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ABSTRACT 

 

The growing availability of high-field magnetic resonance (MR) scanners has reignited 

interest in the in vivo investigation of metabolics in the body. In particular, multinuclear 

MR spectroscopy (MRS) data reveal physiological details inaccessible to typical proton 

(1H) scans. Carbon-13 (13C) MRS studies draw considerable appeal owing to the enhanced 

chemical shift range of metabolites that may be interrogated to elucidate disease 

metabolism and progression. To achieve the theoretical signal-to-noise (SNR) gains at 

high B0 fields, however, J-coupling from 1H-13C chemical bonds must be mitigated by 

transmitting radiofrequency (RF) proton-decoupling pulses. This irradiated RF power is 

substantial and intensifies with increased decoupling bandwidth as well as B0 field 

strength. The preferred 13C MRS experiment, applying broadband proton decoupling, thus 

presents considerable challenges at 7 T. Localized tissue heating is a paramount concern 

for all high-field studies, with strict Specific Absorption Rate (SAR) limits in place to 

ensure patient safety. Transmit coils must operate within these power guidelines without 

sacrificing image and spectral quality. Consequently, RF coils transmitting proton-

decoupling pulses must be expressly designed for power efficiency as well as B1 field 

homogeneity.  

This dissertation presents innovations in high-field RF coil development that 

collectively improved the homogeneity, efficiency, and safety of high field 13C MRS. A 

review of electromagnetic (EM) theory guided a full-wave modeling study of coplanar 

shielding geometries to delineate design parameters for coil transmit efficiency. Next, a 
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novel RF coil technique for achieving B1 homogeneity, dubbed forced current excitation 

(FCE), was examined and a coplanar-shielded FCE coil was implemented for proton 

decoupling of the breast at 7 T. To perform a series of simulation studies gauging SAR in 

the prone breast, software was developed to fuse a suite of anatomically-derived 

heterogeneous breast phantoms, spanning the standard four tissue density classifications, 

with existing whole-body voxel models. The effects of tissue density on SAR were 

presented and guidance for simulating the worst-case scenario was outlined. Finally, for 

improving capabilities of multinuclear coils during proton coil transmit, a high-power trap 

circuit was designed and tested, ultimately enabling isolation of 13C coil elements during 

broadband proton decoupling pulses. Together, this work advanced the hardware 

capabilities of high-field multinuclear spectroscopy with immediate applicability for 

performing broadband proton-decoupled 13C MRS in the breast at 7 T. 
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NOMENCLATURE 

 

1H Hydrogen atom, often dubbed “proton” in MR literature 

13C Carbon-13 isotope 

2D Two-dimensional 

3D Three-dimensional 

7T Compound adjective indicating B0 = 7 tesla 

AC Alternating current 

ACR American College of Radiology 

AP Anterior–posterior 

AWG American wire gauge 

B0 Static magnetic flux density 

B1 RF magnetic flux density 

B1
- Circularly-polarized receive B1 

B1
+ Circularly-polarized transmit B1 

B2 Proton-decoupling RF magnetic flux density 

B2max Maximum peak amplitude of B2 

BI-RADS® Breast Imaging Reporting and Data System 

CV Coefficient of variation 

CVP Common voltage point 

DC Direct current 

E RF electric field 
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EM Electromagnetic 

ESR Equivalent series resistance 

FCE Forced current excitation 

FDA Food and Drug Administration 

FDTD Finite-difference time-domain 

FID Free induction decay 

FOV Field of view 

HF Head–foot 

IEC International Electrotechnical Commission 

LR Left–right 

MR Magnetic resonance 

MRI Magnetic resonance imaging 

MRS Magnetic resonance spectroscopy 

NMR Nuclear magnetic resonance 

NOE Nuclear Overhauser effect 

PCB Printed circuit board 

ppm Parts per million 

RF Radiofrequency 

SAR Specific absorption rate 

SNR Signal-to-noise ratio 

X Non-1H isotope in multinuclear MR experiment 
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CHAPTER I 

INTRODUCTION  

 

I.1 Background and Motivation 

I.1.1 Magnetic Resonance Spectroscopy 

In 1946, Bloch and Purcell discerned the phenomenon of nuclear magnetic resonance 

(NMR), wherein nuclei absorb and emit radiofrequency (RF) magnetic fields detectable 

by means of Faraday’s law of induction (1-3). The first NMR experiments detecting 13C, 

the carbon isotope exhibiting a magnetic moment, were conducted by Lauterbur and Holm 

in 1957 (4,5). Development of 13C NMR lagged that of other nuclei (primarily 1H and 31P), 

however, owing to severely limited sensitivity from multiple fronts: carbon-13 is only 

1.1% naturally abundant and its sensitivity inherently suffers given its low gyromagnetic 

ratio (γ13C/γ1H = 0.25), the cube of which is proportional to NMR signal (6-10). 

Furthermore, 13C acquisitions are degraded by strong 13C-1H couplings, which may be 

mitigated by proton decoupling techniques that result in considerable RF power 

deposition, presenting a patient safety concern (11). Despite the challenges, in vivo 13C 

magnetic resonance spectroscopy (MRS) studies in humans began in 1989; natural 

abundance studies by both Bottomley and Heerschap employed broadband proton 

decoupling at 1.5 T and pushed RF power to the limits imposed by specific absorption rate 

(SAR) safety guidelines (12-14). Subsequent 13C studies were largely reserved for 

dynamic studies of metabolic pathways using 13C-enriched glucose (15). Still, the clinical 

potential of natural abundance 13C MRS is compelling if the low sensitivity can be 



 

2 

 

overcome (16,17). Spectral resolution is exceptional, since 13C metabolite resonances 

spread over a wider range as compared to other nuclei (>200 ppm for 13C, 25 ppm for 31P, 

10 ppm for 1H) (8,18).  

I.1.2 Ultra-High Fields 

Whole-body 7T scanners significantly increase the potential of in vivo MRS by enhancing 

sensitivity and chemical shift dispersion (19-22). However, the increased B0 magnetic 

field also intensifies undesired frequency effects, as the 1H Larmor frequency coincides 

with shorter wavelengths in the human body that make homogeneous excitation a 

challenge. Furthermore, at higher B0 radiation losses intensify and decrease coil efficiency, 

while electric fields may intensify and concentrate to form SAR “hot spots.” Designing an 

efficient RF coil that produces a homogeneous B1 field throughout a volume becomes 

much more challenging at high fields. For this reason, whole-body transmit coils are 

nonexistent in 7T scanners; instead, custom coils tailored to the anatomy of interest are 

required for high-field studies.  

I.1.3 Carbon-13 Spectroscopy of the Breast 

Traditionally, the low sensitivity of 13C is addressed with very large voxel sizes and 

lengthy signal acquisition averaging; however, with the improved sensitivity expected 

from high-field magnets, localized in vivo 13C MRS may now become more medically 

pertinent and support a new generation of studies involving the detection of natural 

abundance 13C (17). For instance, collaborators at the University of Texas Southwestern 

Medical Center are exploring the role of diet in the pathogenesis of breast cancer, as fat 

consumption is highly correlated with breast cancer mortality rates (23,24). In particular, 
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there are indications the ω-6/ω-3 lipid ratio may significant (25). Proton MRS studies at 7 

T have been able to quantify total choline and lipid compounds in the human breast (26); 

however, the more limited 1H chemical shift prohibits discernment of ω-3 and ω-6 fatty 

acid peaks through conventional proton MRS. Preliminary 13C MRS studies at 7 T have 

demonstrated the ability to quantify trans-fats (27) and the ω-6/ω-3 lipid ratio in vivo in 

the breast (28). Still, the role of 13C MRS to detect lipid biomarkers in tumors remains 

largely unexplored, predominantly hindered by the engineering challenges. 

I.1.4 Addressing 1H–13C Heteronuclear Couplings  

Heteronuclear couplings between 13C and 1H occur both through proximity in space 

(nuclear Overhauser effect—NOE) and chemical bonds (J-coupling). The former may 

actually be exploited to improve spectral SNR or detect information on molecular 

structure, and as NOE enhancement does not require significant irradiated RF power it is 

not considered a hindrance. The latter coupling mechanism, however, creates an 

impediment for most in vivo studies; unmitigated, J-coupling results in splitting of spectral 

peaks and the undesired presence of sidebands. The impact of J-coupling may be mitigated 

by applying a proton decoupling RF field (B2) during 13C signal readout (29). A common 

1H pulse sequence employed for proton decoupling is WALTZ-16 (17,30). The power 

required for B2 is substantial and increases with both decoupling bandwidth and B0, 

presenting significant challenges for both broadband-decoupled and high-field studies. At 

7 T, the decoupling bandwidth is typically limited by power capacity and SAR guidelines, 

together demanding that the 1H coil demonstrate both transmit efficiency and adequate 

decoupling from 13C coils. To date, a majority of in vivo studies at 7 T have relied on 
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geometric decoupling to isolate the 13C coil, circumventing the need for tuned trap 

circuitry (28,31-34). One such 7T coil exploiting geometric decoupling is discussed 

further in Chapter III. Still, the extremely low sensitivity of 13C implores the development 

of more complex coil geometries that would otherwise significantly couple to proton coils. 

A trap circuit implementation capable of isolating 13C coils during broadband proton 

decoupling is needed to facilitate coil designs focused on maximizing B2 transmit 

efficiency and 13C receive sensitivity. Furthermore, given the high levels of RF power 

irradiation during broadband decoupling pulses, accurate anatomical SAR modeling is 

obligatory to ensure power deposition from B2 does not exceed critical levels leading to 

tissue heating. 

I.2 Dissertation Objective and Organization 

The primary objective of this work is to advance the hardware capabilities of high-field 

multinuclear spectroscopy with a particular focus on 13C detection from the breast. This 

dissertation presents original research addressing four specific aims for achieving this 

objective: 

 Aim 1: Development of a RF shielding scheme suitable for geometrically-dense multi-

element 7T coil designs 

 Aim 2: Development of a 7T volume breast coil capable of efficient and homogenous 

B2 transmit 

 Aim 3: Safety modeling of 7T RF coils with anatomically-accurate prone female body 

phantoms 

 Aim 4: Development of multinuclear RF coil trap circuitry for isolating 13C coil 

elements during high-power broadband proton decoupling 

 

Chapter I of this dissertation commenced by outlining the motivation for this work, 

discussing the advantages, challenges, and relevance of high-field MR with particular 

emphasis on 13C MRS breast cancer metabolic research. This chapter continues by 
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examining the four specific aims in more detail, underscoring their common context for 

high-field MRS of the breast and framing their combined contribution to the MR research 

community.  

Chapter II explores the EM theory behind loss mechanisms in RF coils and their 

relationship to B0 field strength. Of particular concern at high fields are tissue dielectric 

and radiative losses and their potential to create RF hot spots interior to tissue. 

Incorporating shielding in RF coils, while not a new technique, becomes increasingly 

compelling at 7 T to mitigate unwanted E-field behavior. The use of multi-element coil 

arrays is desired to maximize SNR at high fields; however, traditional shielding 

implementations become prohibitive when considering orthogonal B1 fields from multiple 

coil elements. To this end, Chapter II describes a technique dubbed coplanar shielding that 

is relatively simple to implement, providing many benefits of conventional shielding while 

limiting undesired B1 flux blockage from other coil elements. This shielding scheme 

employs a concentric copper conductor on the same plane as the coil, with the shield width 

and spacing to the coil influencing its efficacy. With complex RF coil geometries it is 

often prohibitive to derive tractable analytical solutions to optimize performance; hence 

flexible full-wave EM modeling methods such as finite-difference time-domain (FDTD) 

are invaluable for the coil design process. In Chapter II, the efficiency and optimization 

of the coplanar shielding geometry is methodically analyzed through FDTD modeling, 

with specific cases prototyped, verified on the bench, and demonstrated with 7T imaging. 

The benefits of coplanar shielding are quantified for both transmit and receive coils, and 

design guidelines are presented for optimizing B1 transmit (B1
+) efficiency. As a result, 
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this flexible shielding scheme may be readily employed on high-field coils and is 

particularly advantageous for efficiently transmitting proton decoupling pulses for 13C 

MRS.  

Performing broadband decoupling to mitigate J-coupling at 7 T necessitates an 

efficient transmit coil tuned to the Larmor frequency of 1H—298 MHz. Chapter III 

presents a quadrature 1H transmit breast coil with a Helmholtz-saddle configuration that 

provides anatomical image-based localization and homogeneous proton decoupling. The 

asymmetric loading effects of the breast and thorax are increasingly pronounced at higher 

frequencies; here, this design challenge is mitigated by using the forced current excitation 

(FCE) technique to drive equal currents to coil elements. FCE drives the top and bottom 

loops in a Helmholtz coil, irrespective of the loading asymmetry, resulting in homogenous 

B2 excitation throughout the breast. Furthermore, the efficiency gained with quadrature 

operation is particularly beneficial when considering SAR power limitations. The results 

presented in this chapter include impressive B2 homogeneity throughout the breast and the 

acquisition of the first in vivo proton-decoupled 13C spectrum from the breast at 7 T. 

Since the early days of 13C MRS at 1.5 T, broadband proton decoupling has 

presented a SAR concern for patient safety. Electromagnetic modeling is an important tool 

for characterizing SAR during coil transmit, as SAR is a direct consequence of RF E fields 

in the body. The necessity of understanding the nature of E-field effects in the body 

becomes increasing compelling at high fields and especially so with broadband proton 

decoupling, as SAR is proportional to both B0
2 and B2

2. For high-field breast studies, 

accurate anatomical SAR modeling must be performed to determine RF coil safety 
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parameters for in vivo use. Accordingly, Chapter IV investigates the safety of transmit 

coils for breast MR at 7 T, with a particular focus on how breast tissue density affects coil 

operation and safety. Several female whole-body voxel models are available to the 

scientific community for simulating biological EM effects; however, all were developed 

in the standing or supine position. Consequently, no female body voxel models exist for 

simulating prone MR scanning in the pendant breast, as is typically performed to avoid 

respiratory motion artifacts. Thus, to accurately predict SAR in a pendant breast with an 

adjoining body load, a method was developed and detailed in Chapter IV for fusing 

standalone breast phantoms with available whole-body voxel models. SAR modeling of 

11 different breast phantoms, encompassing the broad range of tissue densities among the 

patient population, was then performed to characterize coil performance and determine 

the locations most susceptible to tissue heating. The results in this chapter present the first 

detailed account of the significant increases in expected SAR when performing high-field 

MR studies of denser breast tissue. This knowledge is crucial for safely performing high-

power studies such as broadband proton-decoupled 13C MRS at 7 T. 

Despite the success of the FCE coil described in Chapter III for detecting in vivo 

13C spectra, additional SNR is required to better quantify metabolite peaks. To this end, 

arrays of small coil elements have long been employed to dramatically improve MR 

sensitivity near the surface while collectively detecting NMR spins further into the body 

(35). While 1H array coils designs may be considered well-established, unique engineering 

challenges are presented for interrogating X-nuclei such as 13C.  Chief among them is the 

inductive coupling between 13C and 1H elements that, unless mitigated, results in 
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substantial energy transfer between coils. Chapter V examines trap circuitry for providing 

RF coil isolation in multinuclear MR experiments an. The design criteria presented within 

this chapter mandate the traps operate under the most extreme conditions with respect to 

power and sensitivity, i.e., to acquire broadband proton-decoupled 13C MRS at 7 T. The 

Philips Achieva RF amplifiers are capable of outputting 4 kW at each Larmor frequency, 

and the WALTZ-16 decoupling sequence typically utilizes a large proportion of this power 

capability. The distinction between LC and LCC traps is reviewed, and the advantages and 

challenges of building trap circuits with various inductor and capacitor components are 

delineated. Multiple trap designs were evaluated on the bench and utilized at 7 T to detect 

broadband proton-decoupled 13C from a lipid phantom. A particular LCC trap design built 

from a coaxial stub inductor and high-voltage porcelain chip capacitors is highlighted 

owing to both its exceptional performance and adaptability for small array coil elements 

with diverse spatial orientations. This trap circuit design is instrumental in the design and 

implementation of a multi-channel 13C receive array for proton-decoupled, natural 

abundance 13C MRS of the breast. 

Chapter VI concludes this dissertation with a review of the findings presented 

herein and their combined impact on multinuclear MRS studies of the breast at 7 T. 

Furthermore, this chapter discusses potential future directions for this line of research. 

Finally, Chapter VI closes by considering how both the hardware and EM modeling 

techniques presented in this work may be readily applied to other anatomical regions and 

problem areas.  
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I.2.1 Dissertation Style  

The formatting style used for reference citations and table/figure titles follows that of 

Magnetic Resonance in Medicine. The chapter organization of this dissertation follows the 

Journal Article Style Format as delineated by the Texas A&M University Office of 

Graduate and Professional Studies and the Department of Educational Psychology. 

Accordingly, Chapters II-V present manuscripts formatted and intended for publication, 

with each chapter addressing one of the four specific aims of this dissertation. 
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CHAPTER II 

ANALYSIS OF COPLANAR SHIELDING AS A METHOD TO IMPROVE 

EFFICIENCY AND PARALLEL IMAGING PERFORMANCE OF 

RADIOFREQUENCY COILS  

 

II.1 Introduction 

At high fields, radiative and dielectric tissue losses increase and account for a more 

significant share of radiofrequency (RF) coil loss (22,36,37). Compensating for these 

losses by boosting transmit power intensifies the electric (E) field, increasing the specific 

absorption rate (SAR) and consequently the risk of tissue heating. Adding RF shields is a 

standard approach to alleviate B0-dependent radiative losses and becomes increasingly 

compelling at higher fields (38). Adriany et al. characterized the performance of a variety 

of 7T surface coils with conventional shielding, reporting appreciable benefits over 

unshielded versions and categorically recommending RF shields for coils larger than 7 cm 

(39).  

To better fit within required form factors, a variety of shielding methods have been 

explored as alternatives to typical copper sheeting. For instance, shielding is inherently 

provided on the return path of the resonance structure when employing transmission line 

elements in microstrip or transverse electromagnetic (TEM) coils (40-43). In the 

traditional case of lumped-element surface or volume coils a separate shielding structure 

is required. One such scheme adds concentric conductors around each coil; variations of 

this method have been shown to realize several objectives of RF shielding, including 
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reduced radiative losses, inter-element coupling, and load-induced frequency shift, while 

also limiting flux blockage from other elements (44-49). A simple implementation, 

dubbed coplanar shielding, encircles the coil with a continuous copper loop. Notably, this 

scheme, in contrast to other concentric shielding approaches, maintains the overlapping 

ability of array elements. Preliminary results with a single-loop surface coil indicated a 

coplanar shield improved the coil filling factor and reduced total coil loss at 7 T, thus 

improving transmit efficiency (48). This work further examines coplanar shielding with 

emphases on improving signal-to-noise ratio (SNR), radiative and dielectric tissue losses, 

parallel imaging performance, and SAR. Seeing as complex coil designs often lack 

tractable analytical solutions, the utility of full-wave electromagnetic modeling for 

determining the shield geometry is demonstrated, and resulting design guidelines are 

verified by bench measurements and imaging examples. Two example coil configurations 

are presented: a circular loop surface coil and a half-volume five-element receive array. 

Results confirm coplanar-shielded coils benefit from improved SNR and transmit 

efficiency with reduced E-field losses. Furthermore, inter-element isolation and 

accelerated imaging performance are shown to improve in the coplanar-shielded receive 

array. Thus, given its simple construction and appreciable benefits, coplanar shielding 

presents an attractive design option for high-field coils. 

II.2 Theory 

II.2.1 Coil Losses 

Although all sources of coil resistance—ohmic, radiative, and tissue losses—escalate with 

increased frequency, the components most intensified at higher B0 fields are radiation loss 
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and tissue dielectric loss stemming from electric field displacement current. For a loop 

coil with diameter d operating at frequency ω, the tissue dielectric and radiation losses are 

proportional to ω4 while the latter also scales with d4 (37). Consequently, mitigating these 

loss mechanisms’ effects on imaging quality becomes more imperative at high fields, 

particularly with larger coils. Furthermore, tissue heating in localized regions with intense 

E fields, dubbed hot spots, presents a paramount high-field patient safety concern; hence 

a reduction of E fields is vital considering the quadratic relationship to power deposition 

in tissue, given SAR = σ|E|2/(2ρ) [W/kg], where σ is the electrical conductivity [S/m], E 

is the peak electric field vector [V/m], and ρ is the material density [kg/m3]. 

Tissue dielectric losses from displacement currents are associated with both the 

non-conservative and conservative electric fields. The non-conservative E field associated 

with dB/dt is an inevitable consequence of the B1 field and is present throughout the coil’s 

sensitive region, with its impact influenced by permittivity of the sample and coil 

homogeneity. Coplanar shielding manipulates the non-conservative E field by 

compressing the near-zone B1 field, as a result spatially confining dielectric losses in the 

patient. This effect may be considered steering the B1 field and may also be employed to 

produce a greater coil filling factor, that is, improve the ratio of magnetic energy stored in 

the region of interest (ROI) versus all space. The optimal coplanar shield spacing is not 

straightforward, however; closer proximity of shielding to the coil has been shown to 

improve coil loss until a critical point where near-field B1 compression catastrophically 

diminishes SNR (38). 
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The conservative E field is produced in opposition to the coil electromotive force 

(EMF) and can be mitigated in coil design by both segmentation and shielding. RF coils 

are typically designed to maximize current uniformity in order to produce homogeneous 

B1. To this end, segmenting lumped-element coil conductors with capacitors reduces 

current phase shifts, decreasing the voltage potential across each break and, accordingly, 

the conservative E field’s average value throughout the sample (50). Taming the 

conservative E field with coil segmentation reduces capacitive coupling to both the sample 

dielectric and the coil cabling, typically outweighing reduced performance from the 

capacitors’ added ohmic losses (51,52). Near-coil shielding such as the coplanar scheme 

may be employed to further shape the conservative E field; that is, the coil’s stray 

capacitance is smoothed by the uniformly-spaced shield conductor (51), with the coil and 

shield traces analogous to an asymmetric coplanar-strip line (53). Note a coplanar shield, 

or any shield for that matter, will add to inductive losses associated with B1-induced 

currents on the shield surface. However, these inductive losses are typically outweighed 

by a reduction of other loss mechanisms, easily verifiable by comparing coil quality 

factors (Q). Ultimately, a spatial confinement and smoothing of the conservative E field 

lessens the impact of varying the dielectric load as multiple patients or anatomies are 

imaged with the coil (54). In this way, effective shielding reduces sample-induced tuning 

shifts and facilitates balancing the coil at the feed (51).  

Radiative losses present a concern at higher fields; while coils designed to 

interrogate a specific anatomy remain the same physical size, shorter wavelengths at 

higher fields increase the electrical length of coil conductors. The extent that an RF coil 
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behaves as an antenna is quantified by its radiation resistance, or in power terms the 

radiation efficiency, the latter being the ratio of radiated power over the net input power 

to the coil. The radiation efficiency from both surface and volume coils has been shown 

to scale upward with fields strength; however, at high fields the contribution of radiative 

losses is much less substantial in the presence of a high-dielectric sample (55,56). Thus, 

at high fields radiative losses are expected to be more significant in proximity to lower-

dielectric materials such as adipose tissue, as opposed to higher-dielectrics including 

muscle or brain. 

While the addition of coplanar shielding may reduce radiation from the coil, it is 

necessary to consider the shield’s own radiative field. It is common practice to bridge gaps 

in RF shields with a large capacitance, allowing RF currents to pass while preventing 

gradient-induced eddy currents. Maintaining the RF current path mitigates induction of an 

associated EMF voltage and conservative E field, yet it permits the shield to act as a loop 

antenna. For an electrically small-to-medium loop antenna, the radiated field is maximum 

on the coil plane and lowest along its axis (57); thus, with a coplanar shield the subject is 

typically positioned away from the maximum radiating plane. Still, as B0 or the coil size 

is increased, care must be taken to segregate the antenna mode of the coplanar shield from 

the B1 frequency. Recall the first anti-resonant mode of a loop antenna with diameter d 

occurs at angular frequency ω = c/d, or equivalently, when d = λ/2π (58). If tuned near the 

coil’s frequency, e.g., a 16-cm diameter coplanar shield at 7 T, this odd current mode can 

interfere with the desired balanced coil mode and act as a radiator of coupled energy. 
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II.2.2 Metrics for Shield Analysis 

The effective transmit and receive coil sensitivities, |B1
+| and |B1

-|, are defined as the 

modulus of the B1 component rotating with and opposite the direction of nuclear 

precession, respectively. The Q-factor is an effective measure of net coil losses; thus a 

higher coil Q, as anticipated with a well-executed shield implementation, indicates a net 

decrease in coil losses and higher SNR (38). Likewise, a loaded-to-unloaded Q ratio 

(QL/QUL) lower than 0.5 is desired as it suggests more inductive losses and thus ample 

magnetic field energy is stored in the sample (59). However, qualifying a coil with this 

ratio alone has drawbacks when fields extend beyond the homogeneous B1 ROI; thus, a 

better measure of coil performance is the transmit efficiency, computed as the average 

|B1
+| in the ROI for a given input power. Homogeneity in the ROI can be evaluated with 

the coefficient of variability (CV), calculated by dividing the average |B1
+| by the standard 

deviation.  

The average E field in the sample may be assessed in relation to average |B1
+| in 

the ROI. Along with the aforementioned conservative and non-conservative fields, this 

metric also includes any radiated field attenuating in the sample. In the near-field presence 

of a load, this latter E-field component is not accounted for in radiation efficiency 

calculations only measuring wave propagation in the far field. Accordingly, a superior 

determination of antenna behavior may be obtained by first calculating radiation 

efficiency in the unloaded case with far-field measurements. Then the contribution of 

radiative losses to the total power dissipated in tissue may be gauged by scaling the 
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unloaded radiation efficiency with ohmic (conductive) losses in the unloaded versus 

loaded simulation results. 

As SAR is proportional to the squared electric field modulus, i.e., |E|2, it is 

desirable to achieve high average |B1
+| while minimizing the peak E field, i.e., |E|max. 

Hence a lower ratio of |E|max
2/|B1

+| throughout the coil’s ROI may be construed as an 

indicator of peak local SAR reduction; furthermore, spatial E-field averaging may be 

performed to mitigate bias from any extremely localized hot spots. 

II.3 Methods 

II.3.1 Electromagnetic Modeling 

The effects of coplanar shielding on various performance metrics were analyzed with full-

wave electromagnetic modeling. Simulations were performed using commercial FDTD 

software (XFdtd® 7.4, Remcom, State College, Pennsylvania, USA). Two coil sizes were 

modeled, with mean diameters of 8 cm and 16 cm; for each case a single coil was centered 

at the origin on the xz plane, principally producing y-directed B1. Two coil conductor 

configurations were modeled individually: printed circuit board (PCB) and wire. The PCB 

trace was meshed as a two-dimensional sheet (4-mm width for 8-cm coil, 6-mm width for 

16-cm coil), while wire was modeled as a three-dimensional revolved solid with a circular 

cross section (18 AWG/0.5-mm radius for 8-cm coil, 12-AWG/1-mm radius for 16-cm 

coil).  

The parameterization features available in commercial electromagnetic solver 

packages may be straightforwardly exploited to perform studies of coplanar shielding 

behavior. The shield width and coil-to-shield spacing (delineating shield radius) were 
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parameterized in XFdtd, and QtScript macros were developed to construct 100 

combinations of shield width and spacing, in 1-mm steps from 1-10 mm. The coplanar 

shield was meshed as a two-dimensional sheet. The unshielded case was also simulated 

for each coil geometry. All conductors were assigned the electrical properties of copper 

(σ = 59.6 MS/m and εr = 1). While variable spacing from the coil to the load is known to 

affect concentric shielding performance (44), in this study load spacing was simulated at 

one distance to mimic 1-cm padding present in coils utilized for in vivo studies. A slab 

measuring 32 × 32 × 20 cm was centered and spaced 1 cm below the coil and assigned the 

electrical properties of muscle at 7 T (σ = 0.55 S/m and εr = 80). 

All coils included equally-spaced, 2-mm wide breaks (six for 8-cm coil, 12 for 16-

cm coil) to accommodate the feed and segmentation capacitors. Capacitor values for each 

simulation were assigned to exhibit uniform current around the loop. To achieve this goal, 

each cases was first simulated with all breaks populated by ideal (i.e., infinite impedance) 

current sources. The resulting input impedances of the current sources were imported into 

MATLAB® 8.3 (MathWorks, Natick, Massachusetts, USA) and the capacitances required 

to cancel the average inductances of the current sources were calculated (60). The 

capacitor values were then fed back into XFdtd with custom QtScript code facilitating 

unique assignment for each shielded case. The capacitor definition included 0.2-Ω 

resistance to model ohmic losses from equivalent series resistance and solder resistivity 

(61). A second round of simulations were run utilizing a single 50-Ω voltage source across 

the break at the +x extent of each coil. This untuned feeding arrangement was validated 

against a more computationally lengthy simulation incorporating a shunt tuning capacitor 
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in the feed definition; agreement was substantiated by comparing input impedance, field, 

and power results. For all cases, the mesh was excited by a broadband pulse and 

simulations converged when transients dissipated to levels -50 dB below peak values. 

To illustrate the value of employing coplanar shields with variable loads and B0 

field strengths, additional simulation cases were performed with the 16-cm PCB coil. A 

lower-dielectric phantom representing adipose tissue (σ = 40 mS/m and εr = 5.6) was 

modeled at 7 T, with the expectation that radiative losses would become more significant. 

Also, simulations with the muscle load were performed at 3 T. To present a 

straightforward comparison to 7 T, the dielectric values of the phantom were kept 

constant, despite muscle tissue exhibiting lower conductivity and permittivity at 128 MHz, 

the Larmor frequency at 3 T. Capacitor values were once again assigned to optimize 

current at 3 T. 

The two PCB coils and 12-AWG wire coil were gridded with maximum 1-mm 

Yee cell dimensions, while the 18-AWG wire coil was gridded with maximum 0.5-mm 

dimensions. More conservative gridding with 0.25-mm dimensions was evaluated for 

specific geometries and verified to produce results in very close agreement. Owing to the 

two-dimensional geometry of the PCB conductors and coplanar shields, these conductors 

were located on only one xz plane of Yee cells in the mesh, while the wire conductors 

were located on the central xz plane of the coil with additional, narrower cross sections 

located on the two adjacent xz planes. A surface conductor correction was applied to 

copper planes to ensure conductivity consistent with five skin depths. Remcom’s 

conformal meshing algorithm for curved objects was applied to all conductors after 
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validation against a case using 0.25-mm gridding with the algorithm disabled. For all 

cases, the model was surrounded by a quarter wavelength of free space padding cells and 

the boundary comprised seven perfectly matched layers. Simulations were run on a 

workstation with two linked NVIDIA GeForce® GTX 780 GPU cards, each with 3 GB 

RAM and 2304 cores, resulting in an average computational time of 12 minutes. 

Convergence was determined by transients dissipating to -50 dB deviation from the 

excitation pulse. The ROI of the coil was defined as the hemisphere below the loop. Three 

planar sensors captured steady-state B- and E-field data at 298 MHz, the Larmor frequency 

at 7 T. Volume sensors were not utilized owing to the requisite data storage overhead. The 

circuit components, i.e., feeds and capacitors, recorded both transient and steady-state 

data. Renderings of the coil, load, and sensor planes are illustrated in Figure II-1.  

Resulting sensor data were imported into MATLAB for post-processing. The 

volume of each Yee cell was taken into consideration when computing average field 

values since cell dimensions varied due to the adaptive gridding. FDTD results from 

Figure II-1. Renderings of surface coil adjacent to the phantom load and EM field sensors. 

(a) 16-cm coil with coplanar shield centered over dielectric slab. (b) Sensors 1a and 1b 

were located on the xy and yz planes, respectively, both orthogonal to the coil and 

consisting of hemispheres (of the coil radius) excluding the region within 1 cm of the coil. 

(c) Sensor 2 was a square sensor located 1 mm inside the near face of the slab on the xz 

plane. 
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selected shielding geometries were validated against in-house full-wave spectral-domain 

analysis code (62) by comparing calculated input impedance, current uniformity, and field 

patterns over the uniform loading phantom. 

The quality factor Q was calculated from the initial round of FDTD simulations 

utilizing ideal current sources. The input impedances (with resistance R and reactance X) 

were summed and Q-factors were calculated from Q = ωL/R = X/R, with R including the 

aforementioned ohmic capacitor losses. The remaining metrics were computed with 

results from the second round of simulations. SNR was determined from the average |B1
-| 

in the ROI divided by √𝑅in at the feed. Transmit efficiency was calculated by dividing 

the average |B1
+| in the ROI by the square root of power dissipated from combined ohmic, 

radiative, and tissue losses. Average |E|/|B1
+| in the ROI was computed to assess sample 

losses due to E fields. Local SAR was gauged by the ratio of computed |E|max
2/|B1

+| 

throughout the coil’s ROI.  

Finally, radiation efficiency is determined in FDTD as the proportion of power 

radiating into the mesh boundary; if the model includes a sample load, this metric excludes 

radiation dissipated in the sample, and it should also be noted that most power radiating 

out of the FDTD mesh would ultimate dissipate in the subject due to confinement by the 

magnet bore and magnet room RF screen (63).  

II.3.2 Radiofrequency Coils 

II.3.2.1 Circular Loop Surface Coil 

A single circular loop surface coil was evaluated with three separate shielding 

topologies—coplanar shielded, and ground plane shielded, and unshielded. The surface 
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coil was etched on 1.6-mm thick, 1-ounce copper-clad FR-4 PCB with 16-cm mean 

diameter and 6-mm conductor width. Note the PCB copper thickness should be at least 

fivefold the RF skin depth to prevent unnecessary ohmic losses; in this case, the 1-ounce 

copper thickness of 34 μm is about nine times the 3.8-μm skin depth at 298 MHz. The coil 

was segmented by 12 equally-spaced 2-mm breaks. Following simulation data analysis, a 

coplanar shield with 7-mm conductor width and 176-mm inner diameter (resulting in 5-

mm spacing between coil and shield) was fabricated for placement around the loop coil. 

The ground plane shielded case was evaluated by orienting a copper sheet 4.5 cm below 

the surface coil, a separation previously determined to be best suited for surface coils of 

this size (39). Different capacitors values, 8.2 and 10 pF (Passive Plus, Huntington, New 

York, USA), were utilized for the unshielded and shielded cases, respectively. The coils 

were loaded with a 25-cm diameter, 11-cm tall cylindrical saline phantom (σ = 0.55 S/m). 

Each coil was evaluated in unloaded and loaded conditions, with all cases balanced 

matched to 50 Ω with variable capacitors (SGNMNC1206E, Sprague-Goodman, 

Westbury, New York, USA; NMAJ55HVE, Voltronics, Salisbury, Maryland, USA). Q-

factors were measured with a network analyzer (Keysight E5071C, Santa Clara, 

California, USA) based on the -7 dB width of the S11 response (64). 

II.3.2.2 Receive Array 

A custom “Olympic rings” array of five overlapping elements was constructed to compare 

coplanar-shielded and unshielded parallel imaging performance. Each element was shaped 

from 18-AWG wire formed into an 8-cm diameter loop and segmented into six equal arcs. 

The resulting gaps were connected by ceramic chip capacitors (100B series, American 
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Technical Ceramics, Huntington Station, New York, USA; 1111C series, Passive Plus). 

Elements were mounted on a half-cylindrical acrylic former with a 78-mm radius. A 

standard active trap configuration incorporating the match capacitor, variable solenoid 

(164 series, Coilcraft, Cary, Illinois, USA), and PIN diode (MA4P7470F-1072, MACOM, 

Lowell, Massachusetts, USA) detuned the array elements during transmit, with additional 

protection provided midway around the loop by a passive trap incorporating dual anti-

parallel diodes and the tune capacitor. Inter-element decoupling was accomplished via 

optimal geometric overlap for nearest neighbors, while all elements utilized low-input 

impedance preamplifier decoupling (65). Standard resonant cable traps were included at 

each element’s feed. For the shielded array, each wire element was encircled by a coplanar 

shield etched on 0.2-mm thick, 1-ounce copper-clad FR-4 PCB with 89-mm inner 

diameter and 97-mm outer diameter; this geometry was determined from simulation 

results further discussed in the next section. Each individual element’s coplanar shield 

remained electrically isolated by affixing insulating polyimide tape between overlapping 

conductors. Photographs of the arrays are shown in Figure II-2.  

The half-volume arrays were loaded with a cylindrical 1-gallon saline phantom, 

with conductivity of muscle at 7 T (σ = 0.55 S/m), spaced 5 mm from the conductors. Q-

factor measurements were performed using the procedure described above for the surface 

coil. Imaging was performed on a whole-body 7T scanner (Achieva, Philips Medical 

Systems, Cleveland, Ohio, USA) with the receive array and phantom positioned inside a 

commercial quadrature transmit head coil (Nova Medical, Wilmington, Massachusetts, 

USA). A 3D T1 High-Res Isotropic Volume Excitation (THRIVE) sequence was utilized 
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with 4-ms TR, 1.83-ms TE, 8° flip angle, 1-mm isotropic resolution throughout an 18 × 

18 × 32 cm FOV. Array performance was evaluated from resulting images by comparing 

SNR and noise correlation matrices, with noise data acquired per the methodology detailed 

in (66). To gauge accelerated imaging performance, bidirectional SENSE scans (67) were 

executed with reduction factors of up to R = 3 in the phase-encoding direction (right/left—

RL) and up to R = 2 in the frequency-encoding direction (feet/head—FH). The resulting 

coil geometry factors (g) were calculated and illustrated as g-factor maps on a coronal 

slice through the phantom. 

  

Figure II-2. Rendering and photographs of the unshielded and coplanar-shielded 

“Olympic rings” 5-element receive arrays. The inset photographs include the coaxial cable 

and the PCB incorporating the cable trap and active detuning circuit. 
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II.4 Results 

II.4.1 Electromagnetic Modeling 

Simulation results suggest, regardless of coil size, a specific coil-to-shield spacing exists 

that optimizes transmit efficiency for any particular dielectric load at a given B0. 

Furthermore, a qualitative comparison confirmed the aforementioned metrics from wire 

and PCB coils with equivalent mean diameters are in agreement. Still, optimizing transmit 

efficiency comes at the expense of other metrics, including SNR and local SAR. Thus, the 

design decision is ultimately a tradeoff between several performance metrics. 

For muscle imaging at 7 T, modeling results suggest transmit efficiency peaks 

when the coplanar shield’s inner radius is spaced 8 mm from the mean coil diameter, with 

wider shield widths delivering diminishing improvements. Plots illustrating the transmit 

efficiency, average |E| in the sample, relative SNR, |B1
+| CV, relative peak local SAR, and 

radiation efficiency are displayed in Figure II-3 and Figure II-4 (color-weighted and line 

plots, respectively) for the 8-cm loop, while corresponding plots for the 16-cm loop are 

shown in Figure II-5 and Figure II-6. As shown in Figure II-4a, a 10-mm wide shield is 

expected to provide 28% improvement in |B1
+| efficiency against the unshielded case. In 

general, an increasingly wider coplanar shield benefits transmit efficiency and SNR while 

reducing the average E field in the sample. |B1
+| homogeneity is generally improved with 

increased shield spacing from the coil. Notably, all shielded cases improve the ratio of 

average |E|/|B1
+| compared to the unshielded case, indicating proportionately reduced 

losses stemming from the E field. The radiation efficiency is quite  
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  a   b 

   c   d 

  e   f 

Figure II-3. Color-weighted simulation results for a single 8-cm loop PCB surface coil 

loaded with muscle at 7 T. (a) |B1
+| transmit efficiency peaks at 8-mm spacing and wider 

shield widths. (b) The average E field reduces with greater shield widths. (c) SNR 

improves with closer shield spacing and greater shield widths. (d) The coefficients of 

variation suggest shield geometries with shorter spacing produce marginally worse |B1
+| 

homogeneity. (e) The indicator of peak local SAR follows the transmit efficiency plot of 

(a), as dominant dB/dt induced E-field losses result with greater spatial confinement of B1. 

(f) Radiation efficiency is insignificant with a large high-dielectric load at 7 T unless the 

shield is extremely close (3-mm spacing to mean = 1-mm air gap) to the coil conductor. 
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  a   b 

   c   d 

  e   f 

 
Figure II-4. Normalized line plots (unshielded coil = 1) corresponding to Figure II-3 for 

a single 8-cm loop PCB surface coil loaded with muscle at 7 T. The legend at bottom 

identifies plot colors for each shield width. 
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  a   b 

   c   d 

  e   f 

Figure II-5. Color-weighted simulation results for a single 16-cm loop PCB surface coil 

loaded with muscle at 7 T. (a) |B1
+| transmit efficiency peaks at 8-mm spacing and wider 

shield widths. (b) The average E field reduces with greater shield widths. (c) SNR 

improves with closer shield spacing and greater shield widths. (d) The |B1
+| coefficients 

of variation suggest shield geometries with shorter width and spacing result in greater 

inhomogeneity; still, all shielded cases present a marginal improvement. (e) The indicator 

of peak local SAR suggests greater shield spacing and width results in higher SAR. (f) 

Radiation efficiency is insignificant with a large high-dielectric load at 7 T. 
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  e   f 

 
Figure II-6. Normalized line plots (unshielded coil = 1) corresponding to Figure II-5 for 

a single 16-cm loop PCB surface coil loaded with muscle at 7 T. The legend at bottom 

identifies plot colors for each shield width. 
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low with the large muscle load at 7 T; instead, the majority of coil losses originate from 

the dB/dt-induced non-conservative E field. Note the |E|max
2/|B1

+| plots indicate a potential 

increase in peak local SAR of up to 25% depending on shield geometry. 

 As expected, the appropriate shield geometry differs with varying dielectric loads. 

Results with the 16-cm PCB coil at 7 T with the adipose tissue load are presented in Figure 

II-7 and Figure II-8. These cases extend to shield spacing of 23 mm, yet a maximum 

transmit efficiency was not yet discerned, indicating further improvement with additional 

spacing. Radiative losses at 7 T become much more significant with the lighter-dielectric 

load, as shown in Figure II-7f—the unshielded coil exhibited radiation efficiency of 11%, 

easily reduced by employing a shield, preferably with width of at least 6 mm.  

The effects of shield geometry also change at different B0 field strengths, as shown 

in Figure II-9 and Figure II-10 for tissue with 7T muscle dielectric properties at 3 T. As 

with the lighter dielectric load at 7 T, greater spacing to the shield was required to discern 

peak coil efficiency. For imaging this load at 3 T, efficiency peaks when the coplanar 

shield is spaced about 18 mm from the mean coil diameter, with wider shield widths 

providing diminishing improvements. The improvement in power efficiency is less 

profound but still significant. Employing a coplanar shield at 3 T also improves SNR and 

E-field losses as compared to an unshielded coil. Although expected to be low given the 

high-dielectric phantom, results suggest radiative losses are not a paramount concern at 3 

T, as efficiency from the unshielded coil was merely 0.10% as compared to 0.35% at 7 T. 
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  a   b 

   c   d 

  e   f 

Figure II-7. Color-weighted simulation results for a single 16-cm loop PCB surface coil 

loaded with adipose tissue at 7 T. (a) |B1
+| transmit efficiency peaks with > 23-mm spacing 

and wider shield widths. (b) The average E field reduces with greater shield widths. (c) 

SNR improves with closer shield spacing and greater shield widths. (d) The |B1
+| 

coefficients of variation suggest wider shield geometries with shorter spacing result in 

greater inhomogeneity; all shielded cases are somewhat more inhomogeneous. (e) The 

indicator of peak local SAR suggests greater shield spacing and width results in higher 

SAR. (f) Radiation efficiency is reduced by up to half with most shielding geometries. 
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Figure II-8. Normalized line plots (unshielded coil = 1) corresponding to Figure II-7 for 

a single 16-cm loop PCB surface coil loaded with adipose tissue at 7 T. The legend at 

bottom identifies plot colors for each shield width. 
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Figure II-9. Color-weighted simulation results for a single 16-cm loop PCB surface coil 

loaded with muscle at 3 T. (a) |B1
+| transmit efficiency peaks at 18-mm spacing and wider 

shield widths. (b) The average E field reduces with greater shield widths. (c) SNR 

improves with closer shield spacing and greater shield widths. (d) The coefficients of 

variation suggest regions with higher average SNR also have marginally worse |B1
+| 

homogeneity. (e) The indicator of peak local SAR suggests a worst case with 14-mm 

spacing. (f) Radiation efficiency is insignificant with a large high-dielectric load at 3 T. 
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Figure II-10. Normalized line plots (unshielded coil = 1) corresponding to Figure II-9 for 

a single 16-cm loop PCB surface coil loaded with muscle at 3 T. The legend at bottom 

identifies plot colors for each shield width.  
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The FDTD model of the coplanar-shielded loop coil was validated against results 

from in-house full-wave spectral-domain analysis code. An 8-cm loop coil with a 5-mm 

wide coplanar shield with 94-mm inner diameter was loaded by the rectangular saline 

phantom. The two models produced B1 field patterns and input impedances in close 

agreement, with the in-house code calculating Zin = 9.7 - j 64.6 Ω and FDTD determining 

Zin = 9.8 - j 76.9 Ω. Furthermore, on-axis |B1
+| values and relative field patterns 

corresponded well as illustrated in Figure II-11. 

 

Finite-Difference  

Time-Domain 
Full-Wave Spectral  

Domain Solver 

a  b 

Coil Axis |B1
+| = 2.3 μT Coil Axis |B1

+| = 2.2 μT 

Figure II-11. Comparison of relative |B1
+| field patterns 1 mm within the muscle phantom 

at 7 T using FDTD and in-house full-wave spectral domain solvers. 
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II.4.2 Radiofrequency Coils 

II.4.2.1 Circular Loop Surface Coil 

As shown in Table II-1, the coplanar shielded configuration of the 16-cm surface coil 

exhibited a higher loaded Q-factor (Ql) as compared to the unshielded and ground plane 

shielded cases. The lower unloaded Q-factor (Qul) for the coplanar shielded case indicates 

greater coils losses owing to inductive coupling to the shielding conductor, yet the reduced 

tissue losses owing to an improvement in filling factor results in an improved Ql compared 

to the alternative schemes. The unloaded-to-loaded Q ratios (Qul/Ql) greater than two for 

all cases indicate losses from the sample dominate, as desired, in the loaded case. Given 

the higher Ql for the coplanar shielded coil, the power required to achieve a given B1 with 

this load is expected to be roughly a quarter less than required with the unshielded coil.  

 Also noteworthy were the frequency shifts between the loaded and unloaded cases, 

recorded before adjusting the tuning capacitor. The observed shifts were 14, 8, and 0.8 

MHz for the unshielded, ground plane shielded, and coplanar shielded coils, respectively. 

The greatly reduced load-dependent tuning shift of the coplanar shielded coil offers a 

considerable advantage when utilizing a loop coil on different anatomies with variable 

loading effects. 

 

Table II-1. Loaded and unloaded Q-factors from bench measurements comparing 

unshielded, coplanar shielded, and ground plane shielded versions of the 16-cm surface 

coil. 

Configuration Ql Qul Qul/Ql 

Unshielded 9.2 100 11 

Coplanar shielded 13 80 6.3 

Ground plane shielded 9.5 110 11 
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II.4.2.2 Receive Array 

Elements from the shielded and unshielded arrays exhibited loaded Q-factors of up to 28 

and 8.1, respectively. The magnitude of these values are in close agreement with the 

simulated Q-factors of 31 and 9.4. Furthermore, the resulting shielded-to-unshielded Q 

ratios are within 5% when comparing bench measurements and simulations. Together, 

these data support the validation of simulation results with and without coplanar shields.  

As an indication of improved parallel performance, the noise correlation matrices 

presented in Table II-2 and Figure II-12 reveal the shielded array exhibited 28% lower 

mean and 22% lower maximum noise correlation in comparison to the unshielded array. 

With phantom imaging at 7 T, the shielded array provided a 23% improvement in mean 

SNR throughout the top half (7-cm depth) of the cylindrical phantom. Figure II-13 

displays SNR maps for the two arrays on an axial slice through the phantom.  

 

Table II-2. Noise correlation matrices and mean non-diagonal values from the unshielded 

and coplanar-shielded arrays. 

Unshielded Array: Mean = 4.62% 

100% 3.58% 3.60% 4.21% 3.25% 

3.58% 100% 5.81% 3.97% 7.14% 

3.60% 5.81% 100% 5.46% 4.39% 

4.21% 3.97% 5.46% 100 % 4.81% 

3.25% 7.14% 4.39% 4.81% 100% 

     

Shielded Array: Mean = 3.34% 

100% 3.02% 3.24% 3.66% 3.69% 

3.02% 100% 3.82% 2.66% 5.55% 

3.24% 3.82% 100% 1.77% 2.75% 

3.66% 2.66% 1.77% 100% 3.25% 

3.69% 5.55% 2.75% 3.25% 100% 
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Figure II-13. A comparison of SNR maps in the axial view for the unshielded (top) and 

shielded (bottom) arrays. The shielded array provided a 23% improvement in mean SNR 

throughout the top half (7-cm depth) of the phantom. 

Figure II-12. The noise correlation matrices and mean/max values from the unshielded 

and coplanar-shielded arrays. Both matrices demonstrate sufficient decoupling between 

elements; still, the shielded array achieved a 27% and 22% reduction of average and 

maximum noise correlation, respectively. 



 

38 

 

Results from SENSE-accelerated imaging indicate the arrays perform similarly at 

lower bidirectional reduction factors and R = 2 in the phase-encoding direction (RL). 

However, with threefold reduction (R = 3) in the RL direction the coplanar-shielded array 

dramatically outperformed the unshielded array, with 64% and 85% the unshielded max 

and mean g-factors. Notably, at bidirectional R = 6 the shielded array exhibited a mean 

g-factor of 1.19, within the regime (g < 1.2) considered to be favorable for accelerated 

imaging (68). The g-factor maps for both arrays on the coronal plane at 7-cm depth in the 

phantom are shown in Figure II-14. The visible aliasing in the phase-encoding direction 

is typical when approaching functional limits of the reduction factor, indicating the quality 

of reconstruction from individual coil sensitivity maps is beginning to break down. 
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Figure II-14. g-Factor maps from bidirectional SENSE-accelerated scans with up to six-

fold reduction factor. SENSE was applied in the right/left (RL, phase encoding) and 

feet/head (FH, frequency encoding) directions with reduction factors of up to R = 3 and  

R = 2, respectively. The mean and maximum g-factors are displayed below each individual 

map. The shielded array exhibits significantly lower g-factors with three-fold RL 

acceleration. 
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II.5 Discussion 

Coplanar shields have been shown to improve Q and |B1
+| power efficiency for transmit 

coils. Simulation results establish clear guidelines for maximizing transmit power 

efficiency. Furthermore, a wavelength dependence is evident in these guidelines. For the 

example of saline loading, transmit efficiency peaks with shield spacing of 18 mm and 8 

mm at 3 T and 7 T, respectively. The ratio of these distances is within 4% the ratio of B0 

field strengths.  

Improvements were also demonstrated in a five-element receive array of 

overlapped elements. By compressing the near-zone B1 field, coplanar shielding reduces 

inductive coupling through B1
- flux linkage. Despite the high-dielectric properties of the 

saline phantom, 7T imaging verified the coplanar shields improved SNR and inter-element 

isolation in conventional parallel imaging. Furthermore, while it has been shown that non-

overlapped elements improve SNR in SENSE imaging by means of higher g-factors, 

despite additional coupling and basic noise (69), coplanar shielding recoups some of the 

reported performance deficits of overlapped elements, all the while maintaining an array’s 

ability to maximize SNR through conventional parallel imaging. This benefit for 

overlapped elements is expected to increase with a lower-dielectric load, as the 

comparative field confinement effects of the shielded elements become more palpable. 

Shield optimization with respect to other performance metrics is not as 

straightforward. As expected, results are dependent on composition of the load and B0 

field strength. In general, most coplanar shield implementations improve SNR while 

reducing radiation and average E field losses in the sample. |B1
+| homogeneity throughout 
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the ROI is not significantly altered, yet shielding created a slight reduction in most cases. 

This result can be explained by the definition of the ROI extending outward to the radius 

of the coil conductor; a smaller ROI would be expected to exhibit improved homogeneity. 

At high fields, radiative losses are already insignificant when the coil is loaded with a 

large, high-dielectric sample; indeed, the dielectric sample itself furnishes a shielding 

effect with respect to radiation. Conversely, radiative loss is appreciable with a lower-

dielectric sample such as adipose tissue; the unshielded 16-cm loop was projected to 

radiate 10% its net input power. In these cases with lighter dielectrics, a coplanar shield 

can considerably reduce radiative loss. Unfortunately, the field confinement present with 

coplanar shields also moderately increases peak local SAR, in agreement with results 

reported with other circumferential shield geometries (44).  

During coil construction on the bench, the effects of adding a coplanar shield may 

be evaluated quickly by comparing Q-factors with and without a copper tape prototype. 

More precise coil construction is easily accomplished by etching copper-clad laminate. In 

this study, the parameterization capabilities inherent in most full-wave electromagnetic 

solvers have been shown to provide powerful guidance for fine tuning the shield geometry. 

Moreover, the modeling procedures presented here may be applied to evaluate other types 

of shielding and coil geometries.  
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CHAPTER III 

QUADRATURE TRANSMIT COIL FOR BREAST IMAGING AT 7 TESLA 

USING FORCED CURRENT EXCITATION FOR IMPROVED 

HOMOGENEITY*  

 

III.1 Synopsis 

III.1.1 Purpose 

To demonstrate the use of forced current excitation (FCE) to create homogeneous 

excitation of the breast at 7 tesla, insensitive to the effects of asymmetries in the electrical 

environment.  

III.1.2 Materials and Methods 

FCE was implemented on two breast coils: one for quadrature 1H imaging and one for 

proton-decoupled 13C spectroscopy. Both were a Helmholtz-saddle combination, with the 

saddle tuned to 298 MHz for imaging and 75 MHz for spectroscopy. Bench measurements 

were acquired to demonstrate the ability to force equal currents on elements in the 

presence of asymmetric loading to improve homogeneity. Modeling and temperature 

measurements were conducted per safety protocol. B1 mapping, imaging, and proton-

decoupled 13C spectroscopy were demonstrated in vivo.  

  

                                                 

*Reprinted with permission from McDougall MP, Cheshkov S, Rispoli J, Malloy C, Dimitrov I, Wright SM. 

Quadrature transmit coil for breast imaging at 7 tesla using forced current excitation for improved 

homogeneity. J Magn Reson Imaging 2014;40:1165-1173. Copyright 2014 by Wiley Periodicals, Inc. 
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III.1.3 Results 

Using FCE to ensure balanced currents on elements enabled straightforward tuning and 

maintaining of isolation between quadrature elements of the coil. Modeling and bench 

measurements confirmed homogeneity of the field, which resulted in images with 

excellent fat suppression and in broadband proton-decoupled carbon-13 spectra. 

III.1.4 Conclusion 

FCE is a straightforward approach to ensure equal currents on multiple coil elements and 

a homogeneous excitation field, insensitive to the effects of asymmetries in the electrical 

environment. This enabled effective breast imaging and proton-decoupled carbon-13 

spectroscopy at 7 T. 

III.2 Introduction 

Diagnostic breast MRI at 1.5 tesla and 3 T offers high resolution morphological 

delineation and tissue contrast, diffusion, and perfusion functional imaging, and 

assessment of tissue metabolic composition with MR spectroscopy (26,70-77). A new 

generation of MR studies of the breast may be afforded by the improved sensitivity and 

chemical shift dispersion provided by the recent availability of commercial whole-body 

7T scanners. The technical challenges at 7 T are significant compared with lower field 

strengths, however, including an increase in B1 inhomogeneity, specific absorption rate 

(SAR), and an increased sensitivity of coils to loading. One approach for addressing these 

issues is to drive multiple transmit coils using multiple independent amplifiers, i.e., B1 

shimming (78,79) or Transmit SENSE (80,81). These are expensive and complex 

approaches that may not be available for routine clinical research for some time but may 
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be essential for optimal head and body imaging. Such approaches, however, may not be 

necessary to effectively image isolated anatomies. For instance, high quality images of 

smaller structures such as the knee (82,83) have been obtained at 7 T using a single 

transmit channel. The breast presents a more challenging anatomy to image at 7 T, 

however, because of its proximity to the thorax that brings about a significantly 

asymmetric influence on B1 in the breast. This study presents an RF coil design that 

overcomes this issue by using transmission line techniques to force equal currents on 

multiple elements to generate homogeneous quadrature excitation of the breast at 7 T 

using a single transmitter. 

 Transmission line techniques to ensure equal currents on array elements with 

different impedances were introduced more than 50 years ago for broadcast antennas 

(84,85). The method, termed forced current excitation (FCE), has been investigated 

previously for use with MRI for mitigating coupling in high channel count arrays of 

microcoils (86) but the technique has not been applied to coils intended for in vivo use. 

Here we report the development and application of the FCE design to overcome the effects 

at 7 tesla of the asymmetric loading conditions present when imaging the breast. By 

forcing equal currents on the elements of a coil, two main benefits were realized: (i) B1 

homogeneity was achieved without the need for multiple transmitters, and (ii) the 

robustness provided by maintaining equal currents on multiple elements in the face of 

highly varying and asymmetric loads enabled tuning and maintaining of isolation between 

quadrature elements. The load-insensitive homogeneity and efficiency of the quadrature 

design make the coil particularly well suited for the straightforward addition of a receive 
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array insert, for performing localized 1H spectroscopy, and for serving as the transmitter 

for the broadband 1H decoupling often used in non-proton spectroscopy. This study 

discusses the theory of forced current excitation, the design and construction of the FCE 

quadrature breast coil for 7 T, and demonstrates the effectiveness of the design with in 

vivo imaging and broadband decoupled 13C spectroscopy. 

III.3 Theory 

III.3.1 Effects of Asymmetric Loading as a Function of Field Strength 

MR imaging of the breast is typically performed with the patient in a prone position and 

the breast pendant to avoid respiratory artifacts and improve image quality (74,76). 

Therefore, solenoidal coils and Helmholtz pairs historically have proven to be effective 

RF coil designs for breast imaging at 1.5 T and 3 T, generating a volume of homogeneous 

vertically directed field in the pendant breast with effective penetration into the chest wall 

(76,87-93). At 298 MHz (7 T), however, the unequal loading between the top of the coil 

near the thorax and the lower part of the coil away from the body results in a unequal 

currents on the loops of the Helmholtz pair and thus inhomogeneous excitation. This is 

illustrated in 

Figure III-1 by the modeled comparison of a conventionally driven Helmholtz pair (two 

16-cm loops with 8-cm coaxial spacing) exciting an asymmetric phantom at 1.5 T, 3 T, 

and 7 T. The phantom was designed to mimic the breast and thorax and will be discussed 

in more detail below. The notable point at 7 T as opposed to 1.5 T or 3 T is the 6-dB drop 

in sensitivity from the bottom of the “breast” to where it meets the “thorax.” Generating 



 

46 

 

equal currents on the two loops of the Helmholtz pair would in turn ensure a homogeneous 

field, but can be complex to implement. One approach would be to use a multiple channel 

transmitter with independent control of each amplifier. Coupling between elements is a 

complicating factor, but even this can be overcome in principle by using some form of 

current source amplifier (94-96). Lacking multiple transmit channels, one could design 

 

Figure III-1. Comparison of modeled |B1
+| as a function of field strength produced by a 

Helmholtz coil with an asymmetric load that mimics imaging the pendant breast proximal 

to the thorax. (a) Rendering of the conventional, parallel-fed Helmholtz coil with an 

asymmetric phantom comprised of the electrical characteristics of breast tissue inside and 

the thorax above. (b) Profiles through the marked areas in (c–e) depicting |B1
+| at 1.5T 

(63.9 MHz), 3.0T (128 MHz), and 7.0T (298 MHz). The effects of the asymmetric loading 

of the thorax on the current distribution on the two loops of the Helmholtz coil increases 

with frequency, resulting in a 6 dB fall off toward the thorax at 7.0 T. 



 

47 

 

some form of tuning network to create equal currents on each element. Theoretically, this 

could be accomplished using current probes on each loop to provide feedback for 

independent tuning of the top and bottom loop in the presence of the asymmetric loading—

 

Figure III-2. Comparison of free excitation and forced current excitation (FCE). (a) 

Schematic illustration of three coils, identical or nonidentical, excited by the same voltage. 

This configuration is termed “free excitation.” Asymmetries in positioning or 

environment, combined with the mutual impedances between coils generally leads to 

unequal load impedances presented to the sources, resulting in unequal currents despite 

identical excitation. (b) When connected to a common voltage point (CVP) by electrical 

quarter wave lines the feed currents are the same regardless of differences in the load 

impedances, effectively achieving “forced current excitation.” 
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a complex approach not practical for use with patients. This study describes a specialized 

power splitter which enforces equal current, rather than equal power, at the feedpoints of 

the two loops independent of the loading conditions on either loop, thus generating a 

homogeneous excitation. We refer to this method as forced current excitation (FCE). 

III.3.2 Forced Current Excitation 

Conventionally, RF coils are driven in a “free-excitation” model, where a voltage source 

is controlled, and the current in the elements becomes dependent on the load impedance, 

as illustrated in Figure III-2a. However, as a consequence of asymmetries introduced by 

the specific anatomy (such as the thorax) as well as the electrical environment from tuning 

elements, receive coils, etc., the impedance presented to the voltage source will vary with 

its loading, as well as with the loading in the adjacent elements. The effects of asymmetric 

loading in a free excitation model as a function of field strength were demonstrated in the 

previous section, and are particularly prevalent at 7 tesla. To avoid this, FCE can be 

created, in which the current at the element feed ports can be made independent of the 

load impedance. This is illustrated in Figure III-2b, where the individual RF elements 

share a common feed port at an electrical distance of λ/4. Transmission line analysis of 

each feed line to any of the loads relates the voltage on the transmission line, the load 

impedance, and the load current as: 

 
𝑉(𝑧) =

𝐼L

2
[(𝑍L + 𝑍0)𝑒+𝑗β𝑧 + (𝑍L − 𝑍0)𝑒−𝑗β𝑧] [II.1] 

where β is the propagation constant in the transmission line, z is the physical distance 

measured from the load, ZL is the active impedance of the array element (which is 

generally different than its isolated input impedance), Z0 is the characteristic impedance 
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of the transmission line, V(z) is the voltage and IL is the load current. In the special case 

where the transmission lines connecting the element feed points to a common voltage 

point are an electrical quarter wavelength (as shown in Figure III-2b), Eq. [II.1] simplifies 

to:  

 𝑉 (
λ

4
) =

𝐼L

2
[(𝑍L + 𝑍0)𝑒𝑗

π

2 + (𝑍L − 𝑍0)𝑒−𝑗
π

2]. [II.2] 

After simplifying Eq. [II.2], the impact of the load impedance disappears and it 

can be shown that the load current depends only on the characteristic impedance of the 

line and the voltage at the common feed point: 

 
𝐼L =

𝑉(λ
4⁄ )

𝑗𝑍0
. [II.3] 

It should be noted that the voltage at the common voltage point (CVP) is indeed 

dependent on the load values, as is the actual value of the load current, IL. What the FCE 

approach ensures, however, is that all the load currents are the same, regardless of 

differences in the load values, as long as all the elements are connected to the CVP through 

electrical quarter wavelength lines. As will be shown below, enforcing equal current at the 

different RF element ports results in improved B1
+ homogeneity over free excitation in 

highly asymmetric loading conditions, as is the case in excitation of the pendant breast. It 

is worth noting that throughout the text, B1
+ notation will be used where appropriate to 

indicate specific reference to properties of the transmitted field, though we operated in 

transmit–receive mode. 
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III.4 Methods 

III.4.1 Coil Construction 

Two coils were constructed which used the forced current technique: one for quadrature 

1H imaging and one for proton-decoupled 13C spectroscopy. Henceforth these will be 

referred to as the “imaging coil” and the “spectroscopy coil,” respectively. Both coils 

consisted of a Helmholtz-saddle combination, with the saddle tuned to 298 MHz for the 

quadrature imaging coil and tuned to 75 MHz (13C) for the spectroscopy coil. 

The Helmholtz component of the imaging coil was constructed from two identical 

loops (i.d. 16.0 cm; o.d. 17.2 cm; co-axial spacing 8.0 cm) to produce y-directed B1 field. 

The saddle coil (diameter 15.3 cm; length 8.7 cm; aperture angle 120°, conductor width 

0.6 cm) was constructed from two elements, affixed on opposite sides of a cylindrical 

former, and centered inside the Helmholtz coil, producing x-directed B1 field. A 

dimensioned illustration is shown in Figure III-3a. Both the Helmholtz pair and the saddle 

pair were FCE-driven, enabling robust and straightforward/insensitive matching and 

tuning in quadrature due to the enforced equal currents ensuring symmetry. All coil 

elements were fabricated from industry-standard copper-clad FR-4 PCB and segmented 

by eleven 12.1 pF capacitors. Each element was also surrounded by a parallel co-planar 

shield (conductor width 0.4 cm, spaced 0.4 cm from element) segmented in two places 

with 1800 pF capacitors. FCE was implemented separately for the Helmholtz and saddle 

coils, with both elements in each coil pair connected to a common voltage point through 

quarter-wavelength coaxial cables. Traps integrated in the quarter-wavelength cables 

ensured current suppression on the outside of the coaxial shield. The match and tune circuit 
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for each coil pair was connected to its common voltage point (CVP) by a length of coaxial 

cable chosen to facilitate matching to 50 Ω. Two identical coaxial cables with additional 

integrated traps connected the quadrature coil to the MR system. A photograph of the 

imaging coil is shown in Figure III-3b, with the relevant cable lengths and components 

labeled. 

The Helmholtz component of the spectroscopy coil consisted of two identical 

loops (i.d. 14.8 cm; o.d. 16.0 cm; co-axial spacing 7.4 cm) surrounded by a parallel co-

planar shield that provided uniform proton decoupling over the volume of the breast when 

driven with FCE. A conventionally driven, unshielded saddle coil was used for 13C 

transmission and reception (diameter 13.2 cm; length 8.0 cm; aperture angle 121°; 

conductor width 0.6 cm). 

 

 

Figure III-3. Rendering and photograph of the quadrature Helmholtz–saddle FCE coil. 

(a) 3D rendering of the coil with gaps for capacitors and dimensions shown.  

(b) Photograph of the completed quadrature coil with important features marked. 
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III.4.2 Electromagnetic Modeling and Bench Measurements 

Commercial FDTD simulation software (XFdtd 7.1, Remcom, State College, PA) was 

used to perform electromagnetic modeling for determining safe operating parameters. The 

5-mm resolution High Fidelity Female Body Mesh provided by NMR Hershey (Center for 

NMR Research, Pennsylvania State University, College of Medicine at Hershey) and 

distributed by Remcom was designed with the body in the supine position and therefore 

was not conducive to filling the interior of the volume coil when in the prone position. 

Therefore, for SAR evaluation, a geometric phantom was generated consisting of a 

cylinder with the electrical properties of breast tissue spaced 1 cm inside of the coil 

conductors. The cylinder was connected to a rectangular region with the properties of 

muscle to represent the thorax. Electrical properties of the breast and thorax regions of the 

phantom were obtained from (97), with conductivity σ = 0.04 S/m and relative permittivity 

εr = 5.64 for breast tissue, and σ = 0.77 S/m and relative permittivity εr = 58.2 for the 

thorax. The coil volume was discretized on a 1 mm grid and each FCE element was fed 

with a 50-Ω, 1-A (steady state) current source to simulate the FCE drive condition. 

 To illustrate the benefits of FCE, bench measurements of field patterns for the 

16.0-cm i.d. Helmholtz coil were obtained using an automated three-dimensional (3D) 

positioning system reported previously (98). Field maps were acquired in an unloaded and 

in an asymmetrically loaded condition designed to mimic the presence of the thorax. The 

measurements were then repeated with the coil in a conventionally driven (non-FCE) 

configuration. To create the asymmetric loading conditions, a rectangular thorax phantom 

filled with 0.77 S/m saline solution was placed on top of the coil former. In all cases 
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(unloaded, loaded, FCE, non-FCE), the coils were matched and tuned to 298 MHz and 

field measurements were acquired as S21 measurements (network analyzer HP 4395A) 

between the Helmholtz and a 4-mm i.d. shielded loop controlled by the automated 

positioner. It is worth noting that the saddle coil elements are symmetrically loaded by the 

thorax phantom; thus to illustrate the benefits of FCE, measurements were made on the 

Helmholtz coil only. 

III.4.3 Imaging 

All imaging and spectroscopy studies were conducted on a protocol approved by the local 

institutional review board. After obtaining written informed consent, data were acquired 

on a whole-body 7T scanner (Achieva, Philips Medical Systems, Cleveland, OH). Surface 

and volume direct temperature measurements were performed in oil phantoms using 

Reflex fiber optic temperature measurement system (Neoptix Canada LP) following the 

Philips-prescribed coil testing protocol to establish coil safety. Specifically, temperature 

was recorded before, during, and after the heating protocol. We used an RF intensive 

imaging protocol with 3% RF duty cycle, maximum B1
+ = 20 μT, and a total scanning 

time of 10 min. The studies were carried out at room temperature (18-21°C, depending on 

the particular day of the experiment; temperature variation on a particular day was 

±0.1°C), and each phantom was allowed to equilibrate for 10 min before the initiation of 

the RF heating studies. Temperature was measured both in the oil phantom and near the 

electrical elements on the coil and demonstrated marginal heating (less than 1°C), within 

safety guidelines (99). 
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 Imaging was performed using the 1H unilateral quadrature breast coil described 

above in transmit/receive mode. The subjects were in prone position, with the head resting 

on pillows and with arms either to the side or above the head. The coil has openings on 

the sides of the saddle coil elements along the LR direction, which allows for access to the 

breast, such that the technologist can adjust the positioning of the subject. Each of the FCE 

coil pairs was tuned and matched per individual volunteer. Studies included the following: 

(i) B1
+ mapping using dual repetition time (TR) method acquisition (100) with nominal 

flip angle of 50 degrees, TR1/TR2 = 35/140 ms, and resolution 2 × 2 × 10 mm, (ii) fat 

suppressed 3D T1 weighted (THRIVE) sagittal, TR/echo time (TE) = 6.6/2.8 ms, FA=8 

degrees, two spatial resolutions—0.8 mm and 0.45 mm isotropic, 1:40 and 5:40 min 

acquisition, respectively, with SPAIR (Spectral Selection Attenuated Inversion Recovery) 

fat suppression (101), inversion delay = 150 ms and (iii) 3D T2-weighted imaging 

(VISTA) with nonselective excitation, no fat suppression, sagittal, TR/TE = 2000/100 ms, 

TSE factor = 67, field of view (FOV) 250 × 200 × 105 mm, 0.6 × 0.6 × 3.0 mm acquired 

resolution). Maximum B1
+ was limited to 20 μT in system software. 

III.4.4 Broadband Proton-Decoupled 13C MRS 

Localized (ISIS, 50 × 50 × 50 mm) 13C spectra were acquired with the previously 

described “spectroscopy coil” by averaging 64 acquisitions with TR = 13 s for a total scan 

time of 14:44 min. The large voxel was selected to compensate for the intrinsically low 

sensitivity of natural abundance 13C MRS. Because the goal of the study was fat 

composition analysis, however, the large voxel size did not represent a significant 

limitation as it would in the case of a lesion study. The repetition time was relatively long 
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to mitigate SAR issues typical for proton-decoupled 13C MRS. Additionally, this choice 

benefited the MRS quantification because 13C T1s are relatively long. One offset was used, 

centered on the CH2 envelope of the fingerprint region (~29 ppm). WALTZ-16 decoupling 

with an 18 μT proton pulse centered at 1.3 ppm (for the fingerprint region) and NOE (10 

μT at 5% duty cycle and a mixing time of 1.5 s) were used to simplify the spectra and 

enhance SNR. Scans were acquired with BW = 16 kHz and 2k points. Maximum B1
+ for 

13C was limited to 220 μT in software. 

III.5 Results and Discussion 

III.5.1 Modeling and Field Mapping 

Modeled |B1
+| values and SAR maps for the Helmholtz pair and the saddle pair are shown 

in Figure III-4, as generated by the Remcom XFdtd software in the phantom described 

above. The axial, sagittal, and coronal views are oriented with respect to the magnet axis 

(z). All three views are the isocenter plane. The benefit of the FCE approach, enforcing 

equal currents on the elements of the Helmholtz pair and saddle pair, is evident in the top-

bottom symmetry in the SAR and |B1
+| maps for the Helmholtz pair and in the left–right 

symmetry for the saddle pair despite the presence of asymmetric loading conditions. The 

asymmetries in the SAR modeling indicating increased SAR at the bottom of the saddle 

pair (seen in the axial modeling) and one side of the Helmholtz pair (seen in the sagittal 

and coronal modeling) are due to closer proximity to the feed points. Specifically, both 

elements of the saddle coil were excited on the −y side and both loops of the Helmholtz 

pair are excited on the +z side. 
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A comparison of field profiles between unloaded and asymmetrically loaded FCE 

and conventional Helmholtz coils is shown in Figure III-5, demonstrating the advantage 

of using FCE. The FCE driven pair created a homogeneous field in both the loaded and 

unloaded cases, confirming the presence of substantially equal currents on the two loops 

despite one of the loops being heavily loaded. Conversely, the presence of the heavy 

loading on one loop of the conventionally driven Helmholtz pair created a 3-dB variation 

Figure III-4. |B1
+| and SAR field plots generated by Remcom XFdtd. The phantom is a 

12.0-cm diameter, 12.0-cm tall cylinder with the nominal properties of breast tissue 

connected to a 30.0 × 30.0 × 6.0 cm slab assigned the properties of muscle tissue, as 

described in the text. |B1
+| plots demonstrate the homogeneity provided by the FCE design 

despite asymmetric loading. Asymmetries in the SAR plot are due to the feed locations on 

the Helmholtz and saddle pairs, as described in the text. The Helmholtz and saddle pairs 

were each normalized to 1 watt net input power. 0 dB corresponds to 2.0 μT and 1.47 

W/kg in the |B1
+| and SAR figures, respectively. 
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in the field intensity over the measurement range, in agreement with the electromagnetic 

modeling results shown in Figure III-1. 

 It is important to note that there is no difference between the SAR and homogeneity 

of a conventionally driven coil that is tuned to achieve equal currents on the elements and 

the FCE coil; the point of the FCE design is the ability to realize the equal currents 

straightforwardly. Independent tuning of the elements could be quite cumbersome in 

practice, particularly given that the coupling between the saddle and Helmholtz pairs is 

not minimized until the current balance is achieved. 

 

 

Figure III-5. Measured field profiles obtained as the S21 measurement between a shielded 

pickup loop and the Helmholtz coil in FCE and non-FCE mode, unloaded and 

asymmetrically loaded. Each profile is normalized to its respective maximum. The FCE 

maintains excellent homogeneity, comparable to the completely unloaded case, even in 

the presence of asymmetric loading. 
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III.5.2 Imaging 

A B1
+ map of a healthy volunteer is shown in Figure III-6. The anterior–posterior (AP) 

line profile (Figure III-6c) indicates approximately 1cm chest wall penetration. The B1
+ 

coefficient of variation in the AP direction in the breast tissue is approximately 20%. The 

drop off into the chest wall is due to the fact that the breast did not fill the coil in this case. 

Figure III-6. B1
+ map of a healthy volunteer. Power optimization was performed on the 

shim volume that included most of the breast volume proper. The nominal tip angle was 

50 degrees and B1
+ is shown as a percentage of that. (a) B1

+ in the transverse plane as a 

percentage of nominal B1
+. (b) B1

+, coronal view. (c) B1
+ AP, RL, and FH line profiles 

corresponding to the yellow lines in (a) and (b). The AP profile indicates approximately 1 

cm penetration into the chest wall. The coefficient of variation of B1
+ in AP direction in 

the breast tissue is approximately 20% in this case due to the posterior side of the breast 

extending outside the coil. The RL and HF profiles exhibit much smaller variations, 4% 

and 7%, respectively. The location of the HF profile line was chosen specifically to avoid 

the large anatomical null in the bottom center of the image. 
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The anterior side of the breast is in the homogeneous center of the coil and, with coil 

padding in place for patient comfort and safety, the posterior side extends outside the coil 

FOV. A larger diameter coil would address this issue, but with the wavelengths associated 

with 7 T, the benefits of a larger coil will need to be evaluated against the design 

challenges and potential loss of image quality. As expected, the B1
+ profiles in the 

orthogonal directions (right–left [RL] and head–foot [HF] in Figure III-6) show much 

smaller variations (5–7%). 

 The first breast images acquired using the FCE quadrature coil are shown in Figure 

III-7. Three different sets of images are shown in the three columns. Upper and lower rows 

show adjacent slices. The left column is an isotropic T1W FFE 3D acquisition (voxel size 

0.8 mm3) using SPAIR fat suppression. Quality of the fat suppression is noted as excellent 

with residual signal being just several times the background noise level. The middle 

column is the same technique with 0.45 mm3 voxels. Improved tissue margins are clearly 

observed on this ultra-high isotropic resolution image, and while its overall SNR is 

reduced as compared to the image acquired with the more clinically used resolution of 0.8 

mm3, it is still sufficient for clear visualization of the parenchyma. The ability to acquire 

images of such high resolution may lead to improvements in morphological 

characterization of tumors and their involvement in the surrounding tissues. The chest wall 

directly under the coil is also visualized, though with reduced intensity. Insufficient SNR 

is also noted in the region of the axilla. The right column shows 3D T2W TSE (0.6 × 0.6 

× 3 mm3) without fat suppression. A certain amount of blurring is observed in these T2-w 

3D TSE images because this sequence relies on long echo trains that will be affected by 
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the expected decrease in tissue T2 at 7 T. Modification of the echo train to include varying 

refocusing angles may alleviate this issue and preliminary work is underway (102). 

III.5.3 In Vivo 13C MRS 

Broadband proton-decoupled 13C NMR spectrum from the right breast of a normal 

volunteer is shown in Figure III-8, along with the data fit (in blue). All expected major 

lipid 13C peaks in the fingerprint region are observed, showing no detectable decoupling 

artifacts (i.e., sidebands) over the entire acquisition bandwidth. In addition to the three fat 

Figure III-7. Breast images using FCE quadrature 1H breast coil. In columns: (left) T1W 

FFE 3D (0.80 mm3) with SPAIR fat suppression; (middle) T1W FFE 3D (0.45 mm3) with 

SPAIR fat suppression; (right) T2W TSE (VISTA) TSE (0.6 × 0.6 × 3.0 mm3). Note 

excellent suppression of the fat signal on T1W images, almost to the background level. 
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fractions that can be obtained by means of proton MRS (saturated versus mono-

unsaturated versus poly-unsaturated) as shown in Dimitrov et al. (26), fitting the 13C 

spectrum allows for calculation of omega-6/omega-3 lipid ratio by the ratio of the diallylic 

(containing both omega-6 and omega-3) peak at 25.82 ppm and the omega-6 peak at 31.76 

ppm (103). Further improvements in 13C coil sensitivity will be required to reliably discern 

these peaks in vivo and to achieve shorter acquisition times, and work is underway in this 

area. 

Figure III-8. Broadband proton-decoupled 13C NMR spectrum from a healthy breast. (In 

this volunteer, the ratio omega-6/omega-3 = 1.94). The white square on the breast image 

insert represents the ISIS localization voxel. 
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III.6 Conclusion 

Construction and optimization of safe and effective radiofrequency coils at 7 T is a major 

challenge. The well-known interactions between transmit frequency and tissue dimensions 

and the increased sensitivity to loading at higher frequencies generate inhomogeneous B1 

fields, degrading image quality. To address these challenges, this work discussed a forced 

current excitation feed technique applied to a unilateral 1H quadrature volume breast coil 

and a linear coil for proton-decoupled 13C acquisition. The FCE design used transmission 

line properties to ensure equal currents at the feedpoints of the elements in a Helmholtz-

saddle configuration despite unequal loading on the elements due to asymmetries in the 

electrical properties of the anatomy, the presence of multiple elements, tuning 

components, etc. The insensitivity to loading simplified matching and tuning and enabled 

the elements of the quadrature coil to be easily decoupled. The homogeneity of the coil 

was demonstrated by achieving images with excellent fat suppression and with the ability 

to achieve broadband proton decoupling in 13C MRS.  

This study has presented an option to provide limited control of currents on array 

elements to create more homogeneous B1
+ excitation patterns using a single amplifier. 

Future work will include improving SNR by adding an array coil insert and optimization 

of imaging and spectroscopy parameters. 
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CHAPTER IV 

AUTOMATED VOXEL MODEL MODIFICATION FOR HIGH FIELD SAR 

MODELING OF ANATOMICALLY-DERIVED BREAST PHANTOMS WITH 

VARYING TISSUE HETEROGENEITY 

 

IV.1 Synopsis 

IV.1.1 Purpose 

Electromagnetic modeling of the breast to support establishing safe scan protocols is 

complicated by anatomical variability of fatty and glandular tissues and the associated effects 

on power deposition. This work presents 7T simulations using a whole-body model integrated 

with a variety of available breast phantoms spanning the standard four tissue density 

classifications representing the majority of the population.  

IV.1.2 Methods 

Nine heterogeneous breast phantoms and two homogeneous geometric phantoms were resized 

to fill a volume breast coil and individually fused to the whole-body model using a 

combination of voxel extrusion and removal operations. All cases were simulated using the 

finite-difference time-domain method. 

IV.1.3 Results 

Owing to higher-conductivity fibroglandular tissue regions, calculated local SAR in dense 

heterogeneous breast tissue was observed to be threefold higher as compared to a mostly fatty 

breast. Homogeneous phantoms were shown to be problematic, with the uniform 

fibroglandular phantom exhibiting wave behavior that generated excessive SAR hot spots. 
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IV.1.4 Conclusion 

Simulating breast models as predominantly-fatty tissue can considerably underestimate the 

potential for tissue heating in women with substantial fibroglandular tissue. Accordingly, to 

appropriately characterize the worst-case scenario and adhere to safety limits, SAR analysis 

of breast coils should incorporate a heterogeneous breast model largely consisting of 

fibroglandular tissue. 

IV.2 Introduction  

Concern for patient safety is elevated for high field MRI studies, as specific absorption 

rate (SAR) scales according to B0
2. Accordingly, the IEC and FDA guidelines on 

maximum SAR provide the basis for setting safe scanner parameters controlling input 

power to the radiofrequency (RF) coil. To comply with these guidelines for human studies, 

it is common practice to characterize RF transmit coils with full-wave electromagnetic 

modeling in order to establish the parameters ensuring safe power and SAR levels. 

Typically, finite-difference time-domain (FDTD) based methods are utilized owing to the 

ease of incorporating SAR calculations with heterogeneous body models (104-106). 

Simulating RF field behavior during breast scans necessitates incorporating a female body 

phantom into the FDTD mesh and while several adult female whole-body voxel models 

are available to the research community, all are oriented in the standing or supine positions 

(107-111); unfortunately these orientations limit the existing voxel models’ applicability 

for simulating the filling factor of breast coils designed for women in the prone position, 

as is typically performed to avoid respiratory artifacts (74,76). Rudimentary efforts to 
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model a prone breast either replaced or supplemented the body model with geometric 

volumes representing homogeneous breast tissues (28,112). 

Accurate breast modeling is confounded further by the anatomical variability of 

fatty and glandular tissues and their distinct mass densities and dielectric properties. 

Recognizing the need for anatomically-correct heterogeneous breast phantoms, van der 

Velden et al. fused a body model with 3D image data acquired from five healthy volunteers 

and ultimately noted that the observed disparity of simulated SAR distributions among 

these models was due to indeterminate variations in size and tissue makeup (113). Breast 

size and tissue density have great variability among the patient population; to classify the 

extent of breast tissue density across women, radiologists largely have embraced the four 

tissue composition categories prescribed by the American College of Radiology (ACR) in 

the Breast Imaging Reporting and Data System (BI-RADS®) (114). Using this method, 

breast density is defined as (a) almost entirely fat, (b) scattered fibroglandular tissue, (c) 

heterogeneous fibroglandular tissue, and (d) extreme fibroglandular tissue. An analysis of 

projected SAR encompassing these four classifications has yet to be examined.  

In order to address the need to augment existing whole-body voxel models to 

account for prone imaging and the necessity to use heterogeneous breast tissue models, 

this study presents simulations at 7 T of a whole-body voxel model fused with nine high-

resolution, anatomically-correct breast phantoms spanning the four tissue density 

classifications. Results confirm the proportions of lipid and fibroglandular tissues in breast 

phantoms have significant yet predictable implications on projected SAR; specifically, a 

breast with extreme fibroglandular tissue may be exposed to threefold the local 10-g 
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average SAR as compared to a mostly-fatty breast. Consequently, it is recommended that 

worst-case characterizations of breast coil safety include SAR analysis using a 

heterogeneous breast model categorized as BI-RADS-d, i.e., with extreme fibroglandular 

tissue. 

IV.3 Methods 

IV.3.1 Voxel Models 

Of the presently reported adult non-pregnant female whole-body models, “Ella” from the 

Virtual Population is the highest-resolution and most comprehensive tissue model of the 

adult female body (107). Still, Ella 1) represents a woman in the supine position and 2) 

does not include any fibroglandular tissue in the breast region. For this work, we adapted 

nine heterogeneous 0.5-mm resolution pendant breast phantoms produced by the Hagness 

group at the University of Wisconsin–Madison (UW) for modeling microwave 

interactions between 0.5 and 20 GHz (115). These phantoms were labelled according to 

the subject’s radiologist-assigned BI-RADS classification, denoted BI-RADS-a, -b, -c, 

and -d (114). At least two phantoms were developed for each category, with the exception 

of a single phantom for BI-RADS-d. All nine breast models included tissues defined as 

fatty, fibroglandular, transitional, and skin. Within the fatty and fibroglandular classes, the 

preceding Wisconsin–Calgary study of microwave dielectric properties identified 

increasing incongruence of conductivity and permittivity values above 500 MHz and 

accordingly divided both tissue classes into three tiers, each defined by single-pole Cole-

Cole and Debye relaxation models (116). As these discrepancies in dielectric properties 

have not been observed in the RF band, the three tiers for each tissue type were merged 
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into single definitions as fat or fibroglandular tissues. The fat, fibroglandular, and skin 

tissues were assigned dielectric properties using the four-pole Cole-Cole equations 

stipulated by the IT’IS Foundation’s tissue properties database (117). Voxels designated 

as transitional were assigned dielectric and physical properties averaging the values from 

breast fat and gland tissues. The resulting tissue dielectric properties at 7 T were σ = 0.033 

S/m and εr = 5.5 for breast fat, σ = 0.85 S/m and εr = 62 for breast gland, σ = 0.44 S/m and 

εr = 34 for transitional tissue, and σ = 0.64 S/m and εr = 50 for skin. For comparison to the 

approach of utilizing homogeneous phantoms, a hemispherical cylinder was also 

generated to represent the breast in the two extreme cases; that is, this geometry included 

a 1.5-mm skin layer with the remainder uniformly assigned either fatty or fibroglandular 

tissue.  

The volumetric tissue data from the nine image-derived phantoms were imported 

into MATLAB® (MathWorks, Natick, Massachusetts, USA). Since these voxel models 

only included heterogeneous tissue from a single breast, with the thorax modeled as a 

uniform 2D slab of skin, fat, and muscle, modifications were necessary to enable seamless 

integration with the Ella body model. The voxels from the thorax slab were removed and 

each phantom was duplicated for bilateral breast simulation. The breast phantoms were 

then enlarged using a nearest-neighbor interpolation routine to achieve a maximum 13.3-

cm diameter in order to equally fill the RF coil. The finest-resolution Ella v1.3 voxel 

model, with 0.5-mm isotropic resolution, was imported into MATLAB for joining to the 

0.5-mm breast phantoms. To position the breast phantoms on the Ella model before the 

fusing operation detailed below, two voxels were manually selected for centering the 
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posterior coronal layer of all left and right breast phantoms. These locations were 

determined by orienting the base of each breast phantom on the inmost posterior coronal 

plane in Ella’s anterior thorax that solely overlapped breast tissue, fat, and skin, i.e., 

without encroaching on the pectoral fascia or adjacent muscle tissue. As a result, the 

medial extent of each breast phantom’s base was situated underneath Ella’s skin layer, 

while the lateral extent of the base extended in free space above the anterior skin layer, as 

shown in Figure IV-1a.  

To automate integration of breast phantoms with a body model, MATLAB 

functions were developed to extrude and trim voxels from each breast phantom (code 

available on site listed below). First, voxels on the posterior coronal layer separated from 

Ella by free space were individually extruded toward the body model, penetrating the skin 

layer until encountering a voxel of adjacent tissue. By the same token, breast phantom 

voxels defined as skin that were situated inside the Ella phantom were removed from the 

phantom. Any remaining voxels from the heterogeneous breast phantoms that were co-

located with the body model took meshing precedence in simulations, overwriting Ella 

voxels assigned skin, breast (fat), subcutaneous adipose tissue, and average infiltrated fat. 

These extrusion and trimming functions were applied independently for both the left and 

right breast positions. To illustrate this integration, the Ella voxel model fused with BI-

RADS-b UW Phantom 2 is illustrated in Figure IV-1b. 
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IV.3.2 Simulations 

All breast phantoms were exported in a file format to facilitate import into commercial 

FDTD software (XFdtd® 7.4, Remcom, State College, Pennsylvania, USA). A previously-

described quadrature 1H breast volume coil (28,118) was positioned over each of the 11 

right breast phantoms. The coil conductors were centered on the breast phantom and 

separated from the nearest skin voxel by 10 mm, as is the case in the actual coil former. 

The quadrature coil was driven by 298-MHz sinusoidal feeds with appropriate 90° phase 

shifts to simulate quadrature operation at 7 T. To account for the different impedances of 

the quadrature pair, feed amplitudes were adjusted to deliver equal input power to the two 

Figure IV-1. Renderings of the FDTD model including whole-body voxel model and 

breast phantom. (a) 2D axial mesh slices illustrating the initial discontinuity and (b) 

subsequent joining of BI-RADS-a UW Phantom 1 and Ella, with skin tissue labelled 

brown, glandular tissue green, transitional tissue blue, and fatty tissues pink, yellow, and 

orange; (c) rendering of the Ella voxel model fused with BI-RADS-c UW Phantom 2 

surrounded by the quadrature FCE volume breast coil. 
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quadrature channels with less than 0.5% (-23 dB) variation. Cell gridding was adaptively 

set between 0.5 and 1.0 mm for the coil and breast phantom, and all curved conductor 

geometries utilized the software’s conformal meshing capabilities. The entire mesh was 

surrounded by a quarter-wavelength of free space padding cells and the boundary 

comprised seven perfectly matched layers. Simulations were run on a workstation with 

two linked NVIDIA GeForce® GTX 780 GPU cards, each with 3 GB RAM and 2304 

cores, resulting in an average computational time of 73 minutes. Convergence was 

determined by transients dissipating to -50 dB deviation from the pure sinusoidal wave. 

Steady-state field data were calculated for all tissue voxels interior to the RF coil and 

globally on a central sagittal plane, while SAR data were calculated throughout the 

phantoms. 

IV.3.3 Analysis 

Steady-state data output from FDTD simulations were imported into MATLAB for 

analysis. Average |B1
+| was computed inside the volume RF coil; only tissue voxels were 

included in the average, and voxels were weighted based on volume. As MR scanners 

typically monitor SAR with respect to the transmit magnitude, all SAR results in this study 

were scaled to achieve an average |B1
+| = 1 μT at 100% duty cycle. Accordingly, the raw 

and 10-g average SAR for each case were gauged in units W/kg/μT2. To assess relative 

transmit coil power requirements as it relates to breast density, the net input power 

required to achieve average |B1
+| = 1 μT was also noted. In this way, the results easily may 

be scaled to any amplitude and duty cycle at 7 T. 
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Figure IV-2. Raw and 10-g average SAR plots through the right breast’s central sagittal slice for the 11 phantom cases. Extreme 

average SAR in the uniform glandular phantom required a separate scale bar for the single case. Note the increased SAR inside 

glandular tissue regions in the BI-RADS-c and -d phantoms. Furthermore, note the higher-density phantoms are more inclined 

to have localized internal SAR hot spots as opposed to surface localization in the mostly-fatty cases. 
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IV.4 Results 

Figure IV-2 displays raw and 10-g average SAR plots on the central sagittal slice. The raw 

SAR plots reveal localized hot spots in the higher-conductivity fibroglandular tissue 

regions. Notably, all BI-RADS-c and -d phantoms resulted in maximum 10-g average 

SAR incorporating gland regions interior to the breast, while the maxima in all BI-RADS-

a, -b, and uniform phantoms were on the breast surface incorporating the high-

conductivity skin layer.  

Coil efficiency and SAR data for all cases are shown in Table IV-1. Compared to 

the mostly-fatty BI-RADS-a phantoms, the maximum local 10-g average SAR was 

threefold higher in the denser BI-RADS-d UW Phantom 1. Note the extreme case of a 

uniform cylinder of dense gland tissue resulted in almost fourfold the SAR of the 

otherwise worst-case BI-RADS-d UW Phantom 1. 

 

Table IV-1. Coil efficiency and maximum 10-g average SAR data for the 11 breast 

phantom cases. Input power is scaled to average |B1
+| = 1 μT throughout the breast. 

Breast Phantom Tissue Classification 

Input 

Power  

[W] 

Maximum 

10-g Average 

SAR 

[W/kg/μT2] 

BI-RADS-a UW Phantom 1 almost entirely fat 0.63 0.30 

BI-RADS-a UW Phantom 2 almost entirely fat 0.64 0.30 

BI-RADS-b UW Phantom 1 scattered fibroglandular tissue 0.62 0.25 

BI-RADS-b UW Phantom 2 scattered fibroglandular tissue 0.65 0.30 

BI-RADS-b UW Phantom 3 scattered fibroglandular tissue 0.69 0.50 

BI-RADS-c UW Phantom 1 heterogeneous fibroglandular tissue 0.72 0.61 

BI-RADS-c UW Phantom 2 heterogeneous fibroglandular tissue 0.68 0.58 

BI-RADS-c UW Phantom 3 heterogeneous fibroglandular tissue 0.72 0.69 

BI-RADS-d UW Phantom 1 extreme fibroglandular tissue 0.75 0.89 

Uniform fat with skin layer almost entirely fat 0.67 0.45 

Uniform gland with skin layer extreme fibroglandular tissue 1.8 3.4 
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IV.5 Discussion and Conclusions 

The results demonstrate significant variation among breast phantoms with varying levels 

of heterogeneity of healthy fat and glandular breast tissue. In addition, as shown in Figure 

IV-2, the geometric phantom representing homogeneous gland tissue illustrates the 

expected wave behavior in a uniform, electrically large dielectric (119). As such, its 

suitability for modeling in vivo breast scans is problematic.  

This study has addressed two issues relevant to modeling the breast accurately—

the need to augment existing body voxel models to account for prone imaging and the 

necessity to use heterogeneous breast tissue models. This work addressed the second issue 

by importing pre-categorized microwave phantoms, however other methods could be 

utilized including image data conversion (115,120,121) or heterogeneous phantom 

generation using software algorithms (122,123). Moreover, a high field calorimetry study 

spanning a variety of physical breast phantoms would be of particular interest. Even so, 

as the worst-case projected SAR clearly occurs with a denser breast, the characterization 

and SAR analysis of breast coils should incorporate a BI-RADS-d breast model in order 

to obtain the most conservative standards. Arguably, results from each of the remaining 

density classifications could also be included; in this way, a priori knowledge of the 

subject’s breast density classification could allow for adjusting coil operating parameters, 

thus maximizing power availability while respecting safety limits. Conversely, if lacking 

prior knowledge of the subject, patient-specific strategies may be feasible; performing fat-

water separation on a preliminary 3D image set may facilitate rapid SAR prediction, as 

has been demonstrated previously with body and brain imaging (124,125). 
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IV.6 Notes 

The MATLAB library for resizing and fusing breast phantoms with a body model is 

available online at https://github.com/jrispoli/breast-body-fusion (SHA-1 hash 

3b0e8b0740c8ae3688e694265b064df33ea728de). The image-derived breast phantoms 

utilized in this work are available online from the University of Wisconsin–Madison 

(126). As the fusing operation presented here does not modify the body model itself, nor 

require distribution with the body model, the resulting breast phantoms may be 

independently distributed under separate licensing terms. 



 

75 

 

CHAPTER V 

TRAP DESIGN AND COMPONENT ANALYSIS FOR HIGH-POWER 

MULTINUCLEAR EXPERIMENTS 

 

V.1 Introduction 

Multinuclear MRI and MR spectroscopy (MRS) data reveal physiological details 

inaccessible to typical proton scans. Performing multinuclear experiments requires 

radiofrequency (RF) coils operating at both the proton (1H) and second-nuclei (X) Larmor 

frequencies. If using two separate coils, they must be decoupled to prevent the induction 

of currents on the X-nuclei coil that cause sensitivity reduction and detuning of the 1H 

coil. While inter-element interactions may be addressed by orthogonality, the inclusion of 

trap circuits provides the flexibility to position coils based on required anatomical 

coverage. The rudimentary trap circuit is a parallel LC tank tuned to the proton frequency 

and inserted on the X-nuclei coil. This design has been utilized extensively for 

multinuclear imaging and spectroscopy (127-132). One disadvantage of this approach is 

that the impedance of the LC circuit is inductive at the lower X frequency, 

counterproductive to current uniformity and homogeneity of the excitation RF field (B1). 

To address this problem, a second capacitor may be added in series with the inductor, 

forming an LCC trap; as described by Webb, this improved trap circuit blocks current at 

the proton frequency while presenting an intended capacitance at the X frequency (133). 

Moreover, an analysis by Meyerspeer comparing LC and LCC traps elegantly proved the 

latter results in greater coil Q-factor and signal-to-noise ratio (SNR) (134). 
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Of the isotopes commonly interrogated in multinuclear studies, perhaps the most 

demanding is carbon-13 (13C), owing to low natural abundance and strong J-couplings 

from 1H-13C chemical bonds. However, 13C MRS studies draw considerable interest owing 

to the enhanced chemical shift range and reduced spectral overlap of organic compounds: 

metabolite 1H resonances concentrated within 10 parts per million (ppm) are distributed 

across 200 ppm with 13C MRS (7,8,135). To mitigate J-couplings and simplify spectra, 

proton-decoupling (B2) pulses are typically transmitted during 13C signal acquisition. The 

power required for B2 is substantial and increases with decoupling bandwidth, presenting 

challenges for both broadband and high-field decoupling. For example, a broadband-

decoupled 13C spectrum of all metabolites necessitates B2 excitation across the proton 

chemical shift range of 10 ppm and equates to 3 kHz at 7 T. In practice bandwidth is often 

limited by power capacity and specific absorption rate (SAR) safety guidelines, placing 

great importance on the 1H coil transmit efficiency and the capability of 13C coils to 

decouple from high-power 1H irradiation. To date, a majority of in vivo studies at 7 T have 

relied on geometric decoupling to isolate the 13C coil, circumventing the need for traps. 

Adriany and Gruetter achieved 700 Hz of WALTZ-16 decoupling in the head (34) with a 

7T implementation of their widely-adopted, geometrically-decoupled quadrature half-

volume coil (31). Chen et al. used the same coil design to apply B2max = 18 μT in the leg 

(32), nominally decoupling across 1.6 kHz assuming B2 inhomogeneity typical of a surface 

coil (33). Our group also has previously applied B2max = 18 μT in the breast using a 

geometrically-decoupled volume coil optimized for homogeneity at 7 T (28). The initial 

reported use of an LCC trap for 13C at 7 T was for on-resonance continuous wave 
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decoupling to examine one spectral peak (134). Serés Roig et al. subsequently added 

shielded LCC traps to two 13C loops in a double-quadrature modification of the Adriany-

Gruetter coil and decoupled across 700 Hz in the leg (136,137). Even at these limited 

bandwidths, 13C coil coupling to B2 has been shown to generate corona or arcing events 

(137). Considering that transient spikes degrade the resulting spectrum by uniformly 

distributing noise below the reciprocal of the discharge pulse width (64), the performance 

of lumped element components in this environment must be considered. This work 

assesses inductor and capacitor components in LCC trap configurations under the most 

demanding of applications: high-power broadband proton decoupling of 13C MRS at 7 T. 

We show that the judicious selection of trap components leads to improved X-nuclei 

spectra under these stringent conditions. 

V.2 Methods 

V.2.1 Hardware 

Six loops, with inner and outer diameters of 70 and 76 mm, respectively, were milled from 

1-ounce copper-clad FR-4 boards and fabricated into coils tuned to 74.9 MHz for 13C at 7 

T. As illustrated in Figure V-1a, one loop coil was constructed without a trap circuit and 

included a 100-pF capacitor opposite the feed. Each of the remaining five loops instead 

incorporated an LCC trap circuit, as drawn in Figure V-1b, tuned to 298 MHz for blocking 

1H at 7 T. To preserve current uniformity on the trapped coils, LCC component values 

were established to collectively maintain the reactance of the 100-pF capacitor at 74.9 

MHz. Per Eqs. 2 and 3 in (134), the minimum possible trap series inductor value was 12.2 

nH; a value of Ls = 40 nH was chosen as a suitable balance of trap efficiency while limiting 



 

78 

 

the reduction of 13C coil sensitivity. Of the two possible capacitance arrangements, we 

selected the solution that resulted in lower maximum voltages across components, with 

series trap capacitor Cs = 51 pF and parallel trap capacitor Cp = 8.2 pF. The coils were 

balanced matched and tuned to 74.9 MHz with variable capacitors (Voltronics, Salisbury, 

Maryland, USA). A single feed cable with an integrated 74.9-MHz balun and a 298-MHz 

cable trap attached to each individual coil through an SMA connection. 

 

 

 

V.2.2 Trap Components 

Component selection is often a tradeoff between loss, quantified by R (or inversely Q), 

and power handling capability, rated as Vmax or Imax. Unfortunately, ratings for working 

AC voltage are rarely provided by multilayer ceramic capacitor manufacturers. Limits for 

temperature-dependent breakdown owing to thermal runaway are typically listed; 

Figure V-1. Circuit diagrams for untrapped and LCC-trapped loop coils. (a) An untrapped 

loop coil with segmentation capacitor C = 100 pF, and (b) a loop coil with an LCC trap, 

composed of series capacitor Cs = 51 pF, series inductor Ls = 40 nH, and parallel capacitor 

Cp = 8.2 pF. At the X-nuclei frequency, the combined LCC reactance should equal that of 

C in (a). 
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however, the temperature-independent dielectric voltage breakdown is far more difficult 

to categorize as it is contingent on multiple factors including capacitance, frequency, and 

electrode materials (138). The latter failure mode is of greater concern with low duty cycle 

pulses shorter than the capacitor’s thermal time constant; indeed, capacitor dielectric 

breakdown failures usually occur at peak RF voltages far below the rated DC working 

voltages (139). Clearly, components must withstand expected operating conditions, but 

excessively conservative selections lower coil Q and SNR while constraining coil design 

with bulky component footprints. For example, in a receive array application small 

components are desired to minimize the coil size, copper loading of the transmit coil, and 

B1
+ flux blockage. As listed in Table V-1, we evaluated several multi-layer ceramic 

capacitors with DC voltage ratings from 1.5-7.2 kV (American Technical Ceramics, 

Huntington Station, New York, USA; Passive Plus, Huntington, New York, USA). 

In this work, we constructed nominal 40-nH inductors using 18-AWG (d = 1 mm) 

copper magnet wire (8075, Belden, St. Louis, Missouri, USA) formed into 3.5 turns on a 

2.3-mm radius with an overall length of 6 mm. In addition, we evaluated off-the-shelf 

tunable inductors (165 series, Coilcraft, Cary, Illinois, USA), an attractive solution for 

simplifying coil construction and trap tuning. Both solenoids are rated for maximum 

current based on wire gauge. While solenoids are relatively straightforward to construct 

and tune, their use in trap circuits presents some challenges; sharp wire bends on leads are 

prone to cause failures under high power, and the lack of inherent shielding permits 

interaction with transmit fields. To mitigate RF effects, the hand-wound solenoids were 

oriented in the B0 direction to avoid coupling between the trap and the B2 field (128), with 
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a subset circumferentially shielded to reduce electric field interactions (129,136). As an 

alternative to solenoid inductors, semi-rigid transmission line stubs were also evaluated 

(140). By precisely specifying the length l, a short-circuited segment of coaxial cable is 

transformed to a desired impedance [in Ω] of 

 𝑍sc  =  𝑗𝑍0 tan (
2π

λ
𝑙), [V-1] 

 

with characteristic line impedance Z0 and wavelength in the medium λ. The resulting 

inductance [in H] at angular frequency ω is given by 

 𝐿 =
𝑍0

ω
tan (

2π

λ
𝑙). [V-2] 

 

Owing to the steep slope of the above tangent term, fine-tuning the inductance by 

shortening the stub is an arduous task. Fortunately, replication is straightforward once the 

precise length is verified empirically. Parasitic reactance is innately diminished by using 

a stub topology, and in this work, electric field effects were further mitigated by 

conforming and soldering the stub to the coil trace and capping the short-circuited terminal 

with copper foil. The low physical profile and intrinsic shielding of the coaxial stub allows 

for greater flexibility for inductor positioning. In this configuration, the stub length must 

be shorter than the underlying coil segment, which may present a problem given the 

increased coil segmentation mandated at higher frequencies to prevent phase shifts. It is 

evident from the Z0 term in Eq. [V-2] that a desired inductance may be achieved by 

employing a shorter length of higher-impedance transmission line. Accordingly, we found 

it advantageous to reduce the stub length by using 75-Ω semi-rigid coaxial cable (EZ 141-
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75-Cu, EZ Form Cable, Hamden, Connecticut, USA). Photographs of the coils and trap 

circuits are shown in Figure V-2. 

 

Table V-1. Trap components and manufacturer ratings for series inductor Ls, series 

capacitor Cs, and parallel capacitor Cp. 

 Ls Cs Cp 

Coil Inductor Type Part Rating b Part Rating c Part Rating c 

Untrapped a N/A N/A N/A 
PPI 

2225C101JP252X 
2.5 kV N/A N/A 

Trap 1 Variable solenoid, shielded 
Coilcraft 165-

02A06L 
4.9 A 

PPI 

3838C470JP722X 
7.2 kV 

ATC 

100E8R2BMN7200X 
7.2 kV 

Trap 2 
Hand-wound solenoid, 

shielded 
Belden 8075 2.3 A 

PPI 

3838C470JP722X 
7.2 kV 

ATC 

100E8R2BMN7200X 
7.2 kV 

Trap 3 
Hand-wound solenoid, 

unshielded 
Belden 8075 2.3 A 

PPI 

3838C470JP722X 
7.2 kV 

ATC 

100E8R2BMN7200X 
7.2 kV 

Trap 4 Transmission line stub 
EZ Form EZ 141-

75-Cu 
5 kV 

PPI 

2225C470JP252X 
2.5 kV PPI 2225C8R2CP362X 3.6 kV 

Trap 5 Transmission line stub 
EZ Form EZ 141-

75-Cu 
5 kV 

PPI 

3838C470JP722X 
7.2 kV 

ATC 

100E8R2BMN7200X 
7.2 kV 

 

a The untrapped coil’s segmentation capacitor is listed as Cs. 
b Solenoids are rated for RMS current causing 15°C rise from ambient; stubs are rated for RMS 

withstanding voltage at 60 Hz. 
c Capacitors are rated for working DC voltage. 
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V.2.3 Bench Measurements and Modeling 

All traps and coils were characterized on the bench with a network analyzer (E5071C, 

Keysight Technologies, Santa Rosa, California, USA). All coils were loaded with a 

cylindrical phantom filled with canola oil, selected for its similar loading to the breast and 

suitability for 13C spectroscopy. Coil Q-factors were calculated while matched and tuned 

to 74.9 MHz with the -7 dB S11 bandwidth method (64). Trap Q-factors were calculated 

from the S21 peaks at 298 MHz by marginally coupling to the isolated LCC structure with 

two decoupled 3-mm probes.  

To model the traps under expected operating conditions, the EMF induced on the 

13C coil was estimated with Faraday’s law of induction. Thus, as a worst-case scenario, in 

the presence of a uniform circularly-polarized proton decoupling field B2
+ = 20 μT, an 

open-circuited linear loop coil with mean diameter of 73 mm induces 110 V across the 

terminals. The coils and trap circuits were then simulated numerically in SPICE, excited 

Figure V-2. Photographs illustrating various trap inductor types, all utilized in 

conjunction with identical 7.2-kV DC rated ceramic capacitors. (a) Carbon-13 coil 

incorporating Trap 5, with a short-circuited coaxial stub inductor conformed and soldered 

to the coil trace, (b) Trap 1 with a shielded commercial variable inductor, and (c) Trap 3 

with an unshielded hand-wound solenoid. Note in all cases the parallel trap capacitor is 

obscured on the bottom side of the PCB. 
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by a 110-V, 298-MHz voltage source. Capacitor ESR values were identified from 

manufacturer data sheets, and coil and trap inductor losses were backed out from Q 

measurements.  

V.2.4 Magnetic Resonance Spectroscopy 

Carbon-13 spectra were acquired with a 7T Philips Achieva scanner, with WALTZ-16 

used for proton decoupling. Given the limited efficacy of WALTZ-16 with 

inhomogeneous RF transmit coils (33), a previously-reported quadrature 1H volume breast 

coil exhibiting better than 1-dB uniformity was employed for scout imaging and proton 

decoupling (28). A low-pass filter (BLP-100+, Mini-Circuits, Brooklyn, New York, USA) 

was included in the receive line directly before the preamplifier. Individually, the 13C coils 

were placed in the homogeneous region of the breast coil and loaded with a 5-cm cylinder 

of canola oil. Pulse-and-acquire 13C spectra were averaged from eight acquisitions of 4096 

samples over 16 kHz, with TR = 8 s, TE = 150 μs, 70° flip angle, without NOE 

enhancement. WALTZ-16 was centered at 2.3 ppm with B2
+ = 20 μT applied during the 

initial 20% (51 ms) of the 256 ms readout. With homogeneous B2max = 20 μT, WALTZ-

16 is expected to recover 90% of the perfectly-decoupled peak height across 2 kHz (33). 

Fully-coupled spectra were also acquired to illustrate decoupling effectiveness as well as 

quantify the increase in noise during decoupling pulses. 

All spectra were processed in MATLAB® (MathWorks, Natick, Massachusetts, 

USA) using an in-house code library. Zero and first order phase corrections were applied 

to obtain absorption mode spectra, and baselines were corrected by piecewise cubic 

interpolation to simplify peak integration. No line broadening was applied. Peaks were 
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identified from the established canola oil 13C NMR spectrum (141). SNR was calculated 

by dividing the integral of the largest peak by the standard deviation of the baseline noise 

in a vacant 500-sample region. To quantify noise breakthrough during decoupling, the 

standard deviations of the time-domain noise were evaluated from 200-sample regions 

immediately before and after the completion of the WALTZ-16 duty cycle, as illustrated 

in Figure V-3b. In this way, a lower ratio of decoupled versus coupled noise suggests 

superior noise rejection.  

V.3 Results 

SNR and loaded Q-factors for the coils and traps are listed in  

Table V-2. The spectra acquired by the various coils are displayed in Figure V-3a. All trap 

configurations mitigated, to some degree, the detrimental noise breakthrough from 

WALTZ-16 transmission observed with the untrapped coil throughout the decoupling 

duty cycle, as shown in Figure V-3b. Trap 5, with a coaxial stub inductor, led to the highest 

coil SNR, slightly better than with the unshielded hand-wound solenoid of trap 3. The 

FIDs from other trap configurations acquired more appreciable noise during WALTZ-16 

pulses, with spectral SNR suffering as a result. Notably, capacitors rated for 7.2 kV DC 

demonstrated superior ability to avoid intermittent transient noise spikes compared to 

alternatives rated for lower voltages. 

In the SPICE model of the coil and LCC circuit, the coil Q was set to 200. The 

resulting AC current amplitude exceeded 3 A with voltage surpassing 200 V across both 

the inductor and the 8.2-pF capacitor. Note this simulation assumes the EMF arises solely 
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from the decoupling B2 without considering additional sources such as concentrated E 

field regions. 

As seen in Figure V-3a, the largest 13C peak was from bulk methylene resonances 

at 30 ppm, with other resolved peaks from methyl (15 ppm), glycerol (62 ppm), and olefin 

(130 ppm). The two traps resulting in the highest SNR, Traps 3 and 5, were also tested 

with B2max = 20 μT applied during the initial 70 ms of sampling, a 50% increase in 

WALTZ-16 duty cycle. The FIDs acquired from these two cases showed no discernable 

noise breakthrough or voltage spikes; the acquisition from the coil with Trap 3 is shown 

in Figure V-3c.  

 

 

 

Table V-2. Bench measurement and spectroscopy results from the untrapped and five 

trapped coils. 

Coil Trap Q Coil Q SNR 
Noise 

Ratio 

FID 

Noise 

Spikes 

Untrapped N/A 267 1383 4.26 14 

Trap 1 113 206 1183 1.47 4 

Trap 2 122 199 4229 1.68 0 

Trap 3 168 239 5958 1.51 2 

Trap 4 117 228 3173 2.98 14 

Trap 5 108 221 6012 1.58 4 
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Figure V-3. Spectra and FIDs from MRS experiments. (a) Carbon-13 spectra from all 

coils using WALTZ-16 decoupling B2max = 20 μT with 20% duty cycle. The coils 

incorporating Trap 3 (unshielded solenoid and 7.2-kV DC rated capacitors) and Trap 5 

(coaxial stub and 7.2-kV DC rated capacitors) detected spectra with the largest 13C peaks 

and greatest SNR. Other configurations resulted in lower SNR owing to reduced peak 

height, including Trap 1 (variable commercial solenoid) and Trap 2 (shielded solenoid), 

and baseline oscillations owing to intermittent noise spikes during FID acquisition 

observed with coils utilizing 2.5-kV DC rated capacitors, including the untrapped coil and 

Trap 4 (coaxial stub). (b) A FID detected from the untrapped coil illustrates an intermittent 

noise spike. Additionally, this FID clearly exhibits noise breakthrough during WALTZ-

16 transmission, and the 200-sample regions used for calculating the Noise Ratio are 

underscored. (c) The coil with Trap 5, demonstrating superior SNR in (a), also withstood 

noise breakthrough under more demanding conditions: B2max = 20 μT with an extended 

30% duty cycle. 
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V.4 Discussion and Conclusions 

Considering the low physical profile, as well as the confined region for magnetic energy 

storage, the stub inductor may be preferred for LCC trap design. As the results presented 

in this work were acquired at an extreme of power demands for decoupling (13C at 7T), 

the results should generalize to guide trap design for lower field strengths and MRS of 

other nuclei. It is worth noting we previously found the inductor stub to be problematic if 

not shaped conformal to the coil trace, with unacceptable noise introduced when B2
+ 

reached 15 μT. 

While this study compared decoupling efficiency with WALTZ-16, performance 

may be improved with alternate decoupling schemes. Adiabatic pulses have been shown 

to improve decoupling bandwidth over WALTZ-16 by 30% using the same RF power 

(34), and frequency-modulated rectangular pulses may prove to be more beneficial for 

high-bandwidth applications (33). Furthermore, eliminating traditional proton-decoupling 

pulses altogether using alternative techniques may alleviate the power requirements of 

multinuclear MRS; 2D HSQC was recently demonstrated at 7 T, with initial results 

yielding linearly-decoupled 13C absolute-value mode spectra (142). 
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CHAPTER VI 

CONCLUSION 

 

This dissertation has described efforts to solve the engineering challenges heretofore 

restricting the in vivo quantification of broadband-decoupled natural abundance 13C in the 

breast at high fields. As part of this work, novel RF coil features and implementations 

were modeled, designed, constructed, characterized on the bench, and utilized in 7T MR 

scanning. The results presented herein indicate the specific aims of this dissertation have 

been achieved. Now armed with 1) guidelines for a flexible and easily fabricated shielding 

configuration in order to improve B1
+ transmit efficiency, 2) a grasp of the FCE 

implantation on multi-element RF coils for driving equal currents irrespective of inductive 

coupling and sample loading, 3) modeling approaches to ensure patient safety during high-

field breast studies, and 4) trap circuits capable of isolating multinuclear coils under 

broadband proton decoupling conditions, the MR community is better prepared to define 

new directions to advance this line of research.  

As with most scientific investigations pushing the boundaries of what is 

achievable, with high-field broadband proton-decoupled 13C MRS there are several 

identifiable areas for near-term improvements. From a coil hardware viewpoint, the 

logical next step forward is to employ the findings of this work to construct and utilize a 

multi-element 13C breast receive array. Utilizing the FCE transmit coil with judiciously-

selected coplanar shielding, and low-profile LCC trap circuits on each 13C array element, 

the resulting improvement in SNR may spur new pathways of metabolic research. From a 
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decoupling sequence perspective, lower power deposition as compared to WALTZ-16 

may be attainable with frequency-modulated, phase-modulated, or adiabatic pulses (33). 

A decrease in power deposition for equivalent B2 decoupling performance could 

potentially spark interest in high-field proton-decoupled 13C studies in other anatomies 

including the brain, for which SAR safety limits are more stringent. Regarding data 

acquisition systems, a scalable multi-channel multinuclear receiver interface is needed to 

detect 13C concurrently from parallel elements, and work continues in this area (143). In 

due course, significant SNR improvements from massively parallel multinuclear receive 

arrays will be attained at high fields, possibly with systems capable of acquiring 

concurrent data from multiple nuclei. 

Other areas of MR research may also benefit from the work presented herein. The 

necessity for adaptable RF shielding schemes in high-field coils is clear. In Chapter II, 

coplanar shielding was demonstrated with large surface coils as well as volume arrays of 

overlapped elements. The design flexibility afforded by coplanar shielding permits 

deployment in a variety of applications, from clinical 3T to leading-edge 10.5T scanners. 

The FCE technique described in Chapter III was employed for overcoming the asymmetric 

loading from the thorax that otherwise would limit MR sensitivity in the breast, but 

applications for FCE extend beyond breast imaging. For example, as the number of 

elements in transmit arrays scales upward, it becomes increasingly difficult to drive each 

element from an individual amplifier channel. Traditional power splitting techniques 

present limitations at higher fields, as minor variations in coil impedances presented by 

variably-spaced loads, no matter the anatomy, govern the current amplitude delivered to 
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each element. Accordingly FCE may ultimately find widespread adoption in parallel 

transmit applications. The trap results presented in Chapter V are relevant beyond 7T 13C 

coils; they may also be applied to high-field MRS of other nuclei as well as multinuclear 

RF coil design for lower B0 fields. As for EM modeling, the list of applications is 

practically limitless. The automated, iterative capabilities of both custom and commercial 

EM solvers permit evaluation of a wide variety of design criteria, including geometry, 

circuitry, and novel materials. The FDTD simulation considerations presented in this 

work, for both coil design in Chapter II and safety characterization in Chapter IV, convey 

practical information to the wider MR community that possibly could permeate into other 

biological EM arenas such as microwave, terahertz, and photonics.  
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