
Volume 12 Number 1

ACTA
CYBERNETICA

Editor-in-Chief: J. C s i r i k (Hungary)

Managing Editor: Z. Fülöp (Hungary)

Assistants to the Managing Editor: P. Gyenizse (Hungary), A. Pluhár (Hungary)

Editors: M. Arató (Hungary), S. L. Bloom (USA), W . Brauer (Germany), L. Budach
(Germany), R. G. Bukharaev (USSR), H. Bunke (Switzerland), B. Courcelle (France),
J. Demetrovics (Hungary), B. Dömölki (Hungary), J. Engelfriet (The Netherlands),
Z. Ésik (Hungary), F. Gécseg (Hungary), J. Gruska (Slovakia), H. Jürgensen (Canada),
L. Lovász (Hungary), Á. Makay (Hungary), A. Prékopa (Hungary), A. Salomaa (Finland),
L. Varga (Hungary)

Szeged, 1995

Editor-in-Chief: J. Csirik
A. József University
Department of Computer Science
Szeged, Árpád tér 2.
H-6720 Hungary

Assistants to the Managing Editor:

P. Gyenizse
A. József University
Department of Applied Informatics
Szeged, Árpád tér 2.
H-6720 Hungary

Board of Editors:

M. Arató
University of Debrecen
Department of Mathematics
Debrecen, P.O. Box 12
H-4010 Hungary
S. L. Bloom
Stevens Institute of Technology
Department of Pure and
Applied Mathematics
Castle Point, Hoboken
New Jersey 07030, USA

W. Brauer
Institut für Informatik
Technische Universität München
D-80290 München
Germany

L. Budach
AdW
Forschungsbereich Mathematik
und Informatik
Rudower Chaussee 5
Berlin-Adlershof
Germany

R. G. Bukharajev
Kazan State University
Department of Applied Mathematics
and Cybernetics
Lenin str. 18., 420008 Kazan
Russia (Tatarstan)

H. Bunke
Universität Bern
Institut für Informatik und
angewandte Mathematik
Längass strasse 51., CH-3012 Bern
Switzerland

B. Courcelle
Université Bordeaux-1
LaBRI, 351 Cours de la Libération
33405 TALENCE Cedex, France

J. Demetrovics
MTA SZTAKI
Budapest, P.O. Box 63
H-1502 Hungary

Dömölki Bálint
IQSOFT
Teleki Blanka u. 15—17.
H-1142 Hungary, Budapest

Managing Editor: Z. Fülöp
A. József University
Department of Computer Science
Szeged, Árpád tér 2.
H-6720 Hungary

A. Pluhár
A. József University
Department of Computer Science
Szeged, Árpád tér 2.
H-6720 Szeged

J. Engelfriet
Leiden University
Computer Science Department
P.O. Box 9512, 2300 RA LEIDEN
The Netherlands
Z. Esik
A. József University
Department of Foundations of
Computer Science
Szeged, Aradi vértanúk tere 1.
H-6720 Hungary
F. Gécseg
A. József University
Department of Computer Science
Szeged, Aradi vértanúk tere 1.
H-6720 Hungary
Prof. J. Gruska
Institute of Informatics/Mathematics
Slovak Academy of Science
Dúbravska 9, Bratislava 84235
Slovakia
H. Jiirgensen
The University of Western Ontario
Department of Computer Science
Middlesex College
London, Ontario
Canada N6A 5B7
L. Lovász
Eötvös Loránd University
Budapest
Múzeum krt. 6—8.
H-1088 Hungary
Á. Makay
A. József University
Computet; Center
Szeged, Árpád tér 2.
H-6720 Hungary
A. Prékopa
Eötvös Loránd University
Budapest
Múzeum krt. 6—8.
H-1088 Hungary
A. Salomaa
University of Turku
Department of Mathematics
SF-20500 Turku 50
Finland
L. Varga
Eötvös Loránd University
Budapest
Bogdánfy u. 10/B
H-1117 Hungary

Acta Cybernetica, Vol. 12, No. 1, Szeged, 1995

Generalized DOL trees*

Lila Kari* Grzegorz Rozenberg* Arto Salomaa '

Abstract
Infinite unlabeled trees having a finite number of different subtrees (also

called infinite regular trees) arise in a natural way from a DOL system which
also gives a natural labeling for the tree. A much more compact representation
for the tree often results from a DOL system with fragmentation.

Keywords: formal languages, DOL system, fragmentation, tree labeling.

1 Introduction
One of the simplest, if not the simplest, models extensively investigated in the
theory of computing is the DOL system. By definition, a DOL system is a triple
G = (E, h, to), where E is a finite alphabet, h : E*—»E* is a morphism, and to € E*
is a word (usually called the axiom). The DOL system G generates the sequence
5(G) of words tt>oi f i , u>2> • • •» where

wq = w and Wi = h'(w) = /i(u>j_i) for » > 1.

Thus, 5(G) is obtained from the axiom by iterating the morphism. (Our exposition
is largely self-contained. If need arises, [3] can be consulted, [lj and [4] are some
of the recent papers concerning DOL systems.)

As an example, consider the DOL system with the alphabet E = {a, 6}, axiom
w = a and the morphism h defined by the rules

a—•£>, b—>ab.

This is the well-known 8 Fibonacci system", where the lengths of the words in the
generated sequence

a, b, ab, bab, abbab, bababbab,...
form the sequence of Fibonacci numbers. The following tree, labeled by the letters
of E, depicts the generation process:

'Research partially supported by the Academy of Finland, project 11281. All corre-
spondence to Lila Kari.

^Department of Mathematics, University of Western Ontario, London, Ontario, N6A
5B7 Canada

^Department of Computer Science, Leiden University, 2300 RA Leiden, The
Netherlands

'Academy of Finland and Department of Mathematics, University of Turku, 20 500
Turku, Finland

1

2 Li/a Kari, Grzegorg Rosenberg, Arto Salomaa

a

b

•7\
/ /\

a 6

Figure 1.

For the DOL systems G considered in this paper, we assume that |tu| = 1 (that
is, the axiom is a letter) and that h is nonerasing (that is, we are dealing with
PDOL systems). These assumptions guarantee that tne sequence 5(<7) can always
be represented as an infinite tree labeled by letters of E, where all branches continue
ad infinitum.

Remark. If we allow ltu| > 1, we are dealing with forests instead of trees. An
additional letter used only as the axiom brings us back to trees. Moreover, our
main result remains valid for general DOL systems as well. Consequently, our
assumptions do not exclude any interesting cases.

Infinite (labeled) trees obtained in the way described above are referred to as
DOL trees. The formal definition of a DOL tree should be clear and is omitted
here. It is also clear that if you begin with an infinite unlabeled tree that possesses
only finitely many different subtrees (such trees are often referred to as regular),
then you can label it with finitely many labels and view the result as a DOL tree.
The labels constitute the alphabet of the corresponding DOL system.

The arity of each letter is the length of the right side of the rule for the letter.
Regular trees play a central role in the theory of automata, nonrecursive pro-

gram schemes, etc. Such matters are of no direct concern to us in this paper.
For the sake of later reference, we summarize the above discussion in the following
lemma. Thus, an infinite unlabeled tree is regular if it possesses only finitely many
different subtrees. The unlabeled version of a DOL tree is obtained from a DOL
tree by removing the labels.

Lemma 1.1 The unlabeled version of a DOL tree is regular. Conversely, every
regular tree can be labeled to become a DOL tree.

If we do not make the convention above (to the effect that all branches of the trees
continue ad infinitum), then the DOL systems should containg also erasing rules.

As a further example, consider the tree

Generalized DOL trees 3

x

A
X X

/ I
X X

/ I
X X

/ 1 I
X X X

/ I I
X X X

Figure 2.

Thus, a new branch is born at every third node of the stem. Clearly, the DOL
system with the axiom a and the rules

a—•6d, b—>c, c—>a, d —

provides the labeling.
Let us modify the example in such a way that the new branches are born at

nodes whose distance from the root is a prime number. Then it is not possible to
label the tree in such a way that it becomes a DOL tree. Indeed, infinitely many
different subtrees arise.

2 Fragmentation
Consider the DOL system with the axiom a and rules

(1) a—*bc,b—*bd.c,c—>b<Pc,d—*bd*c.

The beginning of the tree is as in Figure 3. We obviously need four labels for
the simple reason that we have nodes of four different degrees; 2, 3, 4 and 6.

Figure 3.

4 Lila Kari, Grzegorz Rodenberg, Arto Salomaa.

However, we can represent the tree in the following much more compact way.
The idea resembles DOL systems with fragmentation, introduced originally in [2].

Assume that the alphabet E contains a special letter viewed as a marker
or separator. Then we speak of #-guarded subwords of words y over E. They are
the maximal parts of y separated by For instance, if y = ab#a#bab#b, then
the guarded subwords are at, a, bob, b. Formally, a word x not containing # is
a guarded subtuord of y iff is a subword of

Consider a marked DOL systemG# = (E, h, to), where the alphabet contains the
marker for which the rule is # — (A l s o now we assume that h is nonerasing
and |tu| = 1.) We now associate to a tree labeled by words over (E — { # }) * .
The labels of the tree will be the guarded subwords of the words in S(G#). In
this process, several consecutive # ' s will be identified with one Trees obtained
in this fashion will be referred to as generalized DOL trees. Let us consider some
examples.

If the marker # does not occur in the sequence, the generalized DOL tree has
no branches. The generalized tree associated to the Fibonacci system is:

a

b

ab

bab

abbab

a

Figure 5.

Generalised DOL trees 5

We observe that the unlabeled tree is exactly the same as the one considered
at the beginning of this section. Thus, in place of (1), we have obtained the much
more compact representation (2)!

The term " generalised" can be justified as follows. An ordinary DOL system
G can be transformed into a marked one G# by separating all letters on the right
sides of the rules with the marker Since the axiom is a singleton letter, all
labels of the resulting tree are singletons. Then the unlabeled versions of the DOL
tree associated to G and the generalized DOL tree associated to G# coincide.
Consequently, the following result holds true.

Lemma 2.1 The unlabeled version of every DOL tree equals the unlabeled version
of a generalized DOL tree.

Our main purpose is to prove the converse of Lemma 2.1. Thus, the unlabeled
versions of DOL trees and generalized DOL trees coincide. However, in general,
a marked DOL system provides a much more compact representation for the tree
than a DOL system.

By Lemma 1.1, it suffices to prove that, given a marked DOL systems G#,
there is a constant k such that all words appearing as labels in the generalized tree
are of length less than k. Unfortunately, as such this claim is not true. Any DOL
system generating an infinite language and not containing at all the marker # in
its sequence, such as the Fibonacci system, provides a counterexample. Another
counterexample is provided by the system with the axiom a and the rules

(3) a—•6#a&, b—>b2.

The generalized DOL tree is in this case

a

b2 b ab3

/ 7 7\
b* 6 2 b ab7

Figure 6.
However, in both cases our claim holds true. The above tree is generated by

the DOL system with the axiom a and rules a—>ba, b—»6. The generalized tree
of the Fibonacci system is generated by the DOL system with the axiom a and the
rule a—•<».

The tool for obtaining a constant k as described above is to eliminate the un-
bounded growth by transforming the given marked DOL system G# into a marked
system with the same (unlabeled version of the) generalized tree. We say that a
letter b of G# is useful if for some words u and v (that is, h*(b) = u#u,
for some u, v, t). Otherwise, b is useless. Thus, the sequence starting from a useless
letter does not contain the marker Clearly, usefulness is a decidable property.

6 Li/a Kari, Grzegorg Rosenberg, Arto Salomaa

The useful variant G'^ of a marked DOL system G# is constructed as follows. If
all letters appearing in S(G#) are useful, then G'^ = G#. If all letters are useless,
then the axiom of is a and a—>a is the only rule. If every guarded subword
of the right-hand sides of the rules contains a useful letter, then to get we
simply remove from G# all useless letters and their occurrences in the rules. The
case remains, where S(G#) contains useful letters but some ^-guarded subword of
the right-hand side of some rule consists of useless letters. To get G'^, we also now
first remove from G# all useless letters and their occurrences in the rules. Then
we add a new. letter c with the rule c—*c. Finally, all ^-guarded subwords that
previously consisted of useless letters are replaced by c.

For instance, if G# is defined by the rules (3), G'^ will be defined by the rules

o—>c#a, c—>c.

If G# has the axiom a and the rules

a—+d#bcc#d, b—>a?d#ab, c—>cd, d—>dcd,

then G^ will be defined by the rules

a—>c#6#c, 6—>a2#ab, c —

The following result is immediate by the construction of G'^.

Lemma 2.2 If is the useful variant of a marked DOL system G#, then the
unlabeled versions of the generalized DOL trees associated to G# and G'^ coincide.

3 The main result
We will establish in this section the converse of Lemma 2.1.

Theorem S.l The unlabeled version of every generalized DOL tree equals the un-
labeled version of a DOL tree. Moreover, given a marked DOL system producing a
generalized tree, the corresponding DOL system can be effectively constructed.

Thus, every tree possessing a compact representation (2j is a DOL tree, (as far
as the unlabeled versions are concerned) and the corresponding DOL representation
(1) can be effectively constructed. Let us discuss still a more sophisticated example.

A marked DOL system G# has the axiom a and rules

a—>a#ab#ab2, b—>a.

Observé first that both a and b are useful and, thus, = Since the generalized
tree is quite involved,'we give it in parts, continuing the process as long as new
labels are born:

Generalised DOL trees 7

a ab ab2

ab

a ab ab2a

a ab ab2a2 a ab ab2a3 ab ab2

b2a2

ab ab2a3 ab

ab2a3

ab a b2a3 ab ab2a ab ab2a ab ab2

Figure 7.

Thus, if we denote the six labels appearing at the roots by a, b, c, d, e, / , we
obtain the rules of the corresponding DOL system:

a—*abc b—*abd, c—>abe,
d—*abfbc, e—*abfbdbc, d—wbfbdbdbc.

We will now establish our Theorem. By Lemma 2.2 we may restrict the attention
to useful variants. We have to show that a constant k can be effectively computed
from the system such that all labels in the generalized tree are shorter than k. More
specifically, we have to establish the following result.

Lemma 3,1 Assume that is a marked DOL system coinciding with its useful
variantr = G'^. Then a constant k can be effectively computed such that the
length of every label in the generalized DOL tree of G# is at most k.

Proof. The alphabet E contains at most one useless letter, c. Let E' be the subal-
phabet obtained by excluding # and c, and let r be the cardinality of E'. Thus, all

8 Li/a Kari, Grzegorg Rosenberg, Arto Salomaa

letters of E' are useful. Define the rank of a letter o € E' to be the smallest integer
k such that hk(a) contains an occurrence of Clearly, the rank can be effectively
computed and every letter is of rank < r.

Consider the lengths of ^-guarded subwords of the words h(a) when a ranges
over letters of rank 1. Let mi be twice the maximal length. Define further

m2 = max{|/i(a)| | a is of rank > l } ,
M = max{mi, m-i}.

We claim that we can choose

jfc = AT + AT" 1 + . . . + M = (Mr - l)M/(M - 1).
Let v be a label in the generalized DOL tree. We have to estimate |v| and show

that |u| < k. Clearly, we may assume that v is not the label of the root. Hence, v
is a ^-guarded subword of h{v), where t) is in the sequence The situation
can be depicted as follows, with v = U1U3U2:

t»i v' 02

"1 U3 u2 # s

Figure 8.
Here every letter of 1/, if any, is of rank > 1, and 01, <12 are letters of rank 1.

Thus, we look how the ^-guarded subword v is created, ai and a2 may also produce
something else beyond the marker One of them (or both) may be missing if we
are dealing with a prefix or suffix. We obtain the estimates

|«i| + |«a| < mi an (l |«3| ^ ma|i/|
and, consequently,

\v\,< M -\v'\ + M.
We now estimate similarly the length |v'|. (In fact, we obtain an upper bound

for an eventually longer word that contains also alt a2 and maybe still a prefix.and
suffix.) By considering the preceding word in the sequence, we get an analogous
picture and the estimate

|v'| < M • |t>"| + M,
where the letters of v", if any, are of rank > 2. Consequently,

|t>| < M[M • |t/'| + M) + M = M2 • |t>"|.+ M2 + M.
Continuing in the same way, we obtain

M < AT|t;(r)| + AT + M r ~ l + . . . + M,

where every letter in , if any, is of rank > r. But there are no letters of rank
> r. Thus, «(') is the empty word and, consequently,

\v\ < Mr + A T - 1 + . . . + M = Jfc.
This concludes the proof of Lemma 3.1 and also the proof of our Theorem. q

Generalised DOL trees 9

Consider the example discussed at the beginning of this section. We obtain

r = 2, mi = 2 - 3 = 6, m2 = 1, M = 6, k = 42,

whereas in the actual construction the maximal word length was 6. Indeed, our
bound k can be improved. For instance, in the definition of mi it suffices to consider
the sum of the lengths of the maximal ^-guarded prefix and suffix, rather than twice
the maximal word length. This improvement gives mi = M = A, k = 20.

4 Conclusion
We have introduced a compact way of representing certain infinite trees. The
method uses DOL systems with fragmentation and leads to trees whose nodes
are libeled by words. Although the lengths of such words may grow beyond all
bounds, the unlabeled versions of the trees are still regular and, thus, possess a
DOL representation. However, the loss in compactness in the transition to the
DOL representation can be enormous.

We do not investigate in this paper the complexity issues involved or for which
classes of trees the new representation is especially suitable. We conclude with the
following result along these lines. The result is easily established by extending the
example of the preceding section, for values of r > 2, to contain the rules

a — a # a f c # a 6 2 # . . . #a6r, 6—>a.

Lemma 4.1 For each r > 2, there is an infinite unlabeled tree T such that (i) T is
the unlabeled version of the generalized DOL tree of a mhrked DOL system with £
letters, and (iij T is not the unlabeled version of the tree of any DOL system with
< r letters.

References
[1] J.Dassow, G.Paun and A.Salomaa. On the union of OL languages. Information

Processing Letters 47 (1993) 59-63.

[2] G.Rozenberg, K.Ruohonen and A.Salomaa. Developmental systems with frag-
mentation. International Journal of Computer Mathematics 5 (1976) 177- 191.

[3] G.Rozenberg and A.Salomaa. The Mathematical Theory of L Systems. Aca-
demic Press, New York (1980).

[4] A.Salomaa. Simple reductions between DOL language and sequence equivalence
problems. Discrete Applied Mathematics 41 (1993) 271- 274.

Received January, 1995

Acta Cybernetica, Vol. 12, No. 1, Szeged, 1995

On isomorphic representation of
nondeterministic tree automata*

B. Imreh *

Abstract
In this paper we deal with isomorphically complete systems of finite non-

deterministic tree automata with respect to the general product and the cube-
product. In both cases characterizations of isomorphically complete systems
are presented which imply that the general product and the cube-product are
equivalent regarding isomorphic completeness.

In the theory of finite automata it is a central problem to characterize such
systems from which any automaton can be represented isomorphically or homo-
morphically under a given composition. Such systems are called isomorphically,
respectively, homomorphically complete with respect to the composition consid-
ered. FVom the practical point of view, finite complete systems have great impor-
tance. The first composition admitting finite isomorphically complete systems was
introduced by V. M. Glushkov in [71, who gave a characterization of the isomor-
phically complete systems. Later F. Gécseg [2] introduced a product hierarchy, the
»¿-products, t = 0,1, . . . , and Z. Ésik [1] proved that, from the point of view of ho-
momorphic completeness, Glushkov's composition is equivalent to the »¿-product
for t > 2. Regarding isomorphic completeness, it turned out that there is no finite
isomorphically complete system with respect to any of the Qj-products. A system-
atic account of the results on »¿-products including the ones mentioned above can
be found in the monograph [3].

The first generalization of Glushkov's result to tree automata was given by M.
Steinby in [10]. The generalization of the notion of finite automata to trees has a
rigorius mathematical discussion in [6]. Another generalization of Gluskhov's result
to nondeterministic automata is given in [4]. In this paper we extend this result
to nondeterministic tree automata. Namely, we define the Glushkov-type product
of nondeterministic tree automata and characterize the isomorphically complete
systems with respect to this composition. Our characterization implies the existence
of finite isomorphically complete systems of nondeterministic tree automata with
respect to this product.

The cube-product, which is a simpler composition than Glushkov's one, was
introduced in [8] where a characterization of the isomorphically complete systems

"This research has been supported by the Hungarian Foundation for Scientific Research,
(OTKA), Grant 2035 and by the Hungarian Cultural and Educational Ministry, (MKM),
Grant 434/94.

department of Informatics, A. József University Árpád tér 2, Szeged 6720, Hungary

11

12 B. Imreh

with respect to this product was presented as well. From this characterization
it follows that the Glushkov-type product and the cube-product are equivalent
regarding isomorphic completeness.

The generalisation of the cube-product to tree automata and the characteriza-
tion of the isomorphically complete systems with respect to it is given in [9]. A sim-
ilar generalization and characterization for nondeterministic automata is presented
in [5]. In both cases the characterization of the isomorphically complete systems
implies that the Glushkov-type composition and the cube-pruduct are equivalent
regarding isomorphic completeness. Here we generalize the cube-product to non-
deterministic tree automata and give a characterization of the isomorphically com-
plete systems with respect to it. Our characterization shows that the cube-product
and the Glushkov-type product are equivalent regarding isomorphic completeness
for the class of nondeterministic tree automata, too.

To start the discussion, we introduce some notions and notations. By a set
of relational symbols we mean a nonempty union E — E i U ^ U " - ! where E m ,
m = 1,2, . . . , are pairwise disjoint sets of symbols. For any m > 1, the set E m
is called the set of m-ary relational symbols. It is said that the rank or arity of a
symbol < 7 € E i s m i f < r € E m . Now let a set E of relational symbols and a set R of
positive integers be given. R is called the rank-type of E if for any integer m > 0,
E m ^ 0 if and only if m € R. In the sequel we shall work under a fixed rank-type
R.

Now let E be a set of relational symbols with rank-type R. By a nondetermin-
istic H-algebra A we mean a pair consisting of a nonempty set A and a mapping
that assigns to every relational symbol <r 6 E an m-ary relation aA C Am, where
the arity of a is m. The set .A is called the set of elements of A and aA is the real-
ization of a in A. The mapping a —» aA will not be mentioned explicitly, we only
write A — E). For any m 6 R, a S E m , (o i , . . . , o m _ i) e we denote by
(o i , . . . , am-i)<rA the set {o : o 6 A & <rA (a i , . . . , a m _ i , a)}. If (« i , . . . , am-i)aA

is a one-element set {a} , then we write (o i , . . . , am_i)crA = a.
It is said that a nondeterministic E-algebra A is finite if ¿4 is finite, and it is

of finite type if E is finite. By a nondeterministic tree automaton we mean a finite
nondeterministic algebra of finite type. Finally, it is said that the rank-type of a
nondeterministic tree automaton A — (A, E) is R if the rank-type of E is R.

Let A = [A, E) and B = (B, E) be nondeterministic tree automata with rank-
type R. B is called a subautomaton of A if B C A and, for all m € R and a S E m ,
aB is the restriction of aA to Bm. A one-to-one mapping fi of A onto B is called
an isomorphism of A onto B if oA(a\ am) if and only if aB (/ i (o i) , . . . , / i (am)) ,
for all m £ R, (o i , . . . , o m) € Am, a 6 Em . In this case it is said that A and
B are isomorphic. It is easy to see that fi is an isomorphism of A onto B if and
only if (o i , . . . ,am-i)aAfi = (/i(a1),...,Ai(am_i))crB holds, for all m € R, a e E m ,
(o1,...,am_1) e Am~K

Now let us denote by Ua the class of all nondeterministic tree automata with
rank-type R. A composition of nondeterministic tree automata from il R can be
represented as a network in which each vertex denotes a nondeterministic tree
automaton and the actual relation of a component automaton may depend only on
those automata which have a direct connection to it.

In order to define this notion of composition let X) denote an arbitrary nonempty
fixed set of finite directed graphs. We assume that the vertices of any graph in V
having n vertices are denoted by the numbers 1 , . . . , n. Let A = (A, E) 6 llji and

€ Ur , j = 1 , . . . , n. Furthermore, take a family ty of mappings

Oil isomorphic representation of nondeterministic tree automata 13

$nj:(A,x...x4)m-1xEB^i:W meB, l < j < n .

It is said that the nondeterministic tree automaton A is a®-product of the automata
Aj, j = 1 , . . . , n, with respect to ¥ if the following conditions are satisfied:

(i) a = IIUa>

(ii) there exists a graph D = ({ 1 , . . . , n}, E) in 3) such that for any m € R,
j 6 { l , . . . , n } and ((a U) . . .) o i „) , . . . , (o m _ i i a m _ i „)) e A m _ 1 , the
mapping Vlmj is independent of the elements (H,,t = 1 , . . . , m— 1, if (a, j) & E,

(iii) for any m 6 Í , a 6 E m and

((<»11 <*ln) (O m - l l i • • • I °m—In)) € Am~l,

((<»11» • • • , Oln) (« » m - l l i • • • I a m - i n)) (T A =

(a i i . - . - . a m - i i) ^ ? 1 X . . . X (a 1 „ , . . . , a m _ l f l) < T ^

where

<Ty = ^,»>((<»111 •• a l n) > •• •> (a m - l l , • • • I a m - l n) | f) i j = 1, . . . , n .

We shall use the notation
n

i-1
for the product introduced above. In particular, if Aj, j = 1 , . . . , n, are identical
copies of some nondeterministic tree automaton B, then we speak of a general power
and we write S"(E, D) for I]"=i £)•

Let 33 be a system of nondeterministic tree automata from 11 R. It is said
that 03 is isomorphically complete for UR with respect to the V-product if any
nondeterministic tree automaton from IL R is isomorphic to a subautomaton of a
$ -product of nondeterministic tree automata from 03.

In the sequel we shall need a special two-state nondeterministic tree automata.
For every m G R, let us assign a symbol to each m-ary relation on {0,1}. Let E m
denote the set of these symbols and let £ = UmEfl Define the nondeterministic
tree automaton Q = ({0,1}, 2) such that, for every m e R and a € £ m , is the
corresponding m-ary relation.

Now let V be the set of all finite directed complete graphs having as vertices the
sets {1, . . . , n } , n = 1,2 Then the V -product is equal to the Glushkov-type
product which is also called general product. We note that in this case the finite
directed complete graphs are considered as possible networks. Since n determines
the corresponding complete graph uniquely, we omit the graph component from
the notation of the general product.

Regarding the general product, the following statement can be proved easily.

14 B. Imreh

Lemma. Let A = (A , E) G Xy = (A y , E<J>) G i l « , j = 1 n, and
Bit = (B y t , E (, < ') G UR, t = l , . . . , t ' y , j = 1, ...,n. If A is isomorphic to a
subautomaton of a general product Ily=i an^> for eac^ 3 e Oi • • • >n)'
is isomorphic to a subautomaton of a general product fltsi then A
is isomorphic to a subautomaton of a general product of the nondeterministic tree
automata Syt, t= 1 , . . . ,ty, j = 1 , . . . , n.

The following theorem provides necessary and sufficient conditions for a system
of nondeterministic tree automata from U^ to be isomorphically complete for lift
with respect to the general product.

Theorem 1. A system ® of nondeterministic tree automata from is iso-
morphically complete for UR with respect to the general product if and only if, for
all m G R and i = (¿ i , . . . , » m) G \0, l } m , ® contains a nondeterministic tree
automata A = (A'1 ' , E'1 ') satisfying the following conditions:

(1) A& has two different elements Oq^ and aft,

(2) there exists a 9} G with (aj a ' ^ J ^ flrfUP} = {*£}.

(3) for all u G R and B = (s i , . . . , s u _ i) G {0, l } " - 1 , there is a aj B G e(,1) for

which {al^.al1'} C (oii',..., ai^.i)^!1' provided that u / 1, and there is a

at G E p with { a ^ ' . a ^ } C a.**"' if 1 G R and u = 1.

Proof . In order to prove the necessity, let us suppose that B is an isomorphically
complete system of nondeterministic tree automata for Ur with respect to the
general product. Then there are AJ = (A y , G Ur, J = 1, . . . , n , such that §
is isomorphic to a subautomaton A = (A, 2) of a general product Ily=i
Let /i denote a suitable isomorphism and let

M(0) = (ooi i " - .oon) and a»(1) = (a 1 1 , . . . , o l n) .
Let us denote by K the set {A:: 1 < k < n &i ao* ^ aifc}- Obviously, K ^ 0. Now
let

m G R and (t'i, < * > ,t'm) G {0, l } m be arbitrarily fixed elements. We distinguish
two cases depending on m.

First let us suppose that m / 1. By the definition of Q, there is a 9 G £ m with
(»x,.. .,im-i)9& = im. Since n is an isomorphism, this yields

(f i (i 1) , . . . , / l (i m - i)) 9 A = M (» m) .

Therefore, Ojmfc G (a , - , . . . , * holds, for all A: G K, where

9k = ^mfcUaiji, • • • >a»,n)i • • • i (^ „ - i i i • • • >Oim-inli
But then there exists at least one index I G K such that

Oil isomorphic representation of nondeterministic tree automata 15

Now let 1 ^ u e R and 8 = (s i , . . . , a „ - i) € {0 ,1 } U _ 1 be arbitrary. By the
definition of Q, there exists a <r8 G S u with (a i , . . . , au_i)<7g = {0,1}. Since p is
an isomorphism, this implies

{m(0),M(1)}.

Then {a0fc, a ^ } C (a , ^ , . . . , a , ^ ^) ^ holds, for all A; G i f , where

fs . fc = ^ u f c ((o . , l , • • • I « (, n) (a « . - i l . • • •) <*t*- in) ,<7s)-

Therefore, {oo/ ,ou} C (a , , / , . . . , o«._ li)a8,'c If 1 £ and u = 1, then, by the
definition of there is a a* e £ i with a* = {0,1}. But then a*A = (/i(0), /x(l)},
and so, {a0fc,aifc} C a*Ak, for all k 6 K, where tr^ = iik((7*). Thus {ooi ,ou} C
<r^Al. This ends the proof of the necessity in the case m / 1.

Let us assume that m = 1. By the definition of Q, there is a 9 e with
= t*i. But then 9A = /¿(t'i). Therefore, a^fc € is valid, for all k 6 K, where

9k = From this it follows that there exists at least one I e K such that

Now let u 6 R and a = (« i , . . . , s u - i) £ {0, l } " - 1 be fixed arbitrarily. In a similar
way as above, it is easy to see that there is a aB<i € £ „ ' such that {a0(, an} C
(a , , / , . . . , a4._,i)(7g'(if u / 1, and there is a trj € E ^ with af A ' = (0,1} if u = 1.
This ends the proof of the necessity.

In order to prove the sufficiency, let us suppose that 03 satisfies the conditions
of Theorem 1. The isomorphic completeness of <8 is proved in two steps.

First we show that Q is isomorphic to a subautomaton of a general product of
nondeterministic tree automata from 03 . For this reason let us denote by W the set
|Jmeyj{0, l } m and let \W\ = n. Moreover, let -F denote a one-to-one mapping of
the set { 1 , . . . , n} onto W. By our assumption on 03, for any / e { l , . . . , n}, there
exists an yfW») = (a M H . E M H) e 03 satisfying conditions (1), (2) and (3) with
i = 1 (j) . Form the general product Ily=i (£, i ') in the following way.

Let A = { (a ^ » « ^) ^ * !)) fl(,W>)}. Since a(,(/)) ^ a(, (i))|
J — 1 , . . . , n, we obtain that = 2. Let us define the mapping FI of {0,1} onto A
by

M(0) = (a ^ 1 " 8 < l W 1) and M(1) = (a ^ 1 » a™"»).

Now let 1 / m G R, a G £ m , (a| t7 (1)),..., a ^ 1) G A, t = 1 , . . . , m - 1, be
arbitrarily fixed elements and let i* denote the vector (t ' i , . . . , t m _ i) . Then, for any
j G { l , . . . , n } , let

16 B. Imreh

* n (w (-T(l))
»1 '

7 id)
7*»(j).i*

fiU)

• > *m

) (•£?.". =

if I V 5 = tm and 7(j) = (t'x,.
if VaS = tm and 7 (j) (n , .
if i * ^ = {0,1},
if I V * = 0 and (7(7) = (i t , . .
or l(j) = (*li • • • 1 *m—li l))i
i f i V « = 0 and 7 (;) / (» ! , . . .

and 1 (j) ^ (» i > - > * m— 11 *•)•

• , » m - l , 0)

, » m _ l , 0)

In all other cases when 1 / m 6 R, let the value of be an arbitrarily fixed
element of Em' ' " .

If 1 € R and m = 1, then the mappings VIJ, j = 1 , . . . , n, are defined in the
following way. For any a G £1, let

=

i f f f 5 = » ' i and 7(j) = (n),
if a9 = t'i and 7 (j) ± (t'i),
if <r9=0 and (7 (j) — (0) or 7(j) = (l)) ,
otherwise.

Now consider the subautomaton A = (A, E) of the general product
Ily=i which is determined by the set A. It is easy to show that /i
is an isomorphism of Q onto the subautomaton A.

As a second step, we prove that an arbitrary nondeterministic tree automaton
from is isomorphic to a subautomaton of a general power of For this rea-
son let C = iC, E) € llfl be arbitrary with C = { c i , . . . , c r) . Let us take all the
r-dimensional column vectors with components 0, 1, and order them in lexicograph-
ically increasing order. Let Q' r) denote the matrix formed by these column vectors.
Then Q'r> is a matrix of type r X 2r over {0,1} and its row vectors are pairwise
different. Moreover, let us observe that for any subset V of the set { l , . . . , r}, there
exists exactly one index k £ { l , . . . , 2 r } such that for all t e { l , . . . , r } , t e V if
and only if = 0. Let us define the one-to-one mapping v of { c j , . . . , c r } onto
the set of the row vectors of by f(c<) = . . . , g,-^), * = 1, . . . , r . Let
A = (i/(c,) : » = l , . . . , r } . Then A C {0,1}2\ Now we define the general power
Q2 (E, i) in the following way.

Let 1 ^ m € R, a € E m , (gf'j,- • •, £ A, t = 1 , . . . , m — 1, be arbitrary
elements. In this case f(c,-t) = (gj^j, • • •, g j^)) * = 1 — 1. Let us suppose
that (C i l , . . . , c im_,)ac = { C < 1 , . . . , c „ }. Then 0 < I < r. For each j € { 1 , . . . , 2 r } ,
let us denote by Vy the set { g ^ . , . . . , 9^]}. Obviously, Vy C (0,1}, j = 1 , . . . , 2r.
Thus, by the definition of Q, there exists a <7y S £ m with (<7,-'y,..., 9<^_1y)°'y = Vr
Let us define the mappig '9m)- by

» M »

Oil isomorphic representation of nondeterministic tree automata 17

In all other cases when 1 ^ m e R, let the value of be an arbitrarily fixed
symbol from £ m .

If 1 6 R, a € Hi, j € { l , . . . , 2 r } , then the mappings ¥iy, j = l,...,2r, are
defined as follows. Let us assume that ac = \ctl,... ,c„} and define the sets Vy,
j — 1 , . . . , 2r, in the same way as above. Again, by the definition of there is a
a*- € Si with a*9 =Vj. We put

Now let us consider the subautomaton A = (A, E) of the general power
£ 3 ' (E , ¥). Then it is easy to see that v is an isomorphism of C onto A. By
our Lemma, the above isomorphic representations imply the sufficiency of the con-
ditions which ends the proof of Theorem 1.

Remark. If R = {2}, then li{2} is the class of all nondeterministic automata.
In this case our theorem gives a characterization of the isomorphically complete
systems for the class of nondeterministic automata with respect to the general
product. Therefore, Theorem 1 in [4] can be obtained as a corollary of our theorem.

In [8], n-dimensional hypercubes are used as possible networks. Now we de-
fine the product related to these networks for nondeterministic tree automata and
characterize the isomorphically complete systems with respect to this product.

To introduce the formal definition of cube-product we need some preparation.
Let n > 2 be an arbitrary integer and consider the n-dimensional hypercube. The
set of vertices of this hypercube is Sn = {0,1}" . Define the mapping An on this set
as follows: for any vector (si s„) G Sn, let

n
A„(« ! , . . . ,< „) = 1 + 5 3 « t •2№~l.

« = i

Then A„ is a one-to-one mapping of Sn onto the set { 1 , . . . , 2 n } .
Let us form the graph Dn = ({1 , . . . , 2"} , 2?„), where for any 1 < i,j < 2",

(t,y) £ En if and only if A~1 (t) is adjacent to A~1(j). For any j € {1,...., 2 n } , let
us denote by the set of all ancestors of j in Dn. Then C { 1 , . . . , 2 n } .

It is easy to see that for any n > 2 and integer j > 1,
(4) |jj.B)| = n i f l < i ' < 2 » ,

(5) J (- + i) = / ^) u 0 > 2 - } i f l < y < 2 - ,
3 \{l + 2n:le J ; " , 2 » } u { y - 2 n } if 2n < y < 2n+1.

Now let n > 2 be an arbitrary integer and let A = (A, E) € l is , A}- =
(Ay, E^^) 6 UR, y = 1 , . . . , 2". In addition, take a family ¥ of mappings

tfroy:(AiX,...,xA2.)m-1xEm^E£\ me R, l<j<2n.

It is said that the nondeterministic tree automaton A = (A, E) is a cube-product
of Aj, j = 1 , . . . , 2", with respect to ¥ if the following conditions are satisfied:

18 B. Imreh

W A =

(b) for any m 6 R, a £ E m and (o j j , . . . , a,-2») 6 IIy=i >* = 1» • • •»m — 1» the
mapping is independent of the elements at,, t = 1 , . . . , m— 1, if a ^ Jj"\

(c) for any m 6 i , a £ E m and ((an , . . . , o i 2 ») , . • •, (om-xx, • • •, Om-12»)) G
Am~l,
((an, • • • 1 «12») (orn-11 am_i2»))cr* =

(®lli • • • , " m - x x j ^ i 1 X . . . X (012», . . . , am_i2»)<T2»" >

where

<ry = i m y ((o n , . . . ,012»), . . . , (a ^ - i i ,o m _ i 2») ,o ,)) j — 1 , . . . , 2".

2*
Since n determines the hypercube uniquely, we use the notation 11/= 1 ^/(^i for
the cube-product just introduced.

Now we are ready to prove the following statement.

Theorem 2. A system ® of nondeterministic tree automata from Ur is iso-
morphically complete for with respect to the cube-product if and only if, for all
m £ R and i = (» i , . . . t m) € {0, l } m , ® contains a nondeterministic tree automata
/{W = (A'1 ' , E'1 ') satisfying the following conditions:

(6) has two different elements a^,1' and a^,

(7) there exists a aj £ with (o f f , . . . , a g j a ^ ' a ? } = { a g } ,

(8) for all U £ R and B = (ai , . . . , « „_ i) € {0 ,1 } U _ 1 , there is a <tj g € E^

for which (a^1', a'j1'} C (a i ' ' , . . . , provided that u / 1, and there tj

a? £ E ^ with { a ^ . a p } C aTA(1) if 1 £ R and u = 1.

Proof . The necessity follows from the proof of Theorem 1. In order to prove the
sufficiency, let us denote by W the set Umeie{®>^}m an<^ W = X(»i, - - • > *m) :
(t'i tm) G W ic im = 0). Let = n and let 7 denote aone-to-one mapping of
the set {1 n} onto W. Then, by our assumption on © , for any p £ { l , . . . , n),
there exists a nondeterministic tree automaton = (.A^^)', £ <8
satisfying conditions (6), (7) and (8) with i = (t i , . . . , t m) = l(p), where t m =
0. For the sake of simplicity, let us denote by 0, 1 the elements ag1^^,
respectively, for all p £ { 1 , . . . , n}.

Now consider the matrices Q' f c ' , k = 2,3,. . . , introduced in the proof of Theo-
rem 1. In our argument we make use of some properties of these matrices. First
let us observe that

On isomorphic representation of nondeterministic tree automata 19

(9) Q(fc+1) = (q°) Qw)

where 0 and 1 denote the costant vectors of size 1 x 2 * with components 0 and 1,
respectively. On the other hand, it can be seen (cf. [8] or [9]) that

(10) for any A; > 2 and 1 < j < 2k, the k + 1-tuples (¿J*, g j j j , . . . , qjV),
t = 1 , . . . , k, are pairwise different where { / i , . . .,]k} = J^ •

Now using (5), (9) and (10), it is easy to see that

(11) for any Jb > 2, k > s > 1, 1 < j < 2k, the Jfc-tuples (qltV,...,
t = 8 + 1 , . . . , k, are pairwise different where { j i , . . . , jk} = J^.

Now let C = ({ c i , . . . , c r } ,E) be an arbitrary nondeterministic tree automaton
from UR. We prove that C is isomorphic to a subautomaton of a cube-product of
nondeterministic tree automata from 03 .

For this purpose, let us denote by s the least positive integer with n < 2". Let
k = r + 8. Delete the first a rows of Q W . Then, by (9), the resulting matrix
consists of 2* copies of Q ' r ' in its partitioned form. Let Q denote this matrix. For
the sake of simplicity, let us denote by qi}-, t = 1 , . . . , r, j = 1 2fc, the elements
of Q. Then from (11) it follows that

(12) for any 1 < j < 2h, the fc-tuples (qt}l,..., qt)k), t = 1 , . . . , r, are pairwise
different where = {ji, • • •, jk}-

Let us define the one-to-one mapping ft of { c i , . . . , c r } onto the set of the row vectors
of Q by n(ci) = qi2k), i = 1 , . . . , r, and let B = {/i(c<) :»' = 1 , . . . , r} .

Form the cube-product

20 B. Imreh

;J(T(1)) X . . . X yjW1)) X . . . X ^("»("M X . . . X >ji"»(n)) X
2 ' time» 2r times

X ¿t^t1» X X Allll)\{i:,
2*-n2' *i«nes

in the following way. Observe that
BCA =

= A^ 1 » x ... x A^ 1 » x . . . x A^<">) x ... x A ^ " » x A^ 1 » x ... x A«"»«1» . .. ' > •• N -. '

Now let 1 ji m € R, a e S m , (f c . j , . . . , qit2k) <= B, t = 1 m - 1, be
arbitrary elements. Then /¿(c,-,) = . . .). t = 1 , . . . , m — 1. Let us assume
that (ci4 c,m_,)ff c = { c „ , , . . . ,c0 (} . Then 0 < I < r. By the structure of Q,
there exists exactly one integer d S { 1 , . . . , 2 r } such that for each p € { 1 , . . . , 2*},
the following assertion is valid:

for all t e (1 , . . . ,r} , 9t,(p-i)2'+d = 0 if and only if t € {t>! t>j}.
On the other hand, let us observe that the column vectors of Q with indices (p —
l)2r + d, p — 1, . . . ,2*, are identical copies of some r-dimensional vector over
{0,1}. Therefore, the vectors (^„(p-ija'+d 9im_1.(p-i)2'+<i)i P = 1 . - . 2 ' ,
are the copies of an (m — l)-dimensional vector (¿ i , . . . , i ' m - i) over {0, l } . Now let
i = (*'i> • • • i*m_D 0). Since i 6 W', there exists one and only one po e { l , . . . , n }
with Tf(po) = i- Let jo = (po - l)2r + Then for each j e { 1 , . . . , 2fc}, the mapping
¥my is defined by

*my((9ul, • • • . 9ii2fc)i • • •»(ftm_, l, • • •. <Hm.l2>'), <?) =

In all other cases when 1 ^ m £ i , ¥my can be defined arbitrarily in accordance
with the definition of the cube-product.

Now let us suppose that 1 6 R. Let a £ Ei be arbitrary and ac = { c 0 l , . . . , cvi}.
Then there exists again exactly one integer d 6 { 1 , . . . , 2 r } such that the following
statement holds for each p 6 { 1 , . . . , 2 ' } :

for all t e {1 , . . . , r } , gt,(p_i)2'+d = 0 if and only if t e { u i , . . . , « (} .
In this case (0) G W', and so, there is one and only one po € { l , . . . , n } with
Tf(po) = (0). Let j0 = (po ~ l)2r + d. For each j e {1,..., 2fc}, let us define the
mapping i i y as follows.

2r times V times 2*-n2r times

m— 1

if j = jo,
) if j Jo and (p - l)2 r < j < p2'

for some p € { l , . . . , 2*} .

if J = JOi
<T*M if j i jo and (p - l)2r < j < p2r for some p € { l , . . . , 2 ' } .

Oil isomorphic representation of nondeterministic tree automata 21

By (12), the mappings m e R, 1 < j < 2k, are well-defined. On the
other hand, it is easy to see that the mapping P is an isomorphism of C onto
that subautomaton of the defined cube-product which is determined by the set B.
Therefore, ® is isomorphically complete for 11 R with respect to the cube-product.
This ends the proof of Theorem 2.

Remark. In the case R — {2} we obtain a characterization of the isomorphi-
cally complete systems for the class of nondeterministic automata with respect to
the cube-product. Therefore, the main result of [5] can be obtain as a corollary of
Theorem 2.

Notice that the necessary and sufficient conditions stated by Theorem 1 and
Theorem 2 are the same which gives us the following corollary.

Corollary. A system of nondeterministic tree automata from Ur is isomor-
phically complete for 11 R with respect to the general product if and only if it is
isomorphically complete for with respect to the cube-product.

References
[1] Z. Ésik, Homomorphically complete classes of automata with respect to the

a2-product, Acta Sei. Math., 48 (1985), 135-141.

[2] F. Gécseg, Composition of automata, Automata, Languages and Program-
ming,2nd Colloquium, Saarbrücken, 1974, Lecture Notes in Computer Science
(Springer-Verlag, Berlin Heidelberg New York Tokyo) 14 (1974), 351-363.

<

[3] F. Gécseg, Products of Automata, Springer-Verlag, Berlin Heidelberg New York
Tokyo (1986).

[4] F. Gécseg and B. Imreh, On completeness of nondeterministic automata, Acta
Math. Hungarica, 68 (1995), 151-159.

[5] F. Gécseg and B. Imreh, On the cube-product of nondeterministic automata
Acta Sei. Math., to appear.

[6] F. Gécseg and M. Steinby, Tree automata, Akadémiai Kiadó, Budapest, 1984.

[7] V. M. Glushkov, Abstract theory of automata, Uspekhi Mat. Nauk, 16:5 101
(1961), 3-62 (in Russian).

[8] B. Imreh, On complete systems of automata, in: Proc. of the 2nd International
Colloquium on Words, Languages and Combinatorics, Kyoto, 1992, World Sci-
entific (Singapore-New Jersey-London-Hong Kong), 1994, 207-215.

[9] B. Imreh, On a special composition of tree automata, Acta Cybernetica 10
(1992), 237-242.

[10] M. Steinby, On the structure and realizations of tree automata, in Second Coll.
sur les Arbres an Algèbre et en Programmation Lille, 1979, 235-248.

Received October S, 1994

Acta Cybernetica, Vol. 12, No. 1, Szeged, 1995

Some Remarks on Directable Automata*

B. Imreh* M. Steinby*

Abstract
A finite automaton is said to be directable if there exists a word, a di-

recting word, which takes the automaton from every state to the same state.
After some general remarks on directable automata and their directing words
we present methods for testing the directability of an automaton and for find-
ing the least congruence of an automaton which yields a directable quotient
automaton. A well-known conjecture by J. Cera? claims that any n-state
directable automaton has a directing word of length <(n-x)5, but the best
known upper bounds are of the order 0(re*). However, for special classes
of automata lower bounds can be given. We consider a generalized form of
Cern?'s conjecture proposed by J.-E. Pin for the classes of commutative, def-
inite, reverse definite, generalized definite and nilpotent automata. We also
establish the inclusion relationships between these classes within the class of
directable automata.

1 Introduction
A finite automaton is directable if there is an input word, a directing word, which
takes the automaton from every state to the same state. (Directable automata and
directing words are also called synchronizable automata and synchronizing words,
respectively.) In this paper we discuss a variety of questions concerning directable
automata and their directing words. After the preliminaries and general remarks
of Sections 2 and 3, we present in Section 4 a method for testing the directability
of an automaton. The algorithm is based on the mergeability relation of states,
and for computing effectively this relation the inverted transition table of the au-
tomaton is used. A congruence of an automaton is directing if the corresponding
quotient automaton is directable. Such congruences were considered (under a dif-
ferent name) by Ito and Duske [ItD83] who noted that every automaton has a

'This work has been supported by the Finnish Academy of Sciences, the Turku Uni-
versity Foundation and the Hungarian National Foundation for Scientific Research, Grant
2035.

^Department of Informatics, József Attila University, Árpád tér 2, H-6720 Szeged,
Hungary

^Department of Mathematics, University of Turku, SF-20500 Turku, Finland

23

24 B. Imreh, M. Stein by

minimal directing congruence. It gives the largest directable homomorphic image
of the automaton. In Section 5 we describe an algorithm for computing the smallest
directing congruence.

Cern^ [Cer64j conjectured that an n-state directable automaton must have a
directing word of length < (n — l)2 . So far, this has been neither proved nor
disproved, and the conjecture remains the main problem in the area. The best
known upper bounds for the length of the shortest directing word are of the order
0 (n 3) (cf. [Sta69,£PR71,Pin78], for example). On the other hand, even better
bounds than (n — l)2 can be given for some special classes of automata [Pin79].
Recently, Rystsov [Rys94] proved that for commutative automata the exact bound
is n — 1. In Section 6 we give a short elementary proof of a generalized form
of Rystsov's result. The generalization corresponds to an extension of Cerny's
conjecture proposed by Pin [Pin78]. An automaton is r- directable, for some r > 1,
if it has an r- directing word which takes the automaton from every state to one of
r states which depend on the word only. Pin's conjecture claims that if 1 < r < n,
then any n-state r-directable automaton has an r-directing word of length < (n—r)2;
for r = 1 this is fierny's conjecture. In Section 7 we consider the directability and
the directing words of definite, reverse definite, generalized definite and nilpotent
automata. In each case we can give exact bounds for the lengths of the minimal
r-directing words. We also consider the inclusions and the intersections between
these classes when restricted to directable automata. In particular, it is noted that
every directable generalized definite automaton is definite.

2 Preliminaries
Although most of our notation is quite standard, some of it will be explained here
along with some general notions we shall need. The cardinality of a set A is denoted
by |A|. If / : A —• B is a mapping, the value f(a) of an element a & A is often
denoted by af. Similarly, we may write Hf for f(H) = {af : a 6 H} when
H C A. The composition of two mappings / : A —* B and g : B —* C is the
mapping fg:A-^C,a>-t (af)g, and the product of two relations 6 C Ax B and
p C B x C is the relation

6 p = {(a, c) e A x C : (36 <= B) o06, bpc}

from A to C; that (a, 6) E 6 holds is also expressed by writing aQb. The set of
equivalence relations on a set A is denoted by Eq(A). If 6 £ Eq(A), the ©-class of
an element a of A is denoted by a©, and the set of all such ©-classes, the quotient
set with respect to 6 , is denoted by A / 6 . For any set A, Eq(A) contains the
diagonal relation Ax = {(a, a) : a G A} and the universal relation V^ = A X A.
These are the smallest and the greatest element, respectively, of the complete lattice
(Eq(A),C) (cf. [BuS8l], for example).

In this paper X is always a finite nonempty alphabet. The set of all (finite)
words over X, also called X- words, is denoted by X* and the empty word by e.

Some Remarks on Directable Automata 25

For the length of a word w we use the notation lg(tu). For any integer k > 0, Xk

denotes the set of all X-words of length k, and also let

X<K = G X* : lg(u>) < Jfc},

X-k = G X* : lg(u;) < Jfc},

X^k = {u; G X* : lg(tu) > Jfc}.
The prefix of length Jfc and the suffix of length k of a word to are denoted by

preffc(tv) and sufffc(io), respectively.
An automaton, or an X-automaton - to be more specific, is a system A =

(A, X, 5), where A is the finite nonempty set of states, X is the input alphabet,
and S : A X X —• A is the transition function. The transition function is extended
to Ax X* in the usual way. Each word to G X* defines then a unary operation
w : A —• A, a 5(o, u;), on the state set, and the state 8(a, w) into which the input
word w takes A from state a is usually denoted by aw. This notation is extended
also to subsets of A : if H C A, then Hw = {atu : a G H}.

Subsets of X* are called X-languages, or just languages. An X-recognizer is a
system A = (A, X, 6, ao, F) which consists of an X-automaton (A,X,S), an initial
state ao (G A) and a set F (C A) of final states. We say that A is based on the X -
automaton (A, X,S). The language recognizedby A is ¿(A) = {u; G X* : aow € F}.
An X-language is recognizable, or regular, if it is recognized by an X-automaton.
The set of recognizable X-languages is denoted by Rec(X).

Next we define some basic algebraic notions for automata. These could be taken
directly from general algebra by construing automata as unary algebras, but we use
the usual definition of an automaton. Nevertheless, for in- depth treatments of these
ideas one should consult texts on universal algebra such as [BuS81], for example.
An X-automaton (B,X,RJ) is a subautomaton of the X-automaton A = (A, X, S)
if B C A and R)(b,x) = S(b,x) for all 6 € B and x G X. An equivalence 0 €
Eq(A) is a congruence of A — (A, X, 5) if for all a,b € A and x G X, a&b implies
axQbx. The set of congruences of A is denoted by Con(>l). It is well-known that
Con(yl) forms a sublattice of the lattice (Eq(A),C). Moreover, € Con(X).
If 9 G Con(X), the quotient automaton A/Q = (A/Q,X,SQ) is defined so that
5©(o9,x) = 5(a, i)8 for all a© G A / 9 and x G X. A morphism of X-automata
from A = (A, X, 6) to B = (B,X,RI) is a mapping <p : A —• B such that for all
o G A and x & X, ¿(a, x)<p = ij(a<p,x). We write <p : A —* B to indicate that
<p : A —* B is a morphism. An epimorphism is a surjective morphism. If there
exists an epimorphism <p : A —* B, then B is an image of A. The direct product
of A = (A, X, <5) and B = (B, X, RJ) is the X-automaton A x B = (A x B, X, 7) in
which t((o, 6), x) = (5(a, x),RJ(b, z)) for any (o, 6) G A X B and x G X.

If K is a class of automata, then K (X) denotes the class of X-automata belong-
ing to K. A nonempty class of X-automata is called a variety of X-automata if it
is closed under the operations of forming subautomata, images and (finite) direct
products.

26 B. Imreh, M. Stein by

3 Directable automata and directing words
A word w £ X* is a directing word of an X- automaton A = (A, X, S) if it takes A
from every state to the same state, i.e. if | Au>| = 1, and we call A directable if it
has a directing word. The set of directing words of A is denoted by DW(>t). The
class of all directable automata is denoted by Dir.

It is obvious that every directing word of an X- automaton A is a directing
word of every subautomaton of A, too. If <p : A —» 8 is an epimorphism from
A = (A,X,S) onto B = (B,X,r}), then DW(/J) C DW(3). Indeed, let to be a
directing word of A. If b, b' € B, then b = a<p and b' = a'<p, for some a, a' 6 A, and
therefore

rj(b, w) = r)(a<p, w) = 6(a, w)<p = 6(a', w)<p = . . . = ry(fc', to).

Similarly, u e DW()1) and v £ DW(fl) imply that uv £ DW(>I x 8). These
observations lead to the following conclusion.

Remark 3.1. For any alphabet X, Dir(X) is a variety of X-automata.

If w is a directing word of an X-automaton A, then so is uwv for any X-words
u and v. This yields the next remark.

Remark 3.2. For any X-automaton A, X'DW(A)X* = DW (A) .

With any X-automaton A = (A, X, ¿) we associate an X-automaton Ad =
(B,X,r)), where B = {Aw : w £ X* } and rj(Aw,x) = Awx for all w £ X* and
i € X. This Ad is the part of the usual subset automaton of A accessible from
state A. For any to £ X*, r)(A,w) = Aw. Hence to is a directing word of A iff
rj(A, u;) is a singleton. This means that DW(>i) is recognized by the X-recognizer
(B, X,rj, A, F), where F = {Ato : to £ X*, |Ato| = 1}, and we can state the following
conclusion.

Remark 3.3. For any X-automaton A, DW(.4) £ Rec(X).

If A is a directable automaton, let d(^) = min{lg(to) : to € DW(>1)}, and for
any n > 1, we define the number

d(n) = max{d(>i) : A £ Dir, |A| = n}.

Cerny's conjecture may now be formulated as the claim that d(n) = (n — l) 2 for
all n > 1. In [CPR71] it was shown that the hypothesis holds for n < 5. For
the general case only upper bounds of the order 0(n3) are known (cf. [Sta69,
CPR71,Pin78], for example). On the other hand, there are examples showing that
d(n) > (n — l)2 for all n > 1 (cf. [Cer64,Sta69]). We consider some modifications
of the problem concerning Cerny's conjecture. First of all, the question may be
restricted to concern some subclass of Dir. If K is some class of automata, we set

d K (n) = max{d(>i) J e K f l Dir,\A\ = n}.

Some Remarks on Directable Automata 27

Pin [Pin79] has shown that dj^(n) = (n — l)2 for all prime n when K is the class
of automata in which some input letter defines a circular permutation. As we shall
see, there are even classes K for which dj^(n) < (n — l)2 .

For any r > 1, we call w E X* an r- directing word of an X-automaton A =
(A,X, 6), if \Aw\ < r. Let DW(A,r) denote the set of r-directing words of A. If
|A| = n, then

X* = DW(X, n) D DW(A, n - 1) 2 . . . 2 DW(X, 1) = DW(>1).

It is clear that Remarks 3.2 and 3.3 apply also to the languages DW(>t, r). We say
that A is r-directable if DW(X,r) ^ 0. For each r > 1, let Dirr denote the class
of r-directable automata. Clearly, Dir = Dir* c Dira C Note that for r > 2
and any X, Dir r (X) is not a variety of X-automata; it is not closed under direct
products.

For any r > 1 and A € Dir r , let d(X,r) = min{lg(tu) : w £ DW(/(, r)}, and for
1 < r < n, let

d(n, r) = max{d(A, r) : A € Dir r , = n}.

In [Pin78] Pin put forward the following generalization of Cerny's conjecture which
we call Pin's conjecture: d(n, r) = (n — r)2 for all 1 < r < n. For any class K of
automata, we write

d K (" . r) = max{d(>(, r) : A € K n D i r r , |A| = n},
and one can again consider modifications of Pin's conjecture which apply to the
numbers r) for various classes K.

4 Testing for directability
Let A = (X, A, S) be an automaton, and suppose |A| = n and |X| = m. To find
out whether A is directable or not by constructing the state set {Aw : w E X* } of
Ad can be quite time-consuming: there may be almost 2" sets to consider, and for
each new set Aw one should form all sets Awx (z E X) and compare them with
the previously found sets. If no essential improvements can be found, the worst
case estimate for this method is at least of the order 0 (m • 2"). Ito and Duske
[ItD83] noted that the directability of A can be tested by applying an input word
t which contains all words over X of length d(n) as subwords; obviously A £ Dir
iff |Ai| = 1. They show how one can construct such a word t, but the mere length

+ d(n) — 1 of the word renders the test unpractical even for small values of n
and m. If we assume that Cerny's conjecture holds, which is the best we can hope
for, the length of the test word will be of the order). We present here
a simple 0 (m • n2)-algorithm for solving the directability problem.

For any A; > 0, the relation (¿¿(h) of k-mergeability on the state set A of it is
defined so that for a,b £ A, (o,6) £ HA(k) iff aw = bw for some w £ Two

28 B. Imreh, M. Stein by

states a and b are mergeable if they are k- mergeable for some k > 0. We denote
fij(= AM ^ ^ well-known (cf. [Sta69]) that an automaton is directable iff
all pairs of its states are mergeable. This and some other obvious facts about the
relations fiA{A;) and ha are stated in the following proposition.

Proposition 4.1. Let A = (A,X,6) be an n-state automaton.

(a) A is directable iff HA = A-

(b) The relations haW are reflexive and symmetric (k > 0).

(c) Aa=HA(0) C M „ (1) c ...CMA.

(d) The relations /¿»(A:) can be computed as follows:

1. /¿¿(0) = AA;
2. /¿¿(A:) = nA(k- 1) U {(a,b) : (3i e X) (ax,bx) e fiA(k ~ 1)} for k > 0.

(e) If HA (A:) = HA (k — l) for some k > 0, then HA (A:) = HA (k + 1) = ... = HA.

(f) A A = HA(0) C /ix(l) C . . . C ^jt(k) = FIA(k + 1) = HA for some k, where
0 < k < (j).

Proposition 4.1 suggests that the directability of A can be tested by computing
successively px(0),/iy|(l),/ix(2),... until HA(^) = HAI^ ~ !)• The most direct way
jf doing this leads to an 0(m • n4)- algorithm, but by organizing the work better,
we get an algorithm which operates in time 0(m • n2). A great part of the saving
is achieved by using the inverse transition table of A instead of the transition table
itself. Also, we do not form explicitly each HA(k) although they appear in the
sequence of relations that are computed.

The algorithm employs two auxiliary data structures, a Boolen n x n-matrix
M and a list NewPair of pairs of states. To simplify the notation, we assume that
A = {1 ,2 , . . . , n}. Then M[t, j] = 1 means that the pair i, j (e A) is known to be
mergeable. Since it suffices to consider just the pairs (t, j), where 1 < t < j < n, we
actually need just the upper part of M. A pair appears in NewPair when t and j
have found to be mergeable, but this fact has not yet been used for finding further
mergeable pairs. The inverted transition table

I = (l[a,x])a€AiX€X

is defined so that I[a, 1] = {t S A : ix = a}, for any a 6 A, x e X. The steps of the
algorithm are as follows.

Step 1. (Initialize M and NewPair) M[», j] := 0 for all 1 < t < j < n, and
NewPair := e (the empty list).
Step 2. Form the inverted transition table I.
Step 3. Find all pairs (a, 1) (& A X. X) for which |I[a, x]| > 1. For every such
(a, x) consider each pair t, j £ I[a, x] with t < j. If M[t, j\ = 0, let M[», j] := 1 and
append (i,j) to NewPair.

Some Remarks on Directable Automata 29

Step 4. Until NewPair = e do the following. Delete the first pair from New Pair,
suppose it is (a, b). Prom I find all pairs (t, j), i < j, such that for some x G X,
i G I[a, i] and j G I[fc, x], or »' € I[6, x] and j € I[o, x]. If M[t, j} = 0, let M[t, j] := 1
and append (»',;') to NewPair.
Step 5. If M[»,y] = 1 whenever 1 < t < J < n, then A is directable, otherwise not.

Step 1 takes time 0 (i2) - If A is given as a transition table, Step 2 can be carried
out in time 0 (m n). In Step 3 one has to consider for each of the m input symbols
altogether n(n — 1)/2 pairs (», j) , therefore the step takes time 0[m • n2). In Step
4 each pair (»,j) will be considered at most once for each x G X, and this happens
when the pair (a, 6) for which {ix,jx} = {0,6} is removed from NewPair. Hence,
the time bound is 0 (m • n2). Since Step 5 can be carried out in time 0{n2), the
time bound for the whole algorithm is 0 (m • n2).

5 Directing conguences
We call a congruence p of an automaton A = (A,X,S) directing if the quotient
automaton A/p is directable. The set of directing congruences of A is denoted by
Con<j(yl). The following observations are easily verified.
Lemma 5.1. For any automaton A, Cond(X) is a filter of the congruence lattice
Con(yl), i.e. (1) Con^iX) ^ 0, (2) 0 C p, 0 G Con^X) and p G Con(X) imply
p e Con<j(X), and (S) 0 n p e Cond(A) for all 0 , p G Cond(yl).

Corollary 5.2. Every automaton A has a unique minimal directing congruence,
which we denote by p», Cond(X) is the principal filter [px) of Con(A), and every
directable image of A is an image of A/PA-

Let p G Eq(-A). We call two states o and b of the automaton A — (A, X, 6) p-
mergeable if (aw,bw) G p for some w G X*. The following obvious lemma shows
that our directing congruences are the same as the 'cofinal congruences' of Ito and
Duske [ItD83].
Lemma 5.3. A congruence p of A is directing iff all pairs of states of A are
p-mergeable.

For computing the minimal directing congruence we present a sharper condition
for a congruence to be directing. Since any two mergeable states are p-mergeable
for every congruence p, it suffices to consider the nonmergeable pairs of states.

For any automaton A = {A, X, 6), let Gj = [V, E) be the directed graph defined
as follows. The vertex set V = {{a, 6} : o, b G A, (a, 6) 0 /¿yj} consists of all un-
ordered pairs of nonmergeable states of A. The edge set is E = {({a, 6}, {ax, 6x}) :
{a, 6} eV,x G X). Note that {ax,bx} G V if {a, 6} G V and x G X. It is clear
that a congruence which identifies all pairs in V is directing, but it actually suffices
to consider a subset of V, the trap T of G& which is the union of (the vertex sets
of) all strongly connected components of G& from which no edges lead outside the
component (cf. [DDK85]).

30 B. Imreh, M. Stein by

Lemma 5.4. A congruence p of an automaton A = (A,X,6) is directing iff apb
for every pair {a, 6} which belongs to the trap T of G A.
Proof . For any pair c,d (6 A) of nonmergeable states there is a word tu (g X ')
such that {cto, du;} g T. Hence p is directing if it satisfies the condition of the
lemma. Suppose now that p € Con<j(>i) and consider any pair {0,6} e. T. By
Lemma 5.3 there is a word w such that (aw, bw) G p. Since {atu, ¿tu} is in the same
strongly connected component as {a, 6}, {auiu, 6um} = {a, 6} for some u 6 X*.
This shows that also (a, b) £ p.

For any a,b e A (a b), let Q(a,b) be the principal congruence generated by
the pair (a, 6) (cf. [BuS81]). The last part of the previous proof shows also that
6 (a,b) = 6(c ,d) whenever {a,b} and {c,d} are in the same strongly connected
component of G Although it will not be used here, we note that Lemma 5.4
yields the following description of the minimal directing congruence.

Corollary 5.5. For any automaton A = (A,X,6),

pA = ©(oi.fci) V... V©(a
fc
,6

fc
),

for any set { {a j , bi},..., {a*, fcfc}} of representatives of the strongly connected com-
ponents which form the trap of GA.

Since the reflexive closure rA = Aa U {(a, 6) : {a, 6} 6 T} of the relation corre-
sponding to the trap T of GA is invariant with respect the state transitions of A,
then so is its transitive closure r j . Since is the equivalence generated by the
pairs in the trap, this means by Lemma 5.4 that rA = pa- These observations lead
to the following algorithm for-finding the minimal directing congruence for a given
automaton A = (A,X, 5).

Step 1. Compute HA using the method described in Section 4.
Step 2. Form the graph GA = (V, E); the vertex set is obtained from HA •
Step 3. Compute the strongly connected components forming the trap T of GA

using the algorithm of [DDK85].
Step 4. Form the relation rA and compute the transitive closure; ta — pA.

We know that the computation of HA takes time 0(m • n2). The vertex set V
is then obtained in time 0(n2), and computing the set E of edges can be done in
time 0(m n2). In [DDK85] Tarjan's algorithm [Tar72] for computing the strongly
connected components of a directed graph is modified to yield the trap. The al-
gorithm works in time 0(is + e), where v is the number of vertices and e is the
number of edges. In the present case 1/ < n(n — l) /2 and e < m • n(n — l) /2 , for
n = |A| and m = Hence, also Step 3 can be carried out in time 0 (m • n2).
Step 4 takes time 0(n3) if we use Warshall's algorithm (cf. [AHU83], for example)
for computing the transitive closure. The total time used by algorithm is therefore
bounded by 0(m • n2 + n3).

Some Remarks on Directable Automata 31

6 Directable commutative automata
An automaton A = (A, X, S) is called commutative if axy = ayx for all a € A and
x, y £ X. Let C o m denote the class of commutative automata. Rystsov [Rys94]
has shown that d Q o m (n) = n — 1 for every n > 1. We give a simple proof for a
generalization of this fact. The generalization corresponds to Pin's conjecture.

Proposition 6.1. d Q o m (n , r) = n — r whenever 1 < r < n.
Proof . Suppose A = (A,X,S) is commutative and r-directable, where 1 < r <
n = |A|. Let w = xi ...xm (Xi 6 X) be an r-directing word of A of minimal
length. The commutativity of A implies that Auv = (Av)u C Au for all u, u €
X*. Hence A D Axj D Ax 1X2 2 ••• 2 Aw. All of these inclusions must be
proper as A x i . . . x , _ i = A x i . . . x,_ixj, for some 1 < i < m, would imply that
A x i . . . Zi - ix ('+ i . . . xm = Aw, contradicting the assumption that ty is of minimal
length. Therefore

n = |A| > |Axi| > . . . > |Ax!. . .xm_i| > r,

and this implies that m < n — r. To see that equality is possible in all cases, it
suffices to consider the automata A(n, X) = ({ 1 , . . . , n}, X, £), where n > 1, X is
any alphabet and S(i, x) = min{t + 1, n} for all t e { 1 , . . . , n} and x e X.

7 Definiteness, nilpotency and directability
Let Jb > 0. An automaton A = (A,X,S) is weakly k-definite if aw = bw for all
w € Xk and all a, b € A, and it is definite if it is weakly fc-definite for some A:. If A
is definite and k is the smallest number for which it is weakly A:-definite, then A is
k-definite [Kle56,PRS63], Let Def denote the class of all definite automata.

It is clear that every definite automaton is directable. Moreover, if an X-
automaton A is weakly k-definite, then DW(X) = P U X-k for some P C X<k.
In [PRS63] it was shown that an n-state definite automaton is k- definite for some
k < n — 1. This shows that d j j e f (n) < n — 1 for every n > 1. That actually
d j) e f (n) = n — 1, is again witnessed by the automata A(n, X). This observation
can be generalized to read as follows.

Proposition 7.1. d j) e f (n , r) = n — r whenever 1 < r < n.
Proof . Let A = (A, X, 5) be a given automaton. For every t > 0, we define on A
a relation pi so that for any a,b e A,

apib iff (Vu; € X*) aw = bw.

It is easy to see (cf. [Ste69]) that these relations are congruences of A, and that A
is Jb-definite (fc > 0) iff

1. AA = PO C p i C . . . C pfc_i C p f c = Vx.

32 B. Imreh, M. Stein by

Suppose now that A has n states and is k- definite. It is clear that if 0 < t < k and
w € X\ then awpk-ibw for all a, 6 6 A. On the other hand, by (l) the number
of /^-¿-classes is at least t + 1. Hence \Aw\ < n — t for every w € X1. Moreover,
|i4ti>| = 1 whenever lg(tü) > k. This means that if 1 < r < n and w e Xn~r, then
|Atu| < r. Hence dj^gf (n,r) < n — r. That the bound is exact, can be seen by
considering again the automata A(n, X).

Definite automata correspond to definite languages [Kle56,PRS63]. Next we
consider automata that correspond to reverse definite languages [Brz63,Gin66]. An
automaton A = (A,X, S) is weakly reverse k-definite (Ac > 0) if awx = aw for
all o € A,w 6 Xk and x £ X. Reverse definite and reverse k-definite automata
are now defined in the natural way. Let RDef be the class of reverse definite
automata. If A = (A,X,S) is weakly reverse fc-deiinite, then for all a € A and
w € X-k, aw is a 'dead state', i.e. awx = aw for every x & X. This means
that A is directable exactly in case it has just one such dead state. Recall that an
automaton A = (A, X, S) is nilpotent (cf. [GeP72]) if there is a state ao € A, called
the absorbing state, and a bound k > 0 such that aw = oo whenever a & A and
lg(tu) > k. Let Nil denote the class of nilpotent automata.

Proposition 7.2. RDef n Dir = Nil, and (n, r) = dj^jj(n, r) = n — r for
alll<r<n.
Proof . Any nilpotent automaton is clearly both reverse definite and directable,
and the converse we noted already above. Hence RDef n Dir = Nil holds. Since
Nil C Def , we get dj^jj (n,r) < d j) e f (n , r) = n — r for all 1 < r < n. Once
more, equality is seen to hold by considering the automata A (n, X) which are also
nilpotent.

An X-language L is generalized definite [Gin66] if it has a representation

L = P U QIX'RI U . . . U QMX*RM,

where m > 0 and the sets P, QI and R+ are finite. Let us call an automaton A —
(A,X,6) generalized definite if there are integers h, k > 0 such that osui = asvt,
for all a € A, s € Xh, t € Xk and u,v € X*. This definition is justified by the
following facts.

Proposition 7.3. Let A = (A, X, S,a0,F) be an X-recognizer based on a given
X-automaton A = (A,X,S).

(a) If L(A) is a generalized definite language and A is its minimal recognizer,
then the automaton A is generalized definite.

(b) If the automaton A is generalized definite, then the language L(A) is also
generalized definite.

Proof . Suppose first that 1(A) = PLX^X*RXU.. .UQ M X*R M , where m > 0 and
all of the sets P, QI and R{ are finite, and that A is a minimal recognizer of L(A).
We may then assume that P C X<H+K, QU--.,QMQXH and R1,...,RMCXK,

Some Remarks on Directable Automata 33

for some h,k>0. Consider any o 6 A, s € Xh, t G Xk and u,v G X*. Since A is
minimal, there is a word r G X* such that o = oor. For any tu G X*,

lg(rsutio), lg(rstitto) > h + k and

prefh(rsuito) = prefh(rst;iu;), sufffc(rsutto) = sufffc(rsvtty),

and hence rsutw G L[A) iff rsvtw G L(A). This shows that a^rsut = asut and
aorsvt = asvt are equivalent states, and since A is minimal, asut = asvt must
hold. Hence A is generalized definite.

Assume now that A is generalized definite and let h, k > 0 be such that asut =
asvt whenever a G A, s G Xh, r G Xk and u, t> G X*. Consider any words u, v G X*
such that lg(u), lg(u) > h + k, prefh(u) = preffc(t>) and sufffc(u) = sufffc(u). We
may then write u = su't and v = sv't, where s G Xh and t G Xk. Now

u G 1 (A) O a0su'v G F O a0sv't G F O v G 1 (A) ,

which shows that L(A) is generalized definite.

Let GDef denote the class of generalized definite automata. Clearly, Def C
GDef and RDef C GDef , but it turns out that all directable generalized definite
automata are definite.

Proposition 7.4. GDef n D i r = Def , and hence dQj) e f (n , r) = n — r for all
1 < r < n.
Proof . Let A = (A,X,S) be a directable generalized definite automaton, and let
h, k > 0 be such that asut = asvt whenever a G A, s G Xh, t G Xk an̂ l u, v G X*.
Let u be a directing word of A. If to G Xh+k, we may write w = st with s G Xh

and t G Xk. Then for any o, b G A,

aw = ast = as et = asut = fcatii = . . . = fcto.

Hence A is definite. The converse inclusion is obvious.

If we add to Propositions 7.2 and 7.4 the obvious fact Def fl RDef = Nil, we
get the following complete description of the inclusion relationships between and
the intersections of the classes Def, RDef , GDef and Nil.

Proposition 7.5.

1. Nil c Def c Dir .Def c GDef , Nil C RDef c GDef ,

2. GDef n Dir = Def, and

3. Dir n RDef = Def n RDef = Nil.

The relations of Proposition 7.5 are summarized by the inclusion diagram of
Figure 1.

34

Figure 1

Finally, we note that within the intersection Dir fl C o m all of the classes Def,
RDef , G D e f and Nil are equal. This follows from the next observation.

Remark 7.6. Dir n C o m n G D e f - C o m n Nil.
Proo f . If A = (A, X, S) e Dir n C o m n GDef , then A is fc-definite for some k > 0.
Then for any a,b € A and u, v € X-k, au = bvu = buv — bv, which shows that A
.is nilpotent. The converse inclusion follows from Proposition 7.5.

References
[AHU83] A.V. Aho, J.E. Hopcroft k J.D. Ullman: Data structures and algo-

rithms. - Addison-Wesley, Reading, Mass. 1983.
•

[Brz62] J.A. Brzozowski: Canonical regular expressions and minimal state
graphs for definite events.- Proc. Symp. Math. Theory of Automata,
Microwave Research Inst. Symp. Ser. 12 (Brooklyn 1963), Brooklyn,
New York 1963, 529-561.

[BuS8l] S. Burris & H.P. Sankappanavar: A course in universal algebra. -
Springer-Verlag, New York 1981.

[Öer64] J. Cerny: Poznamka k homogénym experimentom s konecinymi au-
tomatami. - Mat.-fyz. cas. SAV 14 (1964), 208-215.

[ÖPR71] J. Cerny, A. Piricka & B. Rosenauerova: On directable automata -
Kybernetika (Praha) 7 (1971), 289-297.

[DDK85] J. Demel, M. Demlova & V. Koubek: Fast algorithms constructing min-
imal subalgebras, congruences, and ideals in a finite algebra. - Theoret.
Comput. Sei. 36 (1985), 203-216.

[GéP72] F. Gécseg & I. Peák: Algebraic theory of automata. - Akadémiai Kiadó,
Budapest 1972.

Some Remarks on Directable Automata 35

[Gin66] A. Ginzburg: About some properties of definite, reverse-definite and
related automata. IEEE Trans. Electronic Computers EC-15 (1966),
806-810.

[ItD83] M. Ito Sc J. Duske: On cofinal and definite automata. - Acta Cybern. 6
(1983), 181-189.

[Kle56] S.C. Kleene: Representation of events in nerve nets and finite automata.
- Automata Sutides, Princeton University Press, Princeton N.J. 1956,
3-41.

[PRS63] M. Perles, M.O. Rabin & E. Shamir: The theory of definite automata.
- IEEE Trans. Electronic Computers EC-12 (1963), 233-243.

[Pin78] J.-E. Pin: Sur les mots synchronisants dans un automata fini. • Elekron.
Inform.- Verarb. u. Kybernetik, EIK 14 (1978), 297-303.

[Pin79] J.-E. Pin: Sur un cas particulier de la conjecture de Cerny. - Au-
tomata, languages and programming, ICALP'79 (Proc. Coll., Udine
1979), LNCS 02, Springer-Verlag, Berlin 1979, 345-352.

[Rys94] I. Rystsov: Exact linear bound for the length of reset words in commu-
tative automata (to appear).

[Sta69] P.H. Starke: Abstrakte Automaten. - VEB Deutscher Verlag der Wis-
senschaften, Berlin 1969.

[Ste69] M. Steinby: On definite automata and related systems. - Ann. Acad.
Sei. Fenn., Ser. A, I Math. 444, Helsinki 1969.

[Tar72] R. Tarjan: Depth first search and linear graph algorithms.- SIAM J.
Computing 1 (1972), 146-160.

Received March 20, 1995

Acta Cybernetics, Vol. 12, No. 1, Szeged, 1995

The Optimistic and Cautious Semantics for
Inconsistent Knowledge Bases

John Grant * V.S. Subrahmanian^

Abstract
We develop two alternative semantics, based on maximal consistent sub-

sets, for knowledge bases that (possibly) contain inconsistencies. The opti-
mistic (resp. cautious) semantics correspond to entailment in some (resp. all)
maximal consistent subsets. We develop a Kripke-style model theory corre-
sponding to these two semantics. We further extend these semantics to the
case when knowledge bases contain both explicit and nonmonotonic nega-
tion. Notions of stratification and stability are defined and studied for both
semantics.

1 Introduction
Databases and knowledge bases may be inconsistent for various reasons. For ex-
ample, during the construction of an expert system, we may consult many different
experts. Each expert may provide us with a group of facts and rules which are
individually consistent. However, when we coalesce the facts and rules provided
by these different experts, inconsistency may arise. Such an inconsistency may be
due to various factors such as a disagreement between experts, an error made by
an expert, or a misunderstanding between experts. In any case, we may be forced
to reason in the presence of an inconsistency. Classical logic is not adequate in this
situation because a single inconsistency makes all possible statements true, thereby
trivializing the whole knowledge base.

In a previous companion paper [8], we developed the so-called over-determined
(or OD) semantics for reasoning in inconsistent knowledge bases. However, OD-
semantics is not based on classical model theory: it allows models to make a state-
ment and its negation both simultaneously true. The semantic? we develop in
this paper takes the meaning of an inconsistent knowledge base to be the set of
maximal consistent subsets of the knowledge base. The optimistic semantics de-
duces all statements deducible from at least one maximal consistent subset. In the
scenario involving many experts, the optimistic semantics accepts all statements

'Department of Computer and Information Sciences, Towson State University, Towson,
MD 21204. E-mail: grant@midget.towson.edu.

* Department of Computer Science, Institute for Advanced Computer Studies, and
Institute for Systems Research, University of Maryland, College Park, MD 20742. E-mail:
vs@cs.umd.edu.

37

mailto:grant@midget.towson.edu
mailto:vs@cs.umd.edu

38 John Grant, V.S. Subrahmanian

that at least one expert can deduce and possibly additional statements deducible
from the knowledge of the experts that do not involve any inconsistencies. The
cautious semantics deduces those statements that are deducible from all maximal
consistent subsets. In the scenario involving many experts, the cautious seman-
tics accepts all statements that every expert can deduce and possibly additional
statements deducible from the knowledge of the experts that do not involve any
inconsistencies.

The organization of this paper is as follows: Section 2 contains the basic notation
and definitions. It also includes a specific example that motivates the semantics for
inconsistent knowledge bases. Section 3 provides the definitions and basic results for
optimistic and cautious entailment. In Section 4, a Kripke semantics is developed
for optimistic and cautious entailment and a fixpoint operator is presented for
optimistic entailment. In Section 5, stratification and stability are extended to our
framework, and their relationship is investigated. Section 6 contains a summary
and a discussion of related work.

2 Motivation and Example
We assume that the facts and rules of a knowledge base are expressed as clauses of
the form

Lq «— Sc... & Ln

where each X,, 0 < » < n, is a literal (positive or negative). Initially, only classical
negation (-<) is used, but in Section 5, non-monotonic negation (not) is added. A
clause of the above form is called a generally Horn clause. Note that a generally
Horn clause allows a negative literal in the head of a clause. A knowledge base is
represented in the form of a generally Horn program (GHP, for short), which is a
set, possibly infinite, of generally Horn clauses. A logical language £ generated by
a finite number of constant, function and predicate symbols (and infinitely many
variable symbols) is implicit in our setup. Throughout the paper, we consider ->-<A
to be synonymous with A, i.e. double negations are deleted. We use the notation
grd[P) to denote the set of all ground instances of clauses in P; in fact, usually we
will assume that a generally Horn program is already in ground form.
As usual, the symbol denotes semantic consequence, i.e. P |= L means that L is
a semantic logical consequence of P with respect to the semantics of classical two-
valued logic. In the next section, we will introduce two new notions of entailment:
l~3 for the optimistic semantics, and hy for the cautious semantics.
Next, we present a motivating scenario that exemplifies situations involving incon-
sistencies that arise in law enforcement agencies and in the judicial process:
Bill hosted a dinner at his house on Jan. 26, 1995. The party was attended by Al,
Carl, Dick, Ed and Tom. Tom had to leave during dinner because his daughter had
a medical emergency. After dinner, Bill went to the kitchen to prepare coffee. As
he did not return, Dick and Eld went to the kitchen where they found Bill strangled
to death. At the time of the crime:

• (Fl) Tom was in the emergency room of a hospital. His presence was recorded
by a surveillance camera belonging to hospital security.

• (F2) Bill was in the kitchen.
• (F3) Dick and Ed said they were talking in the living room.
• (F4) Al said he was alone in the bathroom.

The Optimistic and Cautious Semantics for Inconsistent Knowledge Bsises 39

• (F5) Carl said he was alone in the bathroom.

Furthermore,

• (F6) Bill's house has only one bathroom.

• (F7) A1 had been guilty of embezzling money from Bill's accounting firm.
• (F8) Carl was having an affair with Bill's wife. Bill was an intensely jealous

man.

Let us examine the story more carefully. First of all, the story contains a glaring
contradiction: A1 and Carl's stories conflict. This suggests that one of them is lying
and we may further suspect that the person who is lying is the murderer. For lack
of additional information, we are unable to determine which of them is actually the
criminal. In this situation, the police may well decide to forget about Dick and Ed
and look more closely at A1 and Carl. More fantastic scenarios are also possible:
A1 and Carl may have been in cahoots and killed Bill and then both lied so that
a convincing case could not be made against either of them. Alternatively, it is
possible that everybody (except Tom) is lying: A1 may have been in Bill's study
trying to steal documentary evidence of his embezzlement, while Carl may have
been in Bill's bedroom trying to get back his tie which he had left behind during
one of his previous soirees with Bill's wife. While this was going on, Dick and Ed
(both in cahoots) may have teamed up and killed Bill.
Whether one chooses to believe the above scenarios or not, one must admit that
each of them is possible, though some are perhaps more probable than others.
However, whatever version we choose to believe, we would all be agreed that the
general floor plan of Bill's house should be the same in all versions of the story.
Likewise, the fact that Bill was strangled is true in all versions. In other words,
in all versions of the story, certain facts are true. One may accept all these facts
as being "certain" or established. The different versions of the story would tell us
who to believe and who not to believe - in other words, they identify the suspects.
Presumably, Tom would not be a suspect.
A formal logical description of the scenario is given in the Appendix. The
cause of the inconsistency in the above example is the set of sentences Cause —
{13,14,15,16,17}. Maximal consistent subsets may be obtained by dropping any
one of these clauses.

3 Optimistic and Cautious Entailment
Suppose P is a GHP. We say that the success set of P, denoted SS(P) is the set
{L I L is a ground literal such that P (= L}. Note that as P is a first order theory,
p= denotes standard semantical consequence in first order logic.

Example 3.1 Suppose P is the GHP:

P

- "? — P
r*-q

Then SS(P) = {p, -iq}. Neither r nor ->r is in SS(P). In particular, non-monotonic
inference rules such as negation as failure and/or the closed world assumption are
not used here because negation is represented explicitly.

40 John Grant, V.S. Subrahmanian

A set Q C P (where P is a G H P) is said to be maximal consistent iff Q is consistent,
and there is no consistent program Q' such that Q C Q' C P.

Theorem 1 Every GHP P has at least one maximal consistent subset.

Proof . P has at least one consistent subset, viz. the empty set of clauses. Let
CONS(P) be the set of all consistent subsets of P. We show below that every
ascending chain of elements in CONS(P) has an upper bound in CONS(P). The
result then follows from Zorn's Lemma.
Suppose Si C S-2 C 53 C • • • is an ascending sequence of members of CONS(P),
i.e. each Si is a consistent subset of CONS(P). Then S = (J™ j 5,- is an upper
bound for this ascending sequence. Moreover, S is consistent, i.e. 5 G CONS(P).
To see this, suppose S is not consistent. Then, by the Compactness Theorem, there
is a finite subset 5 ' C S such that S' is inconsistent. Let S' = {h, • • • ,1n} for
some integer n. Hence, for each 1 < t < n, there is an integer, denoted c*j such that
1i € •?<,(,). Let a = max{a 1 . . . , a n } . Then S' C Sa. Hence, as S' is inconsistent,
Sa is also inconsistent, thus contradicting our assumption that each S}-, j > 1, is
in CONS(P). •
Note that the above proof applies when P is any set of formulas, not just clauses.
Furthermore, the proof applies even if P is an infinite set of formulas.

Example 3.2 Suppose P and Q are the two programs listed below:

P Q
p — g P « - r
"•p < — " 7

Here, SS(P) = 0, while SS(Q) = {-ip,->r}. Note that Q (= ->r because (p V ->r)
and -<p yiela - r as a logical consequence.

Definition 3.1 Suppose P is a GHP, and F is a formula. We introduce1 two new
notions of entailment, denoted l~g,|-v below:

1. P hg F iff there is some maximal consistent subset P' C P such that P' f= F.

2. P by F iff P' |= F for every maximal consistent subset P' C P.

Example 3.3 Suppose P is the GHP below:
1 : p<-q
2 : ->p 4- q
3 : 1
Clearly P is inconsistent. P has three maximal consistent subsets, viz. Pi =
{ 1 , 2 } , P 2 = { 2 , 3 } , / V = { 1 , 3 } .
S S (PA =
SS (P2\ =
SS P3 = p.?}-

l We are grateful to Professor Newton da Costa for suggesting that I-3 entailment may
be a useful concept. The basic intuition behind hy entailment is not entirely new. The
idea of using maximal consistent subsets for hypothetical reasoning goes back to Rescher
[12] whose work was later adapted to artificial intelligence by Ginsberg [5]. However, the
technical properties of (-3 and hy entailment have not been studied carefully thus far and
this is one of the things we do in this paper.

The Optimistic and Cautious Semantics for Inconsistent Knowledge Bsises 41

Thus, P I-3 p, P hg -ip, P I-3 q and P hg ->g. There is no ground literal L such
that P hv L.

Let us try to get some intuition. In Kg entailment, we adopt an optimistic approach.
If P is inconsistent, then we say that L is true iff L is a consequence of some
consistent subset of P. However, hv is more cautious. It is not easily willing to
admit that anything is true. For us to conclude L using hv entailment, we must,
intuitively, find all possible causes of inconsistency. If, after eliminating the cause
of the inconsistency in all possible ways, it turns out that L is true in each scenario,
only then do we consider L to be true. Intermediate concepts of inconsistency may
also be devised such as the one in [9] where the concept of a "recoverable" literal
is used.

Example S.4 Consider the murder example of Section 2. Intuitively, a formula
is hv entailed iff it is true in all possible consistent scenarios. Thus, for example,
the fact that Bill was alive when dinner was finished is hv entailed by the evidence
because it is true irrespective of whose version of the evidence we choose to believe.
Likewise, the fact that Tom could not have been the murderer is clearly hv entailed
by the evidence.
On the other hand, for each person (except Tom) who had dinner with Bill that
night, there is a scenario in which he could be the murderer. Thus, hg entailment
allows us to conclude, for example, that Carl is the murderer.
In effect, we can use hg entailment in order to identify suspects, rather than to iden-
tify the murderer, hg entailment tells us who we may safely ignore as a candidate
murderer.

There is one feature of Example 3.3 that some readers may find curious. This
concerns hg: Here, P hg p and P hg —>p, but P l/g (p ic -ip). A brief discussion
of this is in order. Even though p is true in some maximal consistent subset of P
and likewise ->p is true in some maximal consistent subset of P, these two maximal
subsets are different. In fact, there cannot be a single consistent subset of P
in which both p and —>p are true. So even though P exhibits this kind of classical
inconsistency with respect of hg entailment, this inconsistency is not trivializing, i.e.
the existence of such an inconsistency does not cause all formulas in our language
to become hg entailed by P.
Formally, some of these properties may be stated below:

Proposition 3.1 Suppose P is a GHP. If P is consistent, then the following sen-
tences are equivalent for all ground literals L:

1. P\=L.

2. P hg L.

S. P h v L. •

Proposition S.2 Suppose P is a GHP (possibly inconsistent) and L,LI,L2 are
ground literals. Then:

1. » / F h g (Li kL2), then Ph3 h and P hg L2.

2. In general, P hg Li and P hg L2 do not imply that P hg (Li k. L2).

S. P hg F for all tautologies F of classical logic.

42 John Grant, V.S. Subrahmanian

Proo f . (1) Suppose P b3 (Li Si L2). Then there is a maximal consistent subset
Q C P such that Q (= Lx Si L2. Hence, Q ^ L\. Thus, P b3 h. Similarly for L2.
(2) Immediate from Example 3.3.
(3) Suppose F is a tautology of classical logic. Then F is a logical consequence of
the empty set, and hence F is a logical consequence of each consistent subset of P. •
The above proposition shows that the tautologies of classical logic hold with respect
to b 3 - entailment. Similar properties hold for by-entailment.

Theorem 2 Suppose P is a GHP, and L, Ltl L2 are ground literals. Then:

1. there is no ground literal L such that P by L and P by ~>L.

£. P b v [Lx Si L2) iff P b y Lx and P b y L2.

S. P by F for all tautologies F of classical logic.

Proo f . (1) Suppose P by L and P by ->L. Hence, for each maximal consistent
subset Q of P, Q \= L and Q (= ->L, which contradicts our assumption that Q is
maximal consistent. This means that there is no maximal consistent subset of P,
which is impossible by Theorem 1.
(2) Suppose P by (¿ i Si L2). Then Li Si L2 is a logical consequence of every
maximal consistent subset Q of P. Hence, each maximal consistent subset Q of P
has L\ and L2 as a logical consequence, i.e. Q by Li and Q by L2.
Suppose P by Li and P by L2. Then L\ and L2 are both true in every maximal
consistent subset Q of P, i.e. P by (L\ Si £2)-
(3) The proof proceeds along the same lines as the proof of Proposition 3.2(3). •
Example 3.5 Let P be:

P - 9 -<p+-q

r <—

1
In this case, P by r. But P l/y q and P l/y p and P l/y -1 q and P l/y -ip.

Thus, unlike b3 which can cause both L and -<£ (but never (LSi~<L)) to be inferred
from a program, by does not allow this. However, by allows very few conclusions
to be drawn. The following result is an immediate consequence of the fact that
CONS(P) is always non-empty.

Proposit ion 3.3 Suppose P is any GHP and L any ground literal. If P by L,
then P b 3 L. •

We now demonstrate b3 and by entailment on a simple example.

Example 3.6 Consider the program P below:
1: b<-a
2: -16 a
3: a*- c
4: a < -
5: c <-
There are four maximal consistent sets: Pi {1,2,3} ,P2 = {1,2,5} , P3 =
{1,3,4 5} and P4 = {2,3,4,5}. S S ^) = { - . a . - c } , SS{P2) = { - .a .c } ,
SS(P3) = {a,b,cj, 55(P 4) = {a,-i&,c}. The literals that are b3-entailed by P
are: {->a, ->c, c, a, b, —>6}. The set of literals by-entailed by P is 0.

The Optimistic and Cautious Semantics for Inconsistent Knowledge Bsises 43

In simple examples, such as Examples 3.3 and 3.6, for any two distinct maximal
consistent subsets Pi, and P2, there is usually a literal I such that I € S S (Pi)
and -<£ 6 SS(P2). The following more complex example shows that this need not
always be the case.

Example 3.7 Consider the set of clauses:

1: - p < -
2: -iq < -
3: p3 « -
4: 93 « -
5: qi < ipi Si ~tp2
6: 9i « - Pi Si ">P2
7: çi * 'Pi Si PQ
8: 92 Pi & ~~'P2
9: 9 2 < - - , P I & P 2
10: g2 < 'Pi Si ~1P2
11: pi -.gi Si ->q2

12: pi « - gi Si -ig2

13: pi « - -igi & g2

14: Pi*- qi Si -iq2

15: p2 « '91 Si 92
16: p2 *— ->qi & ->92
17: p *— plSip2Sip3

18: 9 <— 9i Si 92 & 93

There are several maximal consistent sets here. Let Pi = {1 , . . . , 16,17} and
P2 = { 1 , . . . , 16,18}. Pi and P2 are maximal consistent subsets of P. SS(Pi) =

'Pi ~ P 3 i 93.9i> 92}. SS(P2) = {-'P,-'9,P3, 93.P1.P2}- Note that there is no lit-
eral in SS[PI) whose negation is in SS(P

2
).

Before concluding this section, we briefly observe that the problem "Given as in-
puts, a GHP P, and a literal L, determining whether P by L" is Ilo-complete and
the analogous problem "Given as inputs, a GHP P, and a literal L, determining
whether P hg L" is ES-complete. The former is true because

o-
(((VQ C P)(Q is consistent & (VQ*)(Q c Q ' C P Q* is inconsistent)] Q \= L)

This is a problem because it involves a universal quantification over an NP-
complete problem (viz. checking the consistency of Q, and making a polynomial-
number of inconsistency checks of Q*). The E^-result for optimistic entailment
follows analogously, together with the observation that it involves an existential
quantification over the same NP-complete problem.

44 John Grant, V.S. Subrahmanian

Q 0 Q
Sj s2 Sn

Q
s s

(a) S inconsistent (b) S consistent

Figure 1: Graphical Representation of PK[S)

4 Kripke Semantics and a Fixpoint Operator
In this section, we develop a Kripke-style model theory for optimistic and cautious
entailment. We also develop a fixpoint operator for the optimistic semantics. We
assume that a GHP is a finite set of ground clauses. Given á GHP P, we use
D(P) to denote the set of all ground disjunctions of literals (including the empty
disjunction) expressible using the language of P.

Definition 4.1 An elementary structure of the language of P (e-structure, for
short) is any subset of D(P).

Definition 4.2 An e-structure 5 of a GHP P is said to be a consistent structure
(c-structure, for short) iff S has a model in the sense of classical logic.

Definition 4.S Suppose P is a GHP and S is an e-structure of P. The
paraconsistent Kripke structure (PK-structure, for short) based on S is a pair
(/r»i(S),£dge(S)) defined as follows:

1. If S is a c-structure, then Int(S) = { 5 } and Edge(S) = { (5 , 5) } .

2. If S is not a c-structure, then:

(a) Int(S) = { 5 } U { 5 ' | S' C 5 and 5 ' is a c-structure and there is no
J C S such that J is a c-structure and 5 ' C J}.

(b) Edge(S) = {(5, J) \ J € (/nt(S) - {S})} U {(J, J) \ J e (Int(S) - { 5 }) .

Figure 1 shows a graphical representation of PK(S). In Figure 1(a), Si,... ,Sn are
maximal c-substructures of S.

Example 4.1'Suppose P is a GHP written in the language consisting of three
propositional symbols p,g and ry and S is the e-structure {p, q^q}, then PK(S)
is the pair (IntiS), Edge(S)) where:

/ n i m = { 5 , { p , g } , { p , - g } }
Edge(S) = (the reflexive closure of { (5, {p, q}), (S, {p, - - i }) }) - { (S , 5) } .

The Optimistic and Cautious Semantics for Inconsistent Knowledge Bsises 45

Suppose £ is a first order language. We extend C to a modal language, denoted
£,U defined as follows:

1. Every wff of classical logic is a wff of CM.-

2. H F is a wff of CM, then OF and OF are wffs of CM- (Intuitively, O F is to
be read as *F is possible", while D f is to be read as °F is necessary".)

3. If F and G are wffs of CM, then F K G, F V G, ->F, F G, F *-* G and
(Vz)P and (3z)F are wffs of CM-

CM is interpreted by a PK-structure based on an e-structure S defined as follows:

Definition 4.4 Supposé S is an e-stnicture, and let E = (Int{S), Edge(S)) be
the PK-structure based on S. Let to € Int(S). Then we say that E, w satisfies F,
denoted E, to t-» F as follows:

1. If F is a wff of classical logic, then:

(a) (F an atom) E, w F iff F is a logical consequence of to
(b) (F = -¡G) E, w i-» F iff G is not a logical consequence of to (here, we

assume G is an atom)
(c) (F = G & H) E, to i-» F iff E, w >-> G and E, w <-> H
(d) (F = G V H) E,w F iff E,w G or E,w i-» H
(e) (F = G -* H) E, to t-*'F iff E, to H or E, w >/* G
(f) Satisfaction of formulas whose leading connective is a quantifier is de-

fined in the usual way.

2. Suppose F = Ç>G. Then E, to F iff for some to' such that (w,w') €.
Edge[S), E,w' t-> G.

3. Suppose F = OG. Then E, w (-• F iff for each to' such that (w,w') €
Edge[S), E, to' G.

4. Satisfaction of formulas whose leading connectives are conjuncts, disjuncts,
implications, iff, and the quantifiers are defined in the usual way.

Using the notion of a PK-structure based on an e-structure S, we may define the
model theoretic semantics of the logics corresponding to Hg and hy entailment.

Definition 4.5 Suppose F is a formula of classical logic and 5 is an e-structure.
Let E be the PK-structure determined by S. We say that

1. S |=3 F iff E, S i-» OF-

2. S>=v F iff E, S DF.

Suppose A is a set of formulas. S =̂3 A iff S =̂3 S for all S € A.

In order to show the equivalence of I-3 and (=3, we need a definition.

46 John Grant, V.S. Subrahmanian

Definition 4.6 Given a clause C =

D «- Li ic ... Si Ln

the disjunctive form of C, denoted diaj(C), is the clause:

D V - iX j V ••• V ->£„.

The disjunctive form, disj(P), of a GHP P is the set {disj(C) \ C € P).

Proposition 4.1 Suppose P is a GHP and D is a ground disjunction. Then:
<

1. P l-3 D iff P H D

2. P b v D iff P K D.

Proof . We prove (1) above, the proof of (2) is similar.
Suppose P bg D. Then disj(P) bg D. Hence, there is a consistent subset P1 C
disj(P) such that P1 f= D. Suppose now that I is an e-structure such that I f=g P.
Clearly, disj(P) C I and hence, P' C / . Extend P' to. a maximal consistent subset
of I. This maximal consistent subset of I must make D true;
Conversely, suppose P =̂3 D. Consider the e-structure disj(P). As disj(P) t=g P,
there is a maximal consistent subset /* C disj(P) such that D is true in I . Let
P' = /*. This completes the proof. •
Given a GHP P, we observe that P may entail a ground literal even though there
is no clause in P having an instance containing that ground literal as the head. To
see this observe that the program P below entails ->6:

a*—b
-1 a b

There is no clause in P with ->6 as the head. Now add the contrapositives to P.
-ib < 10 (contrapositive of first clause)
-ib a (contrapositive of second clause)
The expanded program is equivalent to the original program P. The addition of
contrapositives now yields a clause with -ib in the head.
Consider now the program Q below:

p < - o

p - 6

a 16

64 10

We would like to define a fixed-point operator which yields p as a consequence of
Q. Moreover, (a V 6) should also be a consequence of Q.
Based on the optimistic notion of entailment, we now develop a fixed point seman-
tics for bg-entailment. We start by observing that given a clause C, there may
be disjunctions, D, of literals that are logically entailed by the program P, but do
not appear in the head of C. The implicational form of clause C, defined below,
rewrites C in all possible disjunctive ways.

The Optimistic and Cautious Semantics for Inconsistent Knowledge Bases 47

Definit ion 4.7 Suppose C =

L *— Li K... SI Ln

is a clause. The implicational form, IF(C), of C is the set of clauses {L\ V- • vL'm «—
Body | { i ' i , . . . , LL} U K | K G Body} = {L, .., - . £ „ } and m > 0} . The
normal form, NF[P) of a generally Horn program P is then defined to be:

NF(P) = U IF{C).
cep

Note that disj{C) G IF(C) and disj(P) C NF(P). Given a ground disjunction D
and a GHP P, we use the notation sub(Z>, P) to denote the set {C \ C is a clause
in NF(P) such that the head of C subsumes D\. Thus, if D is not subsumed by
the head of any clause in NF{P), then s u b (D , P) = 0.

Definit ion 4.8 Suppose P is a GHP and 5 is an e-structure. We define an operator
that maps e-structures to e-structures. Let TAUT denote the set of all tautologous
clauses expressible in our language.
Vp(S) = TAUT U {D | s u b (D , P) ^ 0 and such that:

1. for all 1 < t < n, there exists a disjunction Ei (possibly empty) of ground
literals such that PK{S), S i - 0 (V ! = i (A " i i (£ y V E^)) where sub(I>, P) =
{ C i , . . . , Cfc} for k > 1 and each is of the form

Ci= D'i^LXSi-kL^

and

2. for all 1 < » < n, the smallest factor of (D[V Ei) subsumes D.

R e m a r k 4.1 When a GHP is a disjunctive logic program in the sense of Minker
and Rajasekar [11], (i.e. clause heads and clause bodies may contain no negated
atoms), our operator is essentially the same as that of Rajasekar and Minker. The
only difference is that in our case, the presence of subsumed clauses is explicit in
Vp(5) , while in the case of Rajasekar and Minker, it is implicit.

To see how Vp works, consider the following example.

Example 4.2 Suppose P consists of the following five clauses:

1: p «— q Si-iq
2: r *— p
3: r< 'p
4: q *—
5: -iq

(Note here that NF(P) contains more clauses, but these are not needed for this
example.) Let S be the e-structure {g, ->9}. Then the set of ground atoms in Vp{S)
is the set {9, —>9, r} . Let us explain two things: (1) why r G Vj^S) and (2) why

(l) Note that sub(r, P) = {2 ,3 } . In particular, using the notation of Definition 4.8,
we may assume the Ei's to be the empty clause. Observe that

P K (S) , S ^ O (p V -,p).

48 John Grant, V.S. Subrahmanian

To see this note that in this case, Int(S) = {5 , {9}, {~<9}}- It is easy to see that
p V ->p is true in both c-structures { i } , ! - 1 ? } that are accessible from world S.
(2) To see why p cannot be in Vp(S)| observe that the only clause with p is the
head is clause (1). The antecedent of clause (1) is a flat contradiction which cannot
be true in either {7} or {->g}.

Intuitively, the operator Vp is supposed to capture the notion of f=g entailment.

Example 4.3 Consider the consistent GHP P below:

p « - a
->p *— a

b >0
->a is a logical consequence of P, and hence b should be a logical consequence of P.
Here, NF(P) is the program:

1. p <— a 4. ->a >p 7. p V ->a *—
2. -ip 4— a 5. ->o p 8. ->p V —>a 4—
3. 6 4 a 6. a 4 >b 9. 6 V a 4—

The least fixed-point of Vp is constructed as follows:
VP t 0 = 0
Vp | 1 contains -<a , 6 V a together with tautologies and subsumed clauses
Vp f 2 contains b, Vp | 1, together with tautologies and subsumed clauses

«

We end this section by proving the soundness and completeness of the computation
captured by the fixed-point operator Vp.

Theorem 3 Suppose P is a GHP and D is any ground disjunction. Then D €
VP t w iff P h3 D.

Proof . We first show that if D & VP | w then P l-3 D.
Suppose D € Vp f u. Then there is an integer n < w such that D € Vp J n. We
proceed by induction on n.
Base Case, (n = 0) Trivial.
Inductive Case, (n = r + l) Suppose sub(Z>, P) = {Ci Cjt} where

Ci = D[*— L\k -• • Sl L*n..

Then, as D G V> J (r + 1), it follows that
k n,

PK(Vp t r), Vp T r ~ <>(V (A te v 30))
.=1 ,=1

where the 2?,'s are ground clauses (possibly empty). Let Mi,..., M, be the maxi-
mal c-structures that are subsets of Vp | r. From the above, we know that there is
a 1 < j < s such that My h-» (V L i i A y i i i ^ v •£.)))> and hence it follows by the
induction hypothesis that there is a maximal consistent subset P}• of P such that

The Optimistic and Cautious Semantics for Inconsistent Knowledge Bsises 49

Pj f= (Vi=i(A"ii(£. v Fi))). As Pj is maximal and consistent, it must also entail
D. Therefore, P h3 D.
To prove the converse, i.e. to show that if P hg D, then D € Vp J w, we proceed as
follows: As P hg D, there is a maximal consistent subset Q of P such that Q \= D.
This is classical logic entailment. Transform Q into a disjunctive logic program (in
the sense of Rajasekar and Minker [ll]) as follows: if

Ai V • • • V An V - .S i V >Bm Di k... k Dr k -<Ei k -k ->E,

is in D, then replace it by the disjunctive clause:
A\ V • • • V An V Ei V • • • V E, «- Bi k • • • k Bm k Di k... k Dr

The resulting program, called Q', is a disjunctive logic program in the sense of
Rajasekar and Minker and hence it has the same logical consequences as D. As the
Vp operator of ours is equivalent to that of Rajasekar's and Minker's for disjunctive
logic programs, it follows by a result of theirs that D € lfp{Vp) and hence D €
Vp f w .
This completes the proof. •

5 Stratification and Stability
So far, we have assumed that negation (the symbol -<) represents a "classical"
form of negation, i.e. in order to conclude ->A for some ground atom A, one must
explicitly establish the truth of -iA rather than reason from the lack of a proof of
A. However, it is now widely accepted that requiring the explicit specification of
negative information causes knowledge bases often to grow very large. However,
as argued by Gelfond and Lifschitz [7] and Kowalski and Sadri [10], in many cases
both classical and non-monotonic modes of negation are required. In this section,
we extend the optimistic and cautious semantics to incorporate non-monotonic
negation. Then we show how the concepts of stratification and stability can be
extended to this framework.

Definition 5.1 If L, Li,..., Ln, L'lt..., L'm are literals, then

L Li k ... k L„ fcnot L'xk ...k not L'm

is called an extended program clause. An extended GHP (called EGHP, for short),
is a finite set of extended program clauses.
Here, the symbol not denotes a non-monotonic mode of negation. As usual, we
deal with the set of all ground instances of clauses in an extended GHP. Now, we
extend the standard definitions of stability to deal with non-monotonic negation
using the optimistic and cautious semantics.

Definition 5.2 Suppose P is an EGHP and X is a set of ground literals. The
transformation of P w.r.t. X is the logic program G(P, X) obtained as follows:

1. if C is a program clause in P of the form
L *— Li k...k Lnk not Hik...k not Hm

such that for all 1 < t < m, Hi £ X, then
L *— Li k.. .k Ln

is in G(P,X).

50 John Grant, V.S. Subrahmanian

2. Nothing eke is in G(P, X).

Definition 5.S Given an EGHP P, we define two operators that map sets of
ground literals to sets of ground literals as follows:
AplX) = {V> I $ is a ground literal such that G(P, X) hy rf>}.
E/>(XJ = {V> f V> is a ground literal such that G[P, X) h3 rj>).

Definition 5.4 A set X of ground literals is

1. an A-answer set for EGHP P iff AP(X) = X

2. an E-answer set for EGHP P iff E/>(X) = X

In general, EGHPs may have sero, one or many answer sets. The notion of an
answer set is similar to the notion of a stable model; however, an answer set need
not be a model of P.

Example 5.1 Consider the program:

a «— not a (1)
->a *— not a (2)

This program has an A-answer set 0, but no E-answer set.

Example 5.2 Consider the program:

a « - not b (3)
->a «— not b (4)

6 4— a Si -<a (5)

This program has an A-answer set 0 and an E-answer set {a, -ia}.

Example 5.S Consider the program:

a 4— not a Si not 6 (6)
b - (7)

- (8)

This program has an E-answer set {b, _ i i }) but no A-answer set.

We may wonder under what conditions an EGHP has a unique E-answer set or
A-answer set. We now study this problem and provide a sufficient, but not neces-
sary condition to guarantee the existence of such answer sets. This is achieved by
extending the concept of stratification to EGHPs.
For logic programs, stratification may be defined in terms of a level mapping of
ground atoms. In our case, a level mapping is a function from the set of ground
literals to the set of non-negative integers. The value of a literal L under level
mapping £ is written as t(L). The levels of a program are assumed to range from
0 to A: for some integer k. The clauses of the program are placed in strata 5,-,
0 < t < k, by placing a clause whose head has level t into 5,-. For the definitions
below, we use the generic clause

L 4— Li Sc.. .Si Ln k not L\Si...Si not L'm.

We start with an (intermediate) definition.

The Optimistic and Cautious Semantics for Inconsistent Knowledge Bsises 51

Definition 5.5 ([8l) An extended GHP P is said to be 0D-stratified iff there .is.a
level mapping £ sucn that for every clause C G grd(P) of the above form, £(£{) <
£(L) and l[L'}) < t[L) for all 1 < » < n and 1 < j < m.

Basically, OD-stratification treats all literals equally and does not allow recur-
sion through non-monotonic negation (not) , but allows recursion through classical
negation (-<).

Definition 5.6 The switched form SF(C) of a (generic) clause C is the set of
clauses {->£,-« 'L SiL\ k... Si Li-1 As L%+1 Si... Si Ln Si not L\Si...Si not L'm}
obtained from C by switching (and negating) the literal in the head of C with a
literal in the body not preceded by not . The switched form SF(P), of an .EG H'P
P is defined as SF(P) = \JG€P SF(C).

Definition 5.7 An EGHP P is called E-stratified iff SF(P) is OD-stratified.

Definition 5.8 An EGHP P is called A-stratified iff P is E-stratified and for every
ground atom A, l(A\ = ¿(-¡A).

Clearly, every A-stratified EGHP is also E-stratified; the latter also implies that
the EGHP is OD-stratified. However, OD-stratification does not necessarily imply
E-stratification, and E-stratification does not necessarily imply A-stratification.

Example 5.4 Let P be:
b *— a Si not -ia.

P is OD-stratified by £(-kx) = ¿(-.6) = ¿(a) = 0 and £(6) = 1. SF(P) in this case
is:

b *— a Si not ->a (9)
-•a <— -ifc¬-xi (10)

SF(P) is not OD-stratified because that would require £(-,a) < £(->a). Hence, P is
not E-stratified.

Example 5.5 Let P be:
-i& «— a Si not 6.

Now SF{P) is:

->b *— a Si not b (11)
-ia « - 6 & not 6 (12)

SF{P) is OD-stratified by £(ol = ¿(b) = 0, £(->o) = £(-«6) = 1. Hence, P is E-
stratified. However, P is not A-stratified because any level mapping £ must have
£(6) < £(->6).

Now we show how stratification provides a sufficient condition for stability in our
framework of non-monotonic negation within inconsistent knowledge bases.

Theorem 4 If P is a function-free E-stratified EGHP, then P has a unique E-
answer set.

52 John Grant, V.S. Subrahmanian

Proof. By the hypothesis, there is a level mapping I for SF(P) such that for every
clause C 6 SF(P), £(£,) < l(L) and t(L') < t(L) for aU 1 < t' < n and 1 < j < m,
where C is written in the standard form (cf. Definition 5.1). Let So,... ,Sn be the
strata generated by this mapping and for 0 < t < n, let Ti = {L | l(L) = »}. We
construct an E-answer set M as follows:

M0 = {L € T0 | S0 h3 L}\
Mi+1 = {L 6 Ti+1 | G(5j,Uy=o Mi) l"3 L) for 1 < » < n;
M = U,"=o Mi.

We need to show that M is an E-answer set. We start by observing that for every
literal L and set of literals V, G(P, V) h3 L iff SF{G(P, V)) h3 L. This is so because
every clause in SF(G(P, V)) is logically equivalent to some clause in G[P, V). Now,
note that SF(G(P,V)) = GiSFiPj .V) because the non-monotonically negated
literals.are not modified by SF. Hence, G(P,V) h3 L iff G(SF{P,V)) h3 L. To
show that M is an E-answer set, we must obtain M = {L \ G(P, M) h3 L), or by
the previous discussion, M — {L \ G(SF(P),M) h3 L}. But the E-stratification of
P implies that

n » - 1
G(SF{P),M) = UG(S„UMy)

¿=0 j=0

where IĴ Cq M}- = 0, because for every clause in strata t, the non-monotonically
negated clauses cannot be added to M at any level greater than or equal to t. The
result follows from the construction of M and the fact that if G(SF(P),M) h3 L,
then there must be a clause in SF(P) with L as the head.

We still need to show that M is the unique E-answer set for P. Suppose M' is
any E-answer set for P. We show that M = M' by showing that M,- = M- for all
1 < t < n where M! = M'n{L\ t{L) = *}.
Base Case. (» = 0) In this case, for every clause in SF(P) in stratum So, there are
no. occurrences of not . Hence, G(S0, M0) = G{S0, M'). Thus, E p(M0) = E p(M{>).
As Mo and Mq must be E-answer sets for S0, M0 = E/»(Mo) = Ep(Af^) = M'0.
Inductive case, (t > 0) Assume that My = My for all j < i. By the E-stratification
of P, G(Si,Mi) = G[Si,M{) and then by reasoning similar to the base case, Mi =
Ep(Mi) = Ep(MI) = M;. •
E-stratification is a sufficient, but not a necessary condition for an EGHP to have a
unique E-answer set. In particular, the program of Example 5.3 is not E-stratified,
but it has {&,-<&} as its unique E-answer set. The next example shows that E-
stratification is not a sufficient condition for an EGHP to have an A-answer set.

Example 5.6 Consider the program:

o not 6 (13)
b - (14)

->b *— noto (15)

This program is E-stratified with ¿(b) = £(->a) = 0, 1(a) = 1, ¿(-.6) = 2. Here,
P = SF(P). However, there is no A-answer set. Note that this program is not
A-stratified.

The Optimistic and Cautious Semantics for Inconsistent Knowledge Bsises 53

Theorem 5 If P is a function-free A-stratified EGHP, then P has a unique A-
answer set.

Proof . The construction of the A-answer set is similar to the construction in
Theorem 4 except for the substitution of l-y instead of hg. The key point in showing
that M is an A-answer set is that for every ground atom A, since ¿(A) = ¿(-"A) = »
for some level t, at that level either A is placed into MI or -*A is placed into MI
or neither A nor ->A is placed into MI. By the definition of A-stratification, it is
impossible to add A at some level and ->A at another level. •
Example 5.1 shows that A-stratification is not a necessary condition for the exis-
tence of an A-answer set. The program of Example 5.1 is not A-stratified, but it
has 0 as its A-answer set.

6 Summary and Discussion
We have developed two semantics for inconsistent knowledge bases. Both seman-
tics are based on the maximal consistent subsets of the inconsistent knowledge
base. The cautious semantics accepts those statements which are true in all max-
imal consistent subsets, while the optimistic semantics accepts those statements
which are true in at least one maximal consistent subset. We study various proper-
ties of these semantics and develop a Kripke-style model theory for the optimistic
semantics. Finally, we extend our approach to include non-monotonic negation.
Within this framework, we extend the concepts of stratification and stability from
logic programming and show that stratification provides a sufficient condition for
stability.
Reasoning with inconsistency in logic programs was first studied by Blair and Sub-
rahmanian [2] whose work was subsequently expanded by Kifer and Lozinskii [9].
These works were grounded in multivalued logics. There are two significant dif-
ferences between those approaches and that studied in this paper: first, when a
database DB is consistent, the semantics of |2,9] may not always agree with the
classical logic meaning of DB\ both the optimistic and cautious approaches de-
scribed here would agree with classical logic when DB is classically consistent.
Second, the work described here includes support for non-monotonic negation via
a stable model semantics. No support for non-monotonic negation was present in
[2,9], though [9] discusses some ways non-monotonicity may occur. In particular,
we present here, two kinds of stratification. Neither [2,9] did this.
A structure similar to maximal consistent subsets arises in the context of database
updates [3,4]. Given a database DB and a new fact, / , to be inserted into the
database, Fagin et. al. [3,4] define a flock to be the set of maximal consistent
subsets of DB U { / } that are supersets of { / } . In other words, priority is given to
/ over formulas in DB. This does not occur in our framework.
Finally, the work reported in this paper has been used as the formal theoretical
basis for combining multiple knowledge bases [1].
A c k n o w l e d g e m e n t s . This work has been supported by the Army Research
Office under Grant Number DAAL-03-92-G-0225, by the Air Force Office of Scien-
tific Research under Grant Number F49620-93-1-0065, and by the National Science
Foundation under Grant Numbers IRI-9200898, IRI-9109755 and IRI-9357756. The
work was also supported in part by ARPA/Rome Labs Contract F30602-93-C-0241
(ARPA Order Nr. A716).

54 John Grant, V.S. Subrahmanian

References

[2

[3

[4

[5

[6

[7

[8

f9

[10

[11

[12

C. Baral, S. Kraus, J. Minker and V.S. Subrahmanian (1992) Combining
Knowledge Bases Consisting of First Order Theories, Computational Intel-
ligence, 8, 1, pps 45-71.

H.A. Blair and V.S. Subrahmanian. (1989) Paraconsistent Logic Programming,
Theoretical Computer Science, Vol. 68, pp 135-154. Preliminary version in:
Lecture Notes in Computer Science, Vol. 287, Dec. 1987.

R. Fagin, G. Kuper, J. Ullman, and M. Vardi. Updating Logical Databases.
In Advances in Computing Research, volume 3, pages 1-18, 1986.

R. Fagin, J.D. Ullman, and M.Y. Vardi. On the Semantics of Updates in
Databases. In A CM SIGA C T/SIGMOD Symposium on Principles of Database
Systems, pages 352-365, 1983.

M. Ginsberg. (1986) Counterfactuals, Artificial Intelligence.

M. Gelfond and V. Lifschitz. (1988) The Stable Model Semantics for Logic
Programming, in Proc. of the 5th Intl. Conf./Symp. on Logic Programming,
pp 1070-1080, MIT Press.

M. Gelfond and V. Lifschitz. (1990) Logic Prog rams with Classical Negation,
in: Proc. of the 7th Intl. Conf. on Logic Programming, pp 579-597, MIT Press.

J. Grant and V.S. Subrahmanian. (1995) Reasoning In Inconsistent Knowledge
Bases, IEEE Trans, on Knowledge and Data Engineering, volume 7, pp 177-
189.

M. Kifer and E.L. Lozinskii. (1989) RI: A Logic for Reasoning with Incon-
sistency, 4-th Symposium on Logic in Computer Science, Asilomar, CA, pp.
253-262.

R. Kowalski and F. Sadri. (1990) Logic Programs with Exceptions, in: Proc.
7th Intl. Conf. on Logic Programming, pp 598-613.

J. Minker and A. Rajasekar. (1990) A Fixpoint Semantics for Non-Horn Logic
Programs, J. of Logic Programming.

N. Rescher. (1964) Hypothetical Reasoning, North-Holland.

Appendix
Formalization of the Murder Example

The various facts relating to the murder mystery are described below:

1. present(al)
2. present(carl)
3. presented)
4. present(dick)
5. inJiospital(tom)
6. -ipresent(X) «— inJiospital(X)

The Optimistic and Cautious Semantics for Inconsistent Knowledge Bsises 55

7. suspect(X) *— preaent(X)
8. -iauspect(X) « >preaent(X)
9. suspect(X) *— embezzler(X)
1 0 . suspect(X) *— havingjaffair(X)
1 1 . embezzler(al)
12. having ja f fair(carl)
13. inJ>athroom(carl)
14. tnJ>athroom(al)
15. -<in-bathroom(Y) «— inJ>athroom(X) k X ^ Y
16. carl ^ al
17. al / carl
18. inJ*vingjroom(dick)
19. inJiwngjroom(ed)
20. -unJcitchen(X) *— inJ)athroom(X)
21. -¿nJritchen(X) *— inJiving.room(X)
2 2 . murderer(al) «— -^murderer(carI)&i-imurderer(ed)&i-imurderer(dick)
23. murderer(carl) * 'murderer(al)&c->murderer(ed)&L-<rmtrderer(dick)
24. murderer(ed) < >murderer(carl)&t-imurderer(al)&i-imurderer(dick)
25. murderer(dick) < >murderer(carl)k-<murderer(ed)&i-^murderer(al)
26. suspect(X) «— murderer(X)
27. -imurderer(X) «— murderer(Y) ScY X.
28. -imurderer(X) *— inJbathroom(X)
29. -imurderer(X) *— indiving.room(X)
30. AXIOMS SAYING that Carl, Al, Ed, and Tom are not equal.

Received June, 1994

Actci Cybernetica, Vol. 12, No. 1, Szeged, 1995

Reconstruction of Unique Binary Matrices with
Prescribed Elements*

A. Kuba »

Summary

The reconstruction of a binary matrix from its row and column sum vectors is
considered when some elements of the matrix may be prescribed and the matrix
is uniquely determined from these data. It is shown that the uniqueness of such
a matrix is equivalent to the impossibility of selecting certain sequences from the
matrix elements. The unique matrices are characterized by several properties.
Among others it is proved that their rows and columns can be permutated such that
the l's are above and left to the (non-prescribed) O's. Furthermore, an algorithm is
given to decide if the given projections and prescribed elements determine a binary
matrix uniquely, and, if the answer is yes, to reconstruct it.

1 Introduction
Let A = (oij) be a binary matrix of size m X n. Let its row sum vector be denoted
by iZ(A) = R = (r i , r 2 , . . . , r m) ,

n
r, = ^ o i y , (»" = l , 2 , . . . ,m) ,

i=i
and let its column sum vector be denoted by 5(A) = S — (si,s2 s„)i

m

«=1
The vectors R and S are also called the projections of A. Denote the class of binary
matrices with row sum vector R and column sum vector S by A(R, S).

The problem of reconstruction of binary matrices from their projections has an
extensive literature (for surveys, see e.g. [14] and [4]). Gale [9] and Ryser [13] have
proved existence conditions. A necessary and sufficient condition of uniqueness is,
for example, in [15].

In this paper, a generalization of the mentioned reconstruction problem will be
considered. Let P and Q be binary matrices with size m X n. We say Q > P or Q

'This work was supported by the OTKA grant 3195 and the NSF-MTA grant INT91-
21281

department of Applied Informatics, József Attila University, H-6720 Szeged, Árpád
tér 2., Hungary, Phone: +36-62-310011, Fax: +36-62-312292

57

58 A. Kuba.

covert P if g,y > p,-y for all positions (i,j) 6 { 1 , 2 , . . . , m} X {1,2 n}. The class
Ap (R, S) is then defined as

A%(R,S) = {A | AeA{R,S), P<A<Q}.

According to this definition, AP(R,S) can be regarded as the sub-class of A[R, S)
having the prescribed value 1 in the positions where p<y = = 1, and the pre-
scribed value 0 where p̂ y = g,y = 0. It is clear that, if P = O (zero matrix) and
Q = E(= (l) m X B) , then A%(R,S) = A(R,S).

Now, we show that this reconstruction problem can be simplified. It is clear that,
if A 6 Ap(R, S) then A > P, so their difference, A — P = (o,-y — Pij)nxm> is a binary
matrix with projections R(A - P) = R(A) - R(P) = R - R[P) and S(A - P) =
5 (A) - S(P) = S- S(P). Therefore, A - P e A%~P(R - R(P), S - S(P)). The
reverse statement is also true in the sense that, if B 6 AQ(R,S) for some binary

-matrix Q, then B + Pé A%+P[R + R{P), S + where P is a binary matrix
such that for all positions, if p,-y = 1, then <7;y = 0. This means that it is enough to
study the class AQ(R, S), or in short AQ{R, S) or ,AQ.

It is interesting to note that the network flows [7] can also be used in thé study of
the class A®(R, 5). To each class A® (R, S) there is a bipartite network with source
s, sink t and nodes {iZi,iZ2,... , i î m } , {Si,S2, • • •, Sn} and arcs (s, Ri), (S }-,t) and
(RÏ,SJ) with capacity rj,sy and ç,y, respectively, » = 1,2,... ,M, J = 1,2,... ,N.
Then each matrix A € AC)(R, S) corresponds to a flow in this network (see [6]). In
this way, the results in this paper have a reformulation in network flows.

Considering the connected literature, Kellerer published a necessary and suffi-
cient condition [ll] for the existence of measurable functions with given "marginals"
which is applicable also to the matrices in the class A®. Recently W.Y.C. Chen
has published theorems about integral matrices with given row and column sums
satisfying a so-called main condition [6]. However, this main condition restricts
the validity of the results only to a part of the prescribed binary matrices. As
we shall see, there is unique binary matrix not satisfying Chen's main condition
(e.g., the only binary matrix of the so-called normalized class corresponding to Fig.
5.1). There are papers dealing with special A® classes: Fulkerson gave a necessary
and sufficient condition for the existence of (0,l)-matrices with zero trace [8] and
Anstee published results on matrices having at most one prescribed position in
their columns [1],[3] and having a triangular block of O's [2].

Henceforth, consider the class where R = (ri, • • •, rm) and 5 =
(«1, «2 , . . . s„) tire non-negative integer vectors and Q is a binary matrix of size
m X n. The position (t , ;) is said to be free if the corresponding matrix element is
not prescribed by. Q, i.e. g,y = 1.

In this paper, the aim is to generalize the uniqueness results of A to A® (and
thus, to A®). (The reconstruction problems of non-uniquely determined binary
matrices is the subject of [10].) In Section 2 we reconsider the known results of
uniqueness in certain classes A®(R, S), where Q has some special property. Then
the general uniqueness problem is considered, when Q is an arbitrary binary matrix.
Section 3 contains a definition of a switching chain, whose existence turns out to
be a necessary and sufficient condition of the non-uniqueness of a binary matrix.
Thus, a switching chain has the same role in the class A® as a switching component
has in A. In Section 4 a reconstruction algorithm is given to decide if the given
projections and prescribed elements determine a binary matrix uniquely, and, if

.Reconstruction of Unique Binary Matrices with Prescribed Elements 59

the answer is yes, to reconstruct it. The unique matrices can be characterized in
different ways. Some of these properties are discussed in Section 5. It is proved
that the l 's of these matrices can be covered by certain rectagles, and that their
rows and columns can be permuted so that the l's are above and to the left of the
(non-prescribed) O's.

2 Uniqueness in special classes
In this section we reconsider the uniqueness results in different special classes prov-
ing that none of them is sufficient to characterize the uniqueness in the class A® •

We say that A € A®(R,S) is a non-unique (or ambiguous) binary matrix, (in
AQ) if there is a matrix A' € ^ (. R . S l such that A ± A'. In the other case, A
is unique (or unambiguous). Accordingly, the reconstruction data, the projections
(R, S) and the prescribed values Q together, is non-unique or unique if the number
of elements of the class A® is greater than one or exactly one, respectively. If
AQ(R,S) — 0 then the reconstruction data is inconsistent.

There are results connected with the uniqueness in the class A(R, S), i.e. when
Q = E: Consider the matrices

An interchange is a transformation of the (free) elements of A that changes a minor
of type AI into type A2 or vice versa, and leaves all other elements of A unaltered.
(The word minor is used here in the sense of submatrix.) -We say that the four
elements of the minor form a switching component.

Theorem 2.1 [13,15]. The binary matrix A e A(R,S) is ambiguous (in
A(R,S)) if and only if it has a switching component.

In the more general class of A®(R, S), the extension of this result is not trivial.
Consider, for example, the class ^ ((1 , 1 , 1) , (l , 1,1)), where

that is, the diagonal elements are prescribed. The matrices A3, A« S A® (see Fig.
2.1), but they have no switching components.

Figure 2.1. Ambiguous matrices A3 and A4 having no switching components (x's
denote the positions of the prescribed 0 elements).

t

60 A. Kuba.

The matrices A3 and A4 play a similar role in the classes of binary matrices
having at most one prescribed element in each column as A\ and A2 do in A (classes
having no prescribed element). Replacing a submatrix A3 by A4 or vice versa leaves
the row and column sums unchanged. A triangle interchange is a replacement of any
version of A3 and A4 obtained by applying the same row and column permutations
to both A3 and A4 [lj. Anstee proved an analogous theorem [1 Corollary 3.2] in
the case of prescribed l's:

Theorem 2.2. Given a pair A,Be AQ(R,S), where Q has at most one 0
in each column, one can get from A to B by a series of interchanges and triangle
interchanges without leaving A®(R, 5).

However, if there is more than one prescribed element in the columns and rows,
then the minors Ai, A2, A3 and A4 are not enough to characterize uniqueness. For
example, the matrices of Figure 2.2 are in the same class, but they have no such
minors of free elements.

(0 1 X X \ (1 0 X X \
X 0 1 X X 1 0 X
X X 0 1 X X 1 0

I 1 X X 0 J I 0 X X 1 J

Figure 2.2. Ambiguous binary matrices having two prescribed elements in each row
and column, and having no minors Aj , A2, A3, A4, or any minors obtained from
them by permuting rows and columns.

3 Switching chain
Our most important new concept is a generalization of the concept of a switching
component. We say that the binary matrix A £ A® has a switching chain if there
is a series of different free positions of A, < (t'i,ji), (t 1, J2), (»2. J2), («21.73)1 • • • 1
(W p) . (ip,;'i) >, such that

= = • • • = =

= 1 ~ Où« = 1 - = • • • = 1 ~ aivj\
(p > 2). It follows from the definition that if < (*i, Ji), (t"i,y2), (»2.^2), (»21^3),
• • • > (Wp)> (*p> i i) > is a switching chain of A and ail}l = atJy, = ... = aif]f = 1,
then ai l j j = Oi2j, = . . . = Qifji = 0. This statement remains true if we switch
the l's and O's of the chain. As examples of switching chain see Ai, A2, A3, A4
and the matrices of Figure 2.2. Each of them contains switching chains. (In fact a
switching component is a switching chain with p = 2.)

.Reconstruction of Unique Binary Matrices with Prescribed Elements 61

An important property is that by switching the l's and O's of a switching chain
in a matrix, another matrix is obtained that has the same projections. Therefore,
the non-existence of a switching chain in a matrix is a necessary condition for
uniqueness. In fact, it is also sufficient.

Theorem 3.1. The binary matrix A £ A^(R, S) is unique if and only if A has
no switching chain.

Proof. One direction is obvious. For the other direction, let us suppose that
there is another binary matrix A' £ A®(R,S) (A' ^ A). Then, there is a position
(*i>ji) such that

«.'in = = 0

(or OilJl = 0, = 1, in which case we can use a similar proof). Since rt l = r| ,
there is a column j? (^ }\) such that

= °> a!,ya =

« - "y, ' " Then, since s,, = a'- , there is a row t2 such that

and so on. After a finite number of steps the sequence will terminate, i.e., it follows
from

= !> aU = 0

that there is a column among (the up-to-now all different) j\,]2, ••• ,jP, say jk, such
that

° i ,A = °> =

That is, < (*'fc, jit), (¿fc,yfc+1)t (*fc-n,>ib-n), (»fc-n.iife-i-a) (*p>>p)> (*Pi J*) > " a

switching chain in A.
Remark. The proof is almost the same in the case of switching components in

class A (see [13] and [15]), but in A it is also shown that this switching chain can be
used to find a switching component. In the class A®, this is not necessarily true.

4 Reconstruction of unique matrices
Now, we give the characterization that can be used to decide the uniqueness and
to reconstruct unique matrices efficiently. We say that a minor is mixed if each of
its rows and columns contains both a free 1 and a free 0.

Theorem 4.1. The binary matrix A is unique if and only if it has no mixed
minor. «

Proof. If there is a switching chain in a binary matrix, then the rows and the
columns of the switching chain determine a minor consisting of rows and columns
each containing free l's and O's.

62 A. Kuba.

To prove the other direction, let us suppose that A has a mixed minor. Then
let ai l } l = 1 be an element of the mixed minor. There is a column j? such that
a,-,/, = 0 is an element of the mixed minor. Then, there is a row t2 and a col-
umn jij such that Oi,y. = 1, a^y = 0 and they are in the minor. We have
to continue the procedure until there is a row ip and a column jp such that
'Sip = = 0 (b o t l 1 111 t h e minor), where jk G {ji,h, • • • ,jP-i}. Then
< (*fct jifc)> (*fci,7fc+i)i (*fc+iiifc+i)) (*fc+ii Jfc+2)i • • •) (*pijp)> (*p> Jfc) > is a switching
chain.

From Theorem 4.1 it follows for each minor of a unique matrix that there is a
row or column of the minor such that in that row or column either there are only
l 's in the free positions, or there are only O's in the free positions or there are no
free positions at all. These rows/columns are called primitive rows/columns of the
minor. A primitive row/column can be recognised from the number of the free
positions and the projection values of the minor in the following way. A primitive
row contains O's in the free positions (if there is free position) if and only if the
sum of that row/column of the minor is 0. A primitive row contains l's in the free
positions if and only if the sum of that row/column is equal to the number of the
free positions in that row/column of the minor.

Similarly, we say that t is a primitive row of AQ(R, S) if 0 = r< or r,- = g,y
and that j is a primitive column of A® (R, S) if 0 = sy or ay = J^^Lx ?<y.

If the class A®(R, S) has only one matrix, then it has a primitive row or column.
By reducing R and 5 by the projection of a primitive row or column and setting
Q to 0 in this row or column, the new class A

Q

 (R',S'), has also only one matrix
having the same elements as the original one in the positions q'i}- = 1. Trivially,
if A®(R, S) is non- unique or empty, the A

Q

 (R',S') is also non-unique or empty,
respectively.

From this property of the unique binary 'matrices a reconstruction algorithm
follows:

Algor i thm 4.1 (to d«cide the uniqueness of the reconstruction data and to
reconstruct a unique matrix A G AQ(R,S) from given projections R and 5, and
prescribed positions of Q):

Step 1. Let A := O, R' := R, S' := S, Q' := Q.
Step .£. If 0 < r| < q'i}., and 0 < s'- < 9,'-y is not fulfilled for all

t and j, then the reconstruction data is inconsistent; stop.
Step S. If Q' = O, then output A; stop.
Step 4• If no row and no column of A® (R', S') is primitive, then the

reconstruction data is non-unique or inconsistent; stop.
Step 5. Select a primitive row or column of ¿ ^ ' (f l ' . S ') . For every (t, j)

in this row or column such that q'{ • = 1,
i. set Ojy equal to 0 or 1, appropriately;
ii. reduce and s'}- by a,-y; *
iii. set q'i}- to 0.
Go to Step 2.

.Reconstruction of Unique Binary Matrices with Prescribed Elements 63

Remarks.
а. It is supposed that m and n are positive integers and R and S are vectors of

m and n non-negative integers, respectively.
б. During the iterations the number of 0-rows or the number of O-columns of

Q' is increases at least by one. Thus, the algorithm will terminate after at most
m + n — 1 number of iterations, when all rows or columns of Q' contain only O's
(Step 3).

c. Step 2 is to test two conditions: The first is that vectors R' and S' contain
only non-negative elements, and the second that the number of free positions in
each row and column of the reduced class are enough to place r[and a}- number of
l's, respectively. Both conditions are necessary for the existence.

d. Step 4 is to test if there is a primitive row or column in the class
If no, then the matrix to be reconstructed has a mixed minor (see Theorem 4.1)
consisting of the non-O-rows and non-O-columns of Q' (if the matrix exists at all).

e. It is not difficult to prove that the matrix A reconstructed by Algorithm 4.1
as an output in Step 3 is unique. It follows from the fact that primitive rows and
columns do not contain any element of any switching chain.

/. Clearly, if a matrix A is constructed by Algorithm 4.1 then A < Q, because
we assign l's only into free positions (Step 5).

g. If the number of l's in row i of A increases during the iterations, then r'{
decreases by the same number. This means that r'{ + â y remains constant in
each iteration. In the first iteration this constant is

(because o,-y = 0 now). If we arrive Step 3 such that Q' = O then rJ = 0
and s'y = 0 for each * and j (Step 2), and so again R(A) = R. Similarly, it can be
shown that S(A) = S. That is, if a matrix A is constructed by Algorithm 4.1 then

h. Algorithm 4.1 can be considered as a generalization of the assign and update
algorithm [5] for reconstructing unique matrices without prescribed elements.

Therefore, Algorithm 4.1 is correct in the sense that it is terminated after a finite
number of steps (Remarks b. and c.), the output matrix A is unique (Remark e.)
and it is from the class A®(R,S) (Remarks f. and g.).

n
(4.1)

A € A(R, S).

As an example see Figure 4.1.

64 A. Kuba.

2 x
2 x . . x
4 . . . x .
1
2 x . . x

1 2 5 2 1

a.

1 x . 1 . .
1 . x 1 . x
0 l l l x l
0 . . 1 . .
1 x 1 . x

0 1 0 2 0
b.

1 x . 1 . 0
1 0 x 1 . x
0 l l l x l
0 0 0 1 0 0

1 0 x 1 . x

0 1 0 2 0

c.

0 x 1 1 . 0
0 0 x 1 1 x
0 l l l x l
0 0 0 1 0 0
0 0 x 1 1 x

0 0 0 0 0

0 x 1 1 0 0
0 0 x 1 1 x
0 l l l x l
0 0 0 1 0 0
0 0 x 1 1 x

0 0 0 0 0

d. e.
Figure 4.1. Reconstruction of a unique binary matrix by Algorithm 4.1
showing matrix A and projections R' and S' during the iterations. The
free elements of the minor to be reconstructed are denoted by The
reconstructed elements of A are denoted by 0 and 1. The matrix Q' has a 1
at the positions where there is a

a. Starting configuration.
b. Configuration after finding the primitive

column 3 and primitive row 3.
c. Configuration after finding the primitive

columns 1, 5 and primitive row 4.
d. Configuration after finding the primitive

column 2 and primitive rows 2, 5.
e. Configuration after finding the primitive column 4.

.Reconstruction of Unique Binary Matrices with Prescribed Elements 65

5 Characterization of unique matrices
Knowing Theorems 3.1 and 4.1 the unique matrices can be characterized
by having no switching chain or having no mixed minor. Another possible
characterizations are based on the comparison of the prescribed and free
1 and 0 positions of the rows. Let us introduce the following notations in
connection with a matrix A £

A (1) = {(»',;) | Oij = 1}, A<°> = { (» , ;) | Oij = 0,qij = 1}
and

Q (0) = { (» . ;) 19o = o } .

In words,
and denotes the sets of the free 1 and 0 positions of

the binary matrix A, respectively, and Q*0' denotes the set of prescribed
positions. Furthermore, let A,-1' and a ' 0 ' denote the set of column indices
of the free l's and free O's of A in row i (1 < i < m), respectively.

Theorem 5.1. The binary matrix A g ACi(R,S) is unique if and only
if for any subset I of the rows there is a row i € I such that

f n 4 " = i (5.1)

for each t' € I.
Remarks.
a. In another words, Theorem 5.1 says that, exactly in the case of unique-

ness, from any subset of rows we can select at least one row such that in
the columns of the free O's of this row there is no 1 in any other row. This
means that the l's and prescribed elements of the selected row "cover" all
the l's of the other rows in the subset. In this sense the selected row is a
longest row of the subset.

b. Specially, if there is no prescribed element, i.e. Q = E, then (5.1)
means that a row having the greatest covers every other row.

Proof. Suppose that A has a switching chain SC =<
(*i,ji),(*ii^)i(*2,i2),(*2,j3),...,(*p.jp)i (w ' l) > such that a i U i =
°.'3j3 = • • • = a.,,', = 1 and ailj3 = = ... = aiph = 0. Then let
I = {*i,»2» • • • > *p}- If *fc is an arbitrary row of / (1 < A; < p), then tfc+i
is another row of I such that jk+i € A ^ D a] ^ (if k = p then instead of
tfc+i let us select t°i). That is (5.1) is not fulfilled.

Suppose, now, that there is a subset of rows, / , such that for each row
t € I, there is a row i' € I such that A)0) n ^ 0. Let t'i e I and t2
another row index from I such that £ fl A^ ' for some that is,
aijy, = 0 and o,-,,-, = 1. Applying the same condition to row t2 we get a
row »3 from I ana a column j'3 such that a,ays = 0 and o,,y, = 1. And so
on. After a finite number of steps the sequence will be ended, i.e. Oirjk — 0
and aik}k = 1 for some ik e {t'i,*2. • - - ,*P-x} and jk € {ji,j2,... ,jP-i}-
Then < (ik,jk),(ik,jk+i)Aik+i,]k+i),(ik+i,3k+2),---Aip>3p)Aip>]k) >
a switching chain in A.

66 A. Kuba.

Now, we give another characterization of the unique matrices by proving
that their l 's can be covered by special rectangles. The construction of these
covering rectangles can be done by

Procedure 5.1 (to construct special covering rectangles of l's): This is
an inductive procedure to find a sequence of rectangles having increasing
number of rows and decreasing number of columns step by step. Applying
Theorem 5.1 to the whole set of rows we know that if A is unique, then we
can select at least one row t such that in the columns of A*0' A has no 1
element. Let the set of such rows be denoted by /J1 ' (^ 0), and let

JIL) = n 4 0)

.e / i1 '

(overline denotes the complement set). Clearly, A*1' 2 (/J1 ' * j f 1 ') \ Q(°).
if a w = (J ^ x ^ ^ g C) then we have a rectangle (in a general sense
that / j 1 ' X j j 1 ' consists of not necessarily consecutive rows and columns)
covering the l 's of A and the Procedure is terminated. If

A ' ^ U ^ x J i ^ Q C)
t=i

for some p > 1 (the symbols 3 and C are used only for strict containment)
then we can select at least one row t from Tp1' such that A has no 1 element
in Ip1^ X (A|0) t̂ 0, because in this case t S IpLet the union of the
set of these rows and Jp1' be denoted by • Clearly, /p1 ' C I^+i • Let

j { P + I = n

Then 4 1] D (because A|0) ^ 0 in the new rows of J ^ J and A«1) D
(fp+i x Jp+i) \ Q' 0 ' - After a finite number of steps (if p is big enough), we
reach the situation

A<1) = U (A (1) x ^ (1)) \ « (0) .
t=i

that is the l's of matrix A are covered by the union of rectangles ij1^ x J , 1 '
(1 < t < P).

.Reconstruction of Unique Binary Matrices with Prescribed Elements 67

As an example of the application of Procedure 5.1 see Figure 5.1(a),
where ({1 }x{1 ,2 ,3 ,4 5,6})U({1,2,3}X{1,2,3,4})U({1,2,3,4}X{1,3,4})U
({1,2,3,4, 5,6} X {1}) is the set of covering rectangles constructed by Pro-
cedure 5.1.

4 1 1 X X 1 1 4 1 X 1 X 1 1
1 1 X X X 0 0 1 1 X X X 0 0
3 1 1 1 X 0 X 3 1 1 1 X 0 X
2 1 0 1 X X X 2 1 1 0 X X X
1 1 X 0 0 0 X 1 1 0 X 0 0 X
1 1 X 0 X X 0 1 1 0 X X X 0

6 2 2 0 1 1 6 2 2 0 1 1

(6)

Figure 5.1. (a) A unique binary matrix and its projections, (b) After
changing columns 2 and 3 the matrix is ordered such that the l's are
to the left of the free O's in each row, and the l's are above the free
0*8 in each column.

Remark. Specially, if A has no 1 element (of course, in this case A
is uniqe) then Procedure 5.1 gives { l , 2 , . . . , m } X 0 as the only covering
rectangle. In any other case the constructed rectangles are not degenerate.

Procedure 5.1 has proved a part of

Theorem 5.2. The binary matrix A S AQ[R,S) is unique if and only
if there are subsets /J 1 ' C Jj 1 ' C . . . C 7pJ' of the row-indices { 1 , 2 , . . . , m }

and subsets j ' 1 ^ D J j 1 ' D . . . D of the column-indices { 1 , 2 , . . . , n }
(pi > 1) such that

A*1' = Q (/ t (1) x J t (1))\Q (0) . (5.2)
t= l

Proof. If A is unique then we can apply Procedure 5.1 to get the sequence
of sets in (5.2).

To prove the other direction let us suppose that A is non-unique,
but there are such covering rectangles. Then there is a switching chain
SC =< (t"i, j'i), (t'i, j2). (»2, jh), (»2,^3), • • •, (*p,yp), (»pi3i) > in A. Suppose
that Oj,y, = 0, o t l y , = 1, o,-3y, = 0 , -Oj jy , = 1 and so on. (Otherwise an

68 A. Kuba.

analogous proof can be used.) The first two 1-valued elements of SC can
not be covered by the same rectangle, because in this case (»2,) would
be covered. Thus, there are two rectangles, say i f f X jff and iff x jff
(1 < fci < Jfc2 < pi), such that iff C iff (because i2 e i f f \ 4|)) and
j f f D j f f (because j? 6 j f f \ 7^ ') . To cover (13,34) we have another
rectangle iff x jff such that iff C iff and J^1' D j f f . And so on.
Finally, to cover (ip,Ji) we have the rectangle i f f X jff (k p - i < kp < pi)
such that lff_t C iff and J ^ O j f f . Furthermore, iff C iff and

=> Jl\]- But> h e r e » t h e contradiction of C iff C . . . C iff C
(and jff D jff D ... D jff D j f f) . That is, the uniqueness follows from
(5.2).

The free 0 positions of the unique binary matrices can be characterized
in a similar way: Consider a unique matrix A £ Then let us switch the
free l's and O's in A. The new matrix is also unique (it has switching chain
if and only if A has), and for its l's, that is, for the free O's of A, Theorems
5.1 and 5.2 can be applied. In this way we.have analogous Theorems 5.3
and 5.4:

Theorem 5.3. The binary matrix A £ /C(iZ,5) is unique if and only
if for any I subset of rows there is a row t £ / such that

4 l) n 4 o) = 0
for each t' £ I.

Theorem 5.4. The binary matrix A 6 A®(R,S) is unique if and only
if there are subsets / J 0 ' C I^ G ... C. lj>°J of the row-indices {1 ,2 , . . . , m}
and subsets J<°> 3 J«0 ' D . . . D Jp0' of the column-indices { l , 2 , . . . , n }
(po > l) such that

Po

A<°> = Q(J<°>x J<0))\Q(°>.
t= i

For example, in the case of Figure 5.1(a)
({2, 5, 6} X { 2 , 3 , 4 , 5 , 6 }) U ({2 ,4 , 5 , 6 } X { 2 , 4 , 5 , 6 }) U ({2 ,3 ,4 , 5 , 6 } X {4, 5 , 6 })

is the set constructed by the Procedure 5.1 to cover the free l's of the
switched matrix (i.e. to cover the free O's of the given matrix).

.Reconstruction of Unique Binary Matrices with Prescribed Elements 69

Remark. In the class A Theorems 5.2 and 5.4 give

«=1
and

Po

t=l
which is a special case of the structure results of [12].

Theorem 5.2 (and also 5.4) gives the possibility to "order" the rows and
columns of the matrix such that the l's are to the left of the free O's in each
row, and at the same time, the l's are above the free O's in each column of
the ordered matrix. To get this matrix, we permute the rows and columns
so that ij1^ consists of the uppermost rows and j j c o n s i s t s of the leftmost
columns for each t S {1 ,2 , . . . ,pi } . It is also true that if a matrix has this
property then it has no switching chain. Thus, we have

Theorem 5.5. The binary matrix A is unique if and only'if after eventual
permutations the l's are to the left of the free O's in each row, and at the
same time, the l's are above the free O's in each column.

For example, Fig. 5.1(b) shows the matrix ordered from the matrix Fig.
5 1 (a) -

Remark. In the class A (no prescribed elements) a unique matrix is easily
transformed in such a form by ordering the rows and columns such that the
projections are non-increasing vectors (see the normalized class in [14]).

Acknowledgements

The author would like to express his appreciation to Professor Herman
(Philadelphia) and Professor K51zow (Erlangen) for their comments and
help.

References
[1] R.P. Anstee: Properties of a class of binary matrices covering a given matrix,

Can. J. Math. 34, 1982, 438-453.

[2] R.P. Anstee: Triangular (0,l)-matrices with prescribed row and column sums,
Discr. Math. 40, 1982, 1-10.

[3] R.P. Anstee: The network flow approach for matrices with given row and
column sums, Discr. Math. 44, 1983, 125-138.

70 A. Kuba.

[4] R.A. Bnialdi: Matrices of zeros and ones with fixed row and column sum
vectors, Linear Algebra and Its Appl. S3, 1990, 159-231.

[5] S.K. Chang: The reconstruction of binary patterns from their projections,
Comm. ACM 14, 1971, 21-25.

[6] W.Y.C. Chen: Integral matrices with given row and column sums, J. Comb.
Theory, Ser. A, 61, 1992, 153-172.

[7] L.R. Ford, D.R; Fulkerson: Flows in Networks, Princeton University Press,
Princeton, NJ. 1962.

[8] D.R. Fulkerson: Zero-one matrices with zero trace, Pacific. J. Math., 10,1960,
831-836.

[9] D. Gale: A theorem on flows in networks, Pacific J. Math. 7, 1957, 1073-1082.

[10] G.T.Herman, A. Kuba: On binary matrices with prescribed elements, Techni-
cal Report MIPG-205, Department of Radiology, University of Pennsylvania,
Philadelphia, PA, 1993.

[11] H.G. Kellerer: Fuktionen auf Produktraumen mit vorgegebenen Margin al-
Funktionen, Math. Annalen, 144, 1964, 323-344.

[12] A. Kuba: Determination of the structure of the class A(R,S) of binary matri-
ces, Acta Cybernetica 9, 1989, 121-132.

[13] H.J. Ryser: Combinatorial properties of matrices of zeros and ones, Can. J.
Math. 9, 1957, 371-377.

[14] H.J. Ryser: Combinatorial Mathematics, The Math. Assoc. of Amer., 1963.

[15] Y.R. Wang: Characterization of binary patterns and their projections, IEEE
Trans, on Comp. C-24, 1975, 1032-1035.

Received October, 1994

Acta Cybernetica, Vol. 12, No. 1, Szeged, 1995

Demonstration of a Problem-Solving Method*

Judit Nyéky-Gaizler * Márta Konczné-Nagy *
/ . / / ,

Akos Fóthi ' Eva Harangozo '

, Abstract

A program for backtrack seeking is proved here by using deduction rules.
The problem of whether a chessboard can be moved over by the knight step-
ping on every square once and only once, is studied, and is traced back to the
theorem of backtrack seeking in two ways. A comparison is made between the
programs obtained.

1 Introduction
The last forty years have seen a rapid development in programming. Initially the
hardware developed more rapidly than the software technology. For a long time the
effectiveness of the programs had been the most important factor in programming,
but the importance of the reliability of the programs became underlined by the
improving quality of hardware tools and by the demand for producing increasingly
larger systems.

The first works of Floyd, Hoare, Dijkstra and others [2,1,11] on proving program
correctness were published in the 70s: work in this field was continued by Gries,
Mili, Jackson, Wirth, etc [7,8,9,10,13]. Parallel with the theoretical research the
results were translated into practice.

To prove the correctness of existing programs is only one possibility. A better
approach is: write correct programs. Several programming theorems are proven

13,8] etc. for solving classes of important problems. In the present paper a program
or the general problem of backtrack seeking is proved by using deduction rules.

The problem of whether a chessboard can be moved over by the knight stepping on
every square once and only once, is studied, and is traced back to the theorem of
backtrack seeking in two ways. A comparison is also made between the programs
obtained.

The most important definitions and theorems that are necessary to understand
the present paper are available in the literature [3,4,5,6].

'Supported by the Hungarian National Science Research Grant (OTKA), Grant Nr.
2045

''Dept. of General Computer Science, Eötvös Loránd University, Budapest, Hungary,
1088 Budapest, Múzeum krt. 6-8., E-mail: nyeky@ludens.elte.hu

71

mailto:nyeky@ludens.elte.hu

72 Judit Nyeky-Gaizler, Mdxta. Konczne-Nagy, Akos F6thi, ¿va HarangozS

2 Theorem of Backtrack Seeking

2.1 The problem
Let Ux,. • • , U „ be finite sets. Denote by a,- the number of elements of U,- :

| V i |= a< V.- G [1, »).

Let U denote n
U = * U,.

t = 1

Let p : U —• L be a logical function having the following properties: there exists
a pi(* G [0, n]) sequence of logical functions, for which:

1. po = TRUE
2. Pi+i(u) => Pi(v) v » e [l , n - l] *

Vj G [l ,t] : uy = Vj => Pi(u) = Pi{v)
this means that p,- depends only on the first » component of u.

4. pn = P
The problem is to decide whether there exists a u G U, for which p(u) is true.

If yes, let u G U with the property p being given.

2.2 The specification of the problem
Let n

N = i l l V i ' V i = [0 , a , - 1] C N 0 V t € [l , n] .

In this case: | N |=| U | .
Uj can be ordered from 0 to (a,- — 1), Vt G [1, n].
Denote by u^ G Ut- the jth element of .
Let <F> denote a function, which is a bijection between N and U: <F> : N —* U ,

and if i/ G N, then: 4>{v) = (u U l , . . . , un„ J .
We can consider the elements of N as numbers encoded in a mixed radix number

system [12]. Therefore we have defined an ordering on N , and can speak about the
"follower" of an element.

Let us denote by F(U) the value of V G N in the decimal system, that is

/ m = í > * Ü «*)•
•=1 y=»+l

If V\ V" E N, then we shall consider V' < V" iff F(U') < }(V").
Denote by Co the zero value of N : to = (0 ,0 , 0) and by EN the unit value

of N : EN = (0 ,0 , . . . , 1). Moreover Vt' G [1, n - 1], Jeie< = (0 ,0 , . . . , 1 , . . . , 0) G N,
such that:

/ (*) = n
J=t+1

Demonstration of a Problem-Solving Method

With the help of these we can write the specification of the problem,
state space be N x L, and its variables v and I.

A: N xL
1/ I

The precondition of the problem is
Q:TRUE;

the postcondition of the problem is
R : I = (3 u' € N : p(<f>(^))) A I =» (p (* (i /))) .

2.3 Solution of the problem
Disregarding the special features of p, the original problem can be solved by the
theorem of the third variation of linear seeking [3] in the interval [l, | N |], for the
property p, and with the stopping-condition /(z/) >| N | —1.

W e can increment the values in the mixed radix number system by the unit
value e„ .

Let €q be the initial value of v, to avoid the problems coming from the use of
negative values in the mixed radix number system; e<> being the first v € 1№ to be
interpreted.

The result is given by
p r o g r a m { l } :

I, v,v:= p(4>{v)), f a l s e , e 0

w h i l e ->/ A -it; l o o p
v := v © £„
* : = / , (* („))
u := f(u) >| JT | -1

e n d l o o p
e n d

We can significantly increase the effectiveness of the algorithm by using the
special features of p, namely, that if pi(<f>(i/)) = true and p,+ i [4>(y)) = false, then
for every u' € N, which satisfies Vj 6 [l,t + l] : Vj = u'}-, then pi+\(4>{i/')) will also
be false because of the third property of p.

So instead of v ® e„ the next possible v € N will be the value v © U+x-
The counting algorithm will be more simple if we amplify u with an overflow

bit - denoted by c. If the overflow bit changes to 1, it means that we no longer have
the possibility to change v.

From these it follows that it is worth supplementing the assignment I := p[<f>{y))
by seeking the smallest index for which Pi{j>[v)) = false.

Using the rules of deduction [3] the following program can be achieved.
As the invariant of the loop let us use: P : (Vi/ : (0 < f(i/') < f[v)+c * \ N |:

^p[<t>{u')Al = p(<f>(v))A^l (pm_1(^(i/))A-,pm(^(i/)))A(Vt' € [m+l ,n] : J/,- = 0))
If jt = ->/ A (c = 0) is considered as the condition of the loop, then P A ->jr R

is really completed.
Let the terminator function be t =1 N I — f(i/) — c * \ N | . Evidently t > 0,

while P A * is true. The function t will be decreased by increasing v.

73

Let the

74 Judit Nyeky-Gaizler, Mdxta. Konczne-Nagy, Akos F6thi, ¿va HarangozS

To perform the condition Q ^ P we need adequate initial values for the vari-
ables before starting the loop.
The Backtrack program will be:
program {2}:

v,c,m:=e o,0,1
SEEK(i/, m, /) _ Q,
while ->/ A (c = 0) loop

SUM(i/, m, c)
SEEK (u,m,l)

endloop
end

To verify Q' => P let us define the SEEK program. Let the specification of the
SEEK(f , m, /) program be:

¿ S E E K ^ x N 0 x L
v m I

^ S E E K ^ x N 0
v' rri

^ S E E K " '= A m - m> A Pm ' - l (^H)
rSEEKv = v' A 1 = (Vt" e K» nl : Pi(tt")))A

=• A V« G \m',m) : Pi(4>[v))) A / w - i (f H)) .

This problem can also be solved by the theorem of the third variation of linear
seeking [3] bearing in mind that the following two statements are equivalent: (1)
every element of a set has a certain property, (2) there is no a single element in the
set without this property.

Thus, the SEEK program will be
program {3}:

I, m := true, m — 1
while IA (m ^ n) loop

m := m + 1
endloop

end
Therefore in the main program there will be Q' = K-SEEK A = €°) A (c =

and Q' => P simply follows .
To prove the implication P A w ^ tup(5o,P) we need determine the S U M

program as well. Let the specification of the S U M (f , m, c) program be:

% U M : ^ * N 0 xE
v m c

BSVM- ^ X No
v' m'

QSUM: v = v' Am = m'
RSVM' (/ M + c . | JT |= / (•) + n,n=m '+i « .) A m G [0, m']A

(Vi G [m+ l.m'l : i/,- = 0) A (c = 0 vm ? 0).

Demonstration of a Problem-Solving Method 75

As the invariant of the loop let us use

^ S U M : (/ (") + c * n.n=m+i «i = / (" ') + n U . - H û») A m 6 [0,m']A
(V» 6 [m + 1, m'] : 1/, = 0) A (c = 0 =>• vm ± 0).

Let us consider ""SUM = (m ^ 0) A (c ^ 0) as the condition of the loop.
In this case P g U M A """"SUM R S U M -
Let the terminator function be: ¿SUM = m + c-
Evidently t g U M > 0 ^SUM A ""SUM ^ t r u e -
The function ¿SUM ^e decreased by increasing either m or c. Thus the

program will be
program {4}:

c : = 1 _ Q>

while (m / 0) A (c ^ 0) loop
if vm = a m - 1 then i/m := 0

m := m — 1
else c := 0

"m : = Vm + 1
endif

endloop
end

In this case Q 'guM : = A (m = m ') A (c = 1). Therefore Q g u M ^
P S U M •

To verify P g U M A i r = > W P (S 0 S U M > P S U M) w e h a v e t o P r o v e :

1- P S U M A Jr A (i/m = a m - 1) => wp((i/m := 0; m := m - 1), P g U M)
2- P S U M A * A ("»» / a m - 1) => wp((c := 0;i/m := vm + l), P g U M)

These are consequences of the definition of the function / (v) using the weakest
precondition of the assignment statement.

Having proved the S U M program for the verification of the main program we
need P A it =>• wp((SUM;'SEEK), P) and this follows from the above.

3 Solution of a demonstration problem

3.1 The problem
The 8 X 8 (n X n) chessboard is given. We have to decide whether it is possible for
the knight to move over the whole chessboard stepping on each square once and
only once. If it is possible, we should be able to give a " tour*.

Two possible solutions of this problem will be given and compared below.

3.1.1 Specification of the first solution

Since we have to step on 64 (n2) squares, we can use a vector of 64 (n2) length for
the storage of the knight's moves. The j " 1 component of the vector denotes the

76 Judit Nyeky-Gaizler, Mdxta. Konczne-Nagy, Akos F6thi, ¿va HarangozS

position of the j t h step. Let us number each square of the table line by line from 0
to 63 (0 - (n3 - 1)) :

64
A: NxL * = . * 1 [0 , 6 3]

v I

The precondition of the problem is
Q:TRUE;

the postcondition of the problem is
R : / = (3 i/' e N : p(«/)) AI => (p(«/)).

Let us denote by LINi = i/j/8 ;and by CO Li = i/t- — 8 * LINi, (in general:
LINi = Ui/n ; and by CO Li = i/,- — n * LINi), where the fraction bar denotes
the division between integers.

Let p : N —• L be a logical function to be defined as follows: Let p,-(t G [0, n2])
be a sequence of logical functions satisfying

1. Po = Pl = TRUE
2. PiW = Pi-iM * HiM * liM V» € [2,64]

Hi(y) — i>i knight-move-distance from Vi-i =
= (| LINi ~ LINi-1 |= 2 A | COLi - COL{-i |= 1) V

(| LINi - LINi-i |= 1 A | COLi ~ COLi-i |= 2).
7i(u) = i>i different from the squares over

= (V. : 1 < 3 < i : v, ^ »i)
In this case fi[y) => Pi-i(f) , and obviously:
3.Vy € [l,t] : i/j = i/y =» Pi(v) = Pi{v')\ that is, p,- depends on the first t

component of N only.
4. P64 = P

3.1.2 The first solution of the problem

It can be seen that this specification is equivalent to the specification of the general
Backtrack seeking algorithm, therefore the program for solving it can be used
with the following way of correspondence: '

n = 64
V»' e [1,64] : U, = (0,1 63}, a,- = 64
(We shall use a 64 based number system instead of the general mixed radix

number system.)
<f> is the identical mapping.
The program is as follows

program {5 } :
i/, c, m := e0i 0,1
SEEK (j/, m, I)
while —>l A (c = 0) loop

SUM(v, m, c)
SEEK(i/, >7>,/)

endloop
end

Demonstration of a Problem-Solving Method 77

The SEEK program is given by
program {6 } :

I, m := true, m — 1
while / A (m ^ 63) loop

I ••= P m + l H
m := m + 1

endloop
end

The S U M program will be
program{7} :

c := 1
while (m j i O) A (c / 0) loop

if vm = 63 then um := 0
m := m — 1

else c ;= 0
^m := + 1

endif
endloop

end
We now need the program for the assignment statement I := pm+ i(i/) only.

As we have defined pm+i(i>) = Pm(") A/im+1(1/) Ai f m + i (i /) , consequently the
precondition of this program is
Q '• № = Pmiy)} A (i/ = i/') A /');

and the postcondition is
R - {1 = Pm+i(v) A (i/ = 1/')).

In the state space A this is equivalent to
R : [h = Mm+iH A /2 = f m + i M A I = (I' A /x A Z2) A (i/ = i / ')) .

The program realizing this condition is the sequence of states below
program {8 } :

h •= / W i M
h •= Tfm+lH «
l : = k A l2

end
The solution of the assignment I := / i m + 1 (f) will be:

h = (| LINm+1 - LINm |= 2 A | COLm+1 -COLm |= 1) V
(| LINm+1 - |= 1 A | COLm+1 - COLm |= 2).
The assignment Z2 := 7 m +i can be solved by the theorem of the third varia-

tion of linear seeking, with the considerations written under the SEEK program.
The program i2 := fm+i (v) will be

78 Judit Nyeky-Gaizler, Mdxta. Konczne-Nagy, Akos F6thi, ¿va HarangozS

program {9 } :
/ 2 , t := t rue , 0
while ¿2 A (t / m) loop

h := vm+i / "i+i
» ' : = » ' + 1

endloop
end

This completes the first solution.

3.1.3 Specification of the second solution
The main idea of the second solution is to take advantage of the fact that we cannot
step anywhere from a certain square of the chessboard. We can choose only from
the eight possible moves of the knight. All the moves are represented by a vector
showing the relative movement of the knight by two components, the first for the
horizontal (lines) direction, the second for the vertical (columns) direction.

(-1.2) (1,2)

Figure 1: The knight moves

Let us consider these steps as the components of a constant vector called
" knight-move-vector":

h =,((1, 2), (2,1), (2, -1) , (1, -2) , (-1 , -2) , (-2 , -1) , (-2,1), (-1 , 2))

We use the Backtrack algorithm again with the following correspondence:
n = 64
U,- = { (» , /) | 0 < i,j < 7}, give an arrangement with the enumeration of the

elements:
u< = { (0 , o), (0 , 1) , (0 , 2) , . . . , (7 ,0) , (7 , 1) , . . . , (7 , 7) , }
If we represent the chess-board by a matrix, the elements of U{ will be the

values of the possible start positions.
«1 = 64
Let H denote the eight-element set obtained with the help of the knight-move-

vector h, we define the arrangement on H with the enumeration in h.
64

Vi€ (2,64) U< = ff | a.-|=8 U = . « 1 U i

Using the sets Ut- the actual knight move sequence on the chess-board can be
given by the function:

Demonstration of a Problem-Solving Method 79

64
pos: U — V V = f. « j P P = {LIN, COL) LIN, COL = N 0

«1 = P ° s («) i = « 1
Vi = poa(u),- = p o s i u) , - ! © u,- Vt 6 [2,64]

© denotes the addition component by component.
The correspondence between N and U is given by

63

N = [0 ,63] x (. ^ [0 , 7])

<t>:N-+U
Uj = 4>(y)i = (i^i/8, i/i — f i / 8 * 8) (the fraction bar denotes the division between
integers)
u< = 4>{v)i = hUi V i e [2,64].

The specification with the values above is
A: N x L

i/ Z
Q:TRUE

R:l=(Bv'eN: p(H"'))) A I => (p(4>H))-
Let p : N —• L be a logical function to be defined as follows: let p,(» G [1,64])

be a sequence of logical functions satisfying
1. px = TRUE
2- P i { №)) = ft-i^MjAwl^MlAli^M) Vi G [2..64]
where /1,(^(1/)) = the ith move does not move off the chess-board

= pos[<f>(v))i G [0,7] X [0,7]
and 1i(<f>(v)) = pos(tf>(i/))i different from the squares over

= (Vj : 1 < j < i : pos(<f>(v))j ? po«(4(i/))<)
In this case Pi{<i>{v)) => Pi-i{<j>{v)), and obviously:
3. V j G [l , t] : Vj = v'j => pi(4>(y)) = Pi(<f>(v'))\ that is, p,- depends on the first i

c o m p o n e n t o f N only .
4. P64 = P i

3.1.4 The second solution of the prob lem

It can be observed, that the function pos given by a recursive formula in the program
working out the assignment I := p m + 1 can be substituted by a variable, and
thus its evaluation will be significantly simpler. Let us amplify the state space with
a component of type V , denoted its variable byu.

The first m element of v shows then the sequence of actual positions of the
knight.

The program obtained is
p r o g r a m { 1 0 } :

v, c, m := eO|0,1
t>i := (0,0) «— startposition
S E E K (i / , m , Z)
while ->l A (c = 0) l o o p

S U M (i / , m , c)

80 Judit Nyeky-Gaizler, Mdxta. Konczne-Nagy, Akos F6thi, ¿va HarangozS

SEEK (v,m,l)
endloop

end
Since the SEEK program differs from that written in the first solution in real-

izing the assignment Í := Pm+i (<£(")) only, here we give just the difference.
The S U M program is changed in comparison with the first solution:

p r o g r a m { l l } :
c := 1
while (m ^ 0) A (c ^ 0) loop

if (m = 1 A i/m = 63) V (m ^ 1 A vm = 7) then vm := 0
m := m — 1

else c := 0
"m : = Urn + 1

endif
endloop

end
Let us give the program solving I := p m + i (j /) !
Since pm + i (^(n)) = pm[4>[y)) A Mm+i(^H) A7m+i(<^(i/)); thus, the precondi-

tion of the program is
Q : i(l'= pM»'))) A (» = "') Al');

the postcondition is
R : (I = pm+1(f(»)) A («/ = I/'))-

This is equivalent in the state space A with
R : (h = / W i (^ H) A h = ym+i{4>H) Al=(hA fa) A (v = t/)).

The program realizing this condition is the sequence of statements below,
program {12}:

vm+1 : = " m f f l
'l := A«m+l(um+l)
'a := 1Tm+i(w)
I := h A l2

end
The solution of the assignment li := / im+i(vm+i) will be

h •= (0 < («m+i)i < 7) A (0 < (i>m+i)a < 7)

The assignment l2 := 1m+i{v) c a n be solved by the theorem of the third varia-
tion of linear seeking, with the considerations written under the SEEKprogram.

Thus the program l2 := 7m+i(t0 is
program { IS } :

l2 , i := true,0
while l2 A (t t̂ m) loop

h •= «m+l ^ «<+1
i :=t + l

Demonstration of a Problem-Solving Method 81

endloop
end

This program is essentially the same as the corresponding one in the first solu-
tion: Thus the second solution is completed.

3.2 Comparison of the two solutions
If the two solutions are compared from the viewpoint of execution time, the second
one is found to be essentially faster. The reason for this lies in the number of
potential attempts at the first solution

n1

»•=i

The corresponding value at the second solution is smaller by an order of mag-
nitude:

•=i

The above example indicates that one should never automatically trace the
problems back to the various programming theorems, since the innovational way of
thinking of the expert programmer is essential.

References
[1] Dahl, O.J., Dijkstra, E.W., Hoare, C.A.R.: Strukturált programozás (Structured pro-

gramming), Mfiszaki Könyvkiadó, Budapest, 1978.
[2] Dijkstra, E.W.: A Discipline of Programming, Englewood Cliffs, 1976, Prentice-Hall

Series in Automatic Computation.
[3] Fóthi A.: Introduction into Programming (Bevezetés a programozáshoz), in Hungar-

ian, manuscript, ELTE TTK, Budapest, 1983.
[4] Fóthi Á.: A Mathematical Approach to Programming, Annales Un*. Set. Budapest, dt

R. Eötvös Nom. Seetio Computatorica, Tom. IX. (1988), 105-114.
[5] Fóthi A., Horváth Z.: The Weakest Precondition and the Theorem of the Specification,

in Proceedings of the Second Symposium on Programming Languages and Software
Tools, Pirkkala, Finland, August 21-23, 1991, Eds.: Kai Koskimies and Kari-Jouko
Ráihá, Uni. of Tampere, Dep. of Comp. Sci. Report A-1991-5.

[6] Horváth Z.: Parallel asynchronous computation of the values of an associative func-
tion, Acta Cybernetiea. 12 (1995) 83-94.

[7] Gries, D.: The Science of Programming, Springer Verlag, Berlin, 1981.
[8] Jackson, M.A. : Principles of Programming Design, Academic Press, New York, 1975.
[9] Mili, A.: A Relational Approach to the Design Deterministic Programs, Acta Infor-

mática, 20 (1983) 315-328.
[10] Mili, A., Desharnais, J., Gagné, J.R.: Formal Models of Stepwise Refinement of

Programs, ACM Computing Surveys, 18 (1986) 231-276.

82 Judit Nyeky-Gaizler, Mdxta. Konczne-Nagy, Akos F6thi, ¿va HarangozS

[11] Mills, H.D.: The New Math of Computer Programming, Comm. of the ACM IS (1975)
43-48.

[12] Szabo, M., S. Nicholas, Tanaka, I. Richard: Residue Arithmetic and its Applications
to Computer Technology, McGraw-Hill Book Company, New Y. - San Francisco -
Toronto, 1967.

[13] Wirth, N.: Systematic programming. An Introduction., Prentice-Hall Inc. 1973.

Received April, 1994

Acta Cybernetica, Vol. 12, No. 1, Szeged, 1995

Parallel asynchronous computation of the
values of an associative function *

Zoltán Horváth *

Abstract
This paper shows an application of a formal approach to parallel program

design. The basic model is related to temporal logics. We summarize the
concepts of a relational model of parallelism in the introduction. The main
part is devoted to the problem of synthesizing a solution for the problem of
parallel asynchronous computation of the values of an associative function.
The result is a programming theorem, which is wide applicable for different
problems. The abstract program is easy to implement effectively on several
architectures.

The applicability of results is investigated for parallel architectures such
as for hypercubes and transputer networks.

1 Introduction
We summarize the basic concepts of a relational model of parallelism [11,13,12].
Our model is an extension of a powerful and well-developed relational model of pro-
gramming, which formalizes the notion of state space, problem, sequential program,
solution, weakest precondition, specification, programming theorem, etc. [8,9,16].

1.1 A relational model of parallel programs
We take the specification as the starting point for program design. We use a
model of programming which supports the top-down refinement of specifications
[19,8,10,9,2,11]. The proof of the correctness of the solution is developed parallel
to the refinement of the specification of the problem. We formalize the main con-
cepts of UNITY [2] in an alternative way. We use a relatively simple mathematical
machinery [8,11]. The result is an expressive model, which is related to branching
time temporal logics.

We give a brief survey of the main concepts and apply the methodology to solve
the problem of parallel asynchronous computation of the values of an associative
function in the main part.

'Supported by the Hungarian National Science Research Grant (OTKA), Grant Nr.
2045

fDept. of General Computer Science, Eotvos Lorind University, Budapest, Hungary,
1088 Budapest, Muzeum krt. 6-8., E-mail: hz@ludens.elte.hu

83

mailto:hz@ludens.elte.hu

84 Zoltán Horváth

1.1.1 Preliminary notions

In the following we use the terminology used also in [17,8,10,9,11]. Notations are
defined often by the help of the special equality sign ::=.

The binary relation R C A x B is a /unction, if Vo g A : | J2(a) | = 1. We
define the domain of a relation R as Pjj::={a € A|JZ(a) / 0}. We use the notation
/ : A B fór functions.

The set of the logical values is denoted by C, i.e., £::={|, !}• A relation / C
A x £ iá called logical function, if it is a function. We use the words predicate
and condition as synonyms for logical function. f /] : : = { a 6 A|/(a) = { f } } is called
the truth-set of the logical function f. [/] abbreviates the theorem (|/] = A)
[4]. The operations U, n,A\ correspond to the function compositions A,V,-i. =>•
corresponds to C, P —* Q is an abbreviation of ->P V Q.

The set of the subsets of a set A is called the powerset of A and denoted by
P(A).

Let I C M. Vi e I: A, is a finite or numerable set. The set A::=^jAi is called
state space, the sets Ajy are called type value sets . The projections tij : A i—• A±
are called variables. A* is the set of the finite sequences of the points of the state
space and A°° the set of the infinite sequences. Let A** = A* U A°°.

We can imagine a statement (a sequential program) as a relation, which asso-
ciates a sequence of points of the state space to some points of the state space, i.e.,
a statement is a subset of the direct product A x A". The full formal definition of
statement is given in [8].

The effect relation of a statement s is denoted by p(s). The effect relation
expresses the functionality of the statement. p(s) C A x A, Dp(,y.:={a 6 A | a(a) C
A*}, and

Va 6 Dp(,) : p(s)(a)::={6 6 A | 3a 6 «(a) : r(a) = b}, where r : A* -* A is a
function, which associates its last element to the sequence a = (aj,...., a „) , i.e.,
r{a) -- an.

The logical function tup(s, R) is called the weakest precondition of the
postcondition R in respect of the statement s. We define [twp(s, i2)] : :={o €
Pp(,)|p(s)(a) C [iZ]}. The logical function sp(s, Q) is called the strongest post-
condition of Q in respect of s. [sp(a, Q)]::=p(s)([Q]).

A = A I x . . . X A „ , F = (FL,...,FN), where FI C A x A<. Let
[7r,]::=Pfv. The relation ^<|ft] is the extension of Fi for the truth set of con-
dition t [6], i.e., fi|rji(a)::=jv(a), if a 6 fjr,-] and (o)::=o,-, otherwise.

Let us use the notation (i g j| (w,- -fyjuj, ..,wn)i if ""yj) for the statement sy,
for which ((DTJ = A)a(VO S A : p(sy)(a) = i'Hftl (a)))- This kind of (simultaneous,
nondeterministic) assignment is called conditional, if Va € A : |p(sy)(a)| < u>.

Let us denote the set of n-ary relations over A by RnlA). A function F :
R„(A) >— R1t(A) is monotone if X C Y => F (X) C F (r) . As it is well
known every monotone function over a complete lattice has a minimal (least)
and a maximal (greatest) fixpoint. The minimal fixpoint of the monotone func-
tion F is HX : F(X) = n { X [F (X) C X } , and the maximal fixpoint of F is
nX:F(X) = [j { x \ x c F (x) } \ n \

Parallel asynchronous computation of the values of an associative function 85

1.1.2 The concepts of problem, parallel program and solution

The specification of a problem and its solution, the abstract program, is indepen-
dent of architecture, scheduling and programming language. The abstract program
is regarded as a relation generated by a set of deterministic (simultaneous! condi-
tional assignments similar to the concept of abstract program in UNITY 12]. The
conditions of the assignments encode the necessary synchronization restrictions ex-
plicitly. Some assignments are selected nondeterministically and executed in each
step of the execution of the abstract program. Every statement is executed in-
finitely often, i.e., an unconditionally fair scheduling is postulated. The concept of
fairness is used in the same sense as by Morris in [15] (Section 5.1), i.e., stricter
than usually [2]. If more than one processor selects statements for execution, then
the executions of different processors are fairly interleaved. A fixed point is said to
be reached in a state, if none of the statements changes that state [2].

1.1.3 The specification of a problem

The problem is defined as a set of properties. Every property is a relation over the
powerset of the sate space. Let P,Q,R,U : A >—• £. be logical functions. We define

P[P{A) x ^(.4)), and FP,INIT,inv .TERM C P(A).

We introduce the following infix notations:
P > Q::=(J\P1,[Q1) G >, P ~ Q::=(\P], [Ql) ©-,
P Q::=(\P\, [Ql) G - , FP => £::=|7Zl G FP,
Q FP::=JQ| G TERM, Q G INIT::=[Q] G INIT,
inv P: :=[P| G inv .
The P > Q, P i-+ Q, etc. formulas are called specification properties or shortly

properties. The >, i—«—inv , TERM relations define transition properties, the
FP, INIT relations define boundary properties. The transition relations > and
inv express so called safety properties, while the relations >-•,<—•, TERM express
progress properties. The definition of a solution gives an interpretation for the
introduced concepts.

Definition 1.1 Let A be a state space and let B be a finite or numerable set.
Two relations expressing boundary properties and four relations expressing tran-
sition properties are associated to every point of the set B. The relation F C
B X x " called a Problem defined over the
state space A. B is called the parameter space of the problem. The components of
the elements of the direct products t€[* 3)P(P[A) X P{A)) and 4]P(P[A)) are
denoted by >6, end by INIT&, FP&, inv j,, TERMj, respectively.

A program satisfies the safety property P > Q, if and only if there is no direct
transition from P A ->Q to ->P A ->Q only through Q if any. A program satisfies the
progress properties P>-*QorP'—*Qif the program starting from P inevitably
reaches a state, in which Q holds. P t-+ Q defines further restriction for the direction
of progress. The fixed point property FP =>• R defines necessary conditions for the
case when the program is in one of its fixed point. The Q G INIT property defines
sufficient condition for the initial states of the program. Q <—• FP expresses that
the program starting from Q inevitably reaches one of its fixed points. P is said
to be stable if and only if P > If P holds initially and P is stable, then P is an
invariant, denoted by inv P.

86 Zoltán Horváth

1.1.4 The definition of a parallel program
Let S be an ordered pair of a conditional assignment and a nonempty, finite set of
conditional assignments, such that 5 = (soi{sy | J G J A Dp(,) = A AVa G A :
(M a) | < w) }) , J = { l . . m } , m ^ l .

The program UPG(S) is a binary relation which associates equivalence classes
of graphs generated by the effect relation of so and by disjoint union of the effect
relations of conditional assignments {ai,..., s m } to the points of the state space.
The formal definition of a parallel program is given in [13]. The program UPGlS)
generated by the ordered pair S = (a0) { « i , . . .sm}) is denoted shortly by S. The
conditional assignment só is called the initialization in 5 and ay : j G [l..m] is said
to be an element of the program S.

1.1.5 The formal definition of a solution
The program 5 solves the problem F, if S satisfies all (subset of) the properties
given 'in F. The justification of the following definitions and the proofs of the
theorems is given in [11,13].

Definition 1.2 Let S be an abstract program, S = (a0, (aj, ...am}). Let us de-
note the set of the indices of the deterministic assignments of abstract program S
by Jrf and the the set of the indices of the nondeterministic assignments by Jnd-
fixpoints-.-.=(i€Ji ^[v n] (»,-. - a, = Py,.(a)) A (y€ J n i j e | 1 . .n , ("•**))).

Definition 1.3 Let S be an abstract program. S satisfies (FP => R) if
fixpointg =>• R.

Definition 1.4 Let S be an abstract program, S = (s0, { « í , . . .sm }) .
wp(S, Rh:=Vs G S : wp(s, R).
wpa(S, R)::=3s G S : wp(3,R).

(tupa(S,R) is called the "angelic" weakest precondition [15]).

Definition 1.5 The program S satisfies the property P > Q if and only if (P A
^Q=>wp(S,PvQ)).

Definition 1.6 The program S satisfies the pair of properties Q G I NIT and
inv P if and only if sp(so,Q) ^ P and P is stable.

Definition 1.7
G(P, Y, X)::=P V (wpa(S, Y) A typ(5, X V Y)),
F(P, Y)::—r)X : G(P, Y, X), and
~P::=uY : F(P,Y).

Remark: Since G is monotone in P, Y, X, VP, Y : rjX : G(P, Y, X) exists, moreover
F(P, y) is monotone in P, Y and ^ P is monotone in P.

Definition 1.8 (ensures) The programS satisfies the specification (Q i—• P) if and
only if (Q=>(PV (wpa(S, P) A wp(S, Q V P)))), i.e., (Q => G(P, P, Q)).

Definition 1.9 (leads-to, inevitableJ The program S satisfies the specification
(Q — P) if and only if (Q (~ P)) .

Parallel asynchronous computation of the values of an associative function 87

Theorem 1.1 If (<^P) holds for a £ A, the scheduling is unconditionally fair and
the program S is in the state a, then S inevitable reaches a state, for which P holds.

We can prove the following theorems corresponding to the properties used in the
definition of leads-to in UNITY [2]. The proof of progress properties is supported
by the introduction of so called variant functions [6,2].

Theorem 1.2 For an arbitrary program S,
- if P>->Q then P^Q, and
- if P<-*Q andQ<-> R, then P <-> R.
- Let I be an arbitrary finite set. Ifii e I: (P< <-• Q) then (3» : P.) <-+ Q.
- Let W be a well-founded set in respect of the relation <.

IfVmeW :: (P A v = m) <-» ((PAu < m) V Q), thenP^Q.

Consequence 1.1 If the program S satisfies the property: (-> fixpoints At) =
v') ((-i fixpoints A v < v' — 1) V fixpoints), then S satisfies the property

A new specification is called a refinement of a previous one, if any solution for
the new specification is a solution for the problem specified originally.

2 Computation of the values of an associative
function

Let H be a set. Let o : HxH •—• H denote an arbitrary associative binary operator
over H.

f : H* i—• H is a function describing the single or multiple application of the
operator o. Since o is associative, for any arbitrary sequence x €E H* of length at
least three
f(<i xu...,x\x\ ») = /(C f { c »i.-.Z!«!-! >),«|«| ») = /(C xi,/(C
xa,..,£|z| 3») ^)• We write f (< i hi,h,2 instead of the infix notation (hi o h?)
in the following. We extend / for sequences of length one: / (c h ») = h.

Let a finite sequence a £ H* of the elements of H be given. The indices are
associated to the elements of the sequence a in the reverse order, i.e., the last
element is denoted by oj. If the length of the sequence is n, then the first element
is denoted by an. a an , . . . ,oi in > 1). Let us compute the value of the
function Q : [l..n] i—• H for all i S [l..n], where n > 1 and

To solve the problem we use a similar train of thought to those presented in the
cases of parallel synchronous computation of the sum of binary numbers and of the
asynchronous computation of the shortest path [2].

2.1 The formal specification of the problem
We specify that the program inevitably reaches a fixed point and the array g con-
tains the values of / in any fixed point.

A — G, where G = t>ecfor([l..n], H), n > 1; g : G

(T— fixpoints), (T ^ FP).

t«-» FP
FP (Vi e [l..n]: ff(i) = /(< Oi,a! >))

(1)

(2)

88 Zoltán Horváth

o :k = riofl(«)l

Figure 1: Sfs(t,Jfc) = h(i,k), if k < [Jfc(t).

... _ k

Let us observe that the computation of the values of Q at place t is made easier
with the knowledge of the value of / for subsequences au , . . . , a„ indexed by
the elements of an arbitrary [u..u] C [t..l] interval. Moreover the result computed
for a subsequence is useful in the computation of the value of / for any sequence
which includes the subsequence.

FYom the above line of reasoning, we extend the state space and refine the
specification of the problem. Let us introduce the auxiliary function h. Let h(x, k)
denote the value of / for the sequence of which the first element is Oj and its length
is 2* or the last element is Oi, if t < 2fc. The two-dimensional array ga is introduced
to store the known values of h. This method is called the substitution of a function
by a variable [7]. The connection between the variables ga, k, t and the function h is
given by the invariants (4)-(6). The lines on the Figure 1 illustrate the connections
among the elements of the matrix ga according to lemma 2.1 and to invariants
(4) - (6) .

A' = Gx GSx Kx T G = vector{[l..n\,H),
g ga k t GS = vecior([l..n,0..(ilog(n)])], H)

K = vector \\l..n\, A/o),
T = vector([l..n],>/o), n > l

The precise definition of the partial function h : [l..n] x Mo —• H is:

i / • jl\.. / / (< Hi •••iai ») , if » — 2fe + 1 < 1
« 1 * . * ; » \ / (C o . - a (i _ 3 f c + 1) ») , if t — 2* + 1 > 1

Lemma 2.1
If (i -2k> 1), then f [c h(i, Jfc), h(i - 2k,k) ») = h{i, k + l).

Proof: Since t'-2fc > 1 ,h(i,k) = / (< o,•,..., a^.ak+i) ») . If (t-2* :) -2 f c + l > 1,
then h(i — 2k,k) = <»(,_2*)i —»a(t—2fc—2fe+i) Since / is associative:
/ (C h{i,k),h{i - 2k,k) >) = / (C Oi, — , a (» - 2 t + i) i a(«-2 f c)> •••>°(«-2't-2 fc+i) »
) = h(i,k + 1). If (»' - 2fc) - 2k + 1 < 1, then h(i - 2k,k) = /(«
a(i-2 fc)i—>°i Using the associativity of / : f (c h(i,k),h(i — 2k,k) ») =
f (C a,-,...,a (<_2«.+1),a (i_2t),...)a1 ») = h(i,k+ 1).

Parallel asynchronous computation of the values of an associative function 89

Let us choose the variant function u : A i—• Mo in the following way:
n

v::=4 *n*n-jT (k{i) + X{k(i) = flog(.-)l A g(i) = 93(i, *(«))))
•=i

The variant function depends on the number of elements of the matrix ga which
elements are different from the value of function h at the corresponding place and
on the number of places where the value of the array g is different from the value
of function Q.
Lemma 2.2 The specification below is a refinement of the specification (l)-(2).

f — FP (3)
FP V»' € [l..n] : (*(0 = ÍM* ')]) A (j/(t) = g.{i, [log(.)D) (4)

inv (V»' € [l..n] : *(«) < [log(t)l AVk : k < k(i) : gs{i, k) = h{i, k)) (5)
inv (Vi <E [1..»]: t(t) = 2*<0) (6)

Proof:
k{i) = [log(»)] and g(i) = ga(i, flog(t)]) in fixed point according to (4). Us-

ing (5) it follows that the equation </(t) = gs(i, [log(t)]) = h(i, [log(t)]) holds in
fixed point. Since 2rio<f(,')1 > t, after the application of the definition of h. we get
h(i, [log(Ol) = /(•< a,-, ...,ai which is the same as property (2).

Remark 2.1 The property (1) is not refined. The proof of the correctness of any
program in respect of (1)=(3) is based on Consequence 1.1. This means the choose
of a variant function may be regarded as an implicit refinement step in respect of
property (l) . Since the property (6) defines restrictions over the new components
of the state space only, we need not to use it in the proof of the refinement.

2.2 A solution
Theorem 2.1 The abstract program below is a solution for the problem specified
by (S)-(6), i.e., a solution for the problem of the computation of the values of an
associative function.

*o : < = [? . . »] * (» ') . * (» ') ~ / K 1.0

' f (c gs(i, *(»)), gs{{i - «(»)), fc(t')) 3>), 2 * t(t), k(i) + 1,
if (i-2* t(i) + 1 > 1) A (k(i - t(i')) > Jfc(»))

/(< gs(i, k{i)), ga(i - t{i), k(i - t(t))) »),
2*t(t),fc(i) + l,

if (t - t(t') > 1) A (» - 2 * t(i) + 1 < 1)
A (M » - i (f)) = r i o g (f - t (0) i)

.-=[?..»! «"(*• *(*))»/ (*(•) = riog(Ol)
}

where nj is used for the abbreviation of n statements. Each statement is in-
stantiated from the general form by substituting the dummy variable i by a concrete
value.

90 Zoltán Horváth

Proof:
(3): Every statement of the program decreases the variant function by 1 or does

not cause state transition. If the program is not in one of its fixed points, then there
exists an t € [l..n] and a corresponding conditional assignment, which assignment
increases the value of k(t), or there exists an t for which k(i) = [log(t)] and the
value of g(i) is different from the value of ga(i, ([log(t)])).

(4): using the definition of the fixpointg:

Vt e [I..n] (*(i) = [log(t)l) - g(i) = g.{i, k(i)) A (7)
((i - 2 * t(i) + 1 < 1) V (*(i - t (0) < fc(0)) A (8)

(i - t(i) < l)V (» - 2 - t(i) + 1 > 1) V (*(i - t (0) * riog(i - (t(.'))D) (9)

We apply mathematical induction on t to prove: Vt g Jl..n] : (£(») = Jlog(t)]).
Base case: t = 1. iVom (5) and ap(a0, T) follows that (mI) = [logflj]). Inductive
hypothesis: Vj < :(k(j) -Jlog(y) l) . Since i(t) > 1, (¿(¿-i(i))\ f [log(. '- (i(.))])
contradicts the hypothesis. This means (9) can be simplified to (» — tii) < 1) V (t —
2»t(t) + 1 > 1). If (t ' -2*i(») + l > 1), then k{x — t(i)) < Jfc(t') else (8) does not hold.
Using the inductive hypothesis and t(i) > 1 we get k(i — t(%)) = [log(t — i(i))],
i.e., (logii — t(»))1 < k(i). The last statement contradicts the initial condition:
t - 2 * t(i) + 1 > 1)) => (i - t(t) - t(t) + 1 > 1) =• [log(»" - i(t"))] > ifc(t). This means
t' - 2 * t(i) + 1 < 1).
t - 2 * t(t) + 1 < 1) =>• (» - i(t) < 1), otherwise (9) does not hold. (» - t(i) <

1) => k(i) > [log(»)]. Using the invariant (5) we get: k(i) = [log(t)]. Based on (7)
: $(t) = <?s(»',fc(t)) = ga(i, [log(t')l).

(61: Since sp(30, t) implies t(i) = 1 and k(i) = 0, the t(t) = equality holds
initially. All the assignments change the value of k(i) and t(i) simultaneously.

(5): Since M»',0) = f (c a(t) ») , sp(s0,T) => gs(i,k(i)) = h(i,k(i)). Since Jt(t)
is initially 0, ap(s0, T) =• [H*) < ilog(t) |).

After calculating the weakest preconditions of the assingments it is sufficient to
show that

• (t" - 2 * tii) + 1 > 1) A (A:(t - «(»)) ^ Jtmi and VJfc : ifc < Jfc(t) : gs(i, k) = h(i, k)
implies the equality for *;(»') + 1, i.e., /(«C ga(i,k(i)),ga(t — t(t),fc(t)) ») =
h{i,k(i) + 1) and k(i) + 1 < [log(t)*],

(« - 2 * i(t") + 1 > 1) A (t(t) > 1) =• (»" - t(t) > 1) =• Jfc < log(t - 1) < log(t') <

In the first case fc(t') < A;(t) implies gs(i,k[i)) = h(i,k(i)) and (if» — t(»)) > Jbit))
implies gs(i — t(t), k(i)) — h(i — £(t), A:(t)). In the second case k(t) < k(i) implies
ga(i, k(i]) = h(i,kli)) and k(l-t(i)) = flog(.-t(t))l implies ga(i-t(i), (flog(t)]) =
h(t — i(t), ([log(t)])). In both of the cases the application of the Lemma 2.1 leads
to the statement.
(end of proof.)

Parallel asynchronous computation of the values of an associative function 91

Let us suppose the abstract program is implemented on a parallel computer
containing O(n) processors. If the left side of an assignment refers to an array com-
ponent indexed by i, then the assignment is mapped to the ith (logical) processor.
Easy to see, that the program reaches one of its fixed point in at most Oflog(n)]
state transforming steps. The logical processors may work asynchronously.

2.3 Transformation of the program

The program corresponds neither to the rule of fine-grain atomicity [l](2.4) nor to
the shared variable schema [2]. To ensure effective asynchronous computation we
have to transform the program by introducing new variables and using the method
of substitution of a function by a variable for the function log [7].

Let us use the auxiliary arrays gst(i) = ga(t — t(i),k(i)), kt(i) = k(i — t(t)),
gatk(i) = gs(t — t(i),kt(i)), if the values are necessary and known by the ith
logical processor and the value of kt(i) is big enough to determine the next (i.e.
the (£(») + l)th) value of the tth column of the matrix gs (10). Let us introduce
the auxiliary boolean variables ktf(i), g3tf(i),gstkf(i) to administrate the usage
of the auxiliary arrays. The tth component of the auxiliary arrays is local in respect
of the tth processor.

Every assignment of the transformed program will refer to at most one nonlocal
variable.

2.3.1 The refinement of the specification

We extend the specification (3)-(6) with the following invariants:

V i e [l . . n] : (fci(t) < k(i - t(i)) A

ktf[i) — (Jfci(i) > Jt(i) V kt(i) = l(i - i (i)))) (10)
V i e [1 . . »] : (gstf{i) -» ktf{i) A (i - 2 • t(i) + 1 > 1)

A<7si(i) = gs(i — t(i), k(i))) (H)
V i e [l . .n] : (gstkf(i) -* ktf(i) A (i - t(i) > 1) A (i - 2 * t(i) + 1 < 1) A

9 s i * (t) = gs[i - t(i), fct(i)) = gs{i - t(i), k[i - t(i)))) (12)

V i e [l . . n] : [l o g (i) l = / (i) (13)

92 Zoltán Horváth

2.S.2 The transformed program

ao : i=I? n]9s(i,0),t{x),k{i)tl{i),ktfii),g8tkf{i),gstfli),kt{i) ~
/ (< * ») , 1,0, [log(t)], |,0

s : { h ? . . h : = k { i ~i(t))'* A (t " " < (t)) - 1

.=[? »!*'/(») -=T,if "•*«/(»') A (» - t(0) > 1 A (kt(i) > &(t)v
to(0 = l (i - « (i)))

<=[?..»| 9°tf(i) := gs(x - *(»), *(.)), T,
if ktf(i) A (»' - 2 * t(t) + 1 > 1) A (Jfct(») > Jfc(t)) A -igstf(i)

<=[?.«] 9*tk{i), gstkf{i) := gs{i - t{i), kt(»)), T,
if ktf[i) A (»' - t[i) > 1) A (t - 2 * i(t) + 1 < 1)

A(fci(t) = J(i - t(i))) A ->gstkf(i)

i=|?..»j»'M(*) + l),Hi),k(i),ktf{i),gstf(i),gstkf(i),kt{i) :=

' f (< p (t , k (i)) , gst(i) 2 *t(i),k(t) +1 ,1 ,1 ,1 ,0
if gstf(i)

f(Cgs(i,k(i)), g3tk(i) ») , 2 *t(i),k(i) + 1,1,4,4,0
if gstkf(i)

i=°n]9(i)-=9s(i,k{i)), if k(x) = l(t)
}

Proof: The invariants (10)-(13) are easy to prove by the calculation of the
weakest preconditions and sp(so, T)- Using the invariants f 10)-(13) we can state that
the assignments changing the variables mentioned in (3),(5)-(6) are equivalent of
the original assignments. This means the specification properties (3),(5)-(6) remain
valid for the transformed program too. To prove the fixpont property (4) it will
be sufficient to show: if the transformed program reaches one of its fixed points
then the original program is in one of its fixed points too and the conditions (7)-(9)
hold.D

3 Discussion
The program is easy to implement on synchronous, asynchronous and on distributed
architectures, such as for hypercubes [18] or T9000 transputer networks, where im-
plementation of 0([log(n)|) communication channels is supported by the concepts
of logical links.

A solution is developed in [14] for pipeline architectures.
The introduced relational model provides effective tools for the stepwise devel-

opment of a parallel solution as illustrated by the chosen example. The theorem 2.1

Parallel asynchronous computation of the values of an associative function 93

may be called a programming theorem [6]. With its help we can solve a class of clas-
sical problems. For example parallel addition, comparison of ascending sequences
[2], etc. are easy to formalize by the help of associative functions.

References
[1] Andrews, G.R.: Concurrent Programming, Principles Practice, Ben-

jamin/Cummings, 1991.
[2] Chandy, K.M.. Misra, J.: Parallel program design: a foundation, Addison-

Wesley, 1988, (1989).
[3] Dijkstra, E.W.: A Discipline of Programming, Prentice-Hall, 1976.
[4] Dijksta, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics,

Springer-Verlag, 1989.
[5] Emerson, E.A., Srinivasan, J.: Branching Time Temporal Logic, in Linear

Time, Branching Time and Partial Order in Logics an Models for Concurrency,
LNCS S54. Springer-Verlag 1989, 123-172.

[6] Fóthi Á.: Introduction into Programming (Bevezetés a programozáshoz), in
Hungarian, ELTE TTK, Budapest, 1983.

[7] Fóthi Á.: verbal communications
[8] Fóthi Á.: A Mathematical Approach to Programming, Annales Uni. Sci. Bu-

dapest. de R. Eötvös Nom. Sectio Computatorica, Tom. EX. (1988), 105-114.
[9] Fóthi Á., Horváth Z.: The Weakest Precondition and the Theorem of the Spec-

ification, in Proceedings of the Second Symposium on Programming Languages
and Software Tools, Pirkkala, Finland, August 21-23,1991, Eds.: Kai Koskimies
and Kari-Jouko Raiha, Uni. of Tampere, Dep. of Comp. Sci. Report A-1991-5,
August, 1991, 39-47.

[10] Horváth Z.: Fundamental relation operations in the mathematical models of
programming, Annalés Uni. Sci. Budapest, de R. Eötvös Nom. Sectio Compu-
tatorica, Tom. X. (1990), 277-298.

[11] Horváth Z.: The Weakest Precondition and the the Specification of Parallel
Programs, in Proceedings of the Third Symposium on Programming Languages
and Software Tools, Kaariku, Estonia, August 21-23, 1993, 24-33.

[12] Horváth Z., Kozma L.: Parallel Programming Methodology, to appear in Pro-
ceedings of the Workshop on Parallel Processing, Technology and Applications,
Technical University Budapest, February 10-11, 1994.

[13] Horváth Z.: The Formal Specification of a Problem Solved by a Parallel Pro-
gram - a Relational Model, in Proceedings of the Fourth Symposium on Pro-
gramming Languages and Software Tools, Visegrád, Hungary, June 9-10, 1995,
165-189.

[14] Loyens, L.D.J.C., van de Vorst, J.G.G.: Two Small Parallel Programming
Exercises, Science of Computer Programming Vol. 15(1990), 159-169.

[15] Morris, J., M.: Temporal Predicate Transformers and Fair Termination, Acta
• Informática, Vol. 26, 287-313, 1990.

[16] Nyéky-Gaizler J., Konczné-Nagy M., Fóthi Á., Harangozó É.: Demonstration
of a problem solving method, Acta Cybernetica 12 (1995) 71-82.

94 Zoltán Horváth

[17] Park, D.: 0|n the semantics of fair parallelism, in LNCS 86, 504-526, Springer
1980.

[18] Quinn, M., J.: Designing Efficient Algorithms for Parallel Computers,
McGraw-Hill, Inc., 1987.

[19] Varga L.: Programok analízise is szintézise, Akadémiai Kiadó, Budapest, 1981.

Received, July, 1994

Acta Cybernetica, Vol. 12, No. 1, Szeged, 1995

Towards Computer Aided Development of
Parallel Compilers Running on Transputer

Architecture*

János Toczki *

Abstract

In this paper we state requirements for a software environment for com-
puter aided development of parallel compilers executable on transputers. The
structure of a compiler-compiler which generates parallel compilers from at-
tribute grammar specifications is described. Problems of distributed attribute
evaluation using dynamic load balancing are discussed.

Keywords: attribute grammars, compilers, transputers, parallel processing.

1 Introduction
Several types of parallel machines have become more and more popular recently.
Various parallel algorithms have been developed to get more efficient softwares for
several problems. An important application field is developing parallel compilers.

Attribute grammars are an efficient compiler specification method. Most of
compiler-compiler systems are based on attribute grammars. A survey of sequential
attribute evaluation methods can be found in [7] and [2]. A review of compiler-
compiler systems based on attribute grammars is presented in [6].

Most of the positive experiences with developing parallel semantic evaluators
are connected with non-distributed architectures with shared memory. Reviews of
using parallel attribute evaluation and experiences developing parallel compilers
can be found in [l],]4]. [16] and [10]. A blueprint of a parallel compiler generator
system is presented in [3].

On the other hand, there is no shared-memory available in transputer machines;
each processor uses its own memory. Processors are connected through channels.
Channels are used not only for synchronization, but also for sending data between
processors. According to the practical experiences, the main problem with using
transputers for parallel attribute evaluation is the large amount of inter-processor
communication [17], [1]. It causes the inefficiency of these algorithms.

'This research is involved in the research project "Large Parallel Databases" financed
by the European Communities, project number 93: 6638, and partly supported by the
research found OTKA and the Ministery of Education and Culture, grant number F12852
and 434/94

^Department of Computer Science, József Attila University of Szeged

95

96 János Toczki

However, there are some practical applications efficiently implemented on trans-
puters. For example, a database management system processing large databases
implemented at Sheffield -University on IDIOMS machine J12]. The input lan-
guage of the system is the standard SQL/1. Users of IDIOMS requires some
extension to SQL: it needs a precompiler which transforms queries to standard
SQL. It is a natural demand that the precompiler should run on the same machine
instead of the host computer.

In this paperjwe consider the problems of efficient evaluation of attribute gram-
mars on distributed architectures from a practical point of view. Which evaluation
methods can be used, which other facilities are needed to get a compiler-compiler
or an environment for developing parallel compilers?

This paper is composed as follows. We summarise preliminaries and motiva-
tions in the next section. We repeat some of the basic definitions and notations,
however we suppose that the reader is familiar with the following topics: attribute
grammars and evaluation strategies,, compiler-compilers, transputer architectures.
The summary of requirements for a parallel compiler-compiler running on trans-
puters is found in section 3. Our suggestions to meet these requirements and the
preliminary design of a compiler-compiler system is given in section 4. A short
summary of future research is found in the last section.

2 Motivations and Preliminaries
2.JL Motivations
Parallel machines are classified as synchronous and asynchronous machines. In
synchronous machines all processors execute the same code at the same time. In
asynchronous architectures processors may execute different code, synchronisation
should be controlled directly by using semaphores and/or sending messages.

On the otheri hand, we can distinguish between tightly coupled and loosely cou-
pled (distributed) architectures. In tightly coupled machines, all processors have
access to the same shared memory, while in distributed machines each processor
has its own memory. Processors can communicate by sending messages.

Transputers, which are asynchronous distributed machines have become more
and more popular recently. Processors - nodes - of a transputer are usually con-
figured along a more or less regular topology (a line, hypercube, polygon, etc.).
Each processor has four channels for communication. Software connections can be
configured in a flexible way via connecting channels. The number of nodes and
the physical topology should be as irrelevant as possible from the point of view
of transputer software. However the speed and efficiency of an algorithm usually
strongly depends on the topology.

Usually the most expensive part of transputer software is the inter-processor
communication. Consequently, in general, an "effective" algorithm should avoid
large amounts of communication. There are some "typical" transputer applications.
One of these areas is processing large distributed databases^ If we connect a data
storage device to each node and we distribute queries at an early stage, we get
efficient data retrieving algorithms.

IDIOMS machine developed at NTSC, University of Sheffield is a special par-
allel machine for processing large distributed databases using parallel methods [12].
The user surface of the system is standard SQL/1 language.

Parsing user instructions, evaluation and distribution of queries is a usual for-
mal language parsing and semantic evaluation problem. There are three possible
solutions to perform this task.

Towards Computer Aided Development of Parallel 97

• We can use a sequential compiler running on the host machine.

• We can use a sequential compiler running on a single transputer node and
benefit only from the parallelism between the larger components of the soft-
ware architecture.

• We can use a parallel compiler running on the transputer itself.

The advantage of the first two solutions is that the theory and practice of developing
sequential compilers is a well-researched topic of computer science. On the other
hand, the host machine is the only connection between the transputer and the outer
world. The host machine will be very busy with transfering results of queries. It is
a natural demand to use the inner part of the system instead.

Another advantage of the last method is that - using parallel algorithms - we can
speed up the compilation process itself. For example Gross achieved 3 to 6 typical
speed-up with a hand-written compiler running on 9 independent workstations
benefiting only from parallel compilation of independent functions (blocks) [8]. It
does not exclude running the compiler in parallel with some other components, as
well.

2.2 Parallel Compilation
The first hand-written parallel compilers were developed in the early 1970s. Most of
these compilers run on vector processors and based on parallel execution of certain
phases of compilation. The first significant investigation into parallel semantic
evaluation made by Schell [22]. Schell's method - in essence - is the same as
Jordan's one reported in [10].

The most natural way to build a parallel compiler is to run different compilation
phases as separate processes and form a pipeline. The maximal possible speed up
is the number of phases (usually 3 or 4). However, it is a hard work to balance the
different phases. Miller and LeBlanc compared sequential and pipeline versions of
a Pascal compiler having 4 phases and they got 2.5 speed up as an average [20].
This result shows the limitations of pipelining.

Another possible way to construct a parallel compiler is to split the source pro-
gram into smaller independent parts and compile these parts concurrently. Lipkie
was the first who suggested the combination of pipelining with source fragmenta-
tion [19]. Vandevoorde [27] and Seshardi [23] used the same approach developing
compilers running on different architectures. Seshardi investigated the concurrent
processing of declarations as well.

These experiences shows the importance of pipelining as well as the necessity
of concurrent semantic evaluation. In this paper we concentrate to the phase of se-
mantic evaluation. Concerning the phase of lexical and syntactic parsing, pipelining
with immediate fragmentation seems to be a proper solution. We also concentrate
to more general methods ¡which can be used in an automatic compiler development
tool.

2.3 Automatic Compiler Construction
Compiler-compiler systems generate executable compilers from formal specifica-
tions. Most recent compiler writing systems are based on attribute grammars. Ex-
periences with compiler construction proved feasibility and efficiency of attribute
grammars for compiler specification. A survey of attribute grammar based compiler
generation can be found in [6].

98 János Toczki

The compiler generator system PROF-LP [21] developed in Szeged has been
used for generating various practical compilers, for example [25], [5j. We refer to
our experiences at appropriate places in the next section. We mention that these
experiences and suggestions for development in the case of sequential compilation
are summarized in [26].

2A Attribute Grammars
Various compiler-compiler systems have been developed to generate compilers from
formal specifications. Most of these systems are based on attribute grammars [15l.

In this section we recall some basic notions of attribute grammar theory. We
give only informal definitions instead of formal ones. We feel that it is enough to
make clear our concepts. More complete definitions can be found in the literature
for example [2], 17].

Let G = \N, T, S, P) be a context-free grammar, where N is the set of nonter-
minal symbols, T is the set of terminal symbols, S E. N is the start symbol, and P
is the set of context-free productions.

We associate a set of attributes to each nonterminal symbol. There are two types
of attributes. The values of inherited attributes are evaluated top-down (from the
start symbol to the terminals) and the values of synthesized attributes are evaluated
in the opposite direction.

Attribute values are determined by semantic functions associated to the synthe-
sized attribute occurrences of the left-hand side nonterminal and to the inherited
attribute occurrences of the right-hand side nonterminals of each production. The
arguments of semantic functions are the other attribute occurrences of the same
production.

An abstract syntax tree of the grammar G is said to be decorated if all its
attribute instances have their own values. We say that a decoration of a syntax
tree 8 is correct iff the values of all attribute instances of s satisfy corresponding
semantic rules.

Attribute instances in a syntax tree s depend on each other. We say that an
attribute instance A(N) depends on an attribute instance b(M), if the value of
b(M) is needed to evaluate the semantic rule computing the value of a(N), i. e. if
it occurs as a parameter of the semantic function.

In this paper we consider only non-circular attribute grammars. An attribute
grammar is non-circular iff there cannot exist any circular dependencies among the
attribute instances in any syntax tree. In this case all attribute instances can be
evaluated in a definite order constrained by the dependencies of the given syntax
tree.

2.5 Parallel Attribute Evaluation
Usually there are some independent attribute instances in a syntax tree. In the
case of sequential evaluation, a linear order is constructed, evaluating independent
attribute instances in a more or less ad hoc order. In general, it is possible to
evaluate independent attribute instances in parallel.

Kuiper [16], [18] defined the concept of distributor as an algorithm to distribute
attribute instances among evaluation processes. He defines two basic types of dis-
tribution:

o A tree based distributor allocates all attribute instances of a subtree of the
syntax tree to the same evaluation process. The syntax tree is splitted at
selected nodes. Selected nodes determined by the production applied at the

Towards Computer Aided Development of Parallel 99

node - production based distribution - or by the left hand side nonterminal
of that production - nonterminal based distribution. The distribution can
be either nested or non-nested. In the case of nested distribution subtrees
containing selected nodes are splitted again, while in the case of non-nested
distribution, the syntax tree is splitted only at the selected nodes closest to
the root.

A typical application of tree-based distribution is the fragmentation of a block-
structured programming language. Disjoint blocks are usually independent to each
other. We can allocate attribute instances of different blocks to different processes
using a nested nonterminal based distributor.

• An attribute based distributor allocates all instances of an attribute to the
same process. The distributor can not distinguish between different instances
of an attribute. It means a strict limit on potential parallelism. If we combine
it with a tree based distributor, we get a combined distributor.

A typical application of attribute based distribution is to allocate independent
tables of a compiler to different processes. For example, symbol tables and label
tables are usually independent.

• Jordan introduced third kind of distributors. A dependency based distributor
allocates all attribute instances of a connected part of the dependency graph
to the same process;. The allocation is not predefined. An evaluation order
containing parallel execution of new processes is generated from the depen-
dency graph. In this sense this method is more "dynamic" than Kuiper's
distributors.

Dependency based distributors are capable of handling more complicated situ-
ations, when neither tree based nor attribute based distributions are inefficient.

o

3 Parallel Compilation on Transputers
3.1 Assumptions
A transputer is a loosely-coupled parallel machine having no shared memory. Pro-
cessors communicate via channels. Channels serve not only for synchronization but
for data exchange, as well. Process loading and channel connections are flexible.
The only physical bound is the amount of memory and the number of hardware
connections (usually 4). Peripherals are handled by a host computer which is con-
nected to the processor network via channels.

In this paper we concentrate on the semantic part of compilers. We suppose
that the complete syntax tree is available on the host computer or on a transputer
node. In the case of source fragmentation, before syntactic parsing different parts of
the syntax tree may be produced by different processes running on different nodes.
This situation can be handled by appropriate process level distribution, see in 4.1.
The result of semantic evaluation, the decorated syntax tree, is sent back to the
host. In the case of a semantic error, an error message is sent to the host and the
evaluation process is stopped. In some applications, it would be better to pass the
result to another application. It is only a technical point.

We suppose a static evaluation method driven by the dependency graphs of
productions. Among others OAG [11] and ASE [9] are feasible strategies. These
classes of attribute grammars are large enough in practical cases.

100 Jinos Tocski

We suppose availability of a block structured high level algorithmic program-
ming language - we have chosen parallel C - and availability of a flexible CDL
(configuration description language) usual on transputers.

3.3 Distribution
The most important feature of transputers from the point of view of attribute
distribution is that there is no shared memory available. Although it is possible
to run more than a single process on the same processor, we should allocate them
to as many different processors as possible to increase " real" parallelity of the
compiler. On the other hand, attribute values have to be sent among processors.
As inter-processor communication is the most expensive task on transputers, we
should decrease *.he amount of sending data among processes allocated to different
processors.

Some attributes - as symbol tables - are extremely large, while others are very
small. Some attributes have the same or similar meaning. For example most of the
tables of compilers are represented with a pair of a synthesized and an inherited
attribute. Usually tables are stored in dynamic data structures, i.e. lists, trees,
stacks and the attribute values are only pointers to these tables. It means that
the basic operations "send the value of an attribute to a process" or "compute a
semantic function" may have quite different expenses.

Only the author of a compiler knows the size of attributes, the complexity
of semantic functions. The author has enough information on potential selected
nonterminals - in the case of tree based distribution - and on "logically" independent
attributes - in the case of attribute based distribution.

We can state now the following basic requirements:
o The user should choose between tree based and attribute based distribution.

Probably he/she will choose a combined strategy.

o The user should declare selected and non-selected nonterminals in the case
of tree based distribution and declare the set of attributes evaluated by the
same process in the case of attribute based distribution.

On the other hand there are efficient algorithms to find independent attribute
instances of an attribute grammar. For example, see Kuiper's algorithm [16]. An
intelligent system can help the user's decision and check its correctness using these
algorithms.

o The system should help and check the user's decision on distribution using
dependency analysis.

3.3 Process Loading
Most of transputer operating systems include some load balancing mechanisms. It
means that the system distributes processes among processors on the bases of their
current status. On the other hand the user has the possibility to describe her/his
own configuration using CDL (Configuration Description Language).

Automatic load balancing assumes a farmer-workers architecture, while the user
can use (almost) any other architecture. It gives a large amount of flexibility. On
the other hand, it is much easier to program an automatically balanced system.

Another important question that we should answer is: should we develop a
general evaluation process which contains all the semantic functions and run it on
all processors or should we develop several smaller processes? Execution time of

Towards Computer Aided Development of Parallel 101

semantic functions and the number of attribute instances evaluated by a process
may be quite different. Furthermore scheduling many small processes causes too
much overhead time. It is more efficient to run a general evaluator on all processors
and implement evaluation processes as tasks rather than real physical processes.
In this approach a task means evaluation of all attribute instances allocated to a
logical process. Each task has a set of output attribute instances - the attribute
instances which are computed - and a set of tnput attribute instances - values of
which are needed for the computation.

In this case, we cannot use the automatic load balancing mechanism of the
operating system: load balancing means allocating tasks to processes, and not
allocating physical processes to processors. The dynamic load balancing method
described in [24] is applicable for any decomposable problem. Although attribute
evaluation is not a decomposable problem, we can associate a home processor to
each attribute instance. The value of an attribute instance is sent back to its home
processor after evaluation. More detailed description of process loading can be
found in the next section.

4 Developing Parallel Compilers
In this section we describe the structure of a software environment for developing
parallel compilers based on the requirements stated in section 2. First we discuss
the features of a metalanguage for specifying a parallel compiler and describe the
general structure of the generated compiler. After that, we sketch the structure of
the development environment including a generator tool. Finally we consider some
technical questions.

4.1 Parallel Compiler Specification
The specification of a parallel compiler is an attribute grammar completed with eval-
uation instructions and with the implementation of semantic functions. We start
from the metalanguage of PROF-LP [21]. This metalanguage has the following
features.

• The set of synthesized and inherited attributes are declared. The domain of
an attribute is given by a data type of the implementation language.

• The set of nonterminals with the list of their attributes is declared. The
generated compiler is modular, a module is formed from a set of nonterminals.

• The set of terminals is declared. Some terminals, called tokens, may have
input attributes. The lexical structure is described separately.

• Productions are listed together with semantic functions. A semantic function
is given by an expression or by a subroutine written in the implementation
language.

• The description is completed with one or more program modules written in
the implementation language including attribute types, semantic functions
and any other elements as constants, variables, subroutines. This makes
it possible for the user to implement dynamic data structures and global
program objects.

102 János Toczki

We mention here that an augmented metalanguage is defined in 26] containing
such elements as regular right hand side productions (sometimes called as extended
cf grammar), augmented semantic functions for such productions, global table def-
initions, structured dynamic data type declarations embedded in a block structured
modular metalanguage.

• The metalanguage of PROF-LP augmented with modularity and block struc-
ture is applicable.

• We introduce four levels of modularity:

Metalanguage level. A module is a usually large part of the attribute
grammar described in one input file and processed at the same time.
A module is formed from a set of nonterminals.

Process level. A module is a - possibly different - part of the generated
compiler implemented in one process. The user may develop some other
processes containing the same elements as it is usual in PROF-LP.
Configuration of these physical processes are up to the user.

Tfcee level. A tree module is a connected part of the syntax tree determined
by selected nonterminals. It is the basis of tree based distribution. Tree
level modularity should be compatible with source fragmentation.

Task level. A task is an elementary part of evaluation, target of automatic
load balancing. A task is a set of attribute instances defined by the user.

The first two levels are applicable only in large systems. These two levels are
incomparable, either a metalanguage module may contain more processes or
a process may be composed from more modules.

• Production descriptions are applicable in their original form.
• We do not consider the lexical description here.

Formal consistency of the specification can be checked in the same way as it is
usual in the case of sequential compilers. Checking correctness of semantic functions
against the requirements of the implementation language is left to the compiler.

4.2 General Structure of the Generated Parallel Compiler
The generated compiler consists of three parts: A static kernel contains basic rou-
tines, the attribute evaluator is generated from the specification, user supplied parts
are copied into the system without any change.

• The kernel contains the following routines.

Input-output and distribution. In this paper we do not deal with the
syntactic parser part of the compiler, so we suppose that the syntax
tree is available. As we use a dynamic load balancing method, the whole
syntax tree should be sent to each processor first. The result - the values
of synthesized attribute instances of the root symbol - are sent to the
host.

Task scheduler and load balancer. The dynamic load balancer given in
[24] can be applied as follows. A task means evaluation of a set of
attribute instances. Two attribute instances N.a and M.b are in the
same set if and only if the following conditions hold:

Towards Computer Aided Development of Parallel 103

— The nodes M and N are in the tame tree module, that is, there are
not selected nonterminals along the path between N and M in the
syntax tree.

— Attributes a and b are in the same attribute set declared by the user.
— The attribute instances N.a and M.b are dependent on each other.

As it is very hard to check this condition, we can use another con-
ditions instead.

* We can use Kuiper's algorithm [16] which decides whether any
two instances of two attribute occurrences may be dependent.

* We ca:i use Jordan's dependency based dynamic distributor [10].
In its original form it is based on local dependencies of a single
production. It is easy to extend it to check dependencies of a
subtree (tree module).

We suggest a more simple method instead. We can use Jordan's
method to form elementary tasks. The problem is that only at-
tribute instances evaluated in the same production are allocated to
the same task. After that we can form the unions of these - small
- tasks using tree based distribution.

The same universal evaluator algorithm is running on each processor.
The load balancer distributes tasks among processors. The evaluation
starts on a single processor with tasks belonging to the root of the parsing
tree. When a task has become executable - that is, all its input attribute
instances are available - the processor sends this task to the one of its
neighboring nodes. The node is selected on the numbers of other tasks
waiting for execution. Leaving a tree module means that virtually all
tasks evaluating attribute instances of the module just entered are sent
away.
Executing a semantic function may need an extremely long time, others
may be divided into smaller parts. Rutins handling tasks - insert a new
task to the waiting list, declaring input and output parameters, etc. -
are available for the user.

Error handling routines. All error messages are sent to the host com-
puter. ;

• The evaluator contains a branch for each task containing semantic functions
evaluating the set of attribute instances belonging to this task. It may start
other tasks, as well. An evaluator is generated from a process level module.
The evaluator is called by the load balancer whenever a task is started.

• The routines containing user written semantic functions are simply copied
into the system. They may send tasks for the load balancer for execution.

4.3 Compiler Development Environment
The compiler development environment contains the following modules.
Metalanguage parser: checking the formal correctness of the specification.
Dependency analyser: computing attribute dependencies and checking its prop-

erties against the requirements of the evaluation strategy.
Distribution analyser checking dependencies among tree modules, attribute sets

and tasks. It can hilp the user choosing a proper distribution strategy.

104 János Toczki

Code generate?: generating the evaluator.
Developer utilities: helping the user developing semantic functions.
Execution utilities: helping the user configuring and executing the generated

system.
The development process can be run on the host compiler. We mention that some
suggestions to develop parallel compiler-compilers can be found in [3]. As can be
seen, the structure of the compiler-compiler is very similar to the structure of a
sequential system.

&A Technical Issues
We have started the implementation of the parallel compiler development envi-
ronment with developing a small prototype for semantic check of a simple block
structured language. Using the prototype, we get a statement by statement specifi-
cation of the generated system as well as the kernel of the compiler. We implement
it in parallel C running on a network of 16 T8000 processors.

Meanwhile an attribute grammar specification of the metalanguage is under
development. We will generate the metalanguage parser from this specification
using the compiler generator PROF-LP. The whole system will run on IBM PC
under DOS, the implementation language is Turbo Pascal. As the host computer
of our transputer is a Unix machine we have to transfer the generated compiler to
the host. It may cause some technical problems.

The implementation of the whole system needs a lot of time and manpower.
Practical experiences will be available after the completion of the implementation.

5 Final Remarks
In this paper we considered the problem of developing parallel compilers running
on transputer architecture. Our most important conclusion is that we should give
a lot of freedom to the user during developing such compilers. Only the user has
enough knowledge to make basic decisions on attribute distribution. However some
steps of development can be done automatically. Moreover we can help the user's
work with the results of some test algorithms.

We stated the most important requirements for a compiler-compiler for devel-
oping parallel compilers. The basic structure of the compiler and the compiler-
compiler has been described.

The first version of the system is under implementation now. Moreover we
should consider the following questions in the future.

o How our generated semantic analyser can be combined with parsing? The
results of Klein and Koskimies [13], [14] also may help solving this problem.

o Which meuhods and algorithms can be used in parallel compilers? For ex-
ample what kind of symbol table handling methods are suitable? Have these
methods any consequence for the structure of the compiler?

o The basic motivation of our research was to contribute in developing softwares
for IDIOMS machine. We should go on in this direction as well.

o It is also important to find other application fields, where a compiler running
on transputer is suitable and efficient.

Finally we thanks to Lajos Schrettner for his valuable remarks and suggestions.

Towards Computer Aided Development of Parallel 105

References
[1] Akker, R., H. Alblas, A. Nijholt, P. O. Luttighuis, K. Sikkel: An annotated

bibliography on parallel parsing, updated version, Technical Report, Dept.
of Computer Science, Univ. of Twente, 92-84, 1992.

[2] Alblas, H.: Attribute evaluation methods, in Proc. of SAGA, Prague, 1991.
LNCS 545., pp 48-113.

[3] Alblas, H.: A blueprint for a parallel parser generator, Technical Report,
Dept. of Computer Science, Univ. of Twente, 92-65, 1992.

[4] Alblas, H., R. Akker, P. O. Luttinghuis, K. Sikkel: A bibliography on
parallel parsing, in ACM Sigplan Notices, Vol. 29, No. 1., 1994. pp 54-65

[5] Almási, J., T. Horv&th, M. Medvey, J. Toczki: On the implementation of
cellular software development system, in Proc. of PARCELLA 88, Berlin,
1988.

[6] Deransart, P., M. Jourdan, B. Lorho: Attribute grammars, systems and
bibliography, LNCS 323., 1988.

[7] Engelfriet, J.: Attribute grammars: Attribute evaluation methods, in
Methods and tools for compiler construction, Cambridge Univ. Press, 1984,
pp. 103-138.

[8] Cross, T., A. Zobel, M. Zolg: Parallel Compilation for a Parallel Machine,
in Proc. of SIGPLAN "89, SIGPLAN Notices 24, 7 (1989), pp 91-100.

[9] Jazayeri, M., K. G. Walter: Alternating semantic evaluator, In Proc. of
ACM 1975 Annual Conf., 1975., pp. 230-234.

10] Jourdan, M.: A survey of parallel attribute evaluation methods, in Proc of
SAGA, Prague, 1991., LNCS 545., pp 234-254.

11] Kastens, U.: Ordered attribute grammars, Acta Informática 13, 1980, pp.
229-256.

12] Kerridge, J. M.: The design of the IDIOMS parallel database machine, in
Proc. of British National Conf. on Databases 9, 1991.

13] Klein, K., K. Koskimeies: Parallel one pass compilation, in Proc of WAGA,
Paris 1990, LNCS 461., pp 76-90.

14] Klein, K., K. Koskimies: How to pipeline parsing with parallel semantic
analysis, Structured Programming 13, 1992., pp 99-107.

15] Knuth, D. E.: Semantics of context-free languages, Math. Systems Theory
2, 1968., pp. 127-145, correction Math. Systems Theory 5, 1971. pp 95-96.

16] Kuiper, M. F.: Parallel attribute evaluation, Ph. D. Thesis, Fac. of Infor-
matics, Univ. of Utrecht, 1989.

17] Kuiper, M. F., A. Dijkstra: Attribute evaluation on a network of trans-
puters, in Wexler (ed.): Developing transputer applications, Amsterdam,
1989., pp 142-149.

106 János Toczki

[18] Kuiper, M. F., D. Swierstra: Parallel Attribute Evaluation: Structure of
Evaluators and Detection of Parallelism, in Proc. of WAG A 90, Paris, 1990.,
LNCS 461, pp. 61-75.

[19] Lipkie, D. E.: A compiler design for multiple independent processor com-
puters. Ph.D. Th. Dept. of Computer Science, Univ. of Washington, Seattle,
1979.

[20] Miller, J. A., R. J. LeBlanc: Distributed compilation: a case study, in
Proc. of the Third Int. Conf. on Distributed Computing Systems, (1982),
pp. 548-553.

[21] PROF-LP User's Guide, Research Group on Theory of Automata, Szeged,
1987.

[22] Schell, R. M.: Methods for constructing parallel compilers for use in a
multi-processor environment, Ph.D. Th., Rep. No. 958, Dept. of Computer
Science, Univ. of Illinois at Urbana-Champaign, 1979.

[23] Seshardi, V., D. B. Wortman: An investigation into Concurrent Semantic
Analysis, Software, Practice and Experience Vol. 21. No. 12. (1991) pp.
1323-1348.

[24] Schrettner, L., J. Toczki: Dynamic Load Balancing for Decomposable
Problems, Proc. of Workshop on Parallel Processing in Education, Impact
Tempus JEP/Hungarian Transputer Users Group, Miskolc, 1993.

[25] Toczki, J., T. Gyimothy, G. Jahni: Implementation of a LOTOS precom-
piler, in Proc. of PD 88, Budapest, 1988.

[26] Toczki, J.: Attribute grammars and their applications, (in Hugarian), Dr.
Univ. Thisis, Depts. of Informatics, József Attila Univ. of Szeged, 1991.

[27] Vandervoorde, M. T.: Parallel Compilation on a Tightly Coupled Multi-
processor, SRC Reports No. 26, Digital Systems Research Center, 1988.

Received October, 1994

107

Correction
I am very sorry to inform our readers that the footnote on page 121 of the paper

Mealy-automata in which the output-equivalence is a
congruence

I. Babcsanyi A. Nagy

appeared in Volume 11 Number 3 of Acta Cybernetica, was edited by mistake, and
it actually belongs to another paper. The correct footnote to the above mentioned
paper is "This work was supported by the Hungarian National Foundation for
Scientific Research (OTKA) grant No. 7608." I apologize both the authors and
the readers.

Zoltán Fülöp
Managing Editor

109

Correction
I am very sorry to inform our readers that the references on page 332 of the

paper

Invariance Groups of Threshold Functions

E. K. Horváth

appeared in Volume 11 Number 4 of Acta Cybernetica, were misprinted. Hereby
we provide the proper form of it.

References
[1] N. N. AKzenberg, A. A. Bovdi, fc. I. Gergo, F. fc. Geche, Algebraic aspects

of threshold logic, Kibernetica (Kiev) no. 2 (1980), 26-30 (Russian); English
transl. in Cybernetics 16 no. 2 (1980), 188-193.

[2] S. Yajima and T. Ibaraki, A lower bound of the number of threshold functions,
Ti-ans.IEEE, EC-14 no. 6 (1965), 926-929.

[3] Ching Lai Sheng, Threshold logic (H.G. Booker and N. DeClaris, eds.) Aca-
demic Press, London and New York, 1969.

I apologize both the author and the readers.

Zoltán Fülöp
Managing Editor

Information for authors. Acta Cybernetica publishes only original papers
in the field of Computer Science. Contributions are accepted for review with the
understanding that the same work has not been published elsewhere.

Manuscripts must be in English and should be sent in triplicate to any of the
Editors. On the first page, the title of the paper, the name(s) and affiliation(s),
together with the mailing and electronic address(es) of the author(s) must appear.
An abstract summarising the results of the paper is also required. References should
be listed in alphabetical order at the end of the paper in the form which can be
seen in any article already published in the journal. Manuscripts are expected to
be made with a great care. If typewritten, they should be typed double-spaced on
one side of each sheet. Authors are encouraged to use any available dialect of TgX.

After acceptance, the authors will be asked to send the manuscript's source TgiX
file, if any, on a diskette to the Managing Editor. Having the TgX file of the paper
can speed up the process of the publication considerably. Authors of accepted
contributions may be asked to send the original drawings or computer outputs
of figures appearing in the paper. In order to make a photographic reproduction
possible, drawings of such figures should be on separate sheets, in India ink, and
carefully lettered.

There are no page charges. Fifty reprints are supplied for each article published.

Publication information Acta Cybernetica (ISSN 0324-72IX) is published
by the Department of Informatics of the József Attila University, Szeged, Hungary.
Each volume consists of four issues, two issues are published in a calendar year. For
1995 Numbers 1-2 of Volume 12 are scheduled. Subscription prices are available
upon request from the. publisher. Issues are sent normally by surface mail except
to overseas countries where air delivery is ensured. Claims for missing issues are
accepted within six months of our publication date. Please address all requests for
subscription information to: Department of Informatics, József Attila University,
H-6720 Szeged, P.O.Box 652, Hungary. Tel.: (36)-(62)-311-184, Fax:(36)-(62)-312-
292.

C O N T E N T S

Lila Kari, Gregorz Rozenberg, Arto Salamaa: Genera l i sed D O L trees 1
B. Imreh: O n i somorph ic representat ion o f nonde te rm in i s t i c tree automata 11
B. Imreh, M. Steinby: Some Remarks o n Di reetab le A u t o m a t a 23
John Grant, V.S. Subrahmanian: The O p t i m i s t i c and Caut ius Semant ics

fo r Inconsis tent K n o w l e d g e Bases 37
A. Kuba: Reconst ruct ion o f Un ique B ina ry Mat r i ces w i t h Prescr ibed Elements .. 57
Judit Nyéki-Gaizler, Márta Konczné-Nagy, Akos Fóthi, Éva Harangozó:

Demons t ra t i on o f a P r o b l e m - S o l v i n g M e t h o d 71
Zoltán Horváth: Paralel l asynchronous compu ta t i on o f the va lues o f an

assot iat ive f unc t i on 83
János Toczki: Towards Compu te r A i d e d Deve lopmen t o f Para le l l C o m p i l e r s

R u n n i n g on Transputer A rch i t ec tu re 95
Co r rec t i on 107
Co r rec t i on 109

ISSN 0324—721 X

Felelős szerkesztő és kiadó: Csirik János
A kézirat a nyomdába érkezett: 1995. szeptember

Terjedelem: 7 ,12 (B /5) ív

