7,068 research outputs found

    Non-deterministic algebraization of logics by swap structures1

    Get PDF
    Multialgebras have been much studied in mathematics and in computer science. In 2016 Carnielli and Coniglio introduced a class of multialgebras called swap structures, as a semantic framework for dealing with several Logics of Formal Inconsistency that cannot be semantically characterized by a single finite matrix. In particular, these LFIs are not algebraizable by the standard tools of abstract algebraic logic. In this paper, the first steps towards a theory of non-deterministic algebraization of logics by swap structures are given. Specifically, a formal study of swap structures for LFIs is developed, by adapting concepts of universal algebra to multialgebras in a suitable way. A decomposition theorem similar to Birkhoff’s representation theorem is obtained for each class of swap structures. Moreover, when applied to the 3-valued algebraizable logics J3 and Ciore, their classes of algebraic models are retrieved, and the swap structures semantics become twist structures semantics. This fact, together with the existence of a functor from the category of Boolean algebras to the category of swap structures for each LFI, suggests that swap structures can be seen as non-deterministic twist structures. This opens new avenues for dealing with non-algebraizable logics by the more general methodology of multialgebraic semantics

    Instruction sequences for the production of processes

    Get PDF
    Single-pass instruction sequences under execution are considered to produce behaviours to be controlled by some execution environment. Threads as considered in thread algebra model such behaviours: upon each action performed by a thread, a reply from its execution environment determines how the thread proceeds. Threads in turn can be looked upon as producing processes as considered in process algebra. We show that, by apposite choice of basic instructions, all processes that can only be in a finite number of states can be produced by single-pass instruction sequences.Comment: 23 pages; acknowledgement corrected, reference update

    A Sound and Complete Axiomatization of Majority-n Logic

    Get PDF
    Manipulating logic functions via majority operators recently drew the attention of researchers in computer science. For example, circuit optimization based on majority operators enables superior results as compared to traditional logic systems. Also, the Boolean satisfiability problem finds new solving approaches when described in terms of majority decisions. To support computer logic applications based on majority a sound and complete set of axioms is required. Most of the recent advances in majority logic deal only with ternary majority (MAJ- 3) operators because the axiomatization with solely MAJ-3 and complementation operators is well understood. However, it is of interest extending such axiomatization to n-ary majority operators (MAJ-n) from both the theoretical and practical perspective. In this work, we address this issue by introducing a sound and complete axiomatization of MAJ-n logic. Our axiomatization naturally includes existing majority logic systems. Based on this general set of axioms, computer applications can now fully exploit the expressive power of majority logic.Comment: Accepted by the IEEE Transactions on Computer

    On the behaviours produced by instruction sequences under execution

    Get PDF
    We study several aspects of the behaviours produced by instruction sequences under execution in the setting of the algebraic theory of processes known as ACP. We use ACP to describe the behaviours produced by instruction sequences under execution and to describe two protocols implementing these behaviours in the case where the processing of instructions takes place remotely. We also show that all finite-state behaviours considered in ACP can be produced by instruction sequences under execution.Comment: 36 pages, consolidates material from arXiv:0811.0436 [cs.PL], arXiv:0902.2859 [cs.PL], and arXiv:0905.2257 [cs.PL]; abstract and introduction rewritten, examples and proofs adde

    A synchronous program algebra: a basis for reasoning about shared-memory and event-based concurrency

    Full text link
    This research started with an algebra for reasoning about rely/guarantee concurrency for a shared memory model. The approach taken led to a more abstract algebra of atomic steps, in which atomic steps synchronise (rather than interleave) when composed in parallel. The algebra of rely/guarantee concurrency then becomes an instantiation of the more abstract algebra. Many of the core properties needed for rely/guarantee reasoning can be shown to hold in the abstract algebra where their proofs are simpler and hence allow a higher degree of automation. The algebra has been encoded in Isabelle/HOL to provide a basis for tool support for program verification. In rely/guarantee concurrency, programs are specified to guarantee certain behaviours until assumptions about the behaviour of their environment are violated. When assumptions are violated, program behaviour is unconstrained (aborting), and guarantees need no longer hold. To support these guarantees a second synchronous operator, weak conjunction, was introduced: both processes in a weak conjunction must agree to take each atomic step, unless one aborts in which case the whole aborts. In developing the laws for parallel and weak conjunction we found many properties were shared by the operators and that the proofs of many laws were essentially the same. This insight led to the idea of generalising synchronisation to an abstract operator with only the axioms that are shared by the parallel and weak conjunction operator, so that those two operators can be viewed as instantiations of the abstract synchronisation operator. The main differences between parallel and weak conjunction are how they combine individual atomic steps; that is left open in the axioms for the abstract operator.Comment: Extended version of a Formal Methods 2016 paper, "An algebra of synchronous atomic steps

    Circuit complexity, proof complexity, and polynomial identity testing

    Full text link
    We introduce a new algebraic proof system, which has tight connections to (algebraic) circuit complexity. In particular, we show that any super-polynomial lower bound on any Boolean tautology in our proof system implies that the permanent does not have polynomial-size algebraic circuits (VNP is not equal to VP). As a corollary to the proof, we also show that super-polynomial lower bounds on the number of lines in Polynomial Calculus proofs (as opposed to the usual measure of number of monomials) imply the Permanent versus Determinant Conjecture. Note that, prior to our work, there was no proof system for which lower bounds on an arbitrary tautology implied any computational lower bound. Our proof system helps clarify the relationships between previous algebraic proof systems, and begins to shed light on why proof complexity lower bounds for various proof systems have been so much harder than lower bounds on the corresponding circuit classes. In doing so, we highlight the importance of polynomial identity testing (PIT) for understanding proof complexity. More specifically, we introduce certain propositional axioms satisfied by any Boolean circuit computing PIT. We use these PIT axioms to shed light on AC^0[p]-Frege lower bounds, which have been open for nearly 30 years, with no satisfactory explanation as to their apparent difficulty. We show that either: a) Proving super-polynomial lower bounds on AC^0[p]-Frege implies VNP does not have polynomial-size circuits of depth d - a notoriously open question for d at least 4 - thus explaining the difficulty of lower bounds on AC^0[p]-Frege, or b) AC^0[p]-Frege cannot efficiently prove the depth d PIT axioms, and hence we have a lower bound on AC^0[p]-Frege. Using the algebraic structure of our proof system, we propose a novel way to extend techniques from algebraic circuit complexity to prove lower bounds in proof complexity

    A Spectrum of Applications of Automated Reasoning

    Full text link
    The likelihood of an automated reasoning program being of substantial assistance for a wide spectrum of applications rests with the nature of the options and parameters it offers on which to base needed strategies and methodologies. This article focuses on such a spectrum, featuring W. McCune's program OTTER, discussing widely varied successes in answering open questions, and touching on some of the strategies and methodologies that played a key role. The applications include finding a first proof, discovering single axioms, locating improved axiom systems, and simplifying existing proofs. The last application is directly pertinent to the recently found (by R. Thiele) Hilbert's twenty-fourth problem--which is extremely amenable to attack with the appropriate automated reasoning program--a problem concerned with proof simplification. The methodologies include those for seeking shorter proofs and for finding proofs that avoid unwanted lemmas or classes of term, a specific option for seeking proofs with smaller equational or formula complexity, and a different option to address the variable richness of a proof. The type of proof one obtains with the use of OTTER is Hilbert-style axiomatic, including details that permit one sometimes to gain new insights. We include questions still open and challenges that merit consideration.Comment: 13 page

    Boundary Algebra: A Simpler Approach to Boolean Algebra and the Sentential Connectives

    Get PDF
    Boundary algebra [BA] is a algebra of type , and a simplified notation for Spencer-Brown’s (1969) primary algebra. The syntax of the primary arithmetic [PA] consists of two atoms, () and the blank page, concatenation, and enclosure between ‘(‘ and ‘)’, denoting the primitive notion of distinction. Inserting letters denoting, indifferently, the presence or absence of () into a PA formula yields a BA formula. The BA axioms are A1: ()()= (), and A2: “(()) [abbreviated ‘⊥’] may be written or erased at will,” implying (⊥)=(). The repeated application of A1 and A2 simplifies any PA formula to either () or ⊥. The basis for BA is B1: abc=bca (concatenation commutes & associates); B2, ⊥a=a (BA has a lower bound, ⊥); B3, (a)a=() (BA is a complemented lattice); and B4, (ba)a=(b)a (implies that BA is a distributive lattice). BA has two intended models: (1) the Boolean algebra 2 with base set B={(),⊥}, such that () ⇔ 1 [dually 0], (a) ⇔ a′, and ab ⇔ a∪b [a∩b]; and (2) sentential logic, such that () ⇔ true [false], (a) ⇔ ~a, and ab ⇔ a∨b [a∧b]. BA is a self-dual notation, facilitates a calculational style of proof, and simplifies clausal reasoning and Quine’s truth value analysis. BA resembles C.S. Peirce’s graphical logic, the symbolic logics of Leibniz and W.E. Johnson, the 2 notation of Byrne (1946), and the Boolean term schemata of Quine (1982).Boundary algebra; boundary logic; primary algebra; primary arithmetic; Boolean algebra; calculation proof; G. Spencer-Brown; C.S. Peirce; existential graphs

    A synchronous program algebra: a basis for reasoning about shared-memory and event-based concurrency

    Get PDF
    This research started with an algebra for reasoning about rely/guarantee concurrency for a shared memory model. The approach taken led to a more abstract algebra of atomic steps, in which atomic steps synchronise (rather than interleave) when composed in parallel. The algebra of rely/guarantee concurrency then becomes an instantiation of the more abstract algebra. Many of the core properties needed for rely/guarantee reasoning can be shown to hold in the abstract algebra where their proofs are simpler and hence allow a higher degree of automation. The algebra has been encoded in Isabelle/HOL to provide a basis for tool support for program verification. In rely/guarantee concurrency, programs are specified to guarantee certain behaviours until assumptions about the behaviour of their environment are violated. When assumptions are violated, program behaviour is unconstrained (aborting), and guarantees need no longer hold. To support these guarantees a second synchronous operator, weak conjunction, was introduced: both processes in a weak conjunction must agree to take each atomic step, unless one aborts in which case the whole aborts. In developing the laws for parallel and weak conjunction we found many properties were shared by the operators and that the proofs of many laws were essentially the same. This insight led to the idea of generalising synchronisation to an abstract operator with only the axioms that are shared by the parallel and weak conjunction operator, so that those two operators can be viewed as instantiations of the abstract synchronisation operator. The main differences between parallel and weak conjunction are how they combine individual atomic steps; that is left open in the axioms for the abstract operator.Comment: Extended version of a Formal Methods 2016 paper, "An algebra of synchronous atomic steps
    corecore