The likelihood of an automated reasoning program being of substantial
assistance for a wide spectrum of applications rests with the nature of the
options and parameters it offers on which to base needed strategies and
methodologies. This article focuses on such a spectrum, featuring W. McCune's
program OTTER, discussing widely varied successes in answering open questions,
and touching on some of the strategies and methodologies that played a key
role. The applications include finding a first proof, discovering single
axioms, locating improved axiom systems, and simplifying existing proofs. The
last application is directly pertinent to the recently found (by R. Thiele)
Hilbert's twenty-fourth problem--which is extremely amenable to attack with the
appropriate automated reasoning program--a problem concerned with proof
simplification. The methodologies include those for seeking shorter proofs and
for finding proofs that avoid unwanted lemmas or classes of term, a specific
option for seeking proofs with smaller equational or formula complexity, and a
different option to address the variable richness of a proof. The type of proof
one obtains with the use of OTTER is Hilbert-style axiomatic, including details
that permit one sometimes to gain new insights. We include questions still open
and challenges that merit consideration.Comment: 13 page