
Zayed University Zayed University 

ZU Scholars ZU Scholars 

All Works 

9-8-2022 

Vector Auto-Regression-Based False Data Injection Attack Vector Auto-Regression-Based False Data Injection Attack 

Detection Method in Edge Computing Environment Detection Method in Edge Computing Environment 

Yi Chen 
Chengdu University of Information Technology; University of Electronic Science and Technology of China 

Kadhim Hayawi 
Zayed University 

Qian Zhao 
Chengdu University of Information Technology 

Junjie Mou 
Chengdu University of Information Technology 

Ling Yang 
Chengdu University of Information Technology 

See next page for additional authors 

Follow this and additional works at: https://zuscholars.zu.ac.ae/works 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Chen, Yi; Hayawi, Kadhim; Zhao, Qian; Mou, Junjie; Yang, Ling; Tang, Jie; Li, Qing; and Wen, Hong, "Vector 
Auto-Regression-Based False Data Injection Attack Detection Method in Edge Computing Environment" 
(2022). All Works. 5386. 
https://zuscholars.zu.ac.ae/works/5386 

This Article is brought to you for free and open access by ZU Scholars. It has been accepted for inclusion in All 
Works by an authorized administrator of ZU Scholars. For more information, please contact scholars@zu.ac.ae. 

https://zuscholars.zu.ac.ae/
https://zuscholars.zu.ac.ae/works
https://zuscholars.zu.ac.ae/works?utm_source=zuscholars.zu.ac.ae%2Fworks%2F5386&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=zuscholars.zu.ac.ae%2Fworks%2F5386&utm_medium=PDF&utm_campaign=PDFCoverPages
https://zuscholars.zu.ac.ae/works/5386?utm_source=zuscholars.zu.ac.ae%2Fworks%2F5386&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholars@zu.ac.ae


Author First name, Last name, Institution Author First name, Last name, Institution 
Yi Chen, Kadhim Hayawi, Qian Zhao, Junjie Mou, Ling Yang, Jie Tang, Qing Li, and Hong Wen 

This article is available at ZU Scholars: https://zuscholars.zu.ac.ae/works/5386 

https://zuscholars.zu.ac.ae/works/5386


Citation: Chen, Y.; Hayawi, K.; Zhao,

Q.; Mou, J.; Yang, L.; Tang, J.; Li, Q.;

Wen, H. Vector Auto-Regression-

Based False Data Injection Attack

Detection Method in Edge

Computing Environment. Sensors

2022, 22, 6789. https://doi.org/

10.3390/s22186789

Academic Editor: Jiankun Hu

Received: 5 July 2022

Accepted: 29 August 2022

Published: 8 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Vector Auto-Regression-Based False Data Injection Attack
Detection Method in Edge Computing Environment
Yi Chen 1,2,3, Kadhim Hayawi 4 , Qian Zhao 1, Junjie Mou 1, Ling Yang 1,*, Jie Tang 2, Qing Li 2 and Hong Wen 2

1 College of Electronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China
2 School of Aeronautics and Astronautics, University of Electronic Science and Technology of China,

Chengdu 611731, China
3 CMA Key Laboratory of Atmospheric Sounding, Chengdu 610225, China
4 College of Technological Innovation, Zayed University, Abu Dhabi 144534, United Arab Emirates
* Correspondence: cimyang@cuit.edu.cn

Abstract: With the wide application of advanced communication and information technology, false
data injection attack (FDIA) has become one of the significant potential threats to the security of
smart grid. Malicious attack detection is the primary task of defense. Therefore, this paper proposes a
method of FDIA detection based on vector auto-regression (VAR), aiming to improve safe operation
and reliable power supply in smart grid applications. The proposed method is characterized by
incorporating with VAR model and measurement residual analysis based on infinite norm and
2-norm to achieve the FDIA detection under the edge computing architecture, where the VAR model
is used to make a short-term prediction of FDIA, and the infinite norm and 2-norm are utilized to
generate the classification detector. To assess the performance of the proposed method, we conducted
experiments by the IEEE 14-bus system power grid model. The experimental results demonstrate
that the method based on VAR model has a better detection of FDIA compared to the method based
on auto-regressive (AR) model.

Keywords: false data injection attack (FDIA); vector auto-regression (VAR); attack detection; smart grid

1. Introduction

The stable and reliable operation of power system is very important for all walks of
life [1–4]. The function of power system state estimation is to estimate the current operation
state of power system according to various measurement information of power system.
Accurate power system state estimation is conducive to the reliable operation and real-time
control of power system [5–7]. It enables the management system to perform various
important control and planning tasks, such as emergency analysis, voltage stability studies
and optimized power flow analysis [8]. Therefore, power system security is extremely
important.

With the development of smart grid, the efficiency and reliability of power system are
gradually improving, at the same time, the power system is also facing the potential risk
of network attack. In the past twenty years, the power grid has been subjected to major
security threats several times [9–12]. On 25 January 2016, the Israeli power system was
subjected to a massive cyber attack intrusion due to the unintentional execution of malicious
code by staff members, triggering the urgent removal of a large number of power industrial
control computers from operational status [13]. In June 2018, hackers successfully attacked
a French company, named as Ingerop, and successfully stole confidential documents related
to the nuclear power plant, which made the nuclear power plant and its staff expose to
the threat of terrorist plots [11]. In September 2020, Pakistan’s largest power supplier,
K-Electric, was attacked by blackmail software and stolen unencrypted files. This attack
directly led to the interruption of billing and online services, resulting in the supplier’s
customers being unable to access the online resources of their accounts [12].
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For resisting network attacks, researchers have proposed a lot of security schemes,
such as firewalls and conventional intrusion detection systems [14–17], false data detection
system [18]. In the false data attacks, there are mainly two categories of research on
constructing false data for injection attack [19]: one is that the attacker previously obtains
the network topology information of the target for attack; the other is that the attacker has
no the topology information of the target for attack in advance, but constructs the attack
vector with the only intercepted measurements information.

For the first category of attack methods, one of the representative methods is the false
data injection attack (FDIA) method proposed by Liu against power grid state estima-
tion [20]. The attacker distorts the measurement data collected by the supervisory control
and data acquisition (SCADA) system. That is, the attacker tampers with the measurement
data collected by the intelligent terminal, which would destroy the data availability and
integrity in power networks [21,22]. In addition, the literature [23,24] introduce an in-depth
study on how to attack while the attacker has information about the target of the attack.
However, the information of the target to be attacked is usually in a confidential state, so
the possibility of obtaining this information is small.

As for the second type of attack methods, the representative literatures are [25,26], in
which they present the singular value decomposition (SVD) and the principal component
analysis (PCA) based attack vector construction methods, respectively. Compared with the
first category of attacks, the second category of attacks is more feasible and poses a greater
threat to the smart grid system. Nevertheless, the efforts made specifically for the smart
grid are very limited against the network security.

In addition, due to the proximity of the attacker to the endpoints, malicious attacks on
the terminals will be easier to launch. If the attackers know the topology of the smart grid,
they are easy to construct the FDIA vector without changing the measurement residuals
and thus affect the overall system state estimation. So, detection and identification of
bad data is very important for the computing center [27–29]. In the actual system, the
measurement data of the terminal is collected from the field and then transmitted to the
control center. Unfortunately, the attacker’s FDIA behavior may be ignored by the bad data
detection (BDD) system. This will pose a threat to the state estimation of the smart grid
and affect the smart grid decisions [30].

Previous works have introduced several methods to detect false data injection attacks.
For instance, Liu et al. proposed a false data detection mechanism based on the separation
of nominal power grid states and anomalies [31]. Li et al. presented a method of detecting
FDIAs against power system state estimation with fast Go-decomposition approach [32].
Zhao et al. introduced an FDIA dectection method based on short-term state forecasting by
checking the statistical consistency between forecasted and gathered measurements [33].
Ashok et al. put forward an online FDIA detection method that availed of load forecasts,
generation schedules, and synchrophasor data to detect measurement anomalies [34]. In
addition, there are also several FDIA detection methods based on AC state estimation.
For example, Du et al. [35] proposed a FDIA model against nonlinear state estimation
by leveraging the intrinsic load dynamics inside the attacking region and drawing upon
the regression theorem of the Ornstein–Uhlenbeck process and weighted least square
estimations. Boyaci et al. [36] presented a FDIA detector based on graph neural network
(GNN) by incorporating the inherent physical connections of modern AC power grids and
exploiting the spatial correlations of the measurement. Cheng et al. [37] put forward a
false data injection attack detector named the k-smallest residual similarity test based on
the rationale that perfect false data injection attacks can hardly be achieved in AC state
estimation. Although the nonlinear AC model based FDIA detection methods have been
proved to be safer than the DC model based methods in most occasions of power system,
the linear DC state estimation model based methods are still widely applied to the power
system because of their linear expression and rapidity.

Besides, smart grid under edge computing architecture has many advantages, such as
low latency, high speed, high reliability, and high security [38–41]. The edge devices usually
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have higher capacity than the intelligent terminals. Making full use of the computation
power and memory of edge computing to implement FDIA detection is very important
and practical for the development and safe operation of smart grid. For the FDIA detection,
there are three main directions, which are before, during, and after the completion of state
estimation based on the detection time. Most of the current detection methods are the “after
state estimation”. However, the detection time of the detection scheme that works best,
in theory, should be before the state estimation. This will minimize the effect of spurious
data on the state estimation results. Therefore, this paper proposes a method of FDIA
detection based on VAR to detect spurious data before state estimation in edge computing
environment. Thus, it is conducive to the safe and stable operation of smart grid.

The contributions of this paper are summarized as follows:

1. Develop a VAR-based FDIA detection method, aiming to improve safe operation and
reliable power supply for smart grid applications in terms of accuracy of voltage
phase prediction state and FDIA detection rate.

2. Introduce the FDIA detection procedure of the proposed method in detail. The pro-
posed method is characterized by incorporating with VAR model and measurement
residual analysis based on infinite norm and 2-norm to achieve the FDIA detection
under the edge computing architecture.

3. Launch different simulation via IEEE 14-bus system to verify the proposed VAR-
based FDIA detection method. The results indicate that the proposed method is more
efficient than the comparison.

The remainder of the paper is organized as follows. Section 2 describes the background
knowledge of vector auto-regression. Section 3 illustrates the FDIA model of the study.
Section 4 introduces the proposed VAR-based FDIA detection method. The performance
evaluation and analysis of the proposed method is given by Section 5. Finally, the paper is
concluded in Section 6.

2. Background
Vector Auto-Regression

Vector auto-regression (VAR) is a statistical model used to capture the relationship
between multiple variables as they change over time. It is an extension of auto-regression
(AR) model. Like the auto-regressive model, each variable in the VAR model has an
equation modelling its evolution over time. The specific form of VAR is expressed as
Equation (1):

xk = Tk−1 × xk−1 + · · ·+ Tk−p × xk−p + εk (1)

where x represents variable vector, k denotes time, and p is a constant. Compare to xk, the
xk−1,· · · , xk−p are the variable vector from lag phase 1 to lag phase p, respectively. T is a
time-invariant parameter matrix. εk is an interference error term at k time.

Vector auto-regression model is widely used in economics and the natural sciences [42].
Literature [43] uses VAR model with graph regularization to predict microbial interactions.
Literature [44] studies the causal relationship between rainfall and temperature by si-
multaneously constructing and predicting bivariate VAR model. H. Wang et al. utilize
time-varying vector auto-regressive model to recognize the multi-task motor imagery EEG
(electroencephalogram) signals in literature [45]. It verifies that the time-varying vector
auto-regressive model is useful to analyze autocovariance nonstationary vector process.
Inspired by the previous application of VAR, we propose a VAR-based FDIA detection
method for the smart grid application under edge computing structure.

3. FDIA Model

This section introduces the FDIA model in edge computing environment, which is
shown in Figure 1. The attacker launches FDIA on the data collected from the intelligent
power terminal lines, thereby affecting the state estimation of edge devices. However, the
bad data detection (BDD) system could not detect the FDIA, thus the decision-making
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system will make wrong decisions on such as the power flow analysis, accident analysis,
economic dispatch analysis and so on. The FDIA is modeled as Equation (2):

z̃ = H × x̂ + v + a (2)

where H denotes the measurement Jacobian matrix, which is determined by the structure
of the system; x̂ presents the state estimation of power system; v is the measurement error;
and a ∈ RN is an attack vector.

Power Flow 

Analysis

Accident 

Analysis

Dispatch 

Analysis

Bad Data 

Monitoring

State 

Estimation

Edge 

Computing

Terminals

FDIA

Edge Device

Figure 1. FDIA model under edge computing.

Generally, the attacker randomly selects a non-zero vector and calculates the attack
vector a shown as Equation (3):

a = H × c (3)

where c = (c1, c2, · · · , cn)T is an any non-zero n-dimensional vector.
After adding the attack vector a, the new state estimation vector is presented as

Equation (4):

x̂a = (HT × R−1 × H)−1 × HT × R−1 × za

= x̂ + c
(4)

where R denotes attack matrix, R−1 is the inverse of R, and za is the measured value after
being attacked.

Then, the residual error ra is shown as Equation (5):

ra = za − H × x̂a

= z + a− H × (x̂ + c)

= z− H × x̂ + (a− H × c)

= z− H × x̂

= r

(5)

4. FDIA Detection Method Based on Vector Auto-Regression

This section mainly introduce the FDIA detection method based on vector auto-
regression model in edge computing environment.
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If the Vector auto-regression model is set as p = 1 [46], it means that the samples at
the first k time are used to predict the state at k + 1 time. When the linear state estimation
is employed, the voltage phase angle of the state estimation vector x is θ, and the voltage
amplitude V is always 1, the prediction model of system state is modeled as Equation (6):

θ̃k+1 = Tk × θ̂k + εk+1 (6)

where θ̃k+1 and Tk are predicted state voltage phase angle and parameter matrix, respec-
tively. k and k + 1 are sampling time. θ̂k represents the voltage phase angle obtained from
the state estimation at k time, whose dimension is n× 1. εk+1 is the error of system model
and the Gaussian white noise with zero mean.

Then, we obtain the covariance matrix Rx̃k+1 of state prediction voltage phase angle
vector θ̃k+1 by calculating the mathematic expectation on both sides of Equation (6) at the
same time. The covariance matrix is shown as follow:

Rθ̃k+1
= Tk × Rθ̂k

× TT
k + Rεk+1 (7)

Rθ̂k
= E[(θk − θ̂k) · (θk − θ̂k)

T ] (8)

Rεk+1 = E(εk × εk+1) (9)

where Rθ̂k
is the state prediction error matrix at time k, which is usually assumed to be a

normal distribution. θ̂k is the vector of state estimates at the time sample k before. E(·) is
the expectation operator. Because Rθ̂k

and εk obey normal distribution, it is easy to prove
that Rθ̃k+1

obeys normal distribution. Therefore, the predicted value of measured active
power P̃k+1 at time sample point k + 1 can be calculated from the predicted value of state
voltage phase angle θ̃k+1, P̃k+1 is expressed as Equation (10):

P̃k+1 = H × θ̃k+1 (10)

The prediction error covariance matrix is expressed as Equation (11):

Cov(P̃) = H × Cov(θ̃)HT

= H × Rθ̃ × HT
(11)

To simplify equations, Equation (11) and all the following equations omit the time in-
dex. Residual of the measured observed and predicted values are obtained in Equation (12):

r̃ = P̃− P (12)

In theory, the residual r̃ follows the Gaussian distribution with a mean value of 0 and
covariance matrix of N, where N is obtained by Equation (13).

N = R + H × Rθ̃ × HT (13)

The measurement residual analysis method based on L2 norm has been used in the
control center for many years [47], and it has been proved to have good performance in
dealing with bad data. Inspired by this, this paper innovatively proposes an enhanced
and efficient FDI attack detection method, which is integrated the measurement residual
analysis method based on ∞ norm and L2 norm into the FDIA attack detector shown as
Equation (14):

D(z) =


1, ‖P− Hθ̂‖2 > τ1 or ‖ P̃−P

σN
‖∞ > τ2

0, other
(14)
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where σN = diag(N). If D(z) = 1, it indicates that there is the FDIA; otherwise D(z) = 0,
it indicates that there is no FDIA. There are two thresholds τ1 and τ2 in the detector,
which indicate the significance level of the hypothesis test. In the existing detector-based
integration methods, the traditional residual-based bad data detection method, that is,
the detection threshold τ1 remains the same, and τ1 is fixed to obtain the required error
warning probability. The detection threshold τ2 as an alternative method is changed to test
the performance of the detector. The time correlation under the normal operation state of
the system shows that the measurement difference between the predicted measurement
value and the observed measurement value should be consistent. Once the false injection
data is applied to the measurement value, the consistency will be destroyed, so that the
attack behavior can be detected.

If there is no FDIA, the state estimation result is reliable. Otherwise, detect the FDIA
and process the measured value of the attacked, so as to re-estimate the state and obtain
accurate estimation results. One way to deal with these attacked metrics is to delete them
from the set of metrics so that they will not affect the final state estimation results. However,
removing the attacked measurements may make the system unobservable. Here, the
predicted measurements are used to replace these attacked measurements, and then the
linear state estimation based on the mixing quantity is carried out to obtain a new and
accurate system operation state. On the other hand, the predicted measurements can be
further used as pseudo measurements to improve the observability of the system. In order
to analyze and evaluate the prediction performance more intuitively, literature [33] uses
the prediction method based on autoregressive model as a comparison. The attack vector is
generated based on a random false data injection attack scheme. State vector θ̂a is updated
from θ̂ to θ̂ + c. Each row vector of c vector is randomly generated by Gaussian distribution,
and the variance is σ2

c . The value of σ2
c is determined by the signal-to-noise ratio. Here,

the signal-to-noise ratio is specified as 10 dB, that is, SNR = 10. The definition of the
signal-to-noise ratio is expressed as Equation (15):

SNR = 10log

(
σ2

θa

σ2
n

)
(15)

σ2
θa
= σ2

θ + σ2
c (16)

where σ2
θa

and σ2
θ denote the variance of each component of θa and θ, respectively.

5. Experimental Analysis

In this section, we firstly present our experimental overall setting in Section 5.1.
Secondly, the evaluation index of the proposed method is introduced in Section 5.2. Finally,
experimental results analysis are also demonstrated in Section 5.3.

5.1. Experimental Parameter Setting

In the experiment, we simulate the structure of the power grid through the IEEE 14-bus
system power grid model, as shown in Figure 2 [48,49]. First, we use the VAR model for
short-term forecasting. Then, the difference between predicted data and observed values is
detected by using a classification detector. Finally, the results of above state prediction and
detection are evaluated in comparison with the AR model.

We use MATPOWER [50] to generate the data of IEEE 14-bus system, including a
topology matrix with corresponding parameters, status and measured values of the system.
The formats of MATPOWER bus data and branch data are shown in Table 1 and Table 2,
respectively.
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Figure 2. Power grid model of IEEE 14-bus system.

Table 1. Bus data format of IEEE 14-bus system.

bus_i Type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin

1 3 0 0 0 0 1 1.06 0 0 1 1.06 0.94
2 2 21.7 12.7 0 0 1 1.045 −4.98 0 1 1.06 0.94
3 2 94.2 19 0 0 1 1.01 −12.72 0 1 1.06 0.94
4 1 47.8 −3.9 0 0 1 1.019 −10.33 0 1 1.06 0.94
5 1 7.6 1.6 0 0 1 1.02 −8.78 0 1 1.06 0.94
6 2 11.2 7.5 0 0 1 1.07 −14.22 0 1 1.06 0.94
7 1 0 0 0 0 1 1.062 −13.37 0 1 1.06 0.94
8 2 0 0 0 0 1 1.09 −13.36 0 0 1.06 0.94
9 1 29.5 16.6 0 19 1 1.056 −14.94 0 1 1.06 0.94
10 1 9 5.8 0 0 1 1.051 −15.1 0 1 1.06 0.94
11 1 3.5 1.8 0 0 1 1.057 −14.79 0 1 1.06 0.94
12 1 6.1 1.6 0 0 1 1.055 −15.07 0 1 1.06 0.94
13 1 13.5 5.8 0 0 1 1.05 −15.16 0 1 1.06 0.94
14 1 14.9 5 0 0 1 1.036 −16.04 0 1 1.06 0.94

Here, the bus data is represented by a large matrix, and each line corresponds to a single
bus. “bus_i” represents bus number, “type” represents bus type, “Pd” represents active
power, “Qd” represents reactive power of the load, “Gs” represents conductance in parallel
with a single node, generally set to 0. “Bs” represents susceptance in parallel with a
single node, generally set to 0. “area” represents bus section number, generally set to
1. “Vm” represents initial voltage amplitude, “Va” represents initial voltage phase angle,
“baseKV” represents reference voltage, “zone” represents bus loss saving area, and “Vmax”
represents maximum acceptable voltage, “Vmin” represents minimum acceptable voltage.
Field “branchdata” represents a matrix for setting parameters of each branch in power
grid. Each line corresponds to a single branch. “ f bus” represents starting node number
of the branch, “tbus” represents ending node number of the branch. “r”, “x” and “b” are
resistance, reactance and charging charge of the branch, respectively. “rateA”, “rateB”
and “rateC” are long-term, short-term and emergency allowable power of the branch,



Sensors 2022, 22, 6789 8 of 15

respectively. “ratio” represents transformation ratio of the branch, and “angle” represents
the phase angle of the branch. “status” represents working state of the branch, 1 represents
input, and 0 represents exit. “angmin” and “angmax” represents the minimum and maximum
difference of the phase angle of the branch, respectively.

Table 2. Branch data format of IEEE 14-bus system.

f bus tbus r x b rateA rateB rateC ratio angle status angmin angmax

1 2 0.01938 0.05917 0.0528 9900 0 0 0 0 1 −360 360
1 5 0.05403 0.22304 0.0492 9900 0 0 0 0 1 −360 360
2 3 0.4699 0.19797 0.0438 9900 0 0 0 0 1 −360 360
2 4 0.05811 0.17632 0.034 9900 0 0 0 0 1 −360 360
2 5 0.05695 0.17388 0.0346 9900 0 0 0 0 1 −360 360
3 4 0.06701 0.17103 0.0128 9900 0 0 0 0 1 −360 360
4 5 0.01335 0.04211 0 9900 0 0 0 0 1 −360 360
4 7 0 0.20912 0 9900 0 0 0.978 0 1 −360 360
4 9 0 0.55618 0 9900 0 0 0.969 0 1 −360 360
5 6 0 0.25202 0 9900 0 0 0.932 0 1 −360 360
6 11 0.09498 0.1989 0 9900 0 0 0 0 1 −360 360
6 12 0.12291 0.25581 0 9900 0 0 0 0 1 −360 360
6 13 0.06615 0.13027 0 9900 0 0 0 0 1 −360 360
7 8 0 0.17615 0 9900 0 0 0 0 1 −360 360
7 9 0 0.11001 0 9900 0 0 0 0 1 −360 360
9 10 0.03181 0.0845 0 9900 0 0 0 0 1 −360 360
9 14 0.12711 0.27038 0 9900 0 0 0 0 1 −360 360

10 11 0.08205 0.19207 0 9900 0 0 0 0 1 −360 360
12 13 0.22092 0.19988 0 9900 0 0 0 0 1 −360 360
13 14 0.17093 0.34802 0 9900 0 0 0 0 1 −360 360

In terms of the attacker’s access to information, it can be divided into access to global
information [51] and local information [52]. In the experiment, we assume that the attacker
has access to limited real-time data for online state estimation. Firstly, we make a linear
approximation to an AC optimal power flow model. After that, it is transformed into a DC
optimal power flow model for linear state estimation. Finally, a false data injection attack
is simulated for the DC optimal power flow model. In this experiment, state quantity x
and measured value z include the voltage phase angle θ and active power P, respectively.
In addition, the voltage amplitude is set to V = 1. It is assumed that the attacker has full
knowledge of the target system’s topology and destroys the state estimation by injecting
false data into the device. The measured value z in this paper is obtained by z = P + v.
The error of the measured value collected by the data acquisition system usually follows
the Gaussian distribution, which has a variance σ between 0.005 and 0.02 of the measured
value without noise. We set the variance to 0.01 of the normal measured value. The attack
vector used in this paper is generated by a random false data injection scheme. In the case
of FDIA, attack nodes are randomly selected. In addition, the attack lasts for 20 min.

5.2. Evaluation Index

To evaluate the prediction performance of the detection scheme proposed in this paper,
the mean square error (MSE) is used as the performance index for comparison. The MSE
function is shown as follow:

MSE =
1
M

M

∑
k=1

e2
k (17)

ek = θk − θ̃k (18)

where θk, θ̃k and M are observed state voltage phase angle values, predicted state voltage
phase angle values of k-time sampling point and the number of time points, respectively.



Sensors 2022, 22, 6789 9 of 15

To analyze the detection performance, the receiver operating characteristic (ROC)
curve is used for evaluation. The ROC curve depicts the relative balance relationship
between false-positive rate and true-positive rate.

The true positive rate is the proportion of false data detected out of the total false
data, which is referred to as the probability of detection in this paper and expressed as
Equation (19):

Pd =
NHit

NHit + NMiss
(19)

The false positive rate is the proportion of all normal data that are falsely detected as
being false, and is expressed as Equation (20):

Pf =
NFlase

NFlase + NCorrect
(20)

The false-alarm rate is the percentage of all false data that are falsely detected as
normal data, and is expressed as Equation (21):

Pm =
NMiss

NFlase + NCorrect
(21)

Among them, NHit is the number of true-positive successfully detected by false data.
NMiss is the number of false-negative not detected by false data. NFalse is the number
of false-positive wrongly detected by normal data, and NCorrect is the number of true-
negatives normally detected by normal data. The ideal situation is that the false positive
rate is inversely proportional to the detection probability, that is, the lower the false positive
rate, the higher the detection accuracy. This is because the false positive rate has a great
impact on the power grid decision-making. The measured data increases continuously
due to the growth of time, and the impact of the false positive rate increases in geometric
multiples. Therefore, the final goal of the experiment is to achieve the Pc highest value and
the Pf lowest value.

The attacker may have limited privileges, a limited budget, or the control center may
have encrypted the historical data so that it is not available. In this paper, we assume that
the attacker can only access a limited amount of real-time data for online state estimation,
make a linear approximation of the AC tidal model, transform it into a DC tidal model for
linear state estimation, and simulate a false data injection attack for the DC tidal model.
The experiments in this paper use a state quantity x containing the voltage phase angle
θ, a measurement z containing the active power P, and a constant voltage magnitude V
of 1. It is assumed that the attacker knows the full structure of the Jacobi matrix H, i.e.,
has full knowledge of the topology of the target system, and corrupts the state estimate by
feeding false data into the device. The measurement value z in this paper is obtained from
z = P + v. The error of the measurement value collected by the supervisory control and
data acquisition system usually obeys a Gaussian distribution, which has a variance σ of
size 0.5% to 2% of the measurement value without noise. Thus, the variance σ is set to 0.01
of the normal measurement value in the experiment.

Figure 3 demonstrates the state change curve of one of the sudden false data injection
attacks, where, in the case of sudden FDIA, the attack nodes are randomly selected and the
attack lasts for 20 min. From Figure 3, we notice that the voltage phase angle values after
the attack are very similar to the original voltage phase angle values. This makes the FDIA
extremely stealthy, which makes it difficult to detect the attack by using common defense
mechanisms.
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Figure 3. State change curve of sudden FDIA.

5.3. Result Analysis
5.3.1. Prediction Performance Analysis of VAR and AR Schemes

From Table 3, we find that the MSE of VAR-based method and AR-based method are
0.3613 and 1.5945, respectively. This indicates that the VAR-based scheme predicts better
than the AR-based scheme. The results demonstrate that the data of each node in the grid
is time-correlated, which is not only related to its own data on the current node but also
related to the data on other nodes. Therefore, the prediction scheme should consider the
correlation between nodes, which will improve the prediction performance.

Table 3. Comparison of mean square error of different methods.

Method MSE

VAR 0.3613

AR 1.5945

5.3.2. Analysis of Detection Performance of VAR and AR Schemes

Before analyzing the detection performance, we need to consider two things: one is
whether the value of sliding window length M affects the detection effect, and the other is
whether the number of non-zero values of non-zero vector c will affect the test results after
participating in the construction of attack vector. In this regard, the following analysis is
carried out.

(a) Influence of sliding window length M.

Here, the influence of M on the detection rate is discussed. According to the control
variable method, we set Pf = 0.05 and the non-zero number in c is 2. Firstly, the state
transfer matrix Tk is calculated by updating M. Then, state prediction θ̃k+1 is calculated,
followed by the calculation of measurement prediction P̃k+1 to obtain the detection result.
Finally, the detection rate is varied by changing the value of M to different detection rates.
The experimental results are shown in Figure 4.

From Figure 4, we can notice that the detection performance of both schemes can
be significantly improved at appropriate M, while inappropriate M value leads to dete-
rioration of detection performance. The detection rate of the detection scheme predicted
by the initial VAR scheme is not as high as that of the detection scheme predicted by the
AR scheme. However, when specific limit values are exceeded, the detection rate of the
prediction-based scheme using VAR is steadily higher than that of the AR scheme.

By analyzing the situation shown in Figure 4, we can draw the following conclusions.
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Figure 4. Comparison diagram of the relationship between M and detection rate under different
methods.

In the case of linear prediction model, the accuracy of prediction is closely related to the
state transition matrix of the model. The state transition matrix of the VAR model and AR
model compared in this paper is related to redundancy g. Further, it is related to least square
estimation. Because the least square estimation needs to calculate the coefficients of IEEE14
power system, and in the VAR model, we need to consider the influence of its own node and
other nodes on this node, so the VAR model needs to calculate 13× 13 = 169 coefficients,
while the AR model only needs to calculate 13 coefficients. Even if the M value divided for
power data is the same, the redundancy of the two models is different.

At the beginning, the initial value of sliding window length M is small, and the VAR
model is not good enough, resulting in the imperfect prediction performance. The detection
rate of the scheme predicted by VAR model is lower than that predicted by AR model.
When the redundancy increases with the increase of M, the prediction accuracy of VAR
model increases, and the detection rate of the corresponding detection scheme increases,
which is higher than that of AR scheme. In the last stage, the redundancy is too high, which
exceeds the computing power of the two regression models, so the value of M is 120 in the
next simulation.

(b) Impact of the number of non-zero values in c.

From the above analysis (related Figure 4), we notice that a larger M value for the
sliding window length is not better. Therefore, it is necessary to make a trade-off compari-
son between prediction accuracy and calculation speed. Here, the value of M is 120. This
part discusses the influence of non-zero quantity in c on the detection rate. According to
the control variable method, setting Pf = 0.05. By changing the non-zero number in c to
update the attack vector, a new state estimation value is obtained. The remaining steps are
similar to the above (a), and different detection rate is shown in Figure 5.

Figure 5 shows the relationship between the different numbers of non-zero and the
detection rate, where n is the number of non-zero. From Figure 5, we find that the early
detection rate is proportional to the increase in n. The reason is that the increase in n leads
to the increase of the number of non-zero in the attack vector, which increases the risk
of measured value being attacked. This will greatly increase the difference between the
observed and predicted value and facilitates control center to detect the attack.

After considering the impact of M and c on the detection rate, we set M = 120 and the
number non-zero of c to 2 in the experiment of attack detection.

From Figure 6, we notice that VAR-based scheme prediction is very effective in detect-
ing FDIA. Even if the false detection rate is very low, the detection rate can reach more than
0.87. For example, when the false detection rate is 0.05, the detection rate has reached 0.95.
Moreover, the performance of the detection scheme using the VAR scheme prediction is
better than the AR scheme in general. The reason is that with the current sliding window
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length M and a non-zero number of 2 for c, the redundancy is sufficient for the VAR model.
Therefore, its prediction performance is better than the AR model and the classifier can
detect better.
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Figure 5. Comparison of the influence of non-zero quantity in c on detection performance.
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Figure 6. Comparison of detection rate and false detection rate under different method.

6. Conclusions

This paper focuses on the FDIA and innovatively proposes a VAR-based FDIA detec-
tion method for the smart grid application, which is integrated the measurement residual
analysis method based on ∞ norm and L2 norm into the FDIA attack detector. this paper
proposes an enhanced and efficient FDI attack detection method. Then, We also introduce
the proposed method in detail. The VAR model is used for prediction, and classifier is used
for FDIA detection. Finally, we conduct the FDIA simulation experiments by computer.
The results show that the proposed FDIA detection method based on VAR is better than
the AR-based method in FDIA detection rate. Even when the false detection rate is low, the
detection rate is higher than 0.87.

In the follow-up work, we will consider the effects of false data injection attack
on different models and methods, and compare them with the proposed FDIA detection
scheme based on VAR in this paper. In addition, we think that it is meaningful to analyze the
impact of different noises in different scenarios on the performance of the FDIA detection
scheme. Furthermore, it is also worthwhile to find new and effective measures to enhance
the capability of defense system for smart grid.
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46. Hassanzadeh, M.; Evrenosoğlu, C.Y.; Mili, L. A short-term nodal voltage phasor forecasting method using temporal and spatial
correlation. IEEE Trans. Power Syst. 2015, 31, 3881–3890. [CrossRef]

47. Kosut, O.; Jia, L.; Thomas, R.J.; Tong, L. Malicious data attacks on the smart grid. IEEE Trans. Smart Grid 2011, 2, 645–658.
[CrossRef]

http://dx.doi.org/10.1145/1952982.1952995
http://dx.doi.org/10.1049/iet-cps.2019.0010
http://dx.doi.org/10.1016/j.segan.2021.100541
http://dx.doi.org/10.1109/TSG.2016.2521178
http://dx.doi.org/10.1109/TSP.2014.2385670
http://dx.doi.org/10.1109/TSG.2014.2382714
http://dx.doi.org/10.1109/TPAS.1982.317128
http://dx.doi.org/10.1109/T-PAS.1975.31858
http://dx.doi.org/10.1109/TPWRS.1987.4335300
http://dx.doi.org/10.1088/1742-6596/1646/1/012013
http://dx.doi.org/10.1109/TSG.2013.2284438
http://dx.doi.org/10.1109/TII.2018.2875529
http://dx.doi.org/10.1109/TSG.2015.2492827
http://dx.doi.org/10.1109/TSG.2016.2596298
http://dx.doi.org/10.1109/TSG.2021.3106246
http://dx.doi.org/10.1109/JSYST.2021.3109082
http://dx.doi.org/10.1109/TSG.2022.3141803
http://dx.doi.org/10.3390/s21092958
http://dx.doi.org/10.1109/ACCESS.2019.2920488
http://dx.doi.org/10.1109/JIOT.2021.3086581
http://dx.doi.org/10.1109/TCBB.2014.2338298
http://dx.doi.org/10.1109/TPWRS.2015.2487419
http://dx.doi.org/10.1109/TSG.2011.2163807


Sensors 2022, 22, 6789 15 of 15

48. Tzounas, G.; Sipahi, R.; Milano, F. Damping Power System Electromechanical Oscillations Using Time Delays. IEEE Trans.
Circuits Syst. I Regul. Pap. 2021, 68, 2725–2735. [CrossRef]

49. Milano, F. Power System Modelling and Scripting; Springer: Berlin/Heidelberg, Germany, 2010; pp. 3–17.
50. Zimmerman, R.D.; Murillo-Sánchez, C.E.; Thomas, R.J. MATPOWER: Steady-state operations, planning, and analysis tools for

power systems research and education. IEEE Trans. Power Syst. 2010, 26, 12–19. [CrossRef]
51. Valenzuela, J.; Wang, J.; Bissinger, N. Real-time intrusion detection in power system operations. IEEE Trans. Power Syst. 2012, 28,

1052–1062. [CrossRef]
52. Rahman, M.A.; Mohsenian-Rad, H. False data injection attacks with incomplete information against smart power grids. In

Proceedings of the 2012 IEEE Global Communications Conference (GLOBECOM), Anaheim, CA, USA, 3–7 December 2012;
pp. 3153–3158.

http://dx.doi.org/10.1109/TCSI.2021.3062970
http://dx.doi.org/10.1109/TPWRS.2010.2051168
http://dx.doi.org/10.1109/TPWRS.2012.2224144

	Vector Auto-Regression-Based False Data Injection Attack Detection Method in Edge Computing Environment
	Recommended Citation
	Author First name, Last name, Institution

	Introduction
	Background
	FDIA Model
	FDIA Detection Method Based on Vector Auto-Regression
	Experimental Analysis
	Experimental Parameter Setting
	Evaluation Index
	Result Analysis
	Prediction Performance Analysis of VAR and AR Schemes
	Analysis of Detection Performance of VAR and AR Schemes


	Conclusions
	References

