97 research outputs found

    Dual-tuned Coaxial-transmission-line RF coils with Independent Tuning Capabilities for X-nuclear Metabolic MRS Imaging at Ultrahigh Magnetic Fields

    Full text link
    Information on the metabolism of tissues in both healthy and diseased states has potential for detecting tumors, neurodegeneration diseases, diabetes, and many metabolic disorders in biomedical studies. Hyperpolarized carbon-13 magnetic resonance imaging (13C-HPMRI) and deuterium metabolic imaging (2H-DMI) are two emerging X-nuclei used as practical imaging tools to investigate tissue metabolism. However due to their low gyromagnetic ratios (γ13C\gamma_{13C} = 10.7 MHz/T; γ2H\gamma_{2H} = 6.5 MHz/T) and natural abundance, such method required the use of a sophisticated dual-tuned radio frequency (RF) coil where the X-nucleus signal is associated with the proton signal used for anatomical reference. Here, we report a dual-tuned coaxial transmission line (CTL) RF coil agile for metabolite information operating at 7T with independent tuning capability. Analysis based on full-wave simulation has demonstrated how both resonant frequencies can be individually controlled by simply varying the constituent of the design parameters. A broadband tuning range capability is obtained, covering most of the X-nucleus signal, especially the 13C and 2H spectra at 7T. Numerical results has demonstrated the effectiveness of the magnetic field produced by the proposed dual-tuned 1H/13C and 1H/2H CTLs RF coils. Furthermore, in order to validate the feasibility of the proposed design, both dual-tuned CTLs prototypes are designed and fabricated using a semi-flexible RG-405 .086" coaxial cable and bench test results (scattering parameters and magnetic field efficiency/distributions) are successfully obtained.Comment: 9 pages, 7 figure

    Forced Current Excitation in Selectable Field of View Coils for 7T MRI and MRS

    Get PDF
    High field magnetic resonance imaging (MRI) provides improved signal-to-noise ratio (SNR) which can be translated to higher image resolution or reduced scan time. 7 Tesla (T) breast imaging and 7 T spine imaging are of clinical value, but they are challenging for several reasons: A bilateral breast coil requires the use of closely-spaced elements that are subject to severe mutual coupling which leads to uncontrollable current distribution and non-uniform field pattern; A spine coil at 7T requires a large field of view (FOV) in the z direction and good RF penetration into the human body. Additionally, the ability to switch FOV without the use of expensive high power RF amplifiers is desired in both applications. This capability would allow reconfigurable power distribution and avoid unnecessary heat deposition into human body. Forced-Current Excitation (FCE) is a transmission line-based method that maintains equal current distribution across an array, alleviating mutual coupling effects and allowing current/field replication across a large FOV. At the same time, the nature of this method enables selectable FOV with the inclusion of PIN diodes and a controller. In this doctoral work, the theory of FCE is explained in detail, along with its benefits and drawbacks. Electromagnetic simulation considerations of FCE-driven coils are also discussed. Two FCE-driven coils were designed and implemented: a switchable bilateral/unilateral 7T breast coil, and a segmented dipole for spine imaging at 7T with reconfigurable length. For the breast coil, shielded loop elements were used to form a volume coil, whereas for the spine coil, a segmented dipole was chosen as the final design due to improved RF penetration. Electromagnetic simulations were performed to assist the design of the two coils as well as to predict the SAR (specific absorption rate) generated in the phantom. The coils were evaluated on bench and through MRI experiments in different configurations to validate the design. The switchable breast coil provides uniform excitation in both unilateral and bilateral mode. In unilateral mode, the signal in the contralateral breast is successfully suppressed and higher power is concentrated into the breast of interest; The segmented dipole was compared to a regular dipole with the same length used for 7T spine imaging. The segmented dipole shows a large FOV in the long mode. In the short mode, the residual signal from other part of the dipole is successfully suppressed. The ability to switch FOV and reconfigure the power distribution improves the B1 generated with unit specific absorption rate towards the edge of the dipole, compared to the regular dipole

    Forced Current Excitation in Selectable Field of View Coils for 7T MRI and MRS

    Get PDF
    High field magnetic resonance imaging (MRI) provides improved signal-to-noise ratio (SNR) which can be translated to higher image resolution or reduced scan time. 7 Tesla (T) breast imaging and 7 T spine imaging are of clinical value, but they are challenging for several reasons: A bilateral breast coil requires the use of closely-spaced elements that are subject to severe mutual coupling which leads to uncontrollable current distribution and non-uniform field pattern; A spine coil at 7T requires a large field of view (FOV) in the z direction and good RF penetration into the human body. Additionally, the ability to switch FOV without the use of expensive high power RF amplifiers is desired in both applications. This capability would allow reconfigurable power distribution and avoid unnecessary heat deposition into human body. Forced-Current Excitation (FCE) is a transmission line-based method that maintains equal current distribution across an array, alleviating mutual coupling effects and allowing current/field replication across a large FOV. At the same time, the nature of this method enables selectable FOV with the inclusion of PIN diodes and a controller. In this doctoral work, the theory of FCE is explained in detail, along with its benefits and drawbacks. Electromagnetic simulation considerations of FCE-driven coils are also discussed. Two FCE-driven coils were designed and implemented: a switchable bilateral/unilateral 7T breast coil, and a segmented dipole for spine imaging at 7T with reconfigurable length. For the breast coil, shielded loop elements were used to form a volume coil, whereas for the spine coil, a segmented dipole was chosen as the final design due to improved RF penetration. Electromagnetic simulations were performed to assist the design of the two coils as well as to predict the SAR (specific absorption rate) generated in the phantom. The coils were evaluated on bench and through MRI experiments in different configurations to validate the design. The switchable breast coil provides uniform excitation in both unilateral and bilateral mode. In unilateral mode, the signal in the contralateral breast is successfully suppressed and higher power is concentrated into the breast of interest; The segmented dipole was compared to a regular dipole with the same length used for 7T spine imaging. The segmented dipole shows a large FOV in the long mode. In the short mode, the residual signal from other part of the dipole is successfully suppressed. The ability to switch FOV and reconfigure the power distribution improves the B1 generated with unit specific absorption rate towards the edge of the dipole, compared to the regular dipole

    Double Cross Magnetic Wall Decoupling for Quadrature Transceiver RF Array Coils using Common-Mode Differential-mode Resonators

    Full text link
    In contrast to linearly polarized RF coil arrays, quadrature transceiver coil arrays are capable of improving signal-to-noise ratio (SNR), spatial resolution and parallel imaging performance. Owing to a reduced excitation power, low specific absorption rate can be also obtained using quadrature RF coils. However, due to the complex nature of their structure and their electromagnetic proprieties, it is challenging to achieve sufficient electromagnetic decoupling while designing multichannel quadrature RF coil arrays, particularly at ultrahigh fields. In this work, we proposed a double cross magnetic wall decoupling for quadrature transceiver RF arrays and implemented the decoupling method on common-mode differential mode quadrature (CMDM) quadrature transceiver arrays at ultrahigh field of 7T. The proposed magnetic decoupling wall comprised of two intrinsic decoupled loops is used to reduce the mutual coupling between all the multi-mode current present in the quadrature CMDM array. The decoupling network has no physical connection with the CMDMs' coils giving leverage over size adjustable RF arrays. In order to validate the feasibility of the proposed cross magnetic decoupling wall, systematic studies on the decoupling performance based on the impedance of two intrinsic loops are numerically performed. A pair of quadrature transceiver CMDMs is constructed along with the proposed decoupling network and their scattering matrix is characterized using a network analyzer. The measured results show all the current modes coupling are concurrently suppressed using the proposed cross magnetic wall. Moreover, field distribution, and SNR intensity are numerically obtained for a well-decoupled 8-channel quadrature knee-coil array.Comment: 9 pages, 10 Figure

    Hairpin RF Resonators for Transceiver Arrays with High Inter-channel Isolation and B1 Efficiency at Ultrahigh Field 7T MR Imaging

    Full text link
    Electromagnetic decoupling among a close-fitting or high-density transceiver RF array elements is required to maintain the integrity of the magnetic flux density from individual channel for enhanced performance in detection sensitivity and parallel imaging. High-impedance RF coils have demonstrated to be a prominent design method to circumvent these coupling issues. Yet, inherent characteristics of these coils have ramification on the B1 field efficiency and SNR. In this work, we propose a hairpin high impedance RF resonator design for highly decoupled multichannel transceiver arrays at ultrahigh magnetic fields. Due to the high impedance property of the hairpin resonators, the proposed transceiver array can provide high decoupling performance without using any dedicated decoupling circuit among the resonant elements. Because of elimination of lumped inductors in the resonator circuit, higher B1 field efficiency in imaging subjects can be expected. In order to validate the feasibility of the proposed hairpin RF coils, systematical studies on decoupling performance, field distribution, and SNR are performed, and the results are compared with those obtained from existing high-impedance RF coil, e.g., "self-decoupled RF coil". To further investigate its performance, an 8-channel head coil array using the proposed hairpin resonators loaded with a cylindrical phantom is designed, demonstrating a 19 % increase of the B1+ field intensity compared to the "self-decoupled" coils at 7T. Furthermore, the characteristics of the hairpin RF coils are evaluated using a more realistic human head voxel model numerically. The proposed hairpin RF coil provides excellent decoupling performance and superior RF magnetic field efficiency compared to the self-decoupled high impedance coils. Bench test of a pair of fabricated hairpin coils prove to be in good accordance with numerical results.Comment: 10 pages, 12 figures, 2 tables. Second version: Add bench test results and One dimensional profile of the simulated B1

    Design and Simulation of Coils for High Field Magnetic Resonance Imaging and Spectroscopy

    Get PDF
    The growing availability of high-field magnetic resonance (MR) scanners has reignited interest in the in vivo investigation of metabolics in the body. In particular, multinuclear MR spectroscopy (MRS) data reveal physiological details inaccessible to typical proton (1H) scans. Carbon-13 (13C) MRS studies draw considerable appeal owing to the enhanced chemical shift range of metabolites that may be interrogated to elucidate disease metabolism and progression. To achieve the theoretical signal-to-noise (SNR) gains at high B0 fields, however, J-coupling from 1H-13C chemical bonds must be mitigated by transmitting radiofrequency (RF) proton-decoupling pulses. This irradiated RF power is substantial and intensifies with increased decoupling bandwidth as well as B0 field strength. The preferred 13C MRS experiment, applying broadband proton decoupling, thus presents considerable challenges at 7 T. Localized tissue heating is a paramount concern for all high-field studies, with strict Specific Absorption Rate (SAR) limits in place to ensure patient safety. Transmit coils must operate within these power guidelines without sacrificing image and spectral quality. Consequently, RF coils transmitting proton-decoupling pulses must be expressly designed for power efficiency as well as B1 field homogeneity. This dissertation presents innovations in high-field RF coil development that collectively improved the homogeneity, efficiency, and safety of high field 13C MRS. A review of electromagnetic (EM) theory guided a full-wave modeling study of coplanar shielding geometries to delineate design parameters for coil transmit efficiency. Next, a novel RF coil technique for achieving B1 homogeneity, dubbed forced current excitation (FCE), was examined and a coplanar-shielded FCE coil was implemented for proton decoupling of the breast at 7 T. To perform a series of simulation studies gauging SAR in the prone breast, software was developed to fuse a suite of anatomically-derived heterogeneous breast phantoms, spanning the standard four tissue density classifications, with existing whole-body voxel models. The effects of tissue density on SAR were presented and guidance for simulating the worst-case scenario was outlined. Finally, for improving capabilities of multinuclear coils during proton coil transmit, a high-power trap circuit was designed and tested, ultimately enabling isolation of 13C coil elements during broadband proton decoupling pulses. Together, this work advanced the hardware capabilities of high-field multinuclear spectroscopy with immediate applicability for performing broadband proton-decoupled 13C MRS in the breast at 7 T

    The UTE and ZTE Sequences at Ultra-High Magnetic Field Strengths: A Survey

    Full text link
    UTE (Ultrashort Echo Time) and ZTE (Zero Echo Time) sequences have been developed to detect short T2 relaxation signals coming from regions that are unable to be detected by conventional MRI methods. Due to the high dipole-dipole interactions in solid and semi-solid tissues, the echo time generated is simply not enough to produce a signal using conventional imaging method, often leading to void signal coming from the discussed areas. By the application of these techniques, solid and semi-solid areas can be imaged which can have a profound impact in clinical imaging. High and Ultra-high field strength (UHF) provides a vital advantage in providing better sensitivity and specificity of MR imaging. When coupled with the UTE and ZTE sequences, the image can recover void signals as well as a much-improved signal quality. To further this strategy, secondary data from various research tools was obtained to further validate the research while addressing the drawbacks to this approach. It was found that UTE and ZTE sequences coupled with some techniques such as qualitative imaging and new trajectories are very crucial for accurate image depiction of the areas of the musculoskeletal system, neural system, lung imaging and dental imaging

    Multiple resonant multiconductor transmission line resonator design using circulant block matrix algebra

    Get PDF
    The purpose of this dissertation is to provide a theoretical model to design RF coils using multiconductor transmission line (MTL) structures for MRI applications. In this research, an MTL structure is represented as a multiport network using its port admittance matrix. Resonant conditions and closed-form solutions for different port resonant modes are calculated by solving the eigenvalue problem of port admittance matrix using block matrix algebra. A mathematical proof to show that the solution of the characteristic equation of the port admittance matrix is equivalent to solving the source side input impedance is presented. The proof is derived by writing the transmission chain parameter matrix of an MTL structure, and mathematically manipulating the chain parameter matrix to produce a solution to the characteristic equation of the port admittance matrix. A port admittance matrix can be formulated to take one of the forms depending on the type of MTL structure: a circulant matrix, or a circulant block matrix (CB), or a block circulant circulant block matrix (BCCB). A circulant matrix can be diagonalized by a simple Fourier matrix, and a BCCB matrix can be diagonalized by using matrices formed from Kronecker products of Fourier matrices. For a CB matrix, instead of diagonalizing to compute the eigenvalues, a powerful technique called “reduced dimension method� can be used. In the reduced dimension method, the eigenvalues of a circulant block matrix are computed as a set of the eigenvalues of matrices of reduced dimension. The required reduced dimension matrices are created using a combination of the polynomial representor of a circulant matrix and a permutation matrix. A detailed mathematical formulation of the reduced dimension method is presented in this thesis. With the application of the reduced dimension method for a 2n+1 MTL structure, the computation of eigenvalues for a 4n X 4n port admittance matrix is simplified to the computation of eigenvalues of 2n matrices of size 2 X 2. In addition to reduced computations, the model also facilitates analytical formulations for coil resonant conditions. To demonstrate the effectiveness of the proposed methods (2n port model and reduced dimension method), a two-step approach was adopted. First, a standard published RF coil was analyzed using the proposed models. The obtained resonant conditions are then compared with the published values and are verified by full-wave numerical simulations. Second, two new dual tuned coils, a surface coil design using the 2n port model, and a volume coil design using the reduced dimensions method are proposed, constructed, and bench tested. Their validation was carried out by employing 3D EM simulations as well as undertaking MR imaging on clinical scanners. Imaging experiments were conducted on phantoms, and the investigations indicate that the RF coils achieve good performance characteristics and a high signal-to-noise ratio in the regions of interest

    Radio Frequency Coils for Ultra-high Field Magnetic Resonance Imaging

    Get PDF
    Magnetic resonance imaging (MRI) has become a powerful tool not only to analyze the anatomical structures of the human body non invasively but also to investigate brain activity with functional MRI. The promise of increase in signal to noise ratio and spectral resolution proportional to the main magnetic field strength motivated a few research laboratories to pursue even higher field strengths. The 9.4T whole body human scanner and the 16.4T animal scanner installed at the Max Planck Institute for Biological Cybernetics, Tuebingen were, for many years, the worlds strongest magnets in their respective categories. In addition to the strong magnets, radio frequency (RF) coils are also equally important in realising the benefits offered by the high field MRI scanners. The aim of this thesis work is to develop optimized RF coils and RF hardware for ultra-high high field MRI

    Comparison of three commercially available radio frequency coils for human brain imaging at 3 Tesla

    Get PDF
    Objective: To evaluate a transverse electromagnetic (TEM), a circularly polarized (CP) (birdcage), and a 12-channel phased array head coil at the clinical field strength of B 0 = 3T in terms of signal-to-noise ratio (SNR), signal homogeneity, and maps of the effective flip angle α. Materials and methods: SNR measurements were performed on low flip angle gradient echo images. In addition, flip angle maps were generated for αnominal= 30° using the double angle method. These evaluation steps were performed on phantom and human brain data acquired with each coil. Moreover, the signal intensity variation was computed for phantom data using five different regions of interest. Results: In terms of SNR, the TEM coil performs slightly better than the CP coil, but is second to the smaller 12-channel coil for human data. As expected, both the TEM and the CP coils show superior image intensity homogeneity than the 12-channel coil, and achieve larger mean effective flip angles than the combination of body and 12-channel coil with reduced radio frequency power deposition. Conclusion: At 3T the benefits of TEM coil design over conventional lumped element(s) coil design start to emerge, though the phased array coil retains an advantage with respect to SNR performanc
    • …
    corecore