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Despite the robustness of complex networks has been extensively studied in the last decade, there still lacks a
unifying framework able to embrace all the proposed metrics. In the literature there are two open issues
related to this gap: (a) how to dimension several metrics to allow their summation and (b) how to weight
each of the metrics. In this work we propose a solution for the two aforementioned problems by defining the
R*-value and introducing the concept of robustness surface (V). The rationale of our proposal is to make use
of Principal Component Analysis (PCA). We firstly adjust to 1 the initial robustness of a network. Secondly,
we find the most informative robustness metric under a specific failure scenario. Then, we repeat the process
for several percentage of failures and different realizations of the failure process. Lastly, we join these values
to form the robustness surface, which allows the visual assessment of network robustness variability. Results
show that a network presents different robustness surfaces (i.e., dissimilar shapes) depending on the failure
scenario and the set of metrics. In addition, the robustness surface allows the robustness of different
networks to be compared.

T
he study of complex networks has attracted significant attention in the past decade. Critical infrastructures
such as power grids, telecommunication networks or transportation networks, among others, are complex
networks which are omnipresent and play a pivotal role in ensuring the smooth functioning of modern day

living. These networks have to constantly deal with failures of their components, hence, any disruption of the
service provided might have a considerable impact upon sizable proportions of the world’s inhabitants. Thus,
understanding not only the structure, but also the dynamics of such networks is of paramount importance.

Failures can be classified as being either random (i.e., accidental) or intentional (also referred to as targeted or
deliberated)1,2. Accidental failures occur as a result of random actions on network elements (e.g., human-made
errors or natural disasters). In contrast, in intentional attacks components are chosen according to some criterion
in order to maximize the impact of the failures (e.g., a Denial-of-Service (DoS) attack). We define a failure scenario
as the pair given by a specific type of failure (e.g., node or link) and a given attack strategy (e.g., random or
intentional).

For network engineers and operators it is crucial to quantify the tolerance of a network to a given failure
scenario. Robustness is defined as the ability of a network to maintain its total throughput under node or link
removal3,4.

Robustness metrics have been evolving since the advent of network science. Initially, several works studied the
robustness of complex networks by considering a single graph metric: efficiency5, average shortest-path length6,7,
diameter8, clustering coefficient6,9, node and link connectivity10, heterogeneity11, two-terminal reliability12, assor-
tativity13, betweenness centrality14, among others. Later on, new metrics were proposed in order to capture
advanced characteristics (i.e., by means of spectral graph theory): symmetry ratio15, algebraic connectivity16 or
spectral radius17. Furthermore, other works presented more contemporary metrics which were based on classical
graph features. For instance, the authors of18 studied the robustness in terms of flow diversity, a metric based on
the shortest-path length. More recently, generic procedures to capture the robustness of a network for the whole
spectrum of possible failures have been presented. Metrics such as elasticity3 or endurance2 quantify the robust-
ness of a network according to a single throughput parameter. Trajanovski et al., have proposed a framework to
evaluate the robustness of complex networks, which is based on the generic metric R-value19. From now on, we
will use the conventions defined in Table 1. According to20, the R-value is denoted by:

R~
Xn

k~1

sktk ð1Þ

where s and t are n 3 1 weight and graph metric vectors, respectively, and n is the number of robustness metrics.
Thus, the R-value includes several graph metrics characterizing network robustness. However, there are two open
issues related to the normalization of the t metrics:

OPEN

SUBJECT AREAS:
APPLIED MATHEMATICS

PHASE TRANSITIONS AND
CRITICAL PHENOMENA

COMPUTER SCIENCE

COMPLEX NETWORKS

Received
10 April 2014

Accepted
22 July 2014

Published
2 September 2014

Correspondence and
requests for materials

should be addressed to
M.M. (mmanzano@

eia.udg.edu)

SCIENTIFIC REPORTS | 4 : 6133 | DOI: 10.1038/srep06133 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by K-State Research Exchange

https://core.ac.uk/display/33354591?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:mmanzano@eia.udg.edu
mailto:mmanzano@eia.udg.edu


1. How to unify the dimensionality of each robustness metric of
vector t in order to legitimate their summation.

2. How to define the weight of each metric to optimally extract the
most significant information.

In this work we propose a solution for the two aforementioned
problems by defining the R*-value and introducing the concept of
robustness surface (V). The former extracts the most informative
robustness metric for a failure scenario, while the latter allows net-
work robustness variations of different networks to be visually
assessed, regardless of the failure scenario.

Results
R*-value. The rationale of our proposal is to make use of Principal
Component Analysis (PCA) (see Methods). Given a set of robustness
metrics t, we first define the initial robustness as follows:

R�init~
Xn

k~1

v̂kt0
k~1 ð2Þ

where t0 is the set of metrics when no failures occur, and v̂ is a
normalized eigenvector or Principal Component (PC). We obtain
v̂ from the procedure that computes the robustness surface (see
following subsection and Eq. 4). The fact that v̂ is normalized
makes R�init equal to 1. Additionally, R* can be computed when p%
of elements fail as denoted next:

R�p~
Xn

k~1

v̂ktp
k ð3Þ

where tp
k is the set of metrics computed when p% of failures occur. R�p

takes values in the interval [0, 1‘).
The difference between R* and R (Eq. 1) is that in our proposal the

principal component v̂ gives dimension and non-arbitrary weights to
each of the metrics. In addition, besides finding the most informative
robustness metric, we adjust the initial robustness to 1, thus simpli-
fying the comparison of network robustness variations when failures
occur.

Robustness surface (V). The robustness surface allows the network
performance variability for a given failure scenario to be visually
assessed.

In fact, V is a matrix where the rows are the percentage of failures
(P) and the columns are the distinct failure configurations (m). The
list of percentage of failures P (e.g., P 5 {1%, 2%..100%}) denotes the
range of failures for which the robustness is evaluated. A failure
configuration represents a realization of the failure process. The dif-
ferent failure configurations m depict the different subsets of ele-
ments that fail for a given percentage of failures, with each subset
being distinct from one another. The robustness value in V[p][i],
where p g {1%..jPj%} and i g {1..m}, is given by R�p (Eq. 3).

To obtain the robustness surface of a network given a failure
scenario (e.g., node and random), we define the following procedure:

1. Let Ap be an m 3 n matrix where p g {1%..jPj%} is the per-
centage of failure. The goal is to transform Ap into a smaller
data set, i.e., a vector vp of size m, while preserving the most
significant information. Therefore, we define vp as a vector of
size m 3 1. vp contains the set of m values R�p computed when
p% of elements fail.

2. To do so, we first compute the covariance matrix Cp of each
matrix Ap. Then, we average the jPj covariance matrices to
obtain a unique matrix �C. This allows us to obtain a PC inde-
pendent of p.

3. We calculate the eigenvectors V and the eigenvalues D of �C. At
this point, the l most relevant eigenvectors of V are taken as the
principal components for each matrix Ap (see Methods for
further details). Hereafter we assume that l 5 1, i.e., v is the
eigenvector PC.

4. Then, we obtain v̂ by normalizing v:

v̂j~
vjP

n
k~1 t0

k vk
j [ 1::nf g ð4Þ

5. By multiplying the principal component v̂ by each row of Ap we
obtain a vector vp of size m. Each value of vp is, indeed, R�p .
Next, by iterating this procedure for all matrices Ap, we obtain a
set of jPj vectors vp. Finally, we define v’p as a vector vp sorted
in decreasing order. Consequently, the robustness surface is
given by the following expression V~ v’1%, . . . ,v’jPj%

� �
.

Although different failure scenarios (e.g, link random and link by
betweenness centrality) provide different v̂, each of them satisfies Eq.
2 because v̂ is normalized (as shown in Eq. 4).

Case study. Here, we illustrate the suitability of our proposal for
evaluating the robustness when considering several metrics. To do
so, we study two real critical infrastructures: the Spanish railway
network (sprailway)21 and the European power grid network
(europg)22.

We consider incremental and irreversible random and targeted
attacks (e.g., betweenness centrality (BC) or node degree). Link and
node failures are considered for the sprailway and europg, respect-
ively, to show that the robustness surface allows us to compare net-
work robustness independently from the failure scenario. Link
failures are caused randomly and by link BC, whereas node failures
are caused randomly, by node degree, the clustering coefficient and
node BC. In both cases, jPj is set to 70, i.e., from 1% to 70% of failures.
The presented results are obtained for 500 and 100 runs (m) for
random and targeted attacks, respectively. For each of the runs, a
different realization of the failure process is considered, i.e., a distinct
subset of elements that fail according to the failure scenario.

We consider the following metrics: the largest connected compon-
ent (LCC), the degree of fragmentation as a function of the number of
connected components (only applicable to link failures), the average
nodal degree, the two-terminal reliability, the average clustering

Table 1 | Definition of the variables

Variable Meaning

n number of robustness metrics
R R-value [20]
s vector of weights (size n 3 1)
t vector of metrics (size n 3 1)
m failure configurations, i.e., different realizations of the

failure process
R* R-value computed via Principal Components (PC)
t 0 vector of metrics without failures (size n 3 1)
R�init initial R*-value (without failures)
v eigenvector PC (size n 3 1)
v̂ normalized eigenvector PC (size n 3 1)
P set of percentage of failures
p percentage of failures (p g P)
t p vector of metrics when p% of elements fail
R�p R-value when p% of elements fail
Ap m 3 n matrix, i.e., m values for each of the n metrics when

p% of elements fail
vp vector of R�p values (size m 3 1)
v’p vector vp sorted in decreasing order
Cp covariance matrix of Ap (size n 3 n)
�C average of the | P | covariance matrices (size n 3 n)
V matrix containing n eigenvectors v
D diagonal matrix with eigenvalues (size n 3 n)
l number of most relevant eigenvector
V robustness surface, i.e., | P | vectors v’p
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coefficient, the average shortest-path length, the diameter, the aver-
age node BC, the average link BC and the algebraic connectivity.
Therefore, link failures have n 5 10 while node failures have n 5 9.

Table 2 presents the main characteristics of the two networks
considered. Although both networks have a different number of
nodes and links, they show a similar average node degree Ækæ, which
is between 2 and 3. However, europg has a higher node maximum
degree, what means that such a network is more vulnerable to tar-
geted attacks. The average shortest-path length Ælæ depicts that europg
is about two times wider than sprailway. Finally, both networks have
a negative value of assortativity (r), which means that nodes of dis-
similar degrees are connected to each other.

Numerical results. The results of our work are presented in Figures 1
and 2. The x-axes show the different failure configurations for which
the n metrics have been computed. The y-axes depict the range of
percentage of failures (from 1% to 70%). At each coordinate (x,y), i.e.,
for each percentage of failures and for each subset of elements that
fail, the R�p-value is shown. In each figure the range of colors expresses
variability, with dark blue and dark red being the two extremes of
each failure scenario intervals. Since R�init~1, i.e., the initial
robustness is set to 1 regardless of the set of n chosen metrics, our
results allow a visual assessment of the robustness variation with
respect to the initial conditions. The further the value of R�p is with
respect to R�init , the lower the performance of the network is. When R�p
is close to 0, the performance is considered to be totally deteriorated.
Moreover, it is possible to observe R�p~1 when p $ 1%, and the LCC
of the network has similar properties to the initial network (without
failures).

Figure 1 presents the robustness surface V of sprailway in the case
of random (a) and link BC failures (b). Interestingly, the random case
provides a smooth surface, while the targeted case presents abrupt
slopes. The latter is worth noting, because the presence of abrupt

slopes in the robustness surface means that there are network ele-
ments (in this case, links) that could be protected in order to improve
the overall network robustness.

In the case of europg, Fig. 2 depicts four robustness surfaces under
different node failure scenarios. Similar to sprailway, the random
surface in Fig. 2a depicts a regular behavior. In addition, the tar-
geted-based cases depict rough surfaces. While Figs. 2b and 2c depict
that europg is not robust under node degree or node BC failure
scenarios, Fig. 2d shows that the network keeps the initial robustness
until more than 30% of the nodes have failed. This implies that
europg is significantly more robust under failures by the clustering
coefficient than by other targeted strategies.

For some failure configurations, it is worth noting that R�p might
increase at some percentage of failures with respect to R�init , as
observed in 10% or 20% of failures in Fig. 1a and in 20% or 30% in
Fig. 2a, as well as in the targeted-based surfaces. This result should
not be misleading because it totally depends on the set of metrics that
are being considered for the study. For instance, while some metrics
might decrease as the percentage of failures increases, others might
alternate increments and decrements because they depend on the
number and size of largest connected components (i.e., average
shortest-path length, diameter, algebraic connectivity, etc.). There-
fore, the suitability of the robustness surface remains intact, because
the variability of the robustness can be assessed in any case.

Finally, to compare the robustness surfaces of both networks, and
considering the different failure scenarios, we average the values of
each v’p of V. Thus, for each network and failure scenario, we obtain
jPj �R�p-values. Fig. 3 depicts a summary of the results. Fig. 3a shows

the curves of �R�p of both networks from 1% to 70% of failures. To
complement the results in Fig. 3a, the variance is presented in Fig. 3b.
For instance, it can be observed that both random failure scenarios
show similar behaviors, although for europg the top of the curve is
around 24% of failures. Therefore, our approach allows us to com-

Table 2 | Main network characteristics. The table displays, from left to right, topology name, number of nodes (N), number of links (L),
average node degree 6 standard deviation (StDev) (Ækæ), maximum degree (kmax), average shortest-path length 6 StDev (Ælæ) and
assortativity (r)

topology N L Ækæ 6 StDev kmax Ælæ 6 StDev r

sprailway 169 190 2.24 6 1.09 8 10.49 6 4.64 20.269
europg 1,494 2,154 2.88 6 1.75 13 18.88 6 8.73 20.119

Figure 1 | Robustness surface V of sprailway when causing links to fail randomly and by link BC.
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pare different networks, regardless of the failure scenarios. This com-
parison could be done numerically, for instance, by comparing the
areas below the curves.

Discussion
In this work we present the R*-value and the concept of robustness
surface (V). The rationale of our proposal is to make use of Principal
Component Analysis (PCA).

The R*-value solves two open issues in the robustness of com-
plex networks field. Our proposal extracts the most significant
information from a set of robustness metrics. R* is the first generic
metric able to characterize the robustness of complex networks
with a single value, while taking into account several robustness
metrics.

The robustness surface V provides a framework to visually assess
the network robustness variability. Moreover, it allows for the com-
parison of the robustness between different networks under distinct
failure scenarios. To the best of our knowledge, it is the first method
of its kind to allow the visual evaluation of the network robustness for
a specific failure scenario, while at the same time considering several
robustness metrics.

Robustness surfaces are designed as a visual monitoring tool. First,
our approach is applicable to real-time monitoring of a network
through a single value, when it is otherwise implemented according
to multiplicity of correlated metrics with possible inherent redund-
ancy. Second, V can be a pivotal part of a network robustness refine-
ment process:

Step 1: If the robustness surface presents abrupt slopes, then there
are network elements (nodes or links) which are weaker
than the rest, for a given failure scenario. These elements
could be identified by means of traditional robustness met-
rics such as the betweenness centrality.

Step 2: Enhance or protect the weak elements, for instance, by
adding new links or applying immunization techniques.

Step 3: Re-evaluate the robustness of a network and, instead of
comparing a large number of robustness metrics, detect
through visual inspection if the network robustness has
been improved.

We believe that the contributions presented in this work will lay a
firm foundation for future research on the robustness of complex
networks.

Figure 2 | Robustness surface V of europg when causing nodes to fail randomly, by node BC, by node degree and by the clustering coefficient.
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To conclude, the R*-value shows that there is no single and uni-
versal robustness metric for a network. Instead, the robustness varies
according to the failure scenario and the metrics that are used to
quantify the performance of the network.

For future work, we plan to study the stability of the robustness
surfaces with respect to network size scaling.

Methods
Principal Component Analysis (PCA). PCA is a powerful tool to identify the most
significant information in a data table representing observations described by several
dependent variables, which can be inherently correlated. The goals of the PCA are to:
(a) extract the main information of a data set and express it by means of new
orthogonal variables called principal components; and (b) compress the size of the
data set while preserving the most important information23.

Let A be a data set of m observations of a vector-valued variable, i.e., A g Rm3n. We
define C as the covariance matrix of A, which is denoted by:

Cn|n~ ci,j,ci,j~cov colAi ,colAj

� �� �
ð5Þ

where i, j g {1..n}, and cov colAi ,colAj

� �
is the covariance function evaluating column i

and column j.
PCA works with the spectrum of C. Let vi g Rn31{i g 1..n} and li g R be the

eigenvectors and corresponding eigenvalues of the covariance matrix C, respectively.
The matrix V with all vi as columns represents the principal components, and pro-
vides an orthogonal transformation to the PC space. Furthermore, we denote D as a
matrix with the eigenvalues in its diagonal.

Let ~V be n 3 l matrix, which only contains the top l of the most important principal
components (see Methods: Most relevant principal components of A for further
details). Therefore, we can obtain the transformed data v~A ~V .

In our problem, each failure has a covariance matrix Cp, where p is the percentage of
failure. We perform the PCA on �C~ Cpdp, in order to obtain the PC independent of
p.

Most relevant principal components of A. In order to choose the l most relevant
principal components, matrices V (eigenvectors) and D (eigenvalues) must be
column-sorted in decreasing order, according to the eigenvalues in the diagonal of D.
The importance of each eigenvector is characterized by its energy quantum g. The
eigenvalues represent the distribution of the energy of A among each of the
eigenvectors. The energy quantum for the jth eigenvector is the sum of the energy
quantum across all eigenvalues from 1 to j:

g j½ �~
Xj

k~i

D k½ � k½ � j~1::n : ð6Þ

Let ~V be an n 3 l, where l # n matrix that contains the most relevant eigenvectors.
Then, the objective is to choose an l value as low as possible while preserving a
reasonable high value of g on a percentage basis. For instance, we have chosen l so that
g is above a certain threshold a:

min l [ 1::n½ � : g l½ �
g n½ �§a

� �
ð7Þ

In this work we have considered a 5 0.9, from which we have obtained l 5 1.

Simulation details. The computation of each metric has been done with
PHISON24. The simulations were performed on a Linux system with a 16-core 64-
bit Intel Xeon processor of 2 Ghz and 64 GB of RAM. The presented results are
the average of 500 and 100 differently seeded simulation runs for random and
targeted failures, respectively. The figures have been plotted by means of the
pcolor function of MATLAB. In addition, the PCA has also been done with
MATLAB.
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