one considered 
at the beginning of this section. Thus, in place of (1), we have obtained the much 
more compact representation (2)! 

The term " generalised" can be justified as follows. An ordinary DOL system 
G can be transformed into a marked one G# by separating all letters on the right 
sides of the rules with the marker Since the axiom is a singleton letter, all 
labels of the resulting tree are singletons. Then the unlabeled versions of the DOL 
tree associated to G and the generalized DOL tree associated to G# coincide. 
Consequently, the following result holds true. 

Lemma 2.1 The unlabeled version of every DOL tree equals the unlabeled version 
of a generalized DOL tree. 

Our main purpose is to prove the converse of Lemma 2.1. Thus, the unlabeled 
versions of DOL trees and generalized DOL trees coincide. However, in general, 
a marked DOL system provides a much more compact representation for the tree 
than a DOL system. 

By Lemma 1.1, it suffices to prove that, given a marked DOL systems G#, 
there is a constant k such that all words appearing as labels in the generalized tree 
are of length less than k. Unfortunately, as such this claim is not true. Any DOL 
system generating an infinite language and not containing at all the marker # in 
its sequence, such as the Fibonacci system, provides a counterexample. Another 
counterexample is provided by the system with the axiom a and the rules 

(3) a—•6#a&, b—>b2. 

The generalized DOL tree is in this case 

a 

b2 b ab3 

/ 7 7\ 
b* 6 2 b ab7 

Figure 6. 
However, in both cases our claim holds true. The above tree is generated by 

the DOL system with the axiom a and rules a—>ba, b—»6. The generalized tree 
of the Fibonacci system is generated by the DOL system with the axiom a and the 
rule a—•<». 

The tool for obtaining a constant k as described above is to eliminate the un-
bounded growth by transforming the given marked DOL system G# into a marked 
system with the same (unlabeled version of the) generalized tree. We say that a 
letter b of G# is useful if for some words u and v (that is, h*(b) = u#u, 
for some u, v, t). Otherwise, b is useless. Thus, the sequence starting from a useless 
letter does not contain the marker Clearly, usefulness is a decidable property. 
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The useful variant G'^ of a marked DOL system G# is constructed as follows. If 
all letters appearing in S(G#) are useful, then G'^ = G#. If all letters are useless, 
then the axiom of is a and a—>a is the only rule. If every guarded subword 
of the right-hand sides of the rules contains a useful letter, then to get we 
simply remove from G# all useless letters and their occurrences in the rules. The 
case remains, where S(G#) contains useful letters but some ^-guarded subword of 
the right-hand side of some rule consists of useless letters. To get G'^, we also now 
first remove from G# all useless letters and their occurrences in the rules. Then 
we add a new. letter c with the rule c—*c. Finally, all ^-guarded subwords that 
previously consisted of useless letters are replaced by c. 

For instance, if G# is defined by the rules (3), G'^ will be defined by the rules 

o—>c#a, c—>c. 

If G# has the axiom a and the rules 

a—+d#bcc#d, b—>a?d#ab, c—>cd, d—>dcd, 

then G^ will be defined by the rules 

a—>c#6#c, 6—>a2#ab, c — 

The following result is immediate by the construction of G'^. 

Lemma 2.2 If is the useful variant of a marked DOL system G#, then the 
unlabeled versions of the generalized DOL trees associated to G# and G'^ coincide. 

3 The main result 
We will establish in this section the converse of Lemma 2.1. 

Theorem S.l The unlabeled version of every generalized DOL tree equals the un-
labeled version of a DOL tree. Moreover, given a marked DOL system producing a 
generalized tree, the corresponding DOL system can be effectively constructed. 

Thus, every tree possessing a compact representation (2j is a DOL tree, (as far 
as the unlabeled versions are concerned) and the corresponding DOL representation 
(1) can be effectively constructed. Let us discuss still a more sophisticated example. 

A marked DOL system G# has the axiom a and rules 

a—>a#ab#ab2, b—>a. 

Observé first that both a and b are useful and, thus, = Since the generalized 
tree is quite involved,'we give it in parts, continuing the process as long as new 
labels are born: 
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a ab ab2 

ab 

a ab ab2a 

a ab ab2a2 a ab ab2a3 ab ab2 

b2a2 

ab ab2a3 ab 

ab2a3 

ab a b2a3 ab ab2a ab ab2a ab ab2 

Figure 7. 

Thus, if we denote the six labels appearing at the roots by a, b, c, d, e, / , we 
obtain the rules of the corresponding DOL system: 

a—*abc b—*abd, c—>abe, 
d—*abfbc, e—*abfbdbc, d—wbfbdbdbc. 

We will now establish our Theorem. By Lemma 2.2 we may restrict the attention 
to useful variants. We have to show that a constant k can be effectively computed 
from the system such that all labels in the generalized tree are shorter than k. More 
specifically, we have to establish the following result. 

Lemma 3,1 Assume that is a marked DOL system coinciding with its useful 
variantr = G'^. Then a constant k can be effectively computed such that the 
length of every label in the generalized DOL tree of G# is at most k. 

Proof. The alphabet E contains at most one useless letter, c. Let E' be the subal-
phabet obtained by excluding # and c, and let r be the cardinality of E'. Thus, all 
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letters of E' are useful. Define the rank of a letter o € E' to be the smallest integer 
k such that hk(a) contains an occurrence of Clearly, the rank can be effectively 
computed and every letter is of rank < r. 

Consider the lengths of ^-guarded subwords of the words h(a) when a ranges 
over letters of rank 1. Let mi be twice the maximal length. Define further 

m2 = max{|/i(a)| | a is of rank > l } , 
M = max{mi, m-i}. 

We claim that we can choose 

jfc = AT + AT" 1 + . . . + M = (Mr - l)M/(M - 1). 
Let v be a label in the generalized DOL tree. We have to estimate |v| and show 

that |u| < k. Clearly, we may assume that v is not the label of the root. Hence, v 
is a ^-guarded subword of h{v), where t) is in the sequence The situation 
can be depicted as follows, with v = U1U3U2: 

t»i v' 02 

# "1 U3 u2 # s 

Figure 8. 
Here every letter of 1/, if any, is of rank > 1, and 01, <12 are letters of rank 1. 

Thus, we look how the ^-guarded subword v is created, ai and a2 may also produce 
something else beyond the marker One of them (or both) may be missing if we 
are dealing with a prefix or suffix. We obtain the estimates 

|«i| + |«a| < mi an (l |«3| ^ ma|i/| 
and, consequently, 

\v\,< M -\v'\ + M. 
We now estimate similarly the length |v'|. (In fact, we obtain an upper bound 

for an eventually longer word that contains also alt a2 and maybe still a prefix.and 
suffix.) By considering the preceding word in the sequence, we get an analogous 
picture and the estimate 

|v'| < M • |t>"| + M, 
where the letters of v", if any, are of rank > 2. Consequently, 

|t>| < M[M • |t/'| + M) + M = M2 • |t>"|.+ M2 + M. 
Continuing in the same way, we obtain 

M < AT|t;(r)| + AT + M r ~ l + . . . + M, 

where every letter in , if any, is of rank > r. But there are no letters of rank 
> r. Thus, «(') is the empty word and, consequently, 

\v\ < Mr + A T - 1 + . . . + M = Jfc. 
This concludes the proof of Lemma 3.1 and also the proof of our Theorem. q 
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Consider the example discussed at the beginning of this section. We obtain 

r = 2, mi = 2 - 3 = 6, m2 = 1, M = 6, k = 42, 

whereas in the actual construction the maximal word length was 6. Indeed, our 
bound k can be improved. For instance, in the definition of mi it suffices to consider 
the sum of the lengths of the maximal ^-guarded prefix and suffix, rather than twice 
the maximal word length. This improvement gives mi = M = A, k = 20. 

4 Conclusion 
We have introduced a compact way of representing certain infinite trees. The 
method uses DOL systems with fragmentation and leads to trees whose nodes 
are libeled by words. Although the lengths of such words may grow beyond all 
bounds, the unlabeled versions of the trees are still regular and, thus, possess a 
DOL representation. However, the loss in compactness in the transition to the 
DOL representation can be enormous. 

We do not investigate in this paper the complexity issues involved or for which 
classes of trees the new representation is especially suitable. We conclude with the 
following result along these lines. The result is easily established by extending the 
example of the preceding section, for values of r > 2, to contain the rules 

a — a # a f c # a 6 2 # . . . #a6r, 6—>a. 

Lemma 4.1 For each r > 2, there is an infinite unlabeled tree T such that (i) T is 
the unlabeled version of the generalized DOL tree of a mhrked DOL system with £ 
letters, and (iij T is not the unlabeled version of the tree of any DOL system with 
< r letters. 
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On isomorphic representation of 
nondeterministic tree automata* 

B. Imreh * 

Abstract 
In this paper we deal with isomorphically complete systems of finite non-

deterministic tree automata with respect to the general product and the cube-
product. In both cases characterizations of isomorphically complete systems 
are presented which imply that the general product and the cube-product are 
equivalent regarding isomorphic completeness. 

In the theory of finite automata it is a central problem to characterize such 
systems from which any automaton can be represented isomorphically or homo-
morphically under a given composition. Such systems are called isomorphically, 
respectively, homomorphically complete with respect to the composition consid-
ered. FVom the practical point of view, finite complete systems have great impor-
tance. The first composition admitting finite isomorphically complete systems was 
introduced by V. M. Glushkov in [71, who gave a characterization of the isomor-
phically complete systems. Later F. Gécseg [2] introduced a product hierarchy, the 
»¿-products, t = 0,1, . . . , and Z. Ésik [1] proved that, from the point of view of ho-
momorphic completeness, Glushkov's composition is equivalent to the »¿-product 
for t > 2. Regarding isomorphic completeness, it turned out that there is no finite 
isomorphically complete system with respect to any of the Qj-products. A system-
atic account of the results on »¿-products including the ones mentioned above can 
be found in the monograph [3]. 

The first generalization of Glushkov's result to tree automata was given by M. 
Steinby in [10]. The generalization of the notion of finite automata to trees has a 
rigorius mathematical discussion in [6]. Another generalization of Gluskhov's result 
to nondeterministic automata is given in [4]. In this paper we extend this result 
to nondeterministic tree automata. Namely, we define the Glushkov-type product 
of nondeterministic tree automata and characterize the isomorphically complete 
systems with respect to this composition. Our characterization implies the existence 
of finite isomorphically complete systems of nondeterministic tree automata with 
respect to this product. 

The cube-product, which is a simpler composition than Glushkov's one, was 
introduced in [8] where a characterization of the isomorphically complete systems 

"This research has been supported by the Hungarian Foundation for Scientific Research, 
(OTKA), Grant 2035 and by the Hungarian Cultural and Educational Ministry, (MKM), 
Grant 434/94. 

department of Informatics, A. József University Árpád tér 2, Szeged 6720, Hungary 
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with respect to this product was presented as well. From this characterization 
it follows that the Glushkov-type product and the cube-product are equivalent 
regarding isomorphic completeness. 

The generalisation of the cube-product to tree automata and the characteriza-
tion of the isomorphically complete systems with respect to it is given in [9]. A sim-
ilar generalization and characterization for nondeterministic automata is presented 
in [5]. In both cases the characterization of the isomorphically complete systems 
implies that the Glushkov-type composition and the cube-pruduct are equivalent 
regarding isomorphic completeness. Here we generalize the cube-product to non-
deterministic tree automata and give a characterization of the isomorphically com-
plete systems with respect to it. Our characterization shows that the cube-product 
and the Glushkov-type product are equivalent regarding isomorphic completeness 
for the class of nondeterministic tree automata, too. 

To start the discussion, we introduce some notions and notations. By a set 
of relational symbols we mean a nonempty union E — E i U ^ U " - ! where E m , 
m = 1,2, . . . , are pairwise disjoint sets of symbols. For any m > 1, the set E m 
is called the set of m-ary relational symbols. It is said that the rank or arity of a 
symbol < 7 € E i s m i f < r € E m . Now let a set E of relational symbols and a set R of 
positive integers be given. R is called the rank-type of E if for any integer m > 0, 
E m ^ 0 if and only if m € R. In the sequel we shall work under a fixed rank-type 
R. 

Now let E be a set of relational symbols with rank-type R. By a nondetermin-
istic H-algebra A we mean a pair consisting of a nonempty set A and a mapping 
that assigns to every relational symbol <r 6 E an m-ary relation aA C Am, where 
the arity of a is m. The set .A is called the set of elements of A and aA is the real-
ization of a in A. The mapping a —» aA will not be mentioned explicitly, we only 
write A — E). For any m 6 R, a S E m , ( o i , . . . , o m _ i ) e we denote by 
( o i , . . . , am-i)<rA the set {o : o 6 A & <rA (a i , . . . , a m _ i , a)}. If ( « i , . . . , am-i)aA 

is a one-element set {a} , then we write ( o i , . . . , am_i)crA = a. 
It is said that a nondeterministic E-algebra A is finite if ¿4 is finite, and it is 

of finite type if E is finite. By a nondeterministic tree automaton we mean a finite 
nondeterministic algebra of finite type. Finally, it is said that the rank-type of a 
nondeterministic tree automaton A — (A, E) is R if the rank-type of E is R. 

Let A = [A, E) and B = (B, E) be nondeterministic tree automata with rank-
type R. B is called a subautomaton of A if B C A and, for all m € R and a S E m , 
aB is the restriction of aA to Bm. A one-to-one mapping fi of A onto B is called 
an isomorphism of A onto B if oA(a\ am) if and only if aB ( / i (o i ) , . . . , / i (am)) , 
for all m £ R, ( o i , . . . , o m ) € Am, a 6 Em . In this case it is said that A and 
B are isomorphic. It is easy to see that fi is an isomorphism of A onto B if and 
only if ( o i , . . . ,am-i)aAfi = (/i(a1),...,Ai(am_i))crB holds, for all m € R, a e E m , 
(o1,...,am_1) e Am~K 

Now let us denote by Ua the class of all nondeterministic tree automata with 
rank-type R. A composition of nondeterministic tree automata from il R can be 
represented as a network in which each vertex denotes a nondeterministic tree 
automaton and the actual relation of a component automaton may depend only on 
those automata which have a direct connection to it. 

In order to define this notion of composition let X) denote an arbitrary nonempty 
fixed set of finite directed graphs. We assume that the vertices of any graph in V 
having n vertices are denoted by the numbers 1 , . . . , n. Let A = (A, E) 6 llji and 

€ Ur , j = 1 , . . . , n. Furthermore, take a family ty of mappings 
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$nj:(A,x...x4)m-1xEB^i:W meB, l < j < n . 

It is said that the nondeterministic tree automaton A is a®-product of the automata 
Aj, j = 1 , . . . , n, with respect to ¥ if the following conditions are satisfied: 

(i) a = IIUa> 

(ii) there exists a graph D = ( { 1 , . . . , n}, E) in 3) such that for any m € R, 
j 6 { l , . . . , n } and ( ( a U ) . . . ) o i „ ) , . . . , ( o m _ i i a m _ i „ ) ) e A m _ 1 , the 
mapping Vlmj is independent of the elements (H,,t = 1 , . . . , m— 1, if (a, j) & E, 

(iii) for any m 6 Í , a 6 E m and 

((<»11 <*ln) ( O m - l l i • • • I °m—In) ) € Am~l, 

((<»11» • • • , Oln) ( « » m - l l i • • • I a m - i n ) ) ( T A = 

( a i i . - . - . a m - i i ) ^ ? 1 X . . . X ( a 1 „ , . . . , a m _ l f l ) < T ^ 

where 

<Ty = ^,»>((<»111 •• a l n ) > •• •> ( a m - l l , • • • I a m - l n ) | f ) i j = 1, . . . , n . 

We shall use the notation 
n 

i-1 
for the product introduced above. In particular, if Aj, j = 1 , . . . , n, are identical 
copies of some nondeterministic tree automaton B, then we speak of a general power 
and we write S"(E, D) for I]"=i £)• 

Let 33 be a system of nondeterministic tree automata from 11 R. It is said 
that 03 is isomorphically complete for UR with respect to the V-product if any 
nondeterministic tree automaton from IL R is isomorphic to a subautomaton of a 
$ -product of nondeterministic tree automata from 03. 

In the sequel we shall need a special two-state nondeterministic tree automata. 
For every m G R, let us assign a symbol to each m-ary relation on {0,1}. Let E m 
denote the set of these symbols and let £ = UmEfl Define the nondeterministic 
tree automaton Q = ({0,1}, 2 ) such that, for every m e R and a € £ m , is the 
corresponding m-ary relation. 

Now let V be the set of all finite directed complete graphs having as vertices the 
sets {1, . . . , n } , n = 1,2 Then the V -product is equal to the Glushkov-type 
product which is also called general product. We note that in this case the finite 
directed complete graphs are considered as possible networks. Since n determines 
the corresponding complete graph uniquely, we omit the graph component from 
the notation of the general product. 

Regarding the general product, the following statement can be proved easily. 



14 B. Imreh 

Lemma. Let A = ( A , E ) G Xy = ( A y , E<J>) G i l « , j = 1 n, and 
Bit = ( B y t , E ( , < ' ) G UR, t = l , . . . , t ' y , j = 1, ...,n. If A is isomorphic to a 
subautomaton of a general product Ily=i an^> for eac^ 3 e Oi • • • >n)' 
is isomorphic to a subautomaton of a general product fltsi then A 
is isomorphic to a subautomaton of a general product of the nondeterministic tree 
automata Syt, t= 1 , . . . ,ty, j = 1 , . . . , n. 

The following theorem provides necessary and sufficient conditions for a system 
of nondeterministic tree automata from U^ to be isomorphically complete for lift 
with respect to the general product. 

Theorem 1. A system ® of nondeterministic tree automata from is iso-
morphically complete for UR with respect to the general product if and only if, for 
all m G R and i = ( ¿ i , . . . , » m ) G \0, l } m , ® contains a nondeterministic tree 
automata A = (A'1 ' , E'1 ') satisfying the following conditions: 

(1) A& has two different elements Oq^ and aft, 

(2) there exists a 9} G with (aj a ' ^ J ^ flrfUP} = {*£}. 

(3) for all u G R and B = ( s i , . . . , s u _ i ) G {0, l } " - 1 , there is a aj B G e(,1) for 

which {al^.al1'} C (oii',..., ai^.i)^!1' provided that u / 1, and there is a 

at G E p with { a ^ ' . a ^ } C a.**"' if 1 G R and u = 1. 

Proof . In order to prove the necessity, let us suppose that B is an isomorphically 
complete system of nondeterministic tree automata for Ur with respect to the 
general product. Then there are AJ = ( A y , G Ur, J = 1, . . . , n , such that § 
is isomorphic to a subautomaton A = (A, 2) of a general product Ily=i 
Let /i denote a suitable isomorphism and let 

M(0) = (ooi i " - .oon) and a»(1) = ( a 1 1 , . . . , o l n ) . 
Let us denote by K the set {A:: 1 < k < n &i ao* ^ aifc}- Obviously, K ^ 0. Now 
let 

m G R and (t'i, < * > ,t'm) G {0, l } m be arbitrarily fixed elements. We distinguish 
two cases depending on m. 

First let us suppose that m / 1. By the definition of Q, there is a 9 G £ m with 
(»x,.. .,im-i)9& = im. Since n is an isomorphism, this yields 

( f i ( i 1 ) , . . . , / l ( i m - i ) ) 9 A = M ( » m ) . 

Therefore, Ojmfc G ( a , - , . . . , * holds, for all A: G K, where 

9k = ^mfcUaiji, • • • >a»,n)i • • • i ( ^ „ - i i i • • • >Oim-inli 
But then there exists at least one index I G K such that 
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Now let 1 ^ u e R and 8 = ( s i , . . . , a „ - i ) € {0 ,1 } U _ 1 be arbitrary. By the 
definition of Q, there exists a <r8 G S u with (a i , . . . , au_i)<7g = {0,1}. Since p is 
an isomorphism, this implies 

{m(0),M(1)}. 

Then {a0fc, a ^ } C ( a , ^ , . . . , a , ^ ^ ) ^ holds, for all A; G i f , where 

fs . fc = ^ u f c ( ( o . , l , • • • I « ( , n ) ( a « . - i l . • • •) <*t*- in) ,<7s)-

Therefore, {oo/ ,ou} C (a , , / , . . . , o«._ li)a8,'c If 1 £ and u = 1, then, by the 
definition of there is a a* e £ i with a* = {0,1}. But then a*A = (/i(0), /x(l)}, 
and so, {a0fc,aifc} C a*Ak, for all k 6 K, where tr^ = iik((7*). Thus {ooi ,ou} C 
<r^Al. This ends the proof of the necessity in the case m / 1. 

Let us assume that m = 1. By the definition of Q, there is a 9 e with 
= t*i. But then 9A = /¿(t'i). Therefore, a^fc € is valid, for all k 6 K, where 

9k = From this it follows that there exists at least one I e K such that 

Now let u 6 R and a = ( « i , . . . , s u - i ) £ {0, l } " - 1 be fixed arbitrarily. In a similar 
way as above, it is easy to see that there is a aB<i € £ „ ' such that {a0(, an} C 
(a , , / , . . . , a4._,i)(7g'( if u / 1, and there is a trj € E ^ with af A ' = (0,1} if u = 1. 
This ends the proof of the necessity. 

In order to prove the sufficiency, let us suppose that 03 satisfies the conditions 
of Theorem 1. The isomorphic completeness of <8 is proved in two steps. 

First we show that Q is isomorphic to a subautomaton of a general product of 
nondeterministic tree automata from 03 . For this reason let us denote by W the set 
|Jmeyj{0, l } m and let \W\ = n. Moreover, let -F denote a one-to-one mapping of 
the set { 1 , . . . , n} onto W. By our assumption on 03, for any / e { l , . . . , n}, there 
exists an yfW») = ( a M H . E M H ) e 03 satisfying conditions (1), (2) and (3) with 
i = 1 (j) . Form the general product Ily=i (£, i ' ) in the following way. 

Let A = { ( a ^ » . . . . . « ^ ) ^ * ! ) ) fl(,W>)}. Since a(,(/)) ^ a( , ( i))| 
J — 1 , . . . , n, we obtain that = 2. Let us define the mapping FI of {0,1} onto A 
by 

M(0) = ( a ^ 1 " 8 < l W 1 ) and M(1) = ( a ^ 1 » a™"»). 

Now let 1 / m G R, a G £ m , (a| t7 (1) ),..., a ^ 1 ) G A, t = 1 , . . . , m - 1, be 
arbitrarily fixed elements and let i* denote the vector (t ' i , . . . , t m _ i ) . Then, for any 
j G { l , . . . , n } , let 
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* n (w (-T(l)) 
»1 ' 

7 id) 
7*»(j).i* 

fiU) 

• > *m 

) (•£?.". = 

if I V 5 = tm and 7( j ) = (t'x,. 
if VaS = tm and 7 ( j ) (n , . 
if i * ^ = {0,1}, 
if I V * = 0 and (7(7) = ( i t , . . 
or l(j) = (*li • • • 1 *m—li l))i 
i f i V « = 0 and 7 ( ; ) / ( » ! , . . . 

and 1 ( j ) ^ ( » i > - > * m— 11 *•)• 

• , » m - l , 0 ) 

, » m _ l , 0 ) 

In all other cases when 1 / m 6 R, let the value of be an arbitrarily fixed 
element of Em' ' " . 

If 1 € R and m = 1, then the mappings VIJ, j = 1 , . . . , n, are defined in the 
following way. For any a G £1, let 

= 

i f f f 5 = » ' i and 7( j ) = (n), 
if a9 = t'i and 7 ( j ) ± (t'i), 
if <r9=0 and (7 ( j ) — (0) or 7( j ) = ( l ) ) , 
otherwise. 

Now consider the subautomaton A = (A, E) of the general product 
Ily=i which is determined by the set A. It is easy to show that /i 
is an isomorphism of Q onto the subautomaton A. 

As a second step, we prove that an arbitrary nondeterministic tree automaton 
from is isomorphic to a subautomaton of a general power of For this rea-
son let C = iC, E) € llfl be arbitrary with C = { c i , . . . , c r ) . Let us take all the 
r-dimensional column vectors with components 0, 1, and order them in lexicograph-
ically increasing order. Let Q' r) denote the matrix formed by these column vectors. 
Then Q'r> is a matrix of type r X 2r over {0,1} and its row vectors are pairwise 
different. Moreover, let us observe that for any subset V of the set { l , . . . , r}, there 
exists exactly one index k £ { l , . . . , 2 r } such that for all t e { l , . . . , r } , t e V if 
and only if = 0. Let us define the one-to-one mapping v of { c j , . . . , c r } onto 
the set of the row vectors of by f(c<) = . . . , g,-^), * = 1, . . . , r . Let 
A = (i/(c,) : » = l , . . . , r } . Then A C {0,1}2\ Now we define the general power 
Q2 (E, i ) in the following way. 

Let 1 ^ m € R, a € E m , (gf'j,- • •, £ A, t = 1 , . . . , m — 1, be arbitrary 
elements. In this case f(c,-t) = (gj^j, • • •, g j^ ) ) * = 1 — 1. Let us suppose 
that ( C i l , . . . , c im_, )ac = { C < 1 , . . . , c „ }. Then 0 < I < r. For each j € { 1 , . . . , 2 r } , 
let us denote by Vy the set { g ^ . , . . . , 9^]}. Obviously, Vy C (0,1}, j = 1 , . . . , 2r. 
Thus, by the definition of Q, there exists a <7y S £ m with (<7,-'y,..., 9<^_1y)°'y = Vr 
Let us define the mappig '9m)- by 

» M » 
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In all other cases when 1 ^ m e R, let the value of be an arbitrarily fixed 
symbol from £ m . 

If 1 6 R, a € Hi, j € { l , . . . , 2 r } , then the mappings ¥iy, j = l,...,2r, are 
defined as follows. Let us assume that ac = \ctl,... ,c„} and define the sets Vy, 
j — 1 , . . . , 2r, in the same way as above. Again, by the definition of there is a 
a*- € Si with a*9 =Vj. We put 

Now let us consider the subautomaton A = (A, E) of the general power 
£ 3 ' (E , ¥). Then it is easy to see that v is an isomorphism of C onto A. By 
our Lemma, the above isomorphic representations imply the sufficiency of the con-
ditions which ends the proof of Theorem 1. 

Remark. If R = {2}, then li{2} is the class of all nondeterministic automata. 
In this case our theorem gives a characterization of the isomorphically complete 
systems for the class of nondeterministic automata with respect to the general 
product. Therefore, Theorem 1 in [4] can be obtained as a corollary of our theorem. 

In [8], n-dimensional hypercubes are used as possible networks. Now we de-
fine the product related to these networks for nondeterministic tree automata and 
characterize the isomorphically complete systems with respect to this product. 

To introduce the formal definition of cube-product we need some preparation. 
Let n > 2 be an arbitrary integer and consider the n-dimensional hypercube. The 
set of vertices of this hypercube is Sn = {0,1}" . Define the mapping An on this set 
as follows: for any vector (si s„) G Sn, let 

n 
A„(« ! , . . . ,< „ ) = 1 + 5 3 « t •2№~l. 

« = i 

Then A„ is a one-to-one mapping of Sn onto the set { 1 , . . . , 2 n } . 
Let us form the graph Dn = ( {1 , . . . , 2"} , 2?„), where for any 1 < i,j < 2", 

(t,y) £ En if and only if A~1 (t) is adjacent to A~1(j). For any j € {1,...., 2 n } , let 
us denote by the set of all ancestors of j in Dn. Then C { 1 , . . . , 2 n } . 

It is easy to see that for any n > 2 and integer j > 1, 
(4) |jj.B)| = n i f l < i ' < 2 » , 

( 5 ) J ( - + i ) = / ^ ) u 0 > 2 - } i f l < y < 2 - , 
3 \{l + 2n:le J ; " , 2 » } u { y - 2 n } if 2n < y < 2n+1. 

Now let n > 2 be an arbitrary integer and let A = (A, E) € l is , A}- = 
(Ay, E^^) 6 UR, y = 1 , . . . , 2". In addition, take a family ¥ of mappings 

tfroy:(AiX,...,xA2.)m-1xEm^E£\ me R, l<j<2n. 

It is said that the nondeterministic tree automaton A = (A, E) is a cube-product 
of Aj, j = 1 , . . . , 2", with respect to ¥ if the following conditions are satisfied: 
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W A = 

(b) for any m 6 R, a £ E m and (o j j , . . . , a,-2») 6 IIy=i >* = 1» • • •»m — 1» the 
mapping is independent of the elements at,, t = 1 , . . . , m— 1, if a ^ Jj"\ 

(c) for any m 6 i , a £ E m and ( (an , . . . , o i 2 » ) , . • •, (om-xx, • • •, Om-12»)) G 
Am~l, 
( (an, • • • 1 «12») (orn-11 am_i2»))cr* = 

(®lli • • • , " m - x x j ^ i 1 X . . . X (012», . . . , am_i2»)<T2»" > 

where 

<ry = i m y ( ( o n , . . . ,012»), . . . , ( a ^ - i i . . . . ,o m _ i 2») ,o , ) ) j — 1 , . . . , 2". 

2* 
Since n determines the hypercube uniquely, we use the notation 11/= 1 ^/(^i for 
the cube-product just introduced. 

Now we are ready to prove the following statement. 

Theorem 2. A system ® of nondeterministic tree automata from Ur is iso-
morphically complete for with respect to the cube-product if and only if, for all 
m £ R and i = ( » i , . . . t m ) € {0, l } m , ® contains a nondeterministic tree automata 
/{W = (A'1 ' , E'1 ' ) satisfying the following conditions: 

(6) has two different elements a^,1' and a^, 

(7) there exists a aj £ with ( o f f , . . . , a g j a ^ ' a ? } = { a g } , 

(8) for all U £ R and B = (ai , . . . , « „_ i ) € {0 ,1 } U _ 1 , there is a <tj g € E^ 

for which (a^1', a'j1'} C (a i ' ' , . . . , provided that u / 1, and there tj 

a? £ E ^ with { a ^ . a p } C aTA(1) if 1 £ R and u = 1. 

Proof . The necessity follows from the proof of Theorem 1. In order to prove the 
sufficiency, let us denote by W the set Umeie{®>^}m an<^ W = X(»i, - - • > *m) : 
(t'i tm ) G W ic im = 0). Let = n and let 7 denote aone-to-one mapping of 
the set {1 n} onto W. Then, by our assumption on © , for any p £ { l , . . . , n), 
there exists a nondeterministic tree automaton = (.A^^)', £ <8 
satisfying conditions (6), (7) and (8) with i = ( t i , . . . , t m ) = l(p), where t m = 
0. For the sake of simplicity, let us denote by 0, 1 the elements ag1^^, 
respectively, for all p £ { 1 , . . . , n}. 

Now consider the matrices Q' f c ' , k = 2,3,. . . , introduced in the proof of Theo-
rem 1. In our argument we make use of some properties of these matrices. First 
let us observe that 
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(9) Q(fc+1) = (q°) Qw) 

where 0 and 1 denote the costant vectors of size 1 x 2 * with components 0 and 1, 
respectively. On the other hand, it can be seen (cf. [8] or [9]) that 

(10) for any A; > 2 and 1 < j < 2k, the k + 1-tuples (¿J*, g j j j , . . . , qjV), 
t = 1 , . . . , k, are pairwise different where { / i , . . .,]k} = J^ • 

Now using (5), (9) and (10), it is easy to see that 

(11) for any Jb > 2, k > s > 1, 1 < j < 2k, the Jfc-tuples (qltV,..., 
t = 8 + 1 , . . . , k, are pairwise different where { j i , . . . , jk} = J^. 

Now let C = ( { c i , . . . , c r } ,E ) be an arbitrary nondeterministic tree automaton 
from UR. We prove that C is isomorphic to a subautomaton of a cube-product of 
nondeterministic tree automata from 03 . 

For this purpose, let us denote by s the least positive integer with n < 2". Let 
k = r + 8. Delete the first a rows of Q W . Then, by (9), the resulting matrix 
consists of 2* copies of Q ' r ' in its partitioned form. Let Q denote this matrix. For 
the sake of simplicity, let us denote by qi}-, t = 1 , . . . , r, j = 1 2fc, the elements 
of Q. Then from (11) it follows that 

(12) for any 1 < j < 2h, the fc-tuples (qt}l,..., qt)k), t = 1 , . . . , r, are pairwise 
different where = {ji, • • •, jk}-

Let us define the one-to-one mapping ft of { c i , . . . , c r } onto the set of the row vectors 
of Q by n(ci) = qi2k), i = 1 , . . . , r, and let B = {/i(c<) :»' = 1 , . . . , r} . 

Form the cube-product 
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;J(T(1)) X . . . X yjW1)) X . . . X ^("»("M X . . . X >ji"»(n)) X 
2 ' time» 2r times 

X ¿t^t1» X X Allll)\{i:, 
2*-n2' *i«nes 

in the following way. Observe that 
BCA = 

= A^ 1 » x ... x A^ 1 » x . . . x A^<">) x ... x A ^ " » x A^ 1 » x ... x A«"»«1» . .. ' > •• N -. ' 

Now let 1 ji m € R, a e S m , ( f c . j , . . . , qit2k) <= B, t = 1 m - 1, be 
arbitrary elements. Then /¿(c,-,) = . . . ). t = 1 , . . . , m — 1. Let us assume 
that (ci4 c,m_,)ff c = { c „ , , . . . ,c0 ( } . Then 0 < I < r. By the structure of Q, 
there exists exactly one integer d S { 1 , . . . , 2 r } such that for each p € { 1 , . . . , 2*}, 
the following assertion is valid: 

for all t e (1 , . . . ,r} , 9t,(p-i)2'+d = 0 if and only if t € {t>! t>j}. 
On the other hand, let us observe that the column vectors of Q with indices (p — 
l)2r + d, p — 1, . . . ,2*, are identical copies of some r-dimensional vector over 
{0,1}. Therefore, the vectors (^„(p-ija'+d 9im_1.(p-i)2'+<i)i P = 1 . - . 2 ' , 
are the copies of an (m — l)-dimensional vector (¿ i , . . . , i ' m - i ) over {0, l } . Now let 
i = (*'i> • • • i*m_D 0). Since i 6 W', there exists one and only one po e { l , . . . , n } 
with Tf(po) = i- Let jo = (po - l)2r + Then for each j e { 1 , . . . , 2fc}, the mapping 
¥my is defined by 

*my((9ul, • • • . 9ii2fc)i • • •»(ftm_, l, • • •. <Hm.l2>'), <?) = 

In all other cases when 1 ^ m £ i , ¥my can be defined arbitrarily in accordance 
with the definition of the cube-product. 

Now let us suppose that 1 6 R. Let a £ Ei be arbitrary and ac = { c 0 l , . . . , cvi}. 
Then there exists again exactly one integer d 6 { 1 , . . . , 2 r } such that the following 
statement holds for each p 6 { 1 , . . . , 2 ' } : 

for all t e {1 , . . . , r } , gt,(p_i)2'+d = 0 if and only if t e { u i , . . . , « ( } . 
In this case (0) G W', and so, there is one and only one po € { l , . . . , n } with 
Tf(po) = (0). Let j0 = (po ~ l)2r + d. For each j e {1,..., 2fc}, let us define the 
mapping i i y as follows. 

2r times V times 2*-n2r times 

m— 1 

if j = jo, 
) if j Jo and (p - l )2 r < j < p2' 

for some p € { l , . . . , 2*} . 

if J = JOi 
<T*M if j i jo and (p - l)2r < j < p2r for some p € { l , . . . , 2 ' } . 
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By (12), the mappings m e R, 1 < j < 2k, are well-defined. On the 
other hand, it is easy to see that the mapping P is an isomorphism of C onto 
that subautomaton of the defined cube-product which is determined by the set B. 
Therefore, ® is isomorphically complete for 11 R with respect to the cube-product. 
This ends the proof of Theorem 2. 

Remark. In the case R — {2} we obtain a characterization of the isomorphi-
cally complete systems for the class of nondeterministic automata with respect to 
the cube-product. Therefore, the main result of [5] can be obtain as a corollary of 
Theorem 2. 

Notice that the necessary and sufficient conditions stated by Theorem 1 and 
Theorem 2 are the same which gives us the following corollary. 

Corollary. A system of nondeterministic tree automata from Ur is isomor-
phically complete for 11 R with respect to the general product if and only if it is 
isomorphically complete for with respect to the cube-product. 
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Some Remarks on Directable Automata* 

B. Imreh* M. Steinby* 

Abstract 
A finite automaton is said to be directable if there exists a word, a di-

recting word, which takes the automaton from every state to the same state. 
After some general remarks on directable automata and their directing words 
we present methods for testing the directability of an automaton and for find-
ing the least congruence of an automaton which yields a directable quotient 
automaton. A well-known conjecture by J. Cera? claims that any n-state 
directable automaton has a directing word of length <(n-x)5, but the best 
known upper bounds are of the order 0(re*). However, for special classes 
of automata lower bounds can be given. We consider a generalized form of 
Cern?'s conjecture proposed by J.-E. Pin for the classes of commutative, def-
inite, reverse definite, generalized definite and nilpotent automata. We also 
establish the inclusion relationships between these classes within the class of 
directable automata. 

1 Introduction 
A finite automaton is directable if there is an input word, a directing word, which 
takes the automaton from every state to the same state. (Directable automata and 
directing words are also called synchronizable automata and synchronizing words, 
respectively.) In this paper we discuss a variety of questions concerning directable 
automata and their directing words. After the preliminaries and general remarks 
of Sections 2 and 3, we present in Section 4 a method for testing the directability 
of an automaton. The algorithm is based on the mergeability relation of states, 
and for computing effectively this relation the inverted transition table of the au-
tomaton is used. A congruence of an automaton is directing if the corresponding 
quotient automaton is directable. Such congruences were considered (under a dif-
ferent name) by Ito and Duske [ItD83] who noted that every automaton has a 
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minimal directing congruence. It gives the largest directable homomorphic image 
of the automaton. In Section 5 we describe an algorithm for computing the smallest 
directing congruence. 

Cern^ [Cer64j conjectured that an n-state directable automaton must have a 
directing word of length < (n — l)2 . So far, this has been neither proved nor 
disproved, and the conjecture remains the main problem in the area. The best 
known upper bounds for the length of the shortest directing word are of the order 
0 (n 3 ) (cf. [Sta69,£PR71,Pin78], for example). On the other hand, even better 
bounds than (n — l)2 can be given for some special classes of automata [Pin79]. 
Recently, Rystsov [Rys94] proved that for commutative automata the exact bound 
is n — 1. In Section 6 we give a short elementary proof of a generalized form 
of Rystsov's result. The generalization corresponds to an extension of Cerny's 
conjecture proposed by Pin [Pin78]. An automaton is r- directable, for some r > 1, 
if it has an r- directing word which takes the automaton from every state to one of 
r states which depend on the word only. Pin's conjecture claims that if 1 < r < n, 
then any n-state r-directable automaton has an r-directing word of length < (n—r)2; 
for r = 1 this is fierny's conjecture. In Section 7 we consider the directability and 
the directing words of definite, reverse definite, generalized definite and nilpotent 
automata. In each case we can give exact bounds for the lengths of the minimal 
r-directing words. We also consider the inclusions and the intersections between 
these classes when restricted to directable automata. In particular, it is noted that 
every directable generalized definite automaton is definite. 

2 Preliminaries 
Although most of our notation is quite standard, some of it will be explained here 
along with some general notions we shall need. The cardinality of a set A is denoted 
by |A|. If / : A —• B is a mapping, the value f(a) of an element a & A is often 
denoted by af. Similarly, we may write Hf for f(H) = {af : a 6 H} when 
H C A. The composition of two mappings / : A —* B and g : B —* C is the 
mapping fg:A-^C,a>-t (af)g, and the product of two relations 6 C Ax B and 
p C B x C is the relation 

6 p = {(a, c) e A x C : (36 <= B) o06, bpc} 

from A to C; that (a, 6) E 6 holds is also expressed by writing aQb. The set of 
equivalence relations on a set A is denoted by Eq(A). If 6 £ Eq(A), the ©-class of 
an element a of A is denoted by a©, and the set of all such ©-classes, the quotient 
set with respect to 6 , is denoted by A / 6 . For any set A, Eq(A) contains the 
diagonal relation Ax = {(a, a) : a G A} and the universal relation V^ = A X A. 
These are the smallest and the greatest element, respectively, of the complete lattice 
(Eq(A),C) (cf. [BuS8l], for example). 

In this paper X is always a finite nonempty alphabet. The set of all (finite) 
words over X, also called X- words, is denoted by X* and the empty word by e. 
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For the length of a word w we use the notation lg(tu). For any integer k > 0, Xk 

denotes the set of all X-words of length k, and also let 

X<K = G X* : lg(u>) < Jfc}, 

X-k = G X* : lg(u;) < Jfc}, 

X^k = {u; G X* : lg(tu) > Jfc}. 
The prefix of length Jfc and the suffix of length k of a word to are denoted by 

preffc(tv) and sufffc(io), respectively. 
An automaton, or an X-automaton - to be more specific, is a system A = 

(A, X, 5), where A is the finite nonempty set of states, X is the input alphabet, 
and S : A X X —• A is the transition function. The transition function is extended 
to Ax X* in the usual way. Each word to G X* defines then a unary operation 
w : A —• A, a 5(o, u;), on the state set, and the state 8(a, w) into which the input 
word w takes A from state a is usually denoted by aw. This notation is extended 
also to subsets of A : if H C A, then Hw = {atu : a G H}. 

Subsets of X* are called X-languages, or just languages. An X-recognizer is a 
system A = (A, X, 6, ao, F) which consists of an X-automaton (A,X,S), an initial 
state ao (G A) and a set F (C A) of final states. We say that A is based on the X -
automaton (A, X,S). The language recognizedby A is ¿(A) = {u; G X* : aow € F}. 
An X-language is recognizable, or regular, if it is recognized by an X-automaton. 
The set of recognizable X-languages is denoted by Rec(X). 

Next we define some basic algebraic notions for automata. These could be taken 
directly from general algebra by construing automata as unary algebras, but we use 
the usual definition of an automaton. Nevertheless, for in- depth treatments of these 
ideas one should consult texts on universal algebra such as [BuS81], for example. 
An X-automaton (B,X,RJ) is a subautomaton of the X-automaton A = (A, X, S) 
if B C A and R)(b,x) = S(b,x) for all 6 € B and x G X. An equivalence 0 € 
Eq(A) is a congruence of A — (A, X, 5) if for all a,b € A and x G X, a&b implies 
axQbx. The set of congruences of A is denoted by Con(>l). It is well-known that 
Con(yl) forms a sublattice of the lattice (Eq(A),C). Moreover, € Con(X). 
If 9 G Con(X), the quotient automaton A/Q = (A/Q,X,SQ) is defined so that 
5©(o9,x) = 5(a, i )8 for all a© G A / 9 and x G X. A morphism of X-automata 
from A = (A, X, 6) to B = (B,X,RI) is a mapping <p : A —• B such that for all 
o G A and x & X, ¿(a, x)<p = ij(a<p,x). We write <p : A —* B to indicate that 
<p : A —* B is a morphism. An epimorphism is a surjective morphism. If there 
exists an epimorphism <p : A —* B, then B is an image of A. The direct product 
of A = (A, X, <5) and B = (B, X, RJ) is the X-automaton A x B = (A x B, X, 7) in 
which t((o, 6), x) = (5(a, x),RJ(b, z)) for any (o, 6) G A X B and x G X. 

If K is a class of automata, then K (X ) denotes the class of X-automata belong-
ing to K. A nonempty class of X-automata is called a variety of X-automata if it 
is closed under the operations of forming subautomata, images and (finite) direct 
products. 
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3 Directable automata and directing words 
A word w £ X* is a directing word of an X- automaton A = (A, X, S) if it takes A 
from every state to the same state, i.e. if | Au>| = 1, and we call A directable if it 
has a directing word. The set of directing words of A is denoted by DW(>t). The 
class of all directable automata is denoted by Dir. 

It is obvious that every directing word of an X- automaton A is a directing 
word of every subautomaton of A, too. If <p : A —» 8 is an epimorphism from 
A = (A,X,S ) onto B = (B,X,r}), then DW(/J) C DW(3). Indeed, let to be a 
directing word of A. If b, b' € B, then b = a<p and b' = a'<p, for some a, a' 6 A, and 
therefore 

rj(b, w) = r)(a<p, w) = 6(a, w)<p = 6(a', w)<p = . . . = ry(fc', to). 

Similarly, u e DW()1) and v £ DW(fl) imply that uv £ DW(>I x 8). These 
observations lead to the following conclusion. 

Remark 3.1. For any alphabet X, Dir(X) is a variety of X-automata. 

If w is a directing word of an X-automaton A, then so is uwv for any X-words 
u and v. This yields the next remark. 

Remark 3.2. For any X-automaton A, X'DW(A)X* = DW (A) . 

With any X-automaton A = (A, X, ¿) we associate an X-automaton Ad = 
(B,X,r)), where B = {Aw : w £ X* } and rj(Aw,x) = Awx for all w £ X* and 
i € X. This Ad is the part of the usual subset automaton of A accessible from 
state A. For any to £ X*, r)(A,w) = Aw. Hence to is a directing word of A iff 
rj(A, u;) is a singleton. This means that DW(>i) is recognized by the X-recognizer 
(B, X,rj, A, F), where F = {Ato : to £ X*, |Ato| = 1}, and we can state the following 
conclusion. 

Remark 3.3. For any X-automaton A, DW(.4) £ Rec(X). 

If A is a directable automaton, let d(^) = min{lg(to) : to € DW(>1)}, and for 
any n > 1, we define the number 

d(n) = max{d(>i) : A £ Dir, |A| = n}. 

Cerny's conjecture may now be formulated as the claim that d(n) = (n — l ) 2 for 
all n > 1. In [CPR71] it was shown that the hypothesis holds for n < 5. For 
the general case only upper bounds of the order 0(n3) are known (cf. [Sta69, 
CPR71,Pin78], for example). On the other hand, there are examples showing that 
d(n) > (n — l)2 for all n > 1 (cf. [Cer64,Sta69]). We consider some modifications 
of the problem concerning Cerny's conjecture. First of all, the question may be 
restricted to concern some subclass of Dir. If K is some class of automata, we set 

d K ( n ) = max{d(>i) J e K f l Dir,\A\ = n}. 
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Pin [Pin79] has shown that dj^(n) = (n — l)2 for all prime n when K is the class 
of automata in which some input letter defines a circular permutation. As we shall 
see, there are even classes K for which dj^(n) < (n — l)2 . 

For any r > 1, we call w E X* an r- directing word of an X-automaton A = 
(A,X, 6), if \Aw\ < r. Let DW(A,r) denote the set of r-directing words of A. If 
|A| = n, then 

X* = DW(X, n) D DW(A, n - 1) 2 . . . 2 DW(X, 1) = DW(>1). 

It is clear that Remarks 3.2 and 3.3 apply also to the languages DW(>t, r). We say 
that A is r-directable if DW(X,r) ^ 0. For each r > 1, let Dirr denote the class 
of r-directable automata. Clearly, Dir = Dir* c Dira C . ... Note that for r > 2 
and any X, Dir r (X) is not a variety of X-automata; it is not closed under direct 
products. 

For any r > 1 and A € Dir r , let d(X,r) = min{lg(tu) : w £ DW(/(, r)}, and for 
1 < r < n, let 

d(n, r) = max{d(A, r) : A € Dir r , = n}. 

In [Pin78] Pin put forward the following generalization of Cerny's conjecture which 
we call Pin's conjecture: d(n, r) = (n — r)2 for all 1 < r < n. For any class K of 
automata, we write 

d K ( " . r ) = max{d(>(, r) : A € K n D i r r , |A| = n}, 
and one can again consider modifications of Pin's conjecture which apply to the 
numbers r) for various classes K. 

4 Testing for directability 
Let A = (X, A, S) be an automaton, and suppose |A| = n and |X| = m. To find 
out whether A is directable or not by constructing the state set {Aw : w E X* } of 
Ad can be quite time-consuming: there may be almost 2" sets to consider, and for 
each new set Aw one should form all sets Awx (z E X) and compare them with 
the previously found sets. If no essential improvements can be found, the worst 
case estimate for this method is at least of the order 0 (m • 2"). Ito and Duske 
[ItD83] noted that the directability of A can be tested by applying an input word 
t which contains all words over X of length d(n) as subwords; obviously A £ Dir 
iff |Ai| = 1. They show how one can construct such a word t, but the mere length 

+ d(n) — 1 of the word renders the test unpractical even for small values of n 
and m. If we assume that Cerny's conjecture holds, which is the best we can hope 
for, the length of the test word will be of the order ). We present here 
a simple 0 (m • n2)-algorithm for solving the directability problem. 

For any A; > 0, the relation (¿¿(h) of k-mergeability on the state set A of it is 
defined so that for a,b £ A, (o,6) £ HA(k) iff aw = bw for some w £ Two 
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states a and b are mergeable if they are k- mergeable for some k > 0. We denote 
fij( = AM ^ ^ well-known (cf. [Sta69]) that an automaton is directable iff 
all pairs of its states are mergeable. This and some other obvious facts about the 
relations fiA{A;) and ha are stated in the following proposition. 

Proposition 4.1. Let A = (A,X,6) be an n-state automaton. 

(a) A is directable iff HA = A-

(b) The relations haW are reflexive and symmetric (k > 0). 

(c) Aa=HA(0) C M „ ( 1 ) c ...CMA. 

(d) The relations /¿»(A:) can be computed as follows: 

1. /¿¿(0) = AA; 
2. /¿¿(A:) = nA(k- 1) U {(a,b) : (3i e X) (ax,bx) e fiA(k ~ 1)} for k > 0. 

(e) If HA (A:) = HA (k — l) for some k > 0, then HA (A:) = HA (k + 1) = ... = HA. 

(f) A A = HA(0) C /ix(l) C . . . C ^jt(k) = FIA(k + 1) = HA for some k, where 
0 < k < (j). 

Proposition 4.1 suggests that the directability of A can be tested by computing 
successively px(0),/iy|(l),/ix(2),... until HA(^) = HAI^ ~ !)• The most direct way 
jf doing this leads to an 0(m • n4)- algorithm, but by organizing the work better, 
we get an algorithm which operates in time 0(m • n2). A great part of the saving 
is achieved by using the inverse transition table of A instead of the transition table 
itself. Also, we do not form explicitly each HA(k) although they appear in the 
sequence of relations that are computed. 

The algorithm employs two auxiliary data structures, a Boolen n x n-matrix 
M and a list NewPair of pairs of states. To simplify the notation, we assume that 
A = {1 ,2 , . . . , n}. Then M[t, j] = 1 means that the pair i, j (e A) is known to be 
mergeable. Since it suffices to consider just the pairs (t, j), where 1 < t < j < n, we 
actually need just the upper part of M. A pair appears in NewPair when t and j 
have found to be mergeable, but this fact has not yet been used for finding further 
mergeable pairs. The inverted transition table 

I = (l[a,x])a€AiX€X 

is defined so that I[a, 1] = {t S A : ix = a}, for any a 6 A, x e X. The steps of the 
algorithm are as follows. 

Step 1. (Initialize M and NewPair) M[», j ] := 0 for all 1 < t < j < n, and 
NewPair := e (the empty list). 
Step 2. Form the inverted transition table I. 
Step 3. Find all pairs (a, 1) (& A X. X) for which |I[a, x]| > 1. For every such 
(a, x) consider each pair t, j £ I[a, x] with t < j. If M[t, j\ = 0, let M[», j] := 1 and 
append (i,j) to NewPair. 



Some Remarks on Directable Automata 29 

Step 4. Until NewPair = e do the following. Delete the first pair from New Pair, 
suppose it is (a, b). Prom I find all pairs (t, j), i < j, such that for some x G X, 
i G I[a, i ] and j G I[fc, x], or »' € I[6, x] and j € I[o, x]. If M[t, j} = 0, let M[t, j] := 1 
and append (»',;') to NewPair. 
Step 5. If M[»,y] = 1 whenever 1 < t < J < n, then A is directable, otherwise not. 

Step 1 takes time 0 ( i2 ) - If A is given as a transition table, Step 2 can be carried 
out in time 0 ( m n). In Step 3 one has to consider for each of the m input symbols 
altogether n(n — 1)/2 pairs (», j ) , therefore the step takes time 0[m • n2). In Step 
4 each pair (»,j) will be considered at most once for each x G X, and this happens 
when the pair (a, 6) for which {ix,jx} = {0,6} is removed from NewPair. Hence, 
the time bound is 0 ( m • n2). Since Step 5 can be carried out in time 0{n2), the 
time bound for the whole algorithm is 0 (m • n2). 

5 Directing conguences 
We call a congruence p of an automaton A = (A,X,S) directing if the quotient 
automaton A/p is directable. The set of directing congruences of A is denoted by 
Con<j(yl). The following observations are easily verified. 
Lemma 5.1. For any automaton A, Cond(X) is a filter of the congruence lattice 
Con(yl), i.e. (1) Con^iX) ^ 0, (2) 0 C p, 0 G Con^X) and p G Con(X) imply 
p e Con<j(X), and (S) 0 n p e Cond(A) for all 0 , p G Cond(yl). 

Corollary 5.2. Every automaton A has a unique minimal directing congruence, 
which we denote by p», Cond(X) is the principal filter [px) of Con(A), and every 
directable image of A is an image of A/PA-

Let p G Eq(-A). We call two states o and b of the automaton A — (A, X, 6) p-
mergeable if (aw,bw) G p for some w G X*. The following obvious lemma shows 
that our directing congruences are the same as the 'cofinal congruences' of Ito and 
Duske [ItD83]. 
Lemma 5.3. A congruence p of A is directing iff all pairs of states of A are 
p-mergeable. 

For computing the minimal directing congruence we present a sharper condition 
for a congruence to be directing. Since any two mergeable states are p-mergeable 
for every congruence p, it suffices to consider the nonmergeable pairs of states. 

For any automaton A = {A, X, 6), let Gj = [V, E) be the directed graph defined 
as follows. The vertex set V = {{a, 6} : o, b G A, (a, 6) 0 /¿yj} consists of all un-
ordered pairs of nonmergeable states of A. The edge set is E = {({a, 6}, {ax, 6x}) : 
{a, 6} eV,x G X). Note that {ax,bx} G V if {a, 6} G V and x G X. It is clear 
that a congruence which identifies all pairs in V is directing, but it actually suffices 
to consider a subset of V, the trap T of G& which is the union of (the vertex sets 
of) all strongly connected components of G& from which no edges lead outside the 
component (cf. [DDK85]). 
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Lemma 5.4. A congruence p of an automaton A = (A,X,6) is directing iff apb 
for every pair {a, 6} which belongs to the trap T of G A. 
Proof . For any pair c,d (6 A) of nonmergeable states there is a word tu ( g X ' ) 
such that {cto, du;} g T. Hence p is directing if it satisfies the condition of the 
lemma. Suppose now that p € Con<j(>i) and consider any pair {0,6} e. T. By 
Lemma 5.3 there is a word w such that (aw, bw) G p. Since {atu, ¿tu} is in the same 
strongly connected component as {a, 6}, {auiu, 6um} = {a, 6} for some u 6 X*. 
This shows that also (a, b) £ p. 

For any a,b e A (a b), let Q(a,b) be the principal congruence generated by 
the pair (a, 6) (cf. [BuS81]). The last part of the previous proof shows also that 
6 (a,b) = 6(c ,d) whenever {a,b} and {c,d} are in the same strongly connected 
component of G Although it will not be used here, we note that Lemma 5.4 
yields the following description of the minimal directing congruence. 

Corollary 5.5. For any automaton A = (A,X,6), 

pA = ©(oi.fci) V... V©(a
fc
,6

fc
), 

for any set { {a j , bi},..., {a*, fcfc}} of representatives of the strongly connected com-
ponents which form the trap of GA. 

Since the reflexive closure rA = Aa U {(a, 6) : {a, 6} 6 T} of the relation corre-
sponding to the trap T of GA is invariant with respect the state transitions of A, 
then so is its transitive closure r j . Since is the equivalence generated by the 
pairs in the trap, this means by Lemma 5.4 that rA = pa- These observations lead 
to the following algorithm for-finding the minimal directing congruence for a given 
automaton A = (A,X, 5). 

Step 1. Compute HA using the method described in Section 4. 
Step 2. Form the graph GA = (V, E); the vertex set is obtained from HA • 
Step 3. Compute the strongly connected components forming the trap T of GA 

using the algorithm of [DDK85]. 
Step 4. Form the relation rA and compute the transitive closure; ta — pA. 

We know that the computation of HA takes time 0(m • n2). The vertex set V 
is then obtained in time 0(n2), and computing the set E of edges can be done in 
time 0(m n2). In [DDK85] Tarjan's algorithm [Tar72] for computing the strongly 
connected components of a directed graph is modified to yield the trap. The al-
gorithm works in time 0(is + e), where v is the number of vertices and e is the 
number of edges. In the present case 1/ < n(n — l ) /2 and e < m • n(n — l ) /2 , for 
n = |A| and m = Hence, also Step 3 can be carried out in time 0 ( m • n2). 
Step 4 takes time 0(n3 ) if we use Warshall's algorithm (cf. [AHU83], for example) 
for computing the transitive closure. The total time used by algorithm is therefore 
bounded by 0(m • n2 + n3). 
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6 Directable commutative automata 
An automaton A = (A, X, S) is called commutative if axy = ayx for all a € A and 
x, y £ X. Let C o m denote the class of commutative automata. Rystsov [Rys94] 
has shown that d Q o m ( n ) = n — 1 for every n > 1. We give a simple proof for a 
generalization of this fact. The generalization corresponds to Pin's conjecture. 

Proposition 6.1. d Q o m ( n , r) = n — r whenever 1 < r < n. 
Proof . Suppose A = (A,X,S) is commutative and r-directable, where 1 < r < 
n = |A|. Let w = xi ...xm (Xi 6 X ) be an r-directing word of A of minimal 
length. The commutativity of A implies that Auv = (Av)u C Au for all u, u € 
X*. Hence A D Axj D Ax 1X2 2 ••• 2 Aw. All of these inclusions must be 
proper as A x i . . . x , _ i = A x i . . . x,_ixj, for some 1 < i < m, would imply that 
A x i . . . Zi - ix ( '+ i . . . xm = Aw, contradicting the assumption that ty is of minimal 
length. Therefore 

n = |A| > |Axi| > . . . > |Ax!. . .xm_i| > r, 

and this implies that m < n — r. To see that equality is possible in all cases, it 
suffices to consider the automata A(n, X) = ( { 1 , . . . , n}, X, £), where n > 1, X is 
any alphabet and S(i, x) = min{t + 1, n} for all t e { 1 , . . . , n} and x e X. 

7 Definiteness, nilpotency and directability 
Let Jb > 0. An automaton A = (A,X,S) is weakly k-definite if aw = bw for all 
w € Xk and all a, b € A, and it is definite if it is weakly fc-definite for some A:. If A 
is definite and k is the smallest number for which it is weakly A:-definite, then A is 
k-definite [Kle56,PRS63], Let Def denote the class of all definite automata. 

It is clear that every definite automaton is directable. Moreover, if an X-
automaton A is weakly k-definite, then DW(X) = P U X-k for some P C X<k. 
In [PRS63] it was shown that an n-state definite automaton is k- definite for some 
k < n — 1. This shows that d j j e f (n) < n — 1 for every n > 1. That actually 
d j ) e f (n) = n — 1, is again witnessed by the automata A(n, X). This observation 
can be generalized to read as follows. 

Proposition 7.1. d j ) e f (n , r) = n — r whenever 1 < r < n. 
Proof . Let A = (A, X, 5) be a given automaton. For every t > 0, we define on A 
a relation pi so that for any a,b e A, 

apib iff (Vu; € X*) aw = bw. 

It is easy to see (cf. [Ste69]) that these relations are congruences of A, and that A 
is Jb-definite (fc > 0) iff 

1. AA = PO C p i C . . . C pfc_i C p f c = Vx. 
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Suppose now that A has n states and is k- definite. It is clear that if 0 < t < k and 
w € X\ then awpk-ibw for all a, 6 6 A. On the other hand, by ( l ) the number 
of /^-¿-classes is at least t + 1. Hence \Aw\ < n — t for every w € X1. Moreover, 
|i4ti>| = 1 whenever lg(tü) > k. This means that if 1 < r < n and w e Xn~r, then 
|Atu| < r. Hence dj^gf (n,r) < n — r. That the bound is exact, can be seen by 
considering again the automata A(n, X). 

Definite automata correspond to definite languages [Kle56,PRS63]. Next we 
consider automata that correspond to reverse definite languages [Brz63,Gin66]. An 
automaton A = (A,X, S) is weakly reverse k-definite (Ac > 0) if awx = aw for 
all o € A,w 6 Xk and x £ X. Reverse definite and reverse k-definite automata 
are now defined in the natural way. Let RDef be the class of reverse definite 
automata. If A = (A,X,S) is weakly reverse fc-deiinite, then for all a € A and 
w € X-k, aw is a 'dead state', i.e. awx = aw for every x & X. This means 
that A is directable exactly in case it has just one such dead state. Recall that an 
automaton A = (A, X, S) is nilpotent (cf. [GeP72]) if there is a state ao € A, called 
the absorbing state, and a bound k > 0 such that aw = oo whenever a & A and 
lg(tu) > k. Let Nil denote the class of nilpotent automata. 

Proposition 7.2. RDef n Dir = Nil, and (n, r) = dj^jj(n, r) = n — r for 
alll<r<n. 
Proof . Any nilpotent automaton is clearly both reverse definite and directable, 
and the converse we noted already above. Hence RDef n Dir = Nil holds. Since 
Nil C Def , we get dj^jj (n,r) < d j ) e f (n , r) = n — r for all 1 < r < n. Once 
more, equality is seen to hold by considering the automata A (n, X) which are also 
nilpotent. 

An X-language L is generalized definite [Gin66] if it has a representation 

L = P U QIX'RI U . . . U QMX*RM, 

where m > 0 and the sets P, QI and R+ are finite. Let us call an automaton A — 
(A,X,6) generalized definite if there are integers h, k > 0 such that osui = asvt, 
for all a € A, s € Xh, t € Xk and u,v € X*. This definition is justified by the 
following facts. 

Proposition 7.3. Let A = (A, X, S,a0,F) be an X-recognizer based on a given 
X-automaton A = (A,X,S). 

(a) If L(A) is a generalized definite language and A is its minimal recognizer, 
then the automaton A is generalized definite. 

(b) If the automaton A is generalized definite, then the language L(A) is also 
generalized definite. 

Proof . Suppose first that 1(A) = PLX^X*RXU.. .UQ M X*R M , where m > 0 and 
all of the sets P, QI and R{ are finite, and that A is a minimal recognizer of L(A). 
We may then assume that P C X<H+K, QU--.,QMQXH and R1,...,RMCXK, 
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for some h,k>0. Consider any o 6 A, s € Xh, t G Xk and u,v G X*. Since A is 
minimal, there is a word r G X* such that o = oor. For any tu G X*, 

lg(rsutio), lg(rstitto) > h + k and 

prefh(rsuito) = prefh(rst;iu;), sufffc(rsutto) = sufffc(rsvtty), 

and hence rsutw G L[A) iff rsvtw G L(A). This shows that a^rsut = asut and 
aorsvt = asvt are equivalent states, and since A is minimal, asut = asvt must 
hold. Hence A is generalized definite. 

Assume now that A is generalized definite and let h, k > 0 be such that asut = 
asvt whenever a G A, s G Xh, r G Xk and u, t> G X*. Consider any words u, v G X* 
such that lg(u), lg(u) > h + k, prefh(u) = preffc(t>) and sufffc(u) = sufffc(u). We 
may then write u = su't and v = sv't, where s G Xh and t G Xk. Now 

u G 1 (A) O a0su'v G F O a0sv't G F O v G 1 (A) , 

which shows that L(A) is generalized definite. 

Let GDef denote the class of generalized definite automata. Clearly, Def C 
GDef and RDef C GDef , but it turns out that all directable generalized definite 
automata are definite. 

Proposition 7.4. GDef n D i r = Def , and hence dQj ) e f (n , r) = n — r for all 
1 < r < n. 
Proof . Let A = (A,X,S) be a directable generalized definite automaton, and let 
h, k > 0 be such that asut = asvt whenever a G A, s G Xh, t G Xk an̂ l u, v G X*. 
Let u be a directing word of A. If to G Xh+k, we may write w = st with s G Xh 

and t G Xk. Then for any o, b G A, 

aw = ast = as et = asut = fcatii = . . . = fcto. 

Hence A is definite. The converse inclusion is obvious. 

If we add to Propositions 7.2 and 7.4 the obvious fact Def fl RDef = Nil, we 
get the following complete description of the inclusion relationships between and 
the intersections of the classes Def, RDef , GDef and Nil. 

Proposition 7.5. 

1. Nil c Def c Dir .Def c GDef , Nil C RDef c GDef , 

2. GDef n Dir = Def, and 

3. Dir n RDef = Def n RDef = Nil. 

The relations of Proposition 7.5 are summarized by the inclusion diagram of 
Figure 1. 
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Figure 1 

Finally, we note that within the intersection Dir fl C o m all of the classes Def, 
RDef , G D e f and Nil are equal. This follows from the next observation. 

Remark 7.6. Dir n C o m n G D e f - C o m n Nil. 
Proo f . If A = (A, X, S) e Dir n C o m n GDef , then A is fc-definite for some k > 0. 
Then for any a,b € A and u, v € X-k, au = bvu = buv — bv, which shows that A 
.is nilpotent. The converse inclusion follows from Proposition 7.5. 
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The Optimistic and Cautious Semantics for 
Inconsistent Knowledge Bases 

John Grant * V.S. Subrahmanian^ 

Abstract 
We develop two alternative semantics, based on maximal consistent sub-

sets, for knowledge bases that (possibly) contain inconsistencies. The opti-
mistic (resp. cautious) semantics correspond to entailment in some (resp. all) 
maximal consistent subsets. We develop a Kripke-style model theory corre-
sponding to these two semantics. We further extend these semantics to the 
case when knowledge bases contain both explicit and nonmonotonic nega-
tion. Notions of stratification and stability are defined and studied for both 
semantics. 

1 Introduction 
Databases and knowledge bases may be inconsistent for various reasons. For ex-
ample, during the construction of an expert system, we may consult many different 
experts. Each expert may provide us with a group of facts and rules which are 
individually consistent. However, when we coalesce the facts and rules provided 
by these different experts, inconsistency may arise. Such an inconsistency may be 
due to various factors such as a disagreement between experts, an error made by 
an expert, or a misunderstanding between experts. In any case, we may be forced 
to reason in the presence of an inconsistency. Classical logic is not adequate in this 
situation because a single inconsistency makes all possible statements true, thereby 
trivializing the whole knowledge base. 

In a previous companion paper [8], we developed the so-called over-determined 
(or OD) semantics for reasoning in inconsistent knowledge bases. However, OD-
semantics is not based on classical model theory: it allows models to make a state-
ment and its negation both simultaneously true. The semantic? we develop in 
this paper takes the meaning of an inconsistent knowledge base to be the set of 
maximal consistent subsets of the knowledge base. The optimistic semantics de-
duces all statements deducible from at least one maximal consistent subset. In the 
scenario involving many experts, the optimistic semantics accepts all statements 
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that at least one expert can deduce and possibly additional statements deducible 
from the knowledge of the experts that do not involve any inconsistencies. The 
cautious semantics deduces those statements that are deducible from all maximal 
consistent subsets. In the scenario involving many experts, the cautious seman-
tics accepts all statements that every expert can deduce and possibly additional 
statements deducible from the knowledge of the experts that do not involve any 
inconsistencies. 

The organization of this paper is as follows: Section 2 contains the basic notation 
and definitions. It also includes a specific example that motivates the semantics for 
inconsistent knowledge bases. Section 3 provides the definitions and basic results for 
optimistic and cautious entailment. In Section 4, a Kripke semantics is developed 
for optimistic and cautious entailment and a fixpoint operator is presented for 
optimistic entailment. In Section 5, stratification and stability are extended to our 
framework, and their relationship is investigated. Section 6 contains a summary 
and a discussion of related work. 

2 Motivation and Example 
We assume that the facts and rules of a knowledge base are expressed as clauses of 
the form 

Lq «— Sc... & Ln 

where each X,, 0 < » < n, is a literal (positive or negative). Initially, only classical 
negation (-<) is used, but in Section 5, non-monotonic negation (not) is added. A 
clause of the above form is called a generally Horn clause. Note that a generally 
Horn clause allows a negative literal in the head of a clause. A knowledge base is 
represented in the form of a generally Horn program (GHP, for short), which is a 
set, possibly infinite, of generally Horn clauses. A logical language £ generated by 
a finite number of constant, function and predicate symbols (and infinitely many 
variable symbols) is implicit in our setup. Throughout the paper, we consider ->-<A 
to be synonymous with A, i.e. double negations are deleted. We use the notation 
grd[P) to denote the set of all ground instances of clauses in P; in fact, usually we 
will assume that a generally Horn program is already in ground form. 
As usual, the symbol denotes semantic consequence, i.e. P |= L means that L is 
a semantic logical consequence of P with respect to the semantics of classical two-
valued logic. In the next section, we will introduce two new notions of entailment: 
l~3 for the optimistic semantics, and hy for the cautious semantics. 
Next, we present a motivating scenario that exemplifies situations involving incon-
sistencies that arise in law enforcement agencies and in the judicial process: 
Bill hosted a dinner at his house on Jan. 26, 1995. The party was attended by Al, 
Carl, Dick, Ed and Tom. Tom had to leave during dinner because his daughter had 
a medical emergency. After dinner, Bill went to the kitchen to prepare coffee. As 
he did not return, Dick and Eld went to the kitchen where they found Bill strangled 
to death. At the time of the crime: 

• (Fl) Tom was in the emergency room of a hospital. His presence was recorded 
by a surveillance camera belonging to hospital security. 

• (F2) Bill was in the kitchen. 
• (F3) Dick and Ed said they were talking in the living room. 
• (F4) Al said he was alone in the bathroom. 



The Optimistic and Cautious Semantics for Inconsistent Knowledge Bsises 39 

• (F5) Carl said he was alone in the bathroom. 

Furthermore, 

• (F6) Bill's house has only one bathroom. 

• (F7) A1 had been guilty of embezzling money from Bill's accounting firm. 
• (F8) Carl was having an affair with Bill's wife. Bill was an intensely jealous 

man. 

Let us examine the story more carefully. First of all, the story contains a glaring 
contradiction: A1 and Carl's stories conflict. This suggests that one of them is lying 
and we may further suspect that the person who is lying is the murderer. For lack 
of additional information, we are unable to determine which of them is actually the 
criminal. In this situation, the police may well decide to forget about Dick and Ed 
and look more closely at A1 and Carl. More fantastic scenarios are also possible: 
A1 and Carl may have been in cahoots and killed Bill and then both lied so that 
a convincing case could not be made against either of them. Alternatively, it is 
possible that everybody (except Tom) is lying: A1 may have been in Bill's study 
trying to steal documentary evidence of his embezzlement, while Carl may have 
been in Bill's bedroom trying to get back his tie which he had left behind during 
one of his previous soirees with Bill's wife. While this was going on, Dick and Ed 
(both in cahoots) may have teamed up and killed Bill. 
Whether one chooses to believe the above scenarios or not, one must admit that 
each of them is possible, though some are perhaps more probable than others. 
However, whatever version we choose to believe, we would all be agreed that the 
general floor plan of Bill's house should be the same in all versions of the story. 
Likewise, the fact that Bill was strangled is true in all versions. In other words, 
in all versions of the story, certain facts are true. One may accept all these facts 
as being "certain" or established. The different versions of the story would tell us 
who to believe and who not to believe - in other words, they identify the suspects. 
Presumably, Tom would not be a suspect. 
A formal logical description of the scenario is given in the Appendix. The 
cause of the inconsistency in the above example is the set of sentences Cause — 
{13,14,15,16,17}. Maximal consistent subsets may be obtained by dropping any 
one of these clauses. 

3 Optimistic and Cautious Entailment 
Suppose P is a GHP. We say that the success set of P, denoted SS(P) is the set 
{L I L is a ground literal such that P (= L}. Note that as P is a first order theory, 
p= denotes standard semantical consequence in first order logic. 

Example 3.1 Suppose P is the GHP: 

P 

- "? — P 
r*-q 

Then SS(P) = {p, -iq}. Neither r nor ->r is in SS(P). In particular, non-monotonic 
inference rules such as negation as failure and/or the closed world assumption are 
not used here because negation is represented explicitly. 
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A set Q C P (where P is a G H P ) is said to be maximal consistent iff Q is consistent, 
and there is no consistent program Q' such that Q C Q' C P. 

Theorem 1 Every GHP P has at least one maximal consistent subset. 

Proof . P has at least one consistent subset, viz. the empty set of clauses. Let 
CONS(P) be the set of all consistent subsets of P. We show below that every 
ascending chain of elements in CONS(P) has an upper bound in CONS(P). The 
result then follows from Zorn's Lemma. 
Suppose Si C S-2 C 53 C • • • is an ascending sequence of members of CONS(P), 
i.e. each Si is a consistent subset of CONS(P). Then S = (J™ j 5,- is an upper 
bound for this ascending sequence. Moreover, S is consistent, i.e. 5 G CONS(P). 
To see this, suppose S is not consistent. Then, by the Compactness Theorem, there 
is a finite subset 5 ' C S such that S' is inconsistent. Let S' = {h, • • • ,1n} for 
some integer n. Hence, for each 1 < t < n, there is an integer, denoted c*j such that 
1i € •?<,(,). Let a = max{a 1 . . . , a n } . Then S' C Sa. Hence, as S' is inconsistent, 
Sa is also inconsistent, thus contradicting our assumption that each S}-, j > 1, is 
in CONS(P). • 
Note that the above proof applies when P is any set of formulas, not just clauses. 
Furthermore, the proof applies even if P is an infinite set of formulas. 

Example 3.2 Suppose P and Q are the two programs listed below: 

P Q 
p — g P « - r 
"•p < — " 7 

Here, SS(P) = 0, while SS(Q) = {-ip,->r}. Note that Q (= ->r because (p V ->r) 
and -<p yiela - r as a logical consequence. 

Definition 3.1 Suppose P is a GHP, and F is a formula. We introduce1 two new 
notions of entailment, denoted l~g,|-v below: 

1. P hg F iff there is some maximal consistent subset P' C P such that P' f= F. 

2. P by F iff P' |= F for every maximal consistent subset P' C P. 

Example 3.3 Suppose P is the GHP below: 
1 : p<-q 
2 : ->p 4- q 
3 : 1 
Clearly P is inconsistent. P has three maximal consistent subsets, viz. Pi = 
{ 1 , 2 } , P 2 = { 2 , 3 } , / V = { 1 , 3 } . 
S S (PA = 
SS (P2\ = 
SS P3 = p.?}-

l We are grateful to Professor Newton da Costa for suggesting that I-3 entailment may 
be a useful concept. The basic intuition behind hy entailment is not entirely new. The 
idea of using maximal consistent subsets for hypothetical reasoning goes back to Rescher 
[12] whose work was later adapted to artificial intelligence by Ginsberg [5]. However, the 
technical properties of (-3 and hy entailment have not been studied carefully thus far and 
this is one of the things we do in this paper. 
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Thus, P I-3 p, P hg -ip, P I-3 q and P hg ->g. There is no ground literal L such 
that P hv L. 

Let us try to get some intuition. In Kg entailment, we adopt an optimistic approach. 
If P is inconsistent, then we say that L is true iff L is a consequence of some 
consistent subset of P. However, hv is more cautious. It is not easily willing to 
admit that anything is true. For us to conclude L using hv entailment, we must, 
intuitively, find all possible causes of inconsistency. If, after eliminating the cause 
of the inconsistency in all possible ways, it turns out that L is true in each scenario, 
only then do we consider L to be true. Intermediate concepts of inconsistency may 
also be devised such as the one in [9] where the concept of a "recoverable" literal 
is used. 

Example S.4 Consider the murder example of Section 2. Intuitively, a formula 
is hv entailed iff it is true in all possible consistent scenarios. Thus, for example, 
the fact that Bill was alive when dinner was finished is hv entailed by the evidence 
because it is true irrespective of whose version of the evidence we choose to believe. 
Likewise, the fact that Tom could not have been the murderer is clearly hv entailed 
by the evidence. 
On the other hand, for each person (except Tom) who had dinner with Bill that 
night, there is a scenario in which he could be the murderer. Thus, hg entailment 
allows us to conclude, for example, that Carl is the murderer. 
In effect, we can use hg entailment in order to identify suspects, rather than to iden-
tify the murderer, hg entailment tells us who we may safely ignore as a candidate 
murderer. 

There is one feature of Example 3.3 that some readers may find curious. This 
concerns hg: Here, P hg p and P hg —>p, but P l/g (p ic -ip). A brief discussion 
of this is in order. Even though p is true in some maximal consistent subset of P 
and likewise ->p is true in some maximal consistent subset of P, these two maximal 
subsets are different. In fact, there cannot be a single consistent subset of P 
in which both p and —>p are true. So even though P exhibits this kind of classical 
inconsistency with respect of hg entailment, this inconsistency is not trivializing, i.e. 
the existence of such an inconsistency does not cause all formulas in our language 
to become hg entailed by P. 
Formally, some of these properties may be stated below: 

Proposition 3.1 Suppose P is a GHP. If P is consistent, then the following sen-
tences are equivalent for all ground literals L: 

1. P\=L. 

2. P hg L. 

S. P h v L. • 

Proposition S.2 Suppose P is a GHP (possibly inconsistent) and L,LI,L2 are 
ground literals. Then: 

1. » / F h g (Li kL2), then Ph3 h and P hg L2. 

2. In general, P hg Li and P hg L2 do not imply that P hg (Li k. L2). 

S. P hg F for all tautologies F of classical logic. 
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Proo f . (1) Suppose P b3 (Li Si L2). Then there is a maximal consistent subset 
Q C P such that Q (= Lx Si L2. Hence, Q ^ L\. Thus, P b3 h. Similarly for L2. 
(2) Immediate from Example 3.3. 
(3) Suppose F is a tautology of classical logic. Then F is a logical consequence of 
the empty set, and hence F is a logical consequence of each consistent subset of P. • 
The above proposition shows that the tautologies of classical logic hold with respect 
to b 3 - entailment. Similar properties hold for by-entailment. 

Theorem 2 Suppose P is a GHP, and L, Ltl L2 are ground literals. Then: 

1. there is no ground literal L such that P by L and P by ~>L. 

£. P b v [Lx Si L2) iff P b y Lx and P b y L2. 

S. P by F for all tautologies F of classical logic. 

Proo f . (1) Suppose P by L and P by ->L. Hence, for each maximal consistent 
subset Q of P, Q \= L and Q (= ->L, which contradicts our assumption that Q is 
maximal consistent. This means that there is no maximal consistent subset of P, 
which is impossible by Theorem 1. 
(2) Suppose P by ( ¿ i Si L2). Then Li Si L2 is a logical consequence of every 
maximal consistent subset Q of P. Hence, each maximal consistent subset Q of P 
has L\ and L2 as a logical consequence, i.e. Q by Li and Q by L2. 
Suppose P by Li and P by L2. Then L\ and L2 are both true in every maximal 
consistent subset Q of P, i.e. P by (L\ Si £2)-
(3) The proof proceeds along the same lines as the proof of Proposition 3.2(3). • 
Example 3.5 Let P be: 

P - 9 -<p+-q 

r <— 

1 
In this case, P by r. But P l/y q and P l/y p and P l/y -1 q and P l/y -ip. 

Thus, unlike b3 which can cause both L and -<£ (but never (LSi~<L)) to be inferred 
from a program, by does not allow this. However, by allows very few conclusions 
to be drawn. The following result is an immediate consequence of the fact that 
CONS(P) is always non-empty. 

Proposit ion 3.3 Suppose P is any GHP and L any ground literal. If P by L, 
then P b 3 L. • 

We now demonstrate b3 and by entailment on a simple example. 

Example 3.6 Consider the program P below: 
1: b<-a 
2: -16 a 
3: a*- c 
4: a < -
5: c <-
There are four maximal consistent sets: Pi {1,2,3} ,P2 = {1,2,5} , P3 = 
{1,3,4 5} and P4 = {2,3,4,5}. S S ^ ) = { - . a . - c } , SS{P2) = { - .a .c } , 
SS(P3) = {a,b,cj, 55(P 4 ) = {a,-i&,c}. The literals that are b3-entailed by P 
are: {->a, ->c, c, a, b, —>6}. The set of literals by-entailed by P is 0. 
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In simple examples, such as Examples 3.3 and 3.6, for any two distinct maximal 
consistent subsets Pi, and P2, there is usually a literal I such that I € S S (Pi) 
and -<£ 6 SS(P2). The following more complex example shows that this need not 
always be the case. 

Example 3.7 Consider the set of clauses: 

1: - p < -
2: -iq < -
3: p3 « -
4: 93 « -
5: qi < ipi Si ~tp2 
6: 9i « - Pi Si ">P2 
7: çi * 'Pi Si PQ 
8: 92 Pi & ~~'P2 
9: 9 2 < - - , P I & P 2 
10: g2 < 'Pi Si ~1P2 
11: pi -.gi Si ->q2 

12: pi « - gi Si -ig2 

13: pi « - -igi & g2 

14: Pi*- qi Si -iq2 

15: p2 « '91 Si 92 
16: p2 *— ->qi & ->92 
17: p *— plSip2Sip3 

18: 9 <— 9i Si 92 & 93 

There are several maximal consistent sets here. Let Pi = {1 , . . . , 16,17} and 
P2 = { 1 , . . . , 16,18}. Pi and P2 are maximal consistent subsets of P. SS(Pi) = 

'Pi ~ P 3 i 93.9i> 92}. SS(P2) = {-'P,-'9,P3, 93.P1.P2}- Note that there is no lit-
eral in SS[PI) whose negation is in SS(P

2
). 

Before concluding this section, we briefly observe that the problem "Given as in-
puts, a GHP P, and a literal L, determining whether P by L" is Ilo-complete and 
the analogous problem "Given as inputs, a GHP P, and a literal L, determining 
whether P hg L" is ES-complete. The former is true because 

o-
(((VQ C P)(Q is consistent & (VQ*)(Q c Q ' C P Q* is inconsistent)] Q \= L) 

This is a problem because it involves a universal quantification over an NP-
complete problem (viz. checking the consistency of Q, and making a polynomial-
number of inconsistency checks of Q*). The E^-result for optimistic entailment 
follows analogously, together with the observation that it involves an existential 
quantification over the same NP-complete problem. 
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Q 0 Q 
Sj s2 .... Sn 

Q 
s s 

(a) S inconsistent (b) S consistent 

Figure 1: Graphical Representation of PK[S) 

4 Kripke Semantics and a Fixpoint Operator 
In this section, we develop a Kripke-style model theory for optimistic and cautious 
entailment. We also develop a fixpoint operator for the optimistic semantics. We 
assume that a GHP is a finite set of ground clauses. Given á GHP P, we use 
D(P) to denote the set of all ground disjunctions of literals (including the empty 
disjunction) expressible using the language of P. 

Definition 4.1 An elementary structure of the language of P (e-structure, for 
short) is any subset of D(P). 

Definition 4.2 An e-structure 5 of a GHP P is said to be a consistent structure 
(c-structure, for short) iff S has a model in the sense of classical logic. 

Definition 4.S Suppose P is a GHP and S is an e-structure of P. The 
paraconsistent Kripke structure (PK-structure, for short) based on S is a pair 
(/r»i(S),£dge(S)) defined as follows: 

1. If S is a c-structure, then Int(S) = { 5 } and Edge(S) = { ( 5 , 5 ) } . 

2. If S is not a c-structure, then: 

(a) Int(S) = { 5 } U { 5 ' | S' C 5 and 5 ' is a c-structure and there is no 
J C S such that J is a c-structure and 5 ' C J}. 

(b) Edge(S) = {(5, J) \ J € (/nt(S) - {S})} U {(J, J) \ J e (Int(S) - { 5 } ) . 

Figure 1 shows a graphical representation of PK(S). In Figure 1(a), Si,... ,Sn are 
maximal c-substructures of S. 

Example 4.1'Suppose P is a GHP written in the language consisting of three 
propositional symbols p,g and ry and S is the e-structure {p, q^q}, then PK(S) 
is the pair (IntiS), Edge(S)) where: 

/ n i m = { 5 , { p , g } , { p , - g } } 
Edge(S) = (the reflexive closure of { (5, {p, q}), (S, {p, - - i } ) } ) - { ( S , 5 ) } . 
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Suppose £ is a first order language. We extend C to a modal language, denoted 
£,U defined as follows: 

1. Every wff of classical logic is a wff of CM.-

2. H F is a wff of CM, then OF and OF are wffs of CM- (Intuitively, O F is to 
be read as *F is possible", while D f is to be read as °F is necessary".) 

3. If F and G are wffs of CM, then F K G, F V G, ->F, F G, F *-* G and 
(Vz)P and (3z)F are wffs of CM-

CM is interpreted by a PK-structure based on an e-structure S defined as follows: 

Definition 4.4 Supposé S is an e-stnicture, and let E = (Int{S), Edge(S)) be 
the PK-structure based on S. Let to € Int(S). Then we say that E, w satisfies F, 
denoted E, to t-» F as follows: 

1. If F is a wff of classical logic, then: 

(a) (F an atom) E, w F iff F is a logical consequence of to 
(b) (F = -¡G) E, w i-» F iff G is not a logical consequence of to (here, we 

assume G is an atom) 
(c) (F = G & H) E, to i-» F iff E, w >-> G and E, w <-> H 
(d) (F = G V H) E,w F iff E,w G or E,w i-» H 
(e) (F = G -* H) E, to t-*'F iff E, to H or E, w >/* G 
(f) Satisfaction of formulas whose leading connective is a quantifier is de-

fined in the usual way. 

2. Suppose F = Ç>G. Then E, to F iff for some to' such that (w,w') €. 
Edge[S), E,w' t-> G. 

3. Suppose F = OG. Then E, w (-• F iff for each to' such that (w,w') € 
Edge[S), E, to' G. 

4. Satisfaction of formulas whose leading connectives are conjuncts, disjuncts, 
implications, iff, and the quantifiers are defined in the usual way. 

Using the notion of a PK-structure based on an e-structure S, we may define the 
model theoretic semantics of the logics corresponding to Hg and hy entailment. 

Definition 4.5 Suppose F is a formula of classical logic and 5 is an e-structure. 
Let E be the PK-structure determined by S. We say that 

1. S |=3 F iff E, S i-» OF-

2. S>=v F iff E, S DF. 

Suppose A is a set of formulas. S =̂3 A iff S =̂3 S for all S € A. 

In order to show the equivalence of I-3 and (=3, we need a definition. 
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Definition 4.6 Given a clause C = 

D «- Li ic ... Si Ln 

the disjunctive form of C, denoted diaj(C), is the clause: 

D V - iX j V ••• V ->£„. 

The disjunctive form, disj(P), of a GHP P is the set {disj(C) \ C € P). 

Proposition 4.1 Suppose P is a GHP and D is a ground disjunction. Then: 
< 

1. P l-3 D iff P H D 

2. P b v D iff P K D. 

Proof . We prove (1) above, the proof of (2) is similar. 
Suppose P bg D. Then disj(P) bg D. Hence, there is a consistent subset P1 C 
disj(P) such that P1 f= D. Suppose now that I is an e-structure such that I f=g P. 
Clearly, disj(P) C I and hence, P' C / . Extend P' to. a maximal consistent subset 
of I. This maximal consistent subset of I must make D true; 
Conversely, suppose P =̂3 D. Consider the e-structure disj(P). As disj(P) t=g P, 
there is a maximal consistent subset /* C disj(P) such that D is true in I . Let 
P' = /*. This completes the proof. • 
Given a GHP P, we observe that P may entail a ground literal even though there 
is no clause in P having an instance containing that ground literal as the head. To 
see this observe that the program P below entails ->6: 

a*—b 
-1 a b 

There is no clause in P with ->6 as the head. Now add the contrapositives to P. 
-ib < 10 (contrapositive of first clause) 
-ib a (contrapositive of second clause) 
The expanded program is equivalent to the original program P. The addition of 
contrapositives now yields a clause with -ib in the head. 
Consider now the program Q below: 

p < - o 

p - 6 

a 16 

64 10 

We would like to define a fixed-point operator which yields p as a consequence of 
Q. Moreover, (a V 6) should also be a consequence of Q. 
Based on the optimistic notion of entailment, we now develop a fixed point seman-
tics for bg-entailment. We start by observing that given a clause C, there may 
be disjunctions, D, of literals that are logically entailed by the program P, but do 
not appear in the head of C. The implicational form of clause C, defined below, 
rewrites C in all possible disjunctive ways. 
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Definit ion 4.7 Suppose C = 

L *— Li K... SI Ln 

is a clause. The implicational form, IF(C), of C is the set of clauses {L\ V- • vL'm «— 
Body | { i ' i , . . . , LL} U K | K G Body} = {L, .., - . £ „ } and m > 0} . The 
normal form, NF[P) of a generally Horn program P is then defined to be: 

NF(P) = U IF{C). 
cep 

Note that disj{C) G IF(C) and disj(P) C NF(P). Given a ground disjunction D 
and a GHP P, we use the notation sub(Z>, P) to denote the set {C \ C is a clause 
in NF(P) such that the head of C subsumes D\. Thus, if D is not subsumed by 
the head of any clause in NF{P), then s u b ( D , P ) = 0. 

Definit ion 4.8 Suppose P is a GHP and 5 is an e-structure. We define an operator 
that maps e-structures to e-structures. Let TAUT denote the set of all tautologous 
clauses expressible in our language. 
Vp(S) = TAUT U {D | s u b ( D , P ) ^ 0 and such that: 

1. for all 1 < t < n, there exists a disjunction Ei (possibly empty) of ground 
literals such that PK{S), S i - 0 ( V ! = i ( A " i i ( £ y V E^) ) where sub(I>, P) = 
{ C i , . . . , Cfc} for k > 1 and each is of the form 

Ci= D'i^LXSi-kL^ 

and 

2. for all 1 < » < n, the smallest factor of (D[ V Ei) subsumes D. 

R e m a r k 4.1 When a GHP is a disjunctive logic program in the sense of Minker 
and Rajasekar [11], (i.e. clause heads and clause bodies may contain no negated 
atoms), our operator is essentially the same as that of Rajasekar and Minker. The 
only difference is that in our case, the presence of subsumed clauses is explicit in 
Vp(5) , while in the case of Rajasekar and Minker, it is implicit. 

To see how Vp works, consider the following example. 

Example 4.2 Suppose P consists of the following five clauses: 

1: p «— q Si-iq 
2: r *— p 
3: r< 'p 
4: q *— 
5: -iq 

(Note here that NF(P) contains more clauses, but these are not needed for this 
example.) Let S be the e-structure {g, ->9}. Then the set of ground atoms in Vp{S) 
is the set {9, —>9, r} . Let us explain two things: (1) why r G Vj^S) and (2) why 

( l ) Note that sub(r, P) = {2 ,3 } . In particular, using the notation of Definition 4.8, 
we may assume the Ei's to be the empty clause. Observe that 

P K ( S ) , S ^ O ( p V -,p). 
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To see this note that in this case, Int(S) = {5 , {9}, {~<9}}- It is easy to see that 
p V ->p is true in both c-structures { i } , ! - 1 ? } that are accessible from world S. 
(2) To see why p cannot be in Vp(S)| observe that the only clause with p is the 
head is clause (1). The antecedent of clause (1) is a flat contradiction which cannot 
be true in either {7} or {->g}. 

Intuitively, the operator Vp is supposed to capture the notion of f=g entailment. 

Example 4.3 Consider the consistent GHP P below: 

p « - a 
->p *— a 

b >0 
->a is a logical consequence of P, and hence b should be a logical consequence of P. 
Here, NF(P) is the program: 

1. p <— a 4. ->a >p 7. p V ->a *— 
2. -ip 4— a 5. ->o p 8. ->p V —>a 4— 
3. 6 4 a 6. a 4 >b 9. 6 V a 4— 

The least fixed-point of Vp is constructed as follows: 
VP t 0 = 0 
Vp | 1 contains -<a , 6 V a together with tautologies and subsumed clauses 
Vp f 2 contains b, Vp | 1, together with tautologies and subsumed clauses 

« 

We end this section by proving the soundness and completeness of the computation 
captured by the fixed-point operator Vp. 

Theorem 3 Suppose P is a GHP and D is any ground disjunction. Then D € 
VP t w iff P h3 D. 

Proof . We first show that if D & VP | w then P l-3 D. 
Suppose D € Vp f u. Then there is an integer n < w such that D € Vp J n. We 
proceed by induction on n. 
Base Case, (n = 0) Trivial. 
Inductive Case, (n = r + l) Suppose sub(Z>, P) = {Ci Cjt} where 

Ci = D[ *— L\k -• • Sl L*n.. 

Then, as D G V> J (r + 1), it follows that 
k n, 

PK(Vp t r), Vp T r ~ <>( V ( A te v 30)) 
.=1 ,=1 

where the 2?,'s are ground clauses (possibly empty). Let Mi,..., M, be the maxi-
mal c-structures that are subsets of Vp | r. From the above, we know that there is 
a 1 < j < s such that My h-» ( V L i i A y i i i ^ v •£.)))> and hence it follows by the 
induction hypothesis that there is a maximal consistent subset P}• of P such that 
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Pj f= (Vi=i(A"ii(£. v Fi))). As Pj is maximal and consistent, it must also entail 
D. Therefore, P h3 D. 
To prove the converse, i.e. to show that if P hg D, then D € Vp J w, we proceed as 
follows: As P hg D, there is a maximal consistent subset Q of P such that Q \= D. 
This is classical logic entailment. Transform Q into a disjunctive logic program (in 
the sense of Rajasekar and Minker [ll]) as follows: if 

Ai V • • • V An V - .S i V >Bm Di k... k Dr k -<Ei k -k ->E, 

is in D, then replace it by the disjunctive clause: 
A\ V • • • V An V Ei V • • • V E, «- Bi k • • • k Bm k Di k... k Dr 

The resulting program, called Q', is a disjunctive logic program in the sense of 
Rajasekar and Minker and hence it has the same logical consequences as D. As the 
Vp operator of ours is equivalent to that of Rajasekar's and Minker's for disjunctive 
logic programs, it follows by a result of theirs that D € lfp{Vp) and hence D € 
Vp f w . 
This completes the proof. • 

5 Stratification and Stability 
So far, we have assumed that negation (the symbol -<) represents a "classical" 
form of negation, i.e. in order to conclude ->A for some ground atom A, one must 
explicitly establish the truth of -iA rather than reason from the lack of a proof of 
A. However, it is now widely accepted that requiring the explicit specification of 
negative information causes knowledge bases often to grow very large. However, 
as argued by Gelfond and Lifschitz [7] and Kowalski and Sadri [10], in many cases 
both classical and non-monotonic modes of negation are required. In this section, 
we extend the optimistic and cautious semantics to incorporate non-monotonic 
negation. Then we show how the concepts of stratification and stability can be 
extended to this framework. 

Definition 5.1 If L, Li,..., Ln, L'lt..., L'm are literals, then 

L Li k ... k L„ fcnot L'xk ...k not L'm 

is called an extended program clause. An extended GHP (called EGHP, for short), 
is a finite set of extended program clauses. 
Here, the symbol not denotes a non-monotonic mode of negation. As usual, we 
deal with the set of all ground instances of clauses in an extended GHP. Now, we 
extend the standard definitions of stability to deal with non-monotonic negation 
using the optimistic and cautious semantics. 

Definition 5.2 Suppose P is an EGHP and X is a set of ground literals. The 
transformation of P w.r.t. X is the logic program G(P, X) obtained as follows: 

1. if C is a program clause in P of the form 
L *— Li k...k Lnk not Hik...k not Hm 

such that for all 1 < t < m, Hi £ X, then 
L *— Li k.. .k Ln 

is in G(P,X). 
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2. Nothing eke is in G(P, X). 

Definition 5.S Given an EGHP P, we define two operators that map sets of 
ground literals to sets of ground literals as follows: 
AplX) = {V> I $ is a ground literal such that G(P, X) hy rf>}. 
E/>(XJ = {V> f V> is a ground literal such that G[P, X) h3 rj>). 

Definition 5.4 A set X of ground literals is 

1. an A-answer set for EGHP P iff AP(X) = X 

2. an E-answer set for EGHP P iff E/>(X) = X 

In general, EGHPs may have sero, one or many answer sets. The notion of an 
answer set is similar to the notion of a stable model; however, an answer set need 
not be a model of P. 

Example 5.1 Consider the program: 

a «— not a (1) 
->a *— not a (2) 

This program has an A-answer set 0, but no E-answer set. 

Example 5.2 Consider the program: 

a « - not b (3) 
->a «— not b (4) 

6 4— a Si -<a (5) 

This program has an A-answer set 0 and an E-answer set {a, -ia}. 

Example 5.S Consider the program: 

a 4— not a Si not 6 (6) 
b - (7) 

- (8) 

This program has an E-answer set {b, _ i i } ) but no A-answer set. 

We may wonder under what conditions an EGHP has a unique E-answer set or 
A-answer set. We now study this problem and provide a sufficient, but not neces-
sary condition to guarantee the existence of such answer sets. This is achieved by 
extending the concept of stratification to EGHPs. 
For logic programs, stratification may be defined in terms of a level mapping of 
ground atoms. In our case, a level mapping is a function from the set of ground 
literals to the set of non-negative integers. The value of a literal L under level 
mapping £ is written as t(L). The levels of a program are assumed to range from 
0 to A: for some integer k. The clauses of the program are placed in strata 5,-, 
0 < t < k, by placing a clause whose head has level t into 5,-. For the definitions 
below, we use the generic clause 

L 4— Li Sc.. .Si Ln k not L\Si...Si not L'm. 

We start with an (intermediate) definition. 
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Definition 5.5 ([8l) An extended GHP P is said to be 0D-stratified iff there .is.a 
level mapping £ sucn that for every clause C G grd(P) of the above form, £(£{) < 
£(L) and l[L'}) < t[L) for all 1 < » < n and 1 < j < m. 

Basically, OD-stratification treats all literals equally and does not allow recur-
sion through non-monotonic negation (not) , but allows recursion through classical 
negation (-<). 

Definition 5.6 The switched form SF(C) of a (generic) clause C is the set of 
clauses {->£,-« 'L SiL\ k... Si Li-1 As L%+1 Si... Si Ln Si not L\Si...Si not L'm} 
obtained from C by switching (and negating) the literal in the head of C with a 
literal in the body not preceded by not . The switched form SF(P), of an .EG H'P 
P is defined as SF(P) = \JG€P SF(C). 

Definition 5.7 An EGHP P is called E-stratified iff SF(P) is OD-stratified. 

Definition 5.8 An EGHP P is called A-stratified iff P is E-stratified and for every 
ground atom A, l(A\ = ¿(-¡A). 

Clearly, every A-stratified EGHP is also E-stratified; the latter also implies that 
the EGHP is OD-stratified. However, OD-stratification does not necessarily imply 
E-stratification, and E-stratification does not necessarily imply A-stratification. 

Example 5.4 Let P be: 
b *— a Si not -ia. 

P is OD-stratified by £(-kx) = ¿(-.6) = ¿(a) = 0 and £(6) = 1. SF(P) in this case 
is: 

b *— a Si not ->a (9) 
-•a <— -ifc&not-xi (10) 

SF(P) is not OD-stratified because that would require £(-,a) < £(->a). Hence, P is 
not E-stratified. 

Example 5.5 Let P be: 
-i& «— a Si not 6. 

Now SF{P) is: 

->b *— a Si not b (11) 
-ia « - 6 & not 6 (12) 

SF{P) is OD-stratified by £(ol = ¿(b) = 0, £(->o) = £(-«6) = 1. Hence, P is E-
stratified. However, P is not A-stratified because any level mapping £ must have 
£(6) < £(->6). 

Now we show how stratification provides a sufficient condition for stability in our 
framework of non-monotonic negation within inconsistent knowledge bases. 

Theorem 4 If P is a function-free E-stratified EGHP, then P has a unique E-
answer set. 
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Proof. By the hypothesis, there is a level mapping I for SF(P) such that for every 
clause C 6 SF(P), £(£,) < l(L) and t(L') < t(L) for aU 1 < t' < n and 1 < j < m, 
where C is written in the standard form (cf. Definition 5.1). Let So,... ,Sn be the 
strata generated by this mapping and for 0 < t < n, let Ti = {L | l(L) = »}. We 
construct an E-answer set M as follows: 

M0 = {L € T0 | S0 h3 L}\ 
Mi+1 = {L 6 Ti+1 | G(5j,Uy=o Mi) l"3 L) for 1 < » < n; 
M = U,"=o Mi. 

We need to show that M is an E-answer set. We start by observing that for every 
literal L and set of literals V, G(P, V) h3 L iff SF{G(P, V)) h3 L. This is so because 
every clause in SF(G(P, V)) is logically equivalent to some clause in G[P, V). Now, 
note that SF(G(P,V)) = GiSFiPj .V) because the non-monotonically negated 
literals.are not modified by SF. Hence, G(P,V) h3 L iff G(SF{P,V)) h3 L. To 
show that M is an E-answer set, we must obtain M = {L \ G(P, M) h3 L), or by 
the previous discussion, M — {L \ G(SF(P),M) h3 L}. But the E-stratification of 
P implies that 

n » - 1 
G(SF{P),M) = UG(S„UMy) 

¿=0 j=0 

where IĴ Cq M}- = 0, because for every clause in strata t, the non-monotonically 
negated clauses cannot be added to M at any level greater than or equal to t. The 
result follows from the construction of M and the fact that if G(SF(P),M) h3 L, 
then there must be a clause in SF(P) with L as the head. 

We still need to show that M is the unique E-answer set for P. Suppose M' is 
any E-answer set for P. We show that M = M' by showing that M,- = M- for all 
1 < t < n where M! = M'n{L\ t{L) = *}. 
Base Case. (» = 0) In this case, for every clause in SF(P) in stratum So, there are 
no. occurrences of not . Hence, G(S0, M0) = G{S0, M'). Thus, E p(M0) = E p(M{>). 
As Mo and Mq must be E-answer sets for S0, M0 = E/»(Mo) = Ep(Af^) = M'0. 
Inductive case, (t > 0) Assume that My = My for all j < i. By the E-stratification 
of P, G(Si,Mi) = G[Si,M{) and then by reasoning similar to the base case, Mi = 
Ep(Mi) = Ep(MI) = M;. • 
E-stratification is a sufficient, but not a necessary condition for an EGHP to have a 
unique E-answer set. In particular, the program of Example 5.3 is not E-stratified, 
but it has {&,-<&} as its unique E-answer set. The next example shows that E-
stratification is not a sufficient condition for an EGHP to have an A-answer set. 

Example 5.6 Consider the program: 

o not 6 (13) 
b - (14) 

->b *— noto (15) 

This program is E-stratified with ¿(b) = £(->a) = 0, 1(a) = 1, ¿(-.6) = 2. Here, 
P = SF(P). However, there is no A-answer set. Note that this program is not 
A-stratified. 
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Theorem 5 If P is a function-free A-stratified EGHP, then P has a unique A-
answer set. 

Proof . The construction of the A-answer set is similar to the construction in 
Theorem 4 except for the substitution of l-y instead of hg. The key point in showing 
that M is an A-answer set is that for every ground atom A, since ¿(A) = ¿(-"A) = » 
for some level t, at that level either A is placed into MI or -*A is placed into MI 
or neither A nor ->A is placed into MI. By the definition of A-stratification, it is 
impossible to add A at some level and ->A at another level. • 
Example 5.1 shows that A-stratification is not a necessary condition for the exis-
tence of an A-answer set. The program of Example 5.1 is not A-stratified, but it 
has 0 as its A-answer set. 

6 Summary and Discussion 
We have developed two semantics for inconsistent knowledge bases. Both seman-
tics are based on the maximal consistent subsets of the inconsistent knowledge 
base. The cautious semantics accepts those statements which are true in all max-
imal consistent subsets, while the optimistic semantics accepts those statements 
which are true in at least one maximal consistent subset. We study various proper-
ties of these semantics and develop a Kripke-style model theory for the optimistic 
semantics. Finally, we extend our approach to include non-monotonic negation. 
Within this framework, we extend the concepts of stratification and stability from 
logic programming and show that stratification provides a sufficient condition for 
stability. 
Reasoning with inconsistency in logic programs was first studied by Blair and Sub-
rahmanian [2] whose work was subsequently expanded by Kifer and Lozinskii [9]. 
These works were grounded in multivalued logics. There are two significant dif-
ferences between those approaches and that studied in this paper: first, when a 
database DB is consistent, the semantics of |2,9] may not always agree with the 
classical logic meaning of DB\ both the optimistic and cautious approaches de-
scribed here would agree with classical logic when DB is classically consistent. 
Second, the work described here includes support for non-monotonic negation via 
a stable model semantics. No support for non-monotonic negation was present in 
[2,9], though [9] discusses some ways non-monotonicity may occur. In particular, 
we present here, two kinds of stratification. Neither [2,9] did this. 
A structure similar to maximal consistent subsets arises in the context of database 
updates [3,4]. Given a database DB and a new fact, / , to be inserted into the 
database, Fagin et. al. [3,4] define a flock to be the set of maximal consistent 
subsets of DB U { / } that are supersets of { / } . In other words, priority is given to 
/ over formulas in DB. This does not occur in our framework. 
Finally, the work reported in this paper has been used as the formal theoretical 
basis for combining multiple knowledge bases [1]. 
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Appendix 
Formalization of the Murder Example 

The various facts relating to the murder mystery are described below: 

1. present(al) 
2. present(carl) 
3. presented) 
4. present(dick) 
5. inJiospital(tom) 
6. -ipresent(X) «— inJiospital(X) 
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7. suspect(X) *— preaent(X) 
8. -iauspect(X) « >preaent(X) 
9. suspect(X) *— embezzler(X) 
1 0 . suspect(X) *— havingjaffair(X) 
1 1 . embezzler(al) 
12. having ja f fair(carl) 
13. inJ>athroom(carl) 
14. tnJ>athroom(al) 
15. -<in-bathroom(Y) «— inJ>athroom(X) k X ^ Y 
16. carl ^ al 
17. al / carl 
18. inJ*vingjroom(dick) 
19. inJiwngjroom(ed) 
20. -unJcitchen(X) *— inJ)athroom(X) 
21. -¿nJritchen(X) *— inJiving.room(X) 
2 2 . murderer(al) «— -^murderer(carI)&i-imurderer(ed)&i-imurderer(dick) 
23. murderer(carl) * 'murderer(al)&c->murderer(ed)&L-<rmtrderer(dick) 
24. murderer(ed) < >murderer(carl)&t-imurderer(al)&i-imurderer(dick) 
25. murderer(dick) < >murderer(carl)k-<murderer(ed)&i-^murderer(al) 
26. suspect(X) «— murderer(X) 
27. -imurderer(X) «— murderer(Y) ScY X. 
28. -imurderer(X) *— inJbathroom(X) 
29. -imurderer(X) *— indiving.room(X) 
30. AXIOMS SAYING that Carl, Al, Ed, and Tom are not equal. 

Received June, 1994 
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Reconstruction of Unique Binary Matrices with 
Prescribed Elements* 

A. Kuba » 

Summary 

The reconstruction of a binary matrix from its row and column sum vectors is 
considered when some elements of the matrix may be prescribed and the matrix 
is uniquely determined from these data. It is shown that the uniqueness of such 
a matrix is equivalent to the impossibility of selecting certain sequences from the 
matrix elements. The unique matrices are characterized by several properties. 
Among others it is proved that their rows and columns can be permutated such that 
the l's are above and left to the (non-prescribed) O's. Furthermore, an algorithm is 
given to decide if the given projections and prescribed elements determine a binary 
matrix uniquely, and, if the answer is yes, to reconstruct it. 

1 Introduction 
Let A = (oij) be a binary matrix of size m X n. Let its row sum vector be denoted 
by iZ(A) = R = ( r i , r 2 , . . . , r m ) , 

n 
r, = ^ o i y , (»" = l , 2 , . . . ,m) , 

i=i 
and let its column sum vector be denoted by 5(A) = S — (si,s2 s„)i 

m 

«=1 
The vectors R and S are also called the projections of A. Denote the class of binary 
matrices with row sum vector R and column sum vector S by A(R, S). 

The problem of reconstruction of binary matrices from their projections has an 
extensive literature (for surveys, see e.g. [14] and [4]). Gale [9] and Ryser [13] have 
proved existence conditions. A necessary and sufficient condition of uniqueness is, 
for example, in [15]. 

In this paper, a generalization of the mentioned reconstruction problem will be 
considered. Let P and Q be binary matrices with size m X n. We say Q > P or Q 

'This work was supported by the OTKA grant 3195 and the NSF-MTA grant INT91-
21281 

department of Applied Informatics, József Attila University, H-6720 Szeged, Árpád 
tér 2., Hungary, Phone: +36-62-310011, Fax: +36-62-312292 
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covert P if g,y > p,-y for all positions (i,j) 6 { 1 , 2 , . . . , m} X {1,2 n}. The class 
Ap (R, S) is then defined as 

A%(R,S) = {A | AeA{R,S), P<A<Q}. 

According to this definition, AP(R,S) can be regarded as the sub-class of A[R, S) 
having the prescribed value 1 in the positions where p<y = = 1, and the pre-
scribed value 0 where p̂ y = g,y = 0. It is clear that, if P = O (zero matrix) and 
Q = E(= ( l ) m X B ) , then A%(R,S) = A(R,S). 

Now, we show that this reconstruction problem can be simplified. It is clear that, 
if A 6 Ap(R, S) then A > P, so their difference, A — P = (o,-y — Pij)nxm> is a binary 
matrix with projections R(A - P) = R(A) - R(P) = R - R[P) and S(A - P) = 
5 (A ) - S(P) = S- S(P). Therefore, A - P e A%~P(R - R(P), S - S(P)). The 
reverse statement is also true in the sense that, if B 6 AQ(R,S) for some binary 

-matrix Q, then B + Pé A%+P[R + R{P), S + where P is a binary matrix 
such that for all positions, if p,-y = 1, then <7;y = 0. This means that it is enough to 
study the class AQ(R, S), or in short AQ{R, S) or ,AQ. 

It is interesting to note that the network flows [7] can also be used in thé study of 
the class A®(R, 5). To each class A® (R, S) there is a bipartite network with source 
s, sink t and nodes {iZi,iZ2,... , i î m } , {Si,S2, • • •, Sn} and arcs (s, Ri), (S }-,t) and 
(RÏ,SJ) with capacity rj,sy and ç,y, respectively, » = 1,2,... ,M, J = 1,2,... ,N. 
Then each matrix A € AC)(R, S) corresponds to a flow in this network (see [6]). In 
this way, the results in this paper have a reformulation in network flows. 

Considering the connected literature, Kellerer published a necessary and suffi-
cient condition [ll] for the existence of measurable functions with given "marginals" 
which is applicable also to the matrices in the class A®. Recently W.Y.C. Chen 
has published theorems about integral matrices with given row and column sums 
satisfying a so-called main condition [6]. However, this main condition restricts 
the validity of the results only to a part of the prescribed binary matrices. As 
we shall see, there is unique binary matrix not satisfying Chen's main condition 
(e.g., the only binary matrix of the so-called normalized class corresponding to Fig. 
5.1). There are papers dealing with special A® classes: Fulkerson gave a necessary 
and sufficient condition for the existence of (0,l)-matrices with zero trace [8] and 
Anstee published results on matrices having at most one prescribed position in 
their columns [1],[3] and having a triangular block of O's [2]. 

Henceforth, consider the class where R = (ri, • • •, rm) and 5 = 
(«1, «2 , . . . s„) tire non-negative integer vectors and Q is a binary matrix of size 
m X n. The position (t , ; ) is said to be free if the corresponding matrix element is 
not prescribed by. Q, i.e. g,y = 1. 

In this paper, the aim is to generalize the uniqueness results of A to A® (and 
thus, to A®). (The reconstruction problems of non-uniquely determined binary 
matrices is the subject of [10].) In Section 2 we reconsider the known results of 
uniqueness in certain classes A®(R, S), where Q has some special property. Then 
the general uniqueness problem is considered, when Q is an arbitrary binary matrix. 
Section 3 contains a definition of a switching chain, whose existence turns out to 
be a necessary and sufficient condition of the non-uniqueness of a binary matrix. 
Thus, a switching chain has the same role in the class A® as a switching component 
has in A. In Section 4 a reconstruction algorithm is given to decide if the given 
projections and prescribed elements determine a binary matrix uniquely, and, if 
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the answer is yes, to reconstruct it. The unique matrices can be characterized in 
different ways. Some of these properties are discussed in Section 5. It is proved 
that the l 's of these matrices can be covered by certain rectagles, and that their 
rows and columns can be permuted so that the l's are above and to the left of the 
(non-prescribed) O's. 

2 Uniqueness in special classes 
In this section we reconsider the uniqueness results in different special classes prov-
ing that none of them is sufficient to characterize the uniqueness in the class A® • 

We say that A € A®(R,S) is a non-unique (or ambiguous) binary matrix, (in 
AQ) if there is a matrix A' € ^ ( . R . S l such that A ± A'. In the other case, A 
is unique (or unambiguous). Accordingly, the reconstruction data, the projections 
(R, S) and the prescribed values Q together, is non-unique or unique if the number 
of elements of the class A® is greater than one or exactly one, respectively. If 
AQ(R,S) — 0 then the reconstruction data is inconsistent. 

There are results connected with the uniqueness in the class A(R, S), i.e. when 
Q = E: Consider the matrices 

An interchange is a transformation of the (free) elements of A that changes a minor 
of type AI into type A2 or vice versa, and leaves all other elements of A unaltered. 
(The word minor is used here in the sense of submatrix.) -We say that the four 
elements of the minor form a switching component. 

Theorem 2.1 [13,15]. The binary matrix A e A(R,S) is ambiguous (in 
A(R,S)) if and only if it has a switching component. 

In the more general class of A®(R, S), the extension of this result is not trivial. 
Consider, for example, the class ^ ( ( 1 , 1 , 1 ) , (l , 1,1)), where 

that is, the diagonal elements are prescribed. The matrices A3, A« S A® (see Fig. 
2.1), but they have no switching components. 

Figure 2.1. Ambiguous matrices A3 and A4 having no switching components (x's 
denote the positions of the prescribed 0 elements). 

t 
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The matrices A3 and A4 play a similar role in the classes of binary matrices 
having at most one prescribed element in each column as A\ and A2 do in A (classes 
having no prescribed element). Replacing a submatrix A3 by A4 or vice versa leaves 
the row and column sums unchanged. A triangle interchange is a replacement of any 
version of A3 and A4 obtained by applying the same row and column permutations 
to both A3 and A4 [lj. Anstee proved an analogous theorem [1 Corollary 3.2] in 
the case of prescribed l's: 

Theorem 2.2. Given a pair A,Be AQ(R,S), where Q has at most one 0 
in each column, one can get from A to B by a series of interchanges and triangle 
interchanges without leaving A®(R, 5). 

However, if there is more than one prescribed element in the columns and rows, 
then the minors Ai, A2, A3 and A4 are not enough to characterize uniqueness. For 
example, the matrices of Figure 2.2 are in the same class, but they have no such 
minors of free elements. 

( 0 1 X X \ ( 1 0 X X \ 
X 0 1 X X 1 0 X 
X X 0 1 X X 1 0 

I 1 X X 0 J I 0 X X 1 J 

Figure 2.2. Ambiguous binary matrices having two prescribed elements in each row 
and column, and having no minors Aj , A2, A3, A4, or any minors obtained from 
them by permuting rows and columns. 

3 Switching chain 
Our most important new concept is a generalization of the concept of a switching 
component. We say that the binary matrix A £ A® has a switching chain if there 
is a series of different free positions of A, < (t'i,ji), (t 1, J2), (»2. J2), («21.73)1 • • • 1 
( W p ) . (ip,;'i) >, such that 

= = • • • = = 

= 1 ~ Où« = 1 - = • • • = 1 ~ aivj\ 
(p > 2). It follows from the definition that if < (*i, Ji), (t"i,y2), (»2.^2), (»21^3), 
• • • > (Wp)> (*p> i i ) > is a switching chain of A and ail}l = atJy, = ... = aif]f = 1, 
then ai l j j = Oi2j, = . . . = Qifji = 0. This statement remains true if we switch 
the l's and O's of the chain. As examples of switching chain see Ai, A2, A3, A4 
and the matrices of Figure 2.2. Each of them contains switching chains. (In fact a 
switching component is a switching chain with p = 2.) 
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An important property is that by switching the l's and O's of a switching chain 
in a matrix, another matrix is obtained that has the same projections. Therefore, 
the non-existence of a switching chain in a matrix is a necessary condition for 
uniqueness. In fact, it is also sufficient. 

Theorem 3.1. The binary matrix A £ A^(R, S) is unique if and only if A has 
no switching chain. 

Proof. One direction is obvious. For the other direction, let us suppose that 
there is another binary matrix A' £ A®(R,S) (A' ^ A). Then, there is a position 
(*i>ji) such that 

«.'in = = 0 

(or OilJl = 0, = 1, in which case we can use a similar proof). Since rt l = r| , 
there is a column j? (^ }\) such that 

= °> a!,ya = 

« - "y, ' " Then, since s,, = a'- , there is a row t2 such that 

and so on. After a finite number of steps the sequence will terminate, i.e., it follows 
from 

= !> aU = 0 

that there is a column among (the up-to-now all different) j\,]2, ••• ,jP, say jk, such 
that 

° i ,A = °> = 

That is, < (*'fc, jit), (¿fc,yfc+1)t (*fc-n,>ib-n), (»fc-n.iife-i-a) (*p>>p)> (*Pi J*) > " a 

switching chain in A. 
Remark. The proof is almost the same in the case of switching components in 

class A (see [13] and [15]), but in A it is also shown that this switching chain can be 
used to find a switching component. In the class A®, this is not necessarily true. 

4 Reconstruction of unique matrices 
Now, we give the characterization that can be used to decide the uniqueness and 
to reconstruct unique matrices efficiently. We say that a minor is mixed if each of 
its rows and columns contains both a free 1 and a free 0. 

Theorem 4.1. The binary matrix A is unique if and only if it has no mixed 
minor. « 

Proof. If there is a switching chain in a binary matrix, then the rows and the 
columns of the switching chain determine a minor consisting of rows and columns 
each containing free l's and O's. 
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To prove the other direction, let us suppose that A has a mixed minor. Then 
let ai l } l = 1 be an element of the mixed minor. There is a column j? such that 
a,-,/, = 0 is an element of the mixed minor. Then, there is a row t2 and a col-
umn jij such that Oi,y. = 1, a^y = 0 and they are in the minor. We have 
to continue the procedure until there is a row ip and a column jp such that 
'Sip = = 0 ( b o t l 1 111 t h e minor), where jk G {ji,h, • • • ,jP-i}. Then 
< (*fct jifc)> (*fci,7fc+i)i (*fc+iiifc+i)) (*fc+ii Jfc+2)i • • •) (*pijp)> (*p> Jfc) > is a switching 
chain. 

From Theorem 4.1 it follows for each minor of a unique matrix that there is a 
row or column of the minor such that in that row or column either there are only 
l 's in the free positions, or there are only O's in the free positions or there are no 
free positions at all. These rows/columns are called primitive rows/columns of the 
minor. A primitive row/column can be recognised from the number of the free 
positions and the projection values of the minor in the following way. A primitive 
row contains O's in the free positions (if there is free position) if and only if the 
sum of that row/column of the minor is 0. A primitive row contains l's in the free 
positions if and only if the sum of that row/column is equal to the number of the 
free positions in that row/column of the minor. 

Similarly, we say that t is a primitive row of AQ(R, S) if 0 = r< or r,- = g,y 
and that j is a primitive column of A® (R, S) if 0 = sy or ay = J^^Lx ?<y. 

If the class A®(R, S) has only one matrix, then it has a primitive row or column. 
By reducing R and 5 by the projection of a primitive row or column and setting 
Q to 0 in this row or column, the new class A

Q

 (R',S'), has also only one matrix 
having the same elements as the original one in the positions q'i}- = 1. Trivially, 
if A®(R, S) is non- unique or empty, the A

Q

 (R',S') is also non-unique or empty, 
respectively. 

From this property of the unique binary 'matrices a reconstruction algorithm 
follows: 

Algor i thm 4.1 (to d«cide the uniqueness of the reconstruction data and to 
reconstruct a unique matrix A G AQ(R,S) from given projections R and 5, and 
prescribed positions of Q): 

Step 1. Let A := O, R' := R, S' := S, Q' := Q. 
Step .£. If 0 < r| < q'i}., and 0 < s'- < 9,'-y is not fulfilled for all 

t and j, then the reconstruction data is inconsistent; stop. 
Step S. If Q' = O, then output A; stop. 
Step 4• If no row and no column of A® (R', S') is primitive, then the 

reconstruction data is non-unique or inconsistent; stop. 
Step 5. Select a primitive row or column of ¿ ^ ' ( f l ' . S ' ) . For every (t, j) 

in this row or column such that q'{ • = 1, 
i. set Ojy equal to 0 or 1, appropriately; 
ii. reduce and s'}- by a,-y; * 
iii. set q'i}- to 0. 
Go to Step 2. 
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Remarks. 
а. It is supposed that m and n are positive integers and R and S are vectors of 

m and n non-negative integers, respectively. 
б. During the iterations the number of 0-rows or the number of O-columns of 

Q' is increases at least by one. Thus, the algorithm will terminate after at most 
m + n — 1 number of iterations, when all rows or columns of Q' contain only O's 
(Step 3). 

c. Step 2 is to test two conditions: The first is that vectors R' and S' contain 
only non-negative elements, and the second that the number of free positions in 
each row and column of the reduced class are enough to place r[ and a}- number of 
l's, respectively. Both conditions are necessary for the existence. 

d. Step 4 is to test if there is a primitive row or column in the class 
If no, then the matrix to be reconstructed has a mixed minor (see Theorem 4.1) 
consisting of the non-O-rows and non-O-columns of Q' (if the matrix exists at all). 

e. It is not difficult to prove that the matrix A reconstructed by Algorithm 4.1 
as an output in Step 3 is unique. It follows from the fact that primitive rows and 
columns do not contain any element of any switching chain. 

/. Clearly, if a matrix A is constructed by Algorithm 4.1 then A < Q, because 
we assign l's only into free positions (Step 5). 

g. If the number of l's in row i of A increases during the iterations, then r'{ 
decreases by the same number. This means that r'{ + â y remains constant in 
each iteration. In the first iteration this constant is 

(because o,-y = 0 now). If we arrive Step 3 such that Q' = O then rJ = 0 
and s'y = 0 for each * and j (Step 2), and so again R(A) = R. Similarly, it can be 
shown that S(A) = S. That is, if a matrix A is constructed by Algorithm 4.1 then 

h. Algorithm 4.1 can be considered as a generalization of the assign and update 
algorithm [5] for reconstructing unique matrices without prescribed elements. 

Therefore, Algorithm 4.1 is correct in the sense that it is terminated after a finite 
number of steps (Remarks b. and c.), the output matrix A is unique (Remark e.) 
and it is from the class A®(R,S) (Remarks f. and g.). 

n 
(4.1) 

A € A(R, S). 

As an example see Figure 4.1. 
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2 x . . . . 
2 x . . x 
4 . . . x . 
1 . . . . . 
2 x . . x 

1 2 5 2 1 

a. 

1 x . 1 . . 
1 . x 1 . x 
0 l l l x l 
0 . . 1 . . 
1 x 1 . x 

0 1 0 2 0 
b. 

1 x . 1 . 0 
1 0 x 1 . x 
0 l l l x l 
0 0 0 1 0 0 

1 0 x 1 . x 

0 1 0 2 0 

c. 

0 x 1 1 . 0 
0 0 x 1 1 x 
0 l l l x l 
0 0 0 1 0 0 
0 0 x 1 1 x 

0 0 0 0 0 

0 x 1 1 0 0 
0 0 x 1 1 x 
0 l l l x l 
0 0 0 1 0 0 
0 0 x 1 1 x 

0 0 0 0 0 

d. e. 
Figure 4.1. Reconstruction of a unique binary matrix by Algorithm 4.1 
showing matrix A and projections R' and S' during the iterations. The 
free elements of the minor to be reconstructed are denoted by The 
reconstructed elements of A are denoted by 0 and 1. The matrix Q' has a 1 
at the positions where there is a 

a. Starting configuration. 
b. Configuration after finding the primitive 

column 3 and primitive row 3. 
c. Configuration after finding the primitive 

columns 1, 5 and primitive row 4. 
d. Configuration after finding the primitive 

column 2 and primitive rows 2, 5. 
e. Configuration after finding the primitive column 4. 
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5 Characterization of unique matrices 
Knowing Theorems 3.1 and 4.1 the unique matrices can be characterized 
by having no switching chain or having no mixed minor. Another possible 
characterizations are based on the comparison of the prescribed and free 
1 and 0 positions of the rows. Let us introduce the following notations in 
connection with a matrix A £ 

A ( 1 ) = {(»',;) | Oij = 1}, A<°> = { (» , ; ) | Oij = 0,qij = 1} 
and 

Q ( 0 ) = { (» . ; ) 19o = o } . 

In words, 
and denotes the sets of the free 1 and 0 positions of 

the binary matrix A, respectively, and Q*0' denotes the set of prescribed 
positions. Furthermore, let A,-1' and a ' 0 ' denote the set of column indices 
of the free l's and free O's of A in row i (1 < i < m), respectively. 

Theorem 5.1. The binary matrix A g ACi(R,S) is unique if and only 
if for any subset I of the rows there is a row i € I such that 

f n 4 " = i (5.1) 

for each t' € I. 
Remarks. 
a. In another words, Theorem 5.1 says that, exactly in the case of unique-

ness, from any subset of rows we can select at least one row such that in 
the columns of the free O's of this row there is no 1 in any other row. This 
means that the l's and prescribed elements of the selected row "cover" all 
the l's of the other rows in the subset. In this sense the selected row is a 
longest row of the subset. 

b. Specially, if there is no prescribed element, i.e. Q = E, then (5.1) 
means that a row having the greatest covers every other row. 

Proof. Suppose that A has a switching chain SC =< 
(*i,ji),(*ii^)i(*2,i2),(*2,j3),...,(*p.jp)i ( w ' l ) > such that a i U i = 
°.'3j3 = • • • = a.,,', = 1 and ailj3 = = ... = aiph = 0. Then let 
I = {*i,»2» • • • > *p}- If *fc is an arbitrary row of / (1 < A; < p), then tfc+i 
is another row of I such that jk+i € A ^ D a ] ^ (if k = p then instead of 
tfc+i let us select t°i). That is (5.1) is not fulfilled. 

Suppose, now, that there is a subset of rows, / , such that for each row 
t € I, there is a row i' € I such that A)0) n ^ 0. Let t'i e I and t2 
another row index from I such that £ fl A^ ' for some that is, 
aijy, = 0 and o,-,,-, = 1. Applying the same condition to row t2 we get a 
row »3 from I ana a column j'3 such that a,ays = 0 and o,,y, = 1. And so 
on. After a finite number of steps the sequence will be ended, i.e. Oirjk — 0 
and aik}k = 1 for some ik e {t'i,*2. • - - ,*P-x} and jk € {ji,j2,... ,jP-i}-
Then < (ik,jk),(ik,jk+i)Aik+i,]k+i),(ik+i,3k+2),---Aip>3p)Aip>]k) > 
a switching chain in A. 
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Now, we give another characterization of the unique matrices by proving 
that their l 's can be covered by special rectangles. The construction of these 
covering rectangles can be done by 

Procedure 5.1 (to construct special covering rectangles of l's): This is 
an inductive procedure to find a sequence of rectangles having increasing 
number of rows and decreasing number of columns step by step. Applying 
Theorem 5.1 to the whole set of rows we know that if A is unique, then we 
can select at least one row t such that in the columns of A*0' A has no 1 
element. Let the set of such rows be denoted by /J1 ' ( ^ 0), and let 

JIL) = n 4 0 ) 

.e / i1 ' 

(overline denotes the complement set). Clearly, A*1' 2 (/J1 ' * j f 1 ' ) \ Q(°). 
if a w = ( J ^ x ^ ^ g C ) then we have a rectangle (in a general sense 
that / j 1 ' X j j 1 ' consists of not necessarily consecutive rows and columns) 
covering the l 's of A and the Procedure is terminated. If 

A ' ^ U ^ x J i ^ Q C ) 
t=i 

for some p > 1 (the symbols 3 and C are used only for strict containment) 
then we can select at least one row t from Tp1' such that A has no 1 element 
in Ip1^ X (A|0) t̂  0, because in this case t S IpLet the union of the 
set of these rows and Jp1' be denoted by • Clearly, /p1 ' C I^+i • Let 

j { P + I = n 

Then 4 1 ] D (because A|0) ^ 0 in the new rows of J ^ J and A«1) D 
(fp+i x Jp+i) \ Q' 0 ' - After a finite number of steps (if p is big enough), we 
reach the situation 

A<1) = U ( A ( 1 ) x ^ ( 1 ) ) \ « ( 0 ) . 
t=i 

that is the l's of matrix A are covered by the union of rectangles ij1^ x J , 1 ' 
(1 < t < P). 
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As an example of the application of Procedure 5.1 see Figure 5.1(a), 
where ( {1 }x{1 ,2 ,3 ,4 5,6})U({1,2,3}X{1,2,3,4})U({1,2,3,4}X{1,3,4})U 
({1,2,3,4, 5,6} X {1}) is the set of covering rectangles constructed by Pro-
cedure 5.1. 

4 1 1 X X 1 1 4 1 X 1 X 1 1 
1 1 X X X 0 0 1 1 X X X 0 0 
3 1 1 1 X 0 X 3 1 1 1 X 0 X 
2 1 0 1 X X X 2 1 1 0 X X X 
1 1 X 0 0 0 X 1 1 0 X 0 0 X 
1 1 X 0 X X 0 1 1 0 X X X 0 

6 2 2 0 1 1 6 2 2 0 1 1 

(6) 

Figure 5.1. (a) A unique binary matrix and its projections, (b) After 
changing columns 2 and 3 the matrix is ordered such that the l's are 
to the left of the free O's in each row, and the l's are above the free 
0*8 in each column. 

Remark. Specially, if A has no 1 element (of course, in this case A 
is uniqe) then Procedure 5.1 gives { l , 2 , . . . , m } X 0 as the only covering 
rectangle. In any other case the constructed rectangles are not degenerate. 

Procedure 5.1 has proved a part of 

Theorem 5.2. The binary matrix A S AQ[R,S) is unique if and only 
if there are subsets /J 1 ' C Jj 1 ' C . . . C 7pJ' of the row-indices { 1 , 2 , . . . , m } 

and subsets j ' 1 ^ D J j 1 ' D . . . D of the column-indices { 1 , 2 , . . . , n } 
(pi > 1) such that 

A*1' = Q ( / t ( 1 ) x J t ( 1 ) )\Q ( 0 ) . (5.2) 
t= l 

Proof. If A is unique then we can apply Procedure 5.1 to get the sequence 
of sets in (5.2). 

To prove the other direction let us suppose that A is non-unique, 
but there are such covering rectangles. Then there is a switching chain 
SC =< (t"i, j'i), (t'i, j2). (»2, jh), (»2,^3), • • •, (*p,yp), (»pi3i) > in A. Suppose 
that Oj,y, = 0, o t l y , = 1, o,-3y, = 0 , -Oj jy , = 1 and so on. (Otherwise an 



68 A. Kuba. 

analogous proof can be used.) The first two 1-valued elements of SC can 
not be covered by the same rectangle, because in this case (»2, ) would 
be covered. Thus, there are two rectangles, say i f f X jff and iff x jff 
(1 < fci < Jfc2 < pi), such that iff C iff (because i2 e i f f \ 4| ) ) and 
j f f D j f f (because j? 6 j f f \ 7^ ' ) . To cover (13,34) we have another 
rectangle iff x jff such that iff C iff and J^1' D j f f . And so on. 
Finally, to cover (ip,Ji) we have the rectangle i f f X jff (k p - i < kp < pi) 
such that lff_t C iff and J ^ O j f f . Furthermore, iff C iff and 

=> Jl\ ]- But> h e r e » t h e contradiction of C iff C . . . C iff C 
(and jff D jff D ... D jff D j f f ) . That is, the uniqueness follows from 
(5.2). 

The free 0 positions of the unique binary matrices can be characterized 
in a similar way: Consider a unique matrix A £ Then let us switch the 
free l's and O's in A. The new matrix is also unique (it has switching chain 
if and only if A has), and for its l's, that is, for the free O's of A, Theorems 
5.1 and 5.2 can be applied. In this way we.have analogous Theorems 5.3 
and 5.4: 

Theorem 5.3. The binary matrix A £ /C( iZ,5) is unique if and only 
if for any I subset of rows there is a row t £ / such that 

4 l ) n 4 o ) = 0 
for each t' £ I. 

Theorem 5.4. The binary matrix A 6 A®(R,S) is unique if and only 
if there are subsets / J 0 ' C I^ G ... C. lj>°J of the row-indices {1 ,2 , . . . , m} 
and subsets J<°> 3 J«0 ' D . . . D Jp0' of the column-indices { l , 2 , . . . , n } 
(po > l) such that 

Po 

A<°> = Q(J<°>x J<0))\Q(°>. 
t= i 

For example, in the case of Figure 5.1(a) 
({2, 5, 6} X { 2 , 3 , 4 , 5 , 6 } ) U ( {2 ,4 , 5 , 6 } X { 2 , 4 , 5 , 6 } ) U ( {2 ,3 ,4 , 5 , 6 } X {4, 5 , 6 } ) 

is the set constructed by the Procedure 5.1 to cover the free l's of the 
switched matrix (i.e. to cover the free O's of the given matrix). 
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Remark. In the class A Theorems 5.2 and 5.4 give 

«=1 
and 

Po 

t=l 
which is a special case of the structure results of [12]. 

Theorem 5.2 (and also 5.4) gives the possibility to "order" the rows and 
columns of the matrix such that the l's are to the left of the free O's in each 
row, and at the same time, the l's are above the free O's in each column of 
the ordered matrix. To get this matrix, we permute the rows and columns 
so that ij1^ consists of the uppermost rows and j j c o n s i s t s of the leftmost 
columns for each t S {1 ,2 , . . . ,pi } . It is also true that if a matrix has this 
property then it has no switching chain. Thus, we have 

Theorem 5.5. The binary matrix A is unique if and only'if after eventual 
permutations the l's are to the left of the free O's in each row, and at the 
same time, the l's are above the free O's in each column. 

For example, Fig. 5.1(b) shows the matrix ordered from the matrix Fig. 
5 1 ( a ) -

Remark. In the class A (no prescribed elements) a unique matrix is easily 
transformed in such a form by ordering the rows and columns such that the 
projections are non-increasing vectors (see the normalized class in [14]). 
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Demonstration of a Problem-Solving Method* 

Judit Nyéky-Gaizler * Márta Konczné-Nagy * 
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, Abstract 

A program for backtrack seeking is proved here by using deduction rules. 
The problem of whether a chessboard can be moved over by the knight step-
ping on every square once and only once, is studied, and is traced back to the 
theorem of backtrack seeking in two ways. A comparison is made between the 
programs obtained. 

1 Introduction 
The last forty years have seen a rapid development in programming. Initially the 
hardware developed more rapidly than the software technology. For a long time the 
effectiveness of the programs had been the most important factor in programming, 
but the importance of the reliability of the programs became underlined by the 
improving quality of hardware tools and by the demand for producing increasingly 
larger systems. 

The first works of Floyd, Hoare, Dijkstra and others [2,1,11] on proving program 
correctness were published in the 70s: work in this field was continued by Gries, 
Mili, Jackson, Wirth, etc [7,8,9,10,13]. Parallel with the theoretical research the 
results were translated into practice. 

To prove the correctness of existing programs is only one possibility. A better 
approach is: write correct programs. Several programming theorems are proven 

13,8] etc. for solving classes of important problems. In the present paper a program 
or the general problem of backtrack seeking is proved by using deduction rules. 

The problem of whether a chessboard can be moved over by the knight stepping on 
every square once and only once, is studied, and is traced back to the theorem of 
backtrack seeking in two ways. A comparison is also made between the programs 
obtained. 

The most important definitions and theorems that are necessary to understand 
the present paper are available in the literature [3,4,5,6]. 
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2 Theorem of Backtrack Seeking 

2.1 The problem 
Let Ux,. • • , U „ be finite sets. Denote by a,- the number of elements of U,- : 

| V i |= a< V.- G [1, »). 

Let U denote n 
U = * U,. 

t = 1 

Let p : U —• L be a logical function having the following properties: there exists 
a pi(* G [0, n]) sequence of logical functions, for which: 

1. po = TRUE 
2. Pi+i(u) => Pi(v) v » e [ l , n - l ] * 

Vj G [l ,t] : uy = Vj => Pi(u) = Pi{v) 
this means that p,- depends only on the first » component of u. 

4. pn = P 
The problem is to decide whether there exists a u G U, for which p(u) is true. 

If yes, let u G U with the property p being given. 

2.2 The specification of the problem 
Let n 

N = i l l V i ' V i = [ 0 , a , - 1 ] C N 0 V t € [ l , n ] . 

In this case: | N |=| U | . 
Uj can be ordered from 0 to (a,- — 1), Vt G [1, n]. 
Denote by u^ G Ut- the jth element of . 
Let <F> denote a function, which is a bijection between N and U: <F> : N —* U , 

and if i/ G N, then: 4>{v) = ( u U l , . . . , un„ J . 
We can consider the elements of N as numbers encoded in a mixed radix number 

system [12]. Therefore we have defined an ordering on N , and can speak about the 
"follower" of an element. 

Let us denote by F(U) the value of V G N in the decimal system, that is 

/ m = í > * Ü «*)• 
•=1 y=»+l 

If V\ V" E N, then we shall consider V' < V" iff F(U') < }(V"). 
Denote by Co the zero value of N : to = (0 ,0 . . . . , 0) and by EN the unit value 

of N : EN = (0 ,0 , . . . , 1). Moreover Vt' G [1, n - 1], Jeie< = (0 ,0 , . . . , 1 , . . . , 0) G N, 
such that: 

/ ( * ) = n 
J=t+1 
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With the help of these we can write the specification of the problem, 
state space be N x L, and its variables v and I. 

A: N xL 
1/ I 

The precondition of the problem is 
Q:TRUE; 

the postcondition of the problem is 
R : I = ( 3 u' € N : p(<f>(^))) A I =» ( p ( * ( i / ) ) ) . 

2.3 Solution of the problem 
Disregarding the special features of p, the original problem can be solved by the 
theorem of the third variation of linear seeking [3] in the interval [l, | N | ], for the 
property p, and with the stopping-condition /(z/) >| N | —1. 

W e can increment the values in the mixed radix number system by the unit 
value e„ . 

Let €q be the initial value of v, to avoid the problems coming from the use of 
negative values in the mixed radix number system; e<> being the first v € 1№ to be 
interpreted. 

The result is given by 
p r o g r a m { l } : 

I, v,v:= p(4>{v)), f a l s e , e 0 

w h i l e ->/ A -it; l o o p 
v := v © £„ 
* : = / , ( * ( „ ) ) 
u := f(u) >| JT | -1 

e n d l o o p 
e n d 

We can significantly increase the effectiveness of the algorithm by using the 
special features of p, namely, that if pi(<f>(i/)) = true and p,+ i [4>(y)) = false, then 
for every u' € N, which satisfies Vj 6 [l,t + l] : Vj = u'}-, then pi+\(4>{i/')) will also 
be false because of the third property of p. 

So instead of v ® e„ the next possible v € N will be the value v © U+x-
The counting algorithm will be more simple if we amplify u with an overflow 

bit - denoted by c. If the overflow bit changes to 1, it means that we no longer have 
the possibility to change v. 

From these it follows that it is worth supplementing the assignment I := p[<f>{y)) 
by seeking the smallest index for which Pi{j>[v)) = false. 

Using the rules of deduction [3] the following program can be achieved. 
As the invariant of the loop let us use: P : (Vi/ : (0 < f(i/') < f[v)+c * \ N |: 

^p[<t>{u')Al = p(<f>(v))A^l (pm_1(^(i/))A-,pm(^(i/)))A(Vt' € [m+l ,n] : J/,- = 0)) 
If jt = ->/ A (c = 0) is considered as the condition of the loop, then P A ->jr R 

is really completed. 
Let the terminator function be t =1 N I — f(i/) — c * \ N | . Evidently t > 0, 

while P A * is true. The function t will be decreased by increasing v. 

73 
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To perform the condition Q ^ P we need adequate initial values for the vari-
ables before starting the loop. 
The Backtrack program will be: 
program {2}: 

v,c,m:=e o,0,1 
SEEK(i/, m, /) _ Q, 
while ->/ A (c = 0) loop 

SUM(i/, m, c) 
SEEK (u,m,l) 

endloop 
end 

To verify Q' => P let us define the SEEK program. Let the specification of the 
SEEK(f , m, /) program be: 

¿ S E E K ^ x N 0 x L 
v m I 

^ S E E K ^ x N 0 
v' rri 

^ S E E K " '= A m - m> A Pm ' - l (^H) 
rSEEKv = v' A 1 = (Vt" e K» nl : Pi(tt")))A 

=• A V« G \m',m) : Pi(4>[v))) A / w - i ( f H ) ) . 

This problem can also be solved by the theorem of the third variation of linear 
seeking [3] bearing in mind that the following two statements are equivalent: (1) 
every element of a set has a certain property, (2) there is no a single element in the 
set without this property. 

Thus, the SEEK program will be 
program {3}: 

I, m := true, m — 1 
while IA (m ^ n) loop 

m := m + 1 
endloop 

end 
Therefore in the main program there will be Q' = K-SEEK A = €°) A ( c = 

and Q' => P simply follows . 
To prove the implication P A w ^ tup(5o,P) we need determine the S U M 

program as well. Let the specification of the S U M ( f , m, c) program be: 

% U M : ^ * N 0 xE 
v m c 

BSVM- ^ X No 
v' m' 

QSUM: v = v' Am = m' 
RSVM' ( / M + c . | JT |= / ( • ) + n,n=m '+i « . ) A m G [0, m']A 

(Vi G [m+ l.m'l : i/,- = 0) A (c = 0 vm ? 0). 
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As the invariant of the loop let us use 

^ S U M : ( / ( " ) + c * n.n=m+i «i = / ( " ' ) + n U . - H û») A m 6 [0,m']A 
(V» 6 [m + 1, m'] : 1/, = 0) A (c = 0 =>• vm ± 0). 

Let us consider ""SUM = ( m ^ 0) A (c ^ 0) as the condition of the loop. 
In this case P g U M A """"SUM R S U M -
Let the terminator function be: ¿SUM = m + c-
Evidently t g U M > 0 ^SUM A ""SUM ^ t r u e -
The function ¿SUM ^e decreased by increasing either m or c. Thus the 

program will be 
program {4}: 

c : = 1 _ Q> 

while (m / 0) A (c ^ 0) loop 
if vm = a m - 1 then i/m := 0 

m := m — 1 
else c := 0 

"m : = Vm + 1 
endif 

endloop 
end 

In this case Q 'guM : = A ( m = m ' ) A (c = 1). Therefore Q g u M ^ 
P S U M • 

To verify P g U M A i r = > W P ( S 0 S U M > P S U M ) w e h a v e t o P r o v e : 

1- P S U M A Jr A (i/m = a m - 1) => wp((i/m := 0; m := m - 1), P g U M ) 
2- P S U M A * A ("»» / a m - 1) => wp((c := 0;i/m := vm + l), P g U M ) 

These are consequences of the definition of the function / (v) using the weakest 
precondition of the assignment statement. 

Having proved the S U M program for the verification of the main program we 
need P A it =>• wp((SUM;'SEEK), P) and this follows from the above. 

3 Solution of a demonstration problem 

3.1 The problem 
The 8 X 8 (n X n) chessboard is given. We have to decide whether it is possible for 
the knight to move over the whole chessboard stepping on each square once and 
only once. If it is possible, we should be able to give a " tour*. 

Two possible solutions of this problem will be given and compared below. 

3.1.1 Specification of the first solution 

Since we have to step on 64 (n2) squares, we can use a vector of 64 (n2) length for 
the storage of the knight's moves. The j " 1 component of the vector denotes the 
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position of the j t h step. Let us number each square of the table line by line from 0 
to 63 (0 - (n3 - 1)) : 

64 
A: NxL * = . * 1 [ 0 , 6 3 ] 

v I 

The precondition of the problem is 
Q:TRUE; 

the postcondition of the problem is 
R : / = (3 i/' e N : p(«/)) AI => (p(«/)). 

Let us denote by LINi = i/j/8 ;and by CO Li = i/t- — 8 * LINi, (in general: 
LINi = Ui/n ; and by CO Li = i/,- — n * LINi ), where the fraction bar denotes 
the division between integers. 

Let p : N —• L be a logical function to be defined as follows: Let p,-(t G [0, n2]) 
be a sequence of logical functions satisfying 

1. Po = Pl = TRUE 
2. PiW = Pi-iM * HiM * liM V» € [2,64] 

Hi(y) — i>i knight-move-distance from Vi-i = 
= (| LINi ~ LINi-1 |= 2 A | COLi - COL{-i |= 1) V 

(| LINi - LINi-i |= 1 A | COLi ~ COLi-i |= 2). 
7i(u) = i>i different from the squares over 

= (V. : 1 < 3 < i : v, ^ »i) 
In this case fi[y) => Pi-i(f) , and obviously: 
3.Vy € [l,t] : i/j = i/y =» Pi(v) = Pi{v')\ that is, p,- depends on the first t 

component of N only. 
4. P64 = P 

3.1.2 The first solution of the problem 

It can be seen that this specification is equivalent to the specification of the general 
Backtrack seeking algorithm, therefore the program for solving it can be used 
with the following way of correspondence: ' 

n = 64 
V»' e [1,64] : U, = (0,1 63}, a,- = 64 
(We shall use a 64 based number system instead of the general mixed radix 

number system.) 
<f> is the identical mapping. 
The program is as follows 

program {5 } : 
i/, c, m := e0i 0,1 
SEEK (j/, m, I) 
while —>l A (c = 0) loop 

SUM(v, m, c) 
SEEK(i/, >7>,/) 

endloop 
end 
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The SEEK program is given by 
program {6 } : 

I, m := true, m — 1 
while / A (m ^ 63) loop 

I ••= P m + l H 
m := m + 1 

endloop 
end 

The S U M program will be 
program{7} : 

c := 1 
while ( m j i O ) A ( c / 0) loop 

if vm = 63 then um := 0 
m := m — 1 

else c ;= 0 
^m := + 1 

endif 
endloop 

end 
We now need the program for the assignment statement I := pm+ i(i/) only. 

As we have defined pm+i(i>) = Pm(") A/im+1(1/) Ai f m + i ( i / ) , consequently the 
precondition of this program is 
Q '• № = Pmiy)} A (i/ = i/') A /'); 

and the postcondition is 
R - {1 = Pm+i(v) A (i/ = 1/')). 

In the state space A this is equivalent to 
R : [h = Mm+iH A /2 = f m + i M A I = (I' A /x A Z2) A (i/ = i / ' ) ) . 

The program realizing this condition is the sequence of states below 
program {8 } : 

h •= / W i M 
h •= Tfm+lH « 
l : = k A l2 

end 
The solution of the assignment I := / i m + 1 ( f ) will be: 

h = (| LINm+1 - LINm |= 2 A | COLm+1 -COLm |= 1) V 
(| LINm+1 - |= 1 A | COLm+1 - COLm |= 2). 
The assignment Z2 := 7 m +i can be solved by the theorem of the third varia-

tion of linear seeking, with the considerations written under the SEEK program. 
The program i2 := fm+i (v) will be 
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program {9 } : 
/ 2 , t := t rue , 0 
while ¿2 A (t / m) loop 

h := vm+i / "i+i 
» ' : = » ' + 1 

endloop 
end 

This completes the first solution. 

3.1.3 Specification of the second solution 
The main idea of the second solution is to take advantage of the fact that we cannot 
step anywhere from a certain square of the chessboard. We can choose only from 
the eight possible moves of the knight. All the moves are represented by a vector 
showing the relative movement of the knight by two components, the first for the 
horizontal (lines) direction, the second for the vertical (columns) direction. 

(-1.2) (1,2) 

Figure 1: The knight moves 

Let us consider these steps as the components of a constant vector called 
" knight-move-vector": 

h =,((1, 2), (2,1), (2, -1) , (1, -2) , ( -1 , -2) , ( -2 , -1) , (-2,1), ( -1 , 2)) 

We use the Backtrack algorithm again with the following correspondence: 
n = 64 
U,- = { (» , / ) | 0 < i,j < 7}, give an arrangement with the enumeration of the 

elements: 
u< = { (0 , o), ( 0 , 1 ) , ( 0 , 2 ) , . . . , (7 ,0 ) , ( 7 , 1 ) , . . . , ( 7 , 7 ) , } 
If we represent the chess-board by a matrix, the elements of U{ will be the 

values of the possible start positions. 
«1 = 64 
Let H denote the eight-element set obtained with the help of the knight-move-

vector h, we define the arrangement on H with the enumeration in h. 
64 

Vi€ (2,64) U< = ff | a.-|=8 U = . « 1 U i 

Using the sets Ut- the actual knight move sequence on the chess-board can be 
given by the function: 
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64 
pos: U — V V = f. « j P P = {LIN, COL) LIN, COL = N 0 

«1 = P ° s ( « ) i = « 1 
Vi = poa(u),- = p o s i u ) , - ! © u,- Vt 6 [2,64] 

© denotes the addition component by component. 
The correspondence between N and U is given by 

63 

N = [ 0 ,63 ] x ( . ^ [ 0 , 7 ] ) 

<t>:N-+U 
Uj = 4>(y)i = (i^i/8, i/i — f i / 8 * 8) (the fraction bar denotes the division between 
integers) 
u< = 4>{v)i = hUi V i e [2,64]. 

The specification with the values above is 
A: N x L 

i/ Z 
Q:TRUE 

R:l=( Bv'eN: p(H"'))) A I => (p(4>H))-
Let p : N —• L be a logical function to be defined as follows: let p,(» G [1,64]) 

be a sequence of logical functions satisfying 
1. px = TRUE 
2- P i { № ) ) = ft-i^MjAwl^MlAli^M) Vi G [2..64] 
where /1,(^(1/)) = the ith move does not move off the chess-board 

= pos[<f>(v))i G [0,7] X [0,7] 
and 1i(<f>(v)) = pos(tf>(i/))i different from the squares over 

= (Vj : 1 < j < i : pos(<f>(v))j ? po«(4(i/))<) 
In this case Pi{<i>{v)) => Pi-i{<j>{v)), and obviously: 
3. V j G [ l , t ] : Vj = v'j => pi(4>(y)) = Pi(<f>(v'))\ that is, p,- depends on the first i 

c o m p o n e n t o f N only . 
4. P64 = P i 

3.1.4 The second solution of the prob lem 

It can be observed, that the function pos given by a recursive formula in the program 
working out the assignment I := p m + 1 can be substituted by a variable, and 
thus its evaluation will be significantly simpler. Let us amplify the state space with 
a component of type V , denoted its variable byu. 

The first m element of v shows then the sequence of actual positions of the 
knight. 

The program obtained is 
p r o g r a m { 1 0 } : 

v, c, m := eO|0,1 
t>i := (0,0) «— startposition 
S E E K ( i / , m , Z) 
while ->l A (c = 0) l o o p 

S U M ( i / , m , c ) 
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SEEK (v,m,l) 
endloop 

end 
Since the SEEK program differs from that written in the first solution in real-

izing the assignment Í := Pm+i (<£(")) only, here we give just the difference. 
The S U M program is changed in comparison with the first solution: 

p r o g r a m { l l } : 
c := 1 
while (m ^ 0) A (c ^ 0) loop 

if (m = 1 A i/m = 63) V (m ^ 1 A vm = 7) then vm := 0 
m := m — 1 

else c := 0 
"m : = Urn + 1 

endif 
endloop 

end 
Let us give the program solving I := p m + i ( j / ) ! 
Since pm + i (^(n)) = pm[4>[y)) A Mm+i(^H) A7m+i(<^(i/)); thus, the precondi-

tion of the program is 
Q : i(l'= pM»'))) A (» = "') Al'); 

the postcondition is 
R : (I = pm+1(f(»)) A («/ = I/'))-

This is equivalent in the state space A with 
R : (h = / W i ( ^ H ) A h = ym+i{4>H) Al=(hA fa) A (v = t/)). 

The program realizing this condition is the sequence of statements below, 
program {12}: 

vm+1 : = " m f f l 
'l := A«m+l(um+l) 
'a := 1Tm+i(w) 
I := h A l2 

end 
The solution of the assignment li := / im+i(vm+i) will be 

h •= (0 < («m+i)i < 7) A (0 < (i>m+i)a < 7) 

The assignment l2 := 1m+i{v) c a n be solved by the theorem of the third varia-
tion of linear seeking, with the considerations written under the SEEKprogram. 

Thus the program l2 := 7m+i(t0 is 
program { IS } : 

l2 , i := true,0 
while l2 A (t t̂  m) loop 

h •= «m+l ^ «<+1 
i :=t + l 
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endloop 
end 

This program is essentially the same as the corresponding one in the first solu-
tion: Thus the second solution is completed. 

3.2 Comparison of the two solutions 
If the two solutions are compared from the viewpoint of execution time, the second 
one is found to be essentially faster. The reason for this lies in the number of 
potential attempts at the first solution 

n1 

»•=i 

The corresponding value at the second solution is smaller by an order of mag-
nitude: 

•=i 

The above example indicates that one should never automatically trace the 
problems back to the various programming theorems, since the innovational way of 
thinking of the expert programmer is essential. 
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Parallel asynchronous computation of the 
values of an associative function * 

Zoltán Horváth * 

Abstract 
This paper shows an application of a formal approach to parallel program 

design. The basic model is related to temporal logics. We summarize the 
concepts of a relational model of parallelism in the introduction. The main 
part is devoted to the problem of synthesizing a solution for the problem of 
parallel asynchronous computation of the values of an associative function. 
The result is a programming theorem, which is wide applicable for different 
problems. The abstract program is easy to implement effectively on several 
architectures. 

The applicability of results is investigated for parallel architectures such 
as for hypercubes and transputer networks. 

1 Introduction 
We summarize the basic concepts of a relational model of parallelism [11,13,12]. 
Our model is an extension of a powerful and well-developed relational model of pro-
gramming, which formalizes the notion of state space, problem, sequential program, 
solution, weakest precondition, specification, programming theorem, etc. [8,9,16]. 

1.1 A relational model of parallel programs 
We take the specification as the starting point for program design. We use a 
model of programming which supports the top-down refinement of specifications 
[19,8,10,9,2,11]. The proof of the correctness of the solution is developed parallel 
to the refinement of the specification of the problem. We formalize the main con-
cepts of UNITY [2] in an alternative way. We use a relatively simple mathematical 
machinery [8,11]. The result is an expressive model, which is related to branching 
time temporal logics. 

We give a brief survey of the main concepts and apply the methodology to solve 
the problem of parallel asynchronous computation of the values of an associative 
function in the main part. 
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1.1.1 Preliminary notions 

In the following we use the terminology used also in [17,8,10,9,11]. Notations are 
defined often by the help of the special equality sign ::=. 

The binary relation R C A x B is a /unction, if Vo g A : | J2(a) | = 1. We 
define the domain of a relation R as Pjj::={a € A|JZ(a) / 0}. We use the notation 
/ : A B fór functions. 

The set of the logical values is denoted by C, i.e., £::={|, !}• A relation / C 
A x £ iá called logical function, if it is a function. We use the words predicate 
and condition as synonyms for logical function. f / ] : : = { a 6 A|/(a) = { f } } is called 
the truth-set of the logical function f. [ /] abbreviates the theorem (|/] = A) 
[4]. The operations U, n,A\ correspond to the function compositions A,V,-i. =>• 
corresponds to C, P —* Q is an abbreviation of ->P V Q. 

The set of the subsets of a set A is called the powerset of A and denoted by 
P(A). 

Let I C M. Vi e I: A, is a finite or numerable set. The set A::=^jAi is called 
state space, the sets Ajy are called type value sets . The projections tij : A i—• A± 
are called variables. A* is the set of the finite sequences of the points of the state 
space and A°° the set of the infinite sequences. Let A** = A* U A°°. 

We can imagine a statement (a sequential program) as a relation, which asso-
ciates a sequence of points of the state space to some points of the state space, i.e., 
a statement is a subset of the direct product A x A". The full formal definition of 
statement is given in [8]. 

The effect relation of a statement s is denoted by p(s). The effect relation 
expresses the functionality of the statement. p(s) C A x A, Dp(,y.:={a 6 A | a(a) C 
A*}, and 

Va 6 Dp(,) : p(s)(a)::={6 6 A | 3a 6 «(a) : r(a) = b}, where r : A* -* A is a 
function, which associates its last element to the sequence a = (aj,...., a „ ) , i.e., 
r{a) -- an. 

The logical function tup(s, R) is called the weakest precondition of the 
postcondition R in respect of the statement s. We define [twp(s, i2)] : :={o € 
Pp(,)|p(s)(a) C [iZ]}. The logical function sp(s, Q) is called the strongest post-
condition of Q in respect of s. [sp(a, Q)]::=p(s)([Q]). 

A = A I x . . . X A „ , F = (FL,...,FN), where FI C A x A<. Let 
[7r,]::=Pfv. The relation ^<|ft] is the extension of Fi for the truth set of con-
dition t [6], i.e., fi|rji(a)::=jv(a), if a 6 fjr,-] and (o)::=o,-, otherwise. 

Let us use the notation ( i g j| (w,- -fyjuj, ..,wn)i if ""yj) for the statement sy, 
for which ((DTJ = A)a(VO S A : p(sy)(a) = i'Hftl (a)))- This kind of (simultaneous, 
nondeterministic) assignment is called conditional, if Va € A : |p(sy)(a)| < u>. 

Let us denote the set of n-ary relations over A by RnlA). A function F : 
R„(A) >— R1t(A) is monotone if X C Y => F (X ) C F ( r ) . As it is well 
known every monotone function over a complete lattice has a minimal (least) 
and a maximal (greatest) fixpoint. The minimal fixpoint of the monotone func-
tion F is HX : F(X) = n { X [ F ( X ) C X } , and the maximal fixpoint of F is 
nX:F(X) = [ j { x \ x c F ( x ) } \ n \ 
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1.1.2 The concepts of problem, parallel program and solution 

The specification of a problem and its solution, the abstract program, is indepen-
dent of architecture, scheduling and programming language. The abstract program 
is regarded as a relation generated by a set of deterministic (simultaneous! condi-
tional assignments similar to the concept of abstract program in UNITY 12]. The 
conditions of the assignments encode the necessary synchronization restrictions ex-
plicitly. Some assignments are selected nondeterministically and executed in each 
step of the execution of the abstract program. Every statement is executed in-
finitely often, i.e., an unconditionally fair scheduling is postulated. The concept of 
fairness is used in the same sense as by Morris in [15] (Section 5.1), i.e., stricter 
than usually [2]. If more than one processor selects statements for execution, then 
the executions of different processors are fairly interleaved. A fixed point is said to 
be reached in a state, if none of the statements changes that state [2]. 

1.1.3 The specification of a problem 

The problem is defined as a set of properties. Every property is a relation over the 
powerset of the sate space. Let P,Q,R,U : A >—• £. be logical functions. We define 

P[P{A) x ^(.4)), and FP,INIT,inv .TERM C P(A). 

We introduce the following infix notations: 
P > Q::=(J\P1,[Q1) G >, P ~ Q::=(\P], [Ql) ©-, 
P Q::=(\P\, [Ql) G - , FP => £::=|7Zl G FP, 
Q FP::=JQ| G TERM, Q G INIT::=[Q] G INIT, 
inv P: :=[P| G inv . 
The P > Q, P i-+ Q, etc. formulas are called specification properties or shortly 

properties. The >, i—«—inv , TERM relations define transition properties, the 
FP, INIT relations define boundary properties. The transition relations > and 
inv express so called safety properties, while the relations >-•,<—•, TERM express 
progress properties. The definition of a solution gives an interpretation for the 
introduced concepts. 

Definition 1.1 Let A be a state space and let B be a finite or numerable set. 
Two relations expressing boundary properties and four relations expressing tran-
sition properties are associated to every point of the set B. The relation F C 
B X x " called a Problem defined over the 
state space A. B is called the parameter space of the problem. The components of 
the elements of the direct products t€[* 3)P(P[A) X P{A)) and 4]P(P[A)) are 
denoted by >6, end by INIT&, FP&, inv j,, TERMj, respectively. 

A program satisfies the safety property P > Q, if and only if there is no direct 
transition from P A ->Q to ->P A ->Q only through Q if any. A program satisfies the 
progress properties P>-*QorP'—*Qif the program starting from P inevitably 
reaches a state, in which Q holds. P t-+ Q defines further restriction for the direction 
of progress. The fixed point property FP =>• R defines necessary conditions for the 
case when the program is in one of its fixed point. The Q G INIT property defines 
sufficient condition for the initial states of the program. Q <—• FP expresses that 
the program starting from Q inevitably reaches one of its fixed points. P is said 
to be stable if and only if P > If P holds initially and P is stable, then P is an 
invariant, denoted by inv P. 
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1.1.4 The definition of a parallel program 
Let S be an ordered pair of a conditional assignment and a nonempty, finite set of 
conditional assignments, such that 5 = (soi{sy | J G J A Dp(, ) = A AVa G A : 
( M a ) | < w ) } ) , J = { l . . m } , m ^ l . 

The program UPG(S) is a binary relation which associates equivalence classes 
of graphs generated by the effect relation of so and by disjoint union of the effect 
relations of conditional assignments {ai,..., s m } to the points of the state space. 
The formal definition of a parallel program is given in [13]. The program UPGlS) 
generated by the ordered pair S = (a0) { « i , . . .sm}) is denoted shortly by S. The 
conditional assignment só is called the initialization in 5 and ay : j G [l..m] is said 
to be an element of the program S. 

1.1.5 The formal definition of a solution 
The program 5 solves the problem F, if S satisfies all (subset of) the properties 
given 'in F. The justification of the following definitions and the proofs of the 
theorems is given in [11,13]. 

Definition 1.2 Let S be an abstract program, S = (a0, (aj, ...am}). Let us de-
note the set of the indices of the deterministic assignments of abstract program S 
by Jrf and the the set of the indices of the nondeterministic assignments by Jnd-
fixpoints-.-.=(i€Ji ^[v n] (»,-. - a, = Py,.(a)) A (y€ J n i j e | 1 . .n , ("•**))). 

Definition 1.3 Let S be an abstract program. S satisfies (FP => R) if 
fixpointg =>• R. 

Definition 1.4 Let S be an abstract program, S = (s0, { « í , . . .sm } ) . 
wp(S, Rh:=Vs G S : wp(s, R). 
wpa(S, R)::=3s G S : wp(3,R). 

(tupa(S,R) is called the "angelic" weakest precondition [15]). 

Definition 1.5 The program S satisfies the property P > Q if and only if (P A 
^Q=>wp(S,PvQ)). 

Definition 1.6 The program S satisfies the pair of properties Q G I NIT and 
inv P if and only if sp(so,Q) ^ P and P is stable. 

Definition 1.7 
G(P, Y, X)::=P V (wpa(S, Y) A typ(5, X V Y)), 
F(P, Y)::—r)X : G(P, Y, X), and 
~P::=uY : F(P,Y). 

Remark: Since G is monotone in P, Y, X, VP, Y : rjX : G(P, Y, X ) exists, moreover 
F(P, y ) is monotone in P, Y and ^ P is monotone in P. 

Definition 1.8 (ensures) The programS satisfies the specification (Q i—• P) if and 
only if (Q=>(PV (wpa(S, P) A wp(S, Q V P)))), i.e., (Q => G(P, P, Q)). 

Definition 1.9 (leads-to, inevitableJ The program S satisfies the specification 
(Q — P) if and only if (Q ( ~ P ) ) . 
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Theorem 1.1 If ( <^P) holds for a £ A, the scheduling is unconditionally fair and 
the program S is in the state a, then S inevitable reaches a state, for which P holds. 

We can prove the following theorems corresponding to the properties used in the 
definition of leads-to in UNITY [2]. The proof of progress properties is supported 
by the introduction of so called variant functions [6,2]. 

Theorem 1.2 For an arbitrary program S, 
- if P>->Q then P^Q, and 
- if P<-*Q andQ<-> R, then P <-> R. 
- Let I be an arbitrary finite set. Ifii e I: (P< <-• Q) then (3» : P.) <-+ Q. 
- Let W be a well-founded set in respect of the relation <. 

IfVmeW :: (P A v = m) <-» ( (PAu < m) V Q), thenP^Q. 

Consequence 1.1 If the program S satisfies the property: (-> fixpoints At) = 
v') ((-i fixpoints A v < v' — 1) V fixpoints), then S satisfies the property 

A new specification is called a refinement of a previous one, if any solution for 
the new specification is a solution for the problem specified originally. 

2 Computation of the values of an associative 
function 

Let H be a set. Let o : HxH •—• H denote an arbitrary associative binary operator 
over H. 

f : H* i—• H is a function describing the single or multiple application of the 
operator o. Since o is associative, for any arbitrary sequence x €E H* of length at 
least three 
f(<i xu...,x\x\ ») = /(C f { c »i.-.Z!«!-! >),«|«| ») = /(C xi,/(C 
xa,..,£|z| 3») ^ )• We write f (< i hi,h,2 instead of the infix notation (hi o h?) 
in the following. We extend / for sequences of length one: / ( c h » ) = h. 

Let a finite sequence a £ H* of the elements of H be given. The indices are 
associated to the elements of the sequence a in the reverse order, i.e., the last 
element is denoted by oj. If the length of the sequence is n, then the first element 
is denoted by an. a an , . . . ,oi in > 1). Let us compute the value of the 
function Q : [l..n] i—• H for all i S [l..n], where n > 1 and 

To solve the problem we use a similar train of thought to those presented in the 
cases of parallel synchronous computation of the sum of binary numbers and of the 
asynchronous computation of the shortest path [2]. 

2.1 The formal specification of the problem 
We specify that the program inevitably reaches a fixed point and the array g con-
tains the values of / in any fixed point. 

A — G, where G = t>ecfor([l..n], H), n > 1; g : G 

(T— fixpoints), ( T ^ FP). 

t«-» FP 
FP (Vi e [l..n]: ff(i) = /(< Oi, ....a! >)) 

( 1 ) 

(2) 
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o :k = riofl(«)l 

Figure 1: Sfs(t,Jfc) = h(i,k), if k < [Jfc(t). 

... _ k 

Let us observe that the computation of the values of Q at place t is made easier 
with the knowledge of the value of / for subsequences au , . . . , a„ indexed by 
the elements of an arbitrary [u..u] C [t..l] interval. Moreover the result computed 
for a subsequence is useful in the computation of the value of / for any sequence 
which includes the subsequence. 

FYom the above line of reasoning, we extend the state space and refine the 
specification of the problem. Let us introduce the auxiliary function h. Let h(x, k) 
denote the value of / for the sequence of which the first element is Oj and its length 
is 2* or the last element is Oi, if t < 2fc. The two-dimensional array ga is introduced 
to store the known values of h. This method is called the substitution of a function 
by a variable [7]. The connection between the variables ga, k, t and the function h is 
given by the invariants (4)-(6). The lines on the Figure 1 illustrate the connections 
among the elements of the matrix ga according to lemma 2.1 and to invariants 
(4 ) - (6 ) . 

A' = Gx GSx Kx T G = vector{[l..n\,H), 
g ga k t GS = vecior([l..n,0..(ilog(n)])], H) 

K = vector \\l..n\, A/o), 
T = vector([l..n],>/o), n > l 

The precise definition of the partial function h : [l..n] x Mo —• H is: 

i / • jl\.. / / ( < Hi •••iai » ) , if » — 2fe + 1 < 1 
« 1 * . * ; » \ / ( C o . - a ( i _ 3 f c + 1 ) » ) , if t — 2* + 1 > 1 

Lemma 2.1 
If (i -2k> 1), then f [ c h(i, Jfc), h(i - 2k,k) » ) = h{i, k + l). 

Proof: Since t'-2fc > 1 ,h(i,k) = / ( < o,•,..., a^.ak+i) » ) . If (t-2* : ) -2 f c + l > 1, 
then h(i — 2k,k) = <»(,_2*)i —»a(t—2fc—2fe+i) Since / is associative: 
/ ( C h{i,k),h{i - 2k,k) > ) = / ( C Oi, — , a ( » - 2 t + i ) i a(«-2 f c)> •••>°(«-2't-2 fc+i) » 
) = h(i,k + 1). If (»' - 2fc) - 2k + 1 < 1, then h(i - 2k,k) = /(« 
a(i-2 fc)i—>°i Using the associativity of / : f ( c h(i,k),h(i — 2k,k) » ) = 
f ( C a,-,...,a (<_2«.+1),a ( i_2t),... )a1 » ) = h(i,k+ 1). 
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Let us choose the variant function u : A i—• Mo in the following way: 
n 

v::=4 *n*n-jT (k{i) + X{k(i) = flog(.-)l A g(i) = 93(i, *(«)))) 
•=i 

The variant function depends on the number of elements of the matrix ga which 
elements are different from the value of function h at the corresponding place and 
on the number of places where the value of the array g is different from the value 
of function Q. 
Lemma 2.2 The specification below is a refinement of the specification (l)-(2). 

f — FP (3) 
FP V»' € [l..n] : (*(0 = ÍM* ' ) ] ) A (j/(t) = g.{i, [log(.)D) (4) 

inv (V»' € [l..n] : *(«) < [log(t)l AVk : k < k(i) : gs{i, k) = h{i, k)) (5) 
inv (Vi <E [1..»]: t(t) = 2*<0) (6) 

Proof: 
k{i) = [log(»)] and g(i) = ga(i, flog(t)]) in fixed point according to (4). Us-

ing (5) it follows that the equation </(t) = gs(i, [log(t)]) = h(i, [log(t)]) holds in 
fixed point. Since 2rio<f(,')1 > t, after the application of the definition of h. we get 
h(i, [log(Ol) = /(•< a,-, ...,ai which is the same as property (2). 

Remark 2.1 The property (1) is not refined. The proof of the correctness of any 
program in respect of (1)=(3) is based on Consequence 1.1. This means the choose 
of a variant function may be regarded as an implicit refinement step in respect of 
property (l) . Since the property (6) defines restrictions over the new components 
of the state space only, we need not to use it in the proof of the refinement. 

2.2 A solution 
Theorem 2.1 The abstract program below is a solution for the problem specified 
by (S)-(6), i.e., a solution for the problem of the computation of the values of an 
associative function. 

*o : < = [ ? . . » ] * ( » ' ) . * ( » ' ) ~ / K 1.0 

' f ( c gs(i, *(»)), gs{{i - «(»)), fc(t')) 3>), 2 * t(t), k(i) + 1, 
if (i-2* t(i) + 1 > 1) A (k(i - t(i')) > Jfc(»)) 

/(< gs(i, k{i)), ga(i - t{i), k(i - t(t))) »), 
2*t(t),fc(i) + l, 

if (t - t(t') > 1) A (» - 2 * t(i) + 1 < 1) 
A ( M » - i ( f ) ) = r i o g ( f - t ( 0 ) i ) 

.-=[?..»! «"(*• *(*))»/ (*(•) = riog(Ol) 
} 

where nj is used for the abbreviation of n statements. Each statement is in-
stantiated from the general form by substituting the dummy variable i by a concrete 
value. 
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Proof: 
(3): Every statement of the program decreases the variant function by 1 or does 

not cause state transition. If the program is not in one of its fixed points, then there 
exists an t € [l..n] and a corresponding conditional assignment, which assignment 
increases the value of k(t), or there exists an t for which k(i) = [log(t)] and the 
value of g(i) is different from the value of ga(i, ([log(t)])). 

(4): using the definition of the fixpointg: 

Vt e [I..n] (*(i) = [log(t)l) - g(i) = g.{i, k(i)) A (7) 
( ( i - 2 * t(i) + 1 < 1) V (*(i - t ( 0 ) < fc(0)) A (8) 

(i - t(i) < l)V (» - 2 - t(i) + 1 > 1) V (*(i - t (0) * riog(i - (t(.'))D) (9) 

We apply mathematical induction on t to prove: Vt g Jl..n] : (£(») = Jlog(t)]). 
Base case: t = 1. iVom (5) and ap(a0, T) follows that (mI) = [logflj]). Inductive 
hypothesis: Vj < :(k(j) -Jlog(y) l ) . Since i(t) > 1, (¿(¿-i(i))\ f [log(. '- (i(.))]) 
contradicts the hypothesis. This means (9) can be simplified to (» — tii) < 1) V (t — 
2»t(t) + 1 > 1). If (t ' -2*i(») + l > 1), then k{x — t(i)) < Jfc(t') else (8) does not hold. 
Using the inductive hypothesis and t(i) > 1 we get k(i — t(%)) = [log(t — i(i))], 
i.e., (logii — t(»))1 < k(i). The last statement contradicts the initial condition: 
t - 2 * t(i) + 1 > 1)) => (i - t(t) - t(t) + 1 > 1) =• [log(»" - i(t"))] > ifc(t). This means 
t' - 2 * t(i) + 1 < 1). 
t - 2 * t(t) + 1 < 1) =>• (» - i(t) < 1), otherwise (9) does not hold. (» - t(i) < 

1) => k(i) > [log(»)]. Using the invariant (5) we get: k(i) = [log(t)]. Based on (7) 
: $(t) = <?s(»',fc(t)) = ga(i, [log(t')l). 

(61: Since sp(30, t) implies t(i) = 1 and k(i) = 0, the t(t) = equality holds 
initially. All the assignments change the value of k(i) and t(i) simultaneously. 

(5): Since M»',0) = f ( c a(t) » ) , sp(s0,T) => gs(i,k(i)) = h(i,k(i)). Since Jt(t) 
is initially 0, ap(s0, T) =• [H*) < ilog(t) |). 

After calculating the weakest preconditions of the assingments it is sufficient to 
show that 

• (t" - 2 * tii) + 1 > 1) A (A:(t - «(»)) ^ Jtmi and VJfc : ifc < Jfc(t) : gs(i, k) = h(i, k) 
implies the equality for *;(»') + 1, i.e., /(«C ga(i,k(i)),ga(t — t(t),fc(t)) » ) = 
h{i,k(i) + 1) and k(i) + 1 < [log(t)*], 

(« - 2 * i(t") + 1 > 1) A (t(t) > 1) =• (»" - t(t) > 1) =• Jfc < log(t - 1) < log(t') < 

In the first case fc(t') < A;(t) implies gs(i,k[i)) = h(i,k(i)) and (if» — t(»)) > Jbit)) 
implies gs(i — t(t), k(i)) — h(i — £(t), A:(t)). In the second case k(t) < k(i) implies 
ga(i, k(i]) = h(i,kli)) and k(l-t(i)) = flog(.-t(t))l implies ga(i-t(i), (flog(t) ] ) = 
h(t — i(t), ([log(t)])). In both of the cases the application of the Lemma 2.1 leads 
to the statement. 
(end of proof.) 
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Let us suppose the abstract program is implemented on a parallel computer 
containing O(n) processors. If the left side of an assignment refers to an array com-
ponent indexed by i, then the assignment is mapped to the ith (logical) processor. 
Easy to see, that the program reaches one of its fixed point in at most Oflog(n)] 
state transforming steps. The logical processors may work asynchronously. 

2.3 Transformation of the program 

The program corresponds neither to the rule of fine-grain atomicity [l](2.4) nor to 
the shared variable schema [2]. To ensure effective asynchronous computation we 
have to transform the program by introducing new variables and using the method 
of substitution of a function by a variable for the function log [7]. 

Let us use the auxiliary arrays gst(i) = ga(t — t(i),k(i)), kt(i) = k(i — t(t)), 
gatk(i) = gs(t — t(i),kt(i)), if the values are necessary and known by the ith 
logical processor and the value of kt(i) is big enough to determine the next (i.e. 
the (£(») + l)th) value of the tth column of the matrix gs (10). Let us introduce 
the auxiliary boolean variables ktf(i), g3tf(i),gstkf(i) to administrate the usage 
of the auxiliary arrays. The tth component of the auxiliary arrays is local in respect 
of the tth processor. 

Every assignment of the transformed program will refer to at most one nonlocal 
variable. 

2.3.1 The refinement of the specification 

We extend the specification (3)-(6) with the following invariants: 

V i e [ l . . n ] : (fci(t) < k(i - t(i)) A 

ktf[i) — (Jfci(i) > Jt(i) V kt(i) = l(i - i ( i)))) (10) 
V i e [ 1 . . » ] : (gstf{i) -» ktf{i) A (i - 2 • t(i) + 1 > 1) 

A<7si(i) = gs(i — t(i), k(i))) ( H ) 
V i e [ l . .n ] : (gstkf(i) -* ktf(i) A (i - t(i) > 1) A (i - 2 * t(i) + 1 < 1) A 

9 s i * ( t ) = gs[i - t(i), fct(i)) = gs{i - t(i), k[i - t(i)))) (12) 

V i e [ l . . n ] : [ l o g ( i ) l = / ( i ) (13) 
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2.S.2 The transformed program 

ao : i=I? n]9s(i,0),t{x),k{i)tl{i),ktfii),g8tkf{i),gstfli),kt{i) ~ 
/ ( < * » ) , 1,0, [log(t)], |,0 

s : { h ? . . h : = k { i ~i(t))'* A ( t " " < ( t ) ) - 1 

.=[? »!*'/(») -=T,if "•*«/(»') A (» - t(0) > 1 A (kt(i) > &(t)v 
to(0 = l ( i - « ( i ) ) ) 

<=[?..»| 9°tf(i) := gs(x - *(»), *(.)), T, 
if ktf(i) A (»' - 2 * t(t) + 1 > 1) A (Jfct(») > Jfc(t)) A -igstf(i) 

<=[?.«] 9*tk{i), gstkf{i) := gs{i - t{i), kt(»)), T, 
if ktf[i) A (»' - t[i) > 1) A (t - 2 * i(t) + 1 < 1) 

A(fci(t) = J(i - t(i))) A ->gstkf(i) 

i=|?..»j»'M(*) + l),Hi),k(i),ktf{i),gstf(i),gstkf(i),kt{i) := 

' f ( < p ( t , k ( i ) ) , gst(i) 2 *t(i),k(t) +1 ,1 ,1 ,1 ,0 
if gstf(i) 

f(Cgs(i,k(i)), g3tk(i) » ) , 2 *t(i),k(i) + 1,1,4,4,0 
if gstkf(i) 

i=°n]9(i)-=9s(i,k{i)), if k(x) = l(t) 
} 

Proof: The invariants (10)-(13) are easy to prove by the calculation of the 
weakest preconditions and sp(so, T)- Using the invariants f 10)-(13) we can state that 
the assignments changing the variables mentioned in (3),(5)-(6) are equivalent of 
the original assignments. This means the specification properties (3),(5)-(6) remain 
valid for the transformed program too. To prove the fixpont property (4) it will 
be sufficient to show: if the transformed program reaches one of its fixed points 
then the original program is in one of its fixed points too and the conditions (7)-(9) 
hold.D 

3 Discussion 
The program is easy to implement on synchronous, asynchronous and on distributed 
architectures, such as for hypercubes [18] or T9000 transputer networks, where im-
plementation of 0([log(n)|) communication channels is supported by the concepts 
of logical links. 

A solution is developed in [14] for pipeline architectures. 
The introduced relational model provides effective tools for the stepwise devel-

opment of a parallel solution as illustrated by the chosen example. The theorem 2.1 
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may be called a programming theorem [6]. With its help we can solve a class of clas-
sical problems. For example parallel addition, comparison of ascending sequences 
[2], etc. are easy to formalize by the help of associative functions. 
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Towards Computer Aided Development of 
Parallel Compilers Running on Transputer 

Architecture* 

János Toczki * 

Abstract 

In this paper we state requirements for a software environment for com-
puter aided development of parallel compilers executable on transputers. The 
structure of a compiler-compiler which generates parallel compilers from at-
tribute grammar specifications is described. Problems of distributed attribute 
evaluation using dynamic load balancing are discussed. 

Keywords: attribute grammars, compilers, transputers, parallel processing. 

1 Introduction 
Several types of parallel machines have become more and more popular recently. 
Various parallel algorithms have been developed to get more efficient softwares for 
several problems. An important application field is developing parallel compilers. 

Attribute grammars are an efficient compiler specification method. Most of 
compiler-compiler systems are based on attribute grammars. A survey of sequential 
attribute evaluation methods can be found in [7] and [2]. A review of compiler-
compiler systems based on attribute grammars is presented in [6]. 

Most of the positive experiences with developing parallel semantic evaluators 
are connected with non-distributed architectures with shared memory. Reviews of 
using parallel attribute evaluation and experiences developing parallel compilers 
can be found in [l], ]4]. [16] and [10]. A blueprint of a parallel compiler generator 
system is presented in [3]. 

On the other hand, there is no shared-memory available in transputer machines; 
each processor uses its own memory. Processors are connected through channels. 
Channels are used not only for synchronization, but also for sending data between 
processors. According to the practical experiences, the main problem with using 
transputers for parallel attribute evaluation is the large amount of inter-processor 
communication [17], [1]. It causes the inefficiency of these algorithms. 

'This research is involved in the research project "Large Parallel Databases" financed 
by the European Communities, project number 93: 6638, and partly supported by the 
research found OTKA and the Ministery of Education and Culture, grant number F12852 
and 434/94 
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However, there are some practical applications efficiently implemented on trans-
puters. For example, a database management system processing large databases 
implemented at Sheffield -University on IDIOMS machine J12]. The input lan-
guage of the system is the standard SQL/1. Users of IDIOMS requires some 
extension to SQL: it needs a precompiler which transforms queries to standard 
SQL. It is a natural demand that the precompiler should run on the same machine 
instead of the host computer. 

In this paperjwe consider the problems of efficient evaluation of attribute gram-
mars on distributed architectures from a practical point of view. Which evaluation 
methods can be used, which other facilities are needed to get a compiler-compiler 
or an environment for developing parallel compilers? 

This paper is composed as follows. We summarise preliminaries and motiva-
tions in the next section. We repeat some of the basic definitions and notations, 
however we suppose that the reader is familiar with the following topics: attribute 
grammars and evaluation strategies,, compiler-compilers, transputer architectures. 
The summary of requirements for a parallel compiler-compiler running on trans-
puters is found in section 3. Our suggestions to meet these requirements and the 
preliminary design of a compiler-compiler system is given in section 4. A short 
summary of future research is found in the last section. 

2 Motivations and Preliminaries 
2.JL Motivations 
Parallel machines are classified as synchronous and asynchronous machines. In 
synchronous machines all processors execute the same code at the same time. In 
asynchronous architectures processors may execute different code, synchronisation 
should be controlled directly by using semaphores and/or sending messages. 

On the otheri hand, we can distinguish between tightly coupled and loosely cou-
pled (distributed) architectures. In tightly coupled machines, all processors have 
access to the same shared memory, while in distributed machines each processor 
has its own memory. Processors can communicate by sending messages. 

Transputers, which are asynchronous distributed machines have become more 
and more popular recently. Processors - nodes - of a transputer are usually con-
figured along a more or less regular topology (a line, hypercube, polygon, etc.). 
Each processor has four channels for communication. Software connections can be 
configured in a flexible way via connecting channels. The number of nodes and 
the physical topology should be as irrelevant as possible from the point of view 
of transputer software. However the speed and efficiency of an algorithm usually 
strongly depends on the topology. 

Usually the most expensive part of transputer software is the inter-processor 
communication. Consequently, in general, an "effective" algorithm should avoid 
large amounts of communication. There are some "typical" transputer applications. 
One of these areas is processing large distributed databases^ If we connect a data 
storage device to each node and we distribute queries at an early stage, we get 
efficient data retrieving algorithms. 

IDIOMS machine developed at NTSC, University of Sheffield is a special par-
allel machine for processing large distributed databases using parallel methods [12]. 
The user surface of the system is standard SQL/1 language. 

Parsing user instructions, evaluation and distribution of queries is a usual for-
mal language parsing and semantic evaluation problem. There are three possible 
solutions to perform this task. 
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• We can use a sequential compiler running on the host machine. 

• We can use a sequential compiler running on a single transputer node and 
benefit only from the parallelism between the larger components of the soft-
ware architecture. 

• We can use a parallel compiler running on the transputer itself. 

The advantage of the first two solutions is that the theory and practice of developing 
sequential compilers is a well-researched topic of computer science. On the other 
hand, the host machine is the only connection between the transputer and the outer 
world. The host machine will be very busy with transfering results of queries. It is 
a natural demand to use the inner part of the system instead. 

Another advantage of the last method is that - using parallel algorithms - we can 
speed up the compilation process itself. For example Gross achieved 3 to 6 typical 
speed-up with a hand-written compiler running on 9 independent workstations 
benefiting only from parallel compilation of independent functions (blocks) [8]. It 
does not exclude running the compiler in parallel with some other components, as 
well. 

2.2 Parallel Compilation 
The first hand-written parallel compilers were developed in the early 1970s. Most of 
these compilers run on vector processors and based on parallel execution of certain 
phases of compilation. The first significant investigation into parallel semantic 
evaluation made by Schell [22]. Schell's method - in essence - is the same as 
Jordan's one reported in [10]. 

The most natural way to build a parallel compiler is to run different compilation 
phases as separate processes and form a pipeline. The maximal possible speed up 
is the number of phases (usually 3 or 4). However, it is a hard work to balance the 
different phases. Miller and LeBlanc compared sequential and pipeline versions of 
a Pascal compiler having 4 phases and they got 2.5 speed up as an average [20]. 
This result shows the limitations of pipelining. 

Another possible way to construct a parallel compiler is to split the source pro-
gram into smaller independent parts and compile these parts concurrently. Lipkie 
was the first who suggested the combination of pipelining with source fragmenta-
tion [19]. Vandevoorde [27] and Seshardi [23] used the same approach developing 
compilers running on different architectures. Seshardi investigated the concurrent 
processing of declarations as well. 

These experiences shows the importance of pipelining as well as the necessity 
of concurrent semantic evaluation. In this paper we concentrate to the phase of se-
mantic evaluation. Concerning the phase of lexical and syntactic parsing, pipelining 
with immediate fragmentation seems to be a proper solution. We also concentrate 
to more general methods ¡which can be used in an automatic compiler development 
tool. 

2.3 Automatic Compiler Construction 
Compiler-compiler systems generate executable compilers from formal specifica-
tions. Most recent compiler writing systems are based on attribute grammars. Ex-
periences with compiler construction proved feasibility and efficiency of attribute 
grammars for compiler specification. A survey of attribute grammar based compiler 
generation can be found in [6]. 
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The compiler generator system PROF-LP [21] developed in Szeged has been 
used for generating various practical compilers, for example [25], [5j. We refer to 
our experiences at appropriate places in the next section. We mention that these 
experiences and suggestions for development in the case of sequential compilation 
are summarized in [26]. 

2A Attribute Grammars 
Various compiler-compiler systems have been developed to generate compilers from 
formal specifications. Most of these systems are based on attribute grammars [15l. 

In this section we recall some basic notions of attribute grammar theory. We 
give only informal definitions instead of formal ones. We feel that it is enough to 
make clear our concepts. More complete definitions can be found in the literature 
for example [2], 17]. 

Let G = \N, T, S, P) be a context-free grammar, where N is the set of nonter-
minal symbols, T is the set of terminal symbols, S E. N is the start symbol, and P 
is the set of context-free productions. 

We associate a set of attributes to each nonterminal symbol. There are two types 
of attributes. The values of inherited attributes are evaluated top-down (from the 
start symbol to the terminals) and the values of synthesized attributes are evaluated 
in the opposite direction. 

Attribute values are determined by semantic functions associated to the synthe-
sized attribute occurrences of the left-hand side nonterminal and to the inherited 
attribute occurrences of the right-hand side nonterminals of each production. The 
arguments of semantic functions are the other attribute occurrences of the same 
production. 

An abstract syntax tree of the grammar G is said to be decorated if all its 
attribute instances have their own values. We say that a decoration of a syntax 
tree 8 is correct iff the values of all attribute instances of s satisfy corresponding 
semantic rules. 

Attribute instances in a syntax tree s depend on each other. We say that an 
attribute instance A(N) depends on an attribute instance b(M), if the value of 
b(M) is needed to evaluate the semantic rule computing the value of a(N), i. e. if 
it occurs as a parameter of the semantic function. 

In this paper we consider only non-circular attribute grammars. An attribute 
grammar is non-circular iff there cannot exist any circular dependencies among the 
attribute instances in any syntax tree. In this case all attribute instances can be 
evaluated in a definite order constrained by the dependencies of the given syntax 
tree. 

2.5 Parallel Attribute Evaluation 
Usually there are some independent attribute instances in a syntax tree. In the 
case of sequential evaluation, a linear order is constructed, evaluating independent 
attribute instances in a more or less ad hoc order. In general, it is possible to 
evaluate independent attribute instances in parallel. 

Kuiper [16], [18] defined the concept of distributor as an algorithm to distribute 
attribute instances among evaluation processes. He defines two basic types of dis-
tribution: 

o A tree based distributor allocates all attribute instances of a subtree of the 
syntax tree to the same evaluation process. The syntax tree is splitted at 
selected nodes. Selected nodes determined by the production applied at the 
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node - production based distribution - or by the left hand side nonterminal 
of that production - nonterminal based distribution. The distribution can 
be either nested or non-nested. In the case of nested distribution subtrees 
containing selected nodes are splitted again, while in the case of non-nested 
distribution, the syntax tree is splitted only at the selected nodes closest to 
the root. 

A typical application of tree-based distribution is the fragmentation of a block-
structured programming language. Disjoint blocks are usually independent to each 
other. We can allocate attribute instances of different blocks to different processes 
using a nested nonterminal based distributor. 

• An attribute based distributor allocates all instances of an attribute to the 
same process. The distributor can not distinguish between different instances 
of an attribute. It means a strict limit on potential parallelism. If we combine 
it with a tree based distributor, we get a combined distributor. 

A typical application of attribute based distribution is to allocate independent 
tables of a compiler to different processes. For example, symbol tables and label 
tables are usually independent. 

• Jordan introduced third kind of distributors. A dependency based distributor 
allocates all attribute instances of a connected part of the dependency graph 
to the same process;. The allocation is not predefined. An evaluation order 
containing parallel execution of new processes is generated from the depen-
dency graph. In this sense this method is more "dynamic" than Kuiper's 
distributors. 

Dependency based distributors are capable of handling more complicated situ-
ations, when neither tree based nor attribute based distributions are inefficient. 

o 

3 Parallel Compilation on Transputers 
3.1 Assumptions 
A transputer is a loosely-coupled parallel machine having no shared memory. Pro-
cessors communicate via channels. Channels serve not only for synchronization but 
for data exchange, as well. Process loading and channel connections are flexible. 
The only physical bound is the amount of memory and the number of hardware 
connections (usually 4). Peripherals are handled by a host computer which is con-
nected to the processor network via channels. 

In this paper we concentrate on the semantic part of compilers. We suppose 
that the complete syntax tree is available on the host computer or on a transputer 
node. In the case of source fragmentation, before syntactic parsing different parts of 
the syntax tree may be produced by different processes running on different nodes. 
This situation can be handled by appropriate process level distribution, see in 4.1. 
The result of semantic evaluation, the decorated syntax tree, is sent back to the 
host. In the case of a semantic error, an error message is sent to the host and the 
evaluation process is stopped. In some applications, it would be better to pass the 
result to another application. It is only a technical point. 

We suppose a static evaluation method driven by the dependency graphs of 
productions. Among others OAG [11] and ASE [9] are feasible strategies. These 
classes of attribute grammars are large enough in practical cases. 
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We suppose availability of a block structured high level algorithmic program-
ming language - we have chosen parallel C - and availability of a flexible CDL 
(configuration description language) usual on transputers. 

3.3 Distribution 
The most important feature of transputers from the point of view of attribute 
distribution is that there is no shared memory available. Although it is possible 
to run more than a single process on the same processor, we should allocate them 
to as many different processors as possible to increase " real" parallelity of the 
compiler. On the other hand, attribute values have to be sent among processors. 
As inter-processor communication is the most expensive task on transputers, we 
should decrease *.he amount of sending data among processes allocated to different 
processors. 

Some attributes - as symbol tables - are extremely large, while others are very 
small. Some attributes have the same or similar meaning. For example most of the 
tables of compilers are represented with a pair of a synthesized and an inherited 
attribute. Usually tables are stored in dynamic data structures, i.e. lists, trees, 
stacks and the attribute values are only pointers to these tables. It means that 
the basic operations "send the value of an attribute to a process" or "compute a 
semantic function" may have quite different expenses. 

Only the author of a compiler knows the size of attributes, the complexity 
of semantic functions. The author has enough information on potential selected 
nonterminals - in the case of tree based distribution - and on "logically" independent 
attributes - in the case of attribute based distribution. 

We can state now the following basic requirements: 
o The user should choose between tree based and attribute based distribution. 

Probably he/she will choose a combined strategy. 

o The user should declare selected and non-selected nonterminals in the case 
of tree based distribution and declare the set of attributes evaluated by the 
same process in the case of attribute based distribution. 

On the other hand there are efficient algorithms to find independent attribute 
instances of an attribute grammar. For example, see Kuiper's algorithm [16]. An 
intelligent system can help the user's decision and check its correctness using these 
algorithms. 

o The system should help and check the user's decision on distribution using 
dependency analysis. 

3.3 Process Loading 
Most of transputer operating systems include some load balancing mechanisms. It 
means that the system distributes processes among processors on the bases of their 
current status. On the other hand the user has the possibility to describe her/his 
own configuration using CDL (Configuration Description Language). 

Automatic load balancing assumes a farmer-workers architecture, while the user 
can use (almost) any other architecture. It gives a large amount of flexibility. On 
the other hand, it is much easier to program an automatically balanced system. 

Another important question that we should answer is: should we develop a 
general evaluation process which contains all the semantic functions and run it on 
all processors or should we develop several smaller processes? Execution time of 
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semantic functions and the number of attribute instances evaluated by a process 
may be quite different. Furthermore scheduling many small processes causes too 
much overhead time. It is more efficient to run a general evaluator on all processors 
and implement evaluation processes as tasks rather than real physical processes. 
In this approach a task means evaluation of all attribute instances allocated to a 
logical process. Each task has a set of output attribute instances - the attribute 
instances which are computed - and a set of tnput attribute instances - values of 
which are needed for the computation. 

In this case, we cannot use the automatic load balancing mechanism of the 
operating system: load balancing means allocating tasks to processes, and not 
allocating physical processes to processors. The dynamic load balancing method 
described in [24] is applicable for any decomposable problem. Although attribute 
evaluation is not a decomposable problem, we can associate a home processor to 
each attribute instance. The value of an attribute instance is sent back to its home 
processor after evaluation. More detailed description of process loading can be 
found in the next section. 

4 Developing Parallel Compilers 
In this section we describe the structure of a software environment for developing 
parallel compilers based on the requirements stated in section 2. First we discuss 
the features of a metalanguage for specifying a parallel compiler and describe the 
general structure of the generated compiler. After that, we sketch the structure of 
the development environment including a generator tool. Finally we consider some 
technical questions. 

4.1 Parallel Compiler Specification 
The specification of a parallel compiler is an attribute grammar completed with eval-
uation instructions and with the implementation of semantic functions. We start 
from the metalanguage of PROF-LP [21]. This metalanguage has the following 
features. 

• The set of synthesized and inherited attributes are declared. The domain of 
an attribute is given by a data type of the implementation language. 

• The set of nonterminals with the list of their attributes is declared. The 
generated compiler is modular, a module is formed from a set of nonterminals. 

• The set of terminals is declared. Some terminals, called tokens, may have 
input attributes. The lexical structure is described separately. 

• Productions are listed together with semantic functions. A semantic function 
is given by an expression or by a subroutine written in the implementation 
language. 

• The description is completed with one or more program modules written in 
the implementation language including attribute types, semantic functions 
and any other elements as constants, variables, subroutines. This makes 
it possible for the user to implement dynamic data structures and global 
program objects. 
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We mention here that an augmented metalanguage is defined in 26] containing 
such elements as regular right hand side productions (sometimes called as extended 
cf grammar), augmented semantic functions for such productions, global table def-
initions, structured dynamic data type declarations embedded in a block structured 
modular metalanguage. 

• The metalanguage of PROF-LP augmented with modularity and block struc-
ture is applicable. 

• We introduce four levels of modularity: 

Metalanguage level. A module is a usually large part of the attribute 
grammar described in one input file and processed at the same time. 
A module is formed from a set of nonterminals. 

Process level. A module is a - possibly different - part of the generated 
compiler implemented in one process. The user may develop some other 
processes containing the same elements as it is usual in PROF-LP. 
Configuration of these physical processes are up to the user. 

Tfcee level. A tree module is a connected part of the syntax tree determined 
by selected nonterminals. It is the basis of tree based distribution. Tree 
level modularity should be compatible with source fragmentation. 

Task level. A task is an elementary part of evaluation, target of automatic 
load balancing. A task is a set of attribute instances defined by the user. 

The first two levels are applicable only in large systems. These two levels are 
incomparable, either a metalanguage module may contain more processes or 
a process may be composed from more modules. 

• Production descriptions are applicable in their original form. 
• We do not consider the lexical description here. 

Formal consistency of the specification can be checked in the same way as it is 
usual in the case of sequential compilers. Checking correctness of semantic functions 
against the requirements of the implementation language is left to the compiler. 

4.2 General Structure of the Generated Parallel Compiler 
The generated compiler consists of three parts: A static kernel contains basic rou-
tines, the attribute evaluator is generated from the specification, user supplied parts 
are copied into the system without any change. 

• The kernel contains the following routines. 

Input-output and distribution. In this paper we do not deal with the 
syntactic parser part of the compiler, so we suppose that the syntax 
tree is available. As we use a dynamic load balancing method, the whole 
syntax tree should be sent to each processor first. The result - the values 
of synthesized attribute instances of the root symbol - are sent to the 
host. 

Task scheduler and load balancer. The dynamic load balancer given in 
[24] can be applied as follows. A task means evaluation of a set of 
attribute instances. Two attribute instances N.a and M.b are in the 
same set if and only if the following conditions hold: 
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— The nodes M and N are in the tame tree module, that is, there are 
not selected nonterminals along the path between N and M in the 
syntax tree. 

— Attributes a and b are in the same attribute set declared by the user. 
— The attribute instances N.a and M.b are dependent on each other. 

As it is very hard to check this condition, we can use another con-
ditions instead. 

* We can use Kuiper's algorithm [16] which decides whether any 
two instances of two attribute occurrences may be dependent. 

* We ca:i use Jordan's dependency based dynamic distributor [10]. 
In its original form it is based on local dependencies of a single 
production. It is easy to extend it to check dependencies of a 
subtree (tree module). 

We suggest a more simple method instead. We can use Jordan's 
method to form elementary tasks. The problem is that only at-
tribute instances evaluated in the same production are allocated to 
the same task. After that we can form the unions of these - small 
- tasks using tree based distribution. 

The same universal evaluator algorithm is running on each processor. 
The load balancer distributes tasks among processors. The evaluation 
starts on a single processor with tasks belonging to the root of the parsing 
tree. When a task has become executable - that is, all its input attribute 
instances are available - the processor sends this task to the one of its 
neighboring nodes. The node is selected on the numbers of other tasks 
waiting for execution. Leaving a tree module means that virtually all 
tasks evaluating attribute instances of the module just entered are sent 
away. 
Executing a semantic function may need an extremely long time, others 
may be divided into smaller parts. Rutins handling tasks - insert a new 
task to the waiting list, declaring input and output parameters, etc. -
are available for the user. 

Error handling routines. All error messages are sent to the host com-
puter. ; 

• The evaluator contains a branch for each task containing semantic functions 
evaluating the set of attribute instances belonging to this task. It may start 
other tasks, as well. An evaluator is generated from a process level module. 
The evaluator is called by the load balancer whenever a task is started. 

• The routines containing user written semantic functions are simply copied 
into the system. They may send tasks for the load balancer for execution. 

4.3 Compiler Development Environment 
The compiler development environment contains the following modules. 
Metalanguage parser: checking the formal correctness of the specification. 
Dependency analyser: computing attribute dependencies and checking its prop-

erties against the requirements of the evaluation strategy. 
Distribution analyser checking dependencies among tree modules, attribute sets 

and tasks. It can hilp the user choosing a proper distribution strategy. 
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Code generate?: generating the evaluator. 
Developer utilities: helping the user developing semantic functions. 
Execution utilities: helping the user configuring and executing the generated 

system. 
The development process can be run on the host compiler. We mention that some 
suggestions to develop parallel compiler-compilers can be found in [3]. As can be 
seen, the structure of the compiler-compiler is very similar to the structure of a 
sequential system. 

&A Technical Issues 
We have started the implementation of the parallel compiler development envi-
ronment with developing a small prototype for semantic check of a simple block 
structured language. Using the prototype, we get a statement by statement specifi-
cation of the generated system as well as the kernel of the compiler. We implement 
it in parallel C running on a network of 16 T8000 processors. 

Meanwhile an attribute grammar specification of the metalanguage is under 
development. We will generate the metalanguage parser from this specification 
using the compiler generator PROF-LP. The whole system will run on IBM PC 
under DOS, the implementation language is Turbo Pascal. As the host computer 
of our transputer is a Unix machine we have to transfer the generated compiler to 
the host. It may cause some technical problems. 

The implementation of the whole system needs a lot of time and manpower. 
Practical experiences will be available after the completion of the implementation. 

5 Final Remarks 
In this paper we considered the problem of developing parallel compilers running 
on transputer architecture. Our most important conclusion is that we should give 
a lot of freedom to the user during developing such compilers. Only the user has 
enough knowledge to make basic decisions on attribute distribution. However some 
steps of development can be done automatically. Moreover we can help the user's 
work with the results of some test algorithms. 

We stated the most important requirements for a compiler-compiler for devel-
oping parallel compilers. The basic structure of the compiler and the compiler-
compiler has been described. 

The first version of the system is under implementation now. Moreover we 
should consider the following questions in the future. 

o How our generated semantic analyser can be combined with parsing? The 
results of Klein and Koskimies [13], [14] also may help solving this problem. 

o Which meuhods and algorithms can be used in parallel compilers? For ex-
ample what kind of symbol table handling methods are suitable? Have these 
methods any consequence for the structure of the compiler? 

o The basic motivation of our research was to contribute in developing softwares 
for IDIOMS machine. We should go on in this direction as well. 

o It is also important to find other application fields, where a compiler running 
on transputer is suitable and efficient. 

Finally we thanks to Lajos Schrettner for his valuable remarks and suggestions. 
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Correction 
I am very sorry to inform our readers that the footnote on page 121 of the paper 

Mealy-automata in which the output-equivalence is a 
congruence 

I. Babcsanyi A. Nagy 

appeared in Volume 11 Number 3 of Acta Cybernetica, was edited by mistake, and 
it actually belongs to another paper. The correct footnote to the above mentioned 
paper is "This work was supported by the Hungarian National Foundation for 
Scientific Research (OTKA) grant No. 7608." I apologize both the authors and 
the readers. 

Zoltán Fülöp 
Managing Editor 
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Correction 
I am very sorry to inform our readers that the references on page 332 of the 

paper 

Invariance Groups of Threshold Functions 

E. K. Horváth 

appeared in Volume 11 Number 4 of Acta Cybernetica, were misprinted. Hereby 
we provide the proper form of it. 
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