23,869 research outputs found

    On short time existence for the planar network flow

    Get PDF
    We prove the existence of the flow by curvature of regular planar networks starting from an initial network which is non-regular. The proof relies on a monotonicity formula for expanding solutions and a local regularity result for the network flow in the spirit of B. White's local regularity theorem for mean curvature flow. We also show a pseudolocality theorem for mean curvature flow in any codimension, assuming only that the initial submanifold can be locally written as a graph with sufficiently small Lipschitz constant.Comment: Final version, to appear in Journal of Differential Geometry. 51 page

    Anisotropic Radial Layout for Visualizing Centrality and Structure in Graphs

    Full text link
    This paper presents a novel method for layout of undirected graphs, where nodes (vertices) are constrained to lie on a set of nested, simple, closed curves. Such a layout is useful to simultaneously display the structural centrality and vertex distance information for graphs in many domains, including social networks. Closed curves are a more general constraint than the previously proposed circles, and afford our method more flexibility to preserve vertex relationships compared to existing radial layout methods. The proposed approach modifies the multidimensional scaling (MDS) stress to include the estimation of a vertex depth or centrality field as well as a term that penalizes discord between structural centrality of vertices and their alignment with this carefully estimated field. We also propose a visualization strategy for the proposed layout and demonstrate its effectiveness using three social network datasets.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Hierarchical characterization of complex networks

    Full text link
    While the majority of approaches to the characterization of complex networks has relied on measurements considering only the immediate neighborhood of each network node, valuable information about the network topological properties can be obtained by considering further neighborhoods. The current work discusses on how the concepts of hierarchical node degree and hierarchical clustering coefficient (introduced in cond-mat/0408076), complemented by new hierarchical measurements, can be used in order to obtain a powerful set of topological features of complex networks. The interpretation of such measurements is discussed, including an analytical study of the hierarchical node degree for random networks, and the potential of the suggested measurements for the characterization of complex networks is illustrated with respect to simulations of random, scale-free and regular network models as well as real data (airports, proteins and word associations). The enhanced characterization of the connectivity provided by the set of hierarchical measurements also allows the use of agglomerative clustering methods in order to obtain taxonomies of relationships between nodes in a network, a possibility which is also illustrated in the current article.Comment: 19 pages, 23 figure

    Multi-layer local optima networks for the analysis of advanced local search-based algorithms

    Full text link
    A Local Optima Network (LON) is a graph model that compresses the fitness landscape of a particular combinatorial optimization problem based on a specific neighborhood operator and a local search algorithm. Determining which and how landscape features affect the effectiveness of search algorithms is relevant for both predicting their performance and improving the design process. This paper proposes the concept of multi-layer LONs as well as a methodology to explore these models aiming at extracting metrics for fitness landscape analysis. Constructing such models, extracting and analyzing their metrics are the preliminary steps into the direction of extending the study on single neighborhood operator heuristics to more sophisticated ones that use multiple operators. Therefore, in the present paper we investigate a twolayer LON obtained from instances of a combinatorial problem using bitflip and swap operators. First, we enumerate instances of NK-landscape model and use the hill climbing heuristic to build the corresponding LONs. Then, using LON metrics, we analyze how efficiently the search might be when combining both strategies. The experiments show promising results and demonstrate the ability of multi-layer LONs to provide useful information that could be used for in metaheuristics based on multiple operators such as Variable Neighborhood Search.Comment: Accepted in GECCO202

    Robustness surfaces of complex networks

    Get PDF
    Despite the robustness of complex networks has been extensively studied in the last decade, there still lacks a unifying framework able to embrace all the proposed metrics. In the literature there are two open issues related to this gap: (a) how to dimension several metrics to allow their summation and (b) how to weight each of the metrics. In this work we propose a solution for the two aforementioned problems by defining the RR^*-value and introducing the concept of \emph{robustness surface} (Ω\Omega). The rationale of our proposal is to make use of Principal Component Analysis (PCA). We firstly adjust to 1 the initial robustness of a network. Secondly, we find the most informative robustness metric under a specific failure scenario. Then, we repeat the process for several percentage of failures and different realizations of the failure process. Lastly, we join these values to form the robustness surface, which allows the visual assessment of network robustness variability. Results show that a network presents different robustness surfaces (i.e., dissimilar shapes) depending on the failure scenario and the set of metrics. In addition, the robustness surface allows the robustness of different networks to be compared.Comment: submitted to Scientific Report

    EEG sleep stages identification based on weighted undirected complex networks

    Get PDF
    Sleep scoring is important in sleep research because any errors in the scoring of the patient's sleep electroencephalography (EEG) recordings can cause serious problems such as incorrect diagnosis, medication errors, and misinterpretations of patient's EEG recordings. The aim of this research is to develop a new automatic method for EEG sleep stages classification based on a statistical model and weighted brain networks. Methods each EEG segment is partitioned into a number of blocks using a sliding window technique. A set of statistical features are extracted from each block. As a result, a vector of features is obtained to represent each EEG segment. Then, the vector of features is mapped into a weighted undirected network. Different structural and spectral attributes of the networks are extracted and forwarded to a least square support vector machine (LS-SVM) classifier. At the same time the network's attributes are also thoroughly investigated. It is found that the network's characteristics vary with their sleep stages. Each sleep stage is best represented using the key features of their networks. Results In this paper, the proposed method is evaluated using two datasets acquired from different channels of EEG (Pz-Oz and C3-A2) according to the R&K and the AASM without pre-processing the original EEG data. The obtained results by the LS-SVM are compared with those by Naïve, k-nearest and a multi-class-SVM. The proposed method is also compared with other benchmark sleep stages classification methods. The comparison results demonstrate that the proposed method has an advantage in scoring sleep stages based on single channel EEG signals. Conclusions An average accuracy of 96.74% is obtained with the C3-A2 channel according to the AASM standard, and 96% with the Pz-Oz channel based on the R&K standard
    corecore