
Volume 14 Number 1

ACTA
CYBERNETICA

Editor-in-Chief: J. Cs i r ik (Hungary)

Managing Editor: Z . Fülöp (Hungary)

Assistants to the Managing Editor: P. Gyenizse (Hungary), A. Pluhár (Hungary)

Editors: M. Arató (Hungary), S. L. Bloom (USA), H. L. Bodlaender (The Netherlands),
W. Brauer (Germany), L. Budach (Germany), H. Bunke (Switzerland), B. Courcelle
(France), J. Demetrovics (Hungary), B. Dömölk i (Hungary), J. Engelfriet
(The Netherlands), Z . Ésik (Hungary), F. Gécseg (Hungary), J. Gruska (Slovakia),
B. Imreh (Hungary), H. Jürgensen (Canada), A. Kelemenová (Czech Republic),
L. Lovász (Hungary), G. Páun (Romania), A. Prékopa (Hungary), A. Salomaa (Finland),
L. Varga (Hungary), H. Vogler (Germany), G. Wöginger (Austria)

Szeged, 1999

A C T A C Y B E R N E T I C A

Information for authors. Acta Cybernetica publishes only original papers
in the field of Computer Science. Contributions are accepted for review with the
understanding that the same work has not been published elsewhere.

Manuscripts must be in English and should be sent in triplicate to any of the
Editors. On the first page, the title of the paper, the name(s) and affiliation(s),
together with the mailing and electronic address(es) of the author(s) must appear.
An abstract summarizing the results of the paper is also required. References should
be listed in alphabetical order at the end of the paper in the form which can be
seen in any article already published in the journal. Manuscripts are expected to
be made with a great care. If typewritten, they should be typed double-spaced on
one side of each sheet. Authors are encouraged to use any available dialect of T^X.

After acceptance, the authors will be asked to send the manuscript's source T^X
file, if any, on a diskette to the Managing Editor. Having the T^jX file of the paper
can speed up the process of the publication considerably. Authors of accepted
contributions may be asked to send the original drawings or computer outputs
of figures appearing in the paper. In order to make a photographic reproduction
possible, drawings of such figures should be on separate sheets, in India ink, and
carefully lettered.

There are no page charges. Fifty reprints are supplied for each article published.

Publication information. Acta Cybernetica (ISSN 0324-721X) is published
by the Department of Informatics of the Jozsef Attila University, Szeged, Hungary.
Each volume consists of four issues, two issues are published in a calendar year. For
1999 Numbers 1-2 of Volume 14 are scheduled. Subscription prices are available
upon request from the publisher. Issues are sent normally by surface mail except
to overseas countries where air delivery is ensured. Claims for missing issues are
accepted within six months of our publication date. Please address all requests for
subscription information to: Department of Informatics, Jozsef Attila University,
H-6701 Szeged, P.O.Box 652, Hungary. Tel.: (36)-(62)-420-184, Fax:(36)-(62)-420-
292.

URL access. All these information and the contents of the last some
issues are available in the Acta Cybernetica home page at http://www.inf.u-
szeged.hu/local/acta.

EDITORAL BOARD

Editor-in-Chief: J. Csirik Managing Editor: Z. Fülöp
A. József University A. József University
Department of Computer Science Department of Computer Science
Szeged, Árpád tér 2. Szeged, Árpád tér'2.
H-6720 Hungary H-6720 Hungary

Assistants to the Managing Editor:

P. Gyenizse A . Pluhár
A. József University A. József University
Department of Computer Science Department of Computer Science
Szeged, Árpád tér 2. Szeged, Árpád tér 2.
H-6720 Hungary H-6720 Hungary

Editors:

M . Arato
University of Debrecen
Department of Mathematics
Debrecen, P.O. Box 12
H-4010 Hungary

S. L. Bloom
Stevens Intitute of Technology
Department of Pure and Applied
Mathematics Castle Point, Hoboken
New Jersey 07030, USA

H. L. Bodlaender
Department of Computer Science
Utrecht University
P.O. Box 80.089
3508 TB Utrecht
The Netherlands

W . Brauer
Institut für Informatik
Technische Universität München
D-80290 München
Germany

L. Budach
University of Postdam
Department of Computer Science
Am Neuen Palais 10
14415 Postdam, Germany

F. Gécseg
A. József University
Department of Computer Science
Szeged, Aradi vértanúk tere 1.
H-6720 Hungary

J. Gruska
Institute of Informatics/Mathematics
Slovak Academy of Science
Dúbravska 9, Bratislava 84235
Slovakia

B. Imreh
A. József University
Department of Foundations of
Computer Science
Szeged, Aradi vértanúk tere 1.
H-6720 Hungary

H. Jürgensen
The University of Western Ontario
Department of Computer Science
Middlesex College, London, Ontario
Canada N6A 5B7

A. Kelemenová
Institute of Mathematics and
Computer Science
Silesian University at Opava
761 01 Opava, Czech Republic

i

H. Bunke
Universität Bern
Institut für Informatik und
angewandte Mathematik
Längass strasse 51., CH-3012 Bern
Switzerland

L. Lovász
Eötvös Loránd University
Budapest Múzeum krt. 6-8.
H-1088 Hungary

B. Courcelle
Université Bordeaux-1
LaBRI, 351 Cours de la Libération
33405 TALENCE Cedex
France

G. Päun
Institute of Mathematics
Romanian Academy
P.O.Box 1-764, RO-70700
Bucuresti, Romania

J. Demetrovics
MTA SZTAKI
Budapest, P.O.Box 63
H-1502 Hungary

B. Dömölki
IQSOFT
Budapest, Teleki Blanka u. 15-17.
H-1142 Hungary

J. Engelfriet
Leiden University
Computer Science Department
P.O. Box 9512, 2300 RA Leiden
The Netherlands

A . Prékopa
Eötvös Loránd University
Budapest, Múzeum krt. 6-8.
H-1088 Hungary

A . Salomaa
University of Turku
Department of Mathematics
SF-20500 Turku 50, Finland

L. Varga
Eötvös Loránd University
Budapest, Múzeum krt. 6-8.
H-1088 Hungary

Z. Esik
A. József University
Department of Foundations of
Computer Science
Szeged, Aradi vértanúk tere 1.
H-6720 Hungary

H. Vogler
Dresden University of Technology
Department of Computer Science
Foundations of Programming
D-01062 Dresden, Germany

G. Wöginger
Technische Universität Graz
Institut für Mathematik (501B)
Steyrergasse 30
A-8010 Graz, Österreich

Professor Ferenc Gécseg

Preface
This issue of Acta Cybernetica contains 15 papers dedicated to Professor Ferenc
Gécseg on the occasion of his 60th birthday.

Professor Gécseg has been a very active researcher. His scientific work includes
papers on universal algebra, automata, and formal languages. In automata theory,
he was mainly interested in various kinds of composition operations on automata.
In particular, he introduced a hierarchy of products between the cascade compo-
sition and the Glushkov-product, which has extensively been studied by himself
and several of his former students and other researchers. More recently, he has
extended these investigations to tree automata. His papers and three books (Alge-
braic Theory of Automata, coauthored by István Peák, Tree Automata, coauthored
by Magnus Steinby, and Products of Automata) have greatly influenced the research
in automata theory.

Professor Gécseg has contributed a great deal of time to the computer science
community by his work as an editor and by organizing several conferences: the
automata theory mini-conferences in Szeged in the 1970's, the FCT conference
in 1981 and 1989, and the ICALP in 1995. He is the member of the editorial
board of several journals, and for almost two decades he was the Editor in Chief
of Acta Cybernetica. For several years, Professor Gécseg has been Vice-President

of the European Association for Theoretical Computer Science. He has received
the highest scientific recognition in Hungary. He is a member of the Hungarian
Academy of Sciences and a foreign member of the Finnish Academy of Sciences.

As a teacher, he has been greatly admired by students for his clear presentation
of the material. Several of us in Hungary now doing research in theoretical computer
science feel very priviliged to have been his former students. We wish Professor
Gecseg much success and happiness in the years to come.

Szeged, December 1998.

János Csirik Zoltán Esik Zoltán Fülöp Balázs Imreh

Acta Cybernetica 14 (1999) 1-12.

On Some Cyclic Connectivity Properties of
Directed Graphs

(Examples and Problems) *

A. Ádám f

To Professor Ferenc Gécseg on his sixtieth birthday

Introduction

The essence of the paper consists in ten properties (each defining a class of finite
directed graphs) listed in § 2 and in open questions (relating to dependencies among
the properties) raised in §§ 8-10.

A number of dependence and independence assertions can be deduced easily or
follow trivially from the ten properties. The originality of the statements in §§ 3, 8,
9 and of the examples in §§ 6, 7 does not exceed the level of routine consequences
of the definitions.

Since the number of properties is ten, one can think "a priori" that the class
of graphs which possess at least one property is partitioned into 1023(= 210 — 1)
subclasses (called types). In fact, the dependency statements imply that there are
not more than twenty-one types; on the other hand, examples are got for ten types.
The 21 imaginable types correspond in a natural manner to the 21 independent
vertex sets of the hierarchy diagram shown in Figure 1. One of the types consists
of some connected graphs which are not strongly connected, the remaining < 20
types constitute a partition of the class of the strongly connected graphs.

A part of the open problems concerns to the existence of the eleven types whose
non-emptiness is not decided in the article. In the last section an exciting topics
is affected: the (fond?) hope for elaborating a structure theory of the strongly
connected (directed) graphs.

•Research partially supported by the Hungarian National Foundation for Scientific Research
(OTKA) grant, no. T 16389.

+ MTA Matematikai Kutatóintézet, H-1364 Budapest, P.O.Box 127., Hungary.

1

2 A. Ádám

I Notions and facts

§ 11
By a graph, we mean a finite directed graph G = (V, E) where 0) is the set
of vertices and E(^ 0) is the set of edges of G. We suppose that G is simple (in
detail: any edge joins two different vertices and there is at most one edge between
any fixed vertex pair) and connected. The outdegree and indegree of ci(G V) are
denoted by <5~(a) and <5+(a), respectively.

Throughout the paper we study graphs whose vertices satisfy1 <5~(a) -<5+(a) > 2;
hence transient vertices (i.e., vertices fulfilling S~(a) = <5+(a) = 1) are excluded.

A graph G is said to be strongly connected if, for each ordered vertex pair (a, b),
there exists a directed path from a to b.

As usual, we say that two edges e = (a, b) and f = (c, d) of G are adjacent if
the number of different elements of the vertex set {a, b, c, d} is three. We say that
e and f are consecutively adjacent if 6 = c or a = d holds; c and f are said to be
oppositely adjacent if either a — c or b = d.

Remark 1 The assumption that transient vertices cannot occur is useful, and it is
not a serious restriction. The structure of cycles of a graph is not altered essentially
if a transient vertex and the two edges incident to it are replaced by a new edge.

§ 2
By a cycle Z of a graph G, we understand a sequence

ai,a2,...,at (2.1)

of pairwise different vertices such that t > 3 and there exist the t (directed) edges

(ai,a2) , (a 2 , a 3) , . . . , (at-i,at), (at,Oi) (2.2)

in G. We say that the vertices in (2.1) and the edges in (2.2) are contained in Z
(or, equivalently, that they belong to Z). The cycles (2.1) and a2 , a 3 , . . .,at,a i are
considered to equal. We say that the length of the cycle (2.1) is t. A cycle of length
3 is also called a cyclical triangle.2

Let x be an element of either V or E. We say that x is cyclic if there is a
cycle Z which contains x. Two different elements x, y of V U E are called cyclically
completable if there exists a cycle Z such that both x and y belong to Z.

Next ten conditions (A), (B), . . . , (K) will be introduced for a directed graph
G = (V,E).

(A) Any vertex of G is cyclic.

(B) Any edge of G is cyclic.

lrThis condition implies that we do not deal with graphs being sheer cycles.
2If a i , a2, <13 are pairwise joined and they do not constitute a cyclical triangle, then they form

clearly a transitive triangle.

On Some Cyclic Connectivity Properties of Directed Graphs 3

(C) Any pair a, b of vertices of G is cyclically computable.

(D) Any pair a(e E) is cyclically completable.

(E) Any pair e,f of edges of G is cyclically completable when e and f are non-
adjacent or consecutively adjacent edges.

(F) There exists an a(e V) such that any pair a, b(e V — {a }) is cyclically com-
pletable.

(G) There exists an a(e V) such that any pair a, c(G E) is cyclically completable.

(H) There exists an e(€ E) such that any pair a(G V), с is cyclically completable.

(J) There exists an e(e E) such that any pair e,f(e E — {e}) is cyclically com-
pletable.

(K) There exists an e(e E) such that any pair e, f(e E — {e}) is cyclically com-
pletable when e and f are non-adjacent or consecutively adjacent edges.

The class of all (connected simple) graphs G which fulfil (A) is denoted by A.
The notations В, C , . . . , К are used in an analogous sense.

Remark 2 It is well known that Condition (B) is equivalent to the strong con-
nectedness of G.

Remark 3 The condition "any pair of edges is cyclically completable" does not
occur among (A)-(K). This condition is not fulfilled by a connected simple graph
unless it is a single cycle (cf. Footnote 1).

§ 3

Our aim in the present section is to state thirteen inclusions for the graph classes
introduced above. The next ten inclusions follow immediately from how Conditions
(A)-(K) have been defined:3

В С А, С С F, G С F , H Ç F ,

J С К, J С G , E С K , D С C , D С G , D С H (3.1)

Lemma 1 Let e = {b, с) be an edge of G such that any pair e,f(6 E — {e}) is
cyclically completable when e, f are non-adjacent or consecutively adjacent edges.
Choose an arbitrary element a ofV~{b}. Then the pair a, e is cyclically completable.

3 The evident formulae F C A , D C B , J C H are omitted from (3.1). These are consequences
of other assertions in this section (by the transitivity of inclusion).

4 A. Ádám

Proof. From among the two possibilities a = c and a ^ c it suffices to treat the
second one. There are at least three edges incident to a, we Can select an edge 0
out of them such that g is either non-adjacent or consecutively adjacent to e. The
pair e, g is cyclically completable, hence the same holds for the pair e, a. •

Lemma 1 implies at once

Corollary 1 We have E C D and K C H. •

Proposition 1 We have F C B .

Proof. Suppose G € F. Choose an arbitrary edge e = {c,d) in G. By (F), a is
accessible from d and c is accessible from a. It follows the accessibility of c from d.
that is, the cyclicity of e. (Our idea remains valid even if a 6 {c, d}.) •

II Hierarchy and examples

The assertions contained in § 3 (Corollary 1, Proposition 1 and the formulae in
(3.1)) determine a hierarchy of the graph classes A , B , . . . , K . This hierarchy is
shown in Figure 1.

One can now pose the general problem whether there exists any further inter-
relation among the ten graph classes or not. A more particular question is whether
each of the thirteen inclusions is proper.

In what follows, the general problem is broken up into a number of subproblems.
We do not succeed in carrying out a full discussion, a part of the subproblems will
be left open. It will be shown, however, that eleven of the thirteen inclusions
mentioned above are proper (Proposition 2).

§ 5
Figure 1 shows a cycle-free (directed) graph. There are nine maximal

independent4 vertex sets in this graph:

{ A } , { B } , { F } , { C , J } , { D , K } ,

{ D , J } , { E , J } , { C , G , H } , { C , G , K } .

Thus there are twenty-one non-empty independent vertex sets:

{A} , {B}, {C}, {D}, {E},
{F}, {G} , {H}, {J}, {K} ,

{C ,G} , {C, H}, {C, J}, {C, K} ,
{D,J} , { D , K } , {E,J}, { G , H } ,
{ G , K } , {C, G, H}, {C, G, K} .

(5.1)

4 T w o vertices of a directed graph G = (V, E) are called independent if they are mutually
inaccessible (by directed paths). A subset of V is said to be independent if its elements are
pairvvise independent. Maximality is understood with respect to set inclusion. It is clear that the
independent vertex sets are exactly the subsets of the maximal independent sets. Although the
empty set is independent, we shall disregard it.

On Some Cyclic Connectivity Properties of Directed Graphs 5

B

F

Figure 1

6 A. Ádám

Whenever { X i , X 2 , . . . , X p } is one of these twenty-one sets (where 1 < g < 3),
then we define a type of graphs in the following manner:

G is of (XiX-2... X s)-type precisely if

(a) G belongs to X i D X 2 n . . . n Xg and

(P) G does not belong to any of the classes (out of A, B , . . . , K) which are inac-
cessible from the vertices X i , X 2 , . . . , X s in the graph of Figure 1.

For example, G is contained in the (CJ)-type exactly when
G belongs to C fl J (hence to A, B, F, G, H, K also), and
G does not belong to D (thus also G $ E).
In sense of this definition, the class of (connected) graphs fulfilling Condition

(A) is partitioned into at most twenty-one types.5 The remaining two sections of
Chapter II are devoted to giving examples which show the non-emptiness of ten
types.

§ 6
We examine in this section some strongly connected graphs (without transient

vertices) which have four or five vertices. The outdegrees and indegrees of the
vertices of a graph are expressed by a matrix of form

/ <5~(ai) ¿~(a2) . . . 5~{av) \
\ S+(ai) ¿+(a2) . . . ¿+(a„) J

where the vertices are numbered in such a manner that

(i) ¿~(ai) > ¿~(a2) > • • • > S~(av) (where v = |V|), and

(ii) 1 < i < v, ¿"(a») = ¿~ (a i + i) imply ¿ + (a j) > ¿+ (a i + i) .

Example 1 There is only one strongly connected tournament with four vertices
(apart from isomorphy), see Figure 2/a. The degree matrix of this graph is

(2 2 1 1 \
^ 1 1 2 2 J '

There is one cycle of length four: abed and there are two cyclical triangles: abd and
acd.

The fulfilment of Condition (C) is clear. (J) is satisfied with the edge (da). (D)
does not hold since the vertex b is not cyclically completable with the edge (ac).

We have got that the type of this graph is (CJ).
In the following five examples, graphs with five vertices and eight edges are

considered. The degree matrix of Examples 2-5 is

/ 2 2 2 1 1 \
^ 2 1 1 2 2 J '

5 By (/3), the subclasses called types are pairwise disjoint. We used the words "at most" because
it is not sure that all the types are non-empty.

On Some Cyclic Connectivity Properties of Directed Graphs 7

Figure 2

Figure 3

Example 2 In the graph of Figure 2/b there are four cyclic triangles: abe, cbe, cde
and ade. There is no cycle of length four or five. Condition (G) is satisfied with e.
The graph fulfils neither (C) nor (H). ((C) is false since with a and c form a pair
which is not cyclically completable.)

The type of this graph is (G).

Example 3 The graph of Figure 2/c has five cycles; in detail, abcde and abecd are
ones of length five, the length of abed is four, furthermore, abe and cde are cyclical
triangles. (J) is satisfied with the edge (ab), the fulfilment of (E) can be checked
easily.

The type of this graph is (EJ). It is contained in each of the classes A, B , . . . , K.

Example 4 The length of any cycle of the graph of Figure 3/a is five or three.
There is one cycle containing all vertices: abcde, and there are three cyclical trian-
gles: abe,ade and cde. Conditions (G), (K) are satisfied with e,(de), respectively;
the fulfilment of (C) is clear. (D) is false for this graph (for example, a and (ec)
are not cyclically completable). The falsity of (J) follows from the fact that, for an
arbitrary edge f, there is an edge 0 such that f, g are oppositely adjacent edges.

This graph is of type (CGK).

A. Adam

Figure 4

Example 5 Any cycle of the graph of Figure 3 /b is of length three or four. There
are two cycles whose length is four: abce and adce; there are two cyclical triangles:
abe and ced. (G) is satisfied with e, (K) is fulfilled with (ce). (C) is not valid because
b and d are not cyclically completable. (J) does not hold (by the same reason as in
the preceding example)1.

The type of this graph is (GK).

Example 6 The degree matrix of the graph of Figure 3/c is

/ 3 2 1 1 1 \
V 1 1 2 2 2 J '

There is no cycle of length five. Two cycles have length four: abce and adce; there
are two cyclical triangles: bee and ced. Condition (J) holds with (ce). Condition
(C) is not fulfilled since b and d are not cyclically completable.

The type of this graph is (J).

Example 7 Consider the graph of Figure 4. Each outdegree and indegree equals
2 in it. It is easy to see (without a detailed examination of the cycles) that this
highly symmetric tournament satisfies (E). Condition (J) is not fulfilled (similarly
to Examples 4 and 5).

We have got that this graph belongs to the type (E).

Remark 4 It seems that the remaining strongly connected graphs having five ver-
tices (each non-transient) do not represent any other type than the types to which
Examples 1-7 belong. For the reader who wantsUo recapitulate the investigation
of these graphs, the following method can be advised:

first to get an overview of the possible degree matrices,
for any degree matrix, to construct all of its graph realizations,

On Some Cyclic Connectivity Properties of Directed Graphs 9

(a)

Figure 5

if two graphs are dual6 to each other, then to examine only one of them (because
duality does not alter the structure of cycles essentially).

§ 7

We have seen in § 6 some examples which were obtained by scanning all graphs
with a very small number of vertices, they show the non-emptiness of seven types.
In the present section examples for three additional types will be given.7

The fact that the type (A) of graphs is not empty is clear (it is well known
that the class of strongly connected graphs does not exhaust the class of connected
graphs in which every vertex is cyclic). For the sake of completeness of the treat-
ment, we put first an instance for this type.

Example 8 Every vertex of the graph in Figure 5/a is cyclic, and (ab) is a non-
cyclic edge. Thus the graph belongs to the type (A).

Example 9 Figure 5 /b shows a graph for which (B) is valid (or, equivalently, it is
strongly connected), but (F) does not hold. This means that the graph is of type
(B).

6 Two directed graphs are said to be dual if one is obtained from the other by reversing the
orientation of all the edges. It may happen that a graph is isomorphic to its dual.

7In the course of constructing these graphs, the restriction that transient vertices are forbidden
needed to be regarded.

10 A. Ádám

b

Figure 6

Example 10 The graph in Figure 6 satisfies (F) (with the vertex a). It is easy to
see that (C) and (H) are not valid. (G) is not fulfilled also (observe that a and the
edge (be) are not cyclically completable). Therefore this graph is of type (F).

Ill Overview and open questions

§ 8
Remember that twenty-one graph types have been introduced in § 5. We have
seen in Sections 6-7 examples for ten types. The question of the existence of the
remaining types is open:

Problem 1 Decide for any of the eleven types (C), (D), (H), (K), (CG), (CH).
(CK), (DJ), (DK), (GH), (CGH) - consisting of directed graphs - whether the type
is empty or not.

Problem 1 is a comprehensive question in the sense that the subsequent Problems
2 and 3 are (essentially) particular cases of it.

Recall the hierarchy shown in Figure 1. We are going to suggest some possibil-
ities for improving this hierarchy. Next we consider the pairs of graph classes (out
of A , B , . . . , K) for which the corresponding vertices are adjacent in Figure 1.

Proposition 2 We have the proper inclusions

B C A , F C B , C c F , G c F ,

H c F ,D c C, D C G, D C H,

E C K ,J c G, J C K.

On Some Cyclic Connectivity Properties of Directed Graphs 11

Proof. Examples 8, 9 show that B is properly included in A and F is properly
included in B, respectively. The inclusion C C F is guaranteed by8 Example 2.
The remaining eight inclusions are ensured by Examples 10, 2, 1, 1, 1, 1, 2, 4,
respectively. •

We do not have examples for the strictness of the inclusions K C H and E C D ,
hence we can raise:

Problem 2 Decide the validity of the equalities K = H and E = D.

§ 9
There are nine independent vertex pairs in the graph of Figure 1. Our present

aim is to discuss the pairs of graph classes which correspond to these vertex pairs.
Examples 3, 6 and 7 guarantee the truth of the following assertions:

Proposition 3 The intersection En J is not empty and it is properly included both
by E and by J. The intersections D fl J and C fl J are proper in the same sense. •

Any of the formulae

G C K , G C H , G C C , H C C , K C C , K C D,

is disproved either by Example 2 or by Example 6; our examples leave open the
truth of the (strict) inclusions in the opposite sense. Thus we can pose:

Problem 3 Decide the validity of the inclusions

K c G , H c G , C c G , C c H , C c K , D c K

§ 10

We have throughout adopted in the above considerations that transient vertices
are forbidden. After determining the hierarchy completely (i.e., after solving Prob-
lem 1), the question may arise how the hierarchy changes when transient vertices
are allowed. The solution of this question does not seem to be difficult.

Now we turn to another possibility of varying the subject. In our former anal-
ysis, graphs having cut vertices9 were not excluded. Cut vertices have occured in
Examples 8, 9, 10 actually. It is evident that Example 8 can be replaced by a
twofold connected graph; the same is, however, not trivial for Examples 9 and 10.
Consequently we formulate

Problem 4 Is the hierarchy of the graph classes B, C , . . . , K modified if we restrict
ourselves to graphs without cut vertices? Especially, do the formulae F C B and
G C F remain valid after this restriction?

8Instead of Example 2, any of Examples 5, 6, 10 is suitable for this purpose. In what follows, we
mention only one instance in analogous situations, and the search for other appropriate examples
is left to the reader.

9In other words, exactly onefold connected graphs. The orientation of the edges is indifferent
in this notion.

12 A. Ádám

§ 11
In the hierarchy of graphs studied by us, the intersection E fl J is the common

part of all classes. It can be hoped that a structural description of this relatively-
narrow graph class will be elaborated:

Problem 5 Characterize the structure of the graphs which belong to the type (EJ).

A bold challenge is initiated in the last open question of the paper. A complete
elucidation of this question would imply a systematization of the structure of all
finite directed graphs. Even if this goal will not prove to be successful, partial
solutions are of importance also:

Problem 6 Consider a graph class X from among the nine classes B, C , . . . ,K .
Let a constructive procedure be obtained how the members of the class X can be
produced from graphs belonging to classes which are proper subclasses of X (in the
hierarchy).

Remark 5 It is at once clear that the solution of Problem 6 for all the nine classes
yields the structural overview of the strongly connected graphs. This observation
can be supplemented by two well-known facts:

(i) any directed graph G admits a unique decomposition into a cycle-free graph
so that each maximal strongly connected subgraph of G is contracted into a
single vertex;

(ii) it is possible to get a good survey of the structure of cycle-free (directed)
graphs.

Details may be found in Chapters 3 and 10 of the book [1] of Harary, Norman, and
Cartwright.

References
[1] Harary, F., Norman, R. Z., and Cartwright, D., Structural models: An in-

troduction to the theory of directed graphs, Wiley, New York, 1965. (French
translation: Dunod, Paris, 1968.)

J

Acta Cybernetica 14 (1999) 13-25.

Two simple algorithms for bin covering

J. Csirik * J. B. G. Frenk t M. Labbé * S. Zhang §

Dedicated to Professor Ferenc Gécseg on the occasion of his 60th
birthday

Abstract

We define two simple algorithms for the bin covering problem and give
their asymptotic performance.

1 Introduction
In this chapter we consider the following version of bin packing sometimes called
dual bin packing or bin covering : given a list

L = (a i , o 2 , . . . , a„)

of items with size s(a,i) for each item aJ; and a bin capacity C,

C > max s(a,i),
1 <i<n

pack the elements of L into a maximum number of bins so that the sum of sizes
in any bin is at least C. This means, that we have to fill as many bins as pos-
sible. It is clear, that we can normalize the problem so that C is equal to 1 and
s(ai) < 1 for every 1 < i < n. The above problem was investigated for the first
time by Assmann (cf.[1]) and Assmann et a/.(cf.[2]). In particular, they showed
that the problem is yVP-hard. Furthermore, they provided the first approximation
algorithms and proved their worst-case performance. Some average-case analysis
was also performed.

We denote by OPT(L) the optimal, i.e. the maximal number of filled bins for
a list

L = (ai,a2,... ,an)

'Department of Informatics, József Attila University, Árpád tér 2, H-6720 Szeged, Hungary
^Erasmus University of Rotterdam, Faculty of Economics, Postbus 1738, 3000 DR Rotterdam,

Netherlands
^Université Libre de Bruxelles, Mathématiques du Triomphe, 1050 Bruxelles, Belgium
^Erasmus University of Rotterdam, Faculty of Economics, Postbus 1738, 3000 DR Rotterdam,

Netherlands

13

14 J. Csirik, J.B.G. Frenk, M. Labbe, S. Zhang

and we define for every k > 1

RA(k) := m i n { ^ | OPT(L) = A J , (1)

where A(L) denotes the number of bins filled by algorithm A applied to the list L.
The performance ratio or asymptotic worst case ratio of A, denoted by RA, is now
given by

RA ••= liminf-R^fc). (2)
k—>oo

Clearly, RAW < 1 for every k > 1, and hence RA < 1.

For an equivalent definition of RA we observe that RA > Ki if there exist two
constants K\ and K-2 such that

A(L) > Kx • OPT(L) + K2 (3)

for every list L. Clearly the largest possible K\ satisfying this inequality equals RA-
By this definition it is obvious that a heuristic Ai is at least as good as heuristic
A2 (from a worst case point of view) if RA, > RA2-

2 Preliminary results
It is very natural to adapt classical bin packing heuristics to the dual problem. So
the first heuristic is Dual Next Fit (D N F) .

1. Put the first element into the first bin.

2. While there is an unpacked item, do the following: Let aj be the first unpacked
element, and let Bj be the bin that is not yet filled (if all bins are filled, we
take a new empty bin as Bj). Place ai in bin Bj.

This algorithm has the nice property that it uses only one bin at a time and that
it works on-line. The algorithm runs in 0(n) time. However, the asymptotic worst
case bound of DNF is not very good (cf.[2]).

L e m m a 1 RDNF = 1 /2 .

From the 'bad' lists for this algorithm it follows, that - contrary to classical
bin packing - sorting the items in nonincreasing order does not improve the per-
formance of the heuristic. This implies, that the heuristic Next Fit Decreasing
(NFD) of classical bin packing adapted to the dual bin packing problem also has
a performance ratio of 1/2.

The next idea is to use First Fit type heuristics instead of Next Fit, i.e. to use
all opened bins instead of the last one. However, it has no meaning in this case,
because after filling a bin, it is useless to place further items into it. That means
that neither First Fit nor First Fit Decreasing adapted to the dual bin packing
problem have a larger performance ratio than Next Fit.

Two simple algorithms for bin covering 15

An improvement of the performance ratio of 1/2 was achieved by Assmann et
ai.(cf.[2]) by defining an artificial upper bound on the sum of sizes of elements placed
into the same bin. This upper bound can be regarded as the capacity of a bin and
leads to some similarity with classical bin packing. However, after packing the
items by a good heuristic for the classical bin packing problem, it might happen
that in some of the bins the sum of item sizes is less than 1. Hence we can use
a second step to fill these bins. The algorithm based on the above observation,
proposed by Assman et al., is called First Fit Decreasing with parameter r
(FFDr) and proceeds as follows:

Let 1 < r < 2.

Phase I. ("Classical FFD")

1. Presort the items in L so that

s(ai) > s(a2) > •••> s(an).

2. While there is still an unpacked element, do the following: Let o, be the first
unpacked item and let B j be the first (leftmost) unfilled bin with a current
total content smaller than or equal to r — s(aj). If such a bin exists, place a*
in Bj, otherwise open a new empty bin and pack Oj into this bin.

Phase II. (Repacking unfilled bins)

1. While there is more than one open nonfilled bin, remove an item from the
rightmost such bin and add it to the leftmost one.

The time complexity of FFDr can be seen to be 0(n log n). For this algorithm the
following result holds (cf. [2]).

Lemma 2 RFFD, = 2/3 for 4/3 < r < 3/2.

Assmann et al. also suggested a further improvement by defining a really sophis-
ticated algorithm, called Iterated Lowest Fit Decreasing (I L F D) . To define
this heuristic we consider first the following problem: Given the list L and a fixed
number N of bins, what is the maximum possible value for the minimum bin level
in a packing of L into N bins? From a good heuristic A for this problem we can
derive a good approximation algorithm for the bin covering problem by iteratively
applying this algorithm A. We denote by A(L, N) the minimum bin level in the
packing of L generated by the heuristic A if the number of bins is fixed by N. Now
the algorithm iteratively applying A proceeds as follows:
ITERATED "A"

1. Let UB = s(ai), LB = 1. (Clearly LB < OPT(L) < UB.)

2. While UB - LB > 1 take N = [(LB + UB)/2J and apply heuristic A. If
A(L, N) > 1 take LB = N, otherwise UB = N.

16 J. Csirik, J.B.G. Frenk, M. Labbe, S. Zhang

The resulting algorithm gives a feasible solution of the dual bin packing problem
with LB bins.

Clearly, the performance of this method depends on the choice of A. While the
problem to be solved by A is closely related to multiprocessor scheduling problems,
it seems natural to use for the heuristic A the Lowest Fit Decreasing (L F D)
algorithm, as studied by Graham (cf.[4]) and Deyermeyer et a/.(cf.[3]). This algo-
rithm proceeds as follows:

1. Order L so that s(oi) > s(a2) > . . . > s(a„) and start with N empty bins.

2. While there is an unpacked item in L do the following: let a, be the first
unpacked item and let Bj be the bin with minimum level (in case of ties,
choose the rightmost). Put at into Bj.

It is not difficult to verify that the time complexity of I LFD is 0(n log2 n).
Furthermore, one can prove the following result (cf.[2]).

L e m m a 3 RILFD = 3 /4 .

3 Two new simple algorithms
Now we will show that the same performance bounds can also be achieved by
simpler algorithms too. First we discuss the heuristic Simple (SI). This algorithm
proceeds as follows:

1. Sort the items of list L into nonincreasing order, i.e. from now on we assume
that

s(ai) > s(a2) > . . . > s(an).

2. Let ki denote the index satisfying

ki fci + l
J > (a 2) < 1 and ^ ^ s(a,i) > 1.
¿=1 i= 1

Pack the elements a i , a 2 , . . . ,akl into the first bin. Fill the remaining space
in the bin with items from the end of the list, i.e. with an, a n _ i , . . . untill the
sum of sizes of items in the bin is at least equal to one and remove the packed
items from the list.

3. Renumber the indices of the remaining items and repeat step 2 untill the list
is empty.

Lemma 4 For all lists L,

SI(L)>2--OPT(L)-2-.

Two simple algorithms for bin covering 17

Proof. Let us assume that the last item in the last filled bin is a|ast, and distinguish
the cases s(aiast) < 1/2 and s(aiast) > 1/2.

If s(aiast) < 1 / 2 then the total sum of item sizes in the last filled bin is bounded
above by 1 + s(aiast) < 3/2. Moreover, since all the last items in the remaining
filled bins are by the definition of S I always smaller than or equal to ,s(aiast) we
obtain that the total sum of item sizes of all the filled bins is bounded above by
3/2. As we have at most one non-filled bin, this implies

3 /2 • SI(L) + 1 > s(L).

Since s(L) > OPT(L) we obtain

SI(L) > \{OPT{L) - 1)

for all lists L and so the lemma holds in this case.

If s(aiast) > 1/2, we only consider the case where all the opened bins are filled. If
this does not hold (i.e. we have one non-filled bin) the proof can be easily adapted.
Now it is clear that the 51-packing has the following structure:

fljli &712 ari3 ' ' ' Ink

an Oni-l a 1fc - l - l ank-l 0"nk-2 ank-SJ(L)+k
ai a.2 0.3 o-k 0-k+l dk+2 aSI(L)
S i B2 B3 • •• Bk Bk+i Bk+2 Bsi(L)

where anh-Si(L)+k = « l a s t , nk - SI(L) + k = SI(L) +1, s(anh_Si(L)+k) > 1 /2 and
Tl > Til > Tl2 > • • • > Uk •

Call the elements a „ , a „ _ i , . . . , a „ 1 + i , a n i _ i , . . . ,an2+i> • • • , a n k - i - i , • • • ,Onfc+i
type-A items and the remaining (i.e. the first and the last element in each bin)
type-B items, and consider the optimal packing. Define

HA := # bins in the optimal packing with only type-A items,
KAB '•= # bins in the optimal packing with exactly one type-1? item,
kBB := # bins in the optimal packing with more than one type-B items.

Clearly

OPT(L) = kA + kAB + kBB. (4)

Moreover, by the definition of SI we observe that

k
s(a,i) + s(°i) < k

i^type — A i=1

18 J. Csirik, J.B.G. Frenk, M. Labbe, S. Zhang

and this implies, since a i ,a2 , . . . , a^ are the biggest B-items, that kAB < k. Ap-
plying the above inequality again and using s(aj) > 1/2, for every i < k, we get:

kAB
kA + kAB < s ^ + <

i&type — A i= 1

k + kAB < SI(L) + kAB
(5)

2 - 2

Finally, in order to obtain an upper bound for kBB we note that the total number
of type-S items in bins with more than one type-5 item is given by 2 • SI(L) — kAB
and hence

2 • SI(L) - kAB
kBB < z

By (4) and the upper bounds in (5) and (6) we obtain

OPT(L) < S«L\+ + 2 " 31W ' * * * = 3/2 • SI(L).

and hence the desired result is proved.

(6)

•

In the above lemma we proved that Rsi > 2/3. Furthermore, this lower bound
can be achieved, as will be shown by the next result.

Theorem 5 RS[= 2/3.

Proof. Let us define the lists Ln,n > 1 by the sizes of the elements and consider

/
L n —

\
3 1 1 1
4 ' 2 £ ' ö ~ £ ' - " ' ö - e , 2 e , 2 e , - - - , 2 e

6n+l times 3n times

if

then

and

Hence we obtain

£ <
1

24n

OPT(Ln) = 3n + 1

SI(Ln) = 2n + l.

SI(Ln) = 2 + 1
OPT(Ln) 3 9n + 3

Two simple algorithms for bin covering 19

and this implies lim.
result.

SI(Ln) _ 2 |. Applying Lemma 4 finally yields the desired Ln->oo OPT(Ln) — 3"

•

It is easy to see that similarly we can characterize the performance of the heuristic
SI if s(a,i) < 1/k for all (¿¿, where k is some positive integer. For this case the next
result holds.

Theorem 6 If s(a,i) < 1/k for all items in L = (ai, a2, • • •, an), where k is a
positive integer, then the worst case performance of the heuristic SI is at least .

Proof. The proof directly follows that of Lemma 4 .

Finally, we consider an improved version of the S/-heuristic. Before introducing
this so called Improved simple heuristic (/57) we divide the list L into the
following three parts.

Clearly p + r + m = n. Now the I SI- heuristic is defined as follows.

Phase 1. If s(xi) > s(j/i) + 5(2/2), then pack x% into an empty bin, otherwise pack
yi and 2/2 into an empty bin. Fill the just opened bin with elements from the
end of the Z-sublist, i.e. with zm,zm-1,... untill the bin is filled. Remove
the packed elements from the corresponding sublists and repeat packing untill
either X U Y or Z is empty.

Phase 2. If after phase 1, X U Y is empty, pack the remaining elements in the
Z-sublist according to the Next-Fit heuristic. Otherwise, if Z is empty, pack
the remaining x-elements by two in a bin and the remaining y-elements by
three.

For the above heuristic the next result holds.

Lemma 7 The worst case performance ratio of the heuristic ISI is at least equal
to 3/4-

Proof. To verify the above result it is sufficient to prove that ISI(L) >
3 /4 (OPT(L) - 4) for all lists L. This is easy if X U Y is empty after phase 1.
Observe that in this case the last elements of all filled bins (after the execution of
the heuristic) are elements from the Z-sublist and hence the sum of sizes in each
filled bin is bounded from above by 4/3. By an argument similar to that used in
the first part of Lemma 4 the desired inequality follows.

i) s (z i) > s{x2) > s(zp) > 1/2
ii) 1/2 > s(yi) > s(y2) >...> s(yr) > 1/3
iii) 1/3 > s(zi) > s(z2) >...> s(zm)

(X-sublist)
(Y-sublist)
(Z-sublist)

20 J. Csirik, J.B.G. Frenk, M. Labbe, S. Zhang

Xi,X2,...,Xl ,Zf+l, . . . ,Xp, 1/12/2,2/32/4, ••• ,î/2Jfc-l2/2Jfc ,2/24+1; • • • ,2/r,

, «2, • • • , Zm

Figure 1: The packing by Improved Simple.

Subsequently we consider the case where the Z-sublist is empty after phase 1
and assume that x i , x 2 , . . . ,£/ from the A'-sublist and 2/12/2,2/32/4, • • • ,2/2fc-i2/2fc from
the y-sublist are used in the first phase (cf.Figure 1).

By the definition of the heuristic we obtain

/ s i (i) > , + t + r _ i J + [L ^ J _ 1 ^ + | + | + r _ , ,7,

We now have to derive an upper bound on OPT(L). In order to do so call
the elements of the Z-sublist, which were packed last in a filled bin by the ISI-
heuristic, B-items, and the remaining z-elements A-items and consider the optimal
packing. We now rename A-items ¿4*-items if these ^4-items in the optimal packing
are packed either with only A-items or with one or two 2/-elements or with exactly
one x-element and define

kA* := # bins in the optimal packing with only A* items,

kA*x '•= # bins in the optimal packing with only A* items and exactly one element
from the X-sublist,

k,A'Y '•= # bins in the optimal packing with only A* items and exactly one element
from the F-sublist,

kA'YY •= # bins in the optimal packing with only A* items and exactly two
elements from the V-sublist.

kothers '•=• it1 of other bins in the optimal packing.

Clearly,
OPT(L) = kA. + kA.x + kA.Y + kA*yy + k0therS• (8)

To obtain an upper bound on the first four terms in (8) we note by the con-
struction of the I SI- packing that

l 2k

YI + yi)<l + k (9)
iBtype — A* i—1 ¿=1

Furthermore, if kA> + kA>x + kA-Y +kA.yY > / + fc, it is possible by the feasibility
of the optimal packing and the definition of A* items to pack more than I + k bins
in the first phase of the I SI heuristic and since this does not hold we get

kA- + kA*x + kA'Y + kA.YY < I + k. (10)

Two simple algorithms for bin covering 21

To simplify notations, we now define I1 := kA»x and 2k' := kA'Y + 2kA*YY- Then,
by (10), it follows immediately that

I' + k' < kA- + kA,x + kA-Y + kA.Yy <l + k. (1 1)

It turns out that the inequality derived in (10) can be improved as follows. Clearly,

I' 2k'

kA' + kA,x + kA'Y + kA'YY < s(ai)+ + (12)

i£type — A* i=1 i = l

By (9), it follows that the upper bound in (12) can be bounded from above by

I' l 2k' 2k
u := I + k + J2 s(xi) - J2 s(xi) + - (13)

i= 1 i= 1 i—1 i—1
In order to bound U we distinguish the following four cases:

i) 1 > V and 2k > 2k',
ii) I < V and 2k > 2k',
iii) I > I' and 2k < 2k',
iv) I < V and 2k < 2k'.

By (11) case (iv) will never occur and hence we only have to consider i), ii) and
iii).

Clearly, if i) holds,

l 2k
U = i + k - Y, Y1 (14)

i=l' +1 i=2k' + l

By the definition of ISI (cf.Figure 1), we now observe that

2

s(Xi) > s(xi) > s{y2k+1) + s(y2k+2) > g,

for every i < I, if r > 2k + 2.
Moreover, if r < 2k + 1, then s(xi) might be smaller than 2/3 and hence the
remaining elements in the X-sublist after phase 1 are always smaller than 2/3.
This observation implies that in phase 2 the sum of the sizes in a filled bin is
bounded above by 4/3 and together with the argument that in phase 1 the sum of
sizes in a filled bin are also bounded above by 4/3 the desired inequality follows.
By this observation we may therefore assume that s(xi) > 2/3 for every % < I and
this yields, by (14), U <l + k-l(l-l')-\(2k-2k') = \(l + k) + l(l' + k') (15)

O J J o

22 J. Csirik, J.B.G. Frenk, M. Labbe, S. Zhang

If ii) holds we obtain by (13) that

l' 2k
C/ = Z + A+ £ sfc)- Y, s(yi)- (16)

i=l+1 t=2A' + l

Observe by the definition of the first phase of the /S7-heuristic (cf.Figure 1) that
the sum of sizes of any two yi elements, i = 2k' + 1 , . . . , 2k is always bigger than
the size of any Xi-element, i = I + 1 , . . . , I'. This implies

l' 2k'+2l'-2l

i=l+1 i=2k' + l

and since by (11) 2k' + 21' - 2 1 < 2k, we obtain

2k 1

U < I + k — Y, s(yi) < I + k - ~(2k - (2k'+ 21'- 21))
i=2k' +21' -21+1

which is the same as inequality (15).

In order to bound U by the same upper bound as in (17), when iii) holds, we
use a similar argument, i.e. we replace the remaining 7/-iterns by an x-item and
using the lower bound for X{ yields the desired result.

Hence we have proved that in all cases the improved upper bound

U<l-~ + \(l' + k') (18)

holds.

By (8), we also need an upper bound on kothers• These remaining kothers bins
contain p — I' rc-items, r — 2k' i/-items, I + k B-items and some A-items. By the
definition of k A ' these A-items are always contained in a bin with some of the above
elements and hence do not count

in the computation of an upper bound for k0u i e rs .
For this upper bound computation we consider four subcases.

A) I + k >p - I' + r-2k'
2 '

If this holds, the best we can hope for is to pack one X-element with one B-item,
two F-elernents with one B-item and the remaining B-items by four. Hence

„ r-2k' l + k-(p-V+
kothers <P~l + + — (19)

Two simple algorithms for bin covering 23

and by (18) and (8) this implies

OPT(L) < ¿ (Z + k) + \p + |r - l (i ' + k').

Since by A) I' + k! > p + r/2 — I — k we conclude by the above inequality that

. OPT{L)<2-{l + k + p) + ^r. (20)

By (7),(20) and the inequality r>2k (cf.Figure 1) we finally obtain

pSI(L) > l(l+p) + ^(k + r)-4>OPT(L)-4. (21)

B)p-V <l + k<p-l' +

If this holds, the best we can hope for is to pack one X-element with one B-item,
the first part of the ^-elements by two with an additional B-item and the remaining
F-elements by three. Hence

kothers <p-V + ((l + k) - (p - l')) + i ((r - 2k') - 2 ((/ + k) - (p - I')))

= l + k+ i((r - 2k') - 2{(l + k)-(p - I')))

and by (18) and (8) this yields

OPT(L)<^(l + k + P) + r-.

Clearly this is the same upper bound as discussed in (20) and so (21) also holds.

C) p - V - (r - 2k') <l + k<p-l'.

If this holds, it follows that r - 2k' - (p - I' - (I + k)) > 0 and so the best we can
hope for is to pack I + k X-items with one additional B-item, the remaining part
of the X-items, i.e. p- I' - (1 + k), with one additional Y-item and the rest of the
F-items, i.e. r — 2k' — (p — I' — (I + k)), by three. Hence

^ , , ,/ /, i \ r — 2k' — (p - I' - (I + k))
kothers <l + k + p-l'-(l + k) + i U.

O
_ „ , r - 2 k ' - (p - l ' - (l + k))
- P i + 3

and by (18) and (8) this implies

OPT(L)<l(p + l + k) + r-.

24 J. Csirik, J.B.G. Frenk, M. Labbe, S. Zhang

Clearly this is the same upper bound as discussed in (20) and so (21) also holds.

D) l + k<p-l' -{r-2k').

If this holds, the best we can hope for is to pack I + k X-items with one additional
B-item, r — 2k' X-items with one additional F-item and the remaining part of the
AMtems, i.e. p - I' - (I + k) - (r - 2k'), by two. Hence

P-I'~(l + k)-(r-2k')
Killers < l + k + r - 2 k ' + ^ ^ * >-

and by (18) and (8) this implies

OPT(L)< 5-(l + k) + r- + ^ + ±(l' -2k'). (22)

By D) it follows that I' — 2k' < p — r — I - k and substituting this in (22) yields

OPT(L) <^(l + k + p) + r-.

Clearly this is the same upper bound as discussed in (20) and so (21) also holds.
This last subcase concludes the proof of our result.

•
In the above lemma we proved that RJSI > 3/4. Furthermore, this lower bound

can be achieved, as will be shown by the next result.

T h e o r e m 8. RISI = 3 /4 .

Proof. Consider the lists Ln with

L n —

^ 1 1 1 1 1 ^
t: £«, TT £n> o — TT . . . ,— — 2sn, Q£n, 6 £ n , . . . , 6en 3 3 3 3 3 •> v '

L 4n times I \ 12n+l times /

It is easy to verify that
OPT(Ln) = 4n + 1.

If s n is chosen in such a way that the first two items together with the last 4n items
do not fill the first bin then

ISI(Ln) =3n+l.

Hence limn^oo ¿PT{L\ = 4 anc^ ky Lemma 2 the desired result follows.
•

As a last remark we note that for the above lists the IS /-packing is essentially
the same as the simple packing.

Two simple algorithms for bin covering 25

4 Open question
It would be interesting to find a heuristic with a performance ratio greater than
3/4.

References
[1] Assmann, S.F.: Problems in Discrete Applied Mathematics, Ph.D. Thesis,

Mathematics Department, MIT, Cambridge, MA, 1983.

[2] Assmann S. F., Johnson D. S., Kleitman D. J., Leung J. Y.-T.: On a dual
version of the one-dimensional bin packing problem, J. of Algorithms 5(1984),
502-525.

[3] Deyermeyer, B.L., Friesen, D.K., Langston, M.A.: Scheduling to maximize
the minimum processor finish time in a multiprocessor system, SIAM J. Alg.
Disc. Meth. 3(1982), 190-196.

[4] Graham, R.L.: Bounds on multiprocessing timing anomalies, SIAM J. Appl.
Math. 17(1969), 263-269.

Acta Cybernetica 14 (1999) 27-36.

On ±l-representations of integers

János Demetrovics* Attila Pethő^and Lajos Rónyai*

This paper is dedicated to Professor Ferenc Gécseg on the occasion of
his 60th birthday.

1 Introduction
In public key cryptography cryptosystems employing elliptic curves are playing
an important role. Such systems are based on the elliptic version of the discrete
logarithm problem. Let K be a finite field, E = E(K) be an elliptic curve over K
and let P 6 E. If the binary expansion of n £ N is

i
n = Y / h b i = 0,1; i = 1,... ,1; 6; = 1,

i=0
then one can compute P(n) = nP by using the following algorithm:

1. P(n) <- P

2. for i 1 to I do
{P(n) <- 2P(n) ,
if bi-i = 1 then P(n) <- P(n) + P.}

This algorithm requires I doubling and bi addition steps. All operations are
performed of course on the curve E. The idea is quite old. In a recipe for integer
multiplication it appears in the Egyptian Rhind Papyrus dated from about 1650
B.C.

Observing that addition and subtraction on an elliptic curve have the same com-
plexity, Morain and Olivos [MO] developed another algorithm for the computation
of P(n). Their algorithm uses one of the representations

n = Y2di2\ di = - 1 , 0 , 1 ; i = 1 , . . . , / ' ; dv = 1, (1)
i = 0

* Computer and Automation Institute, Hungarian Academy of Sciences, Budapest. The support
of O T K A grants 016503, 016526, EC Grant ALTEC-KIT and FKFP grants 0612/1997, 0206/1997
is gratefully acknowledged.

^Institute of Mathematics, Kossuth Lajos University, Debrecen. Research supported in part
by the Hungarian Foundation for Scientific Research, Grant N0. 25157/98, and by FKFP grant
0612/1997.

27

28 János Demetrovics, Attila Pethő, Lajos Rónyai

which we shall call a ±l-representation of n. In the above algorithm only the
conditional statement should be changed to

if df-i ^ 0 then P(n) P(n) + dV-{P.

j/ ^
The new algorithm requires I1 doubling and \di\ addition/subtraction

steps on the curve. As J2't=o l^l c a n be considerably smaller than ^ ¿ o ^ i , the
algorithm of Morain and Olivos may be more efficient, if I' is not too big compared
to I.

We will point out to another application of ±l-representation of integers. Let
A = (a,ij)i-i,2-,j=i,2 be a matrix with entries from a commutative ring, and with
determinant ±1. As A~l = det(J4)AT the computation of A~l means in this case
only the swapping of ai i2 and a2 :i , and the replacement of the sign of entries of
AT, whenever det(A) = - 1 .

In contrast to the binary expansion, the ±l-representation of integers is not
at all unique. If, for example, the bitsequence of the binary expansion of n looks
like xOl, then a;0(—l)fcl are ±l-representations of n for all k > 0. (Here we listed
the digits in reverse compared to the usual representation.) Morain and Olivos
[MO] (see also Miiller [M]) describes two substitutions: -10& - 11,A; > 2 and
1*01' ->• —10 fc_1l —10 i _ 1l -¥ - 1 0 f c _ 1 - 1 0 ' l , which result usually ±l-representation
of smaller weight than the binary expansion. Moreover, both algorithms are linear
in logn. On the other hand, the length of the representation can be at most one
longer than the shortest representations. For example the numbers 0^11, A; > 0
have weight 2 and length k + 2, but the algorithms of Morain and Olivos results
0* — 101, which has weight 2, but length k + 3.

We call a il-representation optimal, if I' + Mil is minimal among the
±l-representations of n. Note that the quantity I' + \di\ is actually one
more than the number of additions/subtractions in E required when using the ±1 -
representation (1) for computing nP. The aim of the present paper is to prove the
following theorem.

Theorem 1 There exists an algorithm which computes an optimal ±1-represen-
tation of the integer n in 0(log |n|) additions and comparisons.

The proof of the theorem is constructive, i.e. we present a linear time algorithm
for the computation of an optimal ±l-representation of integers. Our method is the
following: first we associate to the integer n an infinite, bipartite, directed acyclic
graph G(n) such that the ±l-representations of n correspond to suitable directed
paths in G(n). Next we establish that to find an optimal ±l-representation it suffices
to consider a subgraph of G(n) having at most 21og2 n-1-5 nodes. Our problem is
actually equivalent to a single source shortest paths problem in this graph, which
can be solved fast using a variant of the well known Dijkstra algorithm [D], [CLR].

On ± 1 -represen tations of integers 29

2 The construction and elementary properties of
G(n)

Let 0 / n f N and assume that 2" is the highest power of 2, which divides n. For
each k > 0 we consider the solutions x of the congruence

x = n (mod 2 fc), —2k < x < 2k. (2)

This congruence has one solution, x = nk = 0, if 0 < k < v, and two solutions, if
k > v. In the latter case we denote the solutions by nk,i and n^ 2 and order them
as follows:

0 < K , 2 | < 2*- 1 < |nM| < 2k. (3)

If I ^ m I = \nk,2\ > 0 (which may happen only if k = v + 1), then put i = 2" and
nk,2 = —2". The set of vertices V of G(n) is

V = {(k,nk) :0<k< ¡/}U {(k,nk,i),(k,nk,2) :k>u}.

To lighten notation we shall refer to vertices (k , n k) simply as nk and (k ,n k , j) as
nkj. Thus, in the sequel we will use the notations nk and nkj, j = 1,2 in two
meanings; either as vertices of G(n) or solutions of (2) satisfying the inequalities
(3).

The set of edges E of G(n) is the union of three sets, EI,E2,E3, where

E3 = {ejfe.i = ek = (nk,nk+i) : k = 0 , . . .v - 1},
E2 = {e„,i = (n „ ,n„ + i , i) , e „ ,2 = (n„,n„+i ,2)} ,

= {ek,j,h = (nkj,nk+ith) : nk+i,h = nk,j + £kj,h^k with
£k,j,h e { - 1 , 0 , 1 } , k > u}.

Here e = (x, y) means that the directed edge e joins vertex x to vertex y.
Let d~(x), (resp. d+(x)) denote the indegree (the outdegree, resp.) of vertex

x £ V, i.e. the number of edges having x as their endpoint (starting point, resp.).
Now we prove the following simple lemma.

L e m m a 1 We have d~(nk) = d~(nv+ij) = 1, if 0 < k < v + 1, j = 1,2 and
d" (nkj) - j, if k > v + l,j = 1 , 2 .

Proof: The first assertion is obvious. We consider therefore the second one. Let
k > v + 1. An edge ending at vertex nkj, has, by construction, n k - o r nk-ii2 as
its starting point, and hence belongs to the set E\. Then there exists an h € { 1 , 2 }
and £k-i,h,j £ { - 1) 0 , 1 } such that

n k j = n k - i : h + ejfc-i,h,j2 fc_1.

Let first j = 1. If £ = 0 or —sgink^)1 then

\nk,i -£2k~1\ > | n M | > 2k~1 > \nk-x.hl /1 = 1 , 2

xWe denote by sg(n) the sign of the integer n.

30 János Demetrovics, Attila Pethő, Lajos Rónyai

by (3). Hence there can be no edges, which correspond to these values of e, i.e.
d~(rik,i) < 1- On the other hand, if e = sg(nki\) then for u = nk,i — sg(n,tj)2fc_1

we have
M = K,1 - sg(nk,i)2k-l\ <2k- 2k~1 = 2k~1.

This implies that u = njt—i,i or u — nk-¡ 2 and hence d~(nki\) > 1.
Let now be j = 2. If e = 0 or sg(nk-2) then

K,2-e2A-1| < \nK2\ <2k~1

by (3). Hence there is one edge either from nk- 1,1 or from nk-1,2 to 11^:2• If
e = —sg(nk:2) then, as

K , 2 - e 2 f c - 1 | > 2 f c -\

by (3), there is no edge, which corresponds to this value of e. Thus d~(rik,2) = 2,
as asserted. •

Now we associate weights to the edges of G(n). Let

[0, if e £ E3,
w(e) = < sg(nu+ij), if e = (nv,nv+Xij) e E2,

[sg(£k,j,h), if e = (nktj,nk+1,h) £ Ei.

The following lemma shows that the network G(n) has a quite transparent struc-
ture.

Lemma 2 If k> v, then there exists for every e € { — 1,0,1} exactly one pair of
indices (j, h), 1 < j, h < 2 such that w(e.k:j,h) = Moreover, for an edge e^j^h we
have w(ek,j,h) = 0 if and only if h = 2 and d+(nkj) = 1.

Remark 1 The second assertion of Lemma 2 means that ifk>v then the subgraph
ofG(n) spanned by the nodes on the k-th and k + l-th levels has one of the following
two types:

"fc+i.i • • nk+1>2

t t (0)
nk,l • • nk-2

or
Figure 1

riit+1,1 • • n f c + i i 2

(0) T
nkA • • nko

Figure 2

This observation will be important in the computation of an optimal ±1 -
representation of n.

On ± 1 -represen tations of integers 31

Proof: We have seen in the proof of Lemma 1 that w(ekj^),j = 1,2 takes two
different values: 0 and sg(nk+1,2), while w(ekjii) = sg(nk-(-1,1). But sg(nk+1,2) ^
sg(n.k+i,i), and both of them are different from 0, implying the first assertion.

¿From what we established so far, we know that w(ekj,h) = 0 implies that
h= 2. It also follows from Lemma 1 that at level k one of the vertices has outdegree
1, the other has outdegree 2. Having all these, to prove the second assertion, it
suffices to verify that w(e k j^) = 0 implies that d^ (n k j) = 1. The condition on
the edge-weight gives that nk+1,2 = nk,j- Using this we have

|n*+i,i - nkJ| = Irifc+i,! - nfc+ii2| = 2fc+1 > e2k,
for any e e {1,0, —1}. This means that there can be no edge from nkj to nk+1,1,
hence d+(nkj) = 1. •

We have constructed an, in one direction, infinite directed acyclic graph G(n).
Observe, that if 2k > |n|, then nk+j,2 = n for all j > 1. We shall prove, that this
network describes completely the ±l-representations of the integer n.

To be more precise, let U(n) denote the set of directed paths from 0 to the
nodes n k j k where nk,jk = n, and let

W(n) = {{w(e0Jl),... • • • ,w{ek-,Jfc)),
where the path eo,^,.. • nev+i,jl,+i,ju+2> • • • G U(n)}.

Remark that j , = 1, if i < v and ji = 1 or 2, otherwise. Hence W(n) is the set
of sequences of weights of directed path from the vertex no = 0 to the vertices
nk,jk = n.

On the other hand, let
k-l

E(n) = {(do, • • -,dk-1), such that n = ^ dj2®, di E { - 1 , 0 , 1 } } ,
¿=0

i.e. E(n) is the set of sequences of digits of the ±l-representations of n. Now we
are in the position to prove the following theorem.

Theorem 2 If n ^ 0, then W(n) = E(n).

Proof: If n < 0 then we have obviously W(—n) = —W(n) and E(—n) —
—E(n). Hence it is enough to prove the theorem for n > 0, which we assume in the
sequel.

Let first

s = (w (e 0 , j 1) , . . . , w (e ^ + 1) , w (e i / + i j ^ + 1 j l / + 2) , . . • ,w(ek-iijk_ujh)) e W(n).

Then

e0,jl 1 • • • 1 ev,j„ + i) eP+l,J„ + l,ji,+2 > ' " ' 1 ek-l,jk-l,jk

= (no,ni),..., (nv-x,nv), (nv,nv+iju+1),

32 János Demetrovics, Attila Pethő, Lajos Rónyai

We have the relations

nhjh =nh-i,jh_1 +w{eh.-i:jh_ujh)2h~1,

whenever h > v, by the definition of the vertices and the weights. Hence, as
nkjk = n, we have

fc-i
n = nktjk = w(eVtju+l)2v + w(ehtjhtjh+1)2h.

h=v+l

As w{e^ji+i) = 0 for h = 0 , . . . , v — 1 we obtain

i/-i fc-i
n = nk,jk = Y2w{eh:h+1)2h + w{evjv+1)2" + ^ w(ehtJliJh+1)2h,

h=Q h=v+l

i.e. s e E(n).
Assume now that s = (do,..., dk-i) € E(n). Then

k-1
n =] > > 2 \

¿=o

Let n0 = 0, and if 0 < h < k, then nh = di2l- Then nk = n,

nh= n (mod 2h)

and
h-1

\nh | < ^] 2 i < 2 f t .
¿=0

Thus, if h > i>, then nh = nhjh for jh, = 1 or jh = 2. If h < k, then

nh+1 =nh + dh2h,

i.e n-h+i,jh+1 = nhjh + dh2h.
This means that there exists an edge from rih,jh to 71^+i,jh+1 and its weight is
w (e h j h , j h + J = dh. Hence
(n0,ni), . . . , (n„-i,nv), (n„,Tl„+l,j„ + 1), (nv+l,j„ + 1,nv+2j„+2), ..., {nk-l!jk_l,Tlkjk)

is a directed path from no = 0 to nkjk = n, i.e. s € W(n). The proof is complete.
•

We define the weight of a node nkj of G(n) to be the minimum of the sums
Ylj=i \w(e^)\> where the edges e1, e 2 , . . . ,ek form a directed path from 0 to nkj.
We denote the weight of nkj by w(nkj). In view of Theorem 2, our task of finding

On ± 1 -represen tations of integers 33

an optimal representation of n is equivalent to finding a node nkj with k + w(nkj)
minimal among the nodes with nkj = n. (Please note that for an optimal node
nkj a shortest path from 0 to nkj can not end with an edge of weight zero, hence
for the ±l-representation of type (1) obtained from the path we have I' = k.)

To solve the latter optimization problem, we examine closely the lowest level of
G(n) where n appears as a vertex. Let k' = [lognj + 2. Then 2k ~2 < n < 2k - 1 .
Hence n ^ - i , ! = nh,2 = n for all h > k', by (3). Moreover, only these vertices are
equal to n.

Lemma 3 If w(nk'-i,i) < w(nki-1,2) + 1 then (a shortest path from 0 to) node
nk'-1,1 provides an optimal representation of n. If w(nk'-1,1) > w(nk>-1,2) + 1
then (a shortest path to) node nk't2 provides an optimal representation of n.

Proof: By Remark 1. the layer of G(n) comprising levels k1 — 1 ,k' and A;' + 1
looks like

nk'+1,1 • • «£'+1,2 = n
t t (0)

nk't 1 • • n/fc/,2 = n
(0) t

n = nk'-l,l • • nk>-\,2-

Here the edges without label have weight ±1 . Using the fact that a directed
path from 0 to a node at level h > k! must pass through level k! — 1, we have

w(nhj) > mm{w(nk'-i,i),w(nkl-1>2) + 1 } = w(nk>a)-

Hence if h > k' then h + w(nh,j) > k' + w(nk>t2)- ¿From this we- see that the
optimum is attained at node nk*-1,1 or nk:2-

If w(nk>-1,1) < w(nk>-i,2) + 1 then

k' - 1 + w(rik' —1,1) <k' - 1 + w(nk',2) < k' + w(nk>t2),

hence n k > - i s the (only) optimal node.
On the other hand, if w(nk<-1,1) > w(nk>-ii2) + 1 then w(n/i'_i,i) > w(nk't2),

and therefore k' — 1 + w(nk'-iti) > k' + w(nk*fi)- In this case nki^ is an optimal
node. •

Note that the lemma implies in particular that the length I' of an optimal ±1 -
representation (1) of n can have at most two values. The second alternative of the
Lemma 3 allows for the possibility of two optimal nodes. This may indeed happen,
as exemplified by the representations 7 = 4 + 2 + 1 and 7 = 8 — 1.

Proof of Theorem 1. The algorithm now is quite straightforward to outline.
On input n > 0 we build the the first k' layers of the graph G(n) and calculate the
the edge weights. It is a directed acyclic graph (dag) with no more than 2 log2 n + 5
vertices and 3 log2 n + 6 edges. Following the definition directly, this graph can be
built using O(log n) elementary operations.

34 János Demetrovics, Attila Pethő, Lajos Rónyai

By Lemma 3 it suffices to compute the weights w(nk'~ 1,1), w(iik>,2) together
with with an appropriate path from 0 to r iv - i , 1 or to rik',2 which provides the
optimal weight. We can use here Dijkstra's algorithm for the single source shortest
path problem. In doing this, we have to work with the absolute values of the original
edge-weights. Dijkstra's method can be implemented in linear time for dag-s (see
for example section 25.4 in [CLR]), hence this phase can also be accomplished in
time O(logn). •

3 A detailed algorithm
Here we present a detailed and streamlined procedure which performs the tasks
sketched in the proof of Theorem 1. It computes an optimal ±l-representation of
the input integer n > 0. In the following description we use a two-dimensional
array n(h,j),j = 1,2, to represent the vertices n/,^ of the network G(n). The value
of n(h,j) is a three-dimensional vector, whose i-th coordinate will be denoted by
n(h,j)[i}.

Upon termination n(h,j)[3] will store w(rih,j)• ^Moreover, n(/ i , j) [l] stores an
identifier of the next to last vertex of an optimal path to rihj, and n(h,j)[2] contains
the weight of the last edge along this path. More formally, in the general situation
(i.e. if h > v) we intend to achieve the following:

= min{n(/i - M)[3] + \w(eh-ltjtl)\, where eh-i,j,t £ G(n)},
n(h,j)[2] = w(eh-i,j,t), if n(/i,j)[3] = n (h - l , £) [3] + K e h _ l l i i /) |)

n(h,j)[l] = t, if n(h,j)[2,}=n(h-l,i)[Z] + \w(eh^jtl)\.

Algorithm

Input: n > 0 an integer
Output: (do, • • •, dk~i) an optimal ±l-representation of n.

1. k! := [log 71J + 2

2. Compute G(n) up to level k'

3. for h := 1 to v do n(h, 1) := (1, 0,0)

4. n(v + 1,1) := (l ,w ; (e y ^ + i i i) , l) ;n (i /+ 1,2) := (1 ,w(e v , v + i , 2) , 1)

5. for h := v + 2 to k' do
if eh-1,1,1 € G(n) then begin
n (M) " : = (l M e h - W) M h ~ 1,1)[3] + 1)
n(h, 2) := (2,0, n(h — 1, 2)[3])
if 71 (h - 1,1) [3] + 1 < n(h, 2)[3] then
n(h, 2) := (1, w(eh~i,ifi), n(h, 1)[3])
end

On ± 1 -represen tations of integers 35

else begin
n(h, 1) := (2, w(eh-li2il),n(h - 1, 2)[3] + 1)
n(h, 2) := (l,0,n(/i — 1,1)[3])
if n(/i — 1, 2) [3] + 1 <n(h, 2)[3] then
n(h,2) := (2,w(eh-1^2),n{h,l)[3])
end

6. k := k' - l;j := n(k, l) [l] ;d := (n(k, 1)[2])
if n(fc',2)[3] < n(fc,l)[3] then k := k'-,j := n{k, 2)[1]; d := (n(fc,2)[2])

7. while k ± 0 do
d:=(n(kj)[2],d); j:=n(k,j)[l]; k:=k-l

8. output d.

Proposition 1 The preceding Algorithm computes an optimal ±l-representation
of the integer n in O(logn) time.

Proof: It is clear that the algorithm terminates after O(logn) steps. Therefore,
it is enough to establish correctness.

The basis of the calculation of w(nh,j) is the straightforward relation

w(nhtj) = min {w{n h - i , j) + \w(eh-i,itj)\, where (nh-lti,nh,j) € G{n)}.

As w(e) = 0 for e G E3, we have w(n,hj) = 0 for h < p. Thus n(h, 1)[3] is
set correctly in Step 3 for 1 < h < v. The same is true for n(v + 1, j)[3], j = 1,2,
because |iu(e)| = 1 for e G E2- If h > v + 2 then the h-th level of G(n) has one
of the shapes, presented on Figures 1 and 2. The value of n(h,j)[3] is determined
in Step 5 according to these alternatives. Thus n(h, j)[3] = w(nhj) for all h and
j considered. By Lemma 3 it is enough to compute the weights up until level
[lognj + 2, hence k! is set properly in Step 1.

Lemma 3 shows also that in Step 6 the parameters k,j of an optimal node nk,j
are calculated correctly. In fact, we set k = k' — 1, if w(nk>-1,1) < w(nk*,2), and
k = k', if w(nk'-i , i) > w(rik't2)- Finally, by tracing backwards an optimal path
to nk,j in loop 7, we compute the digits of an optimal ±l-representation. The
proposition is proved. •

Acknowledgement We thank I. Ruzsa and S. Turjanyi for their comments
and helpful conversations during the preparation of this paper.

References
[CLR] T . H . CORMEN, C.E.LEISERSON and R . L . RIVEST, Introduction to algo-

rithms, The MIT Press, 1990.

[D] E .W. DIJKSTRA, A note on two problems in connexion with graphs, Numer.
Math. 1 (1959), 269-271.

36 János Demetrovics, Attila Pethő, Lajos Rónyai

[Me] A. MENEZES, Elliptic curve public key crypto systems, Kluwer Academic Pub-
lishers, 1993.

[M] V. MÜLLER, Efficient algorithms for multiplication on elliptic curves to ap-
pear.

[MO] F. MORAIN and J. OLIVOS, Speeding up the computations on an elliptic
curve using addition-subtraction chains, in F. MORAIN, Courbes elliptiques et
tests de primalité, Doctoral Thesis, Université Lyon I, 1990.

Acta Cybernetica 14 (1999) 37-50.

Complete Finite Automata Network Graphs with
Minimal Number of Edges*

Pál Dömösit Chrystopher L. Nehaniv*

Dedicated to Professor Ferenc Gécseg on his 60th birthday

Abstract

An automata network graph is said to be n-complete (under projection) if
every automata network having underlying graph with n vertices can be sim-
ulated (under projection) on it. In this paper n-complete automata network
graphs with minimal number of edges are completely characterized.

1 Basic Notions

Let f : Xi x ... x Xn I be a mapping having n variables for some positive
integer n, moreover, let, t £ { 1 , n} . / is said to really depend on its tih variable
if there exist xt £ X i , . . . , x t _ i £ Xt-i,xt,xt' £ Xt,xt+i £ Xt+1,...,xn £ Xn

having f(xi,... ,xn) ± f(xi,... ,xt-i,xt',xt+i,... ,xn). If / does not have this
property then we also say that / is really independent of its tih variable. Moreover,
if there is no danger of confusion then sometimes we omit the attribute "really".

For a given non-empty set X and positive integer n denote by Xn the nth

0 power of X. Given a fc-element subset H of { l , . . . , n } , H =
(z'i < . . . < ik), the H-projection of Xn is a mapping prn • Xn —> Xk defined by
prfjixx,... j xn) — (xii j • • • > xik)> where (x\,..., xn) £ Xn. The function prjj(F) :
Xk Xk with pru{F(xi, . . . , xn)) = prH(F)(prH(x1,... ,xn)),(xi,... ,xn) £ Xn

is called the H-projection of F : Xn -» Xn (if it exists). If H = {h} for

"This work was supported by grants of the University of Aizu "Algebra & Computation" and
"Automata Networks" projects (R-10-1, R-10-4), the "Automata & Formal Languages" project
of the Hungarian Academy of Sciences and Japanese Society for Promotion of Science (No. 15),
the Academy of Finland (No 137358), the Hungarian National Foundation for Scientific Research
(OTKA T019392), and the Higher Education Research Foundation of the Hungarian Ministry of
Education (No. 222).

tL. Kossuth University, Institute of Mathematics and Informatics, 4032 Debrecen, Egyetem
tér 1, Hungary, e-mail: domosi@@math.klte.hu

^School of Computer Science & Engineering University o f Aizu, Aizu-Wakamatsu City 965,
Japan, e-mail: nehaniv@@u-aizu.ac.jp

37

38 Pal Domosi, Chrystopher L. Nehaniv

some h £ { l , . . . , n } , i.e., H is a singleton then sometimes we use the expres-
sion h-projection (of a vector or function) in the same sense as the concept "H-
projection". (And in this case sometimes we use the notation pr^ instead of
pr{k}) Moreover, for an arbitrary i £ { l , . . . , n } , we define the ith component
of F : Xn —> X" as the function cpi(F) : Xn X with cpi{F){(xx,... ,xn)) =
pri(F(xi, • • •, xn)) (xi, • • •, xn) £ Xn.

For any pair Fi : Xn -> Xn,i = 1,2, one denotes by Fx o F2 : Xn Xn the
function Fi o F2(xi,... ,xn) = FI(F2(X I, .. .,xn)), (an, . . . ,xn) £ Xn.

A (finite) directed graph (or, in short, a digraph) V = (V, E) (of order n > 0) is
a pair of the sets of vertices V = { i n , . . . ,vn} and edges E C V x V. Vi £ V is an
isolated vertex if ({wj} x VL)V x { » j }) i l £ = 0. If (vi,Vj) £ E and i = j then (Vi,Vj)
is called (self-) loop edge. The digraph V = (V',E') is a subdigraph of V if V is
a non-void subset of V, and E' C E. T> is said to be connected for Vi £ V if every
vertex vj £ V has a (directed) path from Vi to Vj. T> is called strongly connected if it
is connected for all of its vertices. Moreover, V is centralized if there exists a Vi £ V
with V x {vi} C E (including (Vi,Vi) £ E). In addition, a digraph V = {V,E)
having a structure V = {i>i, . . . ,vn}, E = {(vi,vi+1(modn)) : i = 1 , . . . , n } is
called a cycle (with n length). We also say that a digraph V has a cycle (with
n length) if there is a subdigraph of T> which forms a cycle (with n length). A
transformation F : Xn —> Xn is said to be compatible with a digraph V = (V, E)
(of order n) if F has the form F(xi,. ..,xn) = (/ i (z i , • • • ,xn),..., fn(x i , . . . ,a;n))
((an, • • • ,xn) £ Xn) and : Xn -> X, i = 1 , . . . ,n may depend only on Xi and
those Xj for which (Vj,Vi) £ E (including the case i = j).

A word (over X) is a finite sequence of elements of some finite non-empty set
X. We call the set X an alphabet, the elements of X letters. If u and v are words
over an alphabet X, then their catenation uv is also a word over X. Especially,
for every word u over X, uX = \u = u, where A denotes the empty word having
no letters. The length |w| of a word w is the number of letters in w, where each
letter is counted as many times as it occurs. Thus |A| = 0 . By the free monoid X*
generated by X we mean the set of all words (including the empty word A) having
catenation as multiplication. We set X+ = X* \ {A}, where the subsemigroup X+

of X* is said to be free semigroup generated by X.
By an automaton A = (.4, X, S) we mean a finite automaton without outputs.

Here A is the-(finite non-empty) state set, X is the input alphabet and 5 : AxX ^ A
is the transition function. We also use 5 in an extended sense, i.e., as a mapping
6 : A x X* A, where 5(a, A) = a (a £ A) and S(a,px) = 6(S(a,p),x) (a £ A,p £
X*,x £ X). For a given word p £ X*, the transition induced by p is the function
6P : A —> A that takes any state a € A to 5(a,p).

If A = Zn for some \Z\ > 1 and n > 1 (where \Z\ denotes the cardinality, i.e., the
number of elements in Z) then we say that A is a finite state-0 automata network
(of size n with respect to the basic local state set Z). Then the underlying graph
VA = (VA,EA) of A is defined by VA = {1 , . . -,n},EA = {(i,j) \ 3x£ X : cPj(Sx)
really depends on its ilh variable}. A is a V-network if T> = (V,E) is a digraph
with V = VA and E D EA. In other words, A is a D-network if every mapping
Sx : A —» A (x £ X) is compatible with V. Note that a size n automata network

Minimal Finite Automata Networks 39

may be regarded as comprising n component automata At = (Z,Zn x X, Si), i £
{ 1 , . . . , n } , where the Si are defined by

S(z, x) = (¿1 (z]_,{z,x)),... ,8n(zn,(z,x))),

for z = (z\,... ,zn) £ Zn, x £ X. One may of course suppress the components of
Zn in the inputs to Ai upon which Si does not really depend.

If n = 1 or \Z\ = 1 then we say that A = (Zn,X,S) is a trivial automata net-
work. The purpose of this paper is to investigate the state-homogeneous automata
networks having state sets of the form Zn, for a positive integer n > 1 and fixed
finite set Z of cardinality at least two. Therefore, by an automata network we shall
mean a non-trivial finite state-homogeneous network.

Let A = (Zn, X,S),B = (Zm, Y, S') be networks (having the same basic set Z).
We say that B simulates A by projection if there exists an H C { 1 , . . . , m } such that
every 5X : Zn —» Zn (x £ X) is an ii-projection of a mapping S'p : Zm Zm (p £
Y+). If there exists a 2?-network B which simulates a given network A by projection
then it is said that A can be simulated on V by projection. A digraph V is called
n-complete (with respect to simulation by projection) if every network of size n can
be simulated on V by projection. The n-complete digraph V = (V, E) has minimal
number of edges if for every n-complete digraph V = (V',E'), |V| = \V'\ implies
\E\ < \E'\.

2 Preliminary results
We start with the following technical result.

Lemma 2.1.(see [2]) Given a finite group G, d positive integer 71 > 1, let us
define for every distinct G { 1 , . . . , n } the functions : Gn Gn,t = 1,2, 3,

: Gn Gn, and Uij :Gn Gn as follows.

F i j (S i , • • •: 9n) = (gi, • • •, 9j-i, gi9j, 9j+i, • • •, 9n),

Fij (9i, • • •, 9n) = (gi, • • •, 9j-i , 9i~l9j, 9j+1 ,...,gn),

F-j(gi,. • • ,g„) = (gi,.. .,gj-i,gi,gj+1,.. .,gn),

(9i, • • •, 9n) = {gi,...,gj-i,gj~l,gj+i,...,gn),

Ui,j{g\, •• .,9n) = (fli, • • • ,9i-i,9j,9i+i, • • • ,9j-i,9i,9j+i, • • • ,9n)-

Then for arbitrary, pairwise distinct i,j,k £ { 1 , . . . , n } we get

40 Pal Domosi, Chrystopher L. Nehaniv

jrW 3

- Fk.j

3
o i f > O f f

•

Given a non-void set Y, a positive integer n, let 7y denote the full transfor-
mation semigroup of all functions from Y to Y. In addition, for every subset
H C 7V, let < H > denote the subsemigroup of 7y generated by H. More-
over, for any finite set X with > 1 and positive integer n > 1, denote Tx,n

the subsemigroup of all transformations of Tx» having the form F(xi,... ,xn) =
ixt(i)i • • • ^¿(n)), (x i : • • •, xn) G xn,t : { 1 , . . . , n } —» { 1 , . . . , n} , and let

IV» = {F:Xn^Xn\ F(xi,..., xn) = (xx,..., Xi-i, f(xi, xj), xi+1,... ,xn),
where ft: X2 {1,... ,n}, (xu ... ,xn) E l " } ,

(It is understood that the case i = j is allowed in the above definition of I V " .)
Define the elementary collapsing tj:k : { 1 , . . . , n } —> { 1 , . . . , n} for 1 < j k < n,

. (j if i
= oth

= k
otherwise

Moreover, as usual we say that Ujtk • {1, • • • ,n } —> { 1 , . . . , n } for 1 < j k < n is
a transposition if

j if i = k
uj,k(i) = { k if i = j

i otherwise

Let be the semigroup of functions { i 1 G Txn '• F(xi,...,xn) £
Xn_1 x {d}, xi,..., xn € X, F is really independent of its last variable}.

Lemma 2.2. (see [2]) S < IV» > •

Proof. Fix arbitrary c ^ d £ X and let (c i , . . . , c „ _ i) £ X n _ 1 ,

, - f (z i , . . . , z n) if (a^, . . . , x n) = (ci,...,cn-i,c),

((x j , . . . , xn) € Xn). First we prove that i(ci,...,cn_,) G < r x » > .
If n = 2, then our statement holds by definition. Otherwise, n > 2 and for every

b £ X, define

\ - j (xi,---,xn-i,c) if Xn-i = b,xn = c,
b (1,--'n,~\(xl,...!xn-1,d) otherwise,

Minimal Finite Automata Networks 41

where (x i , . . . , xn) £ X™.
For every i £ { 1 , . . . ,n - 1}, (c i ; . . . , c „_ i) £ X n _ t , let

P / \ j {xL, • • •, Zn-I: c) if (Xi , . . . , x n) = (CI, • - •, cN_I, c),
c - O ^ i . - - - . ^ - ^ (a;! , . . . otherwise,

where x = (x i , . . . , xn) £ Xn). It is clear that F(Cn_1) = On the other
hand, for every i G { 2 , . . . ,n - 1}, ^(^.^.. .^„-i) = F(cu - ,cn - i) ° ° -^i.-i °
f / i_i ,n_i . Simultaneously, we have by definition that F^l , G Tx" holds for every
i £ { 2 , . . . , n - 1}. Moreover, using Lemma 2.1, it can be shown easily Uij £ <
Y'x" > • Thus we get our statement by induction.

Now we consider a pair (c i , . . . , c n _i) , (d i , . . . , d n _ i) £ X™ - 1 , d £ X, ((c i , . . . ,
c „_ i) — (di,... ,dn-1) is allowed), and define

Fj-1] W/J , Ax) = {

(c i , . . . , c n _ i ,d) if (ari,... , x n _ i) = (d i , . . . ,
dn-i)>

(d i , . . . ,d „_ i ,d) if (x i , . . . , i „ _ i) = (c i , . . . ,
c n - i) ,

(x i , . . . ,xn-i,d) otherwise,

(ci, • • •, c „_ i , d) if (x L , . . . , x n _ i) = (di,

(x i , . . . ,xn-i,d) otherwise,

where x = (x i , . . . , x n) € X " .
Next we show i?((ci1),...,c„_l),(dl,...,dn_l) € < Tx, >,i = 1,2.

We have c £ X arbitrary with c ^ d and set Fc3\x) = (x i , . . . , x n _ i , c) ,
F d 3) (x) = (xi> • • • , z „ _ i , d) , and

{(c i , . . . , c n _ i , c) if (xx,... , x „) = (d i , . . . ,
d „ - i , c) ,

(x i , . . . , x n _ i , d) otherwise
where x = (x i , . . . , x n) G X n , c , d G X , c ^ d, moreover, consider i*^,...,<;„_!) as
before. In addition, let

{(x i , . . . , x n _ i , c) i f x „ = d ,
(x i , . . . , x n _ i ,d) i f x n = c,
(x i , . . . , x n _ i , x n) otherwise,

and let for every a G X ,

^(e)/^ x) = { (x i>-- -> xn-z>a> xn) if xn = c,
° 1 ' ' ' ' ' \ (x i , . . . , x „_ i , x „) otherwise

((x ! , . . . , x „) G Xn). It is clear that F^, F™, F&, F^ £ Tx». Next we show
that F ^ ^ £ < TXn > • Indeed, by an easy computation we get

42 Pal Domosi, Chrystopher L. Nehaniv

^(c?,...,£„_!),(</ d„_!) = [/ n - 2 , n - l ° - - •°t/2,n-l°C/l,n-loPc (16)oi/i,„_1oFc (26)o[/2,n-l°
On the other hand, by Lemma

2.1 we can see easily Ui6 < Ty» > . But then F^ w . . . = F j 3 ' o

i m p l i e s F£.. . ,c»-i),(<f„. . . ,dn-,)e < > •J t r e m a i n s

to prove that F ^ c„_i) (d, d„_i) e < >• This connection, completing the

proof, comes from F ' X) „ W . . , = FJ3) O F/,4) , w , o F^ o

r(c1,...,c„_i),(dll...,d„_i) ° V c •
Finally, for every pair (c i , . . . , c „ _ i) , (d i , . . . , d „ _ i) £ X " - 1 , let us consider the

mappings Fl1c)li... :Cn_ l)Xdu...,dn_1y ^J,...,<=,_,),(* d„_0 d e f i n e d b e f o r e - Observe

that F^j c ^ (dl d acts as a transposition in the permutation group over
the set Xn~l x {d\. while F^ c ^ ^ d ^ acts as an elementary collapsing in
the transformation semigroup over the set X " - 1 x {d}. We have already proved that
all of these transpositions and elementary collapsings are in < Tx» >• Moreover,
it is well-known that the set of all transpositions and elementary collapsings on a
set generates all mappings on that set, so any map taking Xn~1 x {d} to itself may
be written as the restriction to X " - 1 x {d} of a composite of the the above func-
tions. A moment's reflections shows that the set of all these F^ w , , .,
f £ > c ^ d in fact generates all of 3rxn~1x{d}, since a function in the
latter is uniquely determined by its 0 on X™ - 1 x {d } . In addition, it is clear that
Fx™ \ -Fx™-1 x{d\ is non-void. This completes the proof. •

Next we show

L e m m a 2.3. Given a finite group G, a pair of relatively prime integers m,n
with 1 < m < n, let us define for every I £ {1,... , n}, the transformations T^ :
Gn Gn, Tlk) : Gn Gn, k = 1 ,2 ,3 ,4 as follows.

T { 0) (g i , . . . , g n) =

T ^ i g i , . • • ,gn) = (gn,9i, • • • ,gi-2,ge-m-i(mod n)9e-i,ge, • • - ,gn-1),

T(~\gi,. • • ,5n) — (gn,gi, • • • ,gt-2,fff_1TO_1(m o d n)ge-i,ge, • • -,gn-1),

T(3\gi,- . . , g „) = (gn,gi, • • •, gi-2, 9e-m-n mod n)>9e,--- ,gn-1),

T(4)(gi, • • • ,gn) = (gn,gi,- • • ,9i-2,gjlx,gi, • • -,gn-1)-

Minimal Finite Automata Networks 43

Then for any fixed I £ { l , . . . , n } , TG,n C < :k = 1 , 2 ,3 ,4 } > .

Proof For every i £ { l , . . . , n } , A; € { 1 , . . . , 4 } , T^k) = (T^)n+i~e o T(tk) o
(r(o))n+<-t. Thus we shall show only TG,n 9< : I £ { l , . . . , n } , / c =
1,2 ,3 ,4 > . It is clear that using the notions in Lemma 2.1, by the simple fact
that every permutation is a composite of transpositions, and moreover, transfor-
mations can be generated by permutations and elementary collapsings, we obtain
TG,n C < {F^,Uii:j : i,j £ {1 ,--.,n} > . On the other hand, < {T(°\T^k) :
k = 1 ,2 ,3 ,4 ,£ = 1 , . . . , n } > \TG,n ^ 0 is clear. Thus, it is enough to prove
that for every i,j £ { l , . . . , n } , ,Uid £< {T^0\T{ek) : k = 1 ,2 ,3 ,4 , * =
1, . . . , Tl} > . Using m o d n) > i + j m _ i (m o d n) = (T^0 ')" 1 O m Q d n j ,

d= 1,2,3, i £ { 1 , . . . ,n},j = 0 , 1 , . . . , by an inductive application of Lemma 2.1, we
have i i (? m _ 1 (m o d n) , i + j m _ 1 (m o d n) £ < {T<°) ,Tf> : k = 1 ,2 ,3 ,4 ,* = l , . . . , n } >
(i £ {1,... },j =0,1...).

Therefore, because m and n are relatively prime, we receive F^ £ < :
k = 1 ,2 ,3 ,4 , 1= l , . . . , n } > (d= 1,2,3,1,7 G { l , - . . , n }) .

Moreover, we also have = (T« 5)) " - 1 oT i (4) , i £ { 1 , . . . ,n}. Hence, applying
Lemma 2.1 again, we obtain Uij £< {T^°\T^k) : k = 1 , . . . , 4 , 1 = 1 , . . . , n } >,
i,j £ { 1 , . . . , « } and thus, having fjV C < {T^°\T^k) : k = 1 ,2 ,3 ,4 } > (i , j £
{ 1 , . . . , n }) , the proof is complete. •

We shall use the following

Lemma 2.4. (see [1], [2]) Given a positive integer n, let G = < g > de-
note a finite non-trivial cyclic group with a generator g £ G. There exists an
arrangement ai,...,am (m = |G|") of the elements in the nth direct power Gn

of G such that for every i = 1,... ,m — 1 there is a j £ {1,... ,n} with Oj+i 6
{{9i,---,9j-i,9j9'1,gj+i,---,9n),{9i,---,9j-i,9j9, 9j+1> •••,fln)}, whenever
a-i = (ffi, • • - ,9n) (£ Gn). •

Now we are ready to prove the following key lemma.

Lemma 2.5. For any fixed I £ { 1 , . . . , n}, Txn is generated by the union of
< {T^yT^ : k = 1 , . . . , 4 } > and the set of all functions F : Xn -> Xn having
the form F(x i,...,xn) = (xx,... ,xt-i, f(x i,... ,xn),xe+1,... ,xn), f : Xn X,
where X\,..., xn £ X.

Proof. We can take out of consideration the trivial case \X\ = 1. Thus we
assume > 1.

It is clear that without loss of generality we may suppose i = 1. On the other
hand, using Lemma 2.3, {Uitj :i,j £ { 1 , . . . , n } } C < : k = 1 , . . . , 4 > .
Thus it is enough to prove that the union of {Uij : i, j £ { 1 , . . . , n } } and the set of

44 Pal Domosi, Chrystopher L. Nehaniv

all functions F : Xn —> Xn having the form F(xi,... ,xn) — (f(x1,..., xn),x2, • • •,
xn), generates 7x» •

For every pair i G { 1 , . . . , n } , / : Xn —» X, define the function Fij : Xn —>
Xn with F i j (x u . . . , x „) = (x i , . . . , Xi-i, / (x i , . . . , xn),xi+i,..., xn) (x\,... ,xn

G X). Thus, by letting / ' = / o Uij, we have Fjj = Uij o o Uij. So for every
pair i G { l , . . . , n } , f : X n - > X , Fu €< Tx,n U {F : X " - V x " \ F{xu...,xn) =
(f(x i , . . . , x „) , x 2 , x 3 , . . .,xn), / : X " X , x x , . . . , x n G X } > .

Let us identify X with a non-trivial finite cyclic group with generating ele-
ment g G X. Thus we also have that for any c i , . . . , c „ G X, i1'1^eij,(Cl,...,c„),
F{2K,j,(cu...,cn) e < 7 x , „ U { F : X " X n | F (x i , . . . , x „) = (/ (x i , . . . , x n) , X2 5^3,
... ,xn), f : Xn X, x = (x±,.. .,xn) G X™} > , whenever e G { 1 , - 1 } ,

^ e j , (c i , . . . , c „) (x) =

(c i , . . . , c „) if x = (c i , . . . ,Cj-i,Cjge, Cj+1,... , c n) ,
(ci, . . . ,Cj_i ,Cj3£ ,Cj+ i , . . . , c „) if X = (c i , . . . , c „) ,
x - otherwise,

(2) . , _ J (c i , . . . , C j _ i , C j 3 e , C j + i , . . . , C n) if X = (c i , . . . , c „) ,
e,j,(ci,...,c„)W | x otherwise,

where x = (s i , . . . , x n) G X " . On the other hand, by Lemma 2.4, there ex-
ists an arrangement a i , . . . , a m of X™, such that for every k = l , . . . , m — 1,
Pk e {F^K,j,(Cl,...,cn) • e S { - 1 , 1 } , i G { l , . . . , n } , c i , . . . , c n G X}, tk G
{Fi2)e,j,(c 1,...,cn) • e 6 { - 1 , 1 } , 3 G { 1 , . . . , n } , c i , . . . , c n G X } , where

a f c + i if i - k ,
Pk{ai) = { afc if * = fc + 1,

a; otherwise,

tk(at)=\ak+i i f i = fc' v ; \ ae otherwise.

But then pi,... ,pm-I is a set of transpositions such that { p i , . . . ,pm_i} generates
all permutations over X n . And simultaneously, t\,..., i m - i is a set of elementary
collapsings over X n . Thus by the well-known fact that for every j = 1 , . . . ,m — 1,
{ p i , . . . ,pm-I, tj,} generates all transformations over X " , the proof is complete. •

3 Main Results
First we show the next statement.

Theorem 3.1. Given a positive integer n > 1, V — (V, E) with V = { 1 , . . . , n}
is an n-complete digraph with minimal number of edges if and only if there exists
a permutation p : {l,...,n} —• {l,...,n} such that E = {(p(i),p(j)) : i,j G
{ l , . . . , n } , p (j) =p(* + lmod n)}U{(p(»),p(l)) :i G { l , . . . , n } } .

Minimal Finite Automata Networks 45

Proof. We may assume without loss of generality that the permutation p is
the identity. Then it is clear that for an arbitrary m 6 { 1 , . . . ,n } , the functions
T(o) i rpW _ k _ 1 2 , 3 , 4 defined in Lemma 2.3 are compatible with V. Suppose that
m is 3 such that it is relatively prime to n. Then the sufficiency of this statement
is a direct consequence of Lemma 2.5. To the necessity first we show the existence
of j E V with {(¿, j) : i G V} C E, whenever V is n-complete.

Let T : X n Xn such that \{T(Xl,... ,xn) : xi,...,xn G X}\ = \Xn\ -
1. First we show that for every F\,...,Fm G Txn, T = F\ o ... o Fm implies
the existence of an index i 0 the property \{Fi(xi,... ,xn) : xi,... ,xn G X } | =
\Xn\ — 1. Of course, if Fi,... ,Fm are injective then T = Fx o ... o Fm should
be also injective, a contradiction. On the other hand, T = Fx o ... o Fm implies
| {F(z i , . . . ,xn) :xx,-..,xn G X } | < min{|{Fj(:Ei,... ,xn) : xx, • •. ,xn G X } | : i =
1 , . . . ,m} . Therefore, we obtain our assumption regarding the existence of an index
i preserving the property \{Fi(xx, • • • ,xn) : xly. • • ,xn £ X}\ = \Xn\ - 1.

Now we identify the elements of X in a fixed but arbitrary way with the elements
of { 1 , . . . , |X|} and consider Xn as a subset of the nth direct power of integers.
For every (a i , i , . . . , a i i ? l) , . . . , (o m > i , . . . ,o„ l j n) G Xn, let • • •»ai,n) • i =
l , . . . , m } = (S ™ ! Oi.i, • • •, TH=\ Let a = (a i >--->an), b = (bx,...,bn) G
Xn denote distinct elements with |Fi_1(a)| = 0 and = 2. And let j G
{ 1 , . . . , n } be an index with Oj ^ bj.

Prove that |X| does not divide prj{^2{Fi{x i , . . . , x n) : xx,. • • , x n G X }) . In-
deed, then prj(J2{Fi(xx, - • • , Xn) '. X\ , . . . , Xfi G X }) = prjC^lixx,... ,xn) :
xx,-.-,xn G X}) + bj-a,j) = k) + bj-a,j. Of course, by this equality
we received that \X\ does not divide prj(J2{Fi(%i, • • • j Xn) • j . . . ; Xn e x }) .

Suppose that for every j G V there exists an i G V with (i , j) ^ E. Consider the
set T>x of all functions of the form Xn —> Xn which are compatible with V. Now we
show that for every F G T>x, divides prj(Y,{F(xx, • • • ,xn) : xx,...,xn G X }) ,
implying F i ^ V x .

By F G T>x we have that for an appropriate t G { 1 , . . . ;n},prj(F(x i,..., xn)) =
Prj {F(xx, • • .,xt-x, x'e,xi+x,- • -,xn)) ((xx, • • •, xn) G Xn,x'e e X , t = j is allowed).
Therefore, for an arbitrary fixed c G X, prj{^{F(xi,... ,xn) : xx, • • • ,xn £ X }) =
\X\prj(J^{F(xx,... ,xe-i, c,x(+x,...,xn)) : xx,...,xe-x,xe+x,-..,xn G X } . But
then |X| divides prj(Y^{F(xi,..., xn) : xi,..., xn E X }) for every j = 1 , . . . , n.
Hence we get Fi Vx. Consequently, there exists a T G 73c» whith T </< Vx > .
This ends the proof of the existence of j G V with {(i,j) : i E V} C E, whenever
V is n-complete. Then we are ready if we can prove the existence of a permutation
p : {1 , . . . , n } { l , . . . , n } having { (p(i) ,p(j)) : i,j E { 1 , . . . , n},p{j) = p{i) +
l (modn)} C E.

Consider the mapping T<°) : X " Xn defined by T^(Xl,. ..,xn) = (xn,xi,
...,xn-x) , • • • ,xn E X) . To complete the proof of our theorem, we will show
r<°> ^ Vx if there exists no such a permutation p.

It is also clear that an n-complete digraph T>, having n vertices, should be
strongly connected. Therefore, all vertices have (non-loop) incoming edges. Thus,
by the minimality of \E\, we get |E \ {(¿, j) : i G V}\ = n - 1. Simultaneously,

46 Pal Domosi, Chrystopher L. Nehaniv

the strongly connectivity of V implies { j } x (V \ { j }) fl B / O (where j G V with
{(i,j) : i G V} C E). On the other hand, if there exists no permutation p having
the above discussed property, then by the strongly connectivity of V, V x { j } C E
and |E \ { (i , j) : i G V}\ = n - 1, we can prove \{j} x (V \ { j }) n E\ > 2, implying
the existence of two distinct vertices i\,i2 G V with { (£ , i r) : r = 1 ,2 , t £ V}
n £ = { (¿ . * i) , 0 ' . t 2) } .

It is enough to prove that in this case J1'0' ^ Vx - Clearly, F\ G V x implies the
existence of functions fk • X -4 A", k = 1,2 with prik(Fi(xi,... ,xn)) = fk{zj)-
Therefore, the cardinality of {(1/1,1/2) : Vk = prik{Fi(xi, xn)),k = 1, 2, xx,...,
i n G X } is not greater than . In a similar way, for every F\,..., Fm £ T>x ,m > 1
there exist functions fk : X X,k = 1,2 such that prik (Fxo.. .oFm(xi,..., xn)) =
fk(prj{P2 0 • • • 0 Fm(xi,.. .,xm))) implying that the cardinality of {(1/1,1/2) : Vk =
Wik{F\ o ... o Fm(x 1, . . ,,xn)),k = 1,2,2i, . . . ,a:n G X} is not greater than |A"|.
On the other side, the cardinality of {(1/1,1/2) : IIk = prik(T^(xi,... ,xn)),k =
1,2, xi,... ,xn G X} is |X|2 yielding to T^ $ VX- The proof is complete. •

Now we prove the following characterization.

Theorem 3.2. Given a positive integer n > 1, V = (V, E) with V = { 1 , . . . , rn},
m > n is an n-complete digraph with minimal number of edges if and only if there
exists a permutation p : { l , . . . , m } h-> {1 , . . . , m } such that E = {(p{i),p(j)) :
P(*),PU) e { l , . . . , n + l } , p (j) =p(i + l modn + l)}U{(p(i'),p(j'))j, where i',j' G
{ 1 , . . . ,n + l},\j'—1'| 1, moreover, \j'—i'\ — l andn + 1 are relatively prime. NB:
The case i' = j' is not excluded. Moreover, if there are more than n + 1 vertices
then all except for n + 1 are isolated.

Proof. To the sufficiency it is enough to prove for any n > 2 the n-completeness
of V = ({1 , . . . , i i + 1 } , { (M + l (modn + 1)) : i G {1, . ..,11 + 1 } } U { (l , r) } , where
rG { l , . . . , n + l } , r ^ 2 , and in addition, r — 2 and n + 1 are relative primes.

Consider the set T>x of all functions of the form Xn+1 —» Xn+l which are
compatible with V. By definition, we obtain {T(°),T f (fc) : k = 1,..., 4, } C V x ,
where T^,T^\k= 1 , . . . , 4 are defined as in Lemma 2.3 (taking m of the lemma
to be r — 2). Identifying X with a finite group and using Lemma 2.3, then we get
Tx,n Vx >, too. On the other hand, we have by definition { F : —>
Xn+1 | F(x1,...,xn+i) = (xn-i-i,xi,..., xr-i, f(xi,xr_n mod „+1)), xr+x,... ,xn),
f : X2 X,i £ { l , . . . , n + 1}, (n , ...,xn+1) £ X n + 1 } £ V x . But then {F :
Xn+\ Xn+1 | F(xi,...,xn+1) = (Xi ,...,Xi-i, f(Xi,Xi+1{modn+1)),Xi+1,. ..,
xn+1),f : X2 X,i £ { 1 , . . . , n + 1}, (n , . . . , ! ^) G UTx,n+i C V x

resulting I\y» C VX- Applying Lemma 2.2, this shows the n-completeness of V.
Using the obvious fact that 71-complete digraph should have a strongly con-

nected n-complete subdigraph, by our minimality conditions, we will consider di-
graphs which have a strongly connected subdigraph and all vertices outside of
this digraph are isolated. Thus, the sufficiency of our statement implies that by
our minimality conditions, we can restrict our investigations to the strongly con-
nected n-complete digraphs having not more than n + 2 edges. (We can take out

Minimal Finite Automata Networks 47

of consideration the isolated vertices.) If we have n + 1 vertices and fewer than
n + 1 edges then our digraph is not strongly connected. On the other hand,
if we consider a strongly connected digraph V with n + 1 vertices and n + 1
edges, i.e., a cycle having n + 1 length, then for every F £< T>x >, there ex-
ist k £ { 1 , . . . ,n + 1}, fi : X X,i = 1,... ,n + 1 with F(x1,... ,xn) =
ifi(xk), hixk+i(mod (n+i)), • • • i / n + i (V M mod n+i)) (xi,---,xn £ X). There-
fore, for any 1 < ii < i2 < ... < im < n + 1, prh:...iim(F(x1,...,xn+1))
= (fii (xii+k(mod n+l))> • • • , fim (xim+k(mod n+1))), {xl, • • • ,xn+l £ X) which ob-
viously shows that this type of digraphs can not be n-complete.

Therefore, to the necessity of our statement, we can consider only strongly
connected digraphs having n + 1 vertices and n + 2 edges.

By the strongly connectivity of V we may suppose that V = (V, E), with \V\ =
n + 1, = n + 2, has a cycle C = (V , E') with k length for some 1 < k < n + 1,
where V' = { « i , . . . ,vk}(C V), E' = mod k)) | i = l,...,k}(C E).

Using the strongly connectivity of T> again, for every V C V there are distinct
(vi,vj), (vs,vt) £ E with vi,vt £ V',vj,vs £ V\V'. Therefore, by an induction we
get the structure of V in the following manner.

If k < n + 1 then V = { v i , . . .,vk,vk+i,. • .,vn+1},E = E' U {{vk+i-Uvk+i) |
i= 1 , . . . , n — fc + 1} U { (i)„+ i , Vi)}, where I £ { 1 , . . . , k} is arbitrarily fixed.

If k = n + 1 then, of course, V — V', and E = E' U {(wn+i, ve)} for some
I £ {2, . . . , n + 1}.

To complete the case k = n + 1, first we study digraphs having the form
V = ({u i , . . . , v „ + i } , { {vi ,v i + 1 { modn+i)) : i £ {1 , . . . ,n + 1} } U where
I £ { 1 , . . . ,n + 1},£ ^ 2, such that I - 2(mod n + 1) and n + 1 are not rel-
ative primes. Then n + 1 has a divisor d > 1 such that for any mapping
F £ V x , F(xi,...,xn+1) = (f1(xill,...,xilh),..., fn+1(xin+11,... ,xin+1Jn+i),
where for every w £ { 1 , . . . , n + l},u,v £ { 1 , . . . ,jw}, iWiU = i№i„(mod d),iWtU =
w — l(mod d) {xi,...,xn £ X). These hold for compatible maps, i.e. if w ^ r
then fw depends only on xw-i, otherwise w = r and fw depends only on and
xi. It is also clear that every composition of such functions preserves this property.
Therefore, for every F £< T>x > and i £ { l , . . . , n + l } , pr i (F) depends on proper
divisor of n + 1 many variables which is fewer than n. Therefore, digraphs having
this like structures are not n-complete.

It is remained to study the case k < n + 1. Then V —
{wi, . . .,vk,vk+i,. • • ,vn+i}, E = E' U {(vk+i-i,vk+i) • i = 1 , . . . ,n - k + 1} U
{(vn+i,v()}, where £ £ { 1 , . . . ,k} is arbitrarily fixed. Of course, if k = 1 or £ = 1
then we have one of the cases discussed previously. Thus we assume k , £ ^ 1.

Given a set X with |X| > 2, let Mx = {F : Xn Xn : \Xn\ - 1 <
|{F(a;i,. . . ,a;n) : (xu ..., xn) £ X™}|(< |X"|)}. Clearly, then for every F : Xn

X n , F £ < M X > •

To complete our proof, now we show that there exists a network V = (V , E')
with \V'\ = n, E' = V' x V'\{(vi, Vi) : u, £ V'} such that for every pair F £<VX >,
H C { 1 , . . . ,n + 1}, \H\ — n, the existence of prH(F) implies prH(F) £< V x >
whenever prH(F) £ Mx (where V x denotes the set of all functions of the form

48 Pal Domosi, Chrystopher L. Nehaniv

F : Xn Xn to be compatible with V).
Observe that for every Fm £ T>x there are f j : X —> X,j = .. ,1 — \ ,i +

l,...,n + l,fe : X2 X with Fm{xi,. ..,xn) = (fi(xk), /2(2:1),. •., ft-\ (x<_2),
ft(xi-i,xn+i),fc+i{xt),...,fn+i(xn))((xi,...,xn+i) £ X n + 1) . Therefore, H =
{ l , . . . , n + l } \ { * } , i £ { 1 , . . . , n + l } \ { £ — l , n + l } and F — Fio.. .oFm,Fi, • • •, Fm £
T>x implies \{prH(F)(xi,...,xn) : (x i , . . . , x „) £ X n } | < |Xn_1|. Hence, in this
cas eprn(F) £ Mx. Thus we may assume i i = { l , . . . , n + l } \ { i } , i £ {I—I, n + 1 } .
In addition, it is clear that by the structure of V, for every T £ T>x, cpi (T) and
cpk+i (T) may really depend only on the same kth variable of F.

Let F = Fi o ... o Fm with Fi,...,Fm £ V x , such that, prH(F) £ Mx exists
for a suitable H = {1,... ,i — l , i + l , . . . , n + l } , i £ {I — 1, n + 1}.

First we suppose m = 1. Consider functions f j : X X, j £ { 1 , . . . , i — 1, i +
l , . . . , n + l},/i> : X 2 X with F(xi,...,xn+1) = (fi(xk), /2 (^1) , . . . , fe~i(xc-2),
ft(xe-i,xn+i),ft+i(xe),...,fn+i(Xn)) (xi, • • • , x n + i) £ Xn+1). Clearly, then i £
{1, k + 1} also holds provided prn(F) £ Mx-

Suppose ¿ = 1. Then in consequence of i £ {I — 1, n+ 1}, we have I = 2. Clearly,
then /2 really may not depend on its first variable, i.e. there exists a g : X ^ X
with / 2 (x i , X 2) = <7(X2) (X I , X 2 £ X). Construct the function T : Xn —> Xn with
T(x i,...,xn) = (g(xn), fi(xi),..., fn+i(xn-i)) ((x i , . . . , x „) £ Xn). Then we get
prn{F) = T. On the other side, T £ Vx is also obvious.

Suppose i = k+1. By i £ {i—1, n + 1 } and £ < k, this implies k = n. On the other
side, then f(really may not depend on its second variable, i.e. there exists a g : X —>
X with fe(xi,x2) = g{x 1) (x i ,x 2 £ X) : Let T : Xn X " with T{xu...,xn) =
(fi{xn), /2 (x i) , . . . ,fe-i(xe-2),g(xe-i)Ji+i(xe),.. . , / „ (x n _ 1) ((x L , . . . , x n)
£ X n) . It is obvious that T £ V x and prH(F) = T.

Now we turn to the case m > 1. Then first we define the mappings F l , . . . , i7"m £
in the following way. For every r = 1 ,...,m, define functions fr : X H-

X,gr : X X with fr(x) = pr1(Fr(x1,... ,xk-i,x,xk+i, •.. ,xn+i)), gr{x) =
prk+i(FT(xi,... ,xk-i,x,xk+i,... , x n + i)) , x i , . . . ,xk-i,x,xk+i, • • •, x n + i £ X .
(Fr £ Vx implies that fr and gT are well-defined.) In addition, let for every
r = 1 , . . . ,m, prj(Fj.(xi,... ,xn+i)) =

/i(xfc) if r = 1 and j = 1,
gi(xk) if r = 1 and j = k + 1,
xk if r > 1 and j £ {l,k + 1},
prj{Fm(x 1 , . . . , x n + i)) if r = m and j £ { 2 , . . . , k, k + 2 , . . . , n + 1},
W j (Fr [fr+1 (Xl), X 2 , . . • , XJFC,

gr+i(xk+i),xk+2,... , x „ + 1)) otherwise

(x i , . . . , x n + i £ X) . By an easy computation we get Fx o ... o Fm = F[o ... o F^.
Define for a fixed c £ X , m = 2, prj(F"(x 1 , . . . , x „))

prj(F^.{xi,. . .,Xi-i,C,Xi,.. . , ! „)) if 1 < j <
j 1, c, . . . , if i<j<n

(x i , . . . , x n + i £ X,r = 1,2).

Minimal Finite Automata Networks 49

Similarly, for a fixed c G X and m = 3, let prj(F"(x..., xn))

prj(F{(xk,x2, • • • ,XF_2 ,
Xn, • . . , X „ _ I , X I))

prj+1(F{(xk,x2,. • .,Xt-2,
Xl))

if i = £ — l,r = 1 and
1 < j <£-l,

prj{F{(xk+1,x 2, . . . ,XN))

iî i = £ — l,r = 1 and
I - 1 < j < n,

i f i = n + l , r = 1 and
1 < 3 < n,

prn+i{F2(xi,.. .,Xi-i,c,Xi,.. .,xn)) if r = 2 and j = 1,
prj{F2{xi,... ,Xi-i,c,Xi,... ,x„)) if r = 2 and 1 < j < i,
pr j+i iF i i x i , . . . ,Xi- i ,c ,Xi , •.. , x „)) if r = 2 and i < j <n,
prj(F^(xi,.. ,,Xi-i,c,Xi,.. .,xn)) if r = 3 and 1 < j <i,
prj+iiFzixx,... ,Xi-i,c,Xi,... ,x„)) if r = 3 and i < j < n,

(x i , . . . , x n + i € X,r = 1,2,3).
In addition, let for a fixed c 6 X and m > 3, prj(F"(xi,..., x „))

pri{F!r{xk,x2, • • -,xt-2,
Xn-> Xl—1, • . • , Xn—i, Si))

prj+i(Fr(xk,x2,.. . ,Xf_2,
7̂1J 1) ' • • 3 — 1 î

pr„+i (F^ (xfc, x 2 , . . . , xf_2,
Zl))

if i =£ - l,r = 1,1 < j < £ - 1,
or i = £ — 1,1 < r <m — 2 and
1 < j < £ ~ 1,

if i = £- l,r = 1,£ - 1 < j < n,
or i = £ — 1,1 < r < m — 2 and
£ - 1 < j < n,

, X 2 , . • - , x n))

prj(Fr(xk+l,x2, .. .,xn))

ifi = £—1,1 <r<m — 2 and
= < 3 = 1>

i f z = n + l , l < r < m — 2 and
J = l,

if i = n + 1, r = 1,1 < J < n,
o r i = n + l , l < r < m — 2 and
1 <j<n,

pr n + 1 (F^ l _ 1 (x 1 , . . . ,Xi-i,c,Xi,... ,xn)) if r = m - 1 and j = 1,
p r j (F l n _ 1 (x i , . . . ,X i - i , c ,X i , . . . ,x„)) if r = m - 1 and 1 < j < i,
Vrj+i{F!m_l{xi,... ,Xi-i,c,Xi,... ,x„)) if r = m - 1 and % < j < n,
prj(F^(x i , . . ,,Xi-i,c,Xi,.. .,xn)) if r = 77i and 1 <j<i,
prj+1(F^(xi,... ,Xi_ i , c ,Xi , . . . ,x n)) if r = m and i < j < n,

{xi,...,xn+i E X,r G {l,...,n})).
We remark that, of course, for every j = 2 , . . . ,m, the value of F " o . . . o

F " j (x i , . . . , x m) (x ! , . . . , x n € X) may depend of the value of (the above fixed)
cG. X. But the value of F " o . . . o F ^ (x i , . . . , x m) (x i , . . . , xn G X) may not depend
on the value of c G X in question, because F# = F " o . . . o F^ by definition.

50 Pal Domosi, Chrystopher L. Nehaniv

(Remember that the existence of prjj(F) (= prfj(Fi o... o F m) , m > 1) is supposed
with H = { 1 , . . . ,i - l,i + 1 , . . . ,n + 1} for a fixed i S {(- l , n + 1}.)

By an elementary computation we can prove F",..., F^ 6 V x- Applying The-
orem 3.1, V may not be n-complete because it is not centralized. Therefore,
there exists a T € Mx with T V x > • But then for every F e < Vx > ,
H — { 1 , . . . ,n + 1}, |i/| = n, pru(F) T. Therefore, V can not be n-complete.

This ends the proof. •

References
[1] Domosi, P. and Kovacs, B., Simulation on finite networks of automata.

Words, Languages and Combinatorics, Ed. by M. Ito (Kyoto, 1990), 131-
138, World Sci. Publishing, River Edge, NJ, 1992.

[2] Domosi, P., Nehaniv, C. L., Some Results and Problems on Finite Homo-
geneous Automata Networks, Proc. Japanese Association of Mathematical
Sciences Annual Meeting on "Languages, Computation and Algebra", Kobe
University, August 27-28, 1997 (in press).

[3] Tchuente, M., Computation on Finite Networks of Automata, In: Automata
Networks, Ed. by C. Choffrut (Argeles-Village, France, 1986), 53-67, Lecture
Notes in Computer Science 316, 1988.

Acta Cybernetica 14 (1999) 51-64.

Trips on Trees

Joost Engelfriet* Hendrik Jan Hoogeboom*
Jan-Pascal Van Best *

Abstract
A "trip" is a triple (g,u,v) where g is, in general, a graph and u and v

are nodes of that graph. The trip is from u to v on the graph g. For the
special case that g is a tree (or even a string) we investigate ways of specifying
and implementing sets of trips. The main result is that a regular set of trips,
specified as a regular tree language, can be implemented by a tree-walking
automaton that uses marbles and one pebble.

1 Introduction
A specification of a function describes the result of the function in terras of its
argument. The goal of the programmer is to implement this specification by a
program that, for a given argument as input, produces the function result as output.
From an elementary point of view, the program can be seen as a device that walks
on a graph g. The nodes of g are the possible contents of the program variables,
and there is an edge from node m to node n if m can be transformed into n by an
atomic programming statement, such as an assignment. The program should find
its way through this graph from the initial state u, determined by the input, to the
final state v, that determines the output.

In this paper we consider a special case of this general situation, viz. the
case that the graph is a finite tree (or even a finite string). In particular, the
specification describes a set of triples of the form (t, u, v) where t is a tree (over a
ranked alphabet) and u and v are nodes of t. Each such triple can be viewed as a
"trip" from u to v on the tree t. Thus, the specification describes a set of trips, i.e.,
a "trip type". To simplify terminology we will also call this a trip. An example of
a trip (type) is: from the left-most leaf to the right-most leaf. This is, of course,
the set of all triples (t ,u,v) where t is an arbitrary tree, u is its left-most leaf, and
v is its right-most leaf.

A set of triples (t, u, v) is said to be regular if it forms a regular tree language
when, as is quite usual, the nodes u and v are indicated by special marks in t.
Thus,'a regular trip can be specified by a finite tree automaton (that recognizes

'Department of Computer Science, Leiden University P.O.Box 9512, 2300 R.A Leiden, The
Netherlands e-mail: engelfri@wi.leidenuniv.nl

51

mailto:engelfri@wi.leidenuniv.nl

52 Joost Engelfriet, Hendrik Jan Hoogeboorn. Jan-Pascal Van Best

the trip) or a regular tree grammar (that generates the trip) or a regular expression
(that describes the trip). Moreover, as is well known from [Don, ThaWri] (and from
[Biic, Elg] for strings), it can be specified by a formula 4>(u, v) of monadic second-
order logic (on trees), with two free variables u and v. Thus, monadic second-order
logic is the highest-level specification language for regular trips.

Our main interest is the implementation of regular trip specifications. Given
such a specification of trips (t ,u,v) , we wish to know how we can walk from u to
v on t. In other words, we are looking for a general type of automaton that, when
started at node u of t can walk to node v along the edges of the tree. Thus, for
the trip mentioned above, the automaton should be able to walk to the right-most
leaf, whenever it is "dropped" at the left-most leaf (and go into a rejecting state
when dropped at any other node).

It is known from [Bio, BloEng2] that, in general, this cannot be done by a fi-
nite state tree-walking automaton (as used, in the form of 'routing expressions', in
[KlaSch] to specify data types consisting of trees with additional pointers). The
solution in [Bio, BloEng2, BloEngl] is to equip the finite state tree-walking au-
tomaton with more powerful tests; in fact, it is allowed to test any property of its
current node that can be expressed by a formula (with one free variable) of monadic
second-order logic. This is of course not a complete implementation because the
tests are still specified in logic. Thus, the question remained how these tests can
be implemented. Here we show that regular trips can be implemented by a finite
state tree-walking automaton that uses "marbles" and one pebble to find its way
through the tree (as Tom Thumb through the forest). The precise way of using
marbles and pebble will be explained in Section 4. In Section 3 we start with the
easier case of regular trips on strings, and show how to implement them by 2-way
finite state automata with one pebble (and no marbles). Section 2 contains the
formal definition of a trip.

The results of this paper are part of the Master's Thesis [vBest] of the last
author, where more detailed definitions and proofs can be found.

2 Trips and Sites
It should be clear that the reader is assumed to be familiar with formal language
theory, and in particular with tree language theory. Thus, the notions of regular tree
language and (bottom-up) finite tree automaton are assumed to be good friends of
the reader. This can be accomplished by reading [GecStel] and [GecSte2]. Shame
on the reader if he/she did not do so yet!

As explained in the introduction, we are interested in trips on trees. These are
now formally defined. Let E be a ranked alphabet.

Definition 2.1 A trip is a set of triples (t,u,v) where t is a tree over and u
and v are nodes of t.

Trips go from sites to sites (or from sights to sights?). This is an auxiliary
notion that we will need too.

Trips on Trees 53

Definition 2.2 A site is a set of pairs (t,u) where t is a tree over £ and u is a
node of t.

To define regular trips (and sites) we first have to show how nodes of trees
can be marked. As usual, to code (t,u,v), two booleans are added to the labels
of t, one for u and one for v. We define the "marked" ranked alphabet m(£) =
{((7,61,62) I o 6 £,6 i ,6 2 G {0 ,1 } } , where (a,bi,b2) has the same rank as cr.
We identify (a, 0,0) with <x; thus, for each o £ £ , m(£) contains the symbols a,
(cr, 1,0), (cr,0,l), and (or, 1,1). Let t be a tree over E and let u and v be nodes
of t. We define mark(i,u, v) to be the tree over m(£) , with the same nodes and
edges as t but with different node labels: if node x has label o in t, then it has
label (a, x = u,x = v) in mark(i, u, v). Thus, in mark(i, u, v), either u ^ v and u
is marked by (1,0) and v by (0,1), or u = v and it is marked by (1,1); the other
nodes are not marked. This defines the coding of trips as tree languages. To code
sites as tree languages, we define mark(f,ix) = mark(£,u,w). Thus, for technical
convenience, a site (i,u) gets the same encoding as the "round-trip" (t,u,u). As
usual, for a trip T, we define mark(T) = {mark(£,u,i;) | (t,u,v) e T } , and for a
site S, mark(S) = {mark(i,u) | (t ,u) 6 S}.

Definition 2.3 A trip T is regular ¿/mark(T) is a regular tree language. A site
S is regular if mark(S) is a regular tree language.

• As observed in the Introduction, it is well known from the classical results of
[Don, ThaWri] that a trip T is regular iff it can be defined by a formula <fi(x,y) of
monadic second-order logic, in the sense that T is the set of all (i, u, v) such that
11= <j>(u,v). And similarly for sites and formulas <p(x) with one free variable.

We will be interested in particular in functional trips, i.e., trips in which the
destination is determined by the place of departure. We will show that functional
trips can be implemented by deterministic tree-walking automata. It is easy to see
that functionality is decidable for regular trips.

Definition 2.4 A trip T is functional if there are no triples (t,u,vi), (t,u,v2) S T
with Vi ^ v2.

Finally, all the above definitions also apply to the case of strings over an (ordi-
nary) alphabet E, with the appropriate changes. Thus, a trip on strings is a set of
triples (w,u,v) with w £ £* and u,v are positions of w (i.e., 1 < u,v < |u>|, where
|w| is the length of w). Note that w cannot be the empty string.

3 Trips on Strings
To find our way on strings we will use 2-way pebble automata. A 2-way pebble
automaton is an ordinary 2-way (nondeterministic) finite state automaton with one
pebble. The input string is surrounded by endmarkers on the input tape, and at
each moment the automaton is at a certain cell of the tape, in a certain state. It

54 Joost Engelfriet, Hendrik Jan Hoogeboorn. Jan-Pascal Van Best

can test the input symbol at the current cell, and move one cell to the left or right,
changing state. Additionally, it can drop the pebble on the current cell, it can test
whether the pebble is at the current cell, and it can lift the pebble from the current
cell (when it lies there, of course). Initially the pebble is not on the input tape,
and it is also required that at the end of a computation the pebble is not on the
input tape. A 2-way pebble automaton A recognizes a language L(A) in the usual
way, but we want to use it to compute a trip, as follows. The trip T(A) computed
by A consists of all triples (w, u, v) such that when A is started at position w o f w
on the input tape, in its initial state, it can walk to position v, enter a final state,
and halt. In other words, if you want to make trip T(A), catch automaton A\

It is well known that 2-way finite automata (without pebble) recognize the reg-
ular languages [RabSco, She]. In fact, a 2-way finite automaton A can be simulated
by an ordinary (1-way) finite automaton M that, at each cell, computes the transi-
tion table of A, i.e., the finite set of pairs (q, q') such that when A is started in state
q at this cell, it can make an excursion to the left, and return to the cell in state
q'. The same technique of transition tables can be used to show that also 2-way
pebble automata recognize the regular languages ([BluHew]; cf. [Bir, GloHar] and
Exercise 3.19 of [HopUll]): a 2-way pebble automaton A can be simulated by a
2-way automaton A' (without pebble) that at each cell computes two transition
tables of the automaton A (without the instructions that manipulate the pebble),
one for excursions to the left and one for excursions to the right. Instead of drop-
ping a pebble on a cell, making excursions to the left and right, and then lifting
the pebble again, A' can just stay at the cell and compute A's state change from
the two transition tables.

From this it is easy to see that every trip computed by a 2-way pebble automaton
is regular.

Lemma 3.1 For every 2-way pebble automaton A, T(A) is a regular trip.

Proof. We have to show that mark(T(^4)) = { m a r k ^ u , ? ;) | (w,u,v) € T(A)} is
a regular language. In fact, there is a 2-way pebble automaton A' that recognizes
mark(T(A)), i.e., L(A') = mark(T(A)). The automaton A' first walks to u (which
is marked by (1,0) or (1,1)), then simulates a successful walk of A (ignoring marks),
and finally checks that it is at v (which is marked by (0,1) or (1,1)). •

Determinism of 2-way pebble automata is defined in the usual way. It should
be clear that the trip T(A) computed by a deterministic 2-way pebble automaton
A is functional (cf. Definition 2.4). We now prove that every regular trip can
be computed by a 2-way pebble automaton, and in particular by a deterministic
automaton if the trip is functional.

Lemma 3.2 For every regular trip T on strings there is a 2-way pebble automaton
A with T(A) = T. Moreover, ifT is functional, then A is deterministic.

Proof. Let M be an ordinary, deterministic finite automaton that recognizes
mark(T). First we describe a nondeterministic automaton A that computes T.
The automaton A is started at position u of string w, and it has to walk to position

Trips on Trees 55

v, with (w,u,v) £ T. To do this, A first guesses whether v is to the left or to
the right of u, or v = u. Suppose that it guesses v to be to the right of u. A
drops the pebble at the start position it, walks to the head of the input tape, and
then simulates M walking to the right, until it detects the pebble. It picks up the
pebble and continues the simulation of M, treating the symbol a at position u as
(a, 1,0). Then, nondeterministically, A drops the pebble at some position v, treats
the symbol a at position v as (a, 0,1), and continues the simulation of M until it
reaches the end of the input tape. If M is in a final state, A backs up until it
finds the pebble at position v, lifts the pebble, and goes into a final state. In the
case that v is to the left of it, A simulates a deterministic finite automaton that
recognizes the mirror image of mark(T), walking from the end to the beginning of
the input tape. The case that v = u is obvious.

Let us now assume that T is functional, and describe a deterministic automa-
ton A. It is a variation of the nondeterministic automaton A above. First we
argue that A can find out deterministically whether v is to the left or right of
u, or at u. Since mark(T) is a regular language, it should be clear that the
language {mark(w, u, v) | (w,u,v) € T and v is to the right of u} is regular too.
Hence, applying the string homomorphism that changes (a, 1,0) into (a, 1,1), and
(<r, 0,1) into <7, to this language, we obtain that the site S = {(w,u) | (w,u,v) e
T for some v to the right of u} is regular. Thus, A can test whether or not v is
to the right of u by testing whether or not (w,u) is in site S, and it can do that
by dropping its pebble at u and simulating a deterministic finite automaton that
recognizes mark(S), treating the symbol cr at position u as (cr, 1,1). Obviously, A
can test in a similar way whether or not v is to the left of u, or at u. Suppose
now that v is to the right of u. A then behaves as in the nondeterministic case,
simulating M, until it picks up the pebble from u. After that, instead of guessing
v nondeterministically, A just tries out all positions v to the right of u, one by
one from left to right, moving its pebble from one v to the next. Note that, when
walking from v to the end of the tape, A should not only keep track of the current
state of M but also remember the state in which M arrived in v; this allows A to
continue the simulation of M with the next v. •

Altogether we have proved that the 2-way pebble automaton is the implemen-
tation model of regular trips on strings.

Theorem 3.3 A trip on strings is regular iff it can be computed by a 2-way pebble
automaton. A functional trip on strings is regular iff it can be computed by a
deterministic 2-way pebble automaton.

Since a trip is regular iff it can be expressed in monadic second-order logic, this
theorem can be viewed as the generalization from languages to trips of the classical
result of Biichi and Elgot [Biic, Elg].

It is shown in [Bio, BloEng2] (for the more general case of trees) that 2-way
finite automata cannot compute all regular trips. Thus, the pebble is really needed.
We strengthen this result in Theorem 4.9. On the other hand, it is well known that
two pebbles are more powerful than one; a 2-way automaton with two pebbles can

56 Joost Engelfriet, Hendrik Jan Hoogeboorn. Jan-Pascal Van Best

easily recognize, e.g., the language {wcw \ w € {0 ,6}*}, and thus also compute
non-regular trips.

4 Tree-Walking Automata
In the case of strings we have used 2-way automata to walk from one position of
a string to another. For trees we need an automaton that walks from one node of
a tree to another. Such tree-walking automata were introduced in [AhoUll], and
were studied, e.g., in [ERS, KamSlu]. A (nondeterministic) finite state tree-walking
automaton (or tw automaton, for short) is similar to a 2-way automaton on strings.
At each moment the tw automaton is at a certain node of the input tree, in a
certain state. It can test the label of the current node, and move to the parent or
to one of the children of the node, changing state. A child can be specified by a
number between 1 and the rank of the current node label. The automaton can also
test whether the current node is the root of the input tree, and if not, what is its
"child number", i.e., which child it is of its parent (specified by a number between
1 and the rank of the label of its parent). The language L(A) recognized by a
tree-walking automaton A consists of all trees on which A has a computation that
starts at the root of the input tree in its initial state, and ends in a final state. As
in the case of strings, it can be shown, using the technique of transition tables (for
excursions in a subtree), that every tree-walking automaton can be simulated by
an ordinary (bottom-up) finite tree automaton. However, as opposed to the case
of strings, it is not known whether every finite tree automaton can be simulated by
a tree-walking automaton!

Conjecture 4.1 The class of tree languages recognized by tree-walking automata
is a proper subclass of the regular tree languages.

It should be mentioned here that a statement similar to the one above is proved
in [KamSlu]. However, the tree-walking automata of [KamSlu] are weaker than
ours: they cannot test the child number of a node; and for this reason, as shown
in [KamSlu], they cannot even make a depth-first left-to-right search of the input
tree.

Clearly, a type of automaton that can compute all regular trips on trees, should
be able to recognize the regular tree languages: for every regular tree language L,
{ (t ,u ,u) I í £ L,u is the root of t} is a regular trip, and obviously, an automaton
that computes this trip also recognizes L. Thus we are led to an automaton that is
known to recognize the regular tree languages: the tree-walking marble automaton.

A tree-walking marble automaton is a tree-walking automaton that, additionally,
can use "marbles" to drop on the nodes of the input tree. The difference between
a pebble and a marble is that the automaton has an unlimited supply of marbles
(i.e., a marbles bag of infinite size!). Moreover, we want our automaton to have
marbles of different colours (which is the reason to call them marbles). Thus, each
automaton has a fixed (but arbitrary) number of marble colours, and it has an

Trips on Trees 57

unlimited supply of marbles of each colour. During its computation, the automaton
can drop a marble of a given colour on the current node (provided there is not yet
one of that colour), it can test whether a marble of a given colour is at the current
node, and it can lift a marble of a given colour from the current node (provided
there is one there). Note that there cannot be two marbles of the same colour on
a node. There is, however, an important additional restriction on the behaviour
of the tw marble automaton: if there are marbles on the current node, then the
automaton is not allowed to move up to the parent node. In other words, dropping
a marble on a node u closes off the context of u, in the sense that the automaton
can only visit u and its descendants, but has to lift all marbles from u to visit the
other nodes. Since the automaton starts its computation without marbles on the
input tree, this restriction implies that at each moment of time all marbles lie on
the path from the current node to the root.

It is shown in [KamSlu] (cf. also [ERS]) that the tw marble automaton rec-
ognizes exactly the regular tree languages. However, the model of tw marble au-
tomaton is described in a different way in these papers. Instead of marbles, the
tree-walking automaton has a pushdown, which has the same length as the path
from the current node to the root. The pushdown is synchronized with the move-
ments of the automaton on the tree: a symbol is pushed on the pushdown when
the automaton moves to a child, and the top symbol is popped from the pushdown
when the automaton moves to the parent. It should be clear that these two types
of automata recognize the same tree languages. Each symbol on the pushdown can
be simulated by a marble on the corresponding node, taking all pushdown symbols
as marble colours. Vice versa, the marbles on the path from the current node to
the root can be simulated by a pushdown containing in each cell the colours of the
marbles that are on the corresponding node, taking all sets of marble colours as
pushdown symbols. The only reason that we have turned the tree-walking push-
down automaton into a tree-walking marble automaton is that the pushdown au-
tomaton is not suitable for the computation of trips: when started at a node of the
input tree, what would be the content of its pushdown?

The result of [KamSlu] is stated next, together with a sketch of the proof.

Proposition 4.2 Both the nondeterministic and the deterministic tw marble au-
tomata recognize the regular tree languages.

Proof. The fact that the language recognized by a nondeterministic tw marble
automaton is regular can be proved in the usual way using transition tables, and
we will not go into that (cf. the discussion before Lemma 3.1).

The other way around we sketch how a deterministic tw marble automaton A
can simulate a (deterministic, bottom-up) finite tree automaton M. Let us assume
for convenience that the input trees are binary, i.e., that the rank of an input symbol
is either 2 or 0. A traverses the input tree t in a depth-first left-to-right fashion, and
uses the states of M as marble colours. At each node u of t it determines the state
in which M arrives at u (in its own state), as follows. If u is a leaf, it determines
M's state from the transition function of M. Otherwise, suppose it has determined

58 Joost Engelfriet, Hendrik Jan Hoogeboorn. Jan-Pascal Van Best

the state qi at the first child of u. It then drops a marble of colour q\ on u, walks
down to the second child of u, and determines the state q2 at that child. Moving
up to u again, it picks up the marble qi, and determines the state at u from qx and
<72, using M's transition function.

For arbitrary input trees, A uses as marble colours all pairs (i,q), indicating
that q is the state of M at the z-th child of u. •

As in the case of strings, to obtain an implementation model for the regular
trips an additional pebble is needed. This finally leads us to the main automaton
model of this paper: the tree-walking marble/pebble automaton. A tree-walking
marble/pebble automaton is a tw marble automaton that uses one additional pebble.
The pebble can be dropped on a node, detected at a node, and lifted from a node, as
usual. Initially and finally, there are no marbles and no pebble on the input tree.
However, we need an additional restriction on the behaviour of this automaton,
because otherwise non-regular tree languages could be recognized (and hence non-
regular trips computed).

Example 4.3 Consider the non-regular monadic tree language {ancbne \ n > 0} ,
with a, b, c of rank 1 and e of rank 0. This language can be recognized as follows,
using the pebble and just one marble: put the marble at the root, and the pebble at
the lowest b; then move the marble one node down, and the pebble one node up;
repeat this last step, until both the marble and the pebble are at the c-labeled node.

The additional restriction on the tw marble/pebble automaton is: the pebble
can only be dropped or lifted when there are no marbles on the tree. Note that the
automaton is able to keep track of this condition by giving a special colour to the
first marble it drops on the tree. At the end of this section we will discuss a less
restrictive definition.

The trip T(A) computed by a tw marble/pebble automaton A is defined just as
in the case of 2-way pebble automata on strings: T(A) consists of all triples (t, u, v)
such that when A is started at node u of input tree t, in its initial state, it can
walk to node v, enter a final state, and halt. So, for this trip you have to catch
marble/pebble automaton A\

We first want to prove that every trip computed by a tw marble/pebble au-
tomaton is regular. As in the case of strings (cf. Lemma 3.1), this easily follows
from the fact that the tree languages recognized by tw marble/pebble automata
are regular, i.e., that the above restriction has been effective.

We need some terminology on finite tree automata. Let M be a (deterministic,
bottom-up) finite tree automaton, and let u be a node of an input tree t. By
stat&M,t{u) we denote the state in which M arrives at node u. By SUCCAÍ,Í(I¿) we
denote the set of states q of M such that M arrives in a final state at the root of
t when it is assumed to be in state q at node u (and thus skips the processing of
the subtree with root u); such a state q is said to be "successful" at u. Note that,
for every node u,t 6 L(M) iff stateM,t(u) e SUCCAÍ,Í(U). Note also that, for a child
v of u, SUCCAÍ,Í(I>) can be determined, using M's transition function (for the label
of u), from succM,t(u) and the states stateM,t(w') for all children v' ^ v of u: to

Trips on Trees 59

determine whether state p is successful at v, one applies M ' s transition function to
p and all stateM,i(^')> a n d checks whether the resulting state q is successful at u.

Theorem 4.4 The tw marble/pebble automata recognize the regular tree languages.

Proof. By Proposition 4.2 it suffices to show that every tw marble/pebble au-
tomaton A can be simulated by a tw marble automaton A'. Consider a part of a
computation of A which starts by dropping the pebble on node u of t, in state q,
and ends by lifting it again from u, in state q'. Note that at both moments there
are no marbles on t. When simulating A, A' can of course not put a pebble on u
(and a marble would not help because it closes off the context of u). Instead it
should, somehow, test whether A can make one of the excursions described above,
where q is the current state of A and q' is any state of A In other words, it should
be able to test whether (t, u) is in the site that consists of all pairs (t , u) such
that A can make the excursion described above. We first observe that the site Sq^
is regular. In fact, it is quite clear that mark(5 f / i 9 ') can be recognized by a tw
marble automaton (and hence is regular by Proposition 4.2): the automaton first
walks to node u which is marked by (1,1), and then simulates A, starting in state
q, treating the mark (1,1) as the pebble of A, and ending in state q' at u.

Thus, it now suffices to show that a tw marble automaton A' can always be
modified in such a way that it can, at each moment, test whether its current node
belongs to a given site S. Moreover, the test should be done in a deterministic
way because, in the simulation above, several of these sites have to be tested se-
quentially, viz. Sqiq' for all q'. Let M be a bottom-up finite tree automaton that
recognizes mark(5). Note that the input alphabet of M is m (£) where £ is the
input alphabet of A!. Clearly, at node u of t, A' can always compute stateM,t(u),
using the procedure described in the proof of Proposition 4.2 (first dropping a mar-
ble with a special colour on u, to recognize it after traversing the subtree). Let u
have label o of rank k. To determine whether (t ,u) is in S, A' visits the children
U i , . . . ,Uk of u, computes stateM,t(u») for every 1 < i < k, and returns to u. It
then computes q = stateM,mark(t,u)(M)> using M's transition function for the sym-
bol (CT, 1,1). Finally, it checks whether q G succM,L{U). Thus, it remains to explain
how the latter test can be implemented. During its computation, A keeps track of
succM,t(u) by using additional marbles that have the sets of states of M as colours;
in particular, there is a marble with colour succM,t(u') on every node u' on the
path from the current node to the root of t. When A moves from a node u to one
of its children v, it can compute succM,t(v) (i-e., the colour of the new marble) as
described just before this theorem, from succM,t(u) (the colour of the marble at
u) and the states of M at the other children v' ^ v of u (which it can compute
as shown above). When A moves up to the parent of u, it of course first lifts the
"succ-marble" from u. Initially A puts a succ-marble with colour F on the root of
t, where F is the set of final states of M. •

It is now easy to prove the analogue of Lemma 3.1 for trees.

Lemma 4.5 For every tw marble/pebble automaton A, T(A) is a regular trip.

60 Joost Engelfriet, Hendrik Jan Hoogeboorn. Jan-Pascal Van Best

Proof. By the previous theorem it suffices to show that there is a tw marble/pebble
automaton A' that recognizes mark(T(A)). Just as in the proof of Lemma 3.1, A'
walks to u, simulates A, and checks that it is at v. •

Next we prove that regular trips can be computed by tw marble/pebble au-
tomata.

Lemma 4.6 For every regular trip T on trees there is a tw marble/pebble automa-
ton A with T(A) = T. Moreover, ifT is functional, then A is deterministic.

Proof. It is shown in [Bio, BloEngl, BloEng2] (using terminology from monadic
second-order logic) that regular trips can be computed by tree-walking automata
with regular site tests, i.e., tw automata that, additionally, have the ability to
test whether the current node belongs to a given regular site (for a fixed, but
arbitrary number of regular sites). Clearly, a tw marble/pebble automaton can
test whether (t,u) is in site S by dropping its pebble on u, checking (according to
Proposition 4.2) whether mark(i,u) is in the regular tree language mark(S), with
the pebble treated as the mark (1,1), returning to u, and lifting the pebble. We
note that the tw automata with regular site tests are called tw automata with MSO
tests in [BloEngl, BloEng2].

For the reader who is not familiar with monadic second-order logic, we give a
second, direct proof of this lemma (essentially the same as the one in Theorem 8
of [BloEngl] and Theorem 13 of [BloEng2]). Let M be a bottom-up finite tree
automaton that recognizes mark(T). As in the proof of Lemma 3.2 we first describe
a nondeterministic automaton A that computes T. The automaton A is started at
node u of tree t, and it has to walk to node v, with (t ,u ,v) e T. Note that we
cannot use the same method as in the proof of Lemma 3.2; in fact, we cannot pick
up the pebble from u during the simulation of M (during a depth-first traversal
of the tree), because there will in general be marbles on the tree at that moment.
Thus, a more clever simulation is needed. A walks straight from u to v, along the
shortest path in t. At each node on that path it uses its pebble and marbles to
compute the relevant states of M. First, A guesses whether v is a descendant of
u, an ancestor of u, or neither of the two. Suppose that v is neither a descendant
nor an ancestor of u. Then A walks up to the least common ancestor z of u and v
(which it has to guess) and walks down to v, guessing its way down. On the way up
it computes state,M,v (x) for every node x between u and z, where t' = mark(i, u, v),
and on the way down it computes succM,t'{y) for every node y between z and v\
finally it computes stateM,t'(v) and checks whether stat&m,v(v) £ succm,v(v). Let
us see in more detail how A can do this. It starts by dropping the pebble on u
and computing stateM,V (U) , using the procedure in the proof of Proposition 4.2
and treating the label a of u as (a, 1,0). It then lifts the pebble from u, moves one
node up, say to x, drops its pebble on x, computes stateM,c(«') for all children
u' of x different from u (and note that this equals stateM,t(M'))> and applies the
state transition function of M to obtain state« ¿< (x). This step is repeated until
A arrives at a child, say xo, of the least common ancestor z. A then computes
succM.i' (z) (which equals succM,i(z)) by dropping its pebble on z and, for every

Trips on Trees 61

state q of M, simulating M on t under the assumption that M is in state q at
node z (and, of course, lifting the pebble from 2 after doing this). Let y0 be the
child of z on the path from z to v. Now A computes states,t(w) for all children
w of z different from xo and yo, and uses these states, together with stateM.t'(®o)
and succM,i(-z), to compute succM,t'(yo) as indicated just before Theorem 4.4. Let
y be the child of yo on the path from yo to v. A then computes states,t(y') for
all children xj of yo different from y, and uses them, together with succ^.t' (2/0),
to compute succM,t'(v)- This step is now repeated until A arrives in v. Finally
A computes s t a t t r e a t i n g the label er of v as (a, 0,1), and checks whether
that state is in succM,t'(v)-

The cases that v is a descendant or ancestor of u are similar (A just walks down,
or just walks up, respectively). They are therefore left to the reader.

It remains to show that A can be made deterministic if T is a functional trip
(cf. Theorem 9 of [BloEngl] and Theorem 14 of [BloEng2]). Note that since
the procedure in the proof of Proposition 4.2 is deterministic, the automaton A
only makes nondeterministic moves when there are no marbles or pebble on the
tree. Thus, it suffices to show that for such an automaton a deterministic tw
marble/pebble automaton A' can be constructed that computes the same trip.
Suppose that A is at node w of t in state q, and that A has several possible moves
m i , . . . ,mt , of which, of course, at most one is successful, i.e., leads to a final
state of A (at the destination v). We claim that A' can find out, for each of these
moves m, whether m is successful or not. Consider the site S,hm that consists of
all (t ,w) such that A has a successful computation on t, starting at node w in
state q with move m. Since there is a tw marble/pebble automaton that walks to
w and simulates A, starting with move m, it follows from Theorem 4.4 that Sgt7n

is a regular site. Thus, as explained in the first paragraph of this proof, A' can
test whether (t,w) is in S9 ,m , using the (deterministic) procedure in the proof of
Proposition 4.2. •

Taking the last two lemmas together we can state the main result of this paper:
the tw marble/pebble automaton is the implementation model of regular trips on
trees.

Theorem 4.7 A trip on trees is regular iff it can be computed by a tw marble/pebble
automaton. A functional trip on trees is regular iff it can be computed by a deter-
ministic tw marble/pebble automaton.

As in the case of strings, since a trip is regular iff it can be expressed in monadic
second-order logic, this theorem can be viewed as the generalization of the classical
result of Doner and Thatcher/Wright [Don, ThaWri] from tree languages to trips
on trees.

As mentioned in the definition of tw marble/pebble automaton, there is a less
severe restriction on the behaviour of the automaton that still serves our purposes.
To understand this new restriction, we first note that it can always be assumed
that there is at most one marble on each node (just take the sets of marble colours
as new colours arid simulate a set of marbles by one marble). It is easy to see

62 Joost Engelfriet, Hendrik Jan Hoogeboorn. Jan-Pascal Van Best

that, under this assumption, the life times of the marbles are nested, i.e., included
in one another or disjoint from one- another; this is due to the fact that a marble
closes off the context. Now, in our new definition of tw marble/pebble automaton,
rather than requiring that the pebble can only be dropped or lifted when there
are no marbles on the tree, we require that the life times of the marbles and the
pebble are nested (see [GloHar] for a similar nesting requirement). Intuitively it
means that when the pebble is lifted, the "marble configuration" on the tree has
to be exactly the same as when it was dropped (and the involved marbles have
not been touched in the mean time). It is shown in Theorem 20 of [vBest] that
Theorem 4.4 still holds for these more powerful tw marble/pebble automata, and
so does Theorem 4.7. We note that, under this nesting restriction, the restriction
that marbles close off the context cannot be dropped.

Example 4.8 The non-regular monadic tree language {ancbne | ri > 0} of Exam-
ple 4-3 can be recognized as follows, using marbles only, with nested life times. Put
a red marble at the root, and a blue marble at the lowest b; then repeat the following
step: put a red marble just below the lowest red marble, and put a blue marble just
above the highest blue marble. Do this until both the red and blue marble are neig-
bours of the c-labeled node. Then remove all marbles in the reverse order as they
were laid down (i.e., repeatedly the highest blue marble and the lowest red marble).

•
We end this paper by showing that Theorem 4.7 does not hold for tw marble

automata, i.e., the pebble is really necessary. Note that it is an open problem
whether the marbles are necessary, cf. the Conjecture in the beginning of this
section. The proof of the pebble necessity is similar to the one in [Bio, BloEng2]
(see Theorem 15 of [BloEng2]).

Theorem 4.9 There is a (functional) regular trip on trees that cannot be computed
by any (nondeterministic) tw marble automaton.

Proof. Consider the (monadic) ranked alphabet £ with symbols b and r of rank 1,
standing for "black" and "red", respectively, and one symbol e of rank 0. Let T
be the trip consisting of all (t ,u,v) such that either t has a red root and v is the
root, or t has a black root and v is the child of u (viewing the root as the child of
the leaf). Thus, either all trips are to the red root, or everybody visits its child.
It should be clear that T is regular. Let us now assume that there is a tw marble
automaton A that computes T, and derive a contradiction. The idea is that when
A starts at any node u of a tree with a black root, it first has to visit the root to be
sure that it is not red. Since there is no way for A to remember its starting point
u, A cannot anymore find the child of u. Note that when A is at the root, there
are no marbles on the tree, except on the root itself.

Formally, consider the tree t = bne with n > s -2°, where s is the number of
states of A and c the number of marble colours. Let t' = rbn~le. Thus, t' is t
with its root coloured red. Consider, for every node u of t, the successful walk of A
from u to its child. Clearly, during this computation A must visit the root, because

Trips on Trees 63

otherwise A could make the same computation on t1. As observed above, when A
is at the root, all marbles are at the root. Let, at that moment, qu be the state of A
and let Mu be the set of marble(colour)s on the root. Thus, qu and Mu determine
the configuration of A. Hence, by the choice of n, there must be two different nodes
u and u' such that, in the corresponding computations, qu = qut and Mu = Mu>
and hence A visits the root in the same configuration in both computations. This
implies, however, that A can walk from u to the child of u', a contradiction. •

One may argue that the tw marble/pebble automaton is not a very natural type
of automaton, with its rather artificial restrictions on the use of marbles and pebble.
The reader is invited to search for a more natural automaton; bread crumbs might
be an alternative to marbles and pebbles.

References
[AhoUll] A.V. Aho and J.D. Ullman; Translations on a context free grammar,

Inform, and Control 19 (1971), 439-475

[Bir] J.-C. Birget; Two-way automata and length-preserving homomor-
phisms, Math. Systems Theory 29 (1996), 191-226

[Bio] R. Bloem; Attribute Grammars and Monadic Second Order Logic, Mas-
ter's Thesis, Leiden University, June 1996
http:/ /www.wi.LeidenUniv.nl/MScThesis/IR96-15.html

[BloEngl] R. Bloem, J. Engelfriet; Monadic second order logic and node rela-
tions on graphs and trees, in Structures in Logic and Computer Science
(J.Mycielski, G.Rozenberg, A.Salomaa, eds.), Lecture Notes in Com-
puter Science 1261, Springer-Verlag, 1997, pp.144-161

[BloEng2] R. Bloem, J. Engelfriet; Characterization of properties and relations
defined in monadic second order logic on the nodes of trees, Tech. Re-
port 97-03, Leiden University, August 1997
http:/ /www.wi.LeidenUniv.nl/TechRep/1997/tr97-03.html

[BluHew] M. Blum and C. Hewitt; Automata on a 2-dimensional tape, in Proc.
8th IEEE Symp. on Switching and Automata Theory, pp.155-160,1967.

[Biic] J. Biichi; Weak second-order arithmetic and finite automata, Z. Math.
Logik Grundlag. Math. 6 (1960), 66-92

[Don] J. Doner; Tree acceptors and some of their applications, J. of Comp.
Syst. Sci. 4 (1970), 406-451

[Elg] C. C. Elgot; Decision problems of finite automata and related arith-
metics, Trans. Amer. Math. Soc. 98 (1961), 21-51

[ERS] J. Engelfriet, G. Rozenberg, G. Slutzki; Tree transducers, L systems,
and two-way machines, J. of Comp. Syst. Sci. 20 (1980), 150-202

http://www.wi.LeidenUniv.nl/MScThesis/IR96-15.html
http://www.wi.LeidenUniv.nl/TechRep/1997/tr97-03.html

64

[GécStel]

[GécSte2]

[GloHar]

[HopUll]

[KamSlu]

[KlaSch]

[RabSco]

[She]

[ThaWri]

[vBest]

Joost Engelfriet, Hendrik Jan Hoogeboorn. Jan-Pascal Van Best

F. Gécseg, M. Steinby; Tree automata, Akadémiai Kiadó. Budapest.
1984

F. Gécseg, M. Steinby; Tree Languages, in G. Rozenberg and A. Sa-
lomaa, editors, Handbook of Formal Languages, Volume 3: Beyond
Words, Chapter 1, Springer-Verlag, 1997

N. Globerman, D. Harel; Complexity results for two-way and multi-
pebble automata and their logics, Theor. Comput. Sci. 169 (1996), 161-
184

J.E. Hopcroft, J.D.Ullman; Introduction to Automata Theory, Lan-
guages and Computation, Addison-Wesley, Reading, Massachusetts,
1979.

T. Kamimura, G. Slutzki; Parallel and two-way automata on directed
ordered acyclic graphs, Inf. and Control 49 (1981), 10-51

N. Klarlund, M. L. Schwartzbach; Graph Types, in Proc. of the 20th
Conference on Principles of Programming Languages, 1993, 196-205

M.O. Rabin, D. Scott; Finite automata and their decision problems,
IBM J. Res. Devel. 3 (1959), 115-125

J.C. Shepherdson; The reduction of two-way automata to one-way au-
tomata, IBM J. Res. Devel. 3 (1959), 198-200

J. W. Thatcher, J. B. Wright; Generalized finite automata theory with
an application to a decision problem of second-order logic, Math. Sys-
tems Theory 2 (1968), 57-81

J.P. van Best; Tree-Walking Automata and Monadic Second Order
Logic, Master's Thesis, Leiden University, July 1998
http://www.wi.LeidenUniv.nl/MScThesis/IR98-06.html

http://www.wi.LeidenUniv.nl/MScThesis/IR98-06.html

Acta Cybernetica 14 (1999) 105-115.

Axiomatizing iteration categories

Z. Ésik**

Dedicated to Ferenc Gécseg on his 60th birthday

Abstract

We associate an identity with every finite automaton and show that a
set of equations consiting of some classical identities as well as the equations
associated with a subclass of finite automata is complete for iteration theories
if and only if every finite simple group divides the semigroup of an automaton
in the given subclass. By taking a special subclass with this property, we
arrive at the final result of the paper.

1 Introduction

It has been shown in [3] that the axioms of iteration theories capture the equational
properties of the fixed point operation in computer science. For a recent overwiew
see also [5]. The first axiomatization of iteration theories was given in [8]. This
system was simplified in [9] by proving that some classical identities in conjunction
with an identity associated with each finite (simple) group is complete. This result
confirms a conjecture in [6] in a general setting. In the present paper we give a
further simplification of the iteration theory axioms. We associate an identity with
every finite automaton and show that a set of equations consiting of some classical
identities as well as the equations associated with a subclass of finite automata
is complete if and only if every finite simple group divides the semigroup of an
automaton in the given subclass. By taking a special subclass with this property,
we arrive at our final result.

In this paper, we define theories in a slightly more general way, so that in this
context, we prefer the term iteration categories to iteration theories.

'Supported in part by grant no. T22423 of the National Science Foundation of Hungary,
the US-Hungarian Joint Fund under grant no. 351, and by the Austrian-Hungarian Action
Foundation.

tDepartment of Computer Science A. József University Árpád tér 2. 6720 Szeged Hungary

65

66 Z. Esik

2 Preliminaries

2.1 Conway categories and iteration categories
In any category C, we denote composition by •. The identity morphism correspond-
ing to a C-object A will be written id^, or just id.

We will consider cartesian categories C with explicit products. Thus we
assume that for any finite family of C-objects Ci, i £ [n] = { 1 , . . . , n } we are given
a product diagram

x . . . x Cn : Ci x . . . x Cn Cj, j e [n]

with the usual universal property. When /» : A —• Ci, i £ [n] is a family of
morphisms, the unique mediating morphism A —> Ci x ... x Cn will be denoted
(/ i , - • • , /n)- This morphism is called the tupling of the /¿. In particular, when
n — 0, the empty tuple is the unique morphism \A : A —» 1, where 1 is the specified
terminal object.

We will assume that product is associative on the nose so that A x (B x C) =
(Ax B) x C, for all objects A, B, C, and diagrams such as

Ax(BxC)

A x (B x C)

id

(AxB)xC

BxC

BxC 7To

(AxB)xC
C

commute. In particular, we assume that for each object A the projection morphism
7TJ4 : —̂ is the identity morphism id^. It follows that (/) = / for all / : A —> B.
We also assume that

</,!> = (!,/>=/,
for all morphisms / : A —> B.

In the sequel we will call tuplings of projections as base morphism. Note that
any base morphism An —> Am corresponds to a function p : [m] —> [n]. In fact the
base morphism An —> A171 determined by p is given by

{TTlp , • . . , Tmp).

We will call a base morphism corresponding to a permutation [n] —>
permutation.

For any cartesian category C we define the bifunctor C x C —> C by

in] a base

f x g = </•< CxD „ -^CxD 9 ' h

for all / : C A, g:D B.

Axiomatizing iteration categories 67

DEFINITION 2.1 A preiteration category is a cartesian category C equipped with
an external dagger operation

^:C{AxB,A) C(B,A),

see [4].

The Conway identities are the parameter (1), double dagger (2) and
composition identities (3) given below.

(/ • (idyi x 5)) t = / t . f f) (1)

all / : A x B A, g:C B,

/ t t = (/ . (A x i d c)) t , (2)

where f:AxAxC—>A and where A is the diagonal morphism (id^, id/i) : A —•
A xA.

(f-(g,4xC)y = f-((g-(f,irfxc))1,*f*c), (3)

for all / : B x C —» A, g : A x C —» B. Note that the fixed point identity

/ t = / - (A i d e) , / : A x C —t A

is a particular subcase of the composition identity.

DEFINITION 2.2 [3] A Conway category is a preiteration category satisfying the
Conway identities.

Conway categories satisfy several other non-trivial identities including the
Bekic identity [1] (called the pairing identity in [3]):

(f,0)] = (p-(hlidc), h,)\

for all / : A x B x C —• A and g : Ax B x C B, where

h = g(f\idBxC):BxC^B.

We will also make use of the permutation identity

(7T • / • (7T-1 X idc)) f = 7T-/t,

for all / : A" x C —> An and all base permutations n : An —» An. Another useful
identity is given by the next lemma.

LEMMA 2.3 In any Conway category C,

/ t - t = (/ - (A n x idp))t,

for all morphisms f : An x C —> A, where there are n > 1 consecutive daggers on
the left hand side and where A n is the diagonal morphism (id>i,..., id>t) : A —> An.

68 Z. Esik

A full description of the valid identities of Conway categories is given in [2],
where it is proved that the problem of deciding whether an equation holds in all
Conway categories is PSPACE-complete. It is shown in [4] that the parameter
identity corresponds to a naturality condition and that the double dagger identity
to a dinaturality condition of the dagger operation.

As argued in [3], all of the fixed point models in computer science satisfy at least
the Conway identities. For example, for any set S, the category Cpo s of ¿"-sorted
cpo's and continuous functions satisfies the Conway identities. In this category,
there is a cpo Aw corresponding to any word w £ S*. When w = s\... sn, the cpo
Aw is determined by the cpo's ASi, in fact Aw is the product ASl x . . . x ASn. The
morphisms Aw —> Av are the continuous (or order preserving) functions Aw —¥ Av,
and the dagger operation is defined by least fixed points.

We give a semantic definition of iteration categories. For a syntactic character-
ization the reader is referred to Section 3.

DEFINITION 2.4 An iteration category is a preiteration category equipped with
a dagger operation which satisfies all of the identities that hold in the categories
Cpo5 .

It is shown in [3], see also [5], that the iteration category identities are the
standard identities of the fixed point operation in computer science.

2.2 Automata and semigroups

Except for free semigroups, all semigroups will be assumed to be finite. The product
of the elements s, t of a semigroup S will be written s ° t, or just st. A subgroup of
a semigroup 5 is a subsemigroup of S which is a group. Following [7, 12], we say
that a semigroup S divides a semigroup 5 ' , denoted S |S', if S is a homomorphic
image of a subsemigroup of S'. It is known that the division relation is transitive
(and reflexive). Further, a group G divides a semigroup S if and only if G is
a homomorphic image of a subgroup of S. A group G is called simple if it is
nontrivial and has no proper nontrivial normal subgroup.

Suppose that X is a finite nonempty set. An X-automaton Q = (Q, X, o) is a
finite nonempty set Q equipped with a (right) action of X on Q:

o-.QxX ->• Q
(q, x) 1-4- q ox.

We will usually write qx for q ° x and (Q , X) for (Q,X,°). The action of X on
Q may be extended to an action of the free semigroup A"+ of all finite nonempty
words over X such that

q(ux) = (qu)x

for all q £ Q, u £ X+ and x £ X.

Axiomatizing iteration categories 69

Suppose that Q = (Q,X) is an automaton. A letter x £ X is a permutation
letter (reset letter, respectively) if the function

q qx, q £ Q

induced by a; is a permutation (constant map, respectively) on Q. We call Q a per-
mutation automaton (reset automaton, respectively) if each letter x £ X is a
permutation letter (reset letter, respectively). Further, we call Q a permutation-
reset automaton if each x £ X is either a permutation letter or a reset letter.
For example, the automaton U = ({<71,92}, {^I, x2 , x 3 }) equipped with the action

qiXj — qj

QiX 3 = qu i,j£[2],

is a permutation-reset automaton, called the two-state identity-reset automa-
ton. This automaton is important in the Krohn-Rhodes decomposition theorem,
see [11]. In our arguments we will also make use of counters. A counter of
length n is a (permutation) automaton (Q, { x }) such that Q = {qo,..., qn_ 1} has
n elements and letter x induces the cyclic permutation ^ i-> q^+i mod n-

Homomorphisms, subautomata and congruences of automata are defined
in the usual way. The automaton (Q,X) is called a renaming of the automaton
(Q, Y) if there is a function <p : X —> Y such that

qx = q(xip),

for all q £ Q and x £ X.
Suppose that Q = (Q , X) is an automaton. Recall that each word u £ X+

induces a function Q —* Q. Equipped with the operation of composition that we
now write in diagrammatic order, these functions form a semigroup denoted S(Q).
We call 5(Q) the semigroup of Q. For example, the semigroup of a counter
of length n is a cyclic group of order n. When Q is a permutation automaton,
each element of S(Q) is a permutation of the set Q, so that S(Q) is a group.
An automaton Q is called aperiodic [7], if each subgroup of S(Q) is trivial. For
example, each reset automaton, or more generally, each definite automaton [7] is
aperiodic. The automaton U is also aperiodic. We will denote the class of aperiodic
automata by AV.

The concept of aperiodic automata may be generalized. Suppose that Q is a
class of simple groups closed under division. We let Qg denote the class of all
automata Q such that any simple group divisor of S(Q) is in Q. Thus, when Q is
empty, Qg is the class AV. When Q is the class of all cyclic groups of prime order,
Qg is known as the class of solvable automata. We denote this class by SOC.
We will also make use of the following notation. Suppose that m > 1 is an integer.
Then we let SOCm denote the class of all (solvable) automata Q such that any
simple group divisor of £(Q) is a cyclic group of prime order p which divides m.
Thus, SOCm = SOCn if and only if m and n have the same prime divisors. Note
that SOCx = AV.

70 Z. Esik

When (Q , X) is an automaton such that X = S is a semigroup and the action
is compatible with the semigroup operation, i.e.,

q(st) = (qs)t

for all q G Q and s,t G 5 , we call the automaton (A , S) a transformation semi-
group. (Note that we are not requiring that the action is faithful.) When 5 is a
group with unit e and

qe = q,

for all q G Q, (Q , S) is a transformation group. See [7]. Note that each trans-
formation group is a permutation automaton.

For each semigroup S there is a corresponding transformation semigroup (5, S)
equipped with the natural self action (s , t) >->• st. When 5 is a group, (S , S) is a
transformation group.

Following [11], we now define cascade compositions (or G'o-products) of au-
tomata. For this reason, suppose that Q* = (Qi,X{), i e [n], n > 0, are given
automata. Moreover, suppose that X is a new finite nonempty set and for each
i G [n] we are given a function

(fii : x . . . x Qi_! x X —> Xi.

Then the cascade composition

¿e[n]

determined by the functions is the automaton d l ^ I n] QuX) equipped with the
A'-action

(qi,..., qn)x = {qiyi, • • •, qnyn\,

where yi = <fii{qi, • • • ,qi-i,x), for all i. Note that when n = 1, a cascade com-
position is just a renaming of Q i . We will sometimes denote the above cascade
composition as

Q i x . . . x Qn [X,</?! , . . . ,<pn] .

Two particular subcases of the cascade composition are also important, the
quasi-direct product and the direct product. We call the above cascade composi-
tion a quasi-direct product if each function <pi is independent of its first i — 1
arguments, so that each <pi can be considered as a function X —> Xi. If for each i
also X = Xi and tpi is the identity function X —> X, then the quasi-direct product
is the direct product riie[n] Q»-

We will say that an automaton (Q, X) has an identity letter if some x G X
induces the identity function Q —» Q. Given Q, we will denote by Q 1 an automaton
obtained from Q by adding a letter inducing the identity function Q —> Q, if Q
has no such letter. Otherwise Q 1 is just Q. This notation is extended to classes of
automata in a natural way.

Axiomatizing iteration categories 71

3 Review
In this section we review some of the results of [9] and [10].

Suppose that Q = (Q , X) is a finite automaton such that Q = [n] and X = [m],
for some integers n and m. For each preiteration category C and object A in C,
we associate with Q the base morphisms p® : An - 4 A"1, q G Q. For each q, pQ
corresponds to the map

[m] [n]
x qx.

Thus,

Pi - K l ' • • • > 7 W -

(Recall that X — [m], so that for each q G Q = [n] and i G [m], qi is a state of
the automaton Q.) The morphisms p®, denoted sometimes just pq, are called the
basé morphisms associated with the automaton Q.

We define, for each g : Am x C —> A,

9Q = (9-(Pi x i d c) , . - - , 3 - (P n x i d c)) :An x C - > An.

DEFINITION 3.1 The automaton-identity T(Q) associated with Q is the equation

(<7Q)t = A „ • (# • (ATO x idc)) t , g:AmxC^A. (4)

In preiteration categories satisfying the permutation identity we can associate an
equation with any automaton not just with those defined on sets of the form [m].
In such categories, equations associated with isomorphic automata are equivalent.

Since any transformation semigroup is an automaton, the above definition asso-
ciates an identity r (Q, S) with each transformation semigroup (Q, S). When (Q, S)
is the transformation semigroup (5, 5) equipped with the natural self action, we
denote T(5, S) by T(5) and call this identity the semigroup-identity associated
with S. When S is group, r(S') is a group-identity.

The above notation may be extended to classes of automata and semigroups.
When Q is a class of finite automata, T(Q) consists of all identities T(Q), Q G Q.
When S is a class of finite semigroups, r (S) is defined similarly.

The axiomatization of iteration categories given in the next theorem is a refor-
mulation of the main result of [8].

THEOREM 3.2 A Conway category C is an iteration category if and only if each
automaton identity holds in C.

The following stronger results were proved in [9] and [10].

THEOREM 3.3 Suppose that S is a given class of semigroups and Q is an automa-
ton. Then the. automaton identity T(Q) associated with Q holds in all Conway
categories satisfying the semigroup-identities r(5) if and only if every simple group
divisor of S(Q) divides one of the semigroups in S.

72 Z. Esik

In particular, an automaton identity F(Q) holds in all Conway categories if and
only if Q 6 AV. And if Q is any class of simple groups closed under division, then
T(Q) holds in all Conway categories satisfying the group-identities R(£/) if and only
if Q e Qg.

COROLLARY 3.4 [9] A Conway category is an iteration category if and only if it
satisfies the group-identities. Given a class S of finite semigroups, consider the set
of equations r(«S) associated with the semigroups in S. The system consisting of
the Conway identities and the equations T(5) is complete for iteration categories if
and only if for every simple group G there is a semigroup S £ S such that G|S.

In the course of proving Theorem 3.3, the following facts were established in [9].

LEMMA 3.5 Suppose that Q is a subautomaton or a renaming of Q' . If C is a
Conway category with C \= I\Q') then C \= T(Q).

LEMMA 3.6 Let C be a Conway category and suppose that Q = IIIE[N] PI] is
a cascade composition. If C \= R(QJ) for all i 6 [n\, then C |= T(Q). Moreover, if
(fx is surjective and if C |= T(Q) and C \= R(QJ) for all i > 1, then C |= T(QI) .

4 Main results
The main results of this paper are Theorem 4.2, Corollary 4.4 and Theorem 4.5
below. In order to formulate these results, we need one more definition.

The powers fk : A x C —> A, k > 0, of a morphism / : A x C —¥ A in a
cartesian category are defined by induction: ,

f° =

fk+1 = f ' (f k , ^ x C) -

DEFINITION 4.1 For each m > 1, the mth power identity is the equation PTO

(fmV = f\ f:AxC-*A.

Note that this identity is nontrivial only if m > 1. We will prove

THEOREM 4.2 Suppose that Q is a class of automata and Q is an automaton such
that every simple group divisor of S(Q) divides the semigroup of some automaton
in Q. If C is a Conway category satisfying the identities T(Q) and a nontrivial
power identity, then C |= T(Q).

COROLLARY 4.3 Suppose that a renaming of some automaton in Q contains a
nontrivial counter as a subautomaton. Then the identity T(Q) associated with an
automaton Q holds in all Conway categories satsifying the identities T(Q) if and
only if every simple group divisor of S(Q) divides the semigroup of an automaton
in Q.

Axiomatizing iteration categories 73

From Corollary 4.3 and Theorem 3.2 we immediately have

COROLLARY 4.4 Suppose that a renaming of an automaton in Q contains a non-
trivial counter. If every (simple) group is a divisor of the semigroup of an au-
tomaton in Q, then the Conway identities and the automaton identites in S(Q) are
complete for iteration categories.

Conversely, if Q is any class of finite automata such that the Conway identities,
the power identities, and the automaton identities in are complete for iteration
categories, then every (simple) group divides the semigroup of an automaton in Q.

Let us now define, for each n > 3, the identity S n

(f-(A2xidc)-(f-(ntxC, (P)n-2,4xC), = (/ • (A 2 x i d c)) t ,

where / is any morphism A2 x C —> A in a preiteration category. This identity
is a generalization of an identity of regular sets introduced by John Conway in [6].
As an application of Theorem 4.2, we will prove

THEOREM 4.5 The Conway identities and the equations S n , for all n > 3, are
complete for iteration categories.

In order to establish these results, we need to derive the identity T(G) associated
with a group G dividing the semigroup of an automaton Q from the the identity
T(Q), a nontrivial power identity, and the Conway identities.

5 Identities associated with solvable automata
In this section, we show that in Conway categories, the mth power identity is
equivalent to the identity associated with a counter of length m. We then proceed
to prove that an automaton identity T(Q) holds in all Conway categories satisfying
the mth power identity if and only if Q g SOLm. We. start with a technical lemma.

LEMMA 5.1 Suppose that C is a Conway category satisfying the identity T(Q) as-
sociated with a finite automaton Q. Then C \= T(Q1) .

Proof. Suppose that Q = (Q,X). If Q has a letter inducing the identity function
Q —> Q then Q 1 = Q and there is nothing to prove. Otherwise Q 1 = (Q , Y) with
Y = {y} U X such that y induces the identity function Q —> Q and each x £ X
induces the same function in Q as in Q 1 . In our argument, we assume that Q = [n],
X = {i •2 < i < m + 1}, so that Y = [m + 1] and y = 1.

Suppose that C is a Conway category and A and C are objects in C. Define

Pi = p?-.An->Am

ai = pf : An A1+m,

74 Z. Esik

for all i G [n]. Then we have

= (ir?n,Pi), (5)

for all i £ [n]. We complete the argument by using the following sublemma whose
proof is omitted.

SUBLEMMA 5.2 Suppose that ft : A1+n x C —> A, i E [N] in a Conway category C.
Then

Suppose now that / : Al+m x C —> A. Then, by Sublemma 5.2, equation (5),
and the parameter identity,

(/QO1 = (/ + (P 1 x i d c) , . . . , / t . (p „ x i d c)) t

= {9Q)\

where g is the morphism /1. Thus, since C \= T(Q), we have

(/ q O f = (5Q)t

= A „ - (/ t - (A m x i d c)) f

= A „ - (/ - (A m + 1 x i d c)) f ,
where the last step follows from Lemma 2.3. •

The following fact is obvious.

LEMMA 5.3 Suppose that C is a preiteration category and m,n > 1. If C PTO

and C |= P n , then C |= P m n .

For the rest of this section, for each m > 1 we let K m denote a counter of length
m.

LEMMA 5.4 For any Conway category C and m > 1, C \= P m if and only if C |=
T (K m) .

Proof. This is obvious if m = 1, so we assume m > 1. It is easy to see that
C |= r (K m) if and only if

< m - (/ K m) f = A

for all / : A x C —» A. But since C is a Conway category,

^ " • (/ K j t = (/ m) f .

Indeed, we have

/ K „ = x i d c) , . . . , / - U r x i d c) , x i d c)) : A m x C - > A m .

Axiomatizing iteration categories 75

Define

9 = { f ' ^ r x i d c) , . . . , / • x i d c)) : A m x C^ Am~\

Then

gm-1 = (/ » - i , . . . , /) . ^ x i d c) .

Thus, by the fixed point identity,

= g^-^MAxc)

Thus, by the pairing identity,

= TT^'1 • 9] • (hlidc)
= r-'-irfMc),

where

h = x idc) • (i /MdAxc)
= f-(fm-\4xC)
= fm-

Thus, = (/ m) t and

= / m ' 1 - ((/ m) t , i d c)
= (fm)\

by the composition identity. •
Suppose that C is a Conway category satisfying the mth power identity P m . Let

Zm denote the cyclic group Z/mZ of order m. In order to prove that C satisfies
the group-identity T(Zm) we need a technical consruction involving automata.

We represent Zm as the set { 0 , . . . ,m — 1} with group operation

(i,j) i + j m o d m .

Similarly, we represent K'71 as the automaton (Zrn, X), where X = {0 ,1} , so that
X is a generating set of the group Zm. The action of X on Zm is defined by the
group operation. Define the quasi-direct product

A = (A , Z m) = (Zm, Zm) x (Zm, X)m~2[Zm, tpi,..., ipm-i]

by

76 Z. Esik

for all j € { 0 , . . . ,m — 1} and i € { 2 , . . . ,m — 1}. Moreover, define

B = (B,Zm) = {Zm,X)m-l[Zm,i>!,...,

by

M = { ? J v t \ 1 if J = »,

for all i e { 0 , . . . , m - 1} and i e { 1 , . . . ,m - 1}. Note that A = B = Z™~1.

LEMMA 5.5 The automata A and B are isomorphic.

Proof. Define

¡i: B —» A
m —1

: • • • j m̂—
J=I

where the sum is taken mod m. Then fi is a bijection. Suppose that k e { 0 , . . . , m —
1}, k ± 0. Then, in B ,

(ii,... ,im_i) o k = (ii,... ,ik + 1,... ,im_i).

Moreover, in A ,

m—1

n(ii,... ,im-i) ° k = (k+yi ij - j , ¿2, • • • + 1 , . . . ,2m_x) ,

if A; > 1, and
771— 1

/x (i i , . . . , i m _ i) o k = (,k + y^ ij-j, i-2, • •. , i m _ i) ,
j= i

if fc = 1. In either case, preserves the action. •
Thus, by Lemmas 5.4, 5.1 and 3.6, if C is a Conway category satisfying the mth

power identity, then, T |= T(B) . But by Lemma 5.5, A is isomorphic to B , so that
T |= T (A) . But then, again by Lemma 3.6, C |= r(ZT O , Zm). We have proved

LEMMA 5.6 Suppose thatC is a Conway category satisfying the mth power identity,
for some m > 1. Then C (= T(Zm).

THEOREM 5.7 Let rn >1 be any fixed integer. The identity F (Q) associated with
an automaton Q holds in all Conway categories satisfying the mth power identity
if and only ifQe SOCm.

Axiomatizing iteration categories 77

Proof. Suppose that C is a Conway category with C f= PTO. Then, by Lemma 5.6
and Theorem 3.3, C satisfies the identity T(Q) associated with any automaton
Q £ SOCm. On the other hand, if Q £ SOLm, then by Theorem 3.3 there is a
Conway category Co satisfying T(Zm) such that T(Q) does not hold in Co- But by
Lemma 5.4, the mth power identity holds in Co- •

COROLLARY 5.8 The identity associated with an automaton Q holds in all Conway
categories satisfying all of power identities if and only if Q £ SOC.

6 Proof of Theorem 4.2
Suppose that Q = (Q,X) is an automaton having an identity letter. Recall that
X+ denotes the free semigroup of all nonempty words over X. Below we write X*
for X+ U {Л}, where Л is the empty word.

Let S denote the semigroup 5 (Q) and let G be a subgroup of S. Since Q has an
identity letter, 5 is a monoid whose unit is the identity function Q —* Q. Moreover,
there is an integer ко > 0 such that for each к > ко, any function in S is induced
by a word in X+ of length k. For the rest of this section, for any integer n > 0, we
denote by Xn the set of all words и £ X* of length \u\ = n. Similarly, Gn is the
set of all words in G* of length n.

For a given word и £ X+, we denote by й the function Q —> Q induced by и in
Q. Also, when и = g\... gn £ G+, then we denote by и the composite gi ° ... ° gn

of the functions gi,...,gn. (R.ecall that we write composition in 5 from left to
right.) For a state q £ Q, we will just write qu for qv,.

Fix an integer к > k,Q. There exists a function ф : Gk —> Xk such that
и = иф for all и € Gk. Given such a function ф, for every word и € Gk we define
ифх = firsti(u?/>) to be the first letter of иф, and иф2 = lastfc_i(u'i/i) to be the suffix
of length к — 1 of иф. Thus, иф = {ифх)(иф2)•

Let

R = {(i,u,v,w) : i e [fc], и € G1, v £ Xk~\ w £ Gk, v = lastк-^шф)}.

We turn R into a G-automaton by defining

/• \ i (i + 1 ,ug,v'
= 1 (1,9,иф2,и)

w) if v = xv' with x £ X
) if v = X.

LEMMA 6.1 The automaton R = (R,S) is isomorphic to a subautomaton of a
cascade composition of a counter of length k with aperiodic automata.

Proof. When k = 1 the automaton R is definite and hence our claim is obvious.
Thus, in the rest of the argument, we assume that k > 1. Let K denote the
counter ([fc], { z }) such that 0 induces the cyclic permutation (12. . . k). Let R i =
(Gk,G x [fc]) and R 2 = (I ^ ^ I U l ' " 1) be equipped with the following actions:

9\ • • -9k ° (g,i) = <1 fc-i
91 • • -9i-\ggi+\ - gk if i Ф l
ggt1 if»•= 1

78 Z. Esik

X\...Xk-\°X = Xo - Xk-lX

xx . . .Xk-1 o x\ .. ,x'k_x = x\...x'k_x,

where % G [A;], g,gj G G, for all j G [k], and x,xj,x'j G A", for all j 6 [k - 1]. and
where go denotes a fixed element (say the unit element) of the group G. Moreover,
let R3 be the automaton (G k ,G k U { z }) with action

U o V = V

U O Z = U,

for all u,v G Gk.
Define the cascade composition R ' = K x R^ x R 2 x R3[G, <pi, (p2, <f>3-, V4] as

follows. For all i G [fc], u£Gk, v G and g G G,

{g,i + 1) if i < k
19,1) if i = k

Pi (9) = z

<P2(i,g) = |

x • f xo if i < k
<P3(i,u,g) = | M u) - { i = k

,. x f z if i < k
<pt(t,u,v,g) = | u i f . = jfc)

where XQ is any fixed element of X . It follows that the map

(•i,u,v,w) (i^gQ-^vxQ-1 ,w),

where i G [&], u G Gl, v G Xk~t, uu G Gk, defines an injective homomorphism
R —y R ' . Moreover, all the automata Rj , i = 1,2,3 are aperiodic, in fact R2 is
definite and R3 is an identity-reset automaton. (Alternatively, one may refer to the
Krohn-Rhodes theorem by showing that each of the automata Ri can be embedded
in a cascade composition of U with itself.) •

COROLLARY 6.2 If C is a Conway category satisfying the identity P*,, then C (=
T(R).

Proof. This is immediate from Lemmas 6.1, 3.5 and 3.6. •
Since G is a subgroup of S, there exists a nonempty set QG C Q which is closed

under the functions in G and such that (QG, G), equipped with the natural action,
is a transformation group having a faithful action. See [11]. Thus, each g e G
defines a permutation QG —> QG, moreover, the unit element of G defines the
identity function QG —> QG, and finally, for all g\,g2 G G we have g\ = g2 if and
only if qgi = qg2, for all q G QG-

Now let M be the cascade composition

M = R x Q [G , ^ i , H

Axiomatizing iteration categories 79

determined by the identity function TPI : G —> G and the function <P2 : R x G —> X,

<p2((i,u,v,w),g) = |
x if v = xv' and x £ X
uipi if v = A.

(Note that the definition of ip2 does not depend on g.). Let M ' = (M ' ,G) be the
subautomaton of M determined by those states

((i,u,v,w),q) £ Rx Q

such that there exists a qi £ QG with q\v' = q, where v' £ X1 is the word firsts(wtp).
(Such a state q\ £ QG is unique, since v'v = wip induces a permutation of QG)
Below we will denote qi by Note also that qvu = q~1v'vu = q~1wu £ QG-

LEMMA 6.3 Suppose that C is a Conway category satisfying P^ and the identity
r (Q) . Then C (= T(M) and C \= r (M ') .

Proof. This follows from Corollary 6.2, Lemma 3.6 and Lemma 3.5. •
Let QG denote the transformation group (QG,G).

LEMMA 6.4 The automaton M ' is isomorphic to the direct product R x QG of R
and QG- An isomorphism h : M ' —> R x QG is given by the map

((i,u,v,w),q) ((i,u,v,w),qvu), all ((i, u, v, ui), q) £ M'.

Proof. We have already noted that qvu = q~xwu £ QG- Also, if ((i ,u,v,w),q\)
and ((i,u,v,w),q2) are both in M', then q-j-1 ^ q^1, so that q\vu = q^wu ^
q^xwu = q2vu, since w and u induce permutations QG —» QG- This proves that h
is injective. To see that h is also surjective, suppose that ((i ,u ,v ,w) ,q') £ R x QG-
Let qi be the state in QG with qxwu = q'. This state exists, since w and u
induce permutations QG —> QG- Then let q = qiv', where v'v = wip. We have
((i,u,v,w),q) £ M' and h : ((i,u,v,w),q) ((i,u,v,iu),q'). It is straightforward
to check that h is a homomorphism. •

COROLLARY 6.5 Suppose that C is a Conway category satisfying the kth power
identity. IfC\= R(Q), then C |= T(G).

Proof. By Lemma 6.3, we have C |= T(M') . Also, by Corollary 6.2, C |= T(R) .
Thus, by Lemma 3.6 and Lemma 6.4, C |= T(QG). Since the action of G on QG is
faithful, S(QG) is isomorphic to G, and thus the automaton (G,G), equipped with
the natural self action is isomorphic to a subautomaton of a direct power of QG.
It follows that C \= T(G). •

We are now ready to complete the proof of Theorem 4.2.
Proof of Theorem 4.2. Suppose that C is a Conway category satisfying the

identities in T(Q) as well as the nth power identity for some n > 1. If Q £
Q, then by Lemma 5.1, C T(Q1) . Also, by Lemma 5.3, C |= PN*, for all
k > 1. Since for some k all functions in 5(QX) are induced by a word of Q 1

80 Z. Esik

of length n fc, by Corollary 6.5 we have C \= T(G) for any subgroup G of S (Q) .
Thus, by Theorem 3.3, C \= T (S (Q)) . We conclude that C satisfies the identity
associated with the semigroup of any automaton in Q. From this the result follows
by Theorem 3.3. •

Proof of Corollary 4.3. One direction is obvious from Theorem 4.2.
For the other direction suppose that we have C |= T (Q) for all Conway categories

C with C f= T(Q). Let Q denote the class of simple groups dividing the semigroups
of the automata in Q. Then, by Theorem 3.3, C |= T (Q) holds for all Conway
categories C with C |= Thus, again by Theorem 3.3, any simple group divisor
of S (Q) is in g. •

7 Proof of Theorem 4.5
For each n > 3, consider the automaton Q „ = ([N],X) such that X = { x , y } with
x inducing the transposition (12) and y inducing the cyclic permutation (12 . . .n).
From Corollary 4.4 we immediately have

COROLLARY 7.1 The Conway identities and the equations R (Q „) , n > 3 are com-
plete for iteration theories.

LEMMA 7.2 For each n > 3, and for any Conway category C,

C ^ S „ C |= r(Q„) .

Proof. Let / : A2 x C —> A in a Conway category C, and let g denote the
morphism on the left hand side of the equation defining Sn . Below we will write
7r" for nf" and for Morphism A 2 is the diagonal (id^jid^) : A —> A2. Note
that

/Q„ = (!i X / • (A 2 x! n _3 x idc) , / (id^xl i x id^x! n _3 X idc) ,

/ • « 7 r 3 " , <) X i d C) , - / • (« _ ! , < > X i d c) , / • (« , <) X i d C)) .

We will show that

(faJ = (g,/•(5,(/t)n-2-(ff>idc),idc), (/ ^ " - ' - (p . i d c) , . . .
/t-<p,idc». (6)

Indeed, by using Sublemma 5.2, one derives

(/ Q J 1 = (!i x / • (A 2 X ! „ _ 2 x idc) , / • (id,4 x ! i x id^ x ! „ _ 3 x i d c) ,

/ t • « x i d c) , • • •, f] • x i d c) , / + • K x i d c)) t .

Thus, again by the Conway identities,

(/ Q „) f = (! i x / - (A 2 x ! n _ 2 x idc) , / - (i d ^ x l i x i d ^ x ! n _ 3 x i d c) ,

(/ +) " - 2 . « x i d c) , - • « x i d c)) f

= (9, / • (9 , (/ t) " ~ 2 - (9 , i d c) , i d c) , (P)n-'2-(gMc), P-(g, id c)> .

Axiomatizing iteration categories 81

Thus, if S n holds in C, then

< - (/ q J f = (/ - (A 2 x id c)) t =

But then,

f^(gMc) = p-(f^Mc)
= / »

and by induction,

(f^Y-igM = / f t ,

for all i > 1. Thus, also

f-{gAf^)n-2-(gMc)Mc) = f-(f",fnMc)
= f-(A2 x i d c) • ((/• (A2 x i d c)) t , i d c)
= (/ - (A 2 x i d c)) t

= / + t -

Thus, if C (= Sra, then, by (6),

(/ Q j t = A „ - (/ - (A 2 x i d c)) t = / t t ,

proving C |= r (Q n) . The converse implication is now obvious. •
Proof of Theorem 4.5. By Corollary 7.1, the Conway identities and the equations

r (Q n) , n > 3 are complete. But by Lemma 7.2, in Conway categories each identity
T(Q„) is equivalent to the equation S„. •

References
[1] H. Bekic, Definable operations in general algebras, and the theory of automata

and flowcharts, Technical Report, IBM Laboratory, Vienna, 1969.

[2] L. Bernatsky and Z. Esik, Semantics of flowchart programs and the free Con-
way theories. Theoretical Informatics and Applications, 32(1998), 35-78.

[3] S.L. Bloom and Z. Esik, Iteration Theories: The Equational Logic of Iterative
Processes. EATCS Monographs on Theoretical Computer Science, Springer-
Verlag, 1993.

[4] S.L. Bloom and Z. Esik, Fixed point operations on ccc's. Part 1. Theoretical
Computer Science, 155(1996), 1-38.

[5] S.L. Bloom and Z. Esik, The equational logic of fixed points. Theoretical Com-
puter Science, 179(1997), 1-60.

82 Z. Esik

[6] J.C. Conway, Regular Algebra and Finite Machines. Chapman and Hall, 1971.

[7] S. Eilenberg, Automata, Languages, and Machines, vol. B. Academic Press,
1976.

[8] Z. Esik, Identities in iterative and rational algebraic theories. Computational
Linguistics and Computer Languages, 14(1980), 183-207.

[9] Z. Esik, Group axioms for iteration. Information and Computation. To appear.

[10] Z. Esik, The power of the group axioms for iteration. International J. Algebra
and Computation. To appear.

[11] F. Gécseg, Products of Automata, Springer, 1986.

[12] G. Lallement, Semigroups and Combinatorial Applications. Wiley-Interscience,
1979.

Acta Cybernetica 14 (1999) 105-115.

On One-Pass Term Rewriting

Zoltán Fülöp * Eija Jurvanen * Magnus Steinby *

Sándor Vágvölgyi§

Dedicated to Professor Ferenc Gécseg on the occasion of his 60th
birthday.

Abstract
Two restricted ways to apply a term rewriting system (TRS) to a tree are

considered. When the one-pass root-started, strategy is followed, rewriting
starts from the root and continues stepwise towards the leaves without ever
rewriting a paxt of the current tree produced in a previous rewrite step. One-
pass leaf-started, rewriting is defined similarly, but rewriting begins from the
leaves. In the sentential form inclusion problem one asks whether all trees
which can be obtained with a given TRS from the trees of some regular tree
language T belong to another given regular tree language U, and in the normal
form inclusion problem the same question is asked about the normal forms of
T. We show that for a left-linear TRS these problems can be decided for both
of our one-pass strategies. In all four cases the decision algorithm involves
the construction of a suitable tree recognizer.

1 Introduction
In general, reducing a term with a term rewriting system (TRS) is a highly non-
deterministic process in which many choices have to made, and usually no bound
for the lengths of the possible reduction sequences can be given in advance. In this
paper we consider two very restrictive strategies of term rewriting, one-pass root-
started rewriting and one-pass leaf-started rewriting. When the former strategy is
followed, rewriting starts at the root of the given term t and proceeds continuously
towards the leaves without ever rewriting any part of the current term which l\as

* József Attila University, Department of Computer Science, H-6701 Szeged, P. O. Box 652,
Hungary, Email: fu lopSin f . u-szeged.hu

+Turku Centre for Computer Science, DataCity, Lemminkáisenkatu 14 A, FIN-20520 Turku,
Finland, Email: jurvanenSutu.fi

í Turku Centre for Computer Science, and Department of Mathematics, University of Turku,
FIN-20014 Turku, Finland, Email: s te inbySutu. f i

§József Attila University, Department of Applied Informatics, H-6701 Szeged, P. O. Box 652,
Hungary, Email: vagvolgySinf .u-szeged.hu

83

84 Zoltán Fülöp, Eija Jurvanen, Magnus Steinby, Sándor Vágvölgyi

been produced in a previous rewrite step. When no more rewriting is possible,
a one-pass root-started normal form of the original term t has been reached. Of
course, such a normal form is not necessarily irreducible in the usual sense since a
rewrite rule may apply either in the part already rewritten or to a subtree rooted
at a position strictly below the nodes affected by the last rewriting steps. The
leaf-started version is similar, but the rewriting is initiated at the leaves and pro-
ceeds towards the root. The requirement that rewriting should always concern
positions immediately adjacent to parts of the term rewritten in previous steps
distinguished our rewriting strategies from the 10 and 01 rewriting schemes consid-
ered in [ES77, ES78] or [DDC87], It also implies that the top-down and bottom-up
cases are different even for a linear TRS.

Both of the one-pass modes of rewriting are defined formally by associating with
any given TRS an auxiliary TRS in which a new separator mark restricts rewriting
in the intended way.

Let us now describe the problems concerning one-pass rewriting considered in
this paper. Since the problems involve regular tree languages, we find it convenient
to use the terminology of the theory of tree languages. Let TZ = (£, R) be a TRS
over a ranked alphabet E. For any S-tree language T (C Tg), we denote the sets
of one-pass root-started sentential forms, one-pass root-started normal forms, one-
pass leaf-started sentential forms and one-pass leaf-started normal forms of trees
in T by lrSiz(T), lrNN(T), USTI(T) and 1£NTC(T), respectively. We show that
all of the following inclusion problems, in which the input consists of a left-linear
TRS TZ = (£, R) and two regular S-tree languages T\ and T2 (effectively given by
tree recognizers, for example), are decidable.

The one-pass root-started sentential form inclusion problem: LRS^TI) C T2?

The one-pass root-started normal form inclusion problem: lrN-ji(Ti) C T2?

The one-pass leaf-started sentential form inclusion problem: IP. S-R.(T\) C T2?

The one-pass leaf-started normal form inclusion problem: WN-JI(TI) C T2?

In [GT95] the sentential form inclusion problem for ordinary sentential forms
is called the second-order reachability problem and the problem is shown to be
decidable for a TRS TZ which preserves recognizability, i.e. if the set S n (T) of
sentential forms of the trees of any recognizable tree language T is also recognizable.

Many questions concerning term rewriting systems have been studied, and
solved, using tree automata and tree languages; cf. [DDC87, DG89, Gil91, GT95,
GV98, HH94, KT95, VG92], for example. Also here tree automata are used: in
all four cases the decidability of the problem is proved by showing how one may
construct from TZ and the given tree recognizers of T\ and T2 a new tree recognizer
C such that the question can be answered by checking whether the tree language
T(C) recognized by C is empty. To simplify these constructions we introduce gener-
alized top-down and generalized bottom-up tree recognizers. It is easy to see that
both of these new types of recognizers recognize exactly the regular tree languages
and that their emptiness problems are decidable.

On One-Pass Term Rewriting 85

The paper is essentially self-contained since all special concepts used, as well
as many general notions, are completely defined. However, for further information
about term rewriting systems and tree automata, we refer the reader to [Ave95],
[DJ90], [Hue80], [GS84] and [GS97],

A conference version of this paper has appeared as [FJSV98]. This research
was supported by the exchange program of the University of Turku and the József
Attila University, and by the grants MKM 665/96 and FKFP 0095/97.

2 Preliminaries
Throughout this paper E is a ranked alphabet, i.e. a finite set of operation symbols.
For each m > 0, the set of m-ary symbols in E is denoted by E m . We say that
E is unary if E = Ei, i.e., if every symbol / £ E has rank 1. If Y is an alphabet
disjoint with E, then the set Ts(Y) of E-ierms with variables in Y is the smallest
set U of strings such that

(1) Y U £ 0 C U and

(2) f(ti,... ,tm) £ U whenever m > 1, / € E m and t%,... ,tm £ U.

Sometimes we consider terms f(t\,... ,tm) with m > 0. For m = 0, this is in-
terpreted as / . The set Ts(0) of ground T,-terms is denoted by Tg. Terms are
viewed in the usual way as formal representations of trees, and we also call them
trees. In particular, ground E-terms and subsets of Ts are called E-trees and E-tree
languages, respectively.

The height hg(t) of a tree t £ T^(Y) is defined so that hg(i) = 0 for t £ Y U E 0 ,
andhg(í) = max{hg(i i) , . . . ,hg(iT O) } + l for t = f{h,...,tm). The set var(í) (C Y)
of variables appearing in t is also defined as usual (cf. [GS97], for example).

Let X = {xi,x2,... } be a countably infinite set of variables. For every n > 0,
we put X„ = {xi,..., xn} and abbreviate T S (X „) to TE|„. A tree t £ Ts,n is called
linear if each Xi, 1 < i < n, appears at most once in t.

We introduce a subset T^¡n of Ts,n as follows. A tree t £ Ts>n belongs to Ts i n

if and only if each of x\,..., xn occurs in t exactly once and their left-to-right order
is x\,... ,xn. Hence the elements of T^ n are special linear trees. In addition, let
Ts,x = Un=0 If / 6 Smi m > 1 and ¿ i , . . . , tm £ TY,,X, then ||/(ii , . . . , im)||
is the unique tree in Ts,x obtained from f{t\,... ,tm) by renaming the variables.

A substitution o : X —• T%(X) is extended to a mapping a: T%(X) —> T^(X)
so that o (i) = f(a(h),..., a(t)) for any t — f{ti,...,tm). Hence, for any tree
t £ Tz(X), o(t) is the tree obtained from t when every occurrence of each variable
x e var(i) is replaced by the corresponding tree a(x). If, in particular, t 6 Tz,n

and a(xi) = ti (i = 1 ,2 , . . . ,n), we write a(t) = t[t\,..., tn].
Let E be a ranked alphabet. A term rewriting system (TRS, for short) over

E is a system TZ = (E ,R) , where R is a finite subset of T^(X) x T%(X) such
that var(r) C var(p) and p £ X for each (p, r) £ R. Note that since R is finite,
R C Tz{Xn) x Ts(Xn) for some n > 0. The elements of R are called (rewrite)

86 Zoltán Fülöp, Eija Jurvanen, Magnus Steinby, Sándor Vágvölgyi

rules and written in the form p (, . . . , xn) —»• ?-(a;i , . . . , xn) or just as p —¥ r. A
rule p —¥ r of a TRS TZ is called ground if both p and r are ground trees.

A TRS TZ induces a binary relation in T£ defined as follows: for any t,
ueTs,t =>n и if и is obtained from t by replacing an occurrence of a subtree of t
of the form p[t\,..., tn] by r[t\,... ,tn), where p - » r G R and h,... ,tn e T-£. The
reflexive, transitive closure of =>-R is denoted by Hence s i if and only if
there exists a reduction sequence

to 11 =>71... =Ф>7z tn

in 1Z such that n > 0, t0 = s and tn = t.
A TRS TZ is left-linear if, for every rule p r in R, p is a linear tree. A TRS is

in standard form if for every rule p —¥ r in it, p G Ts,n for some n > 0. Obviously
one can construct for every left-linear TRS 7Z a standard form TRS TZ' such that

We define the set of left-hand sides of a TRS TZ = as lhs(7?.) = { p \
(3r)p-¥ r e R}.

An element s G Xs is irreducible with respect to TZ if there exists no и such that
s =>iz u. A S-tree s is a normal form of a E-tree t if t s and s is irreducible.
The set of all normal forms of a E-tree t is denoted by N7z{t). The set of sentential
forms of t is defined by

Sn(t) = {s\t^*ns}.

Moreover, for a tree language Г С ТЕ, we put

Sn{T) = (J Sn(t),
ter

N n (T) = [J ВД).
teT

A TRS TZ over E is terminating if there are no infinite reduction sequences
tL t2 =>тг • • •, cf. [Hue80], [DJ90] and [Ave95].

Let us recall the two basic types of tree recognizers which both define the same
family of recognizable tree languages. To facilitate our proofs, we also introduce
certain generalized versions of both types. All of these recognizers can be defined
conveniently as special term rewriting systems.

In a top-down E-recognizer A = (Л,Е,Р, ao)

(1) A is a (finite) unary ranked alphabet of states such that А Л E = 0,

(2) P is a finite set of rewrite rules, the transition rules, each of the form

(a) a(f(x i,...,xm)) f{ai(xi),... , a m (i m)) , also written simply a (/)
f(ai,... ,am), where m > 0, / G £ m and a, ai, ... , am G A, or of the
form

(b) a(c) —¥ c, where с G EQ and a G A, and

On One-Pass Term Rewriting 87

(3) ao G A is the initial state.

We treat A as the TRS (E U A, P) and the rewrite relation C TY.UA X T^UA
is defined accordingly. For each a G A, let T(A,a) = {t £ Ts | a(t)=$>At}. In
particular, the tree language recognized by A is the set T(A) = T(A,ao).

A tree language T C is recognizable or regular if there exists a top-down
E-recognizer A such that T(A) — T. The class of all recognizable E-tree languages
is denoted by REC%.

In a generalized top-down Y,-recognizer A = {A, E,P, ag)

(1) A is a (finite) unary ranked alphabet of states such that A n E = 0,

(2) P is a finite set of rewrite rules, the transition rules of A, of the form

a(t(x1,..., xn)) i[ai(a;i),...

where n > 0, a, ai, ... , an £ A, and t G T^>n, and

(3) ao G A is the initial state.

The rewrite relation =>.4 C TSUA x T^UA and its reflexive, transitive closure
are defined in the natural way. The tree language recognized by A is the set

T(A) = {teTs\ao(t) =>*At}.

It is clear that also the generalized top-down X-recognizers recognize exactly the
regular E-tree languages.

Next we define tree recognizers which read their inputs from the leaves to the
root.

A bottom-up Yi-recognizer is a quadruple A = (A, T,,P,Af), where

(1) A is a finite set of states of rank 0, E fl A = 0,

(2) P is a finite set of rewrite rules of the form

f(alt... ,am) a

with TO > 0, / G £ m , ai,..., o m , a £ A, and

(3) Af (C i) is the set oi final states.

We say that A is total deterministic if for all / G £TO, m > 0, «1, . . . , am £ A,
there is exactly one rule of the form f(a 1,..., am) —> a.

When we treat A as the rewriting system (EuA, P), the tree language recognized
by it can be defined as the set

T(A) = {t £ TE | (3 a G Af) t^*Aa}.

For any bottom-up E-recognizer A, one can effectively construct a total determin-
istic bottom-up E-recognizer B such that T(A) = T(B). If A is total deterministic,
there is for each E-tree t exactly one state a £ A such that t =>*A a.

88 Zoltán Fülöp, Eija Jurvanen, Magnus Steinby, Sándor Vágvölgyi

A generalized bottom-up E-recognizer is a system A = (/1. E. P, Af), where A,
E and A / arc as in the case of a bottom-up E-recognizer, but P is now a finite set
of rewrite rules of the form

i [a i , . . . ,an] -¥ a,

where n > 0, i 6 T-£:Tl and ,...,an, a € A. Hence there may be rules of
the form a —> b in P, where a, b G A. The tree language recognized by A is
T(A) = {t6Ts | (3 a G Af) t a }.

It is not hard to see that the class of E-tree languages recognized by generalized
bottom-up E-recognizers is RECz . Moreover, the emptiness problem "'T(A) = 0?"
is obviously decidable for both generalized top-down and generalized bottom-up
recognizers.

3 One-pass Term Rewriting
The first of our two modes of one-pass rewriting may be described as follows.

Let 1Z = (E, R) be a TRS and t the E-tree to be rewritten. The rewriting starts
at the root of t and the portion first rewritten should include the root. Rewriting
then proceeds as far as possible towards the leaves so that each rewrite step applies
to a root segment of some maximal unprocessed subtree but never involves any
part of the tree produced by a previous rewrite step. For the formal definition we
associate with 7Z a TRS in which a new special symbol forces this mode of rewriting.

Definition 3.1. The one-pass root-started TRS associated with a given TRS 7Z =
(E,i?) is the TRS 7Z# = (E U {# } , -R#) , where # is a new unary symbol, the
separator mark, and is the set of all rewrite rules

(p (x i , . . . , xn)) r [# (x i) , . . . , # (x „)]

obtained from a rule p(xi,..., xn) —» r(x\,..., xn) in R by adding # to the root
of the left-hand side and above the variables in the right-hand side.

Example 3.2. Suppose that E consists of the binary symbol / , the unary symbol
g and the miliary symbol c. If 1Z = (E, R) is the TRS, where

R = {f(9(xi)>z2) f(xi,g(x2)), g(xi) f(c,xi), g(Xl) g(c) },

then the rule set of the associated one-pass root-started TRS 7?.# is

R# = { # (/ (f f (x i) , x 2)) / (# (x i) , i ; (# (£ 2))) ,
#(<?(*i)) ^ / (c , # (s i)) , #(g(xi)) g(c) }.

For any TRS 1Z, the associated one-pass root-started TRS 7Z# is terminating.
For recovering the one-pass root-started reduction sequences of 7Z from the reduc-
tion sequences of 1Z#, we introduce the tree homomorphism 5 : T-£U{#y —> T-£ which
erases the separator marks:

On One-Pass Term Rewriting 89

(1) ¿(c) = c for any c G E0 ;

(2) <S(#(i)) = 5(t) for any t G T E u { # } ;

(3) S(t) = f(5{t!),...,S(tm)) for t = f(t!,...,tm), where m > 0, / e ETO and
U £ 7su{#}-

If t G T s and
(i) 11 =>7J# ¿2 • • • tk

is a reduction sequence with 1Z#, then

t =>n S(h) =>n S(t2) ... S(tk)

is a one-pass root-started reduction sequence with 1Z. The terms t, 5(ti), ... , S(tk)
are called one-pass root-started sentential forms of t in 1Z. If tk is irreducible in

then S(tk) is a one-pass root-started normal form of t in 1Z. The sets of all
one-pass root-started sentential forms and normal forms of a E-tree t are denoted
by lrS-R.(t) and lrN-ft(i), respectively. This notation is extended to sets of E-trees
in the natural way.

Note that for any TRS 7Z = (E ,R) and any t G TE , the sets lrSTC(i) and
lrNK(£) are finite and effectively computable but that lrSiz(T) and lrNTC(T) are
not necessarily regular even for a regular E-tree language T.

The mode of one-pass rewriting which starts from the leaves is also formalized by
associating with the given TRS a special one-pass TRS. This TRS is constructed in
two stages. First we add to the original TRS all rules obtained by instantiating any
variables in the original rules as constants. In the second stage the extended TRS
is turned into a one-pass TRS by introducing a separator mark and by labelling
the symbols of the right-hand sides so that the rewriting cannot be restarted from
leaves which have already been processed.

Definition 3.3. Let U = (£ , i?) be a TRS. First we extend R to the set Re of all
rules

p[yi,---,yn] q[yi,---,yn]

such that p(xi,..., xn) q(x±,..., xn) G R, with p, q G TEiJl, and for each
i, 1 < i < n, either yt G X or j/j G E0 , and p[yi,...,yn] € Now let
S' = { / ' | / G E } be a disjoint copy of E such that for any / G E, / and / '
have the same rank. The one-pass leaf-started TRS associated with 1Z is the TRS
1Z* = (E U E' U { # } , i ? #) , where # is a new unary symbol, the separator mark,
and R& consists of all rules

P[#{xl), • • •, #{xn)} -» #{r'{xi,..., xn)),

where p -»• r G Re, with p, r G Ts,„, and r' is obtained from r by replacing every
symbol / G E by the corresponding symbol / ' in E'.

For every left-linear TRS 1Z, the one-pass TRS 1Z# is in standard form.

90 Zoltán Fülöp, Eija Jurvanen, Magnus Steinby, Sándor Vágvölgyi

Example 3.4. Let E = {f,g,c}, where / is binary, g unary and c miliary, and let
TZ = (E, R) be the TRS with

R = {f(g{xi),x2) f(xug(x2)), g{c) f(c,c)}.

Then E' = {f',g',c'} and the one-pass leaf-started TRS associated with R is the
TRS TZ# = (E U E' U { # } , R*) where R* is

R* = { / (<? (# (* !)) , # (z 2)) # (/ ' (x 1 , f l ' (x 2))) ,

f(9(c),c) #(/'(c',g'(c'))), g(c) #(/ ' (c ' ,c ')) } .

It is clear that the TRS TZe = (T,,Re) is always equivalent to the original TRS
TZ in the sense that = =>n- The connection between TZ and 7 i s the
following. The reduction sequences of TZ* represent such reduction sequences of 1Z
which start at the leaves of a term and proceed towards the root of it in such a
way that symbols introduced by a previous rewrite step never form a part of the
left-hand side of the rule applied next. At the same time the rewrite places are
joined together by the separator mark. Moreover, TZ# can make only one pass over
the term because the left-hand sides and the right-hand sides of its rules are over
disjoint ranked alphabets. The one-pass reduction sequence of 1Z represented by
a reduction sequence of 7Z& is recovered by applying a tree homomorphism which
erases the #-marks and the primes from the symbols / ' E E'. Formally we define
<5: r E u S / u { # } so that

(1) <5(c') = ¿(c) = c for every c € E0;

(2) <5(#(i)) = 6(t) for every t e T E u E , u { # } ;

(3) 5{}{tu...,tm)) = ¿ (/ ' (ix , . . . , *™)) = f{S(h),...,6(tm)) for any / e E m ,
m > 1, and ti,... , tm € T S u S / u { # } .

Then each reduction sequence

t =>k* h h =>n# • • • tl* tk

with 1Z& starting from a E-tree t yields the one-pass leaf-started reduction sequence

t S(h) 5{t2) 6{tk)

with TZ. Moreover, the set of one-pass leaf-started sentential forms and the set of
one-pass leaf-started normal forms of t with respect to TZ are defined by

i * s R (t) = { < S M | 3 e S w # (i) } ,

and
l « K (t) = { i (S) | S 6 N K # (i) } ,

On One-Pass Term Rewriting 91

respectively. Finally, for a tree language T C Ts, we put

USn(T) = U l*Sw(t),
IST

and
1£NK (T) = (J l*N*(t) .

teT

The extended TRS lZe may seem redundant, but without the new rules in
Re \ R many natural one-pass leaf-started rewriting sequences would be missed.
In particular, if H contains no ground rules, such as the rule g(c) —> f(c,c), no
non-trivial one-pass leaf-started rewriting sequence could be initiated since the
left-hand sides of all rules of Ti* would contain the symbol # . Hence we would
have US-R.it) = H N n { t) = {*} for every t £ T s .

4 The one-pass root-started inclusion problems
First we define the one-pass root-started normal form inclusion problem for a TRS
1Z = (E ,R) . It is assumed that the recognizable tree languages are given in the
form of tree recognizers.

T h e o r e m 4.1. For any left-linear TRS TZ = (E ,R) , the following one-pass root-
started normal form inclusion problem is decidable.

Instance: Recognizable E-tree languages Ti and To.
Question: lrN-R.(Xi) C T2?

For proving Theorem 4.1, we need the following auxiliary notations. For a set
A of unary symbols such that Af1 E = 0 and any alphabet Y, let Tz(A(Y)) be the
least, subset T of TZUA(Y) for which

(1) E0 C T,

(2) a(y) € T for all a £ A, y e Y, and

(3) m > 1, / G Stni t\, ... , tm £ T implies f(t\,..., tm) G T.

Let A = (A, T,,P,ao) be a top-down E-recognizer. For any a £ A, n > 0 and
any t £ Ts,n, the set A(a,t) (C Ts (A(X n))) is defined so that

(1) A(a,Xi) = {a(xi)} for all Xi £ Xn,

(2) for c G E0 , A(a,c) = { c } if a(c) —tc£P, and A(a, c) = 0 otherwise, and

(3) for m > 1, i = / (¿ i , . . •, tm),

A(a,t) = { / (s i , . . . , s m) | S! G A(ai,ti),... ,sm £ ^l(oTO,im),

a(f) -> f(au...,am) £ P}.

92 Zoltán Fülöp, Eija Jurvanen, Magnus Steinby, Sándor Vágvölgyi

For any s £ T±(A(X)) and any variable Zj £ X, we denote by st(s.Xj) the set of
states b E A such that b(xi) appears as a subterm in s.

Clearly, A(a, t) ^ 0 if and only if there is a computation of A which starts
at the root of t and continues successfully along all paths to the leaves of t, and
moreover, if A reaches in a state b (£ A) a leaf labelled by a nullary symbol c, then
the rule b(c) —» c is in P. Each term s in A(a, t) represents the situation when
such a successful computation has been completed so that all leaves labelled with
a nullary symbol have also been processed. If t £ then every s E A(ao, t) is of
the form s = i f a^Xi) , . . . , an(xn)] and for any tXl ... , tn £ Tz, the tree s appears
in a computation of A on t[t\,...,£„] of the form

a0[t[ti,... ,tn]) =>^i[ai (i i) , . . . ,an(£n)] = s[*i , . . . ,tn] • • •

in which each subterm tj is processed starting in the corresponding state ai. How-
ever, if t is not linear, then a variable Xi may appear in a term s £ A(ao, t) together
with more than one state symbol, and then the corresponding subterm tj should
be accepted by a computation starting with each a £ st(s,a;i).

Proof of Theorem 4.1. Consider a left-linear TRS 1Z = (E,i?) and any recog-
nizable S-tree languages T\ and T2. Let A = (A, S, Pi,ao) and B = (£?,£, P2;fro)
be top-down £-recognizers for which T(A) = Ti and T(B) = T2C (= T s \ T2). We
construct a generalized top-down E-recognizer C such that for any E-term t,

teT{C) iff t £ T(A) and s £ T(B) for some s £ lrNn{t). (*)

Then lr~N-ji(Ti) C T2 if and only if T(C) = 0, and the latter condition is decidable.
Let C = (C, E, P, (ao, {bo})) be the generalized top-down E-recognizer with the

state set
C = (Axp{B))U(Axp(B)),

where p(B) is the power set of B and A = { a | a £ v 4 . } i s a disjoint copy of A, and
the set P of transition rules is defined as follows. The rules are of three different
types.

Type 1. If p(xi, • • •, xn) r(x!,...,xn) is a rule in R and (a ,H) £ A x p(B),
where H = {&i , . . . , bk], we include in P any rule

(a, H){p{xi,..., xn)) p[(aj, i i i X x i) , . . . , (a„, Hn){xn)]

where

(a) p[a\ (x i) , . . . ,an(a;n)] £ A{a,p) and

(b) there are terms si £ B(bi,r), ... , sk £ B(bk,r) such that, for all i = 1,
. . . , n,

Hi = st(sj,Xi) U • • • U st(sk ,Xi) .

On One-Pass Term Rewriting 93

For H = 0 (k = 0), this is interpreted to mean that H\ = • • • — Hn = 0
should hold, and if p -4- r is a ground rule (n = 0), we include (a, H)(p) p
in P iff a{p) =>*Ap and bi(r) =$*Br for all i = 1 , . . . , k.

Type 2. Let N1 be the set of all terms q G Tx.,x such that

(1) hg(g) < max{ hg(p) | p G lhs(ft) } + 1, and

(2) o(q) ^ cr'(p) for all p G lhs(7£) and all substitutions a and a'.

For e a c h p (x i , . . . , x n) G N1 and any (a,H) G Axp(B) with H = {bi,... ,bk},
we include in P any rule

(a,H)(p(xi,... ,xn)) -»• p[(a,i, Hi)(xi),..., (an, Hn)(xn)],

where

(a) p[aL(a;i),.. . ,an(xn)} G A(a,p), and

(b) there are terms si G B{b\,p), ... , sk G B(bk,p) such that, for all i = 1,
. . . , n ,

Hi = st(si,Xi) U • • • U st(sk,Xi).

The cases H = 0 and n = 0 are treated similarly as above.

Type 3. For each (a, H) G Ax p(B), where H = {&i , . . . , bk], we add to P rules as
follows.

(1) For c G £o, we include in P the rule

(a, H){c) -»• c

if and only if a(c) —> c is in Pi and P2 contains l>i(c) —> c for every
bi G H.

(2) For / G £OT, m > 0, we add to P all rules

(5, H)(f(x1}...,xm)) -> f((ai,Hl)(x1),...,(am,Hm)(xm))

where
(a) a(f(x\,.. . ,£„ ,)) - » / (a i (x i) , . . . , a m (s m)) is in Pi, and
(b) there are rules bi{f(xi,..., xm)) f(bn(xi),...,bim(xm)) (i = 1,

... , k) such that for each j = 1, . . . , m, Hj = {&i j , . . . , £»fcj } .

We can show that C has the property described in (*). If t G T(C), then
(a0, {i>o})(i) ^ c * a n d this derivation can be split into two parts

(ao, {&o})№ i[(ai. H!)(ii), • • •, (a„, #„)(*„)] ¿[¿i , . . . , «„] = *, (**)

94 Zoltán Fülöp, Eija Jurvanen, Magnus Steinby, Sándor Vágvölgyi

where n > 0, t £ T-£tll and, for every 1 < i < n, t{ £ Tz and (a^, Hi) £ A x p(B).
In the first part of (**) only Type 1 rules are used, and hence t[a\ (: / ; i) , . . . , an(xn)]
£ A(a0, t). Moreover, for some k > 0, s £ T-£ik, and S], . . . , s;. £ T j ,

(i) = #{i[tu..., fn]) • • • s [# (s x) , . . . , # (**)] = s,

where every sj is a copy of exactly one of the ij. (Of course, Sj may be equal to
more than one £{.) For each i = 1 , . . . ,n, let K(i) = { j \ Sj is a copy of ij } . Then
for some u £ B(bo, s), Hi = |J{ st(u, Xj) | j £ K(i) } for all i = 1 , . . . ,n.

In the second part of (**), it is first checked using Type 2 rules that s [s i , . . . , Sfc]
£ lrN-R.(i), and the computations (a^, Hi)(ti) U are finished using Type 3 rules.
That means for every i = 1 , . . . , n, that (a) U £ T(A, en) and (b) i; £ T(B, b) for
all b £ Hi. Therefore

ao(t) ¿[al (¿l); • • • ! Qn(in)] t[tl ,...,£„] = t

and there are b\, ... £ B such that

6 0 (s [s i , . . . , Sfc]) =>b s [b l (s i) , . . . , bk{sk)] s [s i , . . . , Sfc].

The converse of (*) can be proved similarly. •
The corresponding result for sentential forms can be proved by modifying suit-

ably the definition of the recognizer C.

T h e o r e m 4.2. For any left-linear TRS H = (T,,R) , the following one-pass root-
started sentential form, inclusion problem is decidable.

Instance: Recognizable E-tree languages 7\ and T2 .
Question: lrSTi(Ti) C T2? •

P r o o f . Consider a left-linear TRS 71 = (£ , i ?) and any recognizable E-tree lan-
guages Xi and T2 . Let A = (A , E , P i , a 0) and B = (B,T,,P2,b0) be top-down
E-recognizers for which T{A) = Ti and T(B) = T 2 . We shall now construct a
generalized top-down E-recognizer V such that for any E-term t,

t £ T(D) iff t £ T(A) and s £ T(B) for some s £ lrSyi(t).

Then lrS-R(Ti) C T2 if and only if T{V) = 0, and the latter condition is decidable.
Let V = (C, E, P', (a0 , {bo})) be the generalized top-down E-recognizer, where

the state set is that of the recognizer C used in the proof of Theorem 4.1 and the set
P' of transition rules is defined as follows. All rules of C of Type 1 or of Type 3 will
be included also in P'. The rules of Type 2 are replaced by the rules (a, H)(c) —> c
and

(a, H)(f(x x,.. .,xm)) f((ai,Hi)(xi),..., (am, Hm){ xm))

which are identical to the Type 3 rules of C except that the a's have no bars in the
left-hand sides.

The recognizer V is almost the same as C, but it may stop following the chosen
one-pass root-started reduction of 1Z at any moment and switch to states in which

On One-Pass Term Rewriting 95

it checks whether the input tree is in T(A) and whether the one-pass root-started
sentential form produced by the corresponding simulated reduction sequence of 7Z
is in T(B). •

5 The one-pass leaf-started inclusion problems
First we consider the one-pass leaf-started sentential form inclusion problem. Again
the tree languages are assumed to be given in the form of tree recognizers.

T h e o r e m 5.1. For any left-linear TRS 1Z — (E,iZ), the following one-pass leaf-
started sentential form inclusion problem is decidable.

Instance: Recognizable S-tree languages Ti and T2.
Question: 1£SK(TI) C T2?

Proof . Let A = (A, E, Pi, Af) and B = (B , E , P 2 , 5 /) be bottom-up £ -
recognizers that recognize the tree languages Ti and T2, respectively. We may
assume that B is total deterministic. We construct a generalized bottom-up £ -
recognizer C such that T(C) = 0 if and only if l£S-n(Ti) C T2. This recognizer
C = (C,S,P,Cf) is defined as follows.

(1) Let C = (A x B) U (A x B), where A = { a | a E A} and B = {b \b E B).

(2) The set P consists of the following rules which are of three different types.

Type 1. For every rule p -> r E Re with p, r E T-£,n, n > 0, and for all states
ai, ... , an, a E A, bi, ... , bn, b E B such that p [a i , . . . ,an] and
r [6 i , . . . , bn] b, let P contain the rule p[(ai, &i) , . . . , (an , bn)] —>• (a, b).

Type 2. For all a E A and b E B, let (a, b) -t (a, b) be in P.
Type 3. For all / E £TO with m > 0, all a i , . . . , am, a E A and bi,..., bm, b E B

such that / (a i , . . . , a m) —> a E Pi and f{bi,...,bm) —> b E P-2, let P
contain the rule / ((a i , 6i), • • •, (a m ,b m)) (a, b).

(3) Let Cf = { a \ a E Af } x { b | b E {B \ Bf) }.

The way C processes a E-tree t can be described as follows. First C, using rules
of Type 1, follows some one-pass leaf-started rewriting sequences by 1Z on subtrees
of t computing in the first components of its states the evaluations by A of these
subtrees and in the second components the evaluations by B of the translations of
the subtrees produced by these one-pass leaf-started rewriting sequences. At any
time C may switch by rules of Type 2 to a mode in which it by rules of Type 3
computes in the first components of its states the evaluation of t by A and in the
second components the evaluation by B of the one-pass leaf-started sentential form
of t produced by 7Z when the rewriting sequences on the subtrees are combined.
This means that for any t E Xs, a E A and b E B,

t=>c(a,b) iff t a and s b for some s E l£S-ji(t)-

96 Zoltán Fülöp, Eija Jurvanen, Magnus Steinby, Sándor Vágvölgyi

By recalling the definition of Cf we see that the above equivalence implies imme-
diately that T(C) = 0 if and only if USn(Tx) C T2, as required. •

Finally we consider the one-pass leaf-started normal form inclusion problem.

Theorem 5.2. For any left-linear TRS TZ = (E, /?,), the following one-pass leaf-
started normal form inclusion problem is decidable.

Instance: Recognizable E-tree languages Tx and T2.
Question: 1£Nn{T x) C T2?

Proof. Let A = {A,T,,Pi,Af) and B = (B,T,,P2,Bf) be total deterministic
bottom-up E-recognizers such that T(A) = Tx and T(B) = T2. We shall construct a
generalized bottom-up E-recognizer C such that T(C) = 0 if and only if 11 N-r.(Ti) C
T2.

Let mx = max{ hg(p) | p £ lhs(7£e) } and let Tmx = { t £ | hg(i) < mx }.
Now we define C = (C, E, P, Cf) as follows.

(1) C = (A x B)U(A x B x (Tmx U {ofc})), where A = {a \ a £ A} and
B = {b I b £ B}.

(2) P consists of the following rules which are of five different types.

Type 1. For every rule p r £ Re with p, r £ Ts i n , and any states ax,
..., an, a £ A, bi, ..., bn, b £ B such that p[ax,... ,an] a and
r [6 i , . . . , bn] =>*B b, let P contain the rule f>[(ai, £>i),..., (an , 6„)] -> (a, b).

Type 2. For all a £ A and b £ B, let (a, b) (a, b, xx) be in P.

Type 3. For any / 6 E m with m > 0, ax, ... , am, a £ A, bx, ... , bm, b £ B and
Ul, ... , Urn £ Tmx such that f(ax,..., am) a £ Px, f(bx,..., bm)
b £ P2, u = ||/(MI, • • •,Um)|| and u G TfYix \ lhs(7^e), let P contain the
rule f((di,bi,ux),..., (am,bm,um)) (a,b,u).
In case m = 0, the rule has the form / —> (a, b, /).

Type 4- For any / 6 E m with m > 0, ai, . . . , am, a £ A, bx, ... , bm,
b £ B and ui, . . . , um £ Tmx such that f(ax,... ,am) —> a £ Px,
f(bi, • • • ,bm) b e P2 and ||/(ui,... !Wm)|| ^ Tmx, let P contain the
rule / ((a i , 6 i , u i) , . . . , (a m , 6 m , u m)) (a,b,ok).

Type 5. For any / £ £ m with m > 1, ax, ... , am, a £ A, bx, ... , bm, b £ B,
and sequence yx, ... , ym £ Tmx U {ok} such that ok £ {yx,... ,ym},
f(ax,...,am) —¥ a £ Px, f(bx,...,6m) —> b 6 P2, let P contain the rule
f((ax,bx,yi),-- •, (dm,bm,ym)) (a, b, ok).

(3) Let Cf = {a \ a £ Af} x {b \ b £ (B \ Bf) } x (TmxU{ok}).

The recognizer C evaluates an input tree t by rules of Type 1 so that it simulates
both the computation by A on subtrees of t and the computation by B on the
translations of those subtrees produced by TZ. Then C checks that the sentential
form produced from t by the computation with TZ is a normal form. For this C

On One-Pass Term Rewriting 97

switches by rules of Type 2 into a mode in which it, by rules of Type 3, forms in
the third components of its states sufficiently large portions of the tree above the
nodes where the rewriting with 7Z ended. If one of these parts turns out to be the
left-hand side of a rule of 7Z, then the evaluation by C stops and t is rejected. If not,
then the sentential form produced by 1Z is a normal form, which is acknowledged by
rules of Type 4 by putting ok in the third components of the corresponding states
of C. Then C evaluates t in the same way as it was done in the proof of Theorem
5.1 by rules of Type 3.

This means that for any t £ Ts, a £ A, b £ B, and y £ Tmx U {ok},

t=>*c(a,b,y) iff t=>*Aa and s=>gb for some s £ 1*N-R,(i).

Thus T(C) = 0 if and only if C T2. •

References
[Ave95] J. Avenhaus. Reduktionssysteme. Springer, 1995.

[DDC87] M. Dauchet and F. De Comité. A gap between linear and non-linear term-
rewriting systems. In Rewriting Techniques and Applications, (Proc.
Conf., Bordeaux, France, May 25-27, 1987), Lect. Notes Comput. Sci.
256. Springer, 1987, 95-104.

[DG89] A. Deruyver and R. Gilleron. The reachability problem for ground
TRS and some extensions. In TAPSOFT'89, (Proc. Conf. CAAP'89,
Barcelona, Spain, March 1989), Lect. Notes Comput. Sci. 351. Springer,
1989, 227-243.

[DJ90] N. Dershowitz and J.-P. Jouannaud. Rewrite Systems, volume B of Hand-
book of Theoretical Computer Science, chapter 6, pages 243-320. Elsevier,
1990.

[ES77] J. Engelfriet and E. M. Schmidt. 10 and 01. I. J. Comput. Syst. Sci.,
15 (3) :328—353, 1977.

[ES78] J. Engelfriet and E. M. Schmidt. IO and OI. II. J. Comput. Syst. Sci.,
16(l):67-99, 1978.

[FJSV98] Z. Fülöp, E. Jurvanen, M. Steinby, and S. Vágvölgyi. On one-pass term
rewriting. In MFCS'98, (Proc. Conf., Brno, Czech Republic, August
1998), Lect. Notes Comput. Sci. 1450. Springer, 1998, 248-256.

[Gil91] R. Gilleron. Decision problems for term rewriting systems and recog-
nizable tree languages. In STACS'91, (Proc. Conf., Hamburg, Germany,
February 14-16, 1991), Lect. Notes Comput. Sci. 480. Springer, 1991,
148-159.

98

[GS84]

[GS97]

[GT95]

[G V 98]

[HH94]

[Hue80]

[KT95]

[VG92]

Zoltán Fülöp, Eija Jurvanen, Magnus Steinby, Sándor Vágvölgyi

F. Gécseg and M. Steinby. Tree automata. Akadémiai Kiadó. Budapest.
1984.

F. Gécseg and M. Steinby. Tree Languages, volume 3 of Handbook of
Formal Languages, chapter 1, pages 1-68. Springer, 1997.

R. Gilleron and S. Tison. Regular tree languages and rewrite systems.
Fundam. Inf., 24(1,2):157-175, 1995.

P. Gyenizse and S. Vágvölgyi. Linear generalized semi-monadic rewrite
systems effectively preserve recognizability. Theor. Comput. Sci., 194(1-
2) :87—122, 1998.

D. Hofbauer and M. Huber. Linearizing term rewriting systems using
test sets. J. Symb. Comput., 17(1):91-129, 1994.

G. Huet. Confluent reductions: Abstract properties and applications to
term rewriting systems. J. ACM, 27(4):797-821, 1980.

G. Kucherov and M. Tajine. Decidability of regularity and related prop-
erties of ground normal form languages. Inf. Comput., 118(1):91-100,
1995.

S. Vágvölgyi and R. Gilleron. For a rewrite system it is decidable whether
the set of irreducible, ground terms is recognizable. Bull. EATCS,
48:197-209, 1992.

Acta Cybernetica 14 (1999) 105-115.

A note on the star-product*

Balázs Imreh t Masami Ito *

Dedicated to Professor Ferenc Gécseg on the occasion of his 60th
birthday

Abstract
In this paper, we compare the repesenting power of the stax-product and

the members of two product hierarchies, namely, the a,-products, ¿ = 0,1,. . .
and the k,-products, j = 1,2,.... In particular, it is proved that the star-
product is not isomorphically (homomorphically) more general than any mem-
ber of this two product families.

The family of the a^-products, i = 0 ,1 , . . . , is introduced by F. Gécseg in [3],
and a systematic summarizing of the results concerning this product family can be
found in the monography [4]. Another product family, the ^-products, j = 1 ,2 , . . .
appears in [2]. Finally, a further product called star-product is studied by M.
Tchuente in [8]. The comparison of the representing power of different compositions
was initiated by F. Gécseg in [3]. Here, following the idea suggested by him, we
compare the representing power of the star-product and the members of the two
product families for both the isomorphic and homomorphic representations, and
it is shown that the star-product is not isomorphically (homomorphically) more
general than the members of the considered families. The inverse problems remain
open.

The paper is organized as follows. First, we recall the basic notions and notation.
Then, we compare the star-product with the «{-products, finally, we compare the
star-product with the ¡^-products.

By an automaton we mean a triplet A = (A, X, <5) where A and X are finite
nonempty sets, the set of the states and the set of the input symbols, respectively,
and ő : A x X —> A is the transition function. An automaton A can be also defined
as an algebra A = (A , X) in which each input symbol is realized as the unary
operation xA : A —» A, a —> ő(a, x). Using the latter definition, the notions such as
subautomaton, isomorphism, and homomorphism can be defined in the usual way.

*This work has been supported by the Hungarian National Foundation for Scientific Research,
Grant T 014888, the Ministry of Culture and Education of Hungary, Grant FKFP 0704/1997,
the Japanese Ministry of Education, Mombusho International Scientific Research Program, Joint
Research 10044098

tDepartment of Informatics, József Attila University, Árpád tér 2, H-6720 Szeged, Hungary
•Department of Mathematics, Faculty of Science, Kyoto Sangyo University, Kyoto 603, Japan

99

100 Balazs Imreh, Masami Ito

To define the «¿-product, let i > 0 be an arbitrarily fixed integer. Let At =
(At,Xt), t = 1 be automata. Take a nonempty finite set X and a family
of mappings (pi : Ai x • • • x At+i-\ x X —> Xt, t = 1 , . . . , k. By the cti-product
B = n L i A.t(X,<p) we mean the automata dltLi At,X) defined by

(a i , . . . ,a / t)x B = (a i x * 1 , . . . ,a,kx£k)

where xt = <pt(ai,... ,at+i-i,x), t = 1 , . . . , k, for all (a i , . . . , ak) G n i L i At and
x G X. We note that ipx has the form (pi : X —> X\ when i = 0.

A further product family, the ^-products, j = 1 ,2 , . . . , was introduced in [2].
To define this kind of product, let j be an arbitrary positive integer. Then, the
i>j-product of automata can be defined in a similar way as the a^-products, but the
family of mappings has the following form:

(pt : Ai x • • • x Ak x X Xt, t = l,...,k,

where each mapping depends on at most j state variables.
A summarizing on the comparisons of the members of the two product families

under both isomorphic and homomorphic representations can be found in [1].
To define the star-product, let the automata A t = (At,Xt), t = 1 , . . . , k, be

given. Take a nonemty finite set X and a family of mappings ipi : Ax x • • • x Ak x
X Xi and <pt : Ai x At x X Xt, t = 2 , . . . , k. By a star-product A = (A, X) =
]~[j=1 A t (X , (p) (see e.g. [6] or [8]) we mean the automaton (IltLi At,X) where

(a1,...,ak)xA = (azf1,... ,akx£k)

with xi = <fi(ai,... ,aklx) and xt = ipt(a\,at,x), t = 2 , . . . ,k, for all x e X and
(a ! , . . . , ^) G n L i ^ s -

Now, let (3 denote one of the products defined above. If in a /^-product each
component automaton is equal to a given automaton, then this /3-product is called
a P-power. For an arbitrary set K, of automata, let us denote by

Sp(IC) the ¿(-products of automata from /C,
H(K.) the homomorphic images of automata from /C,
7(/C) the isomorphic images of automata from IC,
S(K.) the subautoma of automata from fC.

The class IC is called isomorphically (homomorphically) complete with respect to
the /3-product if ISPp(IC) (HSPp(K.)) is the class of all automata.

Let 7 denote one of the products introduced in this paper and which differs
from p. It is said that /3 is isomorphically (homomorphically) more general than
the 7-product if ISP7(/C) C ISP0{K.) (HSP7(IC) C HSPp(IC)) is valid for every set
IC of automata, moreover, there exists a set /Co of automata such that ISP7(ICo) C
ISP0(IC0) (HSP7(IC0) C HSPp(IC„)).

A note on the star-product 101

Now, we are ready to present our results. Regarding the «¿-products and iso-
morphic representation, the following statement is valid.

Theorem 1. The star-product is not isomorphically more general than the a.i-
product, for all i, i = 0,1....

Proof. For an arbitrary positive integer n, let us define the automaton I n =
({ 1 , . . . , n} , {a;}) by nxln = n and jxln = j + 1, j = 1 , . . . , n - 1. Furthermore, let
the automaton E = ({0,1} , {x,y}) be defined by 0yE = 0, 0xE = lxE = 1 yE = 1.
It is known (c/. [4] or [7]) that JC = { E } is isomorphically complete for the class of
nilpotent automata with respect to the ao-product, i.e., every nilpotent automaton
can be embedded isomorphically into an ao-power of E. Hence, I „ G / S P a o ({ E }) ,
for every positive integer n.

Now, we will show that if I n € ISPstar({E}), then n < 4. For this purpose,
let us suppose that I „ can be embedded isomorphically into a star-power A =
FIí=i Et({a;}, y) where E¡ denotes the i-th copy of E. Without loss of generality,
we may assume that s is minimal with this property, i.e., if I n is isomorphic to a
subautomaton of a star-power of E, then the number of the factors of the star-power
considered is at least s. Let ¡x be a suitable isomorphism and fi(j) = (aji,..., ajS),
j = 1 , . . . , n. If au = 1 for some t G { 1 , . . . , s} , then a,jt = 1, j — 1 , . . . , n, by the
definition of E. Then, Et can be omitted from the star-product A which contradicts
the minimality of s. Consequently, we may assume that oi t = 0, t = l , . . . , s .
Furthermore, let us observe that if a-jr = riji, j = 1 ,...,n, for some integers
r jí t G { l , . . . , s } , then omitting one of the automata E r and E¿, the automaton I n

can be embedded isomorphically into the remaining star-product which contradicts
the minimality of s. Therefore, we may assume that the vectors (au, 1, • • •, ant)T,
t = 1 , . . . ,s, are pairwise different and none of them is equal to the n-dimensional
zero vector. Now, let us classify the automata E 2 , E 3 , . . . ,ES into the classes Mx

and M2 dependig on the values of the mappings </?2, ip3,..., <ps as follows:

Mi = {E¿ : 2 < t < s k <Pt(0,0, x) = x),

M2 = {Et:2<t<s k <pt(0,0,x) =y}.

If E t € Mi, then let us observe that (au,..., ant)T = (0 ,1 , . . . , 1), and hence, the
star-product A may contain at most one element from Mi , by the minimality of
s. If E t G M2 , then there are two possibilities for ipt(1,0, x). If (¿>¿(1,0, x) = y,
then (<zit, • • • > ant)T = (0 , . . . , 0), and therefore, <pt(1,0, x) = x must hold, by the
minimality of s. But in this case, au = a2t = • • • a»t = 0, a¿+i,t = • • • = ant = 1
for some i > 2, provided that an = a2i = . . . = a¿_2)i = 0 and a¿_i_i = . . . =
ani = 1. Hence, the star-product A may contain only one automaton from M2.
Consequently, s < 3. Now. it is easy to see that starting from the 3-dimensional zero
vector, (0,0,0)(a;a;)A = (1,1,1) if a2i = 1 and (0,0,0)(a;a;a;)A = (1,1,1) if a2i = 0
and a3i = 1, furthermore, a2x = a31 = 0 is impossible. Thus, n < 4 which yields
that ISPao({E}) g /SP s t a r ({E}) . On the other hand, / 5 P « 0 ({ E }) C ISPai ({E }) ,

102 Balazs Imreh, Masami Ito

for all i, i = 0 ,1 , . . . , and henee, ISPa¡{{E}) <£ ISPstar({E}) is valid for every
nonnegative integer i. This completes the proof of our statement.

Remark 1. It is an open problem whether there exists a nonnegative integer i
such that the a¿-product is isomorphically more general than the star-product.

Regarding the homomorphic representation, the following statement is valid.

Theorem 2. The star-product is not homomorphically more general than the o.i-
product, for all i, ¿ = 0,1,....

Proof. For arbitrary integers k > 0 and I > 0, let the automaton 3¡¿,i =
({1,... ,k,k + 1,... ,k + I}, {a;}) be defined by (k + l)xJh-' = k and jx3"-' = j + 1,
j = 1 , . . . , k + I - 1. Then, it can be easily seen that I „ £ HSPstar({E}) if and
only if Jfct¡ £ / 5 P s t a i ({E }) for some k > n and I > 0. By the proof of Theorem 1,
Jk,i e J5P s tar({E}) implies k < 4. Therefore, I n £ HSPstar({E}) yields that n < 4.
On the other hand, ISPao({E}) C HSPao({E}), and thus, I n £ # S P Q o ({ E }) for
every positive integer n. Now, we can obtain the validity of Theorem 2 in a similar
way as above.

Remark 2. It is an open problem whether there is a nonnegative integer i such
that the »¿-product is homomorphically more general than the star-product.

Regarding the ¡/j-products, we have the following assertion for the isomorphic
representation.

Theorem 3. The star-product is not isomorphically more general than the Vj-
product, for all j, j = 1,2,

Proof. For an arbitrary positive integer n, let us define the automaton C n =
({ 0 , 1 , . . . , n — 1}, {x}) by ixc" = i -I-1 (mod n). Cn is called a counter of length n.
Furthermore, let B = ({0 ,1) , {x,y}) be defined by 0z B = lx13 = 1, 1 yB = 0yB = 0.
We show that C n £ ISPUi({B}) is valid for every positive integer n. For this
purpose, let n be an arbitrary positive integer. Let us form the ^i-power B " ({x } , tp)
as follows. For every (ax,..., an) £ {0 ,1 } " and t £ { 2 , . . . , n} , let

Then, it is easy to prove that C „ can be embedded isomorphically into the
defined /^i-power, Bn({n; j , <p). For example, /t is an appropriate isomorphism where
[L is defined by

and

M(0) = (1 ,0 ,0 , . . . ,0,0)

A note on the star-product 103

M l) = (0 ,1 ,0 , . . . , 1,1)

M (n - 1) = (0,0,0, . . . , 0 , 1)

Now, we show that if C „ € /SP s t a r ({B}) , then n < 2 2 5 - 1 . For this pur-
pose, let us suppose that C n can be embedded isomorphically into a star-power
A = rit=i ^ ({ ^ I j v) where B t denotes the t-th copy of B. We may assume
that s is minimal with this property. Let p, be a suitable isomorphism and
¡j,(i) = (a a , . . . , a,iS), i = 0 ,1 , . . . n — 1. Let us classify the automata B 2 , B 3 , . . . , B 5 ,
into the classes Mr>Zl) i2>Z3iZ4, r £ {0 ,1} , zi £ {x,y}, I = 1 , . . . ,4 where

Mr,zi,z2,z3,z4 — {Bt . 2 < t < s k r = Oo,t k ipt(0,0,1) = zi k
\

(ft(0, l,x) = z2 k <pt(l,0,x) = z3 k ipt{l, l,x) = z4)

It is easy to show that if B u and are the same class for some integers u, v £
{ 2 , 3 , . . . , s } , then one of them can be omitted from the star-product considered
which contradicts the minimality of s. Consequently, A may contain at most one
factor from each class. Then, s < 25 + 1, and therefore, n < 22 + 1 . From this
it follows that ISPV1({B}) £ / 5P s t a r ({B }) . On the other hand, by the definition
of the i^-products, ISPV1({ B }) C ISPVJ({B}), for all j, j = 1 ,2 , . . . , and hence,
ISPVj ({ B }) £ 7SP s tar({B}) is valid for every positive integer j.

Remark 3. It remains an open problem whether there exists a positive integer j
such that the ^-product is isomorphically more general than the star-product.

For the homomorphic representation, we can conclude the following assertion.

Theorem 4. The star-product is not homomorphically more general than the Vj-
product, for all j , j = 1 , 2 ,

Proof. Since ISPVr{{B}) C HSPVl{{B}), we have C „ e HSPVi{{B}), for every
positive integer n. On the other hand, it is easy to see that C „ £ HSPstar({B})
if and only if C m 6 ISPstar({B}) for some multiple m of n. Thus, by the proof of
Theorem 3, we obtain that C „ £ HSPst:ir({~B}) implies n < 22 + 1 . This results in
HSPVl{{B}) £ HSPstwiiB}), and then, by the definition of the ^-product, we
obtain the validity of Theorem 4.

Remark 4. It is an open problem whether there is a positive integer j such that
the i/j-product is homomorphically more general than the star-product.

Conjecture. We think so that the problems presented as open ones have nega-
tive answers, and thus, the star-product is incomparable with the members of the
considered product families with respect to both the isomorphic and homomorphic
representations. The proof of this conjecture may need further deep investigations.

104 Balazs Imreh, Masami Ito

References
[1] Dömösi, P., Z. Esik, B. Imreh, On product hierarchies of automata, Proceed-

ings of the 7th Conference on Fundamentals of Computation Theory, Szeged,
LNCS 380, Springer-Verlag, Berlin, 1989, 137-144.

[2] Dömösi P., B. Imreh, On i/j-products of automata, Acta Cybernetica 7 (1983),
149-162.

[3] Gecseg, F., Composition of automata, Proceedings of the 2nd Colloquium on
Automata, Languages and Programming, Saarbrücken, LNCS 14, Springer-
Verlag, Berlin, 1974, 351-363.

[4] Gecseg, F., Products of automata, Springer-Verlag, Berlin-Heidelberg-New
York-Tokyo, 1986.

[5] Gecseg, F., On i/i-products of commutative automata, Acta Cybernetica 7
(1985), 55-59.

[6] Gecseg, F., B. Imreh, On star-products of automata, Acta Cybernetica 9
(1989), 167-172.

[7] Imreh, B., On finite nilpotent automata, Acta Cybernetica 5 (1981), 281-239.

[8] Tchuente, M., Computation on finite network of automata, in: C. Choffrut
(Ed.), Automata Networks, LNCS 316, Springer-Verlag, Berlin, 1986, 53-67.

Acta Cybernetica 14 (1999) 105-115.

Directable nondeterministic automata*

B. Imreh f M. Steinby *

Dedicated to Professor Ferenc Gecseg on the occasion of his 60th
birthday

Abstract
An automaton is directable if it has a directing word which takes it from every
state to the same state. For nondeterministic (n.d.) automata directability
can be defined in several meaningful ways. We consider three such notions.
An input word w of an n.d. automaton A is

(1) Dl-directing if the set of states aw in which A may be after reading
w consists of the same single state c for all initial states a;

(2) D2-directing if the set aw is independent of the initial state a;
(3) D3-directing if some state c appears in all of the sets aw.

We consider the sets of D1-, D2- and D3-directing words of a given n.d.
automaton, and compare the classes of D1-, D2- and D3-directable n.d. au-
tomata with each other. We also estimate the lengths of the longest possible
minimum-length D1-, D2- and D3-directing words of an n-state n.d. automa-
ton. All questions are studied separately for n.d. automata which have at
least one next state for every input-state pair.

1 Introduction
An input word w is called a directing (or synchronizing) word of an automaton A
if it takes A from every state to the same fixed state, i. e. if there is a state c such
that aw = c for all states a of A. An automaton is directable if it has a directing
word. Directable automata and directing words have been studied extensively in the
literature from various points of view (c/. [1],[3], [4],[8],[9], [10],[11], for example).
The main challenge from the very beginning has been Cerny's Conjecture [3] which
claims that any n-state (n > 1) directable automaton has a directing word of length
(n — l)2 or less. The bound suggested by the conjecture is the lowest possible,
but the best known upper bounds are of order 0(n3), and the conjecture remains

"This work has been supported by the Hungarian National Foundation for Scientific Research,
Grant T014888, the Hungarian-Finnish S & T Co-operation Programme for 1997-1999, Grant
SF-10/97 and the Ministry of Culture and Education of Hungary, Grant PFP-4123/1997.

tDepartment of Informatics, József Attila University, Árpád tér 2, H-6720 Szeged, Hungary
*TUCS and Department of Mathematics, University of Turku, FIN-20014 Turku, Finland

105

106 B. Imreh, M. Steinby

unsettled. On the other hand, for some special classes of automata even better and
accurate bounds have been found (cf. [8],[9],[10],).

For nondeterministic (n.d.) automata directability can be defined in several
meaningful ways three of which we will study here. An input word w of an n.d.
automaton A is

(1) Dl-directing if the set of states aw in which A may be after reading w
consists of the same single state c whatever the initial state a is;

(2) D2-directing if the set aw is independent of the initial state a;
(3) D3-directing if there exists a state c which appears in all sets aw.

The Dl-directability of complete n.d. automata was already studied by
Burkhard [1]. In a paper [6] on games of composing relations on a finite set Goralcik
et ai, in effect, considered Dl- and D3-directability and also two special types of
D2-directability for general n.d. automata. In [1] an exact exponential bound for
the length of minimum-length Dl-directing words of complete n.d. automata was
given, and in [6] it was shown that neither for Dl - nor for D3-directing words the
bound can be polynomial for general n.d. automata, and that the same holds for
the two special types of D2-directability considered. On the other hand, Carpi [2]
has found 0 (n 3) bounds for Dl-directing words of unambiguous automata and for
synchronizing pairs of maximal rational codes recognized by such automata.

In this paper we consider the three types of directability from several points of
view both for complete n.d. automata and for general n.d. automata. Section 2
contains the general preliminaries. In Section 3 we give the formal definitions of
D1-, D2 and D3-directing words and study the sets of Di-directing words of a given
automaton (i = 1,2,3). Moreover, a diagram showing the inclusion relationships
between the various classes of directable n.d. automata is presented. In Section 4
we study the preservation of directability properties when one forms subautomata,
epimorphic images or finite direct products of n.d. automata. Finally, in Section 5
we derive lower and upper bounds for the lengths of the shortest directing words
of the three different types. For Dl-directing words it only remained to note that
Burkhard's exact value applies also to general n.d. automata. For D2- and D3-
directing words exponential lower bounds are obtained by utilizing an idea used in
[6], and by considering recognizers of the sets of D2- or D3-directing words of a
given automaton we get also upper bounds for them. The gaps between the lower
bounds and the upper bounds are, however, considerable. Here the D3-directing
words of complete n.d. automata form a notable exception: for them we obtain a
lower bound of order 0(n2) and an upper bound of order 0 (n 3) .

2 Preliminaries
The cardinality of a set A is denoted by |A|. If f : A —^ B is a mapping, the image
f(a) of an element a € A is often denoted by af. Similarly, we may write Hf for
f(H) = {af : a e H) when H C A. The composition of two mappings / : A B

Directable nondeterministic automata 107

and g : B —> C is the mapping fg : A —> C, a (a f) g , and the product of two
relations 6 C A x B and p C B x C is the relation

6p = {(a, c) 6 A x C : {3b £ B) a6b, bpc}

from A to C; that (a, b) £ 9 holds is also expressed by writing aOb.

In what follows, X is always a finite nonempty alphabet. The set of all (finite)
words over X is denoted by X* and the empty word by e. The length of a word w
is denoted by lg(w).

An automaton is a system A = {A,X,S), where A is a finite nonempty set of
states, X is the input alphabet, and S : A x X —> A is the transition function. The
transition function is extended to A x X* in the usual way. A recognizer is a system
A = (A, X, S, ao, F), where (A,X, 5) is an automaton, oo(€ A) is the initial state,
and F(C A) is the set of final states. The language recognized by A is the set

L{A) = { w e r : S(a0,w) £ F}.

A language is called recognizable, or regular, if it is recognized by some recognizer.
The set of all recognizable languages over the alphabet X is denoted by Rec(X) .

An automaton A = {A, X, 5) can also be defined as an algebra A = {A, X) in
which each input letter x is realized as the unary operation xA : A A, a M-
S(a,x). Nondeterministic automata may then be introduced as generalized au-
tomata in which the unary operations are replaced by binary relations. Hence
a nondeterministic (n.d.) automaton is a system A = (A , X) where A is a fi-
nite nonempty set of states, X is the input alphabet, and each letter X(E X) is
realized as a binary relation xA(C A x A) on A. For any a £ A and x & X,
axA = {b £ A : (a, b) £ xA} is the set of states into which A may enter from
state a by reading the input letter x. For any C C A and x £ X, we set
CxA = U {axA : a £ C}. For w £ X* and CCA, CwA is obtained inductively
thus:

(1) CeA = C;

(2) CwA = (CvA)xA for w = vx, v £ X* and x £ X.

If w £ X* and a £ A, let awA = {a}wA. This means that if w = XiX2 • • • Xk, then
WA = xAxA... xA(C A x A). If C is the set in which A could be at a certain
moment, then by the usual interpretation of nondeterminism CwA is the set of
possible states after A has received the input word w. When A is known from the
context, we usually write simply aw and Cw for awA and CwA, respectively.

An n.d. automaton A = (A, X) is complete if axA ^ 0 for all a £ A and x £ X.
Complete n.d. automata are called c.n.d. automata for short. In what follows,
we denote a deterministic automaton by A = (^4,X,(5) and a nondeterministic
automaton by A = {A, X).

108 B. Imreh, M. Steinby

3 Directable nondeterministic automata
An automaton A = {A, X, S) is said to be directable if it has a directing word
iu{£ X*) such that 5(a,w) = S(b,w) for all a,b £ A (cf. [3],[4], [8],[11], for ex-
ample). Hence a directing word sends the automaton to a known state which is
independent of the present state. This idea can be extended to n.d. automata
in several nonequivalent ways. In the following definition three natural notions of
directability of n.d. automata are introduced.

Definition 3.1. Let A = (A , X) be an n.d. automaton. For any word w £ X* we
consider the following three conditions:

(Dl) (3c £ .4)(Va £ A)(aw = {c }) ;
(D2) (Va,6 £ A)(aw = bw)\

(D3) (3c 6 A)(Va £ A) (c£ aw).

If w satisfies (Di), then w is a Di-directing word of A (i = 1,2,3). For each
¿ = 1,2,3, the set of Di-directing words of A is denoted by Dj(^t), and A is called
Di-directable if Dj(.4) ^ 0. The classes of Dz-directable n.d. automata and c.n.d.
automata are denoted by Dir(z) and CDir(i) , respectively.

A Dl-directing word drives the n.d. automaton from any state, or any nonempty
set of states, to some fixed state. D2-directability generalizes the notion of di-
rectability in the sense that after reading a D2-directing word the set of possible
states is independent of the starting state. In fact, if w £ D2(-4), then the set CwA

is independent of C(C A) as long as C ^ 0. Finally, if w is a D3-directing word
of A — (A, X), then at least one state in CwA is known even if the initial set C
of possible states is unknown, but nonempty. Of course, if the n.d. automaton is
complete, the current set of possible states is always nonempty.

In [1] Burkhard considered Dl-directing words ("homogeneous experiments")
for complete n.d. automata. The game of composing a constant relation from a
set of relations studied in [6] amounts to the forming of a Dl-directing word for an
n.d. automaton, and other variants of such games correspond our D3-directability
and two special types of D2-directability.

Let us begin the study of the relationships between the various notions of di-
rectibility by considering the directing words of a given n.d. automaton A = (A,X).
For this purpose and future use we define the n.d. automata Ai, A2, A3 and A4
by the following transition tables:

-4i X X y A3 X A4 X 1J

1 2 1 2 - 1 1,2 1 1,2 -
2 1,2 2 1 - 2 2 2 2

It is clear that any Dl-directing word is also D2- and D3-directing. Moreover,
the inclusion Di(.4i) C Ü2(.4i)nD3(.4i) is proper since the word xx is D2- and D3-
directing, but not Dl-directing. That D2(.4) and D3(.4) may be incomparable can

Directable nondeterministic automata 109

be seen by considering the n.d. automaton A j ; obviously x G D3(^44) \ D 2 (A i) and
y G T>2{A4) \D3 (AI)- On the other hand, it is clear that DI(.4) C T)2{A) C D3(.A)
for any c.n.d. automaton A• That both of these inclusions may be proper can be
seen by considering the c.n.d. automaton Ai . These observations may be summed
up as follows.

Remark 3.2. For any n.d. automaton A, Di(.4) C D2(.4) n D3(.4), and if A is
complete, then Di(.A) C D2(.4) C D3(.4). Moreover, any one of the inclusions may
be proper.

The following observations are also easily verified.

Remark 3.3. For any n.d. automaton A = (A,X), T>2(A)X* = D2(.A). If A
is complete, then X*Di(.4) = Dj(.4), X*D2(A)X* = D2(.4), and X*D3(A)X* =
DsM).

Next we note that the directing words of each type of any given n.d. automaton
form a regular language.

Proposition 3.4. For any n.d. automaton A, the languages Di(»4) ; D2(.4) and
D3(.4) are (effectively) recognizable-

Proof. Let A = {A,X) be any n.d. automaton. Suppose that A has n states
and let A = { a i , . . . , a „ } . First we define an automaton B = (B,X,5) so that
B = {{axuA,..., anuA} :ueX*} and <*({Ci,.. . , Ck},x) = {CxxA,..., CkxA} for
all { C i , . . . , Ck} G B and x G X. Furthermore, let b0 = { { a j } , . . . , { a n } } (G B). It
is clear that 5(b0,u) = {aiuA,..., anuA} for every u e X*. Hence L(Bi) = DJ(.4)
for Bi = (B,X,S,bo,Fi), i = 1,2,3, when we set Fx = { { { c } } : c e A} n B,
F2 = { { C } : C C A} fl B and JF3 = { { C i , . . . , Ck] : Cx D ... D Ck ± 0} n B. The
constructions of the recognizers Bj, B2 and B3 are clearly effective.

Corollary 3.5. The D1-, D2- and D3-directability of an n.d. automaton are
decidable properties.

Next we investigate the relationships between the various classes Dir(z) and
CDir(i).

Proposition 3.6 The pairwise inclusion relations between the classes Dir(i) and
CDir(z), i — 1,2,3, are given by the Hasse diagram shown in Figure 1. All inclu-
sions are proper and the pairwise intersections are as indicated by the diagram.

Proof. Since A2 G Dir(2)\Dir(3) and A3 G Dir(3)\Dir(2), the classes Dir(2) and
Dir(3) are incomparable and Dir(2)flDir(3) is contained properly in both of them.
The inclusion Dir(l) C Dir(2)nDir(3) follows from Remark 3.2, and its properness
is witnessed by Ax. The inclusions CDir(l) C CDir(2) C CDir(3), also implied by
Remark 3.2, are proper since Ax G CDir(2)\CDir(l) and A3 G CDir(3)\CDir(2).
It is clear that CDir(z) C Dir(i) for every i = 1,2,3, and it follows now directly
from the definitions that the intersections of all pairs of classes are correctly given
by the diagram.

110 B. Imreh, M. Steinby

Dir(2) Dir(3)

Dir(2)ADir(3) CDir(3)

Dir(l) CDir(2)

CDir(l)

Figure 1:

4 Algebraic constructions and directability
In [8] it was noted that subautomata, epimorphic images and finite direct products
of directable automata are directable. Here we consider these matters for nonde-
terministic automata. Throughout this section A = (A , X) and B = (B , X) are
n.d. automata which have the same input alphabet.

Let us call B a subautomaton of A if B C A and bxB = bxA for all b G B and
x G X. It is easy to show that if B is a subautomaton of A, then bwB = bwA for
all b G B and w € X*. This observation yields immediately the following facts.

Propos i t ion 4.1. If B is a subautomaton of an n.d. automaton A, then Dj(.4) C
D i {B) , and hence every subautomaton of a Di-directable n.d. automaton is Di-
directable, i = 1,2,3.

In [5] a weaker notion of subautomaton was used which can be derived from the
general notion of a substructure (cf. [7], for example). Let us say that B is a weak
subautomaton of A if B C A and bxB = bxA fl B for all b € B and x G X. None of
the claims of Proposition 4.1 holds for weak subautomata.
Example 4.2. The n.d. automaton A = ({1 ,2 ,3} , {a;}), where xA =
{(1,2), (2,3), (3,3)} is D1-, D2- and D3-directable, but the weak subautomaton
corresponding to the subset {1 ,3} has none of these properties. The c.n.d. au-
tomaton B = ({1 ,2 ,3} , {a;}), where xB = {(1,2), (2,1), (2,3), (3,2), (3,3)} is D2-
and D3-directable, but the weak subautomaton ({1 ,2} , {(1, 2), (2,1)}) is neither
D2- nor D3-directable although it is complete.

Also homomorphisms of n.d. automata can be defined in different ways. We
consider a notion used in [5]: a mapping ip : A —t B is a morphism from A to
B, and we express this by writing ip : A —• B, if axAip = aipxB for all a G A
and x G X. A surjective morphism is an epimorphism, and if there exists an
epimorphism tp : A B, then B is an image of A.

It is clear that if <p : A —> B is a morphism of n.d. automata, then CxAip =

Directable nondeterministic automata 111

CipxB whenever CCA and x £ X, and hence awA<p = a<pwB for all a € A and
w £ X*. Using this observation one proves easily the following proposition.

Proposition 4.3. If ip : A —> B is an epimorphism of n.d. automata, then
Dj(-4) Q Dj(0), and hence any image of a Di-directable n.d. automaton is Di-
directable (i = 1,2,3).

The direct product of A and B is the n.d. automaton AxB = (AxB, X) defined
so that (a,b)xAxB = axA x bxB for all (a,b) £ A x B and x £ X. Of course, this
definition could be formulated more generally to give the direct product of n (n > 0)
n.d. automata. It is easy to show that

(a,b)wAxB = awA x bwB

for all (a,b) £ A x B and w £ X*. It is also obvious that A x B is complete iff A
and B both are complete.

For ordinary automata the catenation uv of a directing word u of A and a
directing word v of B is a directing word of A x B. In the case of Dl - and D3-
directability this construction does not always work since buB may be empty for <•
some b £ B, and it may fail even for complete Dl-directable n.d. automata because
(auA)vA is not necessarily a singleton set. Indeed, it is easy to show by examples
that the classes Dir(l) , CDir(l) , Dir(2), Dir(3) and Dir(2)nDir(3) are not closed
under direct products. For the two remaining classes the following positive results
can be noted.

Proposition 4.4. The direct product of two D2-directable c.n.d. automata is
D2-directable, and the direct product of any two D3-directable c.n.d. automata is
D3-directable.

Proof. Let A = (A , X) and B = (B , X) be complete n.d. automata.

If A and B are D2-directable, then there are words u, v £ X* and subsets CCA
and D C B such that auA = C and bvB = D for all a € A and b G B. Then for all
(a, b) e Ax B,

(a, b)uvAxB = (C x buB)vAxB = CvA x (buB)vB = CvA x D,

and hence uv £ D2(^l x B). Here we naturally need the fact that buB ^ 0 for all
b e B.

Assume now that u € D3 (.4) and v € D3 (B), and that c G auA and d £ bvB for
all a £ A and b £ B. Then for all (a, b) £ Ax B,

(a, b)uvAxB = (auA)vA x (buB)vB

contains the state (c',d), where c! is any given state from cvA.

112 B. Imreh, M. Steinby

5 Minimum-length directing words
If A = (A, X) £ Dir(i) for some i, 1 < i < 3, let

di(^4) = min{lg(w) : w £ Dj (A) } .

For all i = 1,2,3 and n > 1, we set

d,(n) = max{di(.4) : A £ Dir(i), = n} ,

and

cdj(n) = max{dj(^4) : A £ CDir(i), = n}

Moreover, we denote by d(n) the usual maximal length of the minimum-length
directing words of a deterministic n-state directable automaton as defined in [3],
[4] or [8], for example.

It is clear that d(n) < cd*(n) < d¿(n), for all n > 1 and i = 1,2,3. In [1]
Burkhard proved that cdi(n) = 2n - n - 1 for n > 2. To obtain this result he
constructs for each n > 2 an n-state c.n.d. automaton for which the shortest D l -
directing words are of length 2™ — n — 1. On the other hand, he observes that if
w = X\ .. .xmxm+i is a minimum-length Dl-directing word of a c.n.d. automaton
A = (A , X) , then Aw is a singleton set and the sequence Ax±,..., Ax± .. ,xm

consists of pairwise different subsets of A with at least two elements. Hence, lg(w) <
2" — n — 1. Since this observation is valid also for general n.d. automata, the
functions cdi(n) and di(n) are as follows. Moreover, the bound is accurate also for
n = 1 since the empty word is a Dl-directing word of any 1-state n.d. automaton.

Proposition 5.1. (Burkhard 1976) For any n > 1, cdi(?i) = di(n) = 2™ — n — 1.
In [6] Goralcik et al. proved that the number of factors needed to form a

constant relation as a product of some given relations on an n-element set may
grow exponentially with n. This result gives exponential lower bounds for d\(n)
and d${n). Since we already have an exact expression for d\ (n), we use the example
of [6], in a slightly modified form, to obtain a lower estimate for d-${n). By changing
the construction suitably we obtain such lower bounds also for d2(n) and cd2(n).

For any n > 2, let w(n) denote the maximal order of any permutation on the
set [n] = { 1 , . . . ,n } . In [6] it was shown that u>{n) > when n is the sum of
the first k primes for some k. From this it is easy to infer that u{n) > [v^ ~~ 1J'
for every n > 2.

Proposition 5.2. For any n > 2,

(a)

and

Directable nondeterministic automata 113

(b) L ^ - i J ! < < f e (n) < E (2 f c n) .

Proof. First we establish both of the lower bounds. Since they are obviously valid
for all small values of n, we may suppose that the permutations on [n — 1] of
maximal order u>(n) consist of at least two cycles. Let a be such a permutation and
C\,.. •, Cr its cycles. Obviously, we may also assume that the lengths m i , . . . , m r

of these cycles are relative primes. Let us now define an n-state c.n.d. automaton
A = ([n], {x,y,z}) as follows.

Firstly, let xA = { (l , c r (l)) , . . . ,(n— l,cr(n — 1)), (n,n)} . In each cycle Ci we fix
arbitrarily an element aj and set bi = cr(aj). Now yA is defined so that ayA = {bj}
if a £ Ci (1 < i < r), and nyA = {n} . Finally, zA is defined so that

A _ / { " } if a e { a i , . . . , a r , n } ,
aZ \Ci i f a e C i \ { o i } , (l < i < r) .

Clearly, nwA = {n } for all words w £ {x,y, z}*. On the other hand, awA = { n }
also for all other states a £ [n — 1] only in case we may write w — uzv, where u
is such a word that for all 1 < i < r and a £ Ci, auA = a .̂ It should now be
clear that YXMIM2 -M'-~1Z is the shortest D2-directing word of A, and its length is
w(n) + 1 > L ^ n - l J ! -

The upper bounds are obtained simply by estimating in each case the number
of non-final states of the recognizer B 2 defined in the proof of Propsition 3.4.
Remark. For values of n less than 1331=(113) the lower bounds of Proposition
5.2 are well below the bound (n — l)2 given by Cerny's well-known automata.

Proposition 5.3. For any n > 1, (n - l)2 < cd3(n) < \n(n - 1)(n - 2) + 1.
Proof. Since the D3-directing words of an ordinary automaton are exactly its

directing words, the lower bound is given by Cerny's [3] well-known examples of
n-state automata (n > 1) for which the the shortest directing words are of length
(n - 1) 2 .

A word w (€ X*) is said to D2>-merge two distinct states a, b of an n.d. automa-
ton A = (A, X) if aw fl bw ^ 0. We have the following lemmas.

Lemma 5.4. A c.n.d.. automaton A = (A,X) is D3-directable if and only if there
is a D3-merging word for every pair of distinct states a, b £ A.

Proof. The condition is necessary since any D3-directing word D3-merges every
pair of states of A. Suppose now that for each pair a,b £ A, a ^ b, there is a
D3-merging word waand let A — { 1 , . . . ,n} . We define inductively a sequence
vq, vi, . . . , vn-i of words as follows. For each i = 1 , . . . , n — 1, let

M(i) = li>i-\ n n . . . fl ifi-y.

1. Let i/0 = e. Then M{ 1) ^ 0.

114 B. Imreh, M. Steinby

2. Suppose that for some i, 1 < i < n — 2, we have defined a word Ui-i (G X*)
such that M(i) ^ 0. If M{i) n {i + l)vi-\ # 0, then let v{ = v^. Otherwise,
choose any a G M{i) and any 6 G (z + l)fi-i and set Vi = Vi-iWa^. In both cases
M(i + 1) 0, and hence G D3(A).

Lemma 5.5. Let A = {A, X) be an n-state n.d. automaton. If a pair a,b E A,
a ^ b of states has a D3-merging word, then it has a DZ-merging word of length

Proof. If w = x\ ... xk is a D3-merging word for a,b £ A, then there are
sequences of states ao,a\,... ,ak and bo,b\,... ,bk such.that

(1) o0 = a, b0 = b,
(2) ai G ai-iXi and bi G h-iXi for all z = 1 , . . . , k, and
(3) ak=bk.

If w is of a minimal length, the pairs {ao,6o}, • • •, {afc-i> bk-1} are all distinct and

We may now complete the proof of Proposition 5.3. If a nontrivial e n d. au-
tomaton A = (A , X) is D3-directable, there must exist a pair of states a, b 6 A,
a b such that ax fl bx ^ 0 for some x G X. By appending to such an x n — 2 D3-
merging words of length < (") as in the proof of Lemma 5.4 we get a D3-directing
word of length < 1 + (ra — 2) (™). It is clear that the bound is valid also for n = 1.

Propos i t ion 5.6. For any n > 1,

№ - Ij. < d,w < t C Y ') - E s c - i r ' (:) (7) •
k=2 v 7 k=2 r = 1 \ / \ /

where m(k) = max{i : k < 2n~1}.
Proof. For the lower bound it suffices to modify the construction of the automaton
A used in the proof of Proposition 5.2 so that azA = 0 if a G Ci \ {a ; } (1 < i < r).
The upper bound is obtained by considering any n-state D3-directable automaton
A = (A, X) and estimating the number of possible non-final states of the recognizer
B 3 (defined in the proof of Proposition 3.4) from which a final state can be reached.
First of all, we may discard all states containing the empty set. On the other hand,
any state consisting of just one non-empty set is final. These two observations yield
the first sum expression. From this number we should subtract the number of final
states consisting of at least two subsets of A. Consider any k, 2 < k < n. By the
Principle of Inclusion and Exclusion the number of states {C\,... ,Ck} of B 3 such
that C\ n ... n Ck £ 0 is given by

The double sum to be subtracted from the first sum is now obtained by forming
the sum of theses sums for k = 2 , n.

Directable nondeterministic automata 115

References
[1] H.V. Burkhard, Zum Längenproblem homogener Experimente an deter-

minierten und nicht-deterministischen Automaten, Elektronische Informa-
tionsverarbeitung und Kybernetik, EIK 12 (1976), 301-306.

[2] A. Carpi, On synchronizing unambiguous automata, Theoretical Computer
Science 60 (1988), 285-296.

[3] J. Cerny, Poznamka k homogénnym experimentom s konecnymi automatmi.
Matematicko-fysikalny Casopis SAV14 (1964), 208-215.

[4] J. Cerny, A. Piricka & B. Rosenauerovâ, On directable automata, Kybernetika
(Praha) 7 (1971), 289-297.

[5] F. Gécseg , B. Imreh, On Completeness of Nondeterministic Automata, Acta
Mathematica Hungarica 68 (1995), 151-159.

[6] P. Goralcik, Z. Hedrlin, V. Koubek, J. Ryslinkovâ, A game of composing binary
relations, R.A.I.O. Informatique théorique/ Theoretical Informatics 16 (1982),
365-369.

[7] G. Grätzer, Universal Algebra, 2nd edn. Springer-Verlag (New York Berlin
Heidelberg Tokyo, 1979)

[8] B. Imreh, M. Steinby, Some Remarks on Directable Automata, Acta Cyber-
netica 12 (1995), 23-35.

[9] J.-E. Pin, Sur les mots synchronisants dans un automate fini, Elekronische
Informationsverarbeitung und Kybernetik, EIK 14 (1978), 297-303.

[10] I. Rystsov, Reset words for commutative and solvable automata, Theoretical
Computer Science 172 (1997), 273-279.

[11] P.H. Starke, Abstrakte Automaten, VEB Deutscher Verlag der Wissenschaften,
Berlin 1969.

Acta Cybernetica 14 (1999) 105-115.

Syntactic Monoids of Codes*

H. Jürgensen^

Abstract

A general characterization theorem for syntactic monoids of codes that satisfy
independence conditions of a special form is proved. This result provides in-
sight in some known characterizations of classes of codes via syntactic monoids
and provides a general mechanism for deriving new characterizations for other
classes of languages.

1 Introduction
Many of the combinatorial properties of codes related to issues in information
transmission, like synchronization delays or error resistance, can be expressed alge-
braically in terms of properties of the syntactic monoids of the codes themselves or
of the syntactic monoids of the set of messages generated by the codes. Obtaining
these algebraic characterizations is an important, but difficult problem.

Quite a few partial results have been obtained for various classes of codes,
for example, for infix codes [15], outfix codes [9], and hypercodes [28], [30]. For a
general overview, the reader should consult the books [2] and [25], the survey paper
[12], and the other references listed at the end of this paper. A new characterization
for infix codes and hypercodes has been obtained in [23]. In the present paper we
extract and formulate a general characterization method from those specialized
results which applies to all classes of codes that can be defined in a certain way.
Thus, results analogous to those of [23] can now be obtained using this method for
a large variety of classes of codes simply by proving that their definitions satisfy
certain formal criteria.

While this method is applicable to any class of codes satisfying these criteria, its
most elegant consequences seem to arise when it is applied to subclasses of the class
of infix codes. We discuss the special cases of infix codes, infix codes which are also
outfix codes, infix-shuffle codes of index n, hypercodes, solid codes, and reflective

"This research has been supported by the Natural Sciences and Engineering Research Council
of Canada, Grant OGP0000243. An earlier version of this paper was presented at the Second
International Colloquium on Words, Languages, and Combinatorics, Kyoto, 25-28 August, 1992
[11]. A summary of the results of the present paper is presented in Chapter 8 of [12].

tDartment of Computer Science, The University of Western Ontario London, Ontario, Canada
N6A 5B7 and Institut für Informatik Universität Potsdam Am Neuen Palais 10 D-14469 Potsdam,
Germany, e-mail: helmutSuwo.ca.

117

118 H. Jiirgensen

codes. We also show why there is no such characterization for the intercodes of
index 1, that is, the comma-free codes.

The paper is organized as follows: In Section 2, we introduce basic notions and
notation. In Section 3, we investigate how conditions defining a class of codes are
reflected in the syntactic monoids. In Sections 4 and 5, we then focus on classes
of codes contained in the class of infix codes. Finally, Section 6 contains a few
concluding remarks.

2 Basic Notions and Notation
In this section, we review the basic notions and introduce some notation. For further
information regarding codes and their syntactic monoids the reader is referred to
the books [2] and [25] and the survey paper [12].

An alphabet is a non-empty set.1 Let X be an alphabet: Then X* denotes the
free monoid generated by X, that is, the set of all words over X, including the
empty word 1, with concatenation as the multiplication.

Let M be a monoid. With every subset L of M one associates its principal
congruence PL given by

u = v(PL) (Vz, y G M (xuy G L i—• xvy G L)).

The factor monoid M/Pi is the syntactic monoid of L and is denoted by synL.
For u G M, let [U]L denote the P^-class of u. The canonical morphism of M onto
synL, that is, the morphism ol .u*-) [u\i, is called the syntactic morphism. The
set L is said to be disjunctive if PL is the equality relation. The residue of L is the
set WL = {u | u G M A MuM n L = 0}.

A language over A is a subset of X*. A language over a finite alphabet is said
to be regular if it is accepted by a deterministic finite automaton. The syntac-
tic monoid of a regular language is isomorphic with the transition monoid of the
reduced complete finite automaton accepting the language.

A language L is said to be a code if the submonoid of X*, which L generates,
is freely generated by L. For the study of codes, the case of |X| = 1 is trivial and
it is, therefore, common to assume without special mention that |A| > 1.

Let M be a monoid with zero element, \M\ > 2. We denote the identity and
the zero elements by 1 and 0, respectively. The intersection of all non-zero ideals,
if it is different from {0} , is called the core of M, denoted by core(Af). The set
annihil(M) = {c | Vs G M \ {1 } xc — cx — 0} is the set of anniliilators of M.

A pointed monoid2 is a pair (M, L) where M is a monoid and L is a subset of M.
Let (M, L) and (M' , L') be pointed monoids. A pointed-monoid morphism of (M, L)
into (M',L ') is a semigroup morphism <p of M into M' such that </>_1(L') = L.
Such a pointed-monoid morphism ip is surjective, injective, bijective if it is so as a

' in the literature on formal languages, alphabets are usually assumed to be finite. In this
paper, the finiteness condition would not make an important difference. It is, therefore, omitted
as in [23].

2Called p-monoid in [24].

Syntactic Monoids of Codes 119

semigroup morphism of M into M'\ it is non-erasing if (p 1 (1M /) = {1M } . Let P
denote the category of pointed monoids.

If (M, L) is a pointed monoid then OL is a surjective pointed-monoid morphism
onto (synL,CTL(L))- Moreover, if ip is a surjective pointed-monoid morphism of
(M, L) onto (M' , L') then there is a unique surjective pointed-monoid morphism ip
of (M ' , L ') onto (synL,<TL(L)) such that, for all u £ M, oi(u) = ip(ip(u)).

A predicate P on P is said to be invariant if, for any pointed monoid (M, L),
P satisfies the following conditions:

• For any surjective pointed-monoid morphism ip of (M , L) , P is true on
(tp(M), ip(L)) if P is true on (M, L).

• For any surjective non-erasing pointed-monoid morphism tp of (M,L), P is
true on (M, L) if it is true on (tp(M),ip{L)).

The results of this paper are based on the following observation concerning predi-
cates on the category of pointed monoids.

Theorem 1 Let P be an invariant predicate on P and let Cp be the class of lan-
guages L over X for which P is true on (X*,L). The following statements are
true:

(1) If ol is non-erasing then L £ Cp if and only if P is true on the pointed
monoid (s y n L , o i (L)) .

(2) If P is decidable on finite pointed monoids, L is (constructively) regular,
and OL is non-erasing, then it is decidable whether L £ Cp.

Proof: The first claim is just a restatement of the definition of invariance, applied
to GL . For the second claim, if L is constructively given as a regular language then
one can compute the syntactic monoid synL and the set OL(L). Note that <TL is a
pointed-monoid morphism. The fact that L is regular implies that syn L is finite.
Therefore, P is decidable on (syn L, OL(L)). The invariance of P implies that it is
decidable whether L £ Cp. •

To apply Theorem 1 to a given predicate P, one has to establish that P is invari-
ant and decidable on finite pointed monoids. In this paper we focus on predicates
on P which can be expressed in a special form called implicational independence
condition.

3 Codes and Independence Conditions
Let X be an alphabet with \X\ > 1. Many natural classes of codes over X are
characterized by independence conditions on the free monoid X*. A systematic
study of this characterization method is presented in [17] and [18]; see also [12].

120 H. Jiirgensen

The independence conditions can be presented in various forms. The most gen-
eral approach uses abstract dependence systems in the sense of universal algebra3

with possible restrictions to finitely based dependence systems [12]. Incomparabil-
ity with respect to certain partial orders, like the prefix order

u < v v e uX*, p

as studied in [4], [14], and [25] is a quite special case of this approach. In this
paper we only consider independence conditions that can be expressed in the form
of implications involving equations over X*.

Recall, for example, that the prefix order < p defines the class £ p of all prefix
codes over X by

L € Cp L C X+ A Vu,v € L (^u < v ->• u = WJ .

This condition could also be expressed as

L C X+ A VM, X E X* ((« E L A ux E L) X = 1) .

We now turn to defining this latter form of independence condition in more abstract
terms.

Let M be an arbitrary monoid, let M be a finite set of subsets4 of M, and let
V be a set of variable symbols, such that M fl V = 0. Moreover, let A denote a set
variable ranging over all the subsets5 of M.

In the sequel we need to consider words built from elements of M and V, that
is, words in (M U V)*. An equation over M takes the form u = v and an inclusion
takes the form u S A, where u and v are words over (M U V). A basic implicational
independence condition has the form

(quant i f i e r pre f ix) ((formula) —> (formula))

where the quantifier prefix and the formulae satisfy the following conditions:

(11) The quantifier prefix specifies, for each variable symbol in V, its range ex-
plicitly, that is, as one of the sets in M. Moreover, the quantifier prefix may
include quantification over the number of variables used. It involves only
universal quantifiers.

(12) The formulas are disjunctions of conjunctions of equations and inclusions over
M.

The first formula will be referred to as the premiss, the second one as the
conclusion of the basic implicational independence condition.

3See [3], [5], and [6].
4In all our examples below we have M. = { M } .
5More precisely, the range of A is the set of all subsets of whichever monoid is being considered.

Syntactic Monoids of Codes 121

These still rather informal definitions can obviously be expressed rigorously.6 An
implicational independence condition is a conjunction of basic implicational inde-
pendence conditions.

If I is an implicational independence condition on the monoid M and L C M,
then I is satisfied on the pointed monoid (M, L) if I is true on M for A = L.

We list a few natural examples of implicational independence conditions for the
case of M = X* where X is an alphabet with at least two elements and M =

Example 1 Let X be an alphabet with |X| > 1. In Table 1 we exhibit a list of
implicational independence conditions defining classes of languages over X studied
in the context of codes. Each implicational independence condition is identified by
its property name which is also used to identify the corresponding class of languages.
The prefix-shuffle codes, suffix-shuffle codes, infix-shuffle codes, and out fix-shuffle
codes of index n = 1 are the prefix codes Cp, suffix codes Cs, infix codes C\, and
outfix codes C0, respectively, in the usual sense? The infix-shuffle codes of index
n are called n-shuffle codes in [17] and elsewhere; in [19], [20] they are called n-
infix codes; see also [22], [21]. The shuffle codes of index n as well as some of the
other types of codes listed in Table 1 may look like mathematical artifacts; they do,
however, capture important aspects of error detection; for details, see [12]. The
relation between the classes of codes listed in Table 1 is shown in Figures 1 and 2.
The n-codes shown there, for n > 2, are languages such that every subset of up to
n elements is a code [7], [10]; the n-ps-codes are languages, such that every subset
of up to n elements is a prefix code or a suffix code [8]. For details on infix and
outfix codes and the classes Cv\ and Cs\ see [9].

Many natural classes of codes or code-related languages can be defined using
implicational independence conditions. There are, however, some natural classes
of codes characterized by finitely based dependence systems for which it seems to
be impossible to express the independence condition in terms of an implicational
independence condition; the class of uniform codes or block codes, that is, of codes
all elements of which have the same length, seems to be an example of this kind.

Suppose that ip is a morphism of M onto a monoid M', and that I is an
implicational independence condition on M. Then ip induces an implicational in-
dependence condition on M', denoted by <p(I), as follows:

(13) If I is a conjunction of basic implicational independence conditions then let
ip(I) be the conjunction of the images, under ip, of these basic implicational
independence conditions. Let A4' be the set of the images of the sets in A4.
In the quantifier prefixes of I, replace any range in A4 by its image in A4'.

(14) For a word u over (M U V), let ip(u) be the word over (M' U V) obtained by
mapping the elements of M into M' according to ip and leaving all variables

6In particular, quantification over the number of variables would need to be expanded.
7In some cases, as in that of the prefix codes, one would have to require explicitly that L C X+

to rule out the trivial case of L = {1 } in which L is not a code. On the other hand, including this
degenerate case allows for a simpler statement of the results.

128 H. Jiirgensen

Family Name Implicational condition

¿ c o d e , c odes ^code

V m V n V x i , . . . , i m , ! / i 9 n 6 X *
((x i 6 A A . . . A Xm G A A g A A . . .
A t/„ G A A ®i • • • s m = j/i • • • j / „)
-* x\ = yi,.. . ,x„ = y„)

¿2 - c o d e , 2 - c odes 12-code
Vu, v ((u E A A « £ A A « t) = tfu)
—tu = v)

¿ 2 -ps , 2 -ps - codes ^2-ps
Vu, x , y ((u G A A u x G A A y u G A
A ux = y u) —> x = 2/ = 1)

£ P n , pref ix-shuff le
c o d e s of index n / P .

V x i , . . . , x n , y i , . . . , y „
((x i • • • x „ 6 A
A X 1 J / 1 X 2 1 / 2 • • • x „ y „ G A)
-> 3/1 = • • • = 1/n = 1)

£ j n | C0n , £ g n |
inf ix- , out f ix - , suffix-
shuffle c o d e s of
index n

A n , J o „ , / . „ analogous to £ P n

CPn n CBn

£b> bif ix c o d e s / b see £Pn n £„n for n = 1

¿ ¡ n n £ o n / i „ , . „ A / „ „

¿ h » h y p e r c o d e s / h
VnVxo , . . . , i n i V i Sn 6 X *
((l O • • • X „ G A A X 0 J / 1 X 1 I / 2 • • ' i n l » 6 A)

-Crefi, reflective
languages

Vx, y G X * (x y € A —f y x € A)

£ p i , p - inf ix codes ' p i Vtt, x , y ((u 6 A A x u y G A) —̂ y = 1)

CS1, s - inf ix c o d e s V-u, x , y((-u € A A x-uy G A) —v x = 1)

£intern j intercodes
of index n

A n t e r n

V l i l , . . . , U n - f - i , Vi ,.. ., vn , x, y
((u i 6 A A • • • A u „ + i G A
A v i e A A • • • A t>„ E A
A -ui • • • U„ + l = XUi • • • u n y)
-> ((x = 1 A y = t l „ + l)
V (x = m A y = 1)))

£oi-frce> overlap- free
languages /o]-frce

Vx, y , z ((x y 6 A A y z G A)
- » (I = 1 V : = 1 V J = 1))

¿ s o l i d > solid c o d e s /»olid A / 0 l - f r e c

Table 1: Implicational conditions for some of the language classes.

Syntactic Monoids of Codes 123

Figure 1: The relation between the shuffle codes.

unchanged.8 For an equation u = v over M let tp(u = v) be the equation
tp(u) = <p(v) over M' . For an inclusion u £ A, let <p(u € A) be the inclusion
<p(u) £ A. A formula over M is mapped by ip onto the corresponding formula
of the images of the equations and inclusions.

This mechanism of induced implicational independence conditions is to be used in
subsequent sections of this paper, to carry implicational independence conditions
on X* defining certain classes of languages into the syntactic monoids of these
languages. Hence we consider the following two properties of an implicational
independence condition I on a pointed monoid (M,L) .

(15) For any surjective pointed-monoid morphism <p of (M , L) , if a premiss of I
is false for some assignment of values to the variables then the image of that
premiss is also false in (ip(M), ip(L)) for the corresponding value assignment.

(16) For any surjective non-erasing pointed-monoid morphism ip of (M,L) , if a
conclusion of I is false for some assignment of values to the variables then the
image of that conclusion is also false in (ip(M), ip(L)) for the corresponding
value assignment.

8 We assume that M' n V = 0.

124 H. Jiirgensen

Figure 2: The relation between the classes of languages introduced in Table 1. Lines
indicate (known) proper inclusions. Dotted lines indicate hierarchies. Intersections
and unions are not, in general, indicated.

Syntactic Monoids of Codes 125

Theorem 2 Let (M, L) be a pointed monoid and let I be an implicational inde-
pendence condition on (M,L). Let ip be a surjective pointed-monoid morphism of
(M, L). If I has property 15 and is satisfied on (M, L) then ip(I) is satisfied on
(<p(M), <p(L)). Conversely, when ip is also non-erasing, if I has property 16 and
ip(I) is satisfied on (ip(M),<p(L)) then I is satisfied on (M,L).

Proof: Let (M, L) be a pointed monoid and ip be a surjective pointed-monoid mor-
phism of (M,L) onto the pointed monoid (M' ,L ') . As I is a conjunction of basic
implicational independence conditions, I is satisfied on (M,L) if and only if each
of its basic components is satisfied on (M, L). Therefore, we only need to prove the
claim for I a basic implicational independence condition.

First note that if / is a formula appearing in I and / is true for some assign-
ment of values to the variable symbols then <p(/) is also true for the corresponding
assignment of values. Indeed, if u and v are words over (M U V) and u = v for
some value assignment then ip(u) = ip(v) for the corresponding value assignment;
this follows from the fact that ip is a semigroup morphism. Similarly, if u € L then
<p(u) 6 <p(L) = L' as (p is surjective and <p~l{L') = L, hence <p(L) = L'. Thus, as /
is a disjunction of conjunctions of equations and inclusions, if / is true on (M,L)
for some value assignment then also </?(/) is true on (M ' ,L ') for the corresponding
value assignment. Moreover, as ip is surjective, every value assignment in (M'L ')
corresponds to - that is, is the image of - a value assignment in (M , L).

Let p and c be the premiss and conclusion of I, respectively, and suppose that
I has property 15 and is satisfied on (M,L). Consider an assignment of values in
M to the variable symbols occurring in p and c. If the premiss p is false under this
assignment then also <p(p) is false under the corresponding assignment in (M ' ,Z /)
by 15. On the other hand, if the premiss p is true under this assignment, then also
the conclusion c must be true under this assignment. But then also ip(p) and <p(c)
are true under the corresponding assignment. Hence, as the implication p —¥ c is
true under any value assignment also the implication ip(p) —¥ tp(c) is true under
any value assignment. Thus <p(I) is satisfied on (M',L ') .

Conversely, assume that tp is also non-erasing and that I has property 16, and
suppose ip{I) is satisfied on (M',L ') . Hence, for a value assignment either ip(p) is
false or both ip(p) and <p(c) are true. If ip(p) is false then, for any value assignment
in (M, L) that is mapped onto the given one by ip, also p is false. Suppose now
that both cp(p) and ip(c) are true. Consider a value assignment in (M, L) which is
mapped onto the given one by ip. If p is false under this assignment then p —¥ c is
true as needed. If p is true under this assignment then, by 16, c cannot be false as
ip(c) is true. This shows that I is satisfied on (M , L) . •

An implicational independence condition I on a monoid M is said to be free if
the only element of M occurring in I is 1 and if M = {M}. A free implicational
independence condition can be interpreted over any pointed monoid (M' ,L ') . One
treats M as a variable symbol for monoids, M having the value M' in this case,
and 1 as denoting the identity element of the monoid under consideration. For a
free implicational independence condition 7 let Cj be the class if pointed monoids
(.X*,L), with X an alphabet, on which I is satisfied.

126 H. Jiirgensen

Theorem 3 Let P be a predicate on P, defined by a free implicational independence
condition I. If I satisfies 15 and 16 for all pointed monoids then P is invariant.

Proof: Consider a pointed monoid (M , L) and a surjective pointed-monoid mor-
phism ip of (M , L) onto (M',L ') . Suppose P is true on (M , L) . Then I is satisfied
on (M , L) as P is defined by I and I is free. By 15, using Theorem 2, (p(I) is true
on (M',L ')• Thus P is true on (M',L ') .

For the converse, assume that is also non-erasing and that P is true on
(M', L'). Then tp(I) is satisfied on (M' ,L') and, by 16 and Theorem 2 , 1 is satisfied
on (M,L), hence P is true on (M,L). •

When I is a free implicational independence condition, instead of saying that
ip(I) is satisfied on ip(M,L), it is more convenient to say that I is satisfied on
ip(M,L). Since this is unambiguous, we make this simplification in the sequel.9

Lemma 1 Let (M, L) be a pointed monoid and let I be an implicational indepen-
dence condition on M. The following statements hold true:

(1) Suppose that, if a premiss p of I is false for some value assignment, then
also oL(P) is false for the corresponding value assignment. Then I satisfies
15.

(2) Suppose that a i is non-erasing and that, if a conclusion c of I is false for
some value assignment, then also cri(c) is false for the corresponding value
assignment. Then I satisfies 16.

Proof: To prove (1), consider a surjective pointed-monoid morphism (p of (M , L)
onto (M',L ') . Then there is a surjective pointed-monoid morphism ip of (M ' , L ')
onto (synL,gl (L)) such that o l {u) — ipiviu)) for all u 6 M. Suppose a premiss
p of I is false; hence oi{p) is false by assumption; if, however, ip(j>) were true then
also ip(<p(p)) would have to be true, a contradiction. Hence, <p(p) is false. Thus I
satisfies 15.

The proof of (2) is analogous; one only notes that CFL being non-erasing implies
that xj) has to be non-erasing. •

By Lemmma 1, it is sufficient to check 15 and 16 for syntactic morphisms.
Invariance in general can be established by proving it for syntactic morphisms.

Lemma 2 Let I be a free implicational independence condition. The following
statements hold true:

(1) If the premisses of I contain only inclusions then I satisfies 15 on any
pointed monoid.

(2) If the conclusions of I contain only inclusions or equations of the form
u = 1 then I satisfies 16 on any pointed monoid.

9For a completely rigorous treatment, one should build the category of pointed monoids from
the category of monoids in such a way that the identity element is treated as a miliary operation
symbol. In this way, a free implicational independence condition would not refer to any specific
pointed monoid any more.

Syntactic Monoids of Codes 127

Proof: Let (M, L) and (M' , L') be pointed monoids and let ip be a surjective pointed-
monoid morphism of (M,L) onto (M' ,L ') .

First consider an inclusion u € A. If this inclusion is true on (M' ,L ') for some
value assignment then, because of y> -1(L') = L, this inclusion must be true on
(M, L) for any pre-image, under <p, of this value assignment.

Suppose now that a premiss p of I consists solely of inclusions. If p is false for
some value assignment on (M, L) then, by the preceding argument, <p(p) must be
false on (M' ,L ') .

Finally assume that tp is also non-erasing. Then u = 1 can only be true in
(M', L') if it is true in (M, L). Thus, if a conclusion c of I consists only of inclusions
and equations of the form u = 1 then, if it is false on (M,L) , it is also false on
(M',L'). •

We now examine some of the implicational independence conditions of Exam-
ple 1 to determine which of these satisfy 15 or 15 and 16.

Theorem 4 Let X be an alphabet with |X| > 1. Consider the implicational inde-
pendence conditions listed in Example 1. The following statements hold true.

(a) icode o-nd /¡nteri do not satisfy 15.

(b) IPn, ISn, /¡„, I0n, Iin,on, IPn,sn, h, /solid, lien satisfy 15 and 16.

Proof: By Lemma 1 it is sufficient to consider syntactic morphisms.
We first prove statement (a): Let L be an infix code with \L\ > 1. Clearly, L

satisfies JCOde- By [15], GL(L) is a single element c in synL, and c is an annihilator
different from 0. Let u,v £ L, u ^ v. Then u2 ^ v2. However, oL(u2) = c2 = 0 =
ol(v2)- Therefore, /code does not satisfy 15.

Now consider /¡nteri- Every intercode of index 1 is an infix code [27]. Let L
be an intercode of index 1. Therefore, the implicational independence condition
OL (/inter!) reduces to

Mx, y (c2 = xcy -^x = lVy = l)

where x and y range over the syntactic monoid of L. As c is an annihilator,
c2 = xcy = 0 for all choices of x and y except x = y = 1. On the other hand,
this premiss need not be true in X*. For instance, let X = {a, b} and L = {ab}\
by [16], L is a solid code, hence an intercode of index 1. Let x = y = a. The
only choice for u,v,w is u = v = w = ab. Hence uv = abab ^ aaba = xwy, but
oL(uv) = 0 = aL(xwy).

Statement (b) follows by Lemma 2. •

Note that the argument used to prove statement (b) does not apply in the cases
of £2-code, ^2-ps, or £inter„ as, in all these cases, the implicational independence
condition provided in Example 1 contains an equation in the premiss.

Theorem 5 Let M be a monoid such that M\ {1} is a subsemigroup of M. Let I
be a free implicational independence condition satisfying 15 and 16 on any pointed

128 H. Jiirgensen

monoid. Then M is isomorphic with the syntactic monoid of a language L over an
alphabet X such that I is satisfied on (X*,L) if and only if M has a disjunctive
subset L' such that I is satisfied on (M,L').

Proof: Suppose L C X* is such that I is satisfied on (X*,L) and that M ~ s y n i .
Then ol{L) is disjunctive in synL and I is satisfied on (synL,a i (L)) by 15.

Conversely, let V be a disjunctive subset of M such that I is satisfied on (M, L').
Let X C M \ {1 } be a set of generators of M. The embedding of A' in M induces
a morphism ip of X* onto M. Let L — </3-1(L'). Then ip — crl, p is non-erasing,
and I is satisfied on (X*, L) by 16. •

Thus, many classes of languages defined by independence conditions have a
characterization by syntactic monoids in the following sense: M is the syntactic
monoid of such a language if and only if M contains a disjunctive subset which
satisfies the conditions that characterize the respective class of languages. In the
next sections of this paper, we apply this property to subclasses of the class of infix
codes.

We conclude the present section with an interesting consequence of Theorem 5
regarding the decidability of language properties.

Theorem 6 Let I be a free implicational independence condition satisfying 15
and 16 on all pointed monoids. Let X be an alphabet and let L be a regular language
over X. If L is given effectively and aL is non-erasing then it is decidable whether
I is satisfied on (X*,L).

Proof: Let L be a regular language, given in some effective way. Construct the
reduced complete deterministic finite automaton A accepting L. Then synL is
isomorphic with the transition monoid of A. Moreover, one can compute <Tk(L).
Since synL is finite one can check whether I is satisfied on (synL, oi(L)). If so I
is satisfied on (X*,L)\ otherwise it is not. •

With Theorem 6, we have a general proof of the decidability of certain code
properties which, so far, has only been obtained for special cases with a special
proof for each case. Another quite different general technique for proving such
decidability results is provided in [13].

4 Infix Codes
In this section, we consider classes of codes "low in the hierarchy," that is, classes
of codes contained in the class C\, the class of infix codes. The syntactic monoids of
infix codes have some special properties which render it particularly easy to express
implicational independence conditions in them.

The following characterization of monoids which are isomorphic with syntactic
monoids of infix codes is given in [23]. Note that some of the conditions imply that
the monoid be subdirectly irreducible (see also [15]). In stating this result, we refer
to the following list of properties of a monoid M .

Syntactic Monoids of Codes 129

(Mi) M \ {1 } is a subsemigroup of M.

(M2) M has a zero.

(M3) M has a disjunctive element c distinct from 1 and 0 such that c = xcy implies
x = y = 1.

(M4) M has a disjunctive zero.

(M5) There is an element c £ annihil(M) distinct from 0 such that cove(M) =
{ c ,0} .

(M6) There is an element c distinct from 0 such that c € core(M) fl annihil(M).

Theorem 7 [23] The following conditions on a monoid M are equivalent.

(1) M is isomorphic with the syntactic monoid of an infix code.

(2) M has the properties Mi, M2 , and M3 .

(3) M has the properties Mi, M 4 ; and M5 .

(4) M has the properties Mi, M4 , and M6 .

If L is an infix code and c £ syn L is the element of' condition M3, M5, or
M6 then c = CTL(L). Hence, condition M4 states in particular that c satisfies the
implicational independence condition I\. This observation allows the following gen-
eralization of Theorem 7. For an arbitrary implicational independence condition,
let 1(c) be the implicational independence condition obtained by substituting the
symbols '= c' for every occurence of the symbols '£ A'.

Theorem 8 Let I be an implicational independence condition satisfying 15 and 16
on all pointed monoids. If Cj C C\ then the following conditions on a monoid M
are equivalent.

(1) M is isomorphic with the syntactic monoid syn L of some L with (X* ,L) £
CI.

(2) M has the properties Mi, M2 , M3 , and 1(c).

(3) M has the properties Mx , M4 , M5, and 1(c).

(4) M has the properties Mi, M4 , Mg, and 1(c).

Proof: If M is isomorphic with the syntactic monoid syn L of some language L with
(X*,L) £ Ci then L is an infix code, and M has the properties Mi, M2 , and M3 .
As c = <jl(L), also 1(c) holds true.

For infix codes, statements (2), (3), and (4) are equivalent by Theorem 7. More-
over, the proof shows that in each of M3 , M5, and M6, the element c is actually the
same element of M. Hence, these statements are also equivalent for the class £ / .

By Theorem 7, statement (4) implies that M is isomorphic with the syntactic
monoid of an infix code L. Moreover, from the proof it follows that ai(L) = c. As
</?(/), for A = L, is equivalent to 1(c), it follows that I is satisfied on (X*, L). •

130 H. Jiirgensen

Thus, Theorem 8 provides for a general method of characterizing the syntactic
monoids of those classes of codes which are contained in the class of infix codes
and are given by an implicational independence condition satisfying 15 and 16. In
particular, this includes all the cases listed in Theorem 4(b) except the prefix and
the suffix codes.

5 Infix and Outfix Codes
In [23], Corollary 1, a characterization of the syntactic monoids of hypercodes is
derived which in part forms a special case of Theorem 8. In this section we show that
also the remaining parts of that result can be obtained as a special case from a quite
general theorem. For the result of [23] on hypercodes, the following observation is
crucial: For a hypercode L, every P^-class different, from WL is a hypercode. A
similar statement can be made about other classes of codes contained in the class of
outfix codes. See Figure 1 for the hierarchy of shuffle codes. In essence, we consider
the classes contained in C\ n C0 = Cn fl C01. This class is characterized by the free
implicational independence condition

Vu, x, y £ X* (((u € A A xuy e A) -) i = !/ = l)
A ((xy £ A A xuy £ A) ->• u = 1))

which satisfies 15 and 16 on all pointed monoids. Thus, also the syntactic monoids
of codes in C\ fl C0 can be characterized using Theorem 8.

Theorem 9 The following statements hold true.

(a) If L is an outfix code then every PL-class different from the residue of L
is an outfix code.

(b) If L is an infix-shuffle code of index n with n > 3 then every P^-class
different from the residue of L is an infix-shuffle code of index n — 2.

(c) If L is a hypercode then every Pi-class different from the residue of L is
a hypercode.

Proof: The proof of (a) is given in [9].
Let L be an infix-shuffle code of index n with n > 3, and consider PL-equivalent

words u, v such that u is not in the residue of L. Hence, there are s and t such
that sut £ L and, therefore, also svt £ L. Suppose that

U = U\U2 • • • Un-2 and V = ViUiV2U2 • • • Vn-2Un-2Vn-l-

Letting s = vo, t = un-1 and vn = 1, one obtains sut = svt from the fact that L
is an infix-shuffle code of index n. This implies u = v. Thus, the class of u is an
infix-shuffle code of index n — 2.

The statement concerning hypercodes is proved in [23]. It is, of course, also an
immediate consequence of (b) as a language is a hypercode if and only if it is an
infix-shuffle code of index n for every n. •

Syntactic Monoids of Codes 131

By Theorem 9(b) and Figure 1, if L G C\ n CQ, L G CPn, L G CSn, L G £ u ,
L G C0„, or L G £h f° r n > 2, then every P^-class different from the residue is an
outfix code.

In view of Theorem 9, the result of [23] on hypercodes can be generalized sig-
nificantly.

Theorem 10 Let I be an implicational independence condition satisfying 15 and
16 on all pointed monoids and such that Ci C C\.

Let I' be an implicational independence condition satisfying 15 and 16 on all
elements of Ci and such that I implies I' and I' implies L.

Suppose that, if (X*,L) G £ / , for every P^-class L' different from WL, I' is
satisfied on (X* ,L'). Then the following conditions on a monoid M are equivalent.

(1) M is isomorphic with the syntactic monoid of a code in £j.

(2) M has the properties Mi, M2 , M3, and 1(c) and every element x G M \ { 0 }
satisfies /'(x).

(3) M has the properties Mi, M2 , M3 , and 1(c).

Proof: The assumption about the P^-classes different from WL implies that / ' (x)
holds true for every x G M \ {0} . Thus, (1) implies (2). Obviously, statement (3)
follows from (2). The remaining implication is already stated in Theorem 8. •

The case of hypercodes [23] is a special case of this result as are the cases of
infix-shuffle codes of index n and of those infix codes which are also outfix codes.

6 Concluding Remarks
The main result of this paper is a general method for characterizing the syntactic
monoids of codes when the class of codes is defined in a special formal way. The
main application is to classes of codes, low in the hierarchy, that is, below the
classes of infix codes and outfix codes.

The properties of infix codes and outfix codes that lead to particularly simple
characterizations are the following: The syntactic monoid of an infix code has a
disjunctive element. Every syntactic class of an outfix code is an outfix code. The
obvious next step seems to be to abstract these properties and extend the results
to higher regions of the hierarchy in possibly some restricted form.

References
[1] Abstracts, Second International Colloquium on Words, Languages, and Com-

binatorics, Kyoto, 25-28 August, 1992. Kyoto, 1992.

[2] J. Berstel, D. Perrin: Theory of Codes. Academic Press, Orlando, 1985.

132 H. Jiirgensen

[3] P. M. Cohn: Universal Algebra. D. Reidel Publishing Co., Dordrecht, revised
ed., 1981.

[4] P. H. Day, H. J. Shyr: Languages defined by some partial orders. Soocliow
J. Math. 9 (1983), 53-62.

[5] F. Gécseg, H. Jürgensen: Algebras with dimension. Algebra Universalis 30
(1993), 422-446.

[6] F. Gécseg, H. Jürgensen: Dependence in algebras. Fund. Inform. 25 (1996),
247-256.

[7] M. Ito, H. Jürgensen, H. J. Shyr, G. Thierrin: Anti-commutative languages
and n-codes. Discrete Appi. Math. 24 (1989), 187-196.

[8] M. Ito, H. Jürgensen, H. J. Shyr, G. Thierrin: n-Prefix-suffix languages. In-
ternat. J. Comput. Math. 30 (1989), 37-56.

[9] M. Ito, H. Jürgensen, H. J. Shyr, G. Thierrin: Outfix and infix codes and
related classes of languages. J. Comput. System Sci. 43 (1991), 484-508.

[10] M. Ito, H. Jürgensen, H. J. Shyr, G. Thierrin: Languages whose n-element
subsets are codes. Theoret. Comput. Sci. 96 (1992), 325-344.

[11] H. Jürgensen: Syntactic monoids of codes. In [1], 108-112.

[12] H. Jürgensen, S. Konstantinidis: Codes. In G. Rozenberg, A. Salomaa (edi-
tors): Handbook of Formal Language Theory. Springer-Verlag, Berlin, 1997,
vol. 1, 511-607.

[13] H. Jürgensen, K. Salomaa, S. Yu: Transducers and the decidability of inde-
pendence in free monoids. Theoret. Comput. Sci. 134 (1994), 107-117.

[14] H. Jürgensen, H. J. Shyr, G. Thierrin: Codes and compatible partial orders on
free monoids. In S. Wolfenstein (editor): Algebra and Order, Proceedings of
the 1st International Symposium on Ordered Algebraic Structures, Luminy-
Marseilles, 1984. 323-333, Heldermann-Verlag, Berlin, 1986.

[15] H. Jürgensen, G. Thierrin: Infix codes. In M. Arató, I. Kátai, L. Varga (edi-
tors): Topics in the Theoretical Bases and Applications of Computer Science,
Proceedings of the 4th Hungarian Computer Science Conference. Györ, 1985.
25-29, Akadémiai Kiadó, Budapest, 1986.

[16] H. Jürgensen, S. S. Yu: Solid codes. J. Inform. Process. Cybernet., EIK 26
(1990), 563-574.

[17] H. Jürgensen, S. S. Yu: Relations on free monoids, their independent sets, and
codes. Internat. J. Comput. Math. 40 (1991), 17-46.

[18] H. Jürgensen, S. S. Yu: Dependence systems and hierarchies of families of
languages. Manuscript, 1996. In preparation.

Syntactic Monoids of Codes 133

[19] D. Y. Long: fc-Outfix codes. Chinese Ann. Math. Ser. A 10 (1989), 94-99, in
Chinese.

[20] D. Y. Long: fc-Prefix codes and fc-infix codes. Acta Math. Sinica 33 (1990),
414-421, in Chinese.

[21] D. Y. Long: n-Infix-outfix codes. In [1], 50-51.

[22] D. Y. Long: fc-Bifix codes. R,iv. Mat. Pura Appl. 15 (1994), 33-55.

[23] M. Petrich, G. Thierrin: The syntactic monoid of an infix code. Proc. Amer.
Math. Soc. 109 (1990), 865-873.

«

[24] J. Sakarovitch: Un cadre algébrique pour l'étude des monoïdes syntactiques.
In Séminaire P. Dubreil (Algèbre), 28e année. 14. Paris, 1974/75.

[25] H. J. Shyr: Free Monoids and Languages. Hon Min Book Company, Taichung,
second ed., 1991.

[26] H. J. Shyr, G. Thierrin: Codes and binary relations. In M. P. Malliavin (editor):
Séminaire d'algèbre Paul Dubreil, Paris 1975-1976, (29ème Année). Lecture
Notes in Computer Science 586, 180-188, Springer-Verlag, Berlin, 1977.

[27] H. J. Shyr, S. S. Yu: Intercodes and some related properties. Soochow J. Math.
16 (1990), 95-107.

[28] G. Thierrin: The syntactic monoid of a hypercode. Semigroup Forum 6 (1973),
227-231.

[29] G. Thierrin, S. S. Yu: Shuffle relations and codes. J. Inform, and Optim. Sci.
12 (1991), 441-449.

[30] E. Valkema: Syntaktische Monoide und Hypercodes. Semigroup Forum 13
(1976/77), 119-126.

[31] S. S. Yu: A characterization of intercodes. Internat. J. Comput. Math. 36
(1990), 39-45.

Acta Cybernetica 14 (1999) 135-149.

Tree Transducers and Formal Tree Series*

Werner Kuich t

Gécseg Ferenc barátomnak 60. születésnapja alkalmából

Abstract
W e introduce tree transducers over formal tree series as a generaliza-

tion of a restricted type of root-to-frontier tree transducers and show that
linear nondeleting recognizable tree transducers do preserve recognizabil-
ity of tree series.

1 Introduction and preliminaries
In this paper we give a uniform treatment of tree transducers and tree automata
in terms of tree series and matrices.

In Section 2 we define tree transducers that map tree series into tree series.
These tree transducers are a generalization of a restricted type of root-to-frontier
tree transducers as described in Gécseg, Steinby [4, 5].

In Section 3 we consider linear and nondeleting tree representations and
show certain algebraic properties of these tree representations.

In the last section we consider linear nondeleting recognizable tree transduc-
ers. Intuitively, these are generalizations of linear nondeleting root-to-frontier
tree transducers with infinitely many productions whose right sides form recog-
nizable tree languages. The main result of Section 4 is that linear nondeleting
recognizable tree transducers do preserve recognizability of tree series. Our main
result is a generalization of the following theorem of Thatcher [10]: Linear root-
to-frontier tree transducers preserve recognizability (see also Gécseg, Steinby [4],
Corollary IY.6.6).

It is assumed that the reader is familiar with the basics of semiring theory
(see Kuich, Salomaa [9] and Kuich [6], Section 2). Throughout the paper,
(A ,+ , - , 0,1} denotes a commutative continuous semiring. This means:

(o) the multiplication • is commutative;

'Partially supported by the "Stiftung Aktion Österreich-Ungarn".
+Abteilung für Theoretische Informatik Institut für Algebra und Diskrete Mathe-

matik Technische Universität Wien, Wiedner Hauptstraße 8-10, A-1040 Wien e-mail:
kuich@tuwien.ac.at

135

mailto:kuich@tuwien.ac.at

136 Werner Kuich

(i) A is partially ordered by the relation [I: a C b iff there exists a c such
that a + c = b,

(ii) (A, + , 0,1) is a complete semiring,

(iii) Yhiei ai = suP(X]i6jBai \ F C I, E finite), â £ A, i £ I, for an arbitrary
index set / , where sup denotes the least upper bound with respect to C.

In the sequel, we denote {A, + , -, 0,1) briefly by A.
Furthermore, £ = EoUEiU.. .US^U... will always denote a ranked alphabet,

where E&, k > 0, contains the symbols of rank k and X will denote an alphabet
of leaf symbols. By Tg(X) we denote the set of trees formed by S U X . This set
T^(X) is the smallest set formed according to the following conventions:

(i) i f w e S o U l then OJ £ T E (X) ,

(ii) if Lo £ k > 1, and h,...,tk £ T E (X) then w(tu...,tk) £ T S (X) .

If So / 0 then X may be the empty set.
By A{(T-£(X))) we denote the set of formal tree series over T%(X), i. e., the

set of mappings s : T-^(X) —> A written in the form where the
coefficient (s, t) is the value of s for the tree t £ TZ(X). For a formal tree series
s £ A((TX(X))), we define the support of s, supp(s) = {t £ T E (X) | (s,t) ± 0}.
By A{T^(X)) we denote the set of tree series in A{{TZ(X))) that have finite
support. A power series with finite support is termed polynomial. (For more
definitions see Kuich [7].)

Formal tree series induce continuous mappings called substitutions as follows.
Let Y. denote a set of variables, where Y fl (£ U X) = 0 (0 denotes the empty-
set), and consider a mapping h : Y —» A((T^(X U Y))). This mapping can be
extended to a mapping h : TS(X U Y) A{{TS{X U Y))) by h(x) = x, x £ X ,
and

h(u(tu . . . ,tk)) = Q(h(h),. .. ,h(tk)) =
Zt'1,...,t>keTx(xuY)(Hh),t'1)... (/»(**)> t'fcMti,... ,fk),

for w £ E/t and ti,...,tk £ T s (A U Y), k > 0. One more extension of h
yields a mapping h : A{(T^{X U Y))) A((T^{X U Y))) by defining h(s) =
^2t€Ts{xuY) (si t)h(t). This last extension of h is a complete semiring morphism
from A((TS(X U Y))) into A({TS(X U Y)}). It is a continuous mapping (see
Corollary 2.15 of Kuich [7]).

Let now s £ A((TY:(X U Y))). Then, by definition, the formal tree series
s induces a mapping s : (A({TZ(X U Y))))Y -»• A({TE{X U Y))) as follows:
given h : Y A((TZ(X U Y))), the value of s with argument h is simply h(s),
where h is the extended mapping. If Y = {yi, • • • ,yn} is finite, we use the
following notation: h : Y —> A((TZ(X U Y))), where h(YI) = Sj, 1 < i < n, is
denoted by (si, 1 < i < n) or (s i , . . . , sn) and the value of s with argument h
is denoted by s(sj, 1 < i < n) or s(si,..., sn). Intuitively, this is simply the
substitution of the formal tree series SI £ A((T^(X U Y))) into the variables YI,

Tree Transducers and Formal Tree Series 137

1 < » < n, o f s 6 A((TE(X U Y))). T h e m a p p i n g s : (A((TS(X U Y))))Y

A((TZ(X U Y))), i. e., the substitution of formal tree series into the variables
of Y, is a continuous mapping (see Theorem 2.18 of Kuich [7]). Observe that
s (s i , . . . , s n) = ^,TETS(XUY)(S'^)T(SI, • • • ,sN).

In certain situations, formulae are easier readable if we use the notation
s[si/yi, 1 < i < n] for the substitution of the formal tree series Si into the
variables in, 1 < i < n, of s instead of the notation s(sj, 1 < i < n). So we will
use sometimes this notation s[si/yi, 1 < i < n).

In the same way, s 6 A((TZ(X U Y))) also induces a mapping s :
{A((Tx(X))))Y-*A((Ts{X))).

Our tree automata and tree transducers will be defined by transition ma-
trices. Let YK = {yi, • • • ,YK}, K > 1, and Y be sets of variables. A matrix
M £ (A((TS(X U Yk)))Y'xlk, k > 1, V and I arbitrary index sets, induces a

mapping

M : (A ((T E (X U F)))) / x 1 x ... x (A « T E (X U Y)))) / X 1 (A((TX{X U Y))))1'XL

(there are k argument vectors), defined by the entries of the resulting vector as
follows: For Pu ... ,Pk G (A((TS (X U Y)))) / X l we define, for all i € I',

M(PU..., Pk)i = Ziu...,ikei MiAil_ik)m)u,..., (Pk)ik) =

Throughout the whole paper, I (resp. Q) will denote an arbitrary (resp. a
finite) index set.

2 Tree transducers
In this section we introduce tree transducers based on formal tree series and
matrices. We show that these tree transducers are a generalization of a restricted
type of root-to-frontier tree transducers as described in Gecseg, Steinby [4, 5].

In the sequel, £ and £ ' denote finite ranked alphabets, X and X' denote
leaf alphabets and Z = {ZI \ i > 1} denotes an alphabet of variables. We denote
ZK = {zi | 1 < i < k), k > 1, and Z0 = 0.

A tree representation (with state set Q) is a mapping /J, from S i l l into
matrices with entries in A((T-£,'(X' U Z))) such that

(x:Zk^(A((Tv(X'UZk))))Q*Qk, K> 1,

For / G Sfc, k > 1, fi(f) induces a mapping

H(f) • (A((TS,(X'UZ)J)FXLx---x(A((TV(X'UZ))))<3*1 (A({TV(X'UZ)))FXL

(there are k argument vectors), defined by the entries of the resulting vector
as follows: For Pu...,Pke (A((TS,(X' U Z))))Qxl and q £ Q, the mapping is

138 Werner Kuich

given by

M/)(P1,...,P*),= £ /*(/),.<„ q „) ((P i) 9 1 , - - - , (P k) q k) .

Q1

Observe that for Pu...,Pke (A{{TT' (A ')))) 0 * 1 , the vector n(f)(Pu ..., Pk) is
again in (A((Tx>(X'))))Qxl. This means that

((A((Tv(X'uZ)))f*\(v(f) | / G £)) and <(-4<<TE,(A"))>)QX\(M(/) | / G E)>

are E-algebras. Hence, the mapping p. : X (A{(T^i (X'))))Qxl can be uniquely
extended to a morphism

This morphic extension is defined inductively as follows:

Mti,...,tk))=fi(f)(^(ti),...,n(tk))

for / G Eft, e TS(X).
A tree representation fi is called polynomial iff ¿ i (/) e (A (T(A^ 'UZ f c))) < 3 x C ? (:

for / G EFT, k > 1, and m(/) G (A (T S . (X '))) Q x 1 for / G E 0 U A'. Observe that,
for | Q | = 1 and = B, our polynomial tree representations are nothing else
than tree homomorphisms (see Gecseg, Steinby [5], page 18).

For s G A((Tz(X))) we define p.(s) = S t 6 T s (x) (s > i) ®M(i), where <g> denotes
the Kronecker product (see Kuich, Salomaa [9], Section 4). We are now in the
position to define the notion of a tree transducer.

A tree transducer (with input alphabet E, input leaf alphabet X. output
alphabet £ ' , output leaf alphabet X')

T = (Q , / I , S)

is given by

(i) a nonempty finite set Q of states,

(ii) a tree representation ¡J. with state set Q,

(iii) S G (A((Tz> (X' U Z1)))lxQ, called the initial state vector.

The
mapping ||X|| : A((T^(X))) —> A((T£i (X1))) realized by a tree transducer

1 = (Q,n,S) is defined by
||T||(s) = S(»(s)) = S(£ (s,i)®M(i)).

teTv(x)

A tree transducer T = (Q,p.,S) is called polynomial iff ¡i is a polynomial
tree representation, and the entries of S are of the form Sq = aqzi. aq G A,

Tree Transducers and Formal Tree Series 139

We now connect our notion of tree transducer with the root-to-frontier tree
transducers. By Gecseg, Steinby [5], a root-to-frontier tree transducer

» = (£ ,X,Q,E',X',P,Q')

is a system, where

(1) E , E ' , X , X ' , Q are specified in the same way as in the definition of our
tree transducer;

(2) P is a finite set of productions of the following types:
(i) qx t, where q E Q, x E X, t G TE - (X ') ;
(ii) qf{zu. ..,zk)->t, where q E Q, f G Efe> k > 0, t £ TE,(X' U QZk);

(3) Q' C Q is the set of initial states.

A root-to-frontier tree transducer 21 is called nondeterministically sim-
ple iff for each production of type (ii) qf(zi,... ,zk) —> t there exists a set
C,/->t = {q^zi,... ,qikzk} such that t E T E . (I ' U C, / - , i) . (Compare with
Gecseg, Steinby) [4], Exercise 4 on page 213.) Observe that not all elements
f/i1 z i , . . . , qikzk of C q f^t have to appear in t, i. e., 21 needs not to be nondeleting.

For the forthcoming considerations in this section, our basic semiring is the
Boolean semiring B and we use without mentioning the isomorphism between
B((TE (AT))) and ?p(Tz(X)). Given a nondeterministically simple root-to-frontier
tree transducer 21 = (E, X, Q, £', X', P, Q'), we construct a polynomial tree
transducer T = (Q,/x, 5) that behaves analogous to 21. The polynomial tree
representation p. is defined as follows:

(i) For x£X,q£Q,tE TS,(X'), (fj.{x)q,t) = 1 if qx t £ P.

(ii) For / G S fc, G Q, t{Zl,...,Zk) E Tv{X' U Zk),
k > 0, (Kf)q,(.qill...,qik),t(Zl,. . • ,Zk)) = 1 if qf{zu...,zk) ->•
t(QhZi,---,qikzk) E P and Cqf^t = {?», ¿1, • • •, qikzk}.

The initial state vector S is defined by Sq = z\ if q E Q1, Sq = 0 if q G Q — Q'.
We claim that, for s G T^(X), t E Tv(X') and q E Q

(fj,{s)q,t) = 1 iff qs =>* t

and prove it by induction on the form of trees in T%(X). Clearly, the claim holds
true for trees in X U So. Let now / £ £ t for some k > 1, . . . ,sk E Tz(X),
and t = f(si,...,sk). By induction hypothesis, we have (fi(sj)qj ,tj) = 1 iff
qjSj =>* tj, qj G Q, tj E Tv(X'), 1 <j<k. Let now {n(f(su.. .,sk))g,t) = 1,
i. e., for some qi,..., qk E Q

W) g,(9i 9fc)(^(Sl)9i' • • • '/¿(Sk)<]k),t) = 1

140 Werner Kuich

Then there exist v £ T E / (A" U Zk) and tx,...,tk £ T^(X') such that
(M/)r,,(9l,..„,,..) ^ = = 1. 1 < j < k, and t = v(ti,...,tk).
This implies

<7/(si, • • • »«&) =>* v(i f is i , . . . ,9 f csit) =>* w (i i , . . . = £.

Similarly, we can show that qf{s\,..., s^.) =>* t implies (^ (/ (s i , sk))q,t) =
1. This yields our first theorem.

Theorem 1 ¿ei 21 be a norideterministically simple root-to-frontier tree trans-
ducer and T be the polynomial tree transducer constructed from 21. Let
L C rl\ (X) be a tree language. Then 21 maps L to the tree language
supp{\\1\\(char(L))) CTz,{X').

3 Linear and nondeleting tree transducers
In this section we introduce linear and nondeleting tree representations and
tree transducers. The main result of this section is that a linear nondeleting
representation can be extended to a morphism over matrices of formal tree
series.

A tree t £ Tz(X U Zk), k > 1, is called linear iff the variable zj appears
at most once in t, 1 < j < k. A tree t. £ T^(X U Zk), k > 1, is called
nondeleting iff the variable Zj appears at least once in t, 1 < j < k. A tree series
s G A((Ts(X U Zk))), k > 1, is called linear or nondeleting iff all t £ supp(.s)
are linear or nondeleting, respectively. A tree representation fi is called linear
or nondeleting iff all entries of /¿(/), / G k > 1, are linear or nondeleting
tree series, respectively. A tree transducer 1 = (Q,/t, S) is called linear or
nondeleting iff p, is linear or nondeleting, respectively, and the entries of S are
of the form Sq = aqzi, aq £ A, q £ Q.

Before we can state and prove our main result of this section we need a series
of technical lemmas.

Lemma 2 Let, for some k > 1, t £ TE(X U Zk), and Sj £ A{{TS(X))), aj £ A,
1 < j < k. Assume that the variable Zj appears mj > 0 times in t, 1 < j < k.
Then

i (aisi , . . .,ak.sk) = a"11 . . . a™kt(si,.. .,sk).

Proof. The proof is by induction on the form of trees in T%(X U Zk). The
lemma is trivial for t = x or t = Zj, 1 < j < k. Let now t be of the form
f(ti,.. .,tm), where / G £ m for some m > 1, and ti,...,tm £ T^(X U Zk).
Let Zj appear Uij times in U, 1 < j < k, 1 < i < m. Then we have by
induction hypothesis ¿¿(aiSi, . . - , aksk) = a"'1 ... a%ihti(si,..., sk), 1 < i <
m. Hence, i (a i S i , . . . , aksk) = / (i i (a i S i , . . . , aksk),..., i m (a i S i , . . . , aksk)) =
/(ai11 • • • ap't i(Sl,..., sk),..., or™1 ... a^tm(Sl,..., sk)) = ...
auklk+- •+Umkf(t1(su ..., sk), ...,tm(Sl,..., sk)) = ...
t(si,... ,sk). •

Tree Transducers and Formal Tree Series 141

Lemma 3 Let, for some k > 1, s G A({Ts(X U Zk))) be linear and nondeleting,
and Sj G A((Tz(X))), aj G A for 1 < j < k. Then

s(aisi,... ,aksk) = ai . . .afcs(si , . . . ,sk).

Proof. We have s = *}2teTx{xuzk)(s 't)t- Since s is linear and nondeleting, we
obtain, by Lemma 2, i (a i S i , . . . , aksk) = ai... akt(si,... ,sk) for all i G
Zk) such that (s,t) ^ 0. Hence s{aisu ... ,aksk) = T,teTs(xuzk) a i •••ak(s,t)
t(si,... ,sk) = ai. ..aks(si,.. .,sk). •

Lemma 4 Assume that the variable Zi appears exactly once int G T-£,{X{jZk),
k> 1. Let Si G A({Tx(X))) for i G I and r2,... ,rk G A{(Tz(X))). Then

t(Y2si,r2,...,rk) = Yt(si,r2,...,rk).
iei iei

Proof. The proof is by induction on the form of trees in T%(X U Zk). The
lemma is trivial for t = z\. Let now t be of the form f(t\,..., tm), where
/ G £ m , and ti,... ,tm G Tz(X U Zk). The variable zx appears in exactly one
of the subtrees tj, 1 < j < k, say in tu. By induction hypothesis we have
^ " (S i e / si>r'2i • • • i rk) = Ei6 / i " (s » ' 7 ' 2 , - - - , i ' f c) - Hence,

/ (^ (E i e / Si,r2,..., rk),..., tu(J2i ei si'r 2> • • • > rk)i • • •,
t™(T,ieisi,r2,---,rk)) =

f{ti(r1,r2,...,rk),...,J2ieitv(si>r2,---,rk),...,tm(r1,r2,...,rk)) =

for all ri G A((Ts{X))). Hence, the last sum is equal to

E i e / f(* r2, • • •, rk),..., tu(si, r2, • • •, rk),..., tm(si, r-2,..., rk)) =
£i€/(/(£l> • • • > tu, • • • , tm)){Si,r2,. ..,rk) = J^iel t(Si'r 2, • • • > rk) •

•
Lemma 5 Let, for some k>\,s£ A{(TY(X U Zk))) be linear and nondeleting,
and Si G A{(Tz(X))), for i G I. Moreover, let r2,... ,rk G A « T E (X))) . Then

s(Y2si,r2,.. .,rk)= J2s(Si,r2,...,rk).
ief iei

Proof. We have,
by Lemma 4, s (£ i 6 / su r 2 , . . . , rk) = EteTs(xuzk)(s> ¿ M E i e / r 2 , • • •, rk) =
J2iei ^2teT^(xuzk)(s' t)t{si,r2,... ,rk) = ¿i£/ s(si,r2,... ,rk). •
Clearly, Lemma 5 also holds for argument places different from one.

Theorem 6 Let, for some k > 1, s G A((Ts(XuZk))) be linear and nondeleting,
and s^ G A((Tz(X))), a{j G A for ij G Ij; l < j < k . Then

s(y] Oj jSi1 , . . . , ^] a,ikSik) = .. • ^] dij • • • aiks(sil,..., Sik).
i\€.h ik£lk ii6'i ik€h

142 Werner Kuich

Proof. By Lemmas 3 and 5. •
Given a tree representation /J, we now extend /i to mappings

: (A ((E f c))) / x / t -4 {(A((Tv{X' U Zk)))f*V)I*,h for k > 0 ,

and
ti : (A«TE (X))» / x l ((A«rE i (X')))) (? x l) / x l

by
M M) = ^ (M , /) ® ^ /) , M E (A ((£ F C))) / X I \ FC > O,

/eSb

and
£ P e (A « T s (X)))) / x l .

teTE(X)

Observe that M 6 (A((E f c))) / x / f c , k > 0, induces a map-
p i n g . M (M) : ((A ((T E ' (X ')))) Q x 1) I x 1 x . . . x ((A ((T E ' (X ')))) Q X 1) I X 1

((A((T E ' (A")))) c ? > < 1) / x 1 (there are k argument vectors). The next theorem im-
plies that a linear nondeleting tree representation fi is a morphism from the
E-algebra

((A((TS(X)))YX\(Mf | / £ £)) , for some Mf £ (A ((£ ,))) i x / l ; / £ E ^ > 0 ,

into the E-algebra

(((A((Tz' (X'))))Qxl)Ixl, (fi(Mf) | / e £)).

Theorem 7 Let M £ (A{(£*)))/x'\ Pu...,Pk £ (A((TE(X)))) / X l /or some
& > 1, and p be a linear nondeleting tree representation with state set Q. Then

m(M)(M(Pi), • • - ,!M(Pk)) = fi(M(Pu.. .,Pk)).

Proof. We first compute the left side of the equality of the theorem for indices
i £ I and q £ Q \

MM)MPi),...,n(Pk))i)g =
¿.(»1,---.»»:)/9.(91 >--->9fe)

mp1)il)qi,...:(KPk)ik)qk) =
Yliu...,ikelTlq1,...,qkeQ((Tlf€Zk{MJ) ® li(f))i,(iu...,ik))q,ti1,...,qk)

E i , ik.a E9 l l . . . , , f c€Q E / 6 S f c (M . f)i,(h,...,h)Li(f)q
(Ei1eTE(.Y)(-P l> i l) i i / i(i l)fi> • • •) Yltk£T7 :(X)(Pk' tk)iktl{ tk)qk) =

(M , /) ¿,(¿1 .•••.«»)
(P l . iOi ! . . . (.Pfc, , • - • •

Tree Transducers and Formal Tree Series 143

Here the last equality follows by Theorem 6. We now compute the right side of
the equality of the theorem for indices i € I and q £ Q:

(/¿(M(Pi, . . .,Pk))i)q =
Z t e T x (x) (M (p i > - - - , p k) > t) i K t) q =
E t 6 r = W (E i l l . . . , i f c e / (M i , (i l , . . . l i k) ((P i) i l , • • •, (Pfck) , t))n(t)q =

/)/(№)n,.. • , (Pk)lk),tMt)q =
S/esfc(Mi,(ii i„)>f)

((Pl)u,h)-..((Pk)i„tk)Mtl,...,tk))g =
12tlt...,tkeTt:(x) Eii,...,tfce/ J2qi,...,qkeQ^h(.h,--,ik)' f)

«1 , ' ' ' , Mi*)

Here the fourth equality follows by the fact that (f((Pi)i1,---,(Pk)ill),t) is
unequal to 0 only if t is of the form f(h,... ,tk).

Since both sides of the equation of our theorem coincide, the theorem is
proven. •

4 Recognizable tree transducers and recogniz-
able tree series

It is easy to see that our tree transducers do not preserve the recognizabil-
ity of tree series. (See the example in the last paragraph of page 18 of Gec-
seg, Steinby [5].) On the other hand, linear root-to-frontier tree transducers
do preserve recognizability of tree languages. (See Thatcher [10]; and Gecseg,
Steinby [4], Theorem 2.7, Lemma 6.5 and Corollary 6.6.) In this section we show
that linear nondeleting recognizable tree transducers do preserve recognizability
of tree series. We show this by two different constructions: one is based on finite
linear systems, the other is based on finite tree automata.

We start with the construction based on finite linear systems.
A finite linear system (see Berstel, Reutenauer [1], Bozapalidis [2, 3],

Kuich [7, 8]) is a system of formal equations Zi = pi, 1 < i < n, for some
n > 1, where each pi is in A((T^(X U Zn))). A solution to the finite lin-
ear system Zi = Pi, 1 < i < n, is given by a € (A((T:c(X))))™xl such that
Oi = Pi(oi, • • - ,crn), 1 < i < n. A solution cr of Zi — pi, 1 < i < n, is termed
least solution iff a C r for all solutions r of Zi = pi, 1 < i < n. The approxima-
tion sequence (cr-7 | j £ N), aj £ (A((Ts(X)))) n x l , j > 0, associated to the finite
linear system Z{ = pi, 1 < i < n, is defined as follows:

= 0, ai+1 =Pi(o{, •••,<), 1<» <". i>0-

The least upper bound o = sup(<r:' | j £ N) of the approximation sequence
exists and is the least solution of the finite linear system.

A finite linear system = Pi, 1 < i < n is called proper iff (pi,Zj) = 0 for
all 1 < j < n, i. e., iff there do not appear linear terms in pi.

144 Werner Kuich

A finite linear system Z{ = pi, 1 < i < n is called polynomial iff each pi is
in A(Tz(X U Zn)). The collection of all the components of least solutions of
finite polynomial linear systems is denoted by Arec((Tz(X))). The tree series in
A"!C((T\z(X))} are called recognizable tree series.

A finite linear system Zi = pi, 1 < i < n is called recognizable iff each pi is
in Arec((Tx(XUZn))).

An adaption of the proof of Proposition 6.1 of Berstel, Reutenauer [1] yields
the following result.

Theorem 8 For each finite (resp. recognizable finite or polynomial finite) linear
system there exists a proper finite (resp. proper recognizable finite or proper
polynomial finite) linear system with the same least solution. A proper finite
linear system has a unique solution.

We now show that the least solution of a recognizable finite linear system
has recognizable components.

Theorem 9 Let Z{ = pi, 1 < i < n, be a recognizable finite linear system with
least solution a. Then cr, £ A re c((TE(A))) for all 1 < i < n.

Proof. Without loss of generality let Zi =Pi, 1 < i < n, be a proper recognizable
finite linear system. Since pi £ ATec((T^(XU Zn))), 1 < i < n, there exist proper
polynomial finite linear systems y^ = qij, 1 < j < mi, mi > 1, where the yij
are new variables and q^ £ A(T^(X U ZnU {yn,... ,yimi})), 1 < i < n, such
that the qn-components of their least solutions Tj are equal to pi. Consider
now the polynomial finite linear system Zj = qn(zi,..., zn, yn,... ,yimi), y^ =
qij(zi,... ,zn,yn,... ,yinu), 1 < j < mi, 1 < i < n, and observe that this
polynomial finite linear system has a unique solution. We claim that this unique
solution is given by crU((ri)j(cri,... ,an) \ \ < j < mi, 1 <i <n). Substitution
of this vector yields, for 1 < j < mi, 1 <i<n,

qi 1(01,. • • ,an, (Ti)i(<Ti,... ,a„),..., (Ti)mi(ai,. .. ,an)) =
{n)i{(Ti,... ,an) = Pi(ai,... ,crn) = Oi,

qij{<J\,. • • ,an, (Ti)i(cri,... ,<r„),..., (ri)nii(cri,... ,an)) = (n)j(cri, • • • ,an).

Hence cr U (C7"i)j (CTi > • • • > an) \ 1 < j < mi, 1 < « < ?i) is the unique solution of
the polynomial finite linear system and a 6

Let Y = {yi | i > 1} be an alphabet of new variables and denote Yk =
foi, •••,!/*}, k>l,Y0=9. Let s(yu...,yk) £ A™C((TS(X I) Yk))) and T j £
A r e c ((T s (A U Yk))), 1 < j < k. Then, by Bozapalidis [2], s (n , . . . , r n) is again
in A r e c ((TE (A U Yfc)))> i- e., Arec{(Tz(X U Yk))) is closed under substitution.

Theorem 10 ,4rec((Ts(A U Yk))), k > 1, is closed under substitution.

Consider a finite linear system y^ = Pi(yi, • • •, yn), 1 < i £ n, where pi £
A({Ts(X U Yn))), and a tree representation p. with state set Q, where fi: T,k —>
(A((T^(X'UZk))))Qx^,k > 1, and p : E 0 UA (A((TS. (A ')))) ° x l . Let (y i) „

Tree Transducers and Formal Tree Series 145

1 < i < n, q G Q, be new variables and denote YQ = {(yi)q | 1 < i < k, q G Q}.
Extend the definition of fi to the domain E U X U Yn, by

/x : Fn (-4(<TE ,(yQ"))))«x l ,

where p{yj)q = {yj)q, 1 < j < n, 9 € Q. By this extension, we obtain that

p = U Yn) (A((TS,(X' U y ^)))) Q x l .

Lemma 11 Consider s(yi,..., yn) G A((Tz(X UYn))) and a linear nondeleting
tree representation /J, with domain E U X U Yn. Let Si,..., sn G A((T^(X)}).
Then

V(s)\p(sj)q/(yj)q, 1 <3<n, q G Q] = /i(s(si,. . . ,sn)) .

Proof. We first consider a tree t G T j ; (I U Y„) and show by induction on the
form of t, that p{t)[p(sj)q/(yj)q, 1 <j<n, q G Q] = ^ (¿ (« i , . . . , s„)) .
(i) For t = yit 1 < i < n, we obtain n{iji)[n(sj) / 1 < j < n] = fi(si) =
KVi{Sl, - • • ,sn)).
(ii) For t = x, x G £ 0 U X, we obtain fx(x)[p,(sj)/fi(yj), 1 < j < n] = n(x) =
fi(x(s i,...,s„)).
(iii) For t = f(tu...,tk), f G St, i i , . . . , i f c G T s (X u Y n) , k > 1, we obtain

/i(/(ii,...,ifc))[A»(Si)/M(yj). 1 < J < «] =
M / X / ^ i M M ^ M j / j) , 1 < J < n],. • • 1 < J < «]) =
P i D i K h (s i , • • •, sn)) , • • •, n(tk(si, • • •, sn))) =
H(f(tl(si , • • • , Sn), . . • , ifc(Sl, • • • , Sn))) =

Here we have applied the induction hypothesis in the second equality and The-
orem 7 in the third equality.

Finally, we obtain

p{s)[p{sj)/p(yj), 1 <j<n] =
£i€rs(xuyn)(M) ® MiMsjOM?/,-). 1 < j < n) =
T,teTs(xuYn)(s>® M(i(si, • • •, Sn)) =

•
Theorem 12 Consider a linear nondeleting tree representation fj. with domain
S U l U Yn. Let V i = Pi(yu ..., yn), 1 <i<n, where pi G A((Tz(X U Yn))), be
a finite linear system with least solution a. Then n(o) is the least solution of
the finite linear system p(yi) = p(pi(yi,... ,yn)),' 1 <i <n.

Proof. Let (oi | j G N) and (rJ | j G N) be the approximation sequences of
'h = Pi{yi,---,Vn), I < i < n, and ¡x(yi) = n{Pi{yi, • • • ,yn)), 1 < i < n,

146 Werner Kuich

respectively. We claim that T- = ^(A?), 1 < i < n, j > 0, and show it by
induction on j. The case j = 0 is clear. Let j > 0. Then, for 1 < i < n,

r / + 1 = KPiiv• • • ,Vn))[Tiln{Vk), 1 < k < n] =
v(Pi(yu • • •,Vn))[lJ-(^l)/iJ'{yk), 1 <k<n] =

Here we have applied the induction hypothesis in the second equality and
Lemma 11 in the third equality. The claim now implies our theorem. •

A tree representation /x is called recognizable iff /¿(/) £ (Arec((T^f (X' U
Zk))))QxQk for / G k > 1, and M (/) G (^ r e c ((T E , (A ')))) Q x l for / e E0 U X .
A tree transducer T = (Q,fi ,S) is called recognizable iff n is a recognizable tree
representation and the entries of S are of the form Sq = aqz\, aq G A, q £ Q.

Corollary 13 Consider a linear nondeleting recognizable tree representation /i.
Let s be in Arec{{T^(X))). Then n(s) is in (A r e c ((T E - (A ')))) Q x l .

Corollary 14 Consider a linear nondeleting recognizable tree transducer T and
a recognizable tree series s. Then ||T||(s) is again recognizable.

We now turn to the automata-based construction.
Our tree automata are a generalization of the nondeterministic root-

to-frontier tree recognizers (see Gecseg, Steinby [4, 5]) and are defined in
Kuich [7, 8]. A tree automaton (with input alphabet E and leaf alphabet X)

21 = (I, M, S, P)

is given by

(i) a nonempty set I of states,

(ii) a sequence M = {Mk | k > 1) of transitioii matrices
Mk£{A((Tv(XuYk)))y*'\k>l,

(iii) 5 G (A ((T z { X U Yi)))) l x i , called the initial state vector,

(iv) P £ (A((Tz(X))))Txl, called the final state vector.

The approximation sequence (a^ | j G N), a3
£ (A ((T E (X)) » / X 1 , j > 0 ,

associated to 21 is defined as follows:

a°=0, ai+1 =YJMk{aj,...,(Jj) + P, j> 0.
fc>i

The behavior ||2l|| G A{{TY,{X))) of the tree automaton 21 is defined by

||2l|| = £ 5 i ((7 i) = 5 (a) !

ier

Tree Transducers and Formal Tree Series 147

where er 6 (A { { T Z (X)))) I X L is the least upper bound of the approximation se-
quence associated to 21.

A tree automaton 21 = (I, (Mk | k > 1), S, P) is termed simple iff the entries
of the transition matrices Mk, k > 1, of the initial state vector S and of the
final state vector P have the following specific form:

(i) the entries of Mk, k > 2, are of the form E / e s * aff(Uiy • • ,Vk), a s € A;

(ii) the entries of Mi are of the form a f f (v i) + a2/i> a h a e M

(iii) the entries of P are of the form]Cwe£0ux aw €

(iv) the entries of S are of the form dyi, d E A.

A tree automaton 21 = (I, (Mk | k > 1), S, P) is termed proper iff the entries
of Mi do not contain a linear term ayi, a E A.

A tree automaton 21 = (I, M, S, P) is called polynomial (resp. recognizable)
iff the following conditions are satisfied:

(i) M = (MK | 1 < k < k) is a finite sequence of transition matrices MK whose
entries aie polynomials in A(Tz(XUYk)) (resp. tree series in Arec((Tj;(XU
Yfc)))), 1 < k < k. (Technically speaking, this means that all transition
matrices Mj.+j, j > 1, are equal to the zero matrix.) Moreover, the
matrices Mk, 1 < k < k, are row finite.

(ii) The entries of the initial state vector 5 are of the form Si = c?i2/i, i E I.
Moreover, S is row finite.

(iii) The entries of the final state vector P are polynomials in A(T^(X)) (resp.
recognizable tree series in Arec((T^(X)))).

By Bozapalidis [2], by Kuich [7], and by Theorem 9 we obtain the following
result.

Theorem 15 The following statements on a formal tree series in A((TY(X)))
are equivalent:

(i) s E ATec((Tz(X))),

(ii) there exists a polynomial tree automaton 21 with finite state set such that
s = 112111,

(iii) there exists a simple proper polynomial tree automaton 21 with finite state
set such that s = ||21||,

(iv) there exists a recognizable tree automaton 21 with finite state set such that
s = m\,

(v) there exists a proper recognizable tree automaton 21 with finite state set
such that s = | | 2 l | | ,

148 Werner Kuich

Let 21 = (/ , (Mk | k > 1), 5, P) be a simple tree automaton and 1 = (Q,p,R)
be a tree transducer such that Rq — aqy\, aq G A, q 6 Q. Then T(21) is defined
to be the tree automaton

1(21) = (7 x 0 , (n(Mk) \k>l),S®R, »(P)) •

Theorem 16 Let 21 = (/ , (M k \ k > 1),S,P) be a simple tree automaton and
1 = (Q,n,R) be a linear nondeleting tree transducer. Then

№) I I = PII(PII)-

Proof. Consider the approximation sequences (a^ \ j e N) and (rJ' | j G N) of 21
and 1(21) with upper bounds a and r , respectively. Then we prove by inducion
on j that T j = j > 0. The induction basis being clear, we proceed with
the induction step. Let j > 0. Then

r] + 1 = E t > i • • • + M P) =
Zk>i»(Mk(<jj,...,oj))+KP) =

Here the second equality follows by Theorem 7. Hence, we obtain r = H(<J).
We now compute the behavior of 1(21):

||1(2l)|| = (S ® R)(T) = E i e / E 9 6 Q ((5 ® R)i)M°)i)<, =
E ¿ 6 / RqSi J2tETz(X)(ai> Ovityq =

P<7 EtgTs(.Y) ^ieiiSiCiiO/J-it))/ =
J2qeQ R<1 J2t£Tx(X)

№\\,tb(t)q =
E , 6 Q ^ (l i a | |) 9 = ||i||(||2i||).. •

Corollary 17 Let 21 be a simple polynomial tree automaton with finite state set
and 1 be a linear nondeleting recognizable tree transducer. Then ||1||(||2l||) is
in A r e c ((TE (A))>.

Acknowledgement. Many thanks are due to Ferenc Gecseg for discussions on
root-to-frontier tree transducers.

References
[1] Berstel, J., Reutenauer, C.: Recognizable formal power series on trees.

Theor. Comput. Sci. 18(1982) 115-148.

[2] Bozapalidis, S.: Equational elements in additive algebras. Technical Re-
port, Aristotle University of Thessaloniki, 1997.

Tree Transducers and Formal Tree Series 149

[3] Bozapalidis, S.: Context-free series on trees. Preprint, Aristotle University
of Thessaloniki, February 1998.

[4] Gecseg, F., Steinby, M.: Tree Automata. Akademiai Kiado, 1984.

[5] Gecseg, F., Steinby, M.: Tree Languages. In: Handbook of Formal Lan-
guages (Eds.: G. Rozenberg and A. Salomaa), Springer, 1997, Vol. 3, Chap-
ter 1, 1-68.

[6] Kuich, W.: Semirings and formal power series: Their relevance to formal
languages and automata theory. In: Handbook of Formal Languages (Eds.:
G. Rozenberg and A. Salomaa), Springer, 1997, Vol. 1, Chapter 9, 609-677.

[7] Kuich, W.: Formal power series over trees. In: Proceedings of the 3rd In-
ternational Conference Developments in Language Theory (S. Bozapalidis,
ed.), Aristotle University of Thessaloniki, 1998, 61-101.

[8] Kuich, W.: Pushdown tree automata, algebraic tree systems, and algebraic
tree series. Preprint, Technische Universität Wien, 1998.

[9] Kuich, W., Salomaa, A.: Semirings, Automata, Languages. EATCS Mono-
graphs on Theoretical Computer Science, Vol. 5. Springer, 1986.

[10] Thatcher, J. W.: Generalized2 sequential machine maps. IBM Research
Report RC 2466, 1969.

Acta Cybernetica 14 (1999) 135-149.

Duplication Grammars *

Carlos MARTIN-VIDE f Gheorghe PAUN *

Abstract
Motivated by the abundance of duplication operations appearing in nat-

ural languages and in the genetic area, we introduce a generative mechanism
based on duplication operations: one starts from a given finite set of strings
and one produces new strings by copying certain substrings, according to a
set of given rules (which specify contexts where duplicated substrings can be
inserted). We mainly investigate the power of such devices, comparing the
obtained families of languages to each other and with families in the Chomsky
hierarchy. In this context, we also solve a problem left open in a paper by
Dassow and Mitrana, [1], even giving a stronger results: the iterated dupli-
cation with rules of only one type (see formal definitions in the sequel) can
generate non-context-free languages (even non-matrix languages).

1 Introduction
The duplication of strings or of parts of strings is a common operation both in
natural languages and in the genetic languages. We refer to [12], [15] for discus-
sions about this topic from the linguistical point of view; it is interesting to note
that it seems that reduplication, which is a non-context-free type of operation, is
more abundant in natural languages than mirror-image constructions, which can
be handled by linear Chomsky grammars. This is an argument supporting the
thesis that Chomsky grammars and their classification is not an adequate model of
the syntax of natural languages. Details about operations appearing in the genetic
area, duplication included, can be found, for instance, in [2], [10], [11], [18], or in
the first chapter of [14].

We start here from the approach in [1] to duplication in the DNA area. In
that paper, one considers duplication rules of the form (ui,v,u2), where u\,v,u2
are strings (over the DNA alphabet, but the operation can be defined in general,
over any finite alphabet); the idea is that the string v can be inserted in between
the strings U\,U2, providing that it already appears in the processed string. This

* Research supported by the Direccio General de Recerca, Generalitat de Catalunya (PIV)
t Research Group in Mathematical Linguistics and Language Engineering Rovira i Virgili Uni-

versity PI. Imperial Tarraco 1, 43005 Tarragona, Spain e-mail: cmv@astor.urv.es
^Institute of Mathematics of the Romanian Academy PO Box 1 - 764, 70700 Bucure§ti, Ro-

mania, e-mail: gpaun@imar.ro.

151

mailto:cmv@astor.urv.es
mailto:gpaun@imar.ro

152 Carlos MARTiN-VIDE, Gheorghe PAUN

amounts to a duplication of v. Both the one-step operation of this type and the
iterated operation are considered in [1], where one proves that the non-iterated
operation preserves the regular and the context-free languages. It is stated as an
open problem in [1] the question whether or not the iterated duplication preserves
the context-freeness.

We distinguish here three types of duplications: taking v from the left of the
place where a copy of it will be produced, from the right of that place, or duplicating
v near an already existing copy of it; in all cases, the context («,], u2) controls
the operation. We prove that in each of these cases, the iterated duplication can
lead finite languages to languages which cannot be generated by matrix languages
(without appearance checking). This solves the problem in [1], in a stronger form.
The result is not surprising, because of the context-sensitivity of the operations we
use (the presence of the context (u\,u2) associated with each string v which can be
duplicated); this also corresponds to the situation met for the so-called insertion
grammars of [5], where the string to be inserted is not necessarily a substring of
the current string (see the corresponding chapter in [13]). Somewhat unexpected is
the fact that non-context-free languages can be also produced when starting from
finite languages and using duplication operations in the restricted case when the
copy of the duplicated string is produced adjacent to the string itself.

2 Formal Language Theory Prerequisites

We introduce a few notions and notations necessary in the sequel; for details, the
reader is referred to [16].

For an alphabet V, we denote by V* the set of all strings over V, including the
empty one, denoted by A; the set of non-empty strings over V is denoted by V+.
The length of x £ V* is denoted by \x\ and the number of occurrences of a symbol
a £ K i n a string x £ V* is denoted by |a;|a. The left derivative of a language
LCV* with respect to a string x £ V* is dlx(L) = {w £ V* \ xw £ L} and the
right derivative is dx{L) = {w £ V* \ wx £ L}.

A context-free grammar is a construct G = (N, T, S, P), where N is the non-
terminal alphabet, T is the terminal alphabet, S £ N is the axiom, and P is the
set of production rules, pairs of the form (A , x) with A £ N,x £ (N U T)* (writ-
ten in the form A —¥ x). For x,y £ (TV U T)*, we write x => y if and only if
x = x\Ax-2,y = x\zx2, for some xi,x2 £ (N LIT)* and A —> z £ P. By =i>*
we denote the reflexive and transitive closure of the relation =>>. The language
generated by G is defined by L(G) = { 1 G T* | S x}.

By FIN, REG, LIN, CF, CS, RE we denote the families of finite, regular, linear,
context-free, context-sensitive, and recursively enumerable languages, respectively.
This is the Chomsky hierarchy, the standard test bed for any new type of language
generating devices.

Duplication Grammars 153

3 Duplication Grammars
We now introduce the main object of our study, in several variants.

A duplication grammar is a construct

A = (y,Di,Dr,D0,A),

where V is an alphabet, Di,Dr, D0 are finite subsets of V* x V+ x V*, and A is a
finite language over V.

The elements of the sets Di,Dr,D0 are called duplication rules, those of A are
called axioms. Note that the duplication rules have the second element non-empty.

With respect to such a grammar, for x,y G V* we define:

X = XiUiU2X2VX3,y = X1U1VU2X2VX2,
for some xi,x2,x3 G V*, (ui,w,u2) G Dh

X = XiVX2UiU2X3,y = XiVX2UiVU2X3,
for some xi,x2,x3 G V*, (ui ,v ,u 2) G Dr,
X = XiUiVU2X2,y = X1U1VVU2X2,
for some X\,X2 G V*, (ui,v,u2) G D0.

We write for denoting any of these relations the reflexive and transitive
closure of ==> is denoted by = > * . Then, the language generated by the grammar
A is defined by

L(A) = {w G V* | z w, for some z G A}.

In words, one starts from strings in A and one iteratively duplicates subtrings as
allowed by the triples in the sets Di,Dr,D0. In all cases, a copy of a substring of
the current string is produced, to the left of its former occurrence, to the right, or
adjacent to that occurrence, respectively.

Because one or two of the three sets Di,Dr, Do can be empty, we obtain in this
way seven classes of grammars and, correspondingly, seven families of languages.
We denote by DUPL(a) the family of languages generated by duplication gram-
mars containing rules of the type a, where a can be one of l,r, 0, Ir, 10, rO, lr0\ the
absence of one of the symbols I, r, 0 means that the corresponding sets of duplication
rules is empty.

Several duplication grammars and languages generated by them will be consid-
ered in the following sections, hence we do not give here examples.

4 Generative Capacity
We compare the families DUPL(a) to each other and to families of languages in
the Chomsky hierarchy.

x =>£>, y iff

x =>Dr y iff

x =>r>o V iff

154 Carlos MARTiN-VIDE, Gheorghe PAUN

Note that each duplication language has the bounded growth property: for
each infinite language L there is a constant k such that if x e L, then there is
yEL,y^x, with ||z| - \y\\ < k.

Directly from the definitions, we obtain the relations in the diagram in Figure
1 (an arrow from a lower family to an upper family indicates an inclusion which is
not necessarily proper). This diagram will be useful below when investigating the
relationships between these families.

CS

DUPL(lrO) CF

DUPL(lr) DUPL(10) DUPL(rO) LIN

~DUPL(l) DUPL(r) DUPL(0) REG

FIN

Figure 1

Lemma 1. Let V be an alphabet containing at least three symbols. The language
V+ is in DUPL(l) n DUPL(r), but not in DUPL(0).

Proof. For the duplication grammars A = (V, Di,Dr, 0, A), where one of Di,Dr

is empty and the other is equal to { (A,a , A) | a € V}, and

A = {x eV+ \ |z|a < 1 for each a € V } ,

we obviously have L(A) = V+.
The language V+ cannot be generated by a duplication grammar which uses

only rules in Do, because at each step of the form x = > o 0 V w e produce a string y

Duplication Grammars 155

of the form y = y\vvy2 for some v G V+. However, for V containing at least three
symbols, there are arbitrarily long square-free strings in V+, [19], [17]. •

Remark 1. (Suggested to us, without a proof, by V. Mitrana) The language
V+ for V = {a, 6} is in DUPL(0), that is, the previous result cannot be improved
by considering V with only two symbols. Indeed, the duplication grammar

A = ({a, b}, 0, 0, Do, A) ,
A = {a, b, ab, aba, ba, bab},

Do = {(A, a, A), (A, b, A), (X,ab,X), (X,ba,X)},

generates V+. The inclusion L(A) C V+ is obvious, the converse inclusion can
be proved as follows. For a string x = ĉ 1 c?,2... c*r, r > 1 ,Cj G {a, b},ij- > 1,
for all 1 < j < r, with Cj Cj+i, 1 < j < r — 1, we denote by red(x) the
(reduced) string C1C2 . . . cr (all blocks of symbols a and b are reduced to one symbol).
Clearly, starting from strings in A and using the rules (X,ab,X), (X,ba,X), we can
generate all strings w G V+,w = red(x), for some x G V+. Then, by using rules
(A, a, A), (A, b, A), we can pass from red(x) to x, for any x G V+.

It is easy to see that { a , 6 } + G DUPL(l) n DUPL{r), too, and that a+ G
DUPL(a) for all a G {¿,r,0}.

Lemma 2. (i) {abanbn \ n > 1} G DUPL{r) - DUPL(l). (ii) {anbnab | n >
1} G DUPL{1) — DUPL(r).

Proof, (i) The duplication grammar

A = ({a, b}, 0, { (a , ab, b)},$, {abab})

obviously generates the language {abanbn | n > 1}.
This language cannot be generated by a duplication grammar which uses only

rules in Df. in order to produce strings abanbn with arbitrarily large n we need to
use triples of the form (a? ,a%bl, bk) G Df, such a triple can be used for introducing
albl in only one position of a string abambm, namely in between am and bm; there
is no occurrence of albl to the right of that position, as requested by the definition
of the relation £>,.

Assertion (ii) can be proved in the same way. •

Lemma 3. {anbn \ n > 1} £ DUPL{lrO).

Proof. No derivation step is possible starting from a string of the form anbn

because no substring of such a string can be duplicated. •

In [1] one asks whether or not the context-freeness is preserved by the iterated
duplication of types (in fact, in [1] one uses only one set D of rules,
applied both "to the left" and to "to the right", in the sense of Di,Dr, respectively).
We prove below that the answer is negative: even finite languages are led to non-
context-free languages by iteratively duplicating substrings of them. This is one of
the main results of our paper.

156 Carlos MARTiN-VIDE, Gheorghe PAUN

Lemma 4. DUPL(0) -CF ^ 0.

Proof. Let us consider the duplication grammar

A = ({a,b,c},d,d,D0,A),

where D0 contains the following rules

n = (ca, ab, baabbaabb),

T2 = (aababba,ab,b),

rz = (caa, b, abbaabab),

n = (caabb, a, bbaabab),

rs = (bbaabb, a, bbaabab),

re = {aabbaa, b, abbaabab),

ri = (aabbaa, b, abbe),

rs = (bbaabb, a, bbc),

and
A = {caabbaabbaabbc}.

Consider also the regular language

R = c(aabb)+c,

and examine the intersection L(A) n R.
Starting from a string of the form c(aabb)nc (initially, we have n = 3), the rules

7*i, 7*2 double the substrings ab, from left to right:

caabbaabbaabb... aabbc
=> D0 caababbaabbaabb ... aabbc
=>D0 caababbaababbaabb ... aabbc

=>D0 caababbaababbaababb... aababbc.

The rules r3 — rg can be applied to a string obtained in this way in order to double
all occurrences of a and b which are not double. This is also done from left to right:

caababbaababbaababb... aababbc
=>D0 caabbabbaababbaababb... aababbc
=> Do caabbaabbaababbaababb... aababbc

==>D0 caabbaabbaabbaabbaabbaabb... aabbaabbc.

In this way, each substring aabb is doubled: we pass from aabb to aababb and
then to aabbaabb. Thus, the obtained string is c(aabb)2nc. The process can be
repeated.

Duplication Grammars 157

In order to obtain a string in R, the operations of doubling the substrings ab
and then of doubling the symbols a, b which are not appearing in substrings aa, bb,
respectively, must be completed. Indeed, consider the case of a string of the form

w = caababb ... aababbaababbaabbaabb... aabbc,

that is, obtained after some steps where rules r i , r 2 were applied. Start now to use
the other rules. The rules , 7-4, 7-5, r^ can be used from the left to the right and the
symbols a, b not appearing in blocks aa, bb are doubled. Assume that we perform
this operation the maximal possible number of times, that is we double also the
underlined symbols in the string w; we obtain the string

w' = caabbaabb ... aabbaabbaababbaabbaabb... aabbc.

No further application of rules is possible, hence no further occurrence of
a,b can be doubled. We have first to continue with the rule r2, doubling new
occurrences of ab and making possible the identification of the right contexts of
rules r5 ,re in the current string.

Symmetrically, consider a string obtained after some steps where symbols a, b
were doubled:

z — caabbaabb... aabbaabbaababbaababb... aababbc.

From the left, we can start doubling substrings ab; this must be done step by step,
but cannot proceed ahead of the doubling of the symbols a, b. For instance, we can
obtain the string

z' = caababbaababb... aababbaababbaababbaababb ... aababbc,

but we cannot go further, with the underlined substring ab. Again we have to
continue with the previous operation of doubling (now, that of doubling the symbols
a and b appearing separately).

Consequently, in order to get a string in R we have to perform complete "trans-
lations" of the string, that is doublings of the number of occurrences of the blocks
aabb. This implies the equality

L(A) n R = {c(aabb)3'2"c | n > 0 } .

Clearly, this is not a context-free language, hence L(A) is non-context-free either. •

The family of languages generated by matrix (programmed, controlled, etc)
grammars with context-free rules (without using appearance checking) is closed
under intersection with regular languages and under morphisms, [3]. Moreover,
each one-letter matrix language is regular, [9]. This proves that the language L(A)
in the previous proof is not a matrix one (with the morphism h defined by h(a) =
h(b) = h(c) = a we obtain h(L(A) ni?) = {a12 '2"4"2 | n > 0}, which is not regular).
Thus, we can conclude that DUPL(0) contains non-matrix languages.

158 Carlos MARTiN-VIDE, Gheorghe PAUN

Corollary 1. DUPL(l) -CF¿<b, DUPL(r) - CF ^ 0.

Proof. Let A = ({a, b, c} , 0. 0. Do, {caabbaabbaabbc}) be the duplication gram-
mar constructed in the previous proof and consider the following grammar:

A r = ({a, 6, c} , 0, Dr, 0, {abcaabbaabbaabbc}),
Dr = { (uiv,v ,u 2) I (ui,v,u2) G Do}.

For the regular language Rr — abc(aabb)+c we obtain

L (A r) nRr = {ab}(L(A) n R).

(The rules in the set Dr of A r lead to duplications identical to those controlled by
the rules in the set Do of A; the string ab in the left end of the strings provides the
necessary strings a,b,ab for duplications.) This proves that the language L(Ar) is
not context-free.

A similar modification of A leads to a grammar A; (with only the set D¡ non-
empty) generating a non-context-free language (we take the axiom c(aabb)3cab and
Ri = c(aabb)+cab). •

Clearly, if we allow the use of each triple (u\,v,u2) in the above grammars
A;,A, r in any mode then the generated language is not modified,
hence the problem in [1] is answered: the iterated duplication does not preserve
the context-freeness.

We combine these results in a synthesis theorem:

Theorem 1. (i) The families DUPL(l),DUPL(r) are incomparable.
The families LIN,CF are incomparable with all families DUPL(a),a E
{I,r,0,lr,l0,r0,lr0}; REG is incomparable with DUPL(0).

(ii) All families DUPL(a),a G {I,r,0,lr,l0,r0,lr0}, are strictly included in
CS.

(iii) The inclusions DUPL(l) C DUPL{lr), DUPL{r) C
DUPL(lr),DUPL{0) C DUPL(10),DUPL(0) C DUPL(rO) are proper.

It remains as an open problem to clarify the relationships between the families
DUPL(0),REG and the families DUPL(a) with a 0. Is REG included in
DUPL(a) ? The next result provides a partial answer to this problem.

Theorem 2. For every regular language L there is a string w such that {w}L G
DUPL(r) and L{iu} e DUPL(l).

Proof. Let L be a regular language and let M = (K , V, q0, F, S) be the minimal
deterministic finite automaton recognizing L (K is the set of states, V is the al-
phabet, g0 is the initial state, F is the set of final states, and S : K x V —> K is
the transition mapping).

For each x E V*, we define the mapping px : K —;> K by

Px(q) = q iff 5{q,x) = q, q G K.

Duplication Grammars 159

Obviously, if xi,x2 G V* are such that pXl = pX2, then for every u,v G V*, uxxv is
in L if and only if ux2v is in L.

The set of mappings from K to K is finite. Hence the set of mappings px as
above is finite. Let no be their number. We construct the duplication grammar
A r = (V U {c, d}: 0, Dr, 0, A), where c, d are two symbols not in V,

Dr = {(zui,v, A) | pUl = pUlV, for ui,v G V*, |ui|, < n0,
and either z = dz',z' G V*, \z'ui\ < no, or z G V*, \zu\\ = no + 1},

and A is constructed as follows. Take all strings x G V* of length at most no,
concatenate each of them with c at both ends, then concatenate all the obtained
strings, in any given order; denote by w' the obtained string and consider w = w'd.
Then,

A = {iiji \ x E L,\x\ < no + 1}.

Therefore, the string w provides substrings v for duplication, as requested by
the rules in Dr. These rules cannot be applied to the substrings of w, because of
the presence of symbols c: the left context of each rule in Dr is of a length greater
than no, or it begins with d, hence this context cannot be found in w.

From the definition of mappings px and the definitions of A and Dr, it follows
immediately that L(A) C {w}L.

Assume that the converse inclusion is not true and let wu G {w}L — L(A) be
a string of minimal length with this property. Thus wu ^ A. Hence |u| > no + 2.
Let u = zz' with \z'\ = n0 and z G V*. If z' = a\a2 . •. o„0 , then it has no + 1
prefixes, namely A,ai,a\a2 , . . . ,ai ... ano. There are only no different mappings
px. Therefore there are two prefixes u\,u2 of z' such that u\ ^ u2 and pUl = pU2.
With no loss in generality we may assume that |iti| < l^l- By substituting u2 by
ui we obtain a string u' which is also in L. As \u'\ < |uj and wu was of minimal
length in {w}L — L(A), we obtain wu' G L(A). However, \u2\ — |MI| < \u2\ < no,
so if u2 = uiv, then (ziUi,v, A) G Dr, where either z\ = z and begins by d, or z\
is a suffix of z such that \zu%\ = no + 1. This implies that wu' ==>Dr wu, that is
wu G L(A), a contradiction. In conclusion, {w}L C L(A).

In the same way we can prove that L{dw'} G DUPL(l). •

Corollary 2. Each regular language L can be written as the left derivative of
a language in DUPL(r) or as the right derivative of a language in DUPL(l).

Proof. With the notations in the previous proof, we have L — dlw(L(A)) =
9^(L(A')) , where A is the duplication grammar constructed above and A' is its
version for the DUPL(l) case. •

If we also use a projection (a morphism which erases certain symbols and leaves
the other symbols unchanged), then a representation result like that in this corollary
can be obtained for linear languages, too.

Theorem 3. For each linear language L, there is a string w, a language L' G
DUPL(r), and a language L" G DUPL(l) such that L = h{dlw{L')) = h{drw{L")).

160 Carlos MARTiN-VIDE, Gheorghe PAUN

Proof. Consider a linear grammar. G = (N,T,S,P) and two new symbols.
c, d. Each rule X —> x in P is replaced by X —» cxc (in this way, all terminal
strings appearing in the right hand side of rules are non-empty and each right-
hand member of a rule is bounded by c). Denote by P' the set of rules obtained
in this way. For each rule X uYv G P' we consider the string uYYv. Let
w' be the string obtained by concatenating these strings, for all rules in P', then
concatenating also the strings appearing in the right hand side of terminal rules in
P'. Moreover, each string is considered only once, even if two rules have the same
right hand side. Then, the string w we look for is w = w'd.

We
now construct the duplication grammar A = (TV U T U {c, d}, 0, Dr, 0, {wSS}),
with

Dr = {(X,uYYv,X) | X ->• uYv G P ' , nonterminal rule}
U {(X,x,X) | X ->• x G P', terminal rule}.

From the previous construction, one can easily see that L(A) consists of strings
of the form

w'dSuiXwz... Xn_iunXnxXnvnXn_i.. ,v2XiViS,

with n > l,Xi G TV,Ui G {c}T*,Vi G T*{c}, for all i, and x G {c}T*{c}, such that
S UiX\Vi, Xi —> U{+iXi+iVi+i, for 1 < i < n — 1, and Xn —> x are rules in
P'. (For each derivation step we can find the string to be inserted as a substring
of w. Moreover, no duplication rule can be applied for inserting a string in w,
because of the presence of symbols c bounding the substrings to be duplicated and
because of the fact that such substrings appear only once in w.) Therefore, the
string u\u-2 • • • unxvn ... v2vi can be generated by using the rules in P'.

With the projection morphism h : (TV U T U {c, d})* —• T* defind by h{a) = a
for a G T, and h(b) = A for a £ T, we obtain L = h(dlw{L(A)).

The case of DUPL(l) can be treated in the same way. •

5 Decidability and Complexity
The fact that the family C P is incomparable with all families DUPL(a) makes
interesting several decidability questions. We solve here only one of them, the
others remain open. Two examples: Is the regularity or the context-freeness of
duplication languages decidable ? Given a regular language, can we decide whether
or not it is in a family DUPL(a) ?

Theorem 4. It is not decidable whether or not a context-free language is in a
family DUPL(a), for any a G {I,r,0,lr,l0,r0,lr0}.

Proof. Let G be an arbitrary context-free grammar with the terminal alphabet
{a, b} and construct the language

L = L(G){c,dy U {a, by {cndn \ n > 1}.

Duplication Grammars 161

If L(G) = .{a, b}*, then L = {a, b}*{c, d}*, therefore L G DUPL{a),a£ {l,r, 0}
(this can be easily seen for a G {I, r } - see also the proof of Lemma 1 - and can be
proved for a = 0 by following the idea used in Remark 1).

If L(G) ^ {a,b}*, then take a string w G {a,&}* — L(G) and consider all
strings of the form wcndn,n > 1. They are in {a,b}*{cldl \ i > 1}, hence in L.
Assume that, in these circumstances, L = L(A), for some duplication grammar
A = ({a,b,c,d},Di,Dr,Do,A). Consider a derivation step z\z2 => wcndn, where
z\ G {a,b}* ,z 2 G {c, d}*, and the applied rule introduces a string in z2. That is,
Zi = w and z2 => cndn. There are such derivation steps, with z2 / cndn, because
A is finite and the set of strings as above is infinite. However, no string z2 with
this property can exist: we must have z2 = cmdp with one of m,p equal to n and
the other one strictly smaller than n, and such a string wz2 is not in L (on the one
hand, w L(G), on the other hand, cmdP £ {c{dl | i > 1}).

It follows that L £ DUPL(a), for all values of a.
Consequently, L G DUPL(a),a G {l,r,0,lr, I0,r0,lr0}, if and only if L{G) =

{a, b}*, which is undecidable. •

The complexity of a duplication grammar can be estimated from several points
of view. We consider here some of them.

For a duplication grammar A = (V, Di, Dr, Do, A) we denote

ax(A) = card(A),
axm(A) = max{|a:| | x G A} ,
rul(A) = card(Di) + card{Dr) + card(Do),
ins(A) = max{|i;| | (ui, v,u2) G Di U Dr U Do},
rad(A) = max{|u| | (ui,v, u2) G D[U Dr U Do, u — ui or u = u2}.

(These parameters count the number of axioms, the maximum length of an axiom,
the number of rules, the maximum length of a string to be inserted, the maximum
length of a context string - the radius -, respectively.)

For a language L in a family DUPL(a) and a measure M G
{ax,axm,rul,ins,rad} we define

Ma(L) = min{M(A) | L = L(A), A is of type a } ,

where a G {I, r, 0, Ir, 10, rO, Ir0}.
As it is expected (as it is customary in the descriptional complexity area, see

[8]), each of these parameters defines an infinite hierarchy of languages, for each a.

Theorem 5. For each measure M G {ax,axm,rul,ins,rad}, for each n > 0,
and for each a, there is a language Ln such that Ma(Ln) = n.

Proof. For n > 0, consider the languages

Dax — DaxTn — {a, a , . . . , o,

162 Carlos MARTiN-VIDE, Gheorghe PAUN

Lmi = U ^ a X ^ a) - * - ,
i=i

Lins=an(an)+,

Lrad = {a 2 n + 1} U {a2<n+1>+2i | i > 0}.

Clearly, no rule can be applied to a string in the first language (otherwise, an
infinite language is produced), hence each string must be introduced as an axiom.
Thus, we need n axioms, the longest one being an.

In order to generate the second language, we need rules containing as strings to
be inserted strings of the form (ab lay with j > 1, for each i = 1 , 2 , . . . , n (we cannot
modify a block b1 in a string (abla)(abla)r,r > 1, hence we can only introduce new
blocks abla). That is, we need at least n duplication rules.

In the case of the third language it is also clear that the inserted strings must be
of the form ank, k > 1, that is, at least n symbols must be simultaneously inserted.

Grammars with n rules and with a string of length n to be inserted, respectively,
can generate these languages.

For the fourth language, starting from the axioms •

A = { a 2 " + 1 , a 2 < " + 1 \ a 2 (n + 1) + 2 } ,

and using the rule (an+1, a2, an+1) in any mode l,r, or 0, we can generate this
language. However, we cannot generate this language by using rules (a m , a v , a q)
with m, g < n: any such a rule must have p even, p = 2k, k > 1; applying it to the
string a2n+1 we produce the string a 2 n+1+2 f c j which is not in Lrad, a contradiction.

These remarks are valid for all variants of duplication grammars. Consequently,
for each M we have M q (LM) = n. •

A natural problem concerns the closure properties of families DUPL(a). We do
not consider it here, but we only point out that the families DUPL{1), DUPL(r)
are not closed under mirror image - a consequence of Lemma 2.

6 Final Remarks
We have considered here duplication operations suggested by similar operations
met in linguistics and in the genetic area. Some other variants can be defined, for
instance, with a transformation applied to the copy of the duplicated string (point
mutations, reversal, etc). Also variants of applying the replication rules can be of
interest: leftmost use of rules, parallel application, priority relations among rules
and so on. The area deserves further investigations, expecially for those variants of
the replication operation which are met in DNA transformation/evolution.

In general, the operations on strings inspired from biochemistry were success-
fully extended to various bi- or multi-dimensional structures, such as trees, graphs
in general, arrays. (The reader is referred to [4], [6], [7] for modern accounts on
these areas.) This happens, for instance, with the splicing operation ([10]) and it is
probably true also for the duplication operations considered here. The case of trees

Duplication Grammars 163

is particularly important, because the DNA molecules are known to often take a
branching structure.

References
[1] J. Dassow, V. Mitrana, On some operations suggested by the genome evolution,

Proc. of Pacific Symp. on Biocomputing, Hawaii 97 (R. Altmann, et al, eds.),
World Scientific, Singapore, 1997, 97 - 108.

[2] J. Dassow, V. Mitrana, A. Salomaa, Context-free evolutionary grammars and
the structural language of nucleic acids, Bio Systems, 43 (1997), 169 - 177.

[3] J. Dassow, Gh. Páun, Regulated Rewriting in Formal Language Theory,
Springer-Verlag, Berlin, Heidelberg, 1989.

[4] J. Engelfriet, Context-free graph grammars, chapter 3 in vol. 3 of [16], 125 -
213.

[5] B. S. Galiukschov, Semicontextual grammars (in Russian), Mat. lógica i mat.
ling., Talinin Univ., 1981, 38 - 50.

[6] F. Gécseg, M. Steinby, Tree languages, chapter 1 in vol. 3 of [16], 1 - 68.

[7] D. Giammarresi, A. Restivo, Two-dimensional languages, chapter 4 in vol. 3
of [16], 215 - 267.

[8] J. Gruska, Descriptional complexity of context-free languages, Proc. Math.
Found. Computer Sci. Confi, High Tatras, 1973, 71 - 83.

[9] D. Hauschild, M. Jantzen, Petri nets algorithms in the theory of matrix gram-
mars, Acta Inform., 31 (1994), 719 - 728.

[10] T. Head, Gh. Páun, D. Pixton, Language theory and molecular genetics. Gen-
erative mechanisms suggested by DNA recombination, chapter 7 in vol. 2 of
[16], 295 - 360.

[11] L. Hunter, Molecular biology for computer scientists, in Artificial Intelligence
and Molecular Biology (L. Hunter, ed.), AAAI Press/The MIT Press, Menlo
Park, CA, 1993, 1 - 46.

[12] A. Manaster Ramer, Uses and misuses of mathematics in linguistics, X Con-
greso de Lenguajes Naturales y Lenguajes Formales, Sevilla, 1994.

[13] Gh. Páun, Marcus Contextual Grammars, Kluwer Academic Publ., Boston,
Dordrecht, 1997.

[14] Gh. Páun, G. Rozenberg, A. Salomaa, DNA Computing. New Computing
Paradigms, Springer-Verlag, Heidelberg, 1998.

164 Carlos MARTiN-VIDE, Gheorghe PAUN

[15] W. C. Rounds, A. Manaster Ramer, J. Friedman, Finding natural languages
a home in formal language theory, in Mathematics of language (A. Manaster
Ramer, ed.), John Benjamins, Amsterdam, 1987, 349 - 360.

[16] G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages, 3 volumes,
Springer-Verlag, Berlin, Heidelberg, 1997.

[17] A. Salomaa, Jewels of Formal Languages, Computer Science Press, Rockville,
1981.

[18] D. B. Searls, The linguistics of DNA, American Scientist, 80 (1992), 579 - 591.

[19] A. Thue, Uber unendliche Zeitchenreihen, Norske Vid. Selsk. Skr. I. Mat. Nat.
Kl. Christiania, 7 (1906), 1 - 22.

Acta Cybernetica 14 (1999) 135-149.

Some Properties of Duplication Grammars

Victor MITRANA * Grzegorz ROZENBERG f

Abstract
This paper considers context-free variants of duplication grammars. We

investigate their generative capacity, their mutual relationship, and their rela-
tionship to the context-sensitive duplication grammars. We solve some prob-
lems left open in [6], e.g., proving that all regular languages can be generated
by nearly all types of context-sensitive duplication grammars. We also con-
sider some decision problems.

1 Introduction
String duplications or duplications of segments of strings are rather frequent in
both natural and genetic languages. We refer to [1], [2] and [10] for discussions
of duplication, and other operations related to the language of nucleic acids. For
motivations coming from linguistics, we refer to [5] and [9].

Based on [1], Martin-Vidé and Pâun introduced in [6] a generative mechanism
(similar to the one considered in [2]) based only on duplication: one starts with a
given finite set of strings and produces new strings by copying specified substrings
to certain places in a string, according to a finite set of duplication rules. This
mechanism is studied in [6] from the generative power point of view. The present
paper considers the context-free versions of duplication grammars - this formalizes
a possible hypothesis that duplications appear more or less at random within the
genome in the course of its evolution. We solve some problems left open in [6], prove
new results concerning the generative power of context-sensitive and context-free
duplication grammars, and compare the two classes of grammars. Finally, some
decision problems are discussed.

A context-sensitive duplication rule is a triple whose components are strings over
a given alphabet (in the case of DNA the alphabet consists of the four nucleotids),
say (u,x,v) , which has the following interpretation:

• the string x, which appears to the left of uv in the processed string, is inserted
in between u and v;

'University of Bucharest, Faculty of Mathematics Str. Academiei 14, 70109, Bucharest, Ro-
mania mitranaflfuninf.math.unibuc.ro

^Leiden Institute of Advanced Computer Science, Leiden University, PO Box 9512, 2300 RA
Leiden, The Netherlands, rozenberSwi. leidenuniv .ill and Department of Computer Science,
University of Colorado at Boulder, USA.

165

166 Victor MITRAN A, Grzegorz ROZENBERG

• the string x, which appears to the right of uv in the processed string, is
inserted in between u and v\

• the string x which appears in between u and v is doubled.

A context-free duplication rule is a string over the given alphabet, say x, whose
effect is the duplication of x either to the right of, or to the left of, or immediately
after, an already existing copy of x. Clearly, context-free duplication rules may be
viewed as context sensitive duplication rules whose contexts are empty.

In vivo, cross-over takes place just between homologous chromosomes (chromo-
somes of the same type and of the same length), see [4]. A model of a cross-over
between a DNA molecule and its replicated version is considered in [3] - this is a
model for a cross-over between "sister" chromatides. One specifies an initial finite
set of strings and a finite set of cross-over rules of the form (a,/3,7,5). It is as-
sumed that every initial string is replicated so that two identical copies of every
initial string are available. The first copy is cut between the segments a and (3 and
the other one is cut between 7 and Now, the last segment of the second string
gets attached to the first segment of the first string, and a new string is obtained.
More generally, another string is also generated, by linking the first segment of the
second string with the last segment of the first string. Iterating the procedure, one
gets a language. The main idea of this approach is schematically presented in the
Figure 1.

Hence, the splicing operation introduced by T. Head, see, e.g., [7] is performed
here between identical strings. It is easily seen that one obtains the insertion of a
substring of w in w\ this induces a duplication of some chromosomes into genome.
This type of recombination is considered to be the main way of producing tandem
repeats or block deletions in chromosomes.

Some Properties of Duplication Grammars 167

2 Basic definitions

In this section we give the basic notions and notations needed in the sequel. For
basic formal language theory we refer to [7] or [8]. We use the following basic
notation. The length of a word x is denoted by |a;|, the empty string is denoted
by e; we have |e| = 0. The mirror image of a word x is denoted by xR. The set
of all words over V is denoted by V*, and V+ = V* \ {e} . For sets X and Y,
X\Y denotes the set-theoretic difference of X and Y. If X is finite, then card(X)
denotes its cardinality; 0 denotes the empty set.

Here is the main notion of this paper.
A (context-sensitive) duplication grammar is a construct

A = (V,DhDr,D0,A),

where V is an alphabet, Di,Dr,D0 are finite subsets of V* x V+ x V*, and A
is a finite subset of V+. The elements of Di, Dr and Do are context-sensitive
duplication rules, and elements of A are called axioms.

Given a duplication grammar as above and two words x, y G V+, we define the
following three types of direct derivation relations in A:

X ==$>Di y iff X = X1UVX2ZX3, y — X\UZVX2ZX3,
with X\, x2,x3 G V*, and (u,z,v) G Di,

X =S>_Dr y iff X = X\ZX2UVX3, y = X\ZX2UZVX3,
with xi,x2,x3 G V*, and (u,z,v) G Dr,

X =$>D0 y iff X = X]_UZVX2, y = XiUZZVX2,
with xi,x2,x3 G V*, and (u,z,v) G Do-

The union of these relations is the direct derivation relation of A, denoted by
=S>, and the reflexive and transitive closure of is the derivation relation of
A, denoted by =£>*. The language generated by the duplication grammar A is
defined by

L(A) = {y G V* | x =S>* y, for some x G A}.

Thus, the language of A consists of all words obtained by beginning with strings in
A, and applying iteratively duplication rules from DiU DrL> Do- The application
of a rule to a string means to copy one of its substrings to the left of, or to the
right of, or next to its "given" occurrence. Because each of the three sets of rules
may be empty, one obtains seven families of languages denoted by DUPL(X), X G
{I, r, 0, Ir, 10, rO, IrO}: the presence of a letter within X means that the corresponding
set of rules is non-empty, e.g., for X = /0, Di ^ 0, Do 0 and DT = 0.

Analogously, we define a context-free duplication grammar as a construct A =
(V,Di,Dr,D0,A), where V and A have the same interpretation as above, but
Di,Dr,Do are finite subsets of V+ whose elements are context-free duplication
rules. Given a context-free duplication grammar as above and two words x, y G V+,

168 Victor MITRAN A, Grzegorz ROZENBERG

we define three types of direct derivation relations:

x (=£>, y iff x = xix2zx$, y = X1ZX2ZX3, with x\, X2, x3 G V*, and z G Di,

x |=o r y iff x = x\zx2xz, y = X1ZX2ZX2, with x\,x2,xz G V*, and 2 G Dr,

x |=£>0 y iff x = x\zx2, y = x 1 zzx2, with X\, X2,13 G V*, and z G D0.

Again, the union of these relations is the direct derivation relation, denoted by f=,
and the reflexive and transitive closure of |= is the derivation relation, denoted by
f=*. The language generated by the context-free duplication grammar A is defined
by

L(A) = {y G V* I x \=* y, for some x G A}.

Again, we get seven families of languages denoted by CFDUPL(X), X G
{I,r,0,lr,l0,r0,lr0}.

3 A short comparison
We begin by settling the relationships among the seven families of context-free
duplication languages.

Theorem 1. The relations in the following diagram hold, where an arrow indicates
a strict inclusion and a dotted line links two incomparable families.

CFDUPL(l)

, \
' \
| CFDUPL(0) " CFDUPL(lrO) — CFDUPL(l

/
| /

CFDUPL(r)

Proof. The language {anbmapbq\n,m,p,q > 1} is in CFDUPL(0) (one starts
with abab and doubles either an occurrence of a or an occurrence of b) but not in
CFDUPL(lr). To see the latter, we note that each context-free duplication gram-
mar having just left and right duplication rules generates strings in a+b+a+b+a+b+;
a contradiction.

By a similar reasoning, the language {anbm\n,m > 1} belongs to
CFDUPL(10) n CFDUPL(rO) n CFDUPL(lr) but not to CFDUPL(l) U
CFDUPL(r).

Some Properties of Duplication Grammars 169

The language {a,b,c}+ is in CFDUPL(r) nCFDUPL(l) (the initial set con-
tains all strings of length at most 3, each letter a,b,c appearing at most once;
duplication rules allow copying of any letter to the right/left of one of its occur-
rences.) Because there are arbitrarily long square-free strings in {a,b,c}+, [11], it
follows that { M , c } + i CFDUPL{0).

Finally,

{a, b, c } + { $ } + { d , e, / } + € CFDUPL(lrO) \ (CFDUPL(10) u CFDUPL(rO))

which concludes the proof. •
The following result concerning the relationships among the context-sensitive

families of duplication languages has been proved in [6].

Theorem 2.[6]
1. The families DUPL(l) and DUPL(r) are incomparable.
2. The following inclusions

DUPL{r) U DUPL{1) C DUPL(lr)

DUPL(0) C (DUPL(rO) n DUPL{10))

are proper.

It is an open problem whether or not DUPL(0) is included in DUPL(l) or in
DUPL(r). However, we have

Proposition 1. CFDUPL(O) is strictly included in DUPL(lr).

Proof. Let A = (V, 0,0, Do, A) be a duplication grammar with D 0 =
{xi,a;2, • • • ,xn}. Construct a duplication grammar A' = {V,Di,Dr,$,A'), where

Di = Di = {(xi,xi,e)\l < i < n},
A! = {z £ L(A)| each Xi has at most two non-overlapped occurrences

in z}.

It is easy to see that A' is a finite set, and L(A) = L(A'). •
Along the same lines, we have

Theorem 3. CFDUPL(X) C DUPL{X), for all X £ {0,Z,r,Z0,r0,Zr,Zr0}.

Proof. It suffices to provide languages that prove all inclusions to be strict.
The dupli-

cation grammar A = ({a, 6}, {(e, a, a), (e, b, b)}, 0,0, {ab, a2b, ab2, a2b2} generates
Lx = {anbm\n,rn > 1}. Hence Lx is in DUPL(l) (also in DUPL(r)) but not in
(•CFDUPL{1) U CFDUPL{r).

Similarly, {anbmapbq\n, m,p, q > 1} £ DUPL(lr) \ CFDUPL{lr).
One can show that {anbnab\n > 1} cannot be generated by any context-free

duplication grammar. On the other hand, {anbnab\n > 1} £ DUPL(lrO) (see [6]).

170 Victor MITRAN A, Grzegorz ROZENBERG

Take now the language L2 = {abncmdpe\l < n,m,p < 3 } + . This language can
be obtained by starting with the string abcde and iteratively applying rules from
the set

D0 = {(e, abcde, e), (a, b, c), (ab, b, c), (b, c,d), (be, c, d), (c, d, e), (cd, d, e) } .

Consider the homomorphism h : {a,b,c}* —> {a,b,c,d,e}* defined by h(a) =
ab3cde, h(b) = abc3de, h(c) = abcd3e. Let x be an arbitrarily long square-free
string over {a, b, c}. The string h(x) is in L2 • It is easy to notice that the ad-
jacent identical substrings in h(x) are only the letters from {a, b, c). If L2 were
in CFDUPL(0), then any context-free duplication grammar generating L2 would
generate strings containing arbitrarily many adjacent occurrences of the same letter
from {a, b, c}; a contradiction. •

4 Observations on the generative power
We start by considering unary alphabets. We will prove that in this case the gen-
erative power of duplication grammars equals the accepting power of deterministic
finite automata. To this end, we prove the following lemma.

Lemma 1. Over the unary alphabet, the equality DUPL(X) = CFDUPL(0) holds
for any X G {I,r,0,lr,l0,r0,lr0}.

Proof. Let A = ({a},Di,Dr,Do,A) be a duplication grammar. Let

Di = {(u<,a*',
Dr = {(u.oi'.y,)!! <'<"»>.

Do = {(zhak',wi)\l <1 <p}.

Take
a = max({\uxv\ : (u,x,v) G DiUDrUD0}u{\x\ : x G A}.

Consider now the context-free duplication grammar

A' = ({a}MD'0,A'),

where

A' = {x\x G L(A), |a;| < 3a},
n m p

D'0 = {a"\q = Y2asis+ Y2i3sjs+ Y2"fsks, a < q <2a}.
S=1 5=1 S=1

We claim that L(A) = L(A'). Note that each rule in D'0 is applicable to strings
of length at least a. Furthermore, each application of a rule in D'0 simulates the
application of a sequence of rules from D; UD, U f o - Consequently, L(A') C L(A).

Some Properties of Duplication Grammars 171

All strings of length at most 3a from L(A) are also in L(A') . Let z be the
shortest string in L(A) such that \z\ > 3a. Then there exists a derivation in A' :

x =S> + y = £ > + z

with

(i) x € A,
(ii) a < |j/| < 3a,

(in) a < \z\ — < 2a.

Because y G A' one may write y =$>D' Z, and so z G L(A'). Inductively, L(A) C
L(A') . ° •

Theorem 4. A language over a unary alphabet is regular if and only if it is gen-
erated by a duplication grammar.

Proof. By the previous lemma, it suffices to consider duplication grammars with
just context-free duplication rules whose effect is to double an occurrence of a
substring. Let L C {a}* be a regular language. Then, there exist a finite set F and
the positive integers fcj, 1 < i < m, and q > max{#(x)\x G F } such that

m
L = F u (J {a k i + n q\n > 1 }

i= 1

This can be easily seen if one considers a deterministic finite automaton accepting
L, for which the transition function is defined everywhere.

Consider now the duplication grammar:

A = ({a} , 0, 0, {aQ},F U {a* i+"|l < i < m}.

Clearly, L = L(A). Duplications can never be carried out on words of F.
Conversely, let us consider a duplication grammar A = ({a } , 0,0, D0, A), with

D0 = {a C l ,a C 2 , . . . , a c " } . Let

p = gcd(di,d2,.. • ,dm,ci,c2,... c„),

where gcd means the greatest common divisor. If L(A) is finite, then it is obviously
regular. If L(A) is an infinite set, then there are < i < s, s < p, such that

s

L(A) = Fu{J{ati+kp\k>0},
i=1

for some finite set F. Consequently, L(A) is regular which completes the proof. •
The next result settles a problem left open in [6].

Theorem 5. All regular languages are in DUPL(X), X G {I,r,l0,r0,lr,lr0}.

172 Victor MITRAN A, Grzegorz ROZENBERG

Proof. We present a proof for DUPL(r), the proofs for other cases are analogous.
Let R be a regular language recognized by the deterministic finite automaton M =
(Q, V, S, qo, F) with the total transition function <5. Let for each state q, Cq be
defined as follows:

Cq = {x G V+\6(q,x) — q by passing each state, different from q, at most once}.

For strings x,y G V*, we define the equivalence relation ~ H as follows:

(x ~R y) iff (uxv G R iff uyv G R), for any u, v G V*.

It is well-known (see e.g. [8]) that V*/ (the quotient of V* by is finite; let
k be the cardinality of V* / (the index of ~ R) .

Now, one constructs the duplication grammar A = (V, 0 , D r , 0, A), where

Dr = (J {(x,y,e)\xy x, |x| < k,y G Cq}, and
96 Q,Cq*<b

A = {w G i?| for each q G Q, each string in Cq

has at most k non-overlapping occurrences in w}.

We claim that A is finite. Indeed, no word longer than (k + 1)1 • card(Q), where
I = max{card(Cq)\q G Q}, is in A. To see this, assume that such a word, say w, is
in A; so \w\ = p> (k + 1)1 • card(Q). Let qo,qi, - • •, qP, qv G F, be the sequence of
states that accepts w. At least (k + 1)1 states in this sequence must be the same;
assume that q is such a state. But then w contains at least fc-l-1 identical substrings
in Cq\ a contradiction.

Clearly, L(A) C R. Let z be the shortest word in R \ L(A). Thus, there exists
x £ Cq, for some q G Q, such that x occurs more than k times in z. Let z = wxy,
with |w| > k, where the given occurrence of x is the last (rightmost) occurrence of
x in z. Let z = uvxy with = k. Thus v has k + 1 prefixes, and so there are
two prefixes V\,V2 of v such that vi v2 and |ui| < \v2\- We choose the closest
pair of such prefixes. By replacing by V] in v we get a string uv'xy which is
in L(A) because it is in R and it is shorter than z. Moreover, — vit, where t
must be in Cq, for some q G Q (because of the choice of v\ and V2). Consequently,
(v\,t,e) G Dr, and so uv'xy =^Dr 2. Thus z G L(A); a contradiction.

Analogously one proves that each regular language is in DUPL(l). •

We recall that the family DUPL(0) is incomparable with the family of regular
languages.

The position of the class of regular languages with respect to the classes of
context-free duplication languages is given by the next theorem.

Theorem 6. The family of regular languages is incomparable with any of the fam-
ilies CFDUPL(X),X ¿ 0.

Proof. The regular language V+{c}+V+, where V contains at least three symbols
and c ^ V, cannot be generated by any context-free duplication grammar. Indeed,

Some Properties of Duplication Grammars 173

if a context-free duplication grammar generates all strings in V+ {c}+V+, then it
must contain left/right duplication rules involving strings in V+ + c + . Therefore,
also strings in V+ {c}+V+ {c}+V+ can be generated.

Consider now the Dyck language over {a, b}, denoted by Dab: and the non-
regular language L — {ab}Dab. This language is in CFDUPL(r). The context-
free duplication grammar A = ({a , b}, 0, {aft}, 0, {abab}) with only right duplication
rules generates L. Clearly, L(A) C L\ let 2 be the shortest string in L \ L(A). If
z = abxy, with x,y & Da¡,, then ab yields z in A as follows:

ab |=* aby |=* abxy.

If z = abaxb, with x £ Dat,, then the derivation ab J= abab |=* abaxb is possible in
A. Consequently, L(A) = L. •

The relation between CFDUPL(Q) and the class of regular languages remains
open.

Recall that a homomorphism which erases some symbols and leaves the others
symbols unchanged is called a projection. A projection h : (V U V')* —> V* that
erases the symbols in V' only is the projection of V, denoted by pry.

Theorem 7. For each context-free language L £ V*, there exists a language L in
CFDUPL(r) (CFDUPL(l)) and a homomorphism h such that L = prv(/i"1 (L')).

Proof. Let G — (N, V, S, P) be a context-free grammar generating L. Assume that

n
P=\J{Ai—>xiij\l<j<ri},

i= 1

with S = Ai. Furthermore, we assume that e L. Let V' = N U V U {c¿|l < i <
n} U {d}, where Ci,d, are new symbols. Let then A be the duplication grammar
(V' ,0,£> r ,0 ,A), where

DT = {(cja^jll < i < n, 1 < j < r¿}, and
A = {cxi^dcxi^d... dcxi:ridcx2, id... dcxnyTn dAi}.

Now, let h be the homomorphism

h:(V U { M l 1 <i <n,l < j <n}U {c¿|l <i<n} —> (V')*

such that

HihJ]) = ci%i,jd, 1 < i < n, 1 < j < n,
h(ci) = A{Ci, 1 < i < n, and
h(a) = a, a £ V.

It is easy to see that prv(h~1(L(A))) = L(G). Clearly, whenever a substring
CÍXÍJ is copied, this is done somewhere to the right of the last occurrence of d -

174 Victor MITRAN A, Grzegorz ROZENBERG

otherwise one gets a string "rejected" by applying the inverse homomorphism h.
Also, all strings that contain nonterminal occurrences that are not immediately
followed by some Ci, to the right of the last occurrence of d, are rejected in the
same way. Moreover, every occurrence of a nonterminal Ai, situated to the right
of the last occurrence of d, has to be followed by just one occurrence of Cj. In this
way duplication rules simulate the application of production rules in G. •

5 Decision problems
We discuss in this section some basic decision problems. We begin by pointing out
that the "totality problem" is decidable for all families of duplication languages.

Theorem 8. Let A be a duplication grammar over the alphabet V. It is decidable
whether or not L(A) = V*.

Proof. We will consider duplication grammars having only left duplication rules
- the other types of duplication grammars can be treated in a similar way. Let
A = (V, Di, 0,0, A) be a duplication grammar. The main point of our argument is
the following property

L{A) = V* if and only if {x G y* : |a;| < k -f 1} C L(A),

where k = max{\x\ : x G A}.
The "only if ' part is obvious. For the "if' part of the proof, assume that z is a

shortest word in V*\L(A). This word can be written as z = ya with a G V. Hence
y G L(A) \ A, and so there exists x 6 A such that x y. Because \xa\ < \ya\,
it follows that xa G L(A). But, also xa ya — z. To conclude, it suffices
to note that the inclusion {x G V* : |a:| < k + 1} C L(A) is decidable due to the
decidabilty of the membership problem. •

It is proved in [6] that the membership of a context-free language in the family
of languages DUPL(X),X / 0, is not decidable. Our next theorem extends this
result to the families of context-free duplication languages, as well as to DUPL(0).

Theorem 9. It is not decidable whether or not a context-free language is in a family
CFDU PL(X),X i {r,/}-

Proof. The proof is similar to the one in [6]. Let G be an arbitrary context-free
grammar with the terminal alphabet {a, b}, and let

L = L(G){c, d}* U {o, b}*{cndn\n > 1}.

If L{G) = {a,b}*, then L = {a, b}*{c, d}* which is in CFDUPL(X), for all X $
{r, I}. It is easily seen that the grammar A = ({a, b, c, d}. 0,0, Do, A), with

Do = {a, b, c, d, ab, ba, cd, dc}, and A = {a, b, c, d, ab, aba, ba, bab, cd, cdc, dc, dcd},

Some Properties of Duplication Grammars 175

generates {a, b}*{c, d}*. The reader my easily check this assertion.
If L(G) ^ {a, b}*. then L cannot be generated by any context sensitive duplica-

tion grammar (see the proof of Theorem 4 in [6]). Consequently, L € CFDUPL(X')
for X {7-, I}, if and only if L(G) — {a, b}*. which is undecidable. •

This result can be also extended to.the families CFDUPL(r) and CFDUPL(l).

Theorem 10. It is not decidable whether or not a context-free language is in a
family CFDUPL(X),X e {rJ}.

Proof. The proof is based on a reduction to the Post Correspondence Problem
(PCP). Take an arbitrary instance, of PCP, i.e., two arbitrary 71-tuples of nonempty
strings over the alphabet {a,b}:

X — (x 1, X'2 , . • • , Xn),

2/= (?7j ,«2, • • • ^Aij-
Then, consider the languages

Lz = {baL'bah ...balhczlh z^zijk > 1} ior z £ {x,y},

Ls iu:icw-2cw2cwj \iui,v:2 £ {a:b}''}, and

L(x,y).= ¡ W . - r - (-MpK* n /.,}. -

It is known r,h;\t L(x, y) is a contact-free language. For every solution (¿1, ¿2 , . . . ,ik)
of PCP(x, y) the strings . ..

bak Ha*2. •. baih cx.ik .'.. .xia an.a^y" ...y" caih b'... bah bah b

are not in L(x, y).
Clearly, when L(x,y) = {a.b,c}*, then L(x,y) is in CFDUPL(r) n

CFDUPL(l).
Now, it is sufficient to prove that L(x,y) i CFDUPL(l) U CFDUPL(r) if

L(x,y) ^ {a,b,c}*.
Let us suppose that L(x,y) = L(A), A = (.{a, b. c}, 0, Dr, fi, A). We choose a
solution (¿ i , i2 , . . . ik) such that

\xikxik_1x-jj > max{\w\ ¡U' € .4}.-

For {a, ft}* C L(A), there exists a word w £ A such that

• •• w^y^yl-.'^eHA):

By the choice of the solution ('¿1, ¿2, ,'h) the word

z = ha" ba12... bo'kcxik ... x^x^cuica"'b... ba*aba" b

is in L(A).

176 Victor MITRAN A, Grzegorz ROZENBERG

Therefore, we get

2 |=* bah bah ... baik cxik ... xi2xu cy^y* ... y*caikb ... bai2bail b,

a contradiction. Hence the theorem holds. •
Finally, we consider "nonemptiness of the intersection problem" for

DUPL{X),X^ 0.

T h e o r e m 11. It is undecidable whether or not Li fl = 0? for arbitrary two
duplication languages in DUPL(X),X ^ 0.

Proof. Let x = (xi,x2, • • • ,xn),y = (2/1,1/2, • • • ,2/n) be an instance of PCP, and let

L x = {w$cdl1 $cd12 ... %cdlkXik ... x^x^\k > 1,1 < ij < n, 1 < j < k}

U {w$cdil $cd'2 ... $cdik$Xik ... xi2Xil\k > 1,1 < ij < n, 1 < j < k},

where w = cdx\cdy\cd2x2cd2y2 . • • cdnxncdnyn. Ly is defined analogously.
Clearly, the duplication grammar A = ({a , 6, c, d, $, # } , 0, Dr, 0, { ? « $ # }) , with

DT = {($,ccf a;*, #)|1 < i < n } u { ($, ctfxuX)\l < i < n,X £ {0 ,6}}

U {(d,$,a),(d,$,6)}

generates Lx.
This concludes the proof, because Lx fl Ly = 0 if and only if the instance (x, y)

of PCP has no solution. •

A c k n o w l e d g e m e n t s

The first author is grateful to Leiden Center for Natural Computing for sup-
porting his stay at Leiden University in June 1998, during which the work on this
paper was initiated.

References
[1] J. Dassow and V. Mitrana, On some operations suggested by the genome evolu-

tion. Pacific Symposium on Biocomputing'97 (R. Altman, K. Dunker, L. Hunter,
T . Klein eds.), Hawaii, 1997, 97-108.

[2] J. Dassow and V. Mitrana, Evolutionary grammars: a grammatical model
for genome evolution, Proc. German Conf. in Bioinformatics GCB'96, (R.
Hofestadt, T. Lengauer, M. Loffler, D. Schomburg eds.), LNCS 1278, Springer-
Verlag, 1997, 199-209.

[3] J. Dassow and V. Mitrana, Self cross-over systems. In Computing with bio-
molecules (Gh. Paun ed.), World Scientific, 1998 (in press).

[4] D. L. Hartl, D. Freifelder and L. A. Snyder, Basic Genetics, Jones and Bartlett
Publ., Boston, Portola Valley, 1988.

Some Properties of Duplication Grammars 177

[5] A. Manaster Ramer, Uses and misuses of mathematics in linguistics, Proc. X
Congreso de Lenguajes Naturales y Lenguajes Formates, Sevilla, 1994.

[6] C. Martin-Vide and G. Paun, Duplication grammars, Acta Cybernetica (sub-
mitted).

[7] G. Paun, G. Rozenberg, A. Salomaa, DNA Computing, New Computing
Paradigms, Springer Verlag, Berlin, Heidelberg, 1998.

[8] G. Rozenberg and A. Salomaa (eds.), Handbook of Formal Languages, vol. I,
Springer, Berlin, 1997.

[9] W. C. Rounds, A. Manaster Ramer and J. Friedman, Finding natural languages
a home in formal language theory. In Mathematics of Language (A. Manaster
Ramer ed.), John Benjamins, Amsterdam, 1987, 349-360.

[10] D. B. Searls, The computational linguistics of biological sequences. In Artificial
Intelligence and Molecular Biology (L. Hunter ed.), AAAI Press, The MIT Press,
1993, 47-120.

[11] A. Thue, Uber unendliche Zeitchenreihen, Norske Vid. Selk. Skr. I. Mat. Nat.
Kl. Christiania, 7(1906), 1-22.

Acta Cybernetica 14 (1999) 135-149.

Watson-Crick Walks and Roads on DOL Graphs*

Arto Salomaa *

Abstract
Apart from the massive parallelism of DNA strands, the phenomenon

known as Watson-Crick complementarity, is basic both in the experiments
and theory of DNA computing. The parallelism makes exhaustive searches
possible, whereas the complementarity is a powerful computational tool. This
paper investigates complementarity as a language-theoretic operation: "bad"
words obtained through a generative process are replaced by their comple-
mentary ones. While this idea is applicable to any generative process, it seems
particularly suitable for Lindenmayer systems. DOL systems augmented with
a specific complementarity transition, "Watson-Crick DOL systems", are in-
vestigated in this paper. Many issues involved are conveniently expressed in
terms of certain paths, "Watson- Crick walks", in an associated digraph.

Keywords: DNA computing, Lindenmayer systems, DOL sequences, Watson-
Crick complementarity.

1 Introduction
Adleman's celebrated experiment, [1], demonstrated how methods of molecular
biology can possibly be applied to problems intractable by ordinary computational
methods. Since then the interest in "DNA computing" has been growing rapidly,
see the list of references in [6]. The impact of the resulting new notions and ideas
to the theory of formal languages is visible from the recent Handbook, [8].

A keynote in theoretical studies about DNA computing is a phenomenon known
as Watson-Crick complementarity. DNA (deoxyribonucleic acid) consists of poly-
mer chains, referred to as DNA strands. A chain is composed of nucleotides or
bases. The four DNA bases are customarily denoted by A (adenine), C (cytosine),
G (guanine) and T (thymine). A DNA strand can be viewed as a word over the
DNA alphabet %DNA = {A,C, G,T}. The familiar DNA double helix arises by
the boundage of two strands. The Watson-Crick complementarity comes into the

'Dedicated to Ferenc Gecseg on his 60th birthday. My "Super-Brother Feri" has been an
invaluable companion on the paths of science and a true friend in everyday life. I owe him much
and wish him sunny days on the road ahead.

t Academy of Finland and Turku Centre for Computer Science Lemminkaisenkatu 14 A FIN-
20520 Turku, Finland, e-mail: asalomaa@utu.fi.

179

mailto:asalomaa@utu.fi

180 A t to Salomaa

picture in the formation of such double strands. The bases A and T are comple-
mentary, and so are the bases C and G. Bonding occurs only if the bases in the
corresponding positions in the two strands are complementary.

Consider the letter-to-letter endomorphism hw of S*DNA defined by

hw{A) = T, hw{T) = A, hw{G) = C, hw(C) = G.

The morphism hw will be referred to as the Watson-Crick morhism. Thus, a DNA
strand X bonds with hw{x) to form a double strand. (We ignore here the orien-
tation of the strands, indicated customarily by speaking of the 5'- and 3'-ends of a
strand. We also would like to point out that we use the nowadays standard term
"DNA computing" although, in our estimation, "DNA-based computing" would
be more appropriate.) The complementarity of two strands leads (under appropri-
ate conditions) to bondage. By encoding information on the original strands in a
clever way, far-reaching conclusions can be made from the mere fact that bondage
has occurred. This means that the phenomenon of complementarity provides com-
puting power. The idea of using the fundamental knowledge, concerning how the
double strands have possibly come into being, is central in Adleman's experiment,
[1]. The idea is also behind the computational universality of many models of DNA
computing, [9], [6].

Complementarity can be viewed also as a language-theoretic operation. As such
hw is only a morphism of a special kind. However, the operational complementarity
can be considered also as a tool in a developmental model: undesirable conditions in
a string trigger a transition to the complementary string. Thus, the class of "bad"
strings is somehow specified. Whenever a bad string x is about to be produced by a
generative process, the string hw(x) is taken instead of x. If the generative process
produces a unique sequence of strings (words), the sequence continues from hw(x).
The class of bad strings has to satisfy the following soundness condition: whenever
x is bad, the complementary string hw{x) is not bad. This condition guarantees
that no bad strings are produced.

While the operational complementarity can be investigated in connection with
any generative process for words, it seems particularly suitable for Lindenmayer
systems, the systems themselves being developmental models. The simplest L sys-
tem, namely the DOL system, has been thoroughly investigated, [7]. A DOL system
generates a sequence of words. When it is augmented with a trigger for complemen-
tarity transitions, as described above, the resulting sequences contain no bad words.
The study of such "Watson-Crick DOL systems" was begun in [4] and [5], and will
be continued in the present paper. The present paper is largely self-contained.
In particular, no knowledge of [4] and [5] is required on the part of the reader.
For more information about formal languages, L systems or DNA computing, the
references [10], [7] or [6], respectively, may be consulted.

The formal definitions will be given below. An important remark should be
made already at this stage. So far we have spoken only of the four-letter DNA
alphabet but in our theoretical considerations below the size of the alphabet will

Watson-Crich Walks and Roads on DOL Graphs 181

be arbitrary. Indeed, we will consider DNA-like alphabets

£ n = {a1 ; . . . , a„, ai, . . . , a „ } (n > 2)

and refer to the letters ai and ai, i — 1, ..., n, as complementary. The endomor-
phism hw of £* defined by

hwifli) = ai, hw{a.i) = ai, i = 1, ..., n,

is also now referred to as the Watson-Crick morphism. When we view the original
DNA alphabet in this way, the association of letters is as follows:

ai = A, a-2 = G, ai = T, a-2 = C.

(Observe that this conforms with the two definitions of hw •) The nucleotides A and
G are purines, whereas T and C are pyrimidines. This terminology is extended to
concern DNA-like alphabets: the non-barred letters ai, . . . , an are called purines,
and the barred letters ai, . . . , an are called pyrimidines. The class of bad words,
considered most frequently in the sequel, consists of words where the pyrimidines
form a majority.

In spite of their formal simplicity, Watson-Crick DOL systems have quite re-
markable properties. This observation made already in [4] and [5] will be further
substantiated in this paper. In particular, we will be concerned with basic decision
problems. The following decision problem turns out to be very significant.

Problem Zpos. Decide whether or not a negative number appears in a given
Z-rational sequence of integers.

The decidability status of Zpos is open, although the problem is generally be-
lieved to be decidable. The input is of course assumed to be given by some effective
means such a linear recurrence with integer coefficients, or a square matrix M with
integer entries such that the sequence is read from the upper right corners of the
powers Ml, i = 1 , 2 , 3 , Further discussion about this problem and its different
representations can be found in [3] and [7].

Ordinary DOL systems have been widely investigated and their properties are
fairly well understood, whereas rather little is known about Watson-Crick DOL
systems. It was already observed in [5] that graphs associated to them, as well
as certain paths in such graphs, are very useful for studying the systems. Such
"Watson-Crick walks and roads" will be investigated in this paper from a more
general point of view.

2 Graphs associated to DOL systems
We will use standard language-theoretic notation. In particular, A is the empty
word, |w| is the length of the word w, and \w\a (resp. |W|e) is the number of
occurrences of a (resp. letters of £) in w. The minimal alphabet of a word w is
denoted by alph(w).

182 A t to Salomaa

An equivalence relation = on £* is called a morphic equivalence if it preserves
all endomorphisms of £*, that is, whenever h is an endomorphism of £* and x = y
then also h(x) = h(y). Typical examples of morphic equivalences are:

(i) alph(x) = alph(y),

(ii) x and y are powers of the same primitive root,

(iii) x and y have the same Parikh vector.

Of (i)-(iii), only (i) is of finite index. Note also that the equivalence defined by
\x\ = |?/| is not morphic.

A DOL system is a triple G = (S,g,wo), where £ is an alphabet, w0 £ £*
(the axiom) and g is an endomorphism of £*. (In the sequel g is often defined in
terms of productions, indicating the image of each letter.) A DOL system defines
the sequence S(G) of words un, i > 0, where un+1 = g(wi), for all i > 0. It defines
also the language L(G), consisting of all words in S(G), the length sequence \u>i\,
i > 0, as well as the growth function f(i) — \wi\.

Given a DOL system G = (£, g, wo) and a morphic equivalence = on £*, the
associated graph H(G, =) is defined as follows. As a preparation for the sequel, we
give this simple definition inductively, denoting the equivalence class of a word w
by [i/;]. First the initial node of H, labeled by the equivalence class [wo], is created.
Whenever a node labeled by [wj] has been created but no node labeled by [g(wL)}
has been created, then the latter node is created and an arrow labeled by 0 is drawn
from the former to the latter node. If the node labeled by the equivalence class
[(/(wj)] has already been created and denoted by, say, [wj] then an arrow labeled
by 0 is drawn from the node [iUj] to the node [w^].

Thus, all arrows (edges) in the (di)graph H are labeled by 0. (This is because
H is a special case of the definition in the next section, where two labels are needed
for the arrows.) The graph H is infinite if all words in S(G) belong to different
equivalence classes of =. Starting from the initial node, an i-step walk (path) ends
at a node labeled by the equivalence class [«;,], where wi is the ith word in the
sequence S(G). If = is of finite index, the digraph H is finite and can be separated
into an "initial mess" and a "loop" in the customary fashion. This fact can also be
expressed as the following theorem.

Theorem 2.1 Let G be a DOL system and = a morphic equivalence (with the same
alphabet) of finite index. Then the equivalence classes represented by the words in
S(G) form an ultimately periodic sequence.

Proof. The claim follows by the construction of the graph H. Since = is
of finite index, some word in the sequence S(G), say Wi = g(wi- i) , represents an
equivalence class already represented by wj, for some j < i. If i has its smallest
possible value, the words wo, . . . , represent equivalence classes in the "initial
mess" and the words Wj, . . . , W{ equivalence classes in the "loop" of the ultimately
periodic sequence. •

Watson-Crich Walks and Roads on DOL Graphs 183

Theorem 2.1 is a general formulation of many known periodicity results concern-
ing DOL sequences. For instance, the alphabets alph(wi) and prefixes or suffices of
fixed lengths form ultimately periodic sequences, [7]. Such results are immediate
corollaries of Theorem 2.1.

Observe that the graph H may be finite although = is of infinite index. For
instance, assume that x = y iff x and y are powers of the same primitive root
and that the DOL system G is determined by the axiom ab and produtions a
aba, b —» a. Then the graph H(G,=) consists of only one node because all words
in the sequence S(G) are powers of the word ab.

Assume now that the alphabet E of the given DOL system G = (E, g, wo)
actually is a DNA-like alphabet, E = E„, and that the Watson-Crick morphism
hw is defined as in Section 1. (Observe that some letters of £ n might not occur in
5(G).) Then we define the Watson-Crick graph Hw{G,=) associated to G and a
morphic equivalence = as follows. We are now dealing with two morphisms: g and
the composition hwg (meaning that first g, then hw is applied). The edge labels
0 and 1, respectively, are associated to these morphisms, respectively.

To construct Hw(G,=), we again first create the initial node labeled by [i/;o]-
Assume that a node labeled by [w] has already been created and no node labeled
by [$(«;)] (resp. [/ivy^(«;)]) has been created, then the latter node is created and
an arrow labeled by 0 (resp. by 1) is drawn from the node [w] to the newly created
node. If a node labeled by [<?(w)] (resp.[/iw0(w)]) has been created and denoted
by, say, [u/] (resp. [w"]) then an arrow labeled by 0 (resp. by 1) is drawn from the
node [w] to [w'] (resp. to [«/']).

Thus, Hw is a (possibly infinite) (di)graph, where exactly two arrows emanate
from each node. A sufficient but not necessary condition for the fimteness of Hw is
that the morphic equivalence = is of finite index. The smallest possible graph Hw
consists of a single node [uio] with two arrows, labeled by 0 and 1, emanating from
and going into [u>o]- This situation arises, for instance, if x = y is defined by the
condition alph(x) = alph(y), and every letter of E occurs in every word of S(G).
(It is easy to verify that in such a case an application of hwg never leads to smaller
alphabets.) This smallest possible graph Hw(G,=) is referred to as trivial.

A walk W in the graph Hw{G, =) is any finite path beginning from the initial
node. Walks in graphs H(G, =) can be described (equivalently) either by the
sequence of nodes or by the sequence of edges because there is only one possibility
at each node. In graphs Hw(G, =) there are two possibilities, perhaps both leading
to the same node (as is the case, for instance, with the trivial graph). Consequently,
walks in Hw must be described by listing the sequence of edges visited. In this
fashion, we get a one-to-one correspondence between walks in Hw and words over
the binary alphabet {0, 1}.

Many types of questions can be asked concerning the notions introduced in this
paper - we will focus on some decision problems. Therefore, the following general
observation is significant. Consider decision problems (for instance, the emptiness
problem) involving languages of the form LnK, where L is a DOL language and K is
in one of the classes of the Chomsky hierarchy. Such problems are usually decidable
(resp. undecidable) if K ranges over regular (resp. context-sensitive) languages.

184 At to Salomaa

If K ranges over context-free languages, the decidability is often hard to settle,
although intuitively the problem might seem to be decidable. Such problems are
often algorithmically equivalent to the problem Zpos.

3 Watson-Crick DOL systems
Consider again a DNA-like alphabet £ n and the Watson-Crick morphism hw- A
trigger TR is any recursive subset of £* satisfying the following condition: whenever
x is in TR, then hw{is in the complement of TR, that is, in £* — TR.

According to our terminology in the Introduction, TR consists of "bad" strings.
The restriction imposed on TR is our soundness condition: no "bad" strings result
if emerging "bad" words are always replaced by their complementary ones. We now
come to our central definitions.

A Watson-Crick DOL system is a construct

Gw = {G, TR),

where G = (£n, g, wo) 15 a DOL system, TR is a trigger and wo G £* — TR. The
sequence S(Gw), consisting of words Wi, i = 0, 1, . . . , is defined by the condition

_ i hw(g(wi)) if g(wi) G TR,
W l + 1 \ g(wi) otherwise,

for all i > 0. The language, length sequence and growth function of Gw are defined
for S(Gw) as for ordinary DOL systems.

The Watson-Crick graph Hw{Gw, =) associated to a Watson-Crick DOL
system Gw = (G,TR) and morphic equivalence = equals, by definition, the
Watson-Crick graph Hw(G,=). (Thus, Hw(Gw, =) is independent of the trig-
ger.) A Watson-Crick walk WW(Gw, =) associated to Gw and = is the walk in
Hw{Gw, =) determined by the binary word ui...uk such that, for 1 < i < k,
Ui = 0 (resp. Ui = 1) if Wi = ff(iui-i) (resp. w{ = hw{g{wi-i))) in S(Gw)-

Thus, the binary word Ui . . .Uk, determining the sequence of edges visited, is
actually independent of the equivalence =. If we are only interested in the sequence
of edges, we may speak of the Watson-Crick walk of Gw, without specifying the
equivalence. The latter becomes important if we are interested in the sequence of
nodes visited. Observe that, viewed as a sequence of edges, the Watson-Crick walk
in the trivial graph can be quite complicated. This is exemplified in Theorem 3.3
below. The next theorem follows directly from the definitions.

Theorem 3.1 Viewed as binary words, all Watson-Crick walks WW (Gw, =) arc
prefixes of the same infinite (binary) word WW(Gw)• Thus, each Watson-Crick
walk of Gw is completely determined by its length. •

The infinite word WW(Gw) is called the Watson-Crick road of Gw- Two
Watson-Crick DOL systems are called road equivalent if they have the same Watson-
Crick road. A Watson-Crick DOL system Gw is called stable if its Watson-Crick
road equals 0W (that is, the infinite word consisting of 0s).

Watson-Crich Walks and Roads on DOL Graphs 185

Thus, the Watson-Crick road completely characterizes the complementarity
transitions: letters 1 occur in positions such that a transition takes place at the
corresponding step. A system being stable means that no complementarity transi-
tions occur, that is, the sequence is obtained as in an ordinary DOL system. The
stability problem is basic in the study of Watson-Crick DOL systems. In general,
the problem is undecidable. We have the following more specific results.

Theorem 3.2 The stability problem is decidable for Watson-Crick DOL systems
with regular trigger but undecidable for systems with context-sensitive triggers.

Proof. A Watson-Crick DOL system Gw = (G, TR) is stable iff the intersec-
tion L(G) fl TR is empty, where L(G) is the language of G, viewed as an ordinary
DOL system. But the emptiness of such an intersection is decidable (resp. unde-
cidable) for regular (resp. context-sensitive) triggers TR, see [7] (resp. [2]). •

We now show that Watson-Crick roads can be arbitrarily complex, even if at-
tention is restricted to systems whose Watson-Crick graph is trivial. Let ip be a
recursive function mapping the set of positive integers into {0, 1}. We denote by
uv the infinite binary word whose ith letter equals 1 exactly in case ip(i) = 1, for
all i > 1.

Theorem 3.3 For every recursive function cp, a Watson-Crick DOL system whose
Watson-Crick road equals uv can be effectively constructed. Moreover, the items
involved can always be chosen in such a way that the morphic equivalence is defined
by the relation alph(x) = alph(y) and that the associated Watson-Crick graph is
trivial.

Proof. Given ip, we construct a Watson-Crick DOL system Gw = (G, TR) as
follows. The alphabet of the DOL system G is S2 = {a 1 ; a2, ai, a2}. We prefer
to write S 2 as the original DNA alphabet {A, T, C, G} in the way indicated in
Section 1 (trusting that the slight notational ambiguity causes no confusion). The
axiom of the system is ACGT, and the morphism g is defined by the rules

A A, C - > C 2 , G G2, T - > T .

The morphic equivalence is defined by the condition: x = y iff alph(x) = alph(y).
Then (independently of TR which we have not yet defined) the Watson-Crick graph
Hw(Gw, =) is trivial. This follows because each word in the sequence S(Gw)
equals either wi(i) = AC2'G2'T or w2(i) = TG2'C2' A, for some i.

We now define the trigger by

TR={Wl(i), w2(i)\i e </>-1(l)}.

Clearly, TR is recursive. It is also easy to verify that this construction satisfies the
theorem. •

186 AT to Salomaa

A very natural trigger (and the only one considered in [5]) is the set of words,
where the pyramidines (barred letters) are in strict majority. Thus, we denote
Ep y r = {¿¿i, . . . , a n) and consider the language

Clearly, PYR satisfies the soundness condition. Watson-Crick DOL systems
(G, PYR) will be referred to as standard. Consequently, for a standard system
Gw, in every word of S(Gw) there are at least as many purines as pyrimidines.

Observe that PYR and its complement are context-free nonregular languages.
Thus, considering Theorem 3.2, we are closer to the borderline between decidability
and undecidability. Indeed, the following result was established in [5].

Theorem 3.4 The stability problem for standard Watson-Crick DOL systems is
algorithmically equivalent to the problem Zpos. •

An infinite binary word is referred to as ultimately periodic if it is of the form
uvu, where u £ {0, 1}* and » e (0, 1 } + . The trigger used in the general result
Theorem 3.3 is very complicated. However, all ultimately periodic roads can be
realized with simpler triggers.

Theorem 3.5 Every ultimately periodic Watson-Crick road can be expressed in
the form WVV(GW) where Gw. is standard (resp. Gw has a finite trigger).

Proof. Assume uvu is the given word, where

u = b1...bk, v = bk+1...bl, k> 0, l>k + 1, bj e {0, 1}.

We construct a Watson-Crick DOL system Gw = (G, TR). The alphabet of G
equals {<2o, • • •, ai, «o, • • •, a,i}, the axiom is ao and the morphism is defined by
the productions

a-j —¥ aj-|-i or aj —¥ aj+1, depending whether bj+i — 0 or bj+\ = 1,
0 < j < I - l ;
ai -t a,t+i or a; ak+1, depending whether bk+1 = 0 or = 1;
aj —> a,j, 0 < j < I.

If we now choose TR = PYR or TR = { ¿ i , . . . , a;}, the resulting system Gw
has the Watson-Crick road uvw. •

For any Watson-Crick DOL system Gw and any morphic equivalence = , every
node in the graph Hw{Gw, =) is reachable in the sense that there is a walk
ending with that node. This follows by the construction of Hw• However, the
Watson-Crick road of Gw does not necessarily pass through all nodes of Gw-By
the reachability problem we understand the problem of deciding, given Gw, = and
a node N in Hw, whether or not the Watson-Crick road of Gw passes through N.

Watson-Crich Walks and Roads on DOL Graphs 187

In this context we assume that the morphic equivalence is defined by the condition
alph(x) = alph(g), implying that Hw is finite. Examples can be given of cases,
where N actually is reachable but the shortest prefix of the Watson-Crick road of
Gw ending with N is very long (for instance, in terms of the number of nodes of
Hw)- This is natural, in view of the following theorem.

Theorem 3.6 The reachability problem, is undecidable. For standard Watson-
Crick DOL systems Gw, any algorithm for solving the reachability problem can
be converted into an algorithm for solving the problem Zpos.

Proof. The second sentence has been established in [5]. To prove the first
sentence, we show that the decidability of the problem would imply the decidability
of the emptiness problem for languages L(G) f)K, where K is context-sensitive and
G is a DOL system. However, the latter problem is known to be undecidable.

Given K and G over the alphabet £ = {ai, . . . , a„ } , we construct a Watson-
Crick DOL system Gw — (G', K). (Without loss of generality, we assume that
the language K does not contain A.) The DOL system G' is almost the same
as G; we only extend the alphabet £ to the DNA-like alphabet £ „ and add the
productions a-i —» ai, 1 < i < n. Clearly, K satisfies the soundness condition for
triggers because, for x £ K, hw{x) consists of pyramidines and K contains no such
words.

Two possibilities arise. If L(G) (1 K = <j> then S{Gw) — S(G) because no
complementarity transition takes place. If L(G) f~l K ^ <j> and Wi is the first word
in S(G) belonging to K (we may assume that Wi is not the axiom), then S(Gw)
coincides with S(G) up to Wi-i, after which S(Gw) consists of only repetitions
of Wi- Because of our agreement concerning the morphic equivalence, the latter
alternative occurs exactly in case the Watson-Crick road of Gw passes through
some node in Hw labeled by pyramidines. This is a question we can settle if we
can decide the reachability problem. •

We conclude this section with an example of a standard Watson-Crick DOL
system Gw, due originally to [4]. The alphabet of Gw is £3, the axiom is 0,10,203,
and the productions are

ai —>• ai, a-2 —> o2, a3 03, ai —> aia2, a2 -4 a2, a3 —» S3.

The graph Hw(Gw, =) where = is again defined as in Theorem 3.6, consists of
two nodes: the initial node N1 labeled by {ai , a2 , <23}, and the node N2 labeled
by {ai , a2, a 3 } . The arrows labeled by 0 preserve both nodes, whereas the arrows
labeled by 1 interchange them. The Watson-Crick road of Gw begins with the
word 1011051101711. In general, there is an exponentially growing sequence of Os
between words 11. Explicitly, after the first position the bit 1 occurs exactly in
positions 3 i + 1 + i and 3 l + 1 + i + 1, for all i > 0. It is interesting to note that only
three of the four arrows of Hw are used on the Watson-Crick road; the arrow from
N\ to itself is never used. The example shows the validity of the following theorem.

Theorem 3.7 The Watson-Crick road of a standard system is not necessarily ul-
timately periodic. •

188 Arto Salomas

Theorem 3.7 should be contrasted to the many results about context-free lan-
guage showing ultimate periodicity; recall that the trigger in a standard system is
context-free.

The growth function of the system Gw fluctuates between a linear function
(due to the productions ai —> aia2, a2 —> 0.2) and an exponential function (due to
a3 —>03). Such a fluctuation is not possible for DOL growth functions. Indeed, it
is shown in [4] that the growth function of Gw is not Z-rational. The system Gw
is the smallest standard system with these properties (strange growth function and
nonperiodicity) we have been able to find. It would be interesting to have similar
examples with the original DNA alphabet or, equivalently, £2.

4 Equivalence problems
The decidability of various equivalence problems constitutes a central chapter in
the history of L systems, see [7]. We use here the standard terminology. Thus, the
sequence (resp. growth) equivalence problem for DOL systems consists of deciding
of two given DOL systems whether or not they generate the same sequence (resp.
growth function). For DOL systems, the decidability of the growth equivalence
problem was settled first. It was also shown quite early, that the decidability of the
sequence equivalence implies the decidability of the language equivalence and vice
versa, whereas the decidability itself remained as a celebrated open problem, until
it was finally settled in the late 70s, see [7].

Clearly, the sequence, language and growth equivalence problems can be formu-
lated for Watson-Crick DOL systems exactly as for ordinary DOL systems. In
addition, we have the very natural road equivalence problem for Watson-Crick DOL
systems: given two systems, decide whether or not they define the same Watson-
Crick road. Thus, the road equivalence of two Watson-Crick DOL systems means
only that the complementarity transitions occur in the two sequences at the same
steps; the two sequences themselves can be very different. For instance, two stable
systems are always road equivalent.

Thus, road equivalence does not imply sequence, language or growth equiv-
alence. On the other hand, sequence equivalence (which implies language and
growth equivalence) does not imply road equivalence. For instance, consider two
standard Watson-Crick DOL systems G\ and G2 over the DNA alphabet. The
axiom of both systems is AG. The productions in G\ are

A^T, G C, C-^C2, T -> T 2 ,

whereas in G2 they are

A - > A , G ^ G , C ^ C 3 , T - > T 3 .

Then S(Gx) = S(G2) but G\ and G2 are not road equivalent. In fact, the Watson-
Crick roads of Gi and G2 are lw and 0", respectively. (Observe that it is irrelevant
in both systems how we choose the productions for C and T.)

Watson-Crich Walks and Roads on DOL Graphs 189

It is also possible that two systems are sequence equivalent when viewed as
ordinary DOL systems but not as Watson-Crick DOL systems, and vice versa. We
have seen that the above systems Gi and G2 are sequence equivalent when viewed
as standard (implying that TR = PYR) Watson-Crick DOL systems. They are
clearly not sequence equivalent when viewed as ordinary DOL systems: after the
axiom the two sequences differ at every step, and even the word lengths differ from
the third word on. On the other hand, consider two systems G3 and G4 with the
axiom A, where the productions in G3 are

A-+CTC, C-^CTC, T A, G - > G 3 ,

and those in G4 are

A CTC, C^C, T-^TCCT, G - > G 4 .

Viewed as ordinary DOL systems, G3 and G4 are sequence equivalent. Indeed,
5(G 3) = S(G4) begins with A, followed by the words {CTC)2', i > 0. If G3 is
viewed as a standard Watson-Crick DOL system, the sequence S(G3) consists of
the words

A, GAG, G3CTCG3, G3'+1 (CTC)2'G3'+1, i > 1.

If G4 is viewed similarly, the sequence S(G4) consists of the words

A, GAG, G 4 CTCG 4 , G 4 i + 1 (GTG) 2 i G 4 i + 1 , t > 1.

Consequently, G3 and G4 are not sequence equivalent. Observe, however, that G3
and G4 are road equivalent: both define the Watson- Crick road 10w.

The above examples serve the purpose of illustrating the great variety of prob-
lems of new types brought forward by the different notions of equivalence. Indeed,
some challenging decision problems in this area remain open. According to the
general observation made at the end of Section 2, it is to be expected that equiv-
alence problems involving arbitrary (resp. regular) triggers are undecidable (resp.
decidable). The case of arbitrary (context-sensitive) triggers will be dealt with in
Theorem 4.1, whereas we hope to return to regular triggers in a forthcoming paper.
Equivalence problems involving context-free triggers (as is the case with standard
systems) are very challenging. Intuitively, the problems seem to be decidable. But,
as shown in Theorem 4.2, they are at least as hard as the problem Zpos.

Theorem 4.1 The road, growth, sequence and language equivalence problems are
all undecidable for Watson-Crick DOL systems with context-sensitive triggers.

Proof. We use again the undecidability of the emptiness of the intersection
L(G) D K, where G is an ordinary DOL system and K is a context-sensitive lan-
guage. Indeed, the argument is similar to the one used in the proof of Theorem
3.6.

Assume that we are given a DOL system G and a context-sensitive language K
over the alphabet E. Without loss of generality, we assume that L(G) is infinite
and that the axiom of G is not in K. We can also find a word u G £ + not in L(G).

190 At to Salomaa

We now construct two Watson-Crick DOL systems G' and G" by taking the
axiom of G, extending the alphabet £ to a DNA-like alphabet £ n by adding to £
the barred version a of each letter a and, finally, by adding to G all productions
a —• a. where a 6 E. The systems G'and G" are identical except that G' has the
trigger {u} , whereas K is the trigger of G".

It is now easy to verify, exactly as in the proof of Theorem 3.6, that G'and G"
are road, growth, sequence or language equivalent exactly in case L(G) C\ K = 4>.
Indeed, the Watson-Crick road of G' equals 0" , and the growth function, sequence
and language of G' coincide with that of G. Each of these statements holds for G"
exactly in case G" is stable, that is, L(G) fl K = 4>. (Our assumption concerning
the infinity of L(G) is needed to justify this conclusion for growth functions.) •

Theorem 4.2 Any algorithm for solving the road, growth, sequence or language
equivalence problem for standard Watson-Crick DOL systems can be converted into
an algorithm for solving the problem Zpos.

Proof. By Theorem 3.4, it suffices to show that an algorithm for solving any
of the four equivalence problems for standard Watson-Crick DOL systems can be
converted into an algorithm for solving the stability of standard Watson-Crick DOL
systems.

Thus, we have to decide whether or not a given Watson-Crick DOL system
Gw = {G, PYR) is stable, where G = (£„, g, w0) is a DOL system. Here £ n

is a DNA-like alphabet and, thus, consists of 2n letters. We now extend £ n to a
DNA-like alphabet E2n = En U E„, where En consists of barred versions of letters
of £ n . (The new bars should not be confused with those appearing in letters of
£ n .) In connection with £2n , the letters of £ „ are considered pyrimidines and
the set PYR C £?;„ is defined accordingly. Consider also the extension g' of g
to £2«, where g'(a) = a for all a 6 £ n , and define the standard Watson-Crick
DOL system G'w = (G1, PYR), where G' = (£2„, g', w0) and PYR is defined
in connection with E2ti. Clearly, G'w is stable and defines the Watson-Crick road
0'-"'. Consequently, Gw is stable exactly in case Gw and G'w are road, sequence or
language equivalent. This means that an algorithm for deciding one of these three
equivalence problems decides also the stability problem.

The same conclusion cannot be made directly as regards the growth equiva-
lence problem: it is conceivable that Gw and G'w are growth equivalent although
complementarity transitions take place in Gw- However, the proof of Theorem 3.4
in [5] is easily modified to exclude this possibility. In this proof, the Z-rational
sequence (given for the problem Zpos) was expressed as the difference of two DOL
length sequences, generated by systems both having n letters. When the systems
are run simultaneously and the letters of the original systems are viewed as purines
and pyrimidines, the combined system is stable exactly in case the ^-rational se-
quence assumes never a negative value. We now consider two new letters an+1
and a n + 2 , as well as their complementary ones an+\ and an+2. The axiom of the
combined system is catenated with the word a'n+la%n+2, where the new letters have
the productions an+1 —> aJn+l and o n + 2 —d 3 n + 2 . Here i and j are large enough

Watson-Crich Walks and Roads on DOL Graphs 191

for the new letters to dominate the growth function of the combined system. (The
new letters contribute the same number of purines and pyrimidines and, thus, do
not affect membership in PYR.) The choice a n + 1 , an +2 —> now
guarantees that a complementarity transition changes the growth function. •

We do not know whether Theorem 4.2 holds in the reverse order, that is, whether
an algorithm for solving the problem Zpos can be converted into an algorithm for
solving the equivalence problems.

5 Conclusion
In Watson-Crick DOL systems one investigates a classical topic, Lindenmayer sys-
tems, from the new angle provided by the idea of complementarity in DNA com-
puting. In this paper we have focused our attention to the fundamental information
brought forward by the associated Watson-Crick road. Many problems in this area
are very challenging, especially because of their interconnection with some cele-
brated open problems. It would be a fascinating project to apply DNA computing
itself towards the solution of these problems.

References
[1] Adleman, L. Molecular computation of solutions to combinatorial problems.

Science 266, 1994, 1021-1024.

[2] Harrison, J. Morphic congruences and DOL languages. Theoretical Computer
Science 134, 1994, 537-544.

[3] Kuich, W. and Salomaa, A. Semirings, Automata, Languages. Springer-Verlag,
Berlin, Heidelberg, New York, 1986.

[4] Mihalache, V. and Salomaa, A. Lindenmayer and DNA: Watson-Crick DOL
systems. EATCS Bulletin 62, 1997, 160-175.

[5] Mihalache, V. and Salomaa, A. Language-theoretic aspects of DNA comple-
mentarity. Submitted for publication.

[6] Paun, G., Rozenberg, G. and Salomaa, A. DNA Computing - New Computing
Paradigms. Springer-Verlag, Berlin, Heidelberg, New York, 1998.

[7] Rozenberg, G. and Salomaa, A. The Mathematical Theory of L Systems. Aca-
demic Press, New York, 1980.

[8] Rozenberg, G. and Salomaa, A. (eds) Handbook of Formal Languages, Vol.
1-3. Springer-Verlag, Berlin, Heidelberg, New York, 1997.

192 A t to Salomaa

[9] Salomaa, A. Turing, Watson-Crick and Lindenmayer. Aspects of DNA com-
plementarity. In Calude, C., Casti, J. and Dinneen, M. (eds) Unconventional
Models of Computation. Springer-Verlag, Singapore, 1998, 94-107.

[10] Salomaa, A. Formal Languages. Academic Press, New York, 1973.

Acta Cybernetica 14 (1999) 135-149.

Generalized fairness and context-free languages

Kai Salomaa* Sheng Yu*t

Abstract

The notion of fairness for generalized shuffle operations was introduced in
[10]. The n-fairness property requires, roughly speaking, that in any prefix
of a word the difference of the numbers of occurrences of two symbols is at
most n. Here we give a new simplified proof for the decidability of uniform
n-fairness for context-free languages. Also, we show that the more general,
linear or logarithmic, fairness notions are decidable.

1 Introduction

Fairness constraints can be used to restrict the behavior of concurrent processes.
For a state sequence to be fair, a minimal requirement is that a process that is
enabled infinitely often will occur infinitely often. Many different notions of fairness
have been studied in modeling concurrency [3], some recent references are [2, 5,14].
Fairness of automata on infinite objects and of cooperating grammar systems is
considered in [8, 13, 15].

Questions of fairness in formal language theory were initiated by the study of
trajectories [9, 10]. A trajectory is a word over a two-letter alphabet that is used
to "control" the shuffle operation on given words. Trajectories yield very general
operations of parallel composition of words and languages and have applications
in the parallelizatiori of languages, in representing a language in terms of simpler
components.

A trajectory t € {b, c}* is said to be n-fair if the difference in the number of
occurrences of the symbols b and c in any prefix of t is at most n. The shuffle of
two words that is controlled by an n-fair trajectory satisfies thus the property that
at any point neither word is more than "n steps ahead". It is easy to see that for
a context-free set of trajectories T we can effectively decide whether or not T is
n-fair. The uniform fairness question asks, for a given set of trajectories T, whether
or not there exists an integer n such that T is n-fair.

'Department of Computer Science, University of Western Ontario, London, Ontario N6A 5B7,
Canada, Email: {ksalomaa, syu}@csd.uwo.ca

^Research supported by the Natural Sciences and Engineering Research Council of Canada
Grant OGP0041630.

193

194 ft'ai Salomaa, Sheng Yu

It was shown in [11] that also the uniform fairness property is decidable for
context-free languages. The proof establishes that for a given context-free gram-
mar G there exists a constant mc, such that the uniform fairness of L(G) can be
verified by checking only the derivation trees of height at most mc- The result-
ing algorithm is not efficient since it uses an exhaustive search of an exponential
number of derivation trees (in terms of the size of the grammar). Furthermore, the
argument used to establish the existence of the constant m c uses fairly complicated
operations on the derivation trees.

Here we give a new proof for the decidability of uniform fairness for context-free
languages. The fairness property for a context-free language L is determined by-
considering a regular language that is letter-equivalent to the prefix-language of L
and thus it is, essentially, sufficient to decide the property for a regular language.
The argument for the correctness of the algorithm is much simpler than in the
original proof that relies directly on properties of context-free derivations. Here
the adjective "simpler" naturally ignores the fact that we are using the powerful
result of Parikh's theorem [12, 4, 16]. Another drawback is that the size of the
nondeterministic finite automaton (or regular grammar) obtained by Parikh's the-
orem to accept a language letter-equivalent to the given context-free language can
be much larger than the size of the original context-free grammar. Furthermore,
although the algorithm is now conceptually simpler, in the worst case it needs to
check an exponential number of cycles in the automaton.

An advantage of the new decidability proof is that exactly the same method
allows us to decide the generalized (linear or logarithmic) fairness conditions for
context-free languages that were left open in [10].

2 Definitions

Here we present some definitions needed later. More details on formal languages
and finite automata can be found e.g. in [1, 4, 16, 17]. For all unexplained notions
we refer the reader to these references.

The symbol IN denotes the set of non-negative integers. The cardinality of
a finite set S is denoted # 5 . The set of words over an alphabet E is E* and
£ + = E* — {A}. Here A denotes the empty word. If not otherwise mentioned, by
an alphabet we mean always a finite alphabet. A word wi is a prefix of w £ £* if
we can write w = wiw2> (wi,w2 EE*) . For L C £*, the prefix-language of L is
defined as

pref(L) = {w E E* | (3w' E £*) wiu' £ L}.

The length of a word w E E* is |w| and, for a symbol c E E, |w|c denotes the
number of occurrences of c in the word w.

Words wi,u>2 E £* are said to be letter-equivalent if for each c £ E we have
|iui|c = \vj2jc- Languages Li and L> (C £*) are letter-equivalent if for each wi £ L\
there exists w2 £ L2 such that wi and w2 are letter-equivalent, and vice versa. This
means that the words of L2 are exactly some permutations of the words of L\.

Generalized fairness and context-free languages 195

A finite automaton is a four-tuple A = (Q, £, s, Q1, S) where Q is the finite
set of states, £ is the input alphabet, s G Q is the initial state, Q' C Q is the
set of accepting final states, and i C Q x E x Q i s the transition relation. Note
that for given q G Q and a € £ there may exist more than one state q' such that
(,q,a,q ') G S, that is, the automaton is allowed to be nondeterministic.

The transition relation is extended in the natural way from symbols of £ to
arbitrary words of £* and we denote also the extended transtion relation (C Q x
£* x Q) by the same symbol S. The language accepted by A is

L(A) = {w G £* | (3q G Q') (s,w,q) G 6}.

A path of the automaton A is a sequence

a= (qi,ai,q2,a2,... ,am-i,qm) (1)

where m > 1, m G Q, i = 1 , . . . ,m, aj G £ , j = 1 , . . . ,m — 1, and (q j , a j , q j + i) G S
for all j G { 1 , . . . , m - 1}.

The above path is said to be accepting if qi = s and qm G Q'. The automaton
A is said to be reduced if all states of Q occur in some accepting path of A. It
is well known that we can determine the unnecessary states of an automaton and,
thus, we can effectively transform A into an equivalent reduced automaton. The
underlying word of a path a as in (1) is

word(a) = a\a2 • • • a m _ i G £*.

A path (1) is said to be a cycle if m > 2 and qi = qm. Note that a sequence
(gi) consisting of a single state (with no transitions) is a path but not a cycle. A
cycle as in (1) is said to be primitive if for no (i,j) ^ (l , m) , 1 < i < j < m, the
sequence

(qi,ai,qi+i,ai+1,... ,aj-i,qj) (2)

is a cycle. A path as in (1) is said to be primitive, if for no 1 < i < j < TO, the
sequence (2) is a cycle.

Intuitively, a primitive cycle does not contain any proper subcycles and a prim-
itive path does not contain any subcycles. In (1) the qi's need not be distinct and,
thus, an automaton A may have an infinite number of cycles (or paths). However,
the number of primitive cycles and paths is always finite.

We can define in the natural way the catenation of two paths provided that the
first one "ends" with the same state as the second one "begins" with. Let a be as
in (1) and

P = (p i , h , . . . , b r - i , p r) ,

where Pi G Q, bj G £ , 1 < i < r, 1 < j < r — 1. If qm = pi then the catenation of
the paths a and /3 is defined to be

a- /3 = (qi,ai,q2,a2, • • •, a m _ i , qm, h,p2,... ,& r - i ,Pr)-

If 9m Pi then the catenation of a and ¡3 is not defined. Note that a cycle can
always be catenated with itself.

196 ft'ai Salomaa, Sheng Yu

Finally we fix the notation used for context-free grammars. A context-free gram-
mar is a four-tuple G = (N, T,,S,P), where N is the nonterminal alphabet. E
is the terminal alphabet. (N fl E = 0). S £ N is the initial nonterminal, and
P C iV x (N U E)* is the finite set of productions. A production (X . w) £ P is de-
noted as X w. The productions define in the standard way the rewrite relation
of the grammar =>GQ (N U E)* X (N U £)*, and the language generated by G is
L(G) = {w € E* | tu}.

A context-free grammar G = (Ar, E, S, P) is in Chomsky normal form if all
productions of P are of the form X —» YZ or X —> b where X,Y,Z £ N and
b £ E. The grammar G is said to be regular (or right-linear) if all productions of
P are of the form X -» wY or X —> w where X and Y are nonterminals and w
is a terminal string. Every context-free language not containing the empty word
can be generated by a grammar in Chomsky normal form. The regular grammars
generate exactly the regular languages.

When speaking about the complexity of determining some property of context-
free grammars, by the size of the grammar we mean the length of an encoding
over a fixed (e.g. a binary) alphabet of the nonterminals, the terminals and the
productions of the grammar. Similarly, the size of a finite automaton is determined
by an encoding of the states, the input alphabet and the transition relation.

3 Generalized fairness
The n-fairness condition [10, 11] requires that for any distinct symbols b and c and
any prefix w' of a given word w. the difference between the numbers of occurrences
of b and c in w' is bounded by n. A more general notion of fairness was also
informally discussed in [11]. Below we present the more general definition.

Definition 3.1 Let g : IN —> IN be a function. We say that a language L C E*
has the g-fairness property if the following condition holds. For all b,c £ £, if
w = W1W2 £ L then

I K | b - |wi |c | < g (K |) .

The definition requires that the difference between the numbers of occurrences
of distinct symbols in any prefix of a word belonging to the language is bounded
by the <?-image of the length of the prefix. As a special case we get the notion of
n-fairness, n £ IN, by choosing g to be the function with constant value n.

When we are using a fairness condition as given in Definition 3.1, the function
g is referred to as the fairness function associated with the condition.

It is a straightforward observation that given a context-free language L and
n £ IN the question whether or not L is n-fair is decidable [10]. The uniform
constant-fairness question asks for a given language L whether or not there exists
n £ IN such that L is n-fair. The following result was shown in [11].

Theorem 3.1 The uniform constant-fairness problem is decidable for context-free
languages.

Generalized fairness and context-free languages 197

Below we give a new simplified proof for Theorem 3.1. We will use the following
two propositions. A proof of Parikh's theorem can be found for instance in [12,
4, 16]. A more elegant proof using equations over a commutative semigroup is
presented in [1, 7].

Proposition 3.1 (Parikh's Theorem) Each context-free language is letter-
equivalent to a regular language. Given a context-free grammar we can effectively
construct a regular grammar (or finite automaton) for a letter-equivalent regular
language.

Proposition 3.2 The prefix-language of a context-free language is context-free.

Proposition 3.2 follows from the observation that if a language L is generated by
a grammar G = (N, T,,S,P) in Chomsky normal form (with possibly an additional
production S —> A) then pref(L) is generated by the grammar G' defined as follows.
Denote N' = {X' | X £ N} and let G' = (N U N', S, S', P U P') where

P' = {X1 YZ', X' -> y' | X -+YZ £ P; X,Y,Z £ N}
U {X' b I X b £ P; X £ N, b £ £ } U {S" A}.

We assume that S, and hence also S', does not appear in the right side of any
production.

Now we can prove Theorem 3.1 relying on the above results.
Proof of Theorem 3.1. Let G be a given context-free grammar with terminal
alphabet £. By Proposition 3.2 there exists effectively a context-free grammar G'
such that L(G') = pref(L(G)). Now there exists n £ IN such that L(G) has the
n-fairness property iff there exists n £ IN such that for all w £ L(G'),

(V6,cG £) | H 6 - |w|c| < n. (3)

By Parikh's theorem there exists effectively a finite automaton A such that L(A) is
letter-equivalent to L(G'). This means that, given n £ IN, the condition (3) holds
for all w £ L(G') iff the same condition holds for all w £ L(A).

Without loss of generality we can assume that A is reduced. Let n £ IN be fixed.
We claim that the condition (3) holds for all w £ L(A) iff the below conditions (i)
and (ii) hold.

(i) For all accepting primitive paths a of A, and all b,c £ £,

| |word(a)|6 — |word(a)|c | < n.

(ii) For all primitive cycles (3 of A, and all b, c £ £,

|word(/?)|t = |word(/3)|e.

198 ft'ai Salomaa, Sheng Yu

For the "only if" part assume that (3) holds for all w € L(A). Consider arbitrary
b. c G E. Now (i) follows from the fact that word(a) £ L(A) if a is an accepting
path. For the sake of contradiction assume that

P = (<7l,al> • • • i9m-l ,am-l ,9 l) ,

qi € Q, a,j € E, 1 < i,j < m — 1, rn > 2, is a (primitive) cycle where, for instance,

|word(/?)|6 > |word(/?)|c.

Since A is reduced, the state qi is reachable from the initial state and a final state
is reachable from qi. Thus, there exists an accepting path of A that can be written
in the form 71 • ¡3 • 72- Denote

k = | |word(71 • 72)|b - |word(71 • 72)|c |-

Then
rj = 1 1 . 0 k + n + l • 72

is an accepting path such that word(f?) does not satisfy (3).
Conversely, assume that the conditions (i) and (ii) hold and let 6, c € E be

arbitrary. Starting from an arbitrary cycle we can delete primitive cycles one-by-
one without changing the difference between the numbers of occurrences of the
symbols b and c. The process eventually results in a primitive cycle and, thus, it
follows that any cycle of A has equally many occurrences of the symbols b and c.
An arbitrary accepting path can be written in the form

7i • Vi • 72 • • • • • Vk-i • 7k,

where k > 1, 1 < i < k — 1, is a cycle and 71 • 72 • • • • • 7fc is a primitive accepting
path. This completes the proof since the words of L(A) are exactly the underlying
words of accepting paths of A. •

In the above proof, the answer for a reduced automaton A is "yes" for sufficiently
large n iff the condition (ii) holds, that is, the condition (i) would not be needed at
all. The condition (i) was included only to make more transparent the idea that the
same method can be used below for the linear and logarithmic fairness functions.
When considering a fixed fairness function, we need to have some condition also
for the accepting primitive paths.

The above proof of Theorem 3.1 is quite simple when compared to the proof
given in [11], at least if we ignore the fact that we are relying on Parikh's theorem.
On the other hand, the algorithm obtained from the original proof is more efficient,
although it also requires exponential time. Note that the construction that for a
given context-free grammar G produces a regular grammar generating a language
letter-equivalent to L(G) greatly increases the size of the grammar [4, 12, 16]. We
do not know whether the construction could be improved in this respect.

The construction using Chomsky normal form grammars outlined above for
the proof of Proposition 3.2 also increases the size of a given grammar since the

Generalized fairness and context-free languages 199

Chomsky normal form can have many more nonterminals and productions than
the original grammar. However, this overhead could be avoided. The construction
in the proof of Proposition 3.2 does not require that the grammar is in Chomsky
normal form if one uses more carefully defined rules to determine the behavior of
the primed nonterminal that denotes the end of the prefix in the derivation tree.
Also, the assumption that the given finite automaton is reduced is not problematic
since this property can be tested in low polynomial time.

Although it is perhaps intuitively simpler than the construction of [11] that de-
termines properties of context-free derivations, the algorithm testing the primitive
loops of a finite automaton still requires exponential time. This follows from the
below example.

Example 3.1 Let n G IN and consider the finite automaton An = (Q, E, s, Q', <5)
where E = {a, fe}, Q = {1,2, . . . , n } , s = 1, Q' = {n}, and 6 consists of the
transitions (i, x,i + 1), (n, x, 1) where i = 1 , . . . ,n — 1 and x G {a, b}. Then the size
of An is 0(n • logn) and the number of primitive cycles in An is 0(2n).

By the above remarks, the decision algorithm given by the proof of Theorem 3.1
is extremely inefficient. However, it is useful because with small modifications the
same method allows us to show that also the generalized (logarithmic or polyno-
mial) fairness condition is decidable. This question was left open in [11]. First we
consider the case where the fairness function is linear.

Theorem 3.2 Let g(x) = TX + K be a linear function where r and K are constants.
For a given context-free grammar G we can effectively decide whether or not L(G)
has the g-fairness property.

Proof. Let E be the terminal alphabet of G. Similarly as in the proof of Theo-
rem 3.1, by Propositions 3.1 and 3.2, it is sufficient to check, for a reduced finite
automaton A, and for each pair of symbols b, c G E, whether or not

(Vw G L(A)) | \w\b - \w\c | < T\W\ + AC. (4)

If T is negative, we can decide (4) by determining whether L(A) contains a word w
that makes T\W\ 4- K negative and then going through the finite number of shorter
words. Thus, we can assume that r is non-negative in the following.

We claim that (4) is equivalent to the below two conditions:

(i) For all accepting primitive paths a of A,

| |word(a)|6 - |word(a)|c | < r|word(a)| + K.

(ii) For all primitive cycles (3 of A,

| |word(/3)|t - |word(/3)|c | < r|word(/3)|.

200 ft'ai Salomaa, Sheng Yu

First assume (4). This directly implies (i) since word(a) G L(A) for all accepting
paths a. If (ii) would not hold then there exists a cycle ¡3 such that

| |word(/3)|(, - |word(/3)|c | > r|word(/3)|.

Since A is reduced, it follows that A has an accepting path of the form 71 • (3 • 72.
(This is seen using a similar argument as in the proof of Theorem 3.1.) Since
word(7i • 72) € L(A), we have

| |word(71 • 72)16 - |word(7i • 72)|c | < r|word(7i • 72)! + k.

Denote the constant r|word(7i • 72)| by D, and let

77(771) = 71 • Pm • 72, m G IN.

Then
word(7?(2i? + 2K,+ 1)) G L{A)

violates the condition (4).
For the converse part assume the conditions (i) and (ii). Similarly as in the

proof of Theorem 3.1, we observe that an arbitrary accepting path of A can be
written in the form

7i ' Vi • 72 • • • • • Vk-i • Ik, (5)

where k > 1, r/i, 1 < i < k — 1, is a cycle and 71 • 72 • • • 7k is a primitive accepting
path. The inequality of condition (ii) extends to arbitrary cycles and, thus, the
underlying word of (5) has to satisfy (4). •

We can naturally consider also the uniform linear fairness question: Given a
context-free grammar G decide whether or not there exist constants r and K such
that L(G) has the (TX + /c)-fairness property. From the proof of Theorem 3.2
it follows that the answer to this question is "yes" iff all primitive cycles of the
constructed automaton A contain occurrences of each symbol of E.

As a corollary we see that also the logarithmic and polynomial fairness con-
ditions are decidable for context-free languages. The question of logarithmic or
polynomial fairness is reduced, essentially, to the linear case by testing separately
a finite number of special cases.

Corollary 3.1 For a context-free language L it is decidable whether or not L has
the \og-fairness property.

Proof. Let E be the alphabet of L. Exactly as in the first part of the proof of
Theorem 3.2, in order to decide the log-fairness property for L, it is sufficient to
decide for a reduced finite automaton A, and for all b, c G E, whether or not

(V w G L (A)) I |TO11, - |W|c | < log(|w|). (6)

Let b, c G E be fixed. We first observe that if for some cycle a of A we have

|word(a)|& ^ |word(a)|c (7)

Generalized fairness and context-free languages 201

then the condition (6) does not hold. To see this observe that since A is reduced,
there exists an accepting path 71 • a • 72 and, by pumping the cycle a sufficiently
many times, we obtain an accepting path such that the corresponding underlying
word violates (6).

We can effectively test that no cycle a satisfies (7) just by going through the
primitive cycles. If this is the case, then we can determine whether or not (6) holds
by checking the finite number of primitive accepting paths. •

Note that the above proof relies only on the fact that the fairness function grows
asymptotically slower than any linear function.

Corollary 3.2 Let p : IN -4 IN be a polynomial function. For a context-free lan-
guage L over an alphabet £ it is decidable whether or not L has the p-fairness
property.

Proof. Since the linear case was considered above we can assume that the rank of
p(x) is at least two. Furthermore, we may assume that the coefficient of the term
of highest rank in p(x) is positive because otherwise any infinite language would
not have the p(a;)-fairness property. (Note that we can effectively decide whether
or not a given context-free language is infinite.)

Again it is sufficient to decide for a reduced finite automaton A, and for all
6, c G £ , whether or not

(Vii> G L(A)) | M f c - I H c I < P (H) - (8)

In the following let b, c G S be fixed. By our assumptions concerning the polynomial
p(x) we can effectively find M G IN such that

p(x) > x for all x > M.

Since | |in— |iu|c | cannot be greater than |id|, in order to decide (8), it is sufficient
to test the condition for words of L(A) of length at most M. •

Intuitively, we can say that a super-linear fairness condition is satisfied unless
it is violated by some word of constant length, where the constant depends only
on the fairness function. It can be noted that the decision algorithm given by the
above proof is extremely inefficient since it uses an exhaustive search over all words
of at most a certain length.

Finally,' we may note that [11] considered also a notion called initial fairness,
where the fairness condition for symbols b, c G E is required to hold only "as long
as" the remaining suffix contains occurrences of both symbols b and c. It was
shown that the uniform initial contant-fairness question is decidable for context-
free languages. The proof of Theorem 3.2 could fairly easily be modified to show
that also the initial linear fairness (or polynomial fairness) condition is decidable.
However, we feel that the notion of initial fairness is well motivated, perhaps, only
in the constant case. The reason is that the standard constant fairness condition
by itself is very restrictive as it requires that all words contain almost the same
number of occurrences of arbitrary symbols b and c.

202 ft'ai Salomaa, Sheng Yu

References
[1] J.-M. Autebert, J. Berstel and L. Boasson, Context-free languages and push-

down automata, in: Handbook of Formal Languages, Vol. I. (G. Rozenberg,
A. Salomaa, eds.), pp. 111-174, Springer-Verlag, 1997.

H.-D. Burkhard, Fairness and control in multi-agent systems, Theoret. Corn-
put. Sci. 189 (1997) 109-127.

N. Francez, Fairness, Springer-Verlag, Berlin, 1986.

M.A. Harrison, Introduction to formal language theory, Addison-Wesley,
Reading, MA, 1978.

C. Hartonas, A fixpoint approach to finite delay and fairness, Theoret. Corn-
put. Sci. 198 (1998) 131-158.

M. Kudlek and A. Mateescu, On distributed catenation, Theoret. Comput.
Sci. 180 (1997) 341-352.

W. Kuich, Semirings and formal power series, in: Handbook of Formal Lan-
guages, Vol. I. (G. Rozenberg, A. Salomaa, eds.), pp. 609-677, Springer-
Verlag, 1997.

A. Mateescu, CD grammar systems and trajectories, Acta Cybernetica 13
(1997) 141-157.

A. Mateescu, G.D. Mateescu, G. Rozenberg and A. Salomaa, Shuffle-like
operations on w-words, manuscript 1996.

A. Mateescu, G. Rozenberg and A. Salomaa, Shuffle on trajectories: Syntactic
constraints, Theoret. Comput. Sci. 197 (1998) 1-56.

A. Mateescu, K. Salomaa and S. Yu, Decidability of fairness for context-free
languages, in: Proceedings of the Third International Conference on Devel-
opments in Language Theory, DLT'97 (Thessaloniki, July 20-23, 1997), S.
Bozapalidis (ed.), pp. 351-364.

R.J. Parikh, On context-free languages, J. Assoc. Comput. Mach. 13 (1966)
570-581.

D. Park, Concurrency and automata on infinite sequences, in: "Theoretical
Computer Science", Proc. of the 5th GI Conference, P. Deussen (ed.), Lect.
Notes Comput. Sci. 104, Springer-Verlag, (1981) 167-183.

L. Priese, R. Rehrmann and U. Willecke-Klemme, An introduction to the
regular theory of fairness, Theoret. Comput. Sci. 54 (1987) 139-163.

J. Romijn and F. Vaandrager, A note on fairness in I /O automata, Inform.
Process. Lett. 59 (1996) 245-250.

Generalized fairness and context-free languages

[16] A. Salomaa, Formal languages, Academic Press, New York, 1973.

[17] S. Yu, Regular languages, in: Handbook of Formal Languages, Vol. I.
Rozenberg, A. Salomaa, eds.), pp. 41-110, Springer-Verlag, 1997.

CURRICULUM VITAE

1. Name: Ferenc Gécseg

2. Position: Professor of Computer Science

3. Institution: Institute of Informatics, A. József University (Szeged, Árpád
tér 2, Hungary)

4. Personal data:
Date of birth: 13.3.1939,
Place of birth: Zalavár (Hungary)
Married since 1959 (Mária Pápai)
Children: Mária (b. 1962) and Zsuzsanna (b. 1964)
Grandchildren: Sándor (b. 1985), Andrea (b. 1989), Kató (b. 1990), Panna
(b. 1991) and Szabolcs (b. 1994)

5. Studies:
Elementary and general school in Zalavár (1945-1953)
High school in Keszthely (1953-1957)
University studies at the University of Szeged (1957-1962), graduated in 1962
as a mathematics teacher (with specialization in algebra)

6. Degrees:
Candidate of Mathematical Sciences (1967, Hungarian Academy of Sciences)
Doctor of Mathematical Sciences (1976, Hungarian Academy of Sciences)
Corresponding Member of the Hungarian Academy of Sciences (1987)
Full Member of the Hungarian Academy of Sciences (1995)

7. Positions held in Hungary:
Professor's Assistant (1962-1965, A. József University)
Aspirant (1965-1967, Hungarian Academy of Sciences)
First Assistant to Professor (1968-1970, A. József University)
Associate Professor (1970-1977, A. József University),
Professor (1977-, A. József University)

8. Visiting positions:
Postdoctorate Fellow, University of Manitoba, Canada (1.9.1968-
31.8.1969)

205

206

Visiting Professor, University of Turku, Finland (1.9.1974- 31.8.1975)
Visiting Professor, Tampere University of Technology, Finland
(1.9.1978-31.12.1978)
Visiting Professor, University of Western Ontario, Canada (1.1.1987-
30.6.1987)
Visiting Research Professor, Academy of Finland (1.9.1992- 28.2.1993)

9. Professional and association membership:
Member of the Council of EATCS (since 1983)
Vice-President of EATCS (1989-1998)
Member of János Neumann Computer Science Society
Member of János Bolyai Mathematical Society
Editor of Acta Cybernetica
Editor of Alkalmazott Matematikai Lapok
Editor of Acta Mathematica Hungarica
Editor of Acta Scientiarum Mathematicarum
Editor of Foundations of Control Engineering

10. Conferences:
More than 30 invited talks at international conferences, summer schools and
foreign scientific institutions.
Chairman of the mini-conferences on Algebraic Theory of Automata held in
Szeged, in 1973 and 1977.
Chairman of the 1981 and 1989 international conferences on Fundamentals
of Computation Theory.
Chairman of the Programme Committee of ICALP 95.
Program committee member for the following conferences:
- FCT 79 (Wendisch-Rietz, DDR, 1979)
- FCT 83 (Borgholm, Sweden, 1983)
- Algebra, Combinatorics and Logic in Computer Science (Győr, Hungary,
1983)
- FCT 85 (Cottbus, DDR, 1985)
- FCT 87 (Kazan, SSSR, 1987)
- FCT 93 (Szeged, Hungary, 1993)
- ICALP 94 (Lund, Sweden, 1994)
- MFCS 97 (Bratislava, Slovak Republic, 1997)

11. Research interest:
Automata and formal languages, universal algebra

12. Honorary degree and awards:
Foreign Member of the Finnish Academy of Sciences (1994)
Grünwald Géza Prize (1966)
Order of Labour (silver degree) (1974)
Academic Prize (1980)
Kalmár László Memorial Medal (1982)
Order of Labour (golden degree) (1983)
Szele Tibor Memorial Medal (1990)
Szent-Györgyi Albert Prize (1995)

List of Publications by Ferenc Gécseg

Books, Book Chapter, Editing

1. Algebraic Theory of Automata, Akadémiai Kiadó, Budapest, 1972 (with I.
Peák).

2. Tree Automata, Akadémiai Kiadó, Budapest, 1984 (with M. Steinby).

3. Products of Automata, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo,
1986.

4. Fundamentals of Computation Theory, Proceedings of the 1981 International
FCT Conference, Szeged, Hungary, Springer Lecture Notes in Computer Sci-
ence, Volume 117 (Editor).

5. Fundamentals of Computation Theory, Proceedings of the 1989 International
FCT Conference, Szeged, Hungary, Springer Lecture Notes in Computer Sci-
ence, Volume 380 (Editor with J. Csirik and J. Demetrovics).

6. Automata, Languages and Programming, 22nd International Colloquium,
ICALP95, Szeged, Hungary, July 1995, Proceedings, Springer Lecture Notes
in Computer Science (Editor with Z. Fülöp).

7. Tree languages, in: Handbook of Formal Languages, vol. 3, Springer-Verlag,
Berlin-Heidelberg-New York-Tokyo, 1996, 1-69 (with M. Steinby).

Papers

1. Schreier extensions of multi-operator Q-groups (in Russian), Acta Sci. Math.,
23 (1962), 58-63.

2. On some classes of semimoduls and moduls (in Russian), Acta Sci. Math.,
24 (1963), 165-172.

3. On products of ordered automata I (in Russian), Acta Sci. Math., 24 (1963),
244-250.

4. On products of ordered automata II (in Russian), Acta Sci. Math., 25 (1964),
124-128.

209

210

5. On the mathematical theory of automata (in Hungarian). Year Book of
MTESZ Szeged, 1964, 45-63 (with I. Peak).

6. Automata with isomorphic semigroups (in Russian), Acta Sci. Math., 26
(1965), 43-47 (with I. Peak).

7. On loop-free compositions of automata (in Russian), Acta Sci. Math., 26
(1965), 264-272.

8. On the groups of one-to-one mappings defined by finite automata (in Rus-
sian), Kibernetika (Kiev), 1965 № 1 , 37.

9. On the groups of automaton permutations (in Russian), Kibernetika (Kiev),
1965 N-5 , 14-17 (with B. Csákány).

10. Algebraic theory of automata (in Hungarian), Mat. Lapok, 17 (1966), 77-134
(with I. Peák).

11. On R-products of automata I, Studia Sci. Math. Hungar., 1 (1966), 437-448.

12. On R-products of automata II, Studi Sci. Math. Hungar., 1 (1966), 443-447.

13. On R-products of automata III, Studia Sci. Math. Hungar., 2 (1967), 163-
166.

14. On the family of automaton mappings (in Russian), Acta Sci. Math., 28
(1967), 39-54.

15. On many-tact automata (in Russian), Acta Sci. Math., 28 (1967), 55-63.

16. Complete systems of automata, Proceedings of the 2nd Czechoslovak Confer-
ence on Automata Theory, Brno, 1968, 59-62.

17. Metrically complete systems of automata (in Russian), Kibernetika (Kiev),
1968 № 3 , 96-101.

18. On complete systems of automata, Acta Sci. Math., 30 (1969), 295-300.

19. On certain classes of E-structures, Acta Sci. Math., 31 (1970), 191-195.

20. On equational classes of unoids, Acta Sci. Math., 34 (1973), 99-101 (with S.
Székely).

21. Model theoretical methods in the theory of automata, Proceedings of the
Symposium on Mathematical Foundations of Computer Science, High Tatras,
1973, 57-63.

22. Fundamentals of automata theory (in Hungarian), Természet Világa, 104
(1973), 232-238.

23. On subdirect representation of finite commutative unoids, Acta Sci. Math.,
36 (1974), 33-38.

211

24. Composition of automata, Proceedings of the 2nd Colloquium on Automata,
Languages and Programming, Saarbrücken, 1974, Springer Lecture Notes in
Computer Science, Volume 14, 351-363.

25. On loop-free composition of commutative automata, Proceedings of the Sym-
posium on Discrete Systems, Riga, 1974, 128-137.

26. Isomorphic representation of automata, Proceedings of the 4th Symposium
on Mathematical Foundations of Computer Science, Marianske Lazne, 1975,
Springer Lecture Notes in Computer Science, Volume 32, 226-230.

27. Representation of automaton mappings in finite length, Acta Cybernet,., 2
(1976), 285-289.

28. On products of abstract automata, Acta Sei. Math., 38 (1976), 21-43.

29. On representation of trees and context-free languages by tree automata,
Found. Control Engrg., 1 (1976), 161-168 (with Gy. Horváth).

30. Universal algebras and tree automata, Fundamentals of Computation Theory,
Proc. 1977 International FCT Conference, Poznan-Kornik, Springer Lecture
Notes in Computer Science, Volume 53, 98-112.

31. Algebra and logic in theoretical computer science, Mathematical Foundations
of Computer Science, Proc. 6th Symp., Tatranská Lomnica 1977, Springer
Lecture Notes in Computer Science, Volume 54, 78-92 (with P. Tóth).

32. Minimal ascending tree automata, Acta Cybernet., 4 (1978), 37-44 (with M.
Steinby).

33. Algebraic theory of tree automata I (in Hungarian), Mat. Lapok, 26 (1975),
169-207 (with M. Steinby).

34. Algebraic theory of tree automata II (in Hungarian), Mat. Lapok, 27 (1976-
1979), 283-336 (with M. Steinby).

35. On the periodic sum of finite automata, Found. Control Engrg., 5 (1980),
229-231 (with B. Imreh).

36. Tree transformations preserving recognizability, in: Finite Algebra and
Multiple-Valued Logic, Szeged, 1979, Coll. Math. Soc. J. Bolyai, Volume
28, North-Holland P.C., 1981, 251-273.

37. On complete systems of tree automata, Conference on System Theoretical
Aspects in Computer Science, Salgótarján, 1982, 103-111.

38. On a representation of deterministic frontier-to-root tree transformations,
Acta Sei. Math., 45 (1983), 177-187.

39. On a representation of deterministic uniform root-to-frontier tree transforma-
tions, Acta Cybernet., 6 (1983), 173-180.

40. General products and equational classes of automata. Acta Cybernet., 6
(1983). 281-284 (with Z. Ésik).

41. Products of automata, Proceedings of the Summer School on Applications of
Mathematics in Techniques. Varna, 1984. 5-14.

42. Finite representations and infinite products, Papers on Automata Theory,
1984-2, 55-63.

43. Metric representations by ¡/¿-products, Acta Cybernet., 7 (1985), 203-209.

44. On ¡/¿-products of commutative automata, Acta Cybernet., 7 (1985), 55-59.

45. Metric equivalence of tree automata, Acta Sci. Math., 48 (1985), 163-171.

46. Type-independent equational classes and metric equivalence of tree automata,
Fund. Inform., 9 (1986), 205-216 (with Z. Ésik).

47. On «¿-products of automata. Homomorphic representation, in: Algebra,
Combinatorics and Logic in Computer Science, Győr, 1983, Coll. Math. Soc.
J. Bolyai, Volume 42, North-Holland P.C., 1986, 403-421.

48. Homomorphic realization of automata with composition, Proc. Symp. on
Mathematical Foundations of Computer Science, Bratislava, 1986, Springer
Lecture Notes in Computer Science, Volume 233, 299-307 (with P. Dömösi,
Z. Esik, and J. Virágh).

49. On Q0-products and (^-products, Theoret. Comput. Sci., 48 (1986) 1-8 (with
Z. Ésik).

50. On metric equivalence of ¡/¿-products, Acta Cybernet., 8 (1987), 129-134 (with
B. Imreh).

51. On aj-products of tree automata, Acta Cybernet., 8 (1987), 135-141 (with B.
Imreh).

52. On a representation of tree automata, Theoret. Comput. Sci., 53 (1987),
243-255 (with Z. Ésik).

53. A comparison of «¿-products and ¡/¿-products, Found. Control Engrg., 12
(1987), 3-9 (with B. Imreh).

54. Automata over algebras with dimension, Proceedings of the East European
Category Seminar, Predele, 1987, 11 (with H. Jürgensen).

55. Characterizations of locally transitive semiautomata, Papers on Automata
Theory, 1987-2, 1-8 (with G. Thierrin).

56. On a special class of tree automata, 2nd Conf. on Automata, Languages and
Programming Systems, 1988. 141-152 (with B. Imreh).

213

57. The role of theory in computer science, EATCS Bulletin, Number 30, 1988,
295-297.

58. A decidability result for homomorphic representation of automata by ao-
products, Acta Math. Hungar., 53 (1-2) (1989) 205-212 (with Z. Esik).

59. On star products of automata, Acta Cybernet., 9 (1989), 167-172 (with B.
Imreh).

60. Simulation by -products of automata, Publ. Math., 36 (1989), 51-56 (with
P. Domosi).

61. Automata represented by products of soliton automata, Theoret. Comput.
Sci., 74 (1990), 163-181 (with H. Jurgensen).

62. On ao — v\-products of automata, Theoret. Comput. Sci., 80 (1991), 35-51
(with H. Jurgensen).

63. Simulation and representation by ^-products of automata, Publ. Math., 40
(1992), 75-83 (with P. Domosi).

64. A note on isomorphically complete systems, Discrete Appl. Math., 36 (1992),
307-311 (with B. Imreh).

65. Algebras with dimension, Algebra Universalis, 30 (1993), 422-446 (with H.
Jurgensen).

66. On finite isomorphically complete systems of tree automata, Acta Sci. Math.,
57 (1993), 497-502 (with B. Imreh).

67. On homomorphic representations by products of tree automata, Results and
Trends in Theoretical Computer Science, Proc. Symp., Graz 1994, Springer
Lecture Notes in Computer Science, Volume 812, 131-139.

68. On completeness of nondeterministic automata, Acta Math. Hungar., 68
(1995), 151-159 (with B. Imreh).

69. On the cube-product of nondeterministic automata, Acta Sci. Math., 60
(1995), 321-327 (with B. Imreh).

70. On two classes of formal languages (in Hungarian), Polygon, 5 1995, 1-13.

71. Dependence in algebras, Fund. Inform., 25 (1996), 247-256 (with H.
Jurgensen).

72. On complete sets of tree automata, Proceedings of the 3rd International Con-
ference Developments in Language Theory, Thessaloniki, July 20-23, 1997,
37-47 (with B. Imreh).

73. On the existence of finite isomorphically complete systems, J. Aut. Lang,
and Comb., to appear (with B. Imreh and A. Pluhar).

214

74. On quasi=products of tree automata, Discrete Appl. Math., (submitted for
publication).

75. On some classes of tree automata and tree languages, Ann. Acad. Sci. Fenn.
Math., (submitted for publication).

CONTENTS

A. Ádám: On Some Cyclic Connectivity Properties of Directed Graphs
(Examples and Problems) 1

J. Csirik, J.B.G. Frenk, M. Labbé, S. Zhang:
Two simple algorithms for bin covering 13

János Demetrovics, Attila Pethő, Lajos Rónyai:
On ±l-representations of integers 27

Pál Dömösi, Chrystopher L. Nehaniv: Complete Finite Automata Network
Graphs with Minimal Number of Edges 37

Joost Engelfriet, Hendrik Jan Hoogeboom, Jan-Pascal Van Best:
Trips on Trees 51

Z. Esik: Axiomatizing iteration categories 65
Zoltán Fülöp, Eija Jurvanen, Magnus Steinby, Sándor Vágvölgyi:

On One-Pass Term Rewriting 83
Balázs Imreh, Masami Ito: A note on the star-product 99
B. Imreh, M. Steinby: Directable nondeterministic automata 105
H. Jürgensen: Syntactic Monoids of Codes 117
Werner Kuich: Tree Transducers and Formal Tree Series 135
Carlos Martin-Vide, Gheorghe Paun: Duplication Grammars 151
Victor Mitrana, Grzegorz Rozenberg:

Some Properties of Duplication Grammars 165
Arto Salomaa: Watson-Crick Walks and Roads on DOL Graphs 179
Kai Salomaa, Sheng Yu: Generalized fairness and context-free languages 193
Curriculum Vitae of Ferenc Gécseg .' _ 205
List of Publications by Ferenc Gécseg 209

Sponsored by S Y S D A T A Ltd.

ISSN 0324—721 X

Felelős szerkesztő és kiadó: Csirik János
A kézirat a nyomdába érkezett: 1999. február

Terjedelem: 13,7 (B/5) ív

