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Abstract. We study several aspects of the behaviours produced by in-
struction sequences under execution in the setting of the algebraic the-
ory of processes known as ACP. We use ACP to describe the behaviours
produced by instruction sequences under execution and to describe two
protocols implementing these behaviours in the case where the process-
ing of instructions takes place remotely. We also show that all finite-state
behaviours considered in ACP can be produced by instruction sequences
under execution.

Keywords: instruction sequence, remote instruction processing, instruction se-
quence producible process

1 Introduction

The concept of an instruction sequence is a very primitive concept in computing.
It has always played a central role in computing because of the fact that execu-
tion of instruction sequences underlies virtually all past and current generations
of computers. It happens that, given a precise definition of an appropriate no-
tion of an instruction sequence, many issues in computer science can be clearly
explained in terms of instruction sequences. A simple yet interesting example
is that a program can simply be defined as a text that denotes an instruction
sequence. Such a definition corresponds to an empirical perspective found among
practitioners.

In theoretical computer science, the meaning of programs usually plays a
prominent part in the explanation of many issues concerning programs. More-
over, what is taken for the meaning of programs is mathematical by nature.
On the other hand, it is customary that practitioners do not fall back on the
mathematical meaning of programs in case explanation of issues concerning pro-
grams is needed. They phrase their explanations from an empirical perspective.
An empirical perspective that we consider appealing is the perspective that a
program is in essence an instruction sequence and an instruction sequence under
execution produces a behaviour that is controlled by its execution environment
in the sense that each step performed actuates the processing of an instruction by
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the execution environment and a reply returned at completion of the processing
determines how the behaviour proceeds.

This paper concerns the behaviours produced by instruction sequences un-
der execution as such and two issues relating to the behaviours produced by
instruction sequences under execution, namely the issue of implementing these
behaviours in the case where the processing of instructions takes place remotely
and the issue of the extent to which the behaviours considered in process algebra
can be produced by instruction sequences under execution.

Remote instruction processing means that a stream of instructions to be pro-
cessed arises at one place and the processing of that stream of instructions is
handled at another place. This phenomenon is increasingly encountered. It is
found if loading the instruction sequence to be executed as a whole is imprac-
ticable. For instance, the storage capacity of the execution unit is too small or
the execution unit is too far away. Remote instruction processing requires spe-
cial attention because the transmission time of the messages involved in remote
instruction processing makes it hard to keep the execution unit busy without
intermission.

In the literature on computer architecture, hardly anything can be found
that contributes to a sound understanding of the phenomenon of remote instruc-
tion processing. As a first step towards such an understanding, we give rigorous
descriptions of two protocols for remote instruction processing at a level of ab-
straction that captures the underlying essence of the protocols. One protocol is
very simple, but makes no effort keep the execution unit busy without inter-
mission. The other protocol is more complex and is directed towards keeping
the execution unit busy without intermission. It is reminiscent of an instruction
pre-fetching mechanism as found in pipelined processors (see e.g. [26]), but its
range of application is not restricted to pipelined instruction processing.

The work presented in this paper belongs to a line of research which started
with an attempt to approach the semantics of programming languages from the
perspective mentioned above. The first published paper on this approach is [7].
That paper is superseded by [8] with regard to the groundwork for the approach:
program algebra, an algebraic theory of single-pass instruction sequences, and
basic thread algebra, an algebraic theory of mathematical objects that represent
in a direct way the behaviours produced by instruction sequences under execu-
tion.1 The main advantages of the approach are that it does not require a lot
of mathematical background and that it is more appealing to practitioners than
the main approaches to programming language semantics: the operational ap-
proach, the denotational approach and the axiomatic approach. For an overview
of these approaches, see e.g. [32].

The work presented in this paper is based on the instruction sequences con-
sidered in program algebra and the representation of the behaviours produced
by instruction sequences under execution considered in basic thread algebra. It
is rather awkward to describe and analyse the behaviours of this kind using al-

1 In [8], basic thread algebra is introduced under the name basic polarized process
algebra.
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gebraic theories of processes such as ACP [3,6], CCS [27,31] and CSP [23,29].
However, the objects considered in basic thread algebra can be viewed as rep-
resentations of processes as considered in process algebra. This allows for the
protocols for remote instruction processing to be described using ACP or rather
ACPτ , an extension of ACP which supports abstraction from internal actions.

Process algebra is an area of the study of concurrency which is considered rel-
evant to computer science, as is witnesses by the extent of the work on algebraic
theories of processes such as ACP, CCS and CSP in theoretical computer sci-
ence. This strongly hints that there are programmed systems whose behaviours
can be taken for processes as considered in process algebra. Therefore, it is in-
teresting to know to which extent the behaviours considered in process algebra
can be produced by programs under execution, starting from the perception of a
program as an instruction sequence. In this paper, we will show that, by apposite
choice of instructions, all finite-state processes can be produced by instruction
sequences (provided that the cluster fair abstraction rule, see e.g. Section 5.6 of
[24], is valid).

The instruction sequences considered in program algebra are single-pass in-
struction sequences, i.e. finite or infinite sequences of instructions of which each
instruction is executed at most once and can be dropped after it has been exe-
cuted or jumped over. Program algebra does not provide a notation for programs
that is intended for actual programming: programs written in an assembly lan-
guage are finite instruction sequences for which single-pass execution is usually
not possible. We will also show that all finite-state processes can as well be
produced by programs written in a program notation which is close to existing
assembly languages.

Instruction sequences under execution may make use of services provided by
their execution environment such as counters, stacks and Turing tapes. The use
operators added to basic thread algebra in e.g. [12] can be used to describe the
behaviours produced by instruction sequences under execution that make use of
services. Interesting is that instruction sequences under execution that make use
of services may produce infinite-state processes. On that account, we will make
precise what processes are produced by instruction sequences under execution
that make use of services provided by their execution environment.

As a continuation of the work on a new approach to programming lan-
guage semantics mentioned above, the notion of an instruction sequence was
subjected to systematic and precise analysis using the groundwork laid earlier.
This led among other things to expressiveness results about the instruction se-
quences considered and variations of the instruction sequences considered (see
e.g. [12,18,20,21,36]). Instruction sequences are under discussion for many years
in diverse work on computer architecture, as witnessed by e.g. [4,22,25,30,33,34,35,39,41],
but the notion of an instruction sequence has never been subjected to any pre-
cise analysis before. As another continuation of the work on a new approach
to programming language semantics mentioned above, selected issues relating to
well-known subjects from the theory of computation and the area of computer ar-
chitecture were rigorously investigated thinking in terms of instruction sequences
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(see e.g. [14,15,16,17,19]). The subjects from the theory of computation, namely
the halting problem and non-uniform computational complexity, are usually in-
vestigated thinking in terms of a common model of computation such as Turing
machines and Boolean circuits (see e.g. [1,28,38]). The subjects from the area of
computer architecture, namely instruction sequence performance, instruction set
architectures and remote instruction processing, are usually not investigated in a
rigorous way at all. The general aim of the work in both continuations mentioned
is to bring instruction sequences as a theme in computer science better into the
picture. The work presented in this paper forms a part of the last mentioned
continuation.

This paper is organized as follows. The body of the paper consists of three
parts. The first part (Sections 2–7) concerns the behaviours produced by instruc-
tion sequences under execution as such and includes surveys of program algebra,
basic thread algebra and the algebraic theory of processes known as ACP. The
second part (Sections 8–10) concerns the issue of implementing these behaviours
in the case where the processing of instructions takes place remotely and in-
cludes rigorous descriptions of two protocols for remote instruction processing.
The third part (Sections 11–14) concerns the issue of the extent to which the be-
haviours considered in process algebra can be produced by instruction sequences
under execution and includes the result that, by apposite choice of instructions,
all finite-state processes can be produced by instruction sequences.

This paper consolidates material from [11,13,14].

2 Program Algebra

In this section, we review PGA (ProGram Algebra). The starting-point of pro-
gram algebra is the perception of a program as a single-pass instruction sequence.
The concepts underlying the primitives of program algebra are common in pro-
gramming, but the particular form of the primitives is not common. The pre-
dominant concern in the design of program algebra has been to achieve simple
syntax and semantics, while maintaining the expressive power of arbitrary finite
control.

In PGA, it is assumed that a fixed but arbitrary set A of basic instructions

has been given. The intuition is that the execution of a basic instruction may
modify a state and produces a reply at its completion. The possible replies are
the Boolean values T and F.

PGA has the following primitive instructions :

– for each a ∈ A, a plain basic instruction a;
– for each a ∈ A, a positive test instruction +a;
– for each a ∈ A, a negative test instruction −a;
– for each l ∈ N, a forward jump instruction #l;
– a termination instruction !.

We write I for the set of all primitive instructions of PGA. On execution of an
instruction sequence, these primitive instructions have the following effects:
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– the effect of a positive test instruction +a is that basic instruction a is
executed and execution proceeds with the next primitive instruction if T
is produced and otherwise the next primitive instruction is skipped and
execution proceeds with the primitive instruction following the skipped one
— if there is no primitive instructions to proceed with, inaction occurs;

– the effect of a negative test instruction −a is the same as the effect of +a,
but with the role of the value produced reversed;

– the effect of a plain basic instruction a is the same as the effect of +a, but
execution always proceeds as if T is produced;

– the effect of a forward jump instruction #l is that execution proceeds with
the l-th next instruction of the program concerned — if l equals 0 or there
is no primitive instructions to proceed with, inaction occurs;

– the effect of the termination instruction ! is that execution terminates.

PGA has the following constants and operators:

– for each u ∈ I, an instruction constant u ;
– the binary concatenation operator ; ;
– the unary repetition operator ω .

We assume that there is a countably infinite set of variables which includes
x, y, z. Terms are built as usual. We use infix notation for concatenation and
postfix notation for repetition.

A closed PGA term is considered to denote a non-empty, finite or eventually
periodic infinite sequence of primitive instructions.2 The instruction sequence
denoted by a closed term of the form t ; t′ is the instruction sequence denoted
by t concatenated with the instruction sequence denoted by t′. The instruction
sequence denoted by a closed term of the form tω is the instruction sequence de-
noted by t concatenated infinitely many times with itself. Some simple examples
of closed PGA terms are

a ; b ; c , +a ; #2 ; #3 ; b ; ! , a ; (b ; c)ω .

On execution of the instruction sequence denoted by the first term, the basic
instructions a, b and c are executed in that order and after that inaction occurs.
On execution of the instruction sequence denoted by the second term, the basic
instruction a is executed first, if the execution of a produces the reply T, the
basic instruction b is executed next and after that execution terminates, and
if the execution of a produces the reply F, inaction occurs. On execution of
the instruction sequence denoted by the third term, the basic instruction a is
executed first, and after that the basic instructions b and c are executed in that
order repeatedly forever.

Closed PGA terms are considered equal if they represent the same instruction
sequence. The axioms for instruction sequence equivalence are given in Table 1.
In this table, n stands for an arbitrary positive natural number. The term tn,

2 An eventually periodic infinite sequence is an infinite sequence with only finitely
many distinct suffixes.
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Table 1. Axioms of PGA

(x ; y) ; z = x ; (y ; z) PGA1

(xn)ω = xω PGA2

xω ; y = xω PGA3

(x ; y)ω = x ; (y ; x)ω PGA4

where t is a PGA term, is defined by induction on n as follows: t1 = t and
tn+1 = t ; tn. The unfolding equation xω = x ; xω is derived as follows:

xω = (x ; x)ω by PGA2

= x ; (x ; x)ω by PGA4

= x ; xω by PGA2 .

Each closed PGA term is derivably equal to a term in canonical form, i.e. a
term of the form t or t ; t′

ω
, where t and t′ are closed PGA terms in which the

repetition operator does not occur. For example:

(a ; b)ω ; c ; ! = a ; (b ; a)ω ,

+a ; (#4 ; b ; (−c ; #5 ; !)ω)ω = +a ; #4 ; b ; (−c ; #5 ; !)ω .

The initial models of PGA are considered its standard models. Henceforth,
we restrict ourselves to the initial model IPGA of PGA in which:

– the domain is the set of all non-empty, finite and eventually periodic infinite
sequences over the set I of primitive instructions;

– the operation associated with ; is concatenation;
– the operation associated with ω is the operation ω defined as follows:

• if F is a finite sequence over I, then Fω is the unique eventually periodic
infinite sequence F ′ such that F concatenated n times with itself is a
proper prefix of F ′ for each n ∈ N;

• if F is an eventually periodic infinite sequence over I, then Fω is F .

In the sequel, we use the term instruction sequence for the elements of the
domain of IPGA, and we denote the interpretations of the constants and opera-
tors of PGA in IPGA by the constants and operators themselves. IPGA is loosely
called the initial model of PGA because all initial models of PGA are isomorphic,
i.e. there exist bijective homomorphism between them (see e.g. [37,40]).

3 Basic Thread Algebra

In this section, we review BTA (Basic Thread Algebra). BTA is an algebraic
theory of mathematical objects that represent in a direct way the behaviours
produced by instruction sequences under execution. The objects concerned are
called threads.

In BTA, it is assumed that a fixed but arbitrary set A of basic actions, with
tau /∈ A, has been given. Besides, tau is a special basic action. We write Atau for
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Table 2. Axiom of BTA

x E tauD y = x E tauD x T1

A ∪ {tau}. A thread performs basic actions in a sequential fashion. Upon each
basic action performed, a reply from an execution environment determines how
it proceeds. The possible replies are the Boolean values T and F. Performing tau,
which is considered performing an internal action, always leads to the reply T.

Although BTA is one-sorted, we make this sort explicit. The reason for this
is that we will extend BTA with an additional sort in Section 13.

BTA has one sort: the sort T of threads. To build terms of sort T, it has the
following constants and operators:

– the inaction constant D :T;
– the termination constant S :T;
– for each a ∈ Atau, the binary postconditional composition operator EaD :

T×T → T.

We assume that there are infinitely many variables of sort T, including x, y, z.
Terms of sort T are built as usual. We use infix notation for the postconditional
composition operators. We introduce basic action prefixing as an abbreviation:
a ◦ t, where a ∈ Atau and t is a term of sort T, abbreviates tEaD t.

The thread denoted by a closed term of the form tEaD t′ will first perform
a, and then proceed as the thread denoted by t if the reply from the execution
environment is T and proceed as the thread denoted by t′ if the reply from
the execution environment is F. The threads denoted by D and S will become
inactive and terminate, respectively. Some simple examples of closed BTA terms
are

a ◦ (SE bD D) , (b ◦ S)EaD D .

The first term denotes the thread that first performs basic action a, next per-
forms basic action b, if the reply from the execution environment on performing
b is T, after that terminates, and if the reply from the execution environment
on performing b is F, after that becomes inactive. The second term denotes the
thread that first performs basic action a, if the reply from the execution envi-
ronment on performing a is T, next performs the basic action b and after that
terminates, and if the reply from the execution environment on performing a is
F, next becomes inactive.

BTA has only one axiom. This axiom is given in Table 2. Using the abbrevia-
tion introduced above, axiom T1 can be written as follows: xE tauDy = tau◦x.

Notice that each closed BTA term denotes a thread that will become inactive
or terminate after it has performed finitely many actions. Infinite threads can
be described by guarded recursion.

A guarded recursive specification over BTA is a set of recursion equations
E = {X = tX | X ∈ V }, where V is a set of variables of sort T and each tX is a
BTA term of the form D, S or tEaD t′ with t and t′ that contain only variables
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Table 3. RDP, RSP and AIP

〈X|E〉 = 〈tX |E〉 if X = tX ∈ E RDP

E ⇒ X = 〈X|E〉 if X ∈ V(E) RSP

∧
n≥0

πn(x) = πn(y) ⇒ x = y AIP

π0(x) = D P0

πn+1(S) = S P1

πn+1(D) = D P2

πn+1(xEaD y) = πn(x)EaD πn(y) P3

from V . We write V(E) for the set of all variables that occur in E. We are
only interested in models of BTA in which guarded recursive specifications have
unique solutions, such as the projective limit model of BTA presented in [5].

A simple example of a guarded recursive specification is the one consisting
of following two equations:

x = xEaD y , y = y E bD S .

The x-component of the solution of this guarded recursive specification is the
thread that first performs basic action a repeatedly until the reply from the exe-
cution environment on performing a is F, next performs basic action b repeatedly
until the reply from the execution environment on performing b is F, and after
that terminates.

For each guarded recursive specification E and each X ∈ V(E), we intro-
duce a constant 〈X |E〉 of sort T standing for the X-component of the unique
solution of E. We write 〈tX |E〉 for tX with, for all Y ∈ V(E), all occurrences
of Y in tX replaced by 〈Y |E〉. The axioms for the constants for the components
of the solutions of guarded recursive specifications are RDP (Recursive Defini-
tion Principle) and RSP (Recursive Specification Principle), which are given in
Table 3. RDP and RSP are actually axiom schemas in which X stands for an
arbitrary variable, tX stands for an arbitrary BTA term, and E stands for an
arbitrary guarded recursive specification over BTA. Side conditions are added to
restrict what X , tX and E stand for. The equations 〈X |E〉 = 〈tX |E〉 for a fixed
E express that the constants 〈X |E〉 make up a solution of E. The conditional
equations E ⇒ X = 〈X |E〉 express that this solution is the only one.

RDP and RSP are means to prove closed terms that denote the same infinite
thread equal. We introduce AIP (Approximation Induction Principle) as an ad-
ditional means to prove closed terms that denote the same infinite thread equal.
AIP is based on the view that two threads are identical if their approximations
up to any finite depth are identical. The approximation up to depth n of a thread
is obtained by cutting it off after it has performed n actions. AIP is also given
in Table 3. Here, approximation up to depth n is phrased in terms of the unary
projection operator πn : T → T. The axioms for the projection operators are
axioms P0–P3 in Table 3. P1–P3 are actually axiom schemas in which a stands
for arbitrary basic action and n stands for an arbitrary natural number.

We write BTA+REC for BTA extended with the constants for the compo-
nents of the solutions of guarded recursive specifications, the projection operators
and the axioms RDP, RSP, AIP and P0–P3.
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The minimal models of BTA+REC are considered its standard models.3 Re-
call that a model of an algebraic theory is minimal iff all elements of the domains
associated with the sorts of the theory can be denoted by closed terms. Hence-
forth, we restrict ourselves to the minimal models of BTA+REC. We assume
that a minimal model MBTA+REC of BTA+REC has been given.

In the sequel, we use the term thread for the elements of the domain of
MBTA+REC, and we denote the interpretations of constants and operators in
MBTA+REC by the constants and operators themselves.

Let T be a thread. Then the set of states or residual threads of T , written
Res(T ), is inductively defined as follows:

– T ∈ Res(T );
– if T ′ EaD T ′′ ∈ Res(T ), then T ′ ∈ Res(T ) and T ′′ ∈ Res(T ).

Let T be a thread and letA′ ⊆ Atau. Then T is regular over A′ if the following
conditions are satisfied:

– Res(T ) is finite;
– for all T ′, T ′′ ∈ Res(T ) and a ∈ Atau, T

′ EaD T ′′ ∈ Res(T ) implies a ∈ A′.

We say that T is regular if T is regular over Atau.
For example, the x-component of the solution of the guarded recursive spec-

ification consisting of the following two equations:

x = a ◦ y , y = (c ◦ y)E bD (xEdD S)

has five states and is regular over any A′ ⊆ Atau for which {a, b, c, d} ⊆ A′.
We will make use of the fact that being a regular thread coincides with being

a component of the solution of a finite guarded recursive specification in which
the right-hand sides of the recursion equations are of a restricted form.

A linear recursive specification over BTA is a guarded recursive specification
E = {X = tX | X ∈ V } over BTA, where each tX is a term of the form D, S or
Y EaD Z with Y, Z ∈ V .

Proposition 1. Let T be a thread and let A′ ⊆ Atau. Then T is regular over A′

iff there exists a finite linear recursive specification E over BTA in which only

basic actions from A′ occur such that T is a component of the solution of E.

Proof. The implication from left to right is proved as follows. Because T is
regular, Res(T ) is finite. Hence, there are finitely many threads T1, . . . , Tn, with
T = T1, such that Res(T ) = {T1, . . . , Tn}. Now T is the x1-component of the
solution of the linear recursive specification consisting of the following equations:

xi =







S if Ti = S

D if Ti = D

xj EaD xk if Ti = Tj EaD Tk

for all i ∈ [1, n] .

3 A minimal model of an algebraic theory is a model of which no proper subalgebra
is a model as well.
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Table 4. Defining equations for thread extraction operation

|a| = a ◦ D

|a ; F | = a ◦ |F |

|+a| = a ◦ D

|+a ; F | = |F |EaD |#2 ; F |

|−a| = a ◦ D

|−a ; F | = |#2 ; F |EaD |F |

|#l| = D

|#0 ; F | = D

|#1 ; F | = |F |

|#l + 2 ; u| = D

|#l + 2 ; u ; F | = |#l + 1 ; F |

|!| = S

|! ; F | = S

Because T is regular over A′, only basic actions from A′ occur in the linear
recursive specification constructed in this way.

The implication from right to left is proved as follows. Thread T is a com-
ponent of the unique solution of a finite linear specification in which only basic
actions from A′ occur. This means that there are finitely many threads T1, . . . ,
Tn, with T = T1, such that for every i ∈ [1, n], Ti = S, Ti = D or Ti = TjEaDTk

for some j, k ∈ [1, n] and a ∈ A′. Consequently, T ′ ∈ Res(T ) iff T ′ = Ti for some
i ∈ [1, n] and moreover T ′ EaD T ′′ ∈ Res(T ) only if a ∈ A′. Hence, Res(T ) is
finite and T is regular over A′. ⊓⊔

Remark 1. A structural operational semantics of BTA+REC and a bisimulation
equivalence based on it can be found in e.g. [10]. The quotient algebra of the
algebra of closed terms of BTA+REC by this bisimulation equivalence is one of
the minimal models of BTA+REC.

4 Thread Extraction

In this short section, we use BTA+REC to make mathematically precise which
threads are produced by instruction sequences under execution.

For that purpose, A is taken such that A ⊇ A is satisfied.
The thread extraction operation | | assigns a thread to each instruction se-

quence. The thread extraction operation is defined by the equations given in
Table 4 (for a ∈ A, l ∈ N, and u ∈ I) and the rule that |#l ; F | = D if #l is the
beginning of an infinite jump chain. This rule is formalized in e.g. [12].

Let F be an instruction sequence and T be a thread. Then we say that F
produces T if |F | = T . For example,

a ; b ; c produces a ◦ b ◦ c ◦ D ,

+a ; #2 ; #3 ; b ; ! produces (b ◦ S)EaD D ,

+a ;−b ; c ; ! produces (SE bD (c ◦ S))EaD (c ◦ S) ,

+a ; #2 ; (b ; #2 ; c ; #2)ω produces DEaD (b ◦ D) .

In the case of instruction sequences that are not finite, the produced threads can
be described as components of the solution of a guarded recursive specification.
For example, the infinite instruction sequence

(a ; +b)ω
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produces the x-component of the solution of the guarded recursive specification
consisting of following two equations:

x = a ◦ y , y = xE bD y

and the infinite instruction sequence

a ; (+b ; #2 ; #3 ; c ; #4 ;−d ; ! ; a)ω

produces the x-component of the solution of the guarded recursive specification
consisting of following two equations:

x = a ◦ y , y = (c ◦ y)E bD (xEdD S) .

5 Algebra of Communicating Processes

In this section, we review ACPτ (Algebra of Communicating Processes with ab-
straction). This algebraic theory of processes will among other things be used
to make precise what processes are produced by the threads denoted by closed
terms of BTA+REC. For a comprehensive overview of ACPτ , the reader is re-
ferred to [3,24].

In ACPτ , it is assumed that a fixed but arbitrary set A of atomic actions,
with τ, δ /∈ A, and a fixed but arbitrary commutative and associative function
| :A∪{τ}×A∪{τ} → A∪{δ}, with τ | e = δ for all e ∈ A∪{τ}, have been given.
The function | is regarded to give the result of synchronously performing any two
atomic actions for which this is possible, and to give δ otherwise. In ACPτ , τ is a
special atomic action, called the silent step. The act of performing the silent step
is considered unobservable. Because it would otherwise be observable, the silent
step is considered an atomic action that cannot be performed synchronously
with other atomic actions. We write Aτ for A ∪ {τ}.

ACPτ has the following constants and operators:

– for each e ∈ A, the atomic action constant e ;
– the silent step constant τ ;
– the inaction constant δ ;
– the binary alternative composition operator + ;
– the binary sequential composition operator · ;
– the binary parallel composition operator ‖ ;
– the binary left merge operator ⌊⌊ ;
– the binary communication merge operator | ;
– for each H ⊆ A, the unary encapsulation operator ∂H ;
– for each I ⊆ A, the unary abstraction operator τI .

We assume that there are infinitely many variables, including x, y, z. Terms are
built as usual. We use infix notation for the binary operators. The precedence
conventions used with respect to the operators of ACPτ are as follows: + binds
weaker than all others, · binds stronger than all others, and the remaining op-
erators bind equally strong.

Let t and t′ be closed ACPτ terms, e ∈ A, and H, I ⊆ A. Intuitively, the
constants and operators to build ACPτ terms can be explained as follows:

11



– the process denoted by e first performs atomic action e and next terminates
successfully;

– the process denoted by τ performs an unobservable atomic action and next
terminates successfully;

– the process denoted by δ can neither perform an atomic action nor terminate
successfully;

– the process denoted by t + t′ behaves either as the process denoted by t or
as the process denoted by t′, but not both;

– the process denoted by t · t′ first behaves as the process denoted by t and on
successful termination of that process it next behaves as the process denoted
by t′;

– the process denoted by t ‖ t′ behaves as the process that proceeds with the
processes denoted by t and t′ in parallel;

– the process denoted by t ⌊⌊ t′ behaves the same as the process denoted by
t ‖ t′, except that it starts with performing an atomic action of the process
denoted by t;

– the process denoted by t | t′ behaves the same as the process denoted by t‖ t′,
except that it starts with performing an atomic action of the process denoted
by t and an atomic action of the process denoted by t′ synchronously;

– the process denoted by ∂H(t) behaves the same as the process denoted by t,
except that atomic actions from H are blocked;

– the process denoted by τI(t) behaves the same as the process denoted by
t, except that atomic actions from I are turned into unobservable atomic
actions.

The operators ⌊⌊ and | are of an auxiliary nature. They are needed to axiomatize
ACPτ .

The axioms of ACPτ are given in Table 5. CM2–CM3, CM5–CM7, C1–C4,
D1–D4 and TI1–TI4 are actually axiom schemas in which a, b and c stand for
arbitrary constants of ACPτ , and H and I stand for arbitrary subsets of A.
ACPτ is extended with guarded recursion like BTA.

A recursive specification over ACPτ is a set of recursion equations E =
{X = tX | X ∈ V }, where V is a set of variables and each tX is an ACPτ term
containing only variables from V . We write V(E) for the set of all variables that
occur in E. Let t be an ACPτ term without occurrences of abstraction operators
containing a variable X . Then an occurrence of X in t is guarded if t has a
subterm of the form e · t′ where e ∈ A and t′ is a term containing this occurrence
ofX . Let E be a recursive specification over ACPτ . Then E is a guarded recursive

specification if, in each equation X = tX ∈ E: (i) abstraction operators do not
occur in tX and (ii) all occurrences of variables in tX are guarded or tX can be
rewritten to such a term using the axioms of ACPτ in either direction and/or
the equations in E except the equation X = tX from left to right. We are only
interested models of ACPτ in which guarded recursive specifications have unique
solutions, such as the models of ACPτ presented in [3].

For each guarded recursive specification E and each X ∈ V(E), we introduce
a constant 〈X |E〉 standing for the X-component of the unique solution of E. We

12



Table 5. Axioms of ACPτ

x+ y = y + x A1

(x+ y) + z = x+ (y + z) A2

x+ x = x A3

(x+ y) · z = x · z + y · z A4

(x · y) · z = x · (y · z) A5

x+ δ = x A6

δ · x = δ A7

x ‖ y = x ⌊⌊ y + y ⌊⌊ x+ x | y CM1

a ⌊⌊ x = a · x CM2

a · x ⌊⌊ y = a · (x ‖ y) CM3

(x+ y) ⌊⌊ z = x ⌊⌊ z + y ⌊⌊ z CM4

a · x | b = (a | b) · x CM5

a | b · x = (a | b) · x CM6

a · x | b · y = (a | b) · (x ‖ y) CM7

(x+ y) | z = x | z + y | z CM8

x | (y + z) = x | y + x | z CM9

x · τ = x B1

x · (τ · (y + z) + y) = x · (y + z) B2

∂H(a) = a if a /∈ H D1

∂H(a) = δ if a ∈ H D2

∂H(x+ y) = ∂H(x) + ∂H(y) D3

∂H(x · y) = ∂H(x) · ∂H(y) D4

τI(a) = a if a /∈ I TI1

τI(a) = τ if a ∈ I TI2

τI(x+ y) = τI(x) + τI(y) TI3

τI(x · y) = τI(x) · τI(y) TI4

a | b = b | a C1

(a | b) | c = a | (b | c) C2

δ | a = δ C3

τ | a = δ C4

Table 6. RDP, RSP and AIP

〈X|E〉 = 〈tX |E〉 if X = tX ∈ E RDP

E ⇒ X = 〈X|E〉 if X ∈ V(E) RSP

∧
n≥0

πn(x) = πn(y) ⇒ x = y AIP

π0(a) = δ PR1

πn+1(a) = a PR2

π0(a · x) = δ PR3

πn+1(a · x) = a · πn(x) PR4

πn(x+ y) = πn(x) + πn(y) PR5

πn(τ ) = τ PR6

πn(τ · x) = τ · πn(x) PR7

write 〈tX |E〉 for tX with, for all Y ∈ V(E), all occurrences of Y in tX replaced
by 〈Y |E〉. The axioms for the constants for the components of the solutions of
guarded recursive specifications are RDP and RSP, which are given in Table 6.
RDP and RSP are actually axiom schemas in which X stands for an arbitrary
variable, tX stands for an arbitrary ACPτ term, and E stands for an arbitrary
guarded recursive specification over ACPτ . Side conditions are added to restrict
what X , tX and E stand for.

Closed terms of ACPτ extended with constants for the components of the
solutions of guarded recursive specifications that denote the same process cannot
always be proved equal by means of the axioms of ACPτ together with RDP
and RSP. We introduce AIP to remedy this. AIP is based on the view that two
processes are identical if their approximations up to any finite depth are identical.
The approximation up to depth n of a process behaves the same as that process,
except that it cannot perform any further atomic action after n atomic actions
have been performed. AIP is given in Table 6. Here, approximation up to depth
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n is phrased in terms of a unary projection operator πn. The axioms for the
projection operators are axioms PR1–PR7 in Table 6. PR1–PR7 are actually
axiom schemas in which a stands for arbitrary constants of ACPτ different from
τ and n stands for an arbitrary natural number.

We write ACPτ+REC for ACPτ extended with the constants for the com-
ponents of the solutions of guarded recursive specifications, the projection oper-
ators, and the axioms RDP, RSP, AIP and PR1–PR7.

The minimal models of ACPτ+REC are considered its standard models.
Henceforth, we restrict ourselves to the minimal models of ACPτ+REC. We
assume that a fixed but arbitrary minimal model MACPτ+REC of ACPτ+REC
has been given.

From Section 12, we will sometimes assume that CFAR (Cluster Fair Ab-
straction Rule) is valid in MACPτ+REC. CFAR says that a cluster of silent steps
that has exits can be eliminated if all exits are reachable from everywhere in the
cluster. A precise formulation of CFAR can be found in [24].

We use the term process for the elements from the domain of MACPτ+REC,
and we denote the interpretations of constants and operators in MACPτ+REC

by the constants and operators themselves.
Let P be a process. Then the set of states or subprocesses of P , written

Sub(P ), is inductively defined as follows:

– P ∈ Sub(P );
– if e · P ′ ∈ Sub(P ), then P ′ ∈ Sub(P );
– if e · P ′ + P ′′ ∈ Sub(P ), then P ′ ∈ Sub(P ).

Let P be a process and let A′ ⊆ Aτ . Then P is regular over A′ if the following
conditions are satisfied:

– Sub(P ) is finite;
– for all P ′ ∈ Sub(P ) and e ∈ Aτ , e · P ′ ∈ Sub(P ) implies e ∈ A′;
– for all P ′, P ′′ ∈ Sub(P ) and e ∈ Aτ , e · P

′ + P ′′ ∈ Sub(P ) implies e ∈ A′.

We say that P is regular if P is regular over Aτ .
We will make use of the fact that being a regular process over A coincides with

being a component of the solution of a finite guarded recursive specification in
which the right-hand sides of the recursion equations are linear terms. Linearity
of terms is inductively defined as follows:

– δ is linear;
– if e ∈ Aτ , then e is linear;
– if e ∈ Aτ and X is a variable, then e ·X is linear;
– if t and t′ are linear, then t+ t′ is linear.

A linear recursive specification over ACPτ is a guarded recursive specification
E = {X = tX | X ∈ V } over ACPτ , where each tX is linear.

Proposition 2. Let P be a process and let A′ ⊆ A. Then P is regular over A′

iff there exists a finite linear recursive specification E over ACPτ in which only

atomic actions from A′ occur such that P is a component of the solution of E.
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Proof. The proof follows the same line as the proof of Proposition 1. ⊓⊔

Remark 2. Proposition 2 is concerned with processes that are regular over A. We
can also prove that being a regular process over Aτ coincides with being a com-
ponent of the solution of a finite linear recursive specification over ACPτ if we as-
sume that the cluster fair abstraction rule [24] holds in the model MACPτ+REC.
However, we do not need this more general result.

We will write
∑

i∈S ti, where S = {i1, . . . , in} and ti1 , . . . , tin are ACPτ

terms, for ti1 + . . .+ tin . The convention is that
∑

i∈S ti stands for δ if S = ∅. We
will often write X for 〈X |E〉 if E is clear from the context. It should be borne
in mind that, in such cases, we use X as a constant.

6 Program-Service Interaction Instructions

Recall that, in PGA, it is assumed that a fixed but arbitrary set A of basic
instructions has been given. In the sequel, we will make use a version of PGA in
which the following additional assumptions relating to A are made:

– a fixed but arbitrary finite set F of foci has been given;
– a fixed but arbitrary finite set M of methods has been given;
– A = {f.m | f ∈ F ,m ∈ M}.

Each focus plays the role of a name of some service provided by an execution
environment that can be requested to process a command. Each method plays
the role of a command proper. Executing a basic instruction of the form f.m is
taken as making a request to the service named f to process command m.

A basic instruction of the form f.m is called a program-service interaction

instruction. Recall that, in BTA, it is assumed that a fixed but arbitrary set A
of basic actions has been given. In the sequel, we will make use of a version of
BTA in which A = A. A basic action of the form f.m is called a thread-service

interaction action.
The intuition concerning program-service interaction instructions given above

will be made fully precise in Section 7, using ACP.

7 Process Extraction

In this section, we use ACPτ+REC to make mathematically precise which pro-
cesses are produced by threads.

For that purpose, A and | are taken such that the following conditions are
satisfied:4

A ⊇ {sf(d) | f ∈ F , d ∈ M∪ B} ∪ {rf(d) | f ∈ F , d ∈ M∪ B} ∪ {stop, i}

4 As usual, we will write B for the set {T, F}.
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Table 7. Defining equations for process extraction operation

|S|c = stop

|D|c = δ

|T E tauD T ′|c = i · i · |T |c

|T E f.mD T ′|c = sf (m) · (rf (T) · |T |
c + rf (F) · |T

′|c)

and for all f ∈ F , d ∈ M∪ B, and e ∈ A:

sf(d) | rf (d) = i ,

sf(d) | e = δ if e 6= rf(d) ,

e | rf (d) = δ if e 6= sf (d) ,

stop | e = δ if e 6= stop ,

i | e = δ .

Actions of the forms sf (d) and rf (d) are send and receive actions, respectively,
stop is an explicit termination action, and i is a concrete internal action.

The process extraction operation | | assigns a process to each thread. The
process extraction operation | | is defined by |T | = τ{stop}(|T |

c), where | |c is
defined by the equations given in Table 7 (for f ∈ F and m ∈ M).

Let P be a process, T be a thread, and F be an instruction sequence. Then
we say that T produces P if τ · τI(|T |) = τ · P for some I ⊆ A, and we say that
F produces P if |F | produces P .

Notice that two atomic actions are involved in performing a basic action of
the form f.m: one for sending a request to process command m to the service
named f and another for receiving a reply from that service upon completion
of the processing. Notice also that, for each thread T , |T |c is a process that
in the event of termination performs a special termination action just before
termination. Abstraction from this termination action yields the process denoted
by |T |.

The process extraction operation preserves the axioms of BTA+REC. Before
we make this fully precise, we have a closer look at the axioms of BTA+REC.

A proper axiom is an equation or a conditional equation. In Table 3, we
do not find proper axioms. Instead of proper axioms, we find axiom schemas
without side conditions and axiom schemas with side conditions. The axioms of
BTA+REC are obtained by replacing each axiom schema by all its instances.

Henceforth, we write α∗, where α is a valuation of variables in MBTA+REC,
for the unique homomorphic extension of α to terms of BTA+REC. Moreover,
we identify t1 = t2 and ∅ ⇒ t1 = t2.

Proposition 3. Let E ⇒ t1 = t2 be an axiom of BTA+REC, and let α be

a valuation of variables in MBTA+REC. Then |α∗(t1)| = |α∗(t2)| if |α∗(t′1)| =
|α∗(t′2)| for all t′1 = t′2 ∈ E.

Proof. The proof is trivial for the axiom of BTA and the axioms RDP and
RSP. Using the equation |πn(T )|c = π2n(|T |c), the proof is also trivial for the
axioms AIP and P0–P3. This equation is easily proved by induction on n and
case distinction on the structure of T in both the basis step and the inductive
step. ⊓⊔
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Remark 3. Proposition 3 would go through if no abstraction of the above-men-
tioned special termination action was made. Notice further that ACPτ without
the silent step constant and the abstraction operator, better known as ACP,
would suffice if no abstraction of the special termination action was made.

8 A Simple Protocol for Remote Instruction Processing

In this section and the next section, we consider two protocols for remote in-
struction processing. The simple protocol described in this section is presumably
the most straightforward protocol for remote instruction processing that can be
achieved. Therefore, we consider it a suitable starting-point for the design of
more advanced protocols for remote instruction processing – such as the one de-
scribed in the next section. Before this simple protocol is described, an extension
of ACP is introduced to simplify the description of the protocols.

The following extension of ACP from [2] will be used: the non-branching
conditional operator :→ over B. The expression b :→ p, is to be read as if b
then p else δ. The additional axioms for the non-branching conditional operator
are

T :→ x = x and F :→ x = δ .

In the sequel, we will use expressions whose evaluation yields Boolean values
instead of the constants T and F. Because the evaluation of the expressions
concerned are not dependent on the processes denoted by the terms in which they
occur, we will identify each such expression with the constant for the Boolean
value that its evaluation yields. Further justification of this can be found in [9,
Section 9].

The protocols concern systems whose main components are an instruction

stream generator and an instruction stream execution unit. The instruction
stream generator generates different instruction streams for different threads.
This is accomplished by starting it in different states. The general idea of the
protocols is that:

– the instruction stream generator generating an instruction stream for a
thread T EaD T ′ sends a to the instruction stream execution unit;

– on receipt of a, the instruction stream execution unit gets the execution of
a done and sends the reply produced to the instruction stream generator;

– on receipt of the reply, the instruction stream generator proceeds with gen-
erating an instruction stream for T if the reply is T and for T ′ otherwise.

In the case where the thread is S or D, the instruction stream generator sends a
special instruction (stop or dead) and the instruction stream execution unit does
not send back a reply.

In this section, we consider a very simple protocol for remote instruction
processing that makes no effort to keep the execution unit busy without inter-
mission.
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In the protocols, the generation of an instruction stream start from the thread
produced by an instruction sequence under execution instead of the instruction
sequence itself. It follows immediately from the definition of the thread extraction
operation that the threads produced by instruction sequences under execution
are regular threads. Therefore, we restrict ourselves to regular threads.

We write I for the set A∪{stop, dead}. Elements from I will loosely be called
instructions. The restriction of the domain of MBTA+REC to the regular threads
will be denoted by RT .

The functions act , thrt , and thrf defined below give, for each thread T dif-
ferent from S and D, the basic action that T will perform first, the thread with
which it will proceed if the reply from the execution environment is T, and the
thread with which it will proceed if the reply from the execution environment is
F, respectively. The functions act :RT → I, thrt :RT → RT , and thrf :RT → RT
are defined as follows:

act(S) = stop ,

act(D) = dead ,

act(T EaD T ′) = a ,

thrt(S) = D ,

thrt(D) = D ,

thrt(T EaD T ′) = T ,

thrf (S) = D ,

thrf (D) = D ,

thrf (T EaD T ′) = T ′ .

The function nxt0 defined below is used by the instruction stream generator
to distinguish when it starts with handling the instruction to be executed next
between the different instructions that it may be. The function nxt0 :I×RT → B

is defined as follows:

nxt0 (a, T ) =

{

T if act(T ) = a

F if act(T ) 6= a .

For the purpose of describing the simple protocol outlined above in ACPτ ,
A and | are taken such that, in addition to the conditions mentioned at the
beginning of Section 7, the following conditions are satisfied:

A ⊇ {si(d) | i ∈ {1, 2}, d ∈ I} ∪ {ri(d) | i ∈ {1, 2}, d ∈ I}

∪ {si(r) | i ∈ {3, 4}, r ∈ B} ∪ {ri(r) | i ∈ {3, 4}, r ∈ B} ∪ {j}

and for all i ∈ {1, 2}, j ∈ {3, 4}, d ∈ I, r ∈ B, and e ∈ A:

si(d) | ri(d) = j ,

si(d) | e = δ if e 6= ri(d) ,

e | ri(d) = δ if e 6= si(d) ,

j | e = δ .

sj(r) | rj(r) = j ,

sj(r) | e = δ if e 6= rj(r) ,

e | rj(r) = δ if e 6= sj(r) ,

Notice that the set B is the set of replies.
Let T ∈ RT . Then the process representing the simple protocol for remote

instruction processing with regard to thread T is described by

∂H(ISG0
T ‖ IMTC 0 ‖ RTC 0 ‖ ISEU 0 ) ,
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where the process ISG0
T is recursively specified by the following equation:

ISG0
T =

∑

f.m∈A

nxt0 (f.m, T ) :→

s1(f.m) · (r4(T) · ISG0
thrt(T) + r4(F) · ISG0

thrf (T))

+ nxt0 (stop, T ) :→ s1(stop) + nxt0 (dead, T ) :→ s1(dead) ,

the process IMTC 0 is recursively specified by the following equation:

IMTC 0 =
∑

d∈I

r1(d) · s2(d) · IMTC 0 ,

the process RTC 0 is recursively specified by the following equation:

RTC 0 =
∑

r∈B

r3(r) · s4(r) ·RTC 0 ,

the process ISEU 0 is recursively specified by the following equation:

ISEU 0 =
∑

f.m∈A

r2(f.m) · sf(m) · (rf (T) · s3(T) + rf (F) · s3(F)) · ISEU
0

+ r2(stop) + r2(dead) · δ

and

H = {si(d) | i ∈ {1, 2}, d ∈ I} ∪ {ri(d) | i ∈ {1, 2}, d ∈ I}

∪ {si(r) | i ∈ {3, 4}, r ∈ B} ∪ {ri(r) | i ∈ {3, 4}, r ∈ B} .

ISG0
T is the instruction stream generator for thread T , IMTC 0 is the trans-

mission channel for messages containing instructions, RTC 0 is the transmission
channel for replies, and ISEU 0 is the instruction stream execution unit.

If we abstract from all communications via the transmission channels, then
the process denoted by ∂H(ISG0

T ‖ IMTC 0 ‖ RTC 0 ‖ ISEU 0 ) and the process
|T | are equal modulo an initial silent step.

Theorem 1. For each T ∈ RT , τ · τ{j}(∂H(ISG0
T ‖ IMTC 0 ‖RTC 0 ‖ ISEU 0 ))

denotes the process τ · |T |.

Proof. Let T ∈ RT . Moreover, let E be a finite linear recursive specification over
ACPτ with X ∈ V(E) such that |T | is the X-component of the solution of E
in MACPτ+REC. By Proposition 2 and the definition of the process extraction
operation, it is sufficient to prove that

τ · τ{j}(∂H(ISG0
T ‖ IMTC 0 ‖ RTC 0 ‖ ISEU 0 )) = τ · 〈X |E〉 .

By AIP, it is sufficient to prove that for all n ≥ 0:

πn(τ · τ{j}(∂H(ISG0
T ‖ IMTC 0 ‖ RTC 0 ‖ ISEU 0 ))) = πn(τ · 〈X |E〉) .

This is easily proved by induction on n and in the inductive step by case distinc-
tion on the structure of T , using the axioms of ACPτ and RDP and in addition
the fact that |T ′| ∈ Sub(|T |) for all T ′ ∈ Res(T ) and the fact that there exists
an bijection between Sub(|T |) and V(E). ⊓⊔
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9 A More Complex Protocol

In this section, we consider a more complex protocol for remote instruction pro-
cessing that makes an effort to keep the execution unit busy without intermission.

The specifics of the more complex protocol considered here are that:

– the instruction stream generator may run ahead of the instruction stream
execution unit by not waiting for the receipt of the replies resulting from the
execution of instructions that it has sent earlier;

– to ensure that the instruction stream execution unit can handle the run-
ahead, each instruction sent by the instruction stream generator is accom-
panied with the sequence of replies after which the instruction must be exe-
cuted;

– to correct for replies that have not yet reached the instruction stream gen-
erator, each instruction sent is also accompanied with the number of replies
received since the last sending of an instruction.

This protocol is reminiscent of an instruction pre-fetching mechanism as found in
pipelined processors (see e.g. [26]), but its range of application is not restricted
to pipelined instruction processing.

We write B
≤n, where n ∈ N, for the set {u ∈ B

∗ | len(u) ≤ n}.5

It is assumed that a natural number ℓ has been given. The number ℓ is
taken for the maximal number of steps that the instruction stream generator
may run ahead of the instruction stream execution unit. Whether the execution
unit can be kept busy without intermission with the given ℓ depends on the
actual execution times of instructions and the actual transmission times over the
transmission channels involved. If the execution unit can be kept busy without
intermission with the given ℓ, then it is useless to increase ℓ.

The set IM of instruction messages is defined as follows:

IM = [0, ℓ]× B
≤ℓ × I .

In an instruction message (n, u, a) ∈ IM:

– n is the number of replies that are acknowledged by the message;
– u is the sequence of replies after which the instruction that is part of the

message must be executed;
– a is the instruction that is part of the message.

The instruction stream generator sends instruction messages via an instruction
message transmission channel to the instruction stream execution unit. We refer
to a succession of transmitted instruction messages as an instruction stream. An
instruction stream is dynamic by nature, in contradistinction with an instruction
sequence.

5 As usual, we write D∗ for the set of all finite sequences with elements from set D
and len(σ) for the length of finite sequence σ. Moreover, we write ǫ for the empty
sequence, d for the sequence having d as sole element, σσ′ for the concatenation of
finite sequences σ and σ′, and tl(σ) for the tail of finite sequence σ.
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The set SISG of instruction stream generator states is defined as follows:

SISG = [0, ℓ]× P(B≤ℓ+1 ×RT ) .

In an instruction stream generator state (n,R) ∈ SISG:

– n is the number of replies that has been received by the instruction stream
generator since the last acknowledgement of received replies;

– in each (u, T ) ∈ R, u is the sequence of replies after which the thread T must
be performed.

The functions updpm and updcr defined below are used to model the updates of
the instruction stream generator state on producing a message and consuming
a reply, respectively. The function updpm : (B≤ℓ ×RT )× SISG → SISG is defined
as follows:

updpm((u, T ), (n,R)) =
{

(0, (R \ {(u, T )}) ∪ {(uT, thrt(T )), (uF, thrf (T ))}) if act(T ) ∈ A

(0, (R \ {(u, T )})) if act(T ) /∈ A .

The function updcr : B× SISG → SISG is defined as follows:

updcr(r, (n,R)) = (n+ 1, {(u, T ) | (ru, T ) ∈ R}) .

The function sel defined below is used to model the selection of the sequence of
replies and the instruction that will be part of the next message produced by the
instruction stream generator. The function sel : P(B≤ℓ ×RT ) → P(B≤ℓ ×RT )
is defined as follows:

sel(R) = {(u, T ) ∈ R | ∀(v, T ′) ∈ R • len(u) ≤ len(v)} .

Notice that (u, T ) ∈ sel(R) and (v, T ′) ∈ R only if len(u) ≤ len(v). By that
breadth-first run-ahead is enforced. The performance of the protocol would
change considerably if breadth-first run-ahead was not enforced.

The set SISEU of instruction stream execution unit states is defined as follows:

SISEU = [0, ℓ]× P(B≤ℓ × I) .

In an instruction stream execution unit state (n, S) ∈ SISEU:

– n is the number of replies for which the instruction stream execution unit
still has to receive an acknowledgement;

– in each (u, a) ∈ S, u is the sequence of replies after which the instruction a
must be executed.

The functions updcm and updpr defined below are used to model the updates
of the instruction stream execution unit state on consuming a message and pro-
ducing a reply, respectively. The function updcm :IM×SISEU → SISEU is defined
as follows:

updcm((k, u, a), (n, S)) = (n .− k, S ∪ {(tln
.−k(u), a)}) .6
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The function updpr : B× SISEU → SISEU is defined as follows:

updpr(r, (n, S)) = (n+ 1, {(u, a) | (ru, a) ∈ S}) .

The function nxt defined below is used by the instruction stream execution unit
to distinguish when it starts with handling the instruction to be executed next
between the different instructions that it may be. The function nxt :I×P(B≤ℓ×
I) → B is defined as follows:

nxt(a, S) =

{

T if (ǫ, a) ∈ S

F if (ǫ, a) /∈ S .

The instruction stream execution unit sends replies via a reply transmission
channel to the instruction stream generator. We refer to a succession of trans-
mitted replies as a reply stream.

For the purpose of describing the transmission protocol in ACPτ , A and |
are taken such that, in addition to the conditions mentioned at the beginning of
Section 7, the following conditions are satisfied:

A ⊇ {si(d) | i ∈ {1, 2}, d ∈ IM} ∪ {ri(d) | i ∈ {1, 2}, d ∈ IM}

∪ {si(r) | i ∈ {3, 4}, r ∈ B} ∪ {ri(r) | i ∈ {3, 4}, r ∈ B} ∪ {j}

and for all i ∈ {1, 2}, j ∈ {3, 4}, d ∈ IM, r ∈ B, and e ∈ A:

si(d) | ri(d) = j ,

si(d) | e = δ if e 6= ri(d) ,

e | ri(d) = δ if e 6= si(d) ,

j | e = δ .

sj(r) | rj(r) = j ,

sj(r) | e = δ if e 6= rj(r) ,

e | rj(r) = δ if e 6= sj(r) ,

Let T ∈ RT . Then the process representing the more complex protocol for
remote instruction processing with regard to thread T is described by

∂H(ISGT ‖ IMTC ‖ RTC ‖ ISEU ) ,

where the process ISGT is recursively specified by the following equations:

ISGT = ISG ′
(0,{(ǫ,T )}) ,

ISG ′
(n,R) =

∑

(u,T )∈sel(R)

s1((n, u, act(T ))) · ISG
′
updpm((u,T ),(n,R))

+
∑

r∈B

r4(r) · ISG
′
updcr(r,(n,R))

(for every (n,R) ∈ SISG with R 6= ∅) ,

ISG ′
(n,∅) = j

(for every (n, ∅) ∈ SISG) ,

6 As usual, we write i .−j for the monus of i and j, i.e. i .−j = i−j if i ≥ j and i .−j = 0
otherwise. As usual, tln(u) is defined by induction on n as follows: tl0(u) = u and
tl

n+1(u) = tl(tln(u)).
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the process IMTC is recursively specified by the following equation:

IMTC =
∑

d∈IM

r1(d) · s2(d) · IMTC ,

the process RTC is recursively specified by the following equation:

RTC =
∑

r∈B

r3(r) · s4(r) ·RTC ,

the process ISEU is recursively specified by the following equations:

ISEU = ISEU ′
(0,∅) ,

ISEU ′
(n,S) =

∑

d∈IM

r2(d) · ISEU
′
updcm(d,(n,S))

+
∑

f.m∈A

nxt(f.m, S) :→ sf (m) · ISEU ′′
(f,(n,S))

+ nxt(stop, S) :→ j + nxt(dead, S) :→ δ

(for every (n, S) ∈ SISEU) ,

ISEU ′′
(f,(n,S)) =

∑

r∈B

rf(r) · s3(r) · ISEU
′
updpr(r,(n,S))

+
∑

d∈IM

r2(d) · ISEU
′′
(f,updcm(d,(n,S)))

(for every (f, (n, S)) ∈ F × SISEU) ,

and

H = {si(d) | i ∈ {1, 2}, d ∈ IM} ∪ {ri(d) | i ∈ {1, 2}, d ∈ IM}

∪ {si(r) | i ∈ {3, 4}, r ∈ B} ∪ {ri(r) | i ∈ {3, 4}, r ∈ B} .

ISGT is the instruction stream generator for thread T , IMTC is the transmission
channel for instruction messages, RTC is the transmission channel for replies,
and ISEU is the instruction stream execution unit.

The protocol described above has been designed such that, for each T ∈ RT ,
τ · τ{j}(∂H(ISGT ‖ IMTC ‖RTC ‖ ISEU )) denotes the process τ · |T |. We refrain
from presenting a proof of the claim that the protocol satisfies this because this
paper is first and foremost a conceptual paper and the proof is straightforward
but tedious.

The transmission channels IMTC and RTC can keep one instruction message
and one reply, respectively. The protocol has been designed in such a way that
the protocol will also work properly if these channels are replaced by channels
with larger capacity and even by channels with unbounded capacity.

Suppose that the transmission times over the transmission channels are small
compared with the execution times of instructions. Even then the protocol de-
scribed in Section 8 will always have to idle for a short time after the execution
of an instruction, whereas after an initial phase the protocol described above will
never have to idle after the execution of an instruction if the instruction stream
generator may run a few steps ahead of the instruction stream execution unit.
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10 Adaptations of the Protocol

In this section, we discuss some conceivable adaptations of the protocol described
in Section 9. While we were thinking through the details of that protocol, various
variations suggested themselves. The variations discussed below are among the
most salient ones. We think they deserve mention. However, their discussion
is not in depth. The reason for this is that these variations have not yet been
investigated thoroughly.

Consider the case where, for each instruction, it is known what the probability
is with which its execution leads to the reply T. This might give reason to
adapt the protocol described in Section 9. Suppose that the instruction stream
generator states do not only keep the sequences of replies after which threads
must be performed, but also the sequences of instructions involved in producing
those sequences of replies. Then the probability with which the sequences of
replies will happen can be calculated and several conceivable adaptations of the
protocol to this probabilistic knowledge are possible by mere changes in the
selection of the sequence of replies and the instruction that will be part of the
next instruction message produced by the instruction stream generator. Among
those adaptations are:

– restricting the instruction messages that are produced ahead to the ones
where the sequence of replies after which the instruction must be executed
will happen with a probability ≥ 0.50, but sticking to breadth-first run-
ahead;

– restricting the instruction messages that are produced ahead to the ones
where the sequence of replies after which the instruction must be executed
will happen with a probability ≥ 0.95, but not sticking to breadth-first run-
ahead.

At first sight, these adaptations are reminiscent of combinations of an instruction
pre-fetching mechanism and a branch prediction mechanism as found in pipelined
processors (see e.g. [26]). However, usually branch prediction mechanisms make
use of statistics based on recently processed instructions instead of probabilistic
knowledge of the kind used in the protocols sketched above.

Regular threads can be represented in such a way that it is effectively decid-
able whether the two threads with which a thread may proceed after performing
its first action are identical. Consider the case where threads are represented in
the instruction stream generator states in such a way. Then the protocol can be
adapted such that no duplication of instruction messages takes place in the cases
where the two threads with which a thread possibly proceeds after performing
its first action are identical. This can be accomplished by using sequences of
elements from B ∪ {∗}, instead of sequences of elements from B, in instruction
messages, instruction stream generator states, and instruction stream execution
unit states. The occurrence of ∗ at position i in a sequence indicates that the
ith reply may be either T or F. The impact of this change on the updates of
instruction stream generator states and instruction stream execution unit states
is minor. This adaptation is reminiscent of an instruction pre-fetch mechanism
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as found in pipelined processors that prevents instruction pre-fetches that are
superfluous due to identity of branches.

11 Alternative Choice Instructions

Process algebra is an area of the study of concurrency which is considered rele-
vant to computer science, as is witnesses by the extent of the work on algebraic
theories of processes such as ACP, CCS and CSP in theoretical computer sci-
ence. This strongly hints that there are programmed systems whose behaviours
can be taken for processes as considered in process algebra. Therefore, it is in-
teresting to know to which extent the behaviours considered in process algebra
can be produced by programs under execution, starting from the perception of
a program as an instruction sequence. In coming sections, we will establish re-
sults concerning the processes as considered in ACP that can be produced by
instruction sequences under execution.

For the purpose of producing processes as considered in ACP, we need a ver-
sion of PGA with special basic instructions to deal with the non-deterministic
choice between alternatives that stems from the alternative composition of pro-
cesses. Recall that, in PGA, it is assumed that a fixed but arbitrary set A of
basic instructions has been given. In the coming sections, we will make use a
version of PGA in which the following additional assumptions relating to A are
made:

– a fixed but arbitrary finite set F of foci has been given;
– a fixed but arbitrary finite set M of methods has been given;
– a fixed but arbitrary set AA of atomic actions, with t /∈ AA, has been given;
– A = {f.m | f ∈ F ,m ∈ M} ∪ {ac(e1, e2) | e1, e2 ∈ AA ∪ {t}}.

On execution of a basic instruction ac(e1, e2), first a non-deterministic choice
between the atomic actions e1 and e2 is made and then the chosen atomic action
is performed. The reply T is produced if e1 is performed and the reply F is pro-
duced if e2 is performed. Basic instructions of this kind are material to produce
all regular processes by means of instruction sequences. A basic instruction of
the form ac(e1, e2) is called an alternative choice instruction. Henceforth, we will
write PGAac for the version of PGA with alternative choice instructions.

The intuition concerning alternative choice instructions given above will be
made fully precise at the end of this section, using ACPτ . It will not be made
fully precise using an extension of BTA because it is considered a basic property
of threads that they are deterministic behaviours.

Recall that we make use of a version of BTA in which A = A. A basic action
of the form ac(e1, e2) is called an alternative choice action. Henceforth, we will
write BTAac for the version of BTA with alternative choice actions.

For the purpose of making precise what processes are produced by the threads
denoted by closed terms of BTAac+REC, A and | are taken such that, in ad-
dition to the conditions mentioned at the beginning of Section 7, the following
conditions are satisfied:

A ⊇ AA ∪ {t}
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Table 8. Additional defining equation for process extraction operation

|T E ac(e, e′)D T ′|c = e · |T |c + e′ · |T ′|c

and for all e, e′ ∈ A:

e′ | e = δ if e′ ∈ AA ∪ {t} .

The process extraction operation for BTAac has as defining equations the
equations given in Table 7 and in addition the equation given in Table 8.

Proposition 3 goes through for BTAac.

12 Instruction Sequence Producible Processes

It follows immediately from the definitions of the thread extraction and process
extraction operations that the instruction sequences considered in PGA produce
regular processes. The question is whether all regular processes are producible by
these instruction sequences. In this section, we show that all regular processes can
be produced by the instruction sequences with alternative choice instructions.

We will make use of the fact that all regular threads over A can be produced
by the single-pass instruction sequences considered in PGA.

Proposition 4. For each thread T that is regular over A, there exists a PGA
instruction sequence F such that F produces T , i.e. |F | = T .

Proof. By Proposition 1, T is a component of the solution of some finite linear re-
cursive specification E over BTA. There occur finitely many variablesX0, . . . , Xn

in E. Assume that T is theX0-component of the solution of E. Let F be the PGA
instruction sequence (F0 ; . . . ; Fn)

ω, where Fi is defined as follows (0 ≤ i ≤ n):

Fi =































! ; ! ; ! if Xi = S ∈ E

#0 ; #0 ; #0 if Xi = D ∈ E

+a ; #3·(j−i)−1 ; #3·(k−i)−2 if Xi = Xj EaD Xk ∈ E ∧ i < j ∧ i < k

+a ; #3·(j−i)−1 ; #3·(n+1−(i−k))−2 if Xi = Xj EaD Xk ∈ E ∧ i < j ∧ i ≥ k

+a ; #3·(n+1−(i−j))−1 ; #3·(k−i)−2 if Xi = Xj EaD Xk ∈ E ∧ i ≥ j ∧ i < k

+a ; #3·(n+1−(i−j))−1 ; #3·(n+1−(i−k))−2 if Xi = Xj EaD Xk ∈ E ∧ i ≥ j ∧ i ≥ k.

Then F is a PGA instruction sequence such that the interpretation of |F | = T .
⊓⊔

All regular processes over AA can be produced by the instruction sequences
considered in PGAac.

Theorem 2. Assume that CFAR is valid in MACPτ+REC. Then, for each pro-

cess P that is regular over AA, there exists an instruction sequence F in which

only basic instructions of the form ac(e, t) occur such that F produces P , i.e.

τ · τ{t}(||F ||) = τ · P .
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Proof. By Propositions 1, 2 and 4, it is sufficient to show that, for each finite
linear recursive specification E over ACPτ in which only atomic actions fromAA
occur, there exists a finite linear recursive specification E′ over BTAac in which
only basic actions of the form ac(e, t) occur such that τ ·〈X |E〉 = τ ·τ{t}(|〈X |E′〉|)
for all X ∈ V(E).

Take the finite linear recursive specification E over ACPτ that consists of
the recursion equations

Xi = ei1 ·Xi1 + . . .+ eiki
·Xiki

+ e′i1 + . . .+ e′ili ,

where ei1, . . . , eiki
, e′i1, . . . , e

′
ili

∈ AA, for i ∈ {1, . . . n}. Then construct the fi-
nite linear recursive specification E′ over BTAac that consists of the recursion
equations

Xi = Xi1 E ac(ei1, t)D (. . . (Xiki
E ac(eiki

, t)D

(SE ac(e′i1, t)D (. . . (SE ac(e′ili , t)DXi) . . .))) . . .)

for i ∈ {1, . . . n}; and the finite linear recursive specification E′′ over ACPτ that
consists of the recursion equations

Xi = ei1 ·Xi1 + t · Yi2 ,

Yi2 = ei2 ·Xi2 + t · Yi3 ,
...

Yiki
= eiki

·Xiki
+ t · Zi1 ,

Zi1 = e′i1 + t · Zi2 ,

Zi2 = e′i2 + t · Zi3 ,
...

Zili = e′ili + t ·Xi ,

where Yi2, . . . , Yiki
, Zi1, . . . , Zili are fresh variables, for i ∈ {1, . . . n}. It fol-

lows immediately from the definition of the process extraction operation that
|〈X |E′〉| = 〈X |E′′〉 for all X ∈ V(E). Moreover, it follows from CFAR that
τ ·〈X |E〉 = τ ·τ{t}(〈X |E′′〉) for allX ∈ V(E). Hence, τ ·〈X |E〉 = τ ·τ{t}(|〈X |E′〉|)
for all X ∈ V(E). ⊓⊔

For example, assuming that CFAR is valid, the instruction sequence

(+ac(r3(T), t) ; #4 ; +ac(r3(F), t) ; #5 ; #7;

+ac(s4(T), t) ; #5 ; #9 ; +ac(s4(F), t) ; #2 ; #9)ω

produces the reply transmission channel process RTC of which a guarded recur-
sive specification is given in Section 9.

Remark 4. Theorem 2 with “τ · τ{t}(||F ||) = τ · P” replaced by “||F || = P” can
be established if PGA is extended with multiple-reply test instructions, see [11].
In that case, the assumption that CFAR is valid is superfluous.

13 Services and Use Operators

An instruction sequence under execution may make use of services. That is,
certain instructions may be executed for the purpose of having the behaviour
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produced by the instruction sequence affected by a service that takes those in-
structions as commands to be processed. Likewise, a thread may perform certain
actions for the purpose of having itself affected by a service that takes those ac-
tions as commands to be processed. The processing of an action may involve a
change of state of the service and at completion of the processing of the action
the service returns a reply value to the thread. The reply value determines how
the thread proceeds. The use operators can be used in combination with the
thread extraction operation from Section 4 to describe the behaviour produced
by instruction sequences that make use of services. In this section, we first review
the use operators, which are concerned with threads making such use of services,
and then extend the process extraction operation to the use operators.

A service H consists of

– a set S of states ;
– an effect function eff :M× S → S;
– a yield function yld :M× S → B ∪ {B};
– an initial state s0 ∈ S;

satisfying the following condition:

∀m ∈ M, s ∈ S • (yld(m, s) = B ⇒ ∀m′ ∈ M • yld(m′, eff (m, s)) = B) .

The set S contains the states in which the service may be, and the functions eff
and yld give, for each method m and state s, the state and reply, respectively,
that result from processing m in state s. By the condition imposed on services,
once the service has returned B as reply, it keeps returning B as reply.

Let H = (S, eff , yld , s0) be a service and let m ∈ M. Then the derived service

of H after processing m, written ∂
∂m

H , is the service (S, eff , yld , eff (m, s0)); and
the reply of H after processing m, written H(m), is yld(m, s0).

When a thread makes a request to the service to process m:

– if H(m) 6= B, then the request is accepted, the reply is H(m), and the service
proceeds as ∂

∂m
H ;

– if H(m) = B, then the request is rejected and the service proceeds as a
service that rejects any request.

We introduce the sort S of services. However, we will not introduce constants
and operators to build terms of this sort. The sort S, standing for the set of all
services, is considered a parameter of the extension of BTA being presented.
Moreover, we introduce, for each f ∈ F , the binary use operator /f :T×S → T.
The axioms for these operators are given in Table 9. Intuitively, T /f H is the
thread that results from processing all actions performed by thread T that are
of the form f.m by service H . When a basic action of the form f.m performed
by thread T is processed by service H , it is turned into the basic action tau and
postconditional composition is removed in favour of basic action prefixing on the
basis of the reply value produced.

We add the use operators to PGAac as well. We will only use the extension
in combination with the thread extraction operation | | and define |F /f H | =
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Table 9. Axioms for use operators

S /f H = S U1

D /f H = D U2

(x E tauD y) /f H = (x /f H)E tauD (y /f H) U3

(x E g.mD y) /f H = (x /f H)E g.mD (y /f H) if f 6= g U4

(x E f.mD y) /f H = tau ◦ (x /f
∂

∂m
H) if H(m) = T U5

(x E f.mD y) /f H = tau ◦ (y /f
∂

∂m
H) if H(m) = F U6

(x E f.mD y) /f H = tau ◦ D if H(m) = B U7

(x E ac(e1, e2)D y) /f H = (x /f H)E ac(e1, e2)D (y /f H) U8

πn(x /f H) = πn(πn(x) /f H) U9

|F | /f H . Hence, |F /f H | denotes the thread produced by F if F makes use of
H . If H is a service such as an unbounded counter, an unbounded stack or a
Turing tape, then a non-regular thread may be produced.

In order to extend the process extraction operation to the use operators, we
need an extension of ACPτ with action renaming operators ρh, where h:Aτ → Aτ

such that h(τ) = τ . The axioms for action renaming are given in [24]. Intuitively,
ρh(P ) behaves as P with each atomic action replaced according to h. We write
ρe′ 7→e′′ for the renaming operator ρh with h defined by h(e′) = e′′ and h(e) = e
if e 6= e′.

For the purpose of extending the process extraction operation to the use
operators, A and | are taken such that, in addition to the conditions mentioned
at the beginning of Section 7, with everywhere B replaced by B ∪ {B}, and
the conditions mentioned at the end of Section 11, the following conditions are
satisfied:

A ⊇ {sserv(r) | r ∈ B ∪ {B}} ∪ {rserv(m) | m ∈ M} ∪ {stop∗}

and for all e ∈ A, m ∈ M, and r ∈ B ∪ {B}:

sserv(r) | e = δ ,

e | rserv(m) = δ ,

stop | stop = stop∗ ,

stop∗ | e = δ .

We also need to define a set Af ⊆ A and a function hf : Aτ → Aτ for each
f ∈ F :

Af = {sf(d) | d ∈ M∪ B ∪ {B}} ∪ {rf(d) | d ∈ M∪ B ∪ {B}} ;

for all e ∈ Aτ , m ∈ M and r ∈ B ∪ {B}:

hf(sserv(r)) = sf(r) ,

hf(rserv(m)) = rf (m) ,

hf(e) = e if
∧

r′∈N
e 6= sserv(r

′) ∧
∧

m′∈M e 6= rserv(m
′) .

To extend the process extraction operation to the use operators, the defin-
ing equation concerning the postconditional composition operators has to be
adapted and a new defining equation concerning the use operators has to be
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Table 10. Adapted and additional defining equations for process extraction operation

|T E f.mD T ′|c = sf (m) · (rf (T) · |T |
c + rf (F) · |T

′|c + rf (B) · δ)

|T /f H |c = ρstop∗ 7→stop(∂{stop}(∂Af
(|T |c ‖ ρhf

(|H |c))))

added. These two equations are given in Table 10, where |H |c is the XH-
component of the solution of

{XH′ =
∑

m∈M

rserv(m) · sserv(H ′(m)) ·X ∂
∂m

H′ + stop | H ′ ∈ ∆(H)} ,

where ∆(H) is inductively defined as follows:

– H ∈ ∆(H);
– if m ∈ M and H ′ ∈ ∆(H), then ∂

∂m
H ′ ∈ ∆(H).

The extended process extraction operation preserves the axioms for the use
operators. Owing to the presence of axiom schemas with semantic side conditions
in Table 9, the axioms for the use operators include proper axioms, which are
all of the form t1 = t2, and axioms that have a semantic side condition, which
are all of the form t1 = t2 if H(m) = r. By that, the precise formulation of the
preservation result is somewhat complicated.

Proposition 5.

1. Let t1 = t2 be a proper axiom for the use operators, and let α be a valuation

of variables in MBTA+REC. Then |α∗(t1)| = |α∗(t2)|.
2. Let t1 = t2 if H(m) = r be an axiom with semantic side condition for the

use operators, and let α be a valuation of variables in MBTA+REC. Then

|α∗(t1)| = |α∗(t2)| if H(m) = r.

Proof. The proof is straightforward. We sketch the proof for axiom U5. By
the definition of the process extraction operation, it is sufficient to show that
|(T E f.mD T ′) /f H |c = |tau ◦ (T /f

∂
∂m

H)|c if H(m) = T. In outline, this goes
as follows:

|(T E f.mD T ′) /f H |c

= ρstop∗ 7→stop

(∂{stop}(∂Af
(sf (m) · (rf (T) · |T |c + rf(F) · |T ′|c + rf(B) · δ) ‖ ρhf

(|H |c))))
= i · i · ρstop∗ 7→stop(∂{stop}(∂Af

(|T |c ‖ ρhf
(| ∂

∂m
H |c))))

= |tau ◦ (T /f
∂
∂m

H)|c .

In the first and third step, we apply defining equations of | |c. In the second step,
we apply axioms of ACPτ+REC with action renaming, and use that H(m) = T.

⊓⊔

Remark 5. Let F be a PGAac instruction sequence and H be a service. Then
||F /fH || is the process produced by F if F makes use ofH . Instruction sequences
that make use of services such as unbounded counters, unbounded stacks or
Turing tapes are interesting because they may produce non-regular processes.
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14 PGLD Programs and the Use of Boolean Registers

In this section, we show that all regular processes can also be produced by
programs written in a program notation which is close to existing assembly
languages, and even by programs in which no atomic action occurs more than
once in an alternative choice instruction. The latter result requires programs
that make use of Boolean registers.

A hierarchy of program notations rooted in PGA is introduced in [8]. One
program notation that belongs to this hierarchy is PGLD, a very simple program
notation which is close to existing assembly languages. It has absolute jump
instructions and no explicit termination instruction.

In PGLD, like in PGA, it is assumed that there is a fixed but arbitrary finite
set of basic instructions A. The primitive instructions of PGLD differ from the
primitive instructions of PGA as follows: for each l ∈ N, there is an absolute jump

instruction ##l instead of a forward jump instruction #l. PGLD programs have
the form u1; . . . ;uk, where u1, . . . , uk are primitive instructions of PGLD.

The effects of all instructions in common with PGA are as in PGA with one
difference: if there is no next instruction to be executed, termination occurs. The
effect of an absolute jump instruction ##l is that execution proceeds with the
l-th instruction of the program concerned. If ##l is itself the l-th instruction,
then inaction occurs. If l equals 0 or l is greater than the length of the program,
then termination occurs.

We define the meaning of PGLD programs by means of a function pgld2pga

from the set of all PGLD programs to the set of all closed PGA terms. This
function is defined by

pgld2pga(u1 ; . . . ; uk) = (φ1(u1) ; . . . ; φk(uk) ; ! ; !)
ω ,

where the auxiliary functions φj from the set of all primitive instructions of
PGLD to the set of all primitive instructions of PGA are defined as follows
(1 ≤ j ≤ k):

φj(##l) = #l − j if j ≤ l ≤ k ,

φj(##l) = #k + 2− (j − l) if 0 < l < j ,

φj(##l) = ! if l = 0 ∨ l > k ,

φj(u) = u if u is not a jump instruction .

PGLD is as expressive as PGA. Before we make this fully precise, we intro-
duce a useful notation.

Let α is a valuation of variables in IPGA, and let α∗ be the unique homo-
morphic extension of α to terms of PGA. Then α∗(t) is independent of α if t is
a closed term, i.e. α∗(t) is uniquely determined by IPGA. Therefore, we write
tIPGA for α∗(t) if t is a closed term.

Proposition 6. For each closed PGA term t, there exists a PGLD program p
such that |tIPGA | = |pgld2pga(p)IPGA |.
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Proof. In [8], a number of functions (called embeddings in that paper) are de-
fined, whose composition gives, for each closed PGA term t, a PGLD program
p such that |tIPGA | = |pgld2pga(p)IPGA |. ⊓⊔

Let p be a PGLD program and P be a process. Then we say that p produces

P if |pgld2pga(p)IPGA | produces P .
Below, we will write PGLDac for the version of PGLD in which the additional

assumptions relating to A mentioned in Section 11 are made. As a corollary of
Theorem 2 and Proposition 6, we have that all regular processes over AA can
be produced by PGLDac programs.

Corollary 1. Assume that CFAR is valid in MACPτ+REC. Then, for each pro-

cess P that is regular over AA, there exists a PGLDac program p such that p
produces P .

We switch to the use of Boolean registers now. First, we describe services
that make up Boolean registers.

A Boolean register service accepts the following methods:

– a set to true method set:T;
– a set to false method set:F;
– a get method get.

We write MBR for the set {set:T, set:F, get}. It is assumed that MBR ⊆ M.
The methods accepted by Boolean register services can be explained as fol-

lows:

– set:T : the contents of the Boolean register becomes T and the reply is T;
– set:F : the contents of the Boolean register becomes F and the reply is F;
– get : nothing changes and the reply is the contents of the Boolean register.

Let s ∈ B ∪ {B}. Then the Boolean register service with initial state s,
written BRs, is the service (B∪{B}, eff , eff , s), where the function eff is defined
as follows (b ∈ B):

eff (set:T, b) = T ,

eff (set:F, b) = F ,

eff (get, b) = b ,

eff (m, b) = B if m 6∈ MBR ,

eff (m,B) = B .

Notice that the effect and yield functions of a Boolean register service are the
same.

Let p be a PGLD program and P be a process. Then we say that p produces

P using Boolean registers if (. . . (|pgld2pga(p)IPGA | /br:1BRF) . . . /br:k BRF) pro-
duces P for some k ∈ N

+.
We have that PGLDac programs in which no atomic action from AA oc-

curs more than once in an alternative choice instruction can produce all regular
processes over AA using Boolean registers.
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Theorem 3. Assume that CFAR is valid in MACPτ+REC. Then, for each pro-

cess P that is regular over AA, there exists a PGLDac program p in which each

atomic action from AA occurs no more than once in an alternative choice in-

struction such that p produces P using Boolean registers.

Proof. By the proof of Theorem 2 given in Section 12, it is sufficient to show
that, for each thread T that is regular over A, there exist a PGLD program p
in which each basic action from A occurs no more than once and a k ∈ N

+ such
that (. . . (|pgld2pga(p)IPGA | /br:1 BRF) . . . /br:k BRF) = T .

Let T be a thread that is regular over A. We may assume that T is produced
by a PGLD program p′ of the following form:

+a1 ; ##(3 · k1 + 1) ; ##(3 · k′1 + 1) ;
...

+an ; ##(3 · kn + 1) ; ##(3 · k′n + 1) ;

##0 ; ##0 ; ##0 ; ##(3 · n+ 4) ,

where, for each i ∈ [1, n], ki, k
′
i ∈ [0, n − 1] (cf. the proof of Proposition 2

from [36]). It is easy to see that the PGLD program p that we are looking for
can be obtained by transforming p′: by making use of n Boolean registers, p can
distinguish between different occurrences of the same basic instruction in p′, and
in that way simulate p′. ⊓⊔

15 Conclusions

Using the algebraic theory of processes known as ACP, we have described two
protocols to deal with the phenomenon that, on execution of an instruction se-
quence, a stream of instructions to be processed arises at one place and the
processing of that stream of instructions is handled at another place. The more
complex protocol is directed towards keeping the execution unit busy. In this
way, we have brought the phenomenon better into the picture and have ascribed
a sense to the term instruction stream which makes clear that an instruction
stream is dynamic by nature, in contradistinction with an instruction sequence.
We have also discussed some conceivable adaptations of the more complex pro-
tocol.

The description of the protocols start from the behaviours produced by in-
struction sequences under execution. By that we abstract from the instruction
sequences which produce those behaviours. How instruction streams can be gen-
erated efficiently from instruction sequences is a matter that obviously requires
investigations at a less abstract level. The investigations in question are an option
for future work.

We believe that the more complex protocol described in this paper provides
a setting in which basic techniques aimed at increasing processor performance,
such as pre-fetching and branch prediction, can be studied at a more abstract
level than usual (cf. [26]). In particular, we think that the protocol can serve

33



as a starting-point for the development of a model with which trade-offs en-
countered in the design of processor architectures can be clarified. We consider
investigations into this matter an interesting option for future work.

The fact that process algebra is an area of the study of concurrency which
is considered relevant to computer science, strongly hints that there are pro-
grammed systems whose behaviours are taken for processes as considered in
process algebra. In that light, we have investigated the connections between
programs and the processes that they produce, starting from the perception of a
program as an instruction sequence. We have shown that, by apposite choice of
basic instructions, all regular processes can be produced by means of instruction
sequences as considered in PGA.

We have also made precise what processes are produced by instruction se-
quences under execution that make use of services. The reason for this is that
instruction sequences under execution are regular threads and regular threads
that make use of services such as unbounded counters, unbounded stacks or Tur-
ing tapes may produce non-regular processes. An option for future work is to
characterize the classes of processes that can be produced by single-pass instruc-
tion sequences that make use of such services.
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