880 research outputs found

    False Analog Data Injection Attack Towards Topology Errors: Formulation and Feasibility Analysis

    Get PDF
    In this paper, we propose a class of false analog data injection attack that can misguide the system as if topology errors had occurred. By utilizing the measurement redundancy with respect to the state variables, the adversary who knows the system configuration is shown to be capable of computing the corresponding measurement value with the intentionally misguided topology. The attack is designed such that the state as well as residue distribution after state estimation will converge to those in the system with a topology error. It is shown that the attack can be launched even if the attacker is constrained to some specific meters. The attack is detrimental to the system since manipulation of analog data will lead to a forged digital topology status, and the state after the error is identified and modified will be significantly biased with the intended wrong topology. The feasibility of the proposed attack is demonstrated with an IEEE 14-bus system.Comment: 5 pages, 7 figures, Proc. of 2018 IEEE Power and Energy Society General Meetin

    Operational moving target defences for improved power system cyber-physical security

    Get PDF
    In this work, we examine how Moving Target Defences (MTDs) can be enhanced to circumvent intelligent false data injection (FDI) attacks against power systems. Initially, we show how, by implementing state-of-the-art topology learning techniques, we can commit full-knowledge-equivalent FDI attacks against static power systems with no prior system knowledge. We go on to explore how naive applications of topology change, as MTDs, can be countered by unsupervised learning-based FDI attacks and how MTDs can be combined with physical watermarking to enhance system resilience. A novel intelligent attack, which incorporates dimensionality reduction and density-based spatial clustering, is developed and shown to be effective in maintaining stealth in the presence of traditional MTD strategies. In resisting this new type of attack, a novel implementation of MTD is suggested. The implementation uses physical watermarking to drive detection of traditional and intelligent FDI attacks while remaining hidden to the attackers. Following this, we outline a cyber-physical authentication strategy for use against FDI attacks. An event-triggered MTD protocol is proposed at the physical layer to complement cyber-side enhancements. This protocol applies a distributed anomaly detection scheme based on Holt-Winters seasonal forecasting in combination with MTD implemented via inductance perturbation. To conclude, we developed a cyber-physical risk assessment framework for FDI attacks. Our assessment criteria combines a weighted graph model of the networks cyber vulnerabilities with a centralised residual-based assessment of the physical system with respect to MTD. This combined approach provides a cyber-physical assessment of FDI attacks which incorporates both the likelihood of intrusion and the prospect of an attacker making stealthy change once intruded.Open Acces

    Vector Auto-Regression-Based False Data Injection Attack Detection Method in Edge Computing Environment

    Get PDF
    With the wide application of advanced communication and information technology, false data injection attack (FDIA) has become one of the significant potential threats to the security of smart grid. Malicious attack detection is the primary task of defense. Therefore, this paper proposes a method of FDIA detection based on vector auto-regression (VAR), aiming to improve safe operation and reliable power supply in smart grid applications. The proposed method is characterized by incorporating with VAR model and measurement residual analysis based on infinite norm and 2-norm to achieve the FDIA detection under the edge computing architecture, where the VAR model is used to make a short-term prediction of FDIA, and the infinite norm and 2-norm are utilized to generate the classification detector. To assess the performance of the proposed method, we conducted experiments by the IEEE 14-bus system power grid model. The experimental results demonstrate that the method based on VAR model has a better detection of FDIA compared to the method based on auto-regressive (AR) model

    A Review on Application of Artificial Intelligence Techniques in Microgrids

    Get PDF
    A microgrid can be formed by the integration of different components such as loads, renewable/conventional units, and energy storage systems in a local area. Microgrids with the advantages of being flexible, environmentally friendly, and self-sufficient can improve the power system performance metrics such as resiliency and reliability. However, design and implementation of microgrids are always faced with different challenges considering the uncertainties associated with loads and renewable energy resources (RERs), sudden load variations, energy management of several energy resources, etc. Therefore, it is required to employ such rapid and accurate methods, as artificial intelligence (AI) techniques, to address these challenges and improve the MG's efficiency, stability, security, and reliability. Utilization of AI helps to develop systems as intelligent as humans to learn, decide, and solve problems. This paper presents a review on different applications of AI-based techniques in microgrids such as energy management, load and generation forecasting, protection, power electronics control, and cyber security. Different AI tasks such as regression and classification in microgrids are discussed using methods including machine learning, artificial neural networks, fuzzy logic, support vector machines, etc. The advantages, limitation, and future trends of AI applications in microgrids are discussed.©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed

    Detecting False Data Injection Attacks Against Power System State Estimation with Fast Go-Decomposition Approach

    Get PDF

    A Deep Learning based Detection Method for Combined Integrity-Availability Cyber Attacks in Power System

    Full text link
    As one of the largest and most complex systems on earth, power grid (PG) operation and control have stepped forward as a compound analysis on both physical and cyber layers which makes it vulnerable to assaults from economic and security considerations. A new type of attack, namely as combined data Integrity-Availability attack, has been recently proposed, where the attackers can simultaneously manipulate and blind some measurements on SCADA system to mislead the control operation and keep stealthy. Compared with traditional FDIAs, this combined attack can further complicate and vitiate the model-based detection mechanism. To detect such attack, this paper proposes a novel random denoising LSTM-AE (LSTMRDAE) framework, where the spatial-temporal correlations of measurements can be explicitly captured and the unavailable data is countered by the random dropout layer. The proposed algorithm is evaluated and the performance is verified on a standard IEEE 118-bus system under various unseen attack attempts

    Model Predictive Control for Mitigating Sensor Attacks on Multilevel Inverters

    Get PDF
    Nowadays, multilevel power inverters have become a hot research topic which are being widely used in smart grids. They are also driving devices for conveyors, compressors, motors, and can enable uninterruptible power supply for critical loads such as database centers or telecommunications base stations. In the future, smart grids will play an important role to achieve higher efficiency, smarter control and better performance. Such an ambitious goal can only be achieved by inverters with higher voltage and power levels. The smart grids are the typical cyber-physical systems that is composed of physical processes and computation units combined by sensors, actuators, and communication devices. The smart grids are apt to errors and vicious attacks on their physical construction leading to considerable damage, such as false data injection (FDI), denial of service (DOS). The vicious data injection can effectively bypass the detection of system and cause serious effects on the grid. In recent years, some advanced control approaches have been proposed to perform inverter current control. Among them, model predictive control (MPC) is a promising one that makes use of explicit system models to predict its future response and optimize system performance. It has unique advantages that can accurately forecast the future response of the system and have fast response. However, the effectiveness and the accuracy of the conventional MPC rely on whether the system model is accurate. Uncertainty and false data injection in the system model sometimes lead to unresponsive or even unstable control systems. Conventional MPC is hard to keep the system stable when the uncertainty and malicious attack happen. In existing studies, although various attacks have been investigated, the undetectable false data injection aiming at the inverter system was rarely studied. In the thesis, the model of the cascaded H-bridge inverter is established and conventional MPC to achieve load current control is applied. It shows great performance to achieve load current control and has fast dynamic control. Then considering various attack signals such as step attack signals, pulse attack signals to the sensors in the system, the conventional MPC loses the ability to achieve a stable and effective current control. According to simulation results, Kalman Filter model is built which can filter some Gaussian noises from the sensors in the system. Then from the perspective of attacker, a special FDI attack is designed that can effectively bypass the Kalman Filter. For the system that targeted by the FDI and DOS attack, a new controller is designed based on the K-Nearest Neighbor (KNN) algorithm and MPC strategy which can achieve the load current control with high output quality. Finally, the new control method based on KNN and MPC is compared with conventional MPC. The simulation results are analyzed and conclusion have been made. A modified MPC combined with KNN algorithm proposed in this thesis can detect bad data that can enter the system without triggering alarms. The case studies show the modified MPC based on KNN algorithm can achieve current control accurately when the system is injected by various attack signals showing better performance of current control with low total harmonic distortion (THD)
    • …
    corecore