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ABSTRACT 

 

High field magnetic resonance imaging (MRI) provides improved signal-to-noise 

ratio (SNR) which can be translated to higher image resolution or reduced scan time. 7 

Tesla (T) breast imaging and 7 T spine imaging are of clinical value, but they are 

challenging for several reasons: A bilateral breast coil requires the use of closely-spaced 

elements that are subject to severe mutual coupling which leads to uncontrollable current 

distribution and non-uniform field pattern; A spine coil at 7T requires a large field of view 

(FOV) in the z direction and good RF penetration into the human body. Additionally, the 

ability to switch FOV without the use of expensive high power RF amplifiers is desired in 

both applications. This capability would allow reconfigurable power distribution and 

avoid unnecessary heat deposition into human body.  

 Forced-Current Excitation (FCE) is a transmission line-based method that 

maintains equal current distribution across an array, alleviating mutual coupling effects 

and allowing current/field replication across a large FOV. At the same time, the nature of 

this method enables selectable FOV with the inclusion of PIN diodes and a controller.  

In this doctoral work, the theory of FCE is explained in detail, along with its 

benefits and drawbacks. Electromagnetic simulation considerations of FCE-driven coils 

are also discussed. Two FCE-driven coils were designed and implemented: a switchable 

bilateral/unilateral 7T breast coil, and a segmented dipole for spine imaging at 7T with 

reconfigurable length. For the breast coil, shielded loop elements were used to form a 

volume coil, whereas for the spine coil, a segmented dipole was chosen as the final design 
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due to improved RF penetration. Electromagnetic simulations were performed to assist the 

design of the two coils as well as to predict the SAR (specific absorption rate) generated 

in the phantom. The coils were evaluated on bench and through MRI experiments in 

different configurations to validate the design. The switchable breast coil provides uniform 

excitation in both unilateral and bilateral mode. In unilateral mode, the signal in the 

contralateral breast is successfully suppressed and higher power is concentrated into the 

breast of interest; The segmented dipole was compared to a regular dipole with the same 

length used for 7T spine imaging. The segmented dipole shows a large FOV in the long 

mode. In the short mode, the residual signal from other part of the dipole is successfully 

suppressed. The ability to switch FOV and reconfigure the power distribution improves 

the B1 generated with unit specific absorption rate towards the edge of the dipole, 

compared to the regular dipole. 
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CHAPTER I  

INTRODUCTION  

1.1 Motivation 

Due to its excellent soft tissue contrast, unique diagnostic information and non-

invasive nature, MRI has found its use in numerous medical applications such as 

oncological, cardiovascular, neurological and functional MRI. Since the introduction of 

MRI, the main magnetic field for clinical available MRI has raised from below 1 Tesla 

(T) to 1.5T and 3T, driven primarily by the improvement in SNR [1-4]. SNR can be traded 

for reduced scan time or higher spatial resolution by adjusting the pulse sequence design. 

Some recent research in 7T MRI/MRS has demonstrated an advantage in SNR when 

compared to 3T [5-7], with the challenges being shortened RF wavelength,  complicated 

RF excitation pattern, as well as increased heat deposition [8, 9]. In particular, breast 

imaging and spine imaging at 7T is challenging due to mutual coupling between elements 

as well as the required FOV [10, 11]. In addition, it is often desirable to avoid unnecessary 

power/heat deposition in part of the body not being examined, therefore a flexible control 

of FOV is desirable in these applications. This work describes the use of Forced-Current 

Excitation in addressing the challenges of these applications, as well as the reconfiguration 

of FCE to include the switchable FOV capability.  
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1.2 Dissertation Organization 

This dissertation is divided into five chapters. Chapter I describes the general 

motivation of the work as well as the organization of this dissertation; Chapter II gives the 

background of this work by introducing MRI. It then discusses the benefits and challenges 

in of MRI at 7T, where the majority of this work was performed. In particular, challenges 

in 7T breast and spine imaging are discussed in detail. Chapter III describes the Forced-

Current Excitation method in detail, including its advantages and drawbacks. 

Electromagnetic simulation of FCE coils is also discussed; the method of reconfiguring a 

FCE coil to have a switchable field of view is introduced at the end of this chapter. Chapter 

IV describes the use of the ‘FCE+switchable FOV’ method in a switchable 

bilateral/unilateral 7T breast coil design. Electromagnetic simulations were performed to 

assist the coil design; MRI results as well as bench measurements were performed for 

validation; a modified version of the bilateral coil, specifically designed to house a 32-

channel receive array, is also introduced and characterized. Finally, Chapter V describes 

the design of a segmented/switchable 7T spine coil using FCE with a switchable FOV 

principle. Simulations were performed to provide comparison between different element 

designs, as well as to study the effect of the length in a dipole antenna. Finally, a 

segmented dipole design is presented. The design of the dipole and the switching circuit 

is discussed in detail. Through simulations and MR experiments, its B1/√SAR10g_max as 

well as B1/√input_power efficiency was compared to a regular dipole used for 7T spine 

coil. Throughout this dissertation, B1 stands for the magnetic field produced by the coil 

during transmit, which is also commonly denoted as B1
+. 
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CHAPTER II  

BACKGROUND 

2.1 Magnetic Resonance Imaging 

2.1.1 RF Transmission and Reception 

The concept of MRI was developed from nuclear magnetic resonance (NMR). 

NMR utilizes the fact that nucleus that have a nonzero spin property (such as 1H and 13C), 

is able to absorb and re-emit electromagnetic energy [12]. The frequency of this radiation 

is dependent on the strength of the main magnetic field (B0), with the relationship given 

by the Larmor equation: 

𝜔0 = 𝛾𝐵0 

For MRI, the frequency is typically in the radio frequency (RF) range. 

 A RF resonant structure, often called a RF coil, is used to transmit and detect a 

time-varying magnetic field, often called the B1 field. The B1 field is perpendicular to the 

direction of the main magnetic field, B0. The sample being examined is exposed to the B1 

field excitation and gives a response back which can be detected by the same or a separate 

RF coil. For MRI, the same principle is applied. Traditionally it was considered important 

to use a volume RF coil, such as a birdcage coil, that produces a uniform B1 field. In later 

stage of the development of MRI, it was discovered that a surface coil can also be utilized 

[13, 14]. A surface coil is more sensitive to the signal and noise closer to the coil and less 

sensitive to those further away. This property was exploited in the development of the 

receive array, which can be used to obtain a higher signal-to-noise ratio (SNR) or a 
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reduced scan time [14, 15]. On the transmit side, it is also common now to use multiple 

surface coils to tailor the B1 field, as will be discussed in section 2.2. 

2.1.2 Gradients and Spatial Encoding 

In NMR, there are only two types of magnetic field, the static magnetic field and 

RF field. Lautebur et al noted that by introducing a linear gradient field on top of the main 

magnetic field, B0, the spatial location information from the sample can be mapped to the 

frequency spectrum [16]. The frequency spectrum can then be used to form tomographic 

reconstructed images and retrieve the spatial details of the samples, enabling the early 

form of MRI. Later, more complicated methods were introduced to reconstruct MRI 

images more conveniently [17], namely amplitude adjustable phase-encoding.  

2.2 SAR and FDTD Algorithm 

The RF transmit coil is designed to generate a time-varying magnetic field which 

excites the sample/patient. The sample then gives a response, a time-varying magnetic 

field, which is detected by a RF receive coil. According to Maxwell’s equation, an electric 

field is also generated together with the time-varying magnetic field: 

∇×𝐄 = −𝑗𝜔𝐁; ∇×𝐇 = 𝑗𝜔𝐃 + 𝐉 

Electric fields generate currents in conductive media, which in turn generate heat. 

A measure of the rate at which energy is absorbed by the human body when exposed to 

an electromagnetic field is called the specific absorption rate (SAR), computed from [18]: 

SAR =
𝜎𝐸2

𝜌
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The commonly specified limit for SAR is usually averaged either over the whole 

body, or over a small sample volume (typically 1 g or 10 g of tissue). The FDA specifies 

the limit on the maximum specific absorption rate (SAR) that can be applied to a human 

body or to extremeties [18]. Therefore, in an MR experiment, it is important to predict an 

upper limit on the SAR generated from the RF coil. 

 Due to its excellent ability to model complicated material in three dimensions, 

finite-difference time domain (FDTD) has become the gold standard for predicting SAR 

produced by RF coils/antennas [19, 20]. The method is a time-domain numerical 

electromagnetic method. It discretizes Maxwell’s equation in both space and time, and 

computes the electric and magnetic field in a leapfrog manner, converging to a steady-

state solution of the problem [21, 22]. In this doctoral work, a FDTD-based software 

‘Remcom XFDTD v7.5’ was used to calculate the SAR for different coils evaluated. 

2.3 Seven Tesla MRI 

2.3.1 Benefits and Challenges 

 Since the development of MRI, great research has been undertaken towards raising 

the main magnetic field strength, with the main driver being the approximately linear 

relationship between signal to noise ratio (SNR) and field strength [4].  

 

Where M0 is the net magnetization, Bt is the transverse magnetic field (B1), and γ is 

gyromagnetic ratio. 

𝑆𝑁𝑅𝑣 =
|𝑉𝑠𝑖𝑔|

𝑉𝑛𝑜𝑖𝑠𝑒
=

√2𝛾𝐵0∆𝑉𝑀0|𝐵𝑡|

√4𝑘𝑇∆𝑓𝑅
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SNR can be traded for higher spatial resolution or faster scan time [4] – which are 

the limitations of clinical MRI. Nowadays most of the MRI systems in hospitals employs 

a 1.5 T or a 3T superconducting magnet.  

Several 3T MRI/MRS experiments have concluded that higher sensitivity is 

needed [23], and 7T MRI/MRS has the potential to provide more diagnostically useful 

information because of the expected improvement in SNR.    

However, the advance of 7T does not come without challenges. The most 

prominent challenge is on the RF side - As stated before, the Larmor frequency is linearly 

proportional to the field strength. As the frequency goes up, the RF wavelength shortens. 

At 7T, the wavelength in the body becomes significantly shorter than the dimension of 

abdomen. Additionally, dielectric resonance effect or simply wave interference effects 

becomes more prominent, which adds to the contrast of the image, bringing challenges to 

diagnoses [24].  

Furthermore, the RF losses increases with frequency [25], and therefore imaging 

objects that are deeper in the body is challenging due to power limitation. The limitation 

occurs either in the available peak power (output from the power amplifier), or in the 

maximum SAR (heat absorbed in the patient).  

2.3.2 Parallel Transmission 

In higher fields (3T and above), the dielectric resonance behavior become 

increasingly apparent [26, 27], and therefore it is hard to either create an overall 

homogeneous excitation field pattern or maintain transmit efficiency over a given region. 

Parallel transmission is analogous to the concept of parallel receive (often referred to as 
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parallel imaging). It appears in two forms: B1 shimming [28] and spectral-spatially tailored 

excitation pattern [29, 30]. The former uses an array of independent coils and adjusts the 

amplitude and phase of each coil to obtain uniform excitation or optimum transmit 

efficiency; the latter also uses an array of independent coils, together with carefully-

designed RF pulses and gradient waveforms to spatially select the area to be excited. To 

function well, both methods require the coil elements to have independent profiles. 

Although powerful, especially in high field, the method is very expensive due to the price 

of high power RF amplifiers, and is often not available at clinical sites to date. Coupling 

between transmit element is difficult to overcme, which will be discussed in detail in 

section 2.4.  

2.4 Challenges in 7T Breast and Spine Imaging 

2.4.1 Challenges in 7T Breast Imaging 

7T bilateral breast imaging requires a relatively large field of view (FOV). A naïve 

solution is to use a sufficiently large loop to encompass both breasts. However, a loop of 

this size will exhibit highly inhomogeneous excitation pattern, and will be highly 

inefficient due to its size and the associated radiation losses. A more appropriate design is 

to use two identical coils, one surrounding each breast [31]. To create a homogenous field 

pattern in the anterior-posterior direction (y direction in MRI system), a Helmholtz pair is 

a viable option. In this configuration, the distance between elements is very small, and 

using a multi-element array volume coil means that a method is needed to either decouple 
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these elements, or minimize the impact of coupling.  Decoupling transmit elements from 

each other is a difficult task, and will be covered in section 2.4.  

Furthermore, although bilateral imaging is more clinically useful [32], sometimes 

it is desirable to only investigate a single breast, avoiding while heat deposition in the 

other one. Furthermore, this will allow more power to be focused in the breast that is of 

interest, or with lesion. In other words, the B1/√input_power is higher in the unilateral 

configuration, and may benefit power-hungry applications such as proton-decoupled 

second nuclei spectroscopy [33]. 

2.4.2 Challenges in 7T Spine Imaging 

7T spine imaging is also demanding, especially on the transmission side. The 

length of the spine requires a long FOV in the head-foot direction (z direction in MRI 

system) [34]. The depth of the spine also varies along its length, with the thoracic spine at 

the surface of the back and the cervical spine and lumbar spine deeper in the body. This 

requires good RF penetration. The length of patients’ spines can also vary significantly, 

calling for a length-variable design. 

Long dipoles can be used to provide good sagittal coverage and good RF 

penetration (radiation), as is shown in [35]. However, the current falls off towards the 

dipole edge, together with the B1 field. In the end the B1/√SAR10g_max performance is poor 

towards the edge. One solution is to use multiple segments along the z direction, with each 

of them being able to be switched on and off. This can be achieved through using multiple 

power amplifiers and parallel transmission [11]. However, this will be an extremely 

expensive solution considering the cost of high power RF amplifiers. Furthermore, when 
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using multiple segments to construct a long spine coil, the coupling between the small 

segments still needs to be addressed, as with breast imaging. 

2.4.3 Coupling Between Elements in an Array 

It is commonly known that electromagnetic resonators couple with each other, as 

is depicted in Fig. 1. For MRI RF coils, the resonators are often designed to produce 

magnetic field, with the electric field being a side product. The coupling appears in the 

form of inductive coupling: 

 

 

Fig. 1. Two coupled coils 

 

 

Equation 1 Coupling equation between two coils 

 

As shown in Equation 1, when mutual coupling exists, the current of each coil is a 

function of the excitation voltage from the other coil, complicating the control of current. 

The situation is different between receive coil decoupling and transmit coil decoupling. 

For receive coil decoupling, the low-input impedance preamplifier decoupling method has 

become the gold standard due to its good decoupling performance and scalability without 

adding too much complexity to coil design [15, 36]. On the transmit side however, this 

method cannot be directly applied.  

𝐼1 = 𝑌11𝑉1 + 𝑌12𝑉2 

𝐼2 = 𝑌22𝑉2 + 𝑌21𝑉1 
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Coupling between transmit array elements causes complicated excitation patterns, 

difficulty in tuning, as well as compromised efficiency. For an array either used for parallel 

transmission, or just simply functioning as a volume coil, the coupling between its 

elements needs to be addressed. Coupling between elements in an array can be mitigated 

using a variety of techniques: Overlapping adjacent loop elements can achieve a net flux 

of near zero and alleviate inductive coupling, however the method only works up to a 

three-element array; A network of passive elements consisting of capacitors or inductors 

can be used to diagonalize the coupling matrix [37-39], reducing the mutual coupling 

effect. This adds to the complexity of coil design. For elements separated far apart, it is 

difficult to add such a network between them effectively [37-41];  In certain applications, 

an element geometry that has intrinsically low mutual coupling, such as a 

microstrip/transmission line of a certain wavelength can be used [42]. However, the B1 

pattern of these elements may not satisfy the needs of some applications; A decoupling 

element, based on induced current compensation, can be placed between adjacent 

elements to cancel mutual inductance or impedance[43, 44]. But this method is also 

limited to nearest element decoupling. 

Some of the methods above are limited to two or three element decoupling [37-41, 

43, 44]. Others pose limitations to element geometry or array configuration [37, 38, 40-

42]. Approaches that allows easier channel count scaling, which do not depend on coil 

geometry have also been presented: A ‘forced current excitation (FCE)’ method uses one 

power amplifier and odd multiples of quarter-wavelength transmission lines to excite 

multiple elements to achieve equal current across the array[45]. The method allows current 
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replication without added amplifiers and provides an easy way to tune a multi-element 

array, but it does not provide B1 shimming capability on its own. This method will be 

discussed in detail in this dissertation and will be used with a breast coil and a spine coil. 

An active feedback technique can be used to cancel out induced currents, but this 

has significant bandwidth requirements [46]. Amplifiers can also be designed to mitigate 

coupling, for instance: a current source amplifier avoids induced current by presenting a 

high output impedance towards the coil; Similarly, a low output impedance amplifier can 

be designed to provide a high impedance to the coil and avoid mutual coupling. Although 

they have limited operational bandwidth and some designs have significant reductions in 

output power [47-49]. 
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CHAPTER III 

FORCED-CURRENT EXCITATION 

3.1 Introduction 

In this chapter, the Forced-Current Excitation method-FCE, is discussed in detail. 

In section 3.2, the benefit from using FCE on multi-element arrays is explained. ABCD 

matrix analysis is performed to explain the method; In section 3.3, the issues of simulating 

FCE coils in FDTD is discussed, and several simulations is performed to decide a proper 

source impedance; In section 3.3, the loss associated with FCE feeding network is 

analyzed, and some conclusion is reached as to how to minimize it; In section 3.4, an easy 

method of detuning FCE coils is introduced and tested on bench; Finally in section 3.5, 

the detuning method is used to enable the switchable FOV feature with the help from 

additional PIN diodes. This configuration still maintains the FCE feature. 

3.2 Benefit from FCE 

FCE is a technique that has been used in antenna phased arrays. By forcing the 

feed current to be equal, it alleviates the problem from mutual coupling between closely 

spaced antenna elements. Because of its unique feature, it has found its use in MRI coil 

designs, especially in high field MRI where multiple elements are used more often. In 

[45], the theory behind FCE is explained by relating the excitation source (a voltage 

source) and the load current of several elements. Here, a more generalized expression is 

presented by using a two-port network analysis and ABCD matrix calculation. It is also 
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pointed out that the excitation source could be replaced by a passive load, if the purpose 

is only to maintain equal current between coil elements. 

Each coil element is fed directly from a quarter-wave transmission line, where the 

other ends of the transmission lines are connected together in parallel at a common-voltage 

point (CVP), as shown in Fig. 2. A single matching network, located after the CVP, is 

used to match and tune the entire coil structure.  

 

 

Fig. 2. FCE driven, multi-element array 

 

 

 

Fig. 3. Matrix representation of the FCE configuration 

 

 

The relation between I1 and I2, as well as V1 and V2 (as shown in Fig. 3), can be 

calculated from series connected ABCD matrix: 
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That proves that: In this configuration, despite what value the Ys takes, the current 

of all elements are the same. Ys can be a excitation source, or a passive load (or just an 

open circuit) if the coil is fed from somewhere else.  

3.3 FDTD Simulation for FCE Coils 

FDTD method is widely used in MRI coil design and SAR calculation, due to its 

outstanding ability to model complex anatomical structures as well as predicting B1 and E 

field distribution. However, commercial FDTD software packages are often not equipped 

with the ability to model coaxial transmission line in 3D models, e.g Remcom XFDTD 

7.4, and therefore cannot model the FCE configuration. Instead, a source need to be placed 

at each coil element to provide excitation directly. For standard RF coil modeling, it is 

common to use a complex conjugate-matched source impedance to achieve easy 

impedance matching, or a 50 ohm source impedance to study the coupling between coil 

elements and the transmit system. These types of source do not model the FCE feature by 

nature, as the delivered voltage/current to the coil can be altered by the load as well as 
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voltage/current from other element due to coupling. If the equal current condition is not 

modeled correctly, the B1 field pattern and the SAR results will be invalid.  

It is not difficult to conclude that a current source works better than a voltage 

source in our case, as the FCE is tied with input current. The question is the value of the 

source impedance. 

In FDTD algorithm, two coil elements and their current sources can be modeled 

as in Fig. 4: 

 

 

Fig. 4. Coupling matrix and current source representation 
 

 

I0 and Zs together constitute the current source in FDTD algorithm. The Z matrix 

represents the two coils, with Z12 representing the coupling coefficient between them.  
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To simulate a forced-current condition, I1/I2 needs to be 1. Two circumstances 

could satisfy this condition: 1. Z22-Z12=Z11-Z21, which leads to Z11=Z22 (Z12=Z21 in a 

passive network). This requires the self impedance of the coil to be the same, which is 

often not the case in asymmetric loading situations; 2. Let Zs be much higher than Z11-Z21 

and Z22-Z12. This can be achieved from the modeling. 

Based the calculation above, it is better to use an ideal current source (one with 

infinite source impedance). At the same time however, it is known that a high impedance 

mismatch factor causes FDTD algorithm to converge slower [50, 51]. In FDTD algorithm, 

a source resistance helps dissipate the unwanted mode, thus reducing time steps required 

to converge. In a time-domain pulse excitation, the unwanted mode is introduced by the 

spectrum of the pulse; In a steady state excitation (frequency-domain), the unwanted mode 

is introduced by the starting of the pulse (from zero to the sine wave). In the case where 

R=0, or being too large, high percentage of the power is reflected from the circuit, and can 

only rely on lossy load and radiation to dissipate.  So it is of interest to study quantitatively 

how high the source impedance needs to be in order to simulate FCE. 

A Helmholtz pair breast coil at 7T is investigated here. Each loop has an inner 

diameter of 16 cm and an outer diameter of 17.2 cm, with a concentric RF shield of an 

outer diameter of 19.2 cm. Each loop has 12 breaks with the segmentation capacitor value 

of 11 pF. The shield has two breaks on opposite side with the segmentation capacitor value 

of 1800 pF. Each element in the Helmholtz pair is excited by a current source. The 

excitation current is set to be 1A for each source, and the actual current delivered to the 

loop is represented by I1 and I2, respectively. 
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When there is no load present, the Helmholtz pair is a symmetrical structure. With 

a 50-ohm source impedance I1/I2 reaching 0.9996. However, when asymmetric load is 

present, much higher source impedance is required to maintain equal current. The 

asymmetric load is modeled the same way as in [52], where the thorax has a conductivity 

of 0.77 S/m, and a dielectric constant of 58.2, and the breast tissue has a conductivity of 

0.04 S/m, and a dielectric constant of 5.64. The model is shown in Fig. 5 

 

 

Fig. 5. A Helmholtz pair with fat (pink) and muscle (yellow) as loading. Modeled in 

XFDTD 

  

 

Under asymmetric loading condition, varying the source impedance of the two 

current sources changes the ratio between I1 and I2: 
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Fig. 6. Current ratio between I1 and I2 vs. current source impedance 

 

 

As can be seen in Fig. 6, higher source impedance leads to higher agreement 

between I1 and I2. In this case, a 1000-ohm source impedance is enough to maintain a 

current ratio of 0.98. 

Ideally, an ideal current source should be used to represent a source impedance of 

infinity. However, such setup causes serious convergence issue in FDTD algorithm. The 

results in Fig. 7 underscores that problem of a high impedance mismatch factor. 
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Fig. 7. Resistance of the top loop, after convergence vs. source impedance 

 

 

A convergence factor of -40 dB was used in the simulation. Although the 

convergence detection routine found convergence for all simulation within the defined 

simulation time limit, the results achieved with source impedance larger than 10000 ohms 

are obviously wrong, considering the size of the coil. It indicates that a real convergence 

was not achieved within the given time. In this case, a 1000-ohm source impedance 

already satisfy our need, so there is no reason to go beyond that and reduce convergence 

rate.  

In other cases where higher self-impedance is present, even higher source 

impedance might be required to minimize the 
Zs

ZZ 1222  and 
Zs

ZZ 2111   terms. The 

convergence issue will need to be carefully investigated, however.  
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3.4 Losses in FCE Coils 

In most cases, coaxial cables used as the quarter-wave cables for the FCE coils are 

low loss cables. Their loss factor is in the range of 5~16 dB/100 m at the frequency of 

interest (298 MHz for 7T), therefore one would expect that the addition of these cables 

will not cause a significant change to B1/√input_power efficiency.  

However, the above expectation assumes that the coil is matched before the coax. 

This unfortunately, is not true in our case. In the FCE configuration, the transmission lines 

are inserted between the coil elements and the matching network, inducing standing wave 

on the cables, which increases the loss from the cable.  

In a transient view, the RF signal is reflected from the coil feed due to the 

mismatch. When the reflected wave reaches the matching circuit, the matching circuit 

reflects it back and put it in phase with the incident wave. This process continues until all 

power is consumed. Therefore, the wave effectively travels multiple times on the cable. 

The total loss in the cable can be quantitatively determined from the equation given by 

Pozar (2.94) [53]: 

𝑃𝑙𝑜𝑠𝑠 = 𝑃𝑖𝑛 − 𝑃𝐿 =
|𝑉0 +|2

2𝑍0
[(𝑒2𝛼𝑙 − 1) + |𝛤|2(1 − 𝑒−2𝛼𝑙)] 

𝑃𝐿 =
|𝑉0 +|2

2𝑍0
(1 − |𝛤|2) 

Where Ploss is the loss occurred in the transmission line, and PL is the power 

delivered to the load. As can be seen, the loss is determined by the attenuation of the cable, 
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as well as the reflection coefficient at the coil elements. The relationship between these 

factors can be plotted together: 

 

 

Fig. 8. Power loss percentage vs. reflection coefficient and attenuation factor. 

Length of the cable is 40 cm 

 

 

As shown in Fig. 8, a cable with lower loss have significantly lower total loss than 

a cable with higher loss. As the reflection coefficient goes up, the power loss increases- In 

the extreme case where all power is reflected at the coil, all power is lost on the cable. In 

a well-matched case (reflection coefficient smaller than 0.1), minimal power loss is 

observed, as is predicted previously. 

Reflection coefficient is ultimately determined by the coil impedance. In the case 

where the coil has low resistance and that the impedance is close to the wall of the Smith 

chart, the FCE loss could be the dominating component in the total loss. However, in cases 
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where the coil impedance is closer to the center of the smith chart, the loss from FCE 

cables is may not be significant compared to the loss from the coil itself. 

As a conclusion, using FCE introduces additional loss from the standing wave on 

the transmission line. The loss is related to the coil impedance. When coil impedance is 

naturally matched to 50 ohm or close, the loss will be minimal. However, when the coil 

impedance causes high reflection at the feed, the loss is substantial. This disadvantage 

makes FCE a valid option for transmit, when there is enough transmit power. It is not 

recommended to use FCE as receive, as it will degrade SNR due to this loss.  

There are ways that can potentially reduce the FCE-induced loss. Based on the 

calculation, the loss increases with 1. Cable length; 2. Attenuation of the transmission line; 

3. The reflection coefficient at the element feed. Using a cable with lower loss could 

reduce the attenuation rate; Partially matching the element before the transmission line 

could reduce the reflection coefficient. However, to maintain the FCE function no shunt 

element should be used for matching; The use of lumped element to replace transmission 

lines also has the potential to reduce loss, but a high quality-factor component is required. 

3.5 Detuning FCE Coils 

 FCE uses odd multiples of quarter-wave transmission lines (λ/4 T.L.s) to excite 

elements through a common-voltage point (CVP). The coil elements are fed directly by 

the λ/4 T.L.s without a tuning capacitor at the feed point.  

Many decoupling methods are designed to create an open-circuit at the coil feed 

to reduce induced current, such as the use of current source amplifiers [47] and the low-
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output impedance power amplifier [48]. The most classic implementation of this method 

is the use of low-input impedance preamplifiers on receive arrays [36]. The use of λ/4 

T.L.s in the FCE configuration gives us a straight forward way to for decoupling: Having 

a PIN diode at the CVP controlled by a DC biasing signal. According to transmission line 

theory, a short circuit will be transformed to an open circuit by a λ/4 T.L. When forward-

biased, the PIN diode creates a short circuit at CVP, which is then transformed into an 

open-circuit at the coil element by the FCE feed lines. A simple experiment was used to 

validate this, as is depicted in Fig. 9: 

 

 

Fig. 9. Detuning test setup 

 

 

 A test receive coil was inserted between a Helmholtz pair transmit coil. Its return 

loss curve was compared in Fig. 10 with the PIN diode on the CVP turned on and off. 

Helmholtz Pair 

CVP Match & 

Tune 

50 ohm 

termination 
Receive coil under test 
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Fig. 10. S11 of receive coil, Left: PIN diode reverse biased (12V) (frequency span: 

50 MHz). Right: PIN diode forward biased (100 mA) 

 

 

When the PIN diode is reverse biased, there is an obvious mode split across the 

frequency span (50 MHz), which is a clear indication of coupling [41]. When the PIN 

diode is forward-biased, the mode splitting was degenerated into one mode resonance, 

indicating successful detuning of the coil.  

The idea of this detuning method in FCE driven coils have been implemented in a 

quadrature unilateral breast coil at 7T used for transmission only (with a 16 channel 

receive array insert) [52].  

3.6 FCE with Switchable Field of View 

As stated in section 3.4, the FCE method brings extra loss to the system, and the 

loss is dependent on the reflection from the coil, therefore it is very important to preserve 

the power efficiency wherever possible. A switchable FOV design will allow more 

concentrated power when needed. Meanwhile, a switchable FOV coil can also avoid 

unnecessary heat deposition into other part of the body, when desired. 
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With the detuning capability of the FCE coil explained in section 3.5, it is realized 

that a reconfigurable-FOV design can be implemented based on that. At the CVP, a PIN 

diode can be put in series with the RF signal to control the flow of RF. If an element in 

the array is unwanted, this can be done to prevent the RF being injected into that element. 

However, this alone will not decouple that element from the system. Because of the close 

distance between elements in our coil configurations, mutual coupling between them will 

still put power onto the unwanted element. 

Therefore, a shunt PIN diode needs to be added to the CVP, to actively detune the 

unwanted element, as is done in section 3.4. Biasing of the two diodes (a series and a shunt) 

requires careful design of the biasing network, which will be discussed in detail in the next 

chapters. 
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CHAPTER IV 

FCE BILATERAL BREAST COIL AT 7T* 

4.1 Introduction 

Breast MRI is challenging due to two major reasons: 1. The electrical property of 

the chest, which is mainly composed of muscle, is very different from that of the breast, 

which is a combination of fiber glandular tissue and fat tissue. This causes asymmetric 

loading in the Anterior-Posterior (A-P) direction; 2. It is impossible to use a birdcage-like 

structure in breast imaging, and therefore the design of a breast RF coil typically involves 

the use of multiple elements. Closely-spaced elements have heavy mutual coupling, which 

complicates the tuning, and causes unpredictable current distribution. 

In [52], FCE was used on a 7T unilateral breast coil. The method was shown to 

alleviate the asymmetric loading issue and create a homogeneous field pattern. 

A bilateral study is of higher clinical value due to easier clinical planning and 

interpretation of result, and therefore a bilateral coil is desirable. A bilateral coil requires 

even more elements to be used, and suffers from high mutual coupling between these 

elements. The use of FCE on a bilateral coil is investigated in this chapter. It was 

acknowledged that FCE brings extra loss through its feeding network,  and therefore in 

applications that need very high peak power [33] (e.g proton-decoupled spectroscopy, 

CEST-MRI), it is necessary to enable a unilateral mode which saves half of the power and  

__________________
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enables higher B1/√input_power efficiency. Therefore, the FCE with switchable FOV 

method is of high value in breast imaging. In this chapter, several coils and methodologies 

are discussed. In section 4.2, a switched-mode bilateral breast coil is designed for 7T [54, 

55]. The coil employs FCE and can switch between unilateral and bilateral mode 

electronically. The bilateral mode has large FOV while the unilateral mode provides 

higher power efficiency; In section 4.3, a modified version is implemented specifically for 

bilateral transmission that allows high channel receive array integration [56]; One problem 

for the switchable FOV design is the require of retuning when switching modes, especially 

between bilateral and unilateral mode. In section 4.4, a potential method that can partially 

address that problem, is presented. A test coil was tested on bench for proof of concept, 

and positive results are obtained.  

4.2 Switched-mode Bilateral Breast Coil at 7T  

4.2.1 Introduction 

As is described in chapter two, efforts have been made to translate existing MR 

technologies to 7T to capitalize on the improved sensitivity and signal-to-noise ratio 

(SNR) [24, 57-60]. Several clinical 7T breast studies have demonstrated the feasibility and 

the advantage of utilizing high field [58, 61-66]. Operating at high fields, however, 

presents a number of engineering challenges. Transmitting at a higher Larmor frequency 

creates a shorter radio frequency (RF) wavelength in the body, often resulting in B1 
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inhomogeneity and non-uniform sensitivity [26, 67, 68]. When designing high field coils 

with multiple elements, the shorter RF wavelength also causes more complex element-to-

element interactions, complicating coil tuning. A number of research groups have 

employed parallel RF transmission to address the high field inhomogeneity problem [29, 

69-72]. This method utilizes multiple transmit channels, individually controlling the 

current on each coil element, to achieve a uniform excitation. However, the high channel 

count needed to implement this technique is often expensive and available at a few 

research sites only, hence single-channel techniques are still needed. In the past, our group 

has successfully applied the FCE method on high field multi-element coil designs to obtain 

some of the advantages of a two-channel transmitter at much lower complexity and cost. 

The FCE technique exploits transmission line properties to ensure that equal currents are 

delivered to the feedpoints of all elements [45]. This approach has been shown to mitigate 

inhomogeneity arising from the asymmetric coil loading encountered in breast imaging 

[73].  

In clinical practice, a bilateral study is preferred as it simplifies planning and 

interpretation of the results [32, 66, 74, 75]. Comparing images from both breasts can 

reduce false positive detection in dynamic contrast enhancement (DCE)-MRI. 

Additionally, studies indicate that in women recently diagnosed with unilateral breast 

cancer, additional cancer lesions are sometimes detected in the contralateral breast [76]. 

Several 7T breast studies have indicated a need for bilateral coil design [63, 66]. On the 

other hand, in some applications, e.g., proton decoupling in second-nuclei applications, a 

unilateral coil may be preferred, since it enables judicious use of the available total proton 
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decoupling power in a single breast [33, 77, 78]. Our group has reported a unilateral, 

quadrature FCE breast coil previously [73]. Here, we describe the extension of the 

unilateral coil to a new switched-mode coil. The new coil can be configured for either 

bilateral operation or unilateral operation for either breast. By extending the FCE approach 

to both sides of the array, the mutual impedance between the left and right arrays is also 

mitigated, eliminating potential asymmetries caused by mode splitting.  The switched-

mode coil was evaluated on the bench and through MRI experiments in its different 

configurations. Efficiency comparison was made on bench with the previously reported 

unilateral coil.  

4.2.2 Coil Design 

In designing the switched-mode coil, we initially duplicated a previous unilateral 

coil construct [73] and added a switching network to enable selectable bilateral and 

unilateral (left/right) operation. The switching network was designed to enforce the FCE 

condition in all modes. All coil conductors were etched from copper-clad FR-4 PCB. 

Each quadrature unilateral coil consisted of a Helmholtz pair and a saddle pair, as 

previously described in [73]. In brief, the two identical loops comprising the Helmholtz 

pair had 16 cm i.d. and 17.2 cm o.d and were coaxially separated by 8 cm in the vertical 

y-direction. Each element was segmented by eleven 10 pF capacitors. A concentric 

coplanar shield surrounded each loop, with 18 cm i.d. and 18.7 cm o.d; the addition of 

coplanar shields has been shown to reduce E-field radiation from the coil [73]. To prevent 

eddy currents, each shield was segmented in two locations by 1800 pF capacitors. The 

saddle pair coils were affixed on opposite sides of a 15.2 cm i.d. acrylic tube and centered 
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inside the Helmholtz pairs. The elements were rectangular with inner measurements (when 

flat) of 15.3 cm width and 8.1 cm height and outer measurements of 16.5 cm width and 

9.4 cm height. When mounted at radius 7.6 cm, each saddle produced an angular aperture 

of 120°. Analogous to the coplanar shields on the Helmholtz elements, rectangular 

shielding conductors of 0.4 cm width were spaced 0.5 cm outside of the saddles. Each coil 

element was segmented by eleven 12 pF capacitors, and the shield was segmented at two 

locations by 1800 pF capacitors. 

To enable bilateral operation, the unilateral coil was duplicated and the two coils 

were spaced 19.2 cm, center-to-center in the x direction. In this paper, we define the term 

“left coil” as the coil used to image the left breast of a patient (–x), and “right coil” as the 

coil to image the right breast (+x).  Photographs of the coil are shown in Fig. 11  

 

 
Fig. 11. Switchable bilateral quadrature coil closed in a housing (left) and with covers 

removed (right) forms 
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The close proximity of the two quadrature coils raised concerns of potential B1 

field cancellation in the bilateral configuration. Two 4feeding schemes were available: 

with the B1 field having the same direction (Fig. 12 (a)); with the B1 field having the 

opposite direction (Fig. 12 (b)). The first arrangement provided better SNR in simulations 

and was chosen for the final design.  

 

 

Fig. 12. Possible quadrature B1 field arrangements (a): with the B1 fields in the same 

direction; (b): with the B1 fields in opposite directions. The arrangement on the left 

was chosen based on numerical simulations. 

 

 

4.2.3 Forced-Current Excitation and Mode Switching 

The theory behind the FCE method has been explained in the previous sections. In 

brief, in a single-channel multi-element array design, the elements are connected to a 

common voltage point (CVP) through quarter-wavelength transmission lines. The 

resulting current at the feed point of each element is equal despite differences in loading 

and mutual impedance between elements [79]. In this coil, all four elements in the two 

Helmholtz pairs were connected to one CVP through quarter-wavelength segments of 

b a 
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semi-rigid coaxial cable, and all four elements in the two saddle pairs were connected to 

a second CVP using the same method.  

The circuit boards for the CVP included PIN diode switching networks allowing 

unilateral/bilateral mode selection. Four operating modes were possible: Both coils 

activated (bilateral mode, mode 1); Left coil activated with right coil detuned (mode 2); 

Right coil activated with left coil detuned (mode 3); Both coils detuned (mode 4). Modes 

1-3 were utilized for Transmit/Receive configurations, and mode 4 was included for 

potential future use with receive array inserts. To control mode switching of the two coils, 

we assembled a power supply switching device to provide two DC supply signals which 

can be switched between +12 V and -12 V; positive polarity activates the corresponding 

coil whereas negative polarity effectively disconnects and detunes the coil.   

A simplified schematic of the switching circuit with coil connections is presented 

in Fig. 13. RF chokes on the DC bias lines and current limiting resistors are omitted for 

clarity.   
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Fig. 13. Schematic of switching network for operating mode control of the 

Helmholtz/saddle pairs. The same DC signals for switching are routed to the 

Helmholtz and saddle switching network.  

 

 

The path for the RF is determined by the status of PIN diodes D1 and D2 (UM9415, 

Microsemi, Lowell, MA, USA). A +12V/-12V signal forward/reverse biases D1 or D2, 

which connects/disconnects the corresponding coil elements to/from the RF chain. In 

unilateral mode, it is necessary to detune the non-active coil. The FCE implementation 

provides a straightforward method to detune a coil: when D1 or D2 is reverse-biased, D3 

or D4 is forward-biased by the same DC signal, essentially creating a short circuit at the 

CVP. According to transmission line theory, the quarter-wavelength coaxial lines 

transform the short circuit to an open circuit at the feed of the coil elements, consequently 

detuning those elements. When D1 or D2 is forward-biased, D3 or D4 is reverse-biased 

by the same DC signal and does not affect the RF chain. The switching network is followed 
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by a single match/tune board after which the matched coil is connected directly to one port 

of the scanner quadrature coil interface box, which provides the RF preamplifier and 

Transmit/Receive switching.  The apparatus and signal paths shown in Fig. 13 is 

duplicated for the other set of coils (Helmholtz or saddles). 

To summarize, by combining the FCE method and the diode switching network, 

equal current is forced at the coil elements within the same coil (modes 1-3), as well as 

the left and right coils (mode 1). In mode 2 and 3, the unused coil is detuned. 

Because the quarter-wavelength coaxial lines connecting the left and right 

elements to the CVP boards share a common ground at the boards, upon implementing the 

bilateral design the shields of these cables were found to support additional half-

wavelength dipole modes, which degraded performance and affected left-right symmetry. 

These cable modes were largely mitigated by placing two identical, parallel copper shields 

in the transverse plane, superior and inferior to the coils, spaced 1 cm from the outer 

conductors. Each shield has dimensions of 40.7 cm (x) by 10.3 cm (y). The shields were 

segmented along the x- and y-directions to mitigate the effect of eddy currents, with four 

evenly spaced y-directed cuts, and one central x-directed cut which skips the middle area 

where the switching circuit boards were mounted.   

4.2.4 Electromagnetic Modeling 

FDTD simulation software (Xfdtd 7.4, Remcom, State College, PA, USA) was 

used to perform electromagnetic simulation to calculate B1 and Specific Absorption Rate 

(SAR) generated by the coil. The phantom previously utilized in [73]  was used for 

comparison purposes.  This phantom included a cylinder consisting of breast fat material 
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( = 0.033 S/m and r = 5.54) and a rectangular block consisting muscle material ( = 0.77 

S/m and r = 58.2). The dielectric properties of the different materials were obtained from 

[80]. The coil was simulated in modes 1-3. For each mode, the active coil elements were 

fed with high impedance (1000 ohm), 1 A steady-state current sources to simulate the FCE 

drive condition. 0 and 90 degree phase offsets were added to the Helmholtz and saddle 

feeds, respectively, to create quadrature excitation. The non-active coil elements in mode 

2-3 are left open circuited at their feed points. 

The 3D model of the coil and breast phantom is shown in Fig. 14. B1 field maps 

and 10g averaged SAR maps at the Larmor frequency (298.03 MHz at 7 T MRI) were 

obtained in the central axial plane in mode 1-3, and are shown in Fig. 15. All modes had 

1 watt total power applied.   

 

 

Fig. 14. Coil and phantom model. The RF shields are not shown for clarity 
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As expected, higher B1 as well as SAR are generated in the active coil in unilateral 

mode as compared to bilateral mode for the same amount of input power. The B1 in the 

non-active coil in unilateral mode is suppressed by approximately 20 dB as compared to 

the active coil.  In all three modes, highest SAR is observed in the chest wall. 

 

  
 B1

 map SAR map 
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Fig. 15. Central axial plane B1 and 10g averaged SAR maps in modes 1-3. The results 

were scaled to 1W total input power to the coil. 0 dB corresponds to 1.97 µT and 

0.99W/kg in the B1 and SAR maps, respectively. 

 

 

In unilateral mode the unused coil is detuned and does not produce significant 

SAR, therefore the B1/√total_SAR is higher in unilateral mode.  This is useful in cases 

where the peak power or total SAR is limited. Accordingly, the SNR is also higher in 
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unilateral mode, by reciprocity.  Of course, since the left and right coils are identical, 

B1/√SAR10g_max, was found to be very close (within 0.3 dB) in the active coil for all three 

modes. Thus the mode does not change peak SAR performance. Therefore, enabling the 

unilateral mode may be advantageous in applications like proton decoupling if the peak 

available power is limited.   

4.2.5 Coil Testing - Bench Measurements 

The B1/√input_power efficiency of the switched-mode coil was initially evaluated 

on the bench in all three modes. A prototype Helmholtz pair bilateral coil was also tested 

on bench to analyze the effect of FCE on tuning and homogeneity. 

FCE vs. non-FCE performance 

When the switched-mode coil operates in bilateral mode, the coupling between the 

two closely spaced quadrature coils creates multiple modes with different relative current 

amplitudes and phases in the elements. This complicates the coil tuning and affects the 

field homogeneity. To evaluate the impact of using the FCE method in such a scenario, a 

prototype Helmholtz pair bilateral coil with slightly smaller dimensions (14.8 cm i.d for 

each coil) was tested on the bench. FCE vs. non-FCE performance was evaluated. In the 

non-FCE case, 3λ/8 coax cables, instead of λ/4 were used to excite the Helmholtz pair 

elements after the CVP. The following comparison data was collected: 1) S11 response of 

the bilateral coil over a 50 MHz span centered at 298 MHz; 2) Field profiles at 298 MHz 

along the central axis in the left coil using a shielded pickup loop; 3) Field strength 

measured as the S21 response between the coil and the same pickup loop located at +1 cm 

on the central axis of the left coil (0 cm represents the isocenter of the coil, and positive 
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values represent positions towards the bottom of the coil), over a 50 MHz span centered 

at 298 MHz; 

The FCE vs. non FCE performance was evaluated on the prototype Helmholtz pair 

bilateral coil. In both cases, the coil was tuned to 50 ohm at 298 MHz-the resonance 

frequency at 7 T. The S11 response of the bilateral coil, the field profile along the central 

axis of the left coil at 298 MHz measured with a pickup loop, and the S21 between the coil 

and the pickup loop located at +1 cm on the central axis of the left coil, was recorded and 

compared for the two cases, as shown in Fig. 16.  

In the FCE case, presented with blue curves and symbols, the coil behaves well 

despite the presence of four closely-coupled elements: the S11 response shows a single 

mode in the span (a), the field profile is uniform indicative of equal currents in the 

elements (b), and the response peaks at the desired frequency (c). In the non-FCE case, 

the S11 response indicates the presence of multiple modes. Since the coil elements are not 

tuned independently and equal currents are not enforced,   the resulting field profile (b) is 

highly inhomogeneous.   The 3λ/8  feedlines (non-FCE condition) did not ensure equal 

currents, and indeed represented a “free” voltage excitation case in which the mutual 

impedance between elements must be accounted for to ensure operation in the proper 

mode [81]. In this case, that would require more degrees of freedom in tuning the coil than 

just a single matching network. This behavior is reflected in the rapidly varying field 

intensity with frequency in the non-FCE mode shown in Fig. 16(c).   
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Fig. 16. Comparison between FCE mode and non-FCE mode. (a) S11 of the bilateral 

coil over a 50 MHz span, good matching was achieved at the coil port for both cases; 

(b) Normalized field profiles along the central axis of the left coil at 298 MHz, 

presented in decibels. In non-FCE mode the coil exhibits field inhomogeneity even 

when unloaded due to capacitor tolerances in the elements, both of which are 

connected to a comment tune capacitor. When operated in FCE mode, the coil shows 

much better homogeneity; (c) Normalized S21 over a 50 MHz span at +1 cm on the 

central axis of the left coil. When operated in FCE mode, the desired mode (equal 

currents) appears at 298 MHz, giving a uniform field plot. When operated in non-

FCE mode, the coil shows a more complex mode structure, and does not provide 

equal currents in the coil elements resulting in an inhomogeneous field. 

 

 

Switched mode coil-efficiency comparison of the three modes 

As discussed above, one potential advantage of allowing unilateral operation on 

the switched-mode coil is higher power efficiency over the bilateral mode. The incoming 

a b 

c 
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RF signal, as represented in Fig. 13, should divide evenly into the two coils in bilateral 

mode owing to the symmetric circuit structure. When switching from bilateral mode to 

unilateral mode, the input power flows into the active coil only and a 3dB higher 

B1/√input_power efficiency is expected. To evaluate the coil efficiency in modes 1-3 

(bilateral, unilateral-right only, unilateral-left only), the Helmholtz pairs and saddle pairs 

were tuned to 50 ohms at their feedpoints and excited in quadrature mode. One 

dimensional field profiles were measured along the x axis through both coils using a 

measurement system dedicated for RF coil characterization [82] and a quadrature shielded 

pickup loop. The measurements were repeated for modes 1-3 and the B1 profiles were 

plotted together to compare efficiency. To fully evaluate the coil performance under 

potential coupling between the multiple elements, the coil was tested unloaded where the 

highest quality factor was achieved. Additionally, the insertion loss of the switching circuit 

was measured to evaluate the effect of the diodes in the RF path. The impact of such loss 

on the coil was then evaluated on bench by comparing the efficiency of the coil in 

unilateral mode to the purely unilateral coil described earlier[73]. 

The B1 profiles of the switched-mode coil operating in modes 1-3 are plotted in 

Fig. 17. In unilateral mode (mode 2, 3), the inactive coil was detuned. Since the two coils 

were closely spaced, the active coil has some sensitivity over the region within the detuned 

coil. This detected residual signal decreases towards the outer edge of the detuned coil and 

is primarily due to the natural sensitivity of the “on” coil, as shown below. 
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Fig. 17. One dimensional B1 profiles across the ROI, along x direction. The data 

measured in modes 1-3 are normalized to a global maximum and plotted together 

for comparison. When operated in unilateral mode, the active coil has around 3 dB 

higher sensitivity than when operated in bilateral mode. The non-active coil has 

much lower sensitivity (9-20 dB lower than the active coil), which indicates successful 

detuning. 

 

 

When switching from bilateral mode to unilateral mode, a 1.8-3.5 dB increase in 

B1/√input_power efficiency was observed within the activated coil, with an increase of 

approximately 3 dB at the central region of the coil. Enforcing equal currents in the left 

and right coils results in symmetric fields despite high mutual impedance between the two 

coils and slight differences in components and the fabrication process. When operated in 

unilateral mode, the non-active coil has 9-20 dB lower sensitivity than the active coil.  
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The insertion loss of the switching circuit was found to be 0.6 dB at 298 MHz, which is 

mainly caused by the series diodes. The power efficiency of the switched-mode coil in 

unilateral mode was measured to be 0.6 dB (13%) worse than that of the purely unilateral 

coil, which does not have the diode switching circuit. 

4.2.6 Coil Testing - MRI Experiments 

The switched-mode coil performance was evaluated on a whole-body 7 T scanner 

(Achieva, Philips Medical Systems).  

The phantom was constructed out of a container shaped as a tapered cylinder, 13.4 

cm diameter at the top decreasing to 10.8 cm diameter at the bottom. Two such containers 

were filled with canola oil to mimic lipid properties of the breast and were placed inside 

the two quadrature coils, with the top of the phantom container at 1 cm above the top 

Helmholtz loop. 

Phantom images were acquired in coil modes 1-3. The coil efficiencies of modes 

1-3 were compared by recording the peak transmit drive scale required to achieve a 90 

degree tip angle over a rectangular region in the center of the phantom.  

Phantom images were acquired with the switched-mode coil. All images were 

acquired with a same set of scan parameters and the same phantoms. Fig. 18(a)-(c) are the 

images acquired with the switched-mode coil in the three modes (For a discussion of the 

in vivo images, please see the next section). When the switched-mode coil operates in 

unilateral mode (modes 2-3), the residual signal received by the detuned coil was 

predominantly suppressed, with the maximum signal in that region only 10% of that in the 
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active coil. This is consistent with the bench results in Fig. 17. It is evident that the inactive 

coil in the switched mode coil is effectively detuned by the switching network.   

 

 

Fig. 18. Coil mode performance as illustrated by phantom and in vivo imaging: (a, 

top row) switched-mode coil: bilateral mode; (b) switched-mode coil: right only 

mode; (c) switched-mode: left only mode. Original in vivo acquisition (coronal) and 

reconstructed (axial) images are shown in the middle and right columns, 

respectively. Symmetric performance is observed in the bilateral mode, while 

excellent signal localization is seen in the unilateral modes. 

 

 

On the 7 T Philips Achieva scanner, the output voltage of the power amplifier is 

linearly proportional to the transmitter drive scale, so the output power is proportional to 

the square of the drive scale. The drive scale (DS) for a 90 degree tip angle using the 

switched-mode coil was recorded during the transmit gain calibration phase in modes 1-3 

is shown in Table 1, along with relative output power of each case, scaled to 0 dB for the 

bilateral mode 1.   The coil was also compared on the bench by measuring the S21 between 

the coil and a pickup loop in the center of the active coil in all modes. In each case the coil 
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was tuned to 50 ohms, and the power required to obtain the same field strength at the 

pickup loop was recorded and scaled to the result of mode 1. The bench result is consistent 

with the MR measurements.  

 

Table 1 Transmitter (TX) drive scale (DS), transmitter relative output power, and 

bench measurement of the three modes 

Mode TX 

DS 

TX 

Relative 

output 

power 

Bench   

Bilateral-Mode 

1 

0.512 0 dB 0 dB 

Left only-Mode 

2 

0.352 -3.3 dB -3.5 dB 

Right only-

Mode 3 

0.334 -3.7 dB -3.2 dB 

 

 

The results in Table 1 demonstrate that the switched-mode coil, when in unilateral 

mode, is approximately twice as efficient as its bilateral mode, which may be useful for 

certain applications, such as chemical exchange saturation transfer (CEST) or proton 

decoupling, that requires high transmit field intensity.  

To test coil performance two volunteers with different breast cup size were 

scanned under an Internal Review Board approved protocol and after signing an informed 

consent. In vivo bilateral coverage and fat suppression uniformity were tested by acquiring 

coronal 3D T1-weighted fast gradient echo (THRIVE) images with and without fat 

suppression. Additional in vivo imaging parameters were as follow: FOV 370 x 285 x 150 

mm (RL x FH x AP), resolution 1 x 1 x 1 mm (overcontiguous), TR/TE/FA: 4.0 ms/1.6 

ms/8, SPAIR with TI = 150 ms (for fat saturation), partial Fourier acquisition of 0.7 

(halfscan) in the first phase encoding direction, for a total scan time of 1:22 minutes (no 
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fat saturation) and 3:44 minutes (with fat saturation). The original coronal images were 

also reconstructed in the axial plane as 1-mm projections. Coil excitation homogeneity 

was evaluated using B1 mapping with a dual TR acquisition [83] with nominal flip angle 

of 50 degrees, TR1 /TR2 = 35 / 140 ms, and resolution 3 x 3 x 2 mm3.  

Like the phantom experiments, in vivo images were acquired with the switched-

mode coil in all three modes, Fig. 18. Original in vivo acquisition (coronal) and 

reconstructed (axial) fat-suppressed images are shown in the middle and right columns, 

respectively. Excellent signal localization is seen in the unilateral modes, with less than 

10% of the signal being excited in the non-enabled coil. Fig. 19 shows in vivo images in 

bilateral mode with and without fat suppression (top and middle rows, respectively). While 

the volunteers presented different breast cup sizes (left: C/D, right: A/B), the bilateral 

mode produced uniform excitation, as seen from the images and from the B1 field maps 

(bottom row). The volunteer in vivo images demonstrate good bilateral coverage and 

uniform fat suppression. Good coverage of the chest wall and the axilla is also seen.  
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Fig. 19. (a./b.) In vivo 3D THRIVE images (first two rows, with and without fat 

suppression, respectively) in bilateral mode demonstrate coil performance for 

varying breast sizes. Good coverage of both breasts and the chest wall is seen, along 

with uniform fat suppression attesting to the transmission homogeneity of the coil. 

(c.) Flip angle maps demonstrate sufficient homogeneous excitation over the bilateral 

FOV.   

 

4.2.7 Summary 

At 7T, forced current excitation is one approach to overcoming B1 inhomogeneity 

as demonstrated in a unilateral breast coil [73]. Since clinical breast imaging requires a 

bilateral coil, the use of FCE was extended to the operation of two unilateral coils 

simultaneously, or individually.  A switched-mode coil operated at 7T introduces 

significant challenges due to the high coupling between two closely-spaced unilateral 

quadrature coils when operated simultaneously. This coupling will introduce additional 

a 

b 

c 
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unwanted modes, making it difficult to ensure operation in the desired mode and with the 

desired current distribution. In addition, it is desirable to have a coil that is relatively 

insensitive to the uneven and variable coil loading presented by the general 

population.  By using the FCE method, the current at feed points of each coil element was 

forced to be equal within the same coil, as well as the left and right coils (when operated 

in bilateral mode). This addresses the complication in tuning a multi-element coil and 

achieves better field homogeneity. The switched-mode performance was also evaluated. 

Bench measurements and MR experiments largely agreed and indicated that the switched-

mode coil is around 3 dB more efficient in unilateral mode than bilateral mode. This 

advantage in power efficiency has the potential to facilitate high-power applications such 

as proton-decoupled second-nuclei applications. In vivo breast imaging in the bilateral 

mode demonstrated good bilateral coverage and uniform fat suppression, which are both 

required for clinical research studies.      

4.3 Modified Bilateral Breast Coil for Receive Array Insert at 7T 

4.3.1 Introduction 

A quadrature unilateral breast coil for 7T has been reported previously [52]. The 

coil employed FCE method to mitigate effects due to asymmetric loading, producing a 

homogeneous field pattern. This made the coil an excellent choice for use as a transmit 

coil with receive array insert, which was implemented and tested together with a 16 

channel receive array [84]. In addition, the quarter wavelength transmission lines used in 

the FCE method make the configuration naturally suited for detuning or mode switching, 
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and a switchable bilateral version of the coil was designed and constructed, as is described 

in the section 4.2 [85].  This section describes a modified version of the earlier FCE 

bilateral breast coil, modified for the insertion of a bilateral 32-channel receive array for 

1H imaging and spectroscopy at 7T.  

FCE requires the use of quarter wavelength transmission lines (λ/4 T.L.) to drive 

each coil element. The currents delivered to each element are forced to be equal, regardless 

of loading difference and mutual coupling between the closely-spaced elements. The FCE 

bilateral coil consisted of two quadrature coils, each comprised of a Helmholtz pair and a 

saddle pair. In the previously reported switchable bilateral coil, standard coax cables are 

used as the λ/4 T.L. In this design, loop coils with concentric RF ring shields are employed. 

The element, apparently, is a balanced structure. Feeding a balanced coil element with an 

unbalanced structure (coax) requires the use of balun. A RF shield was employed on both 

sides of the coil for two reasons. 1) The shield was connected to the outside shield of the 

λ/4 T.L on the CVP side, and left open on the coil side. A short circuit will be transformed 

into an open circuit by the λ/4 T.L formed by the outside shield of coax and the RF shield. 

Doing this has the same effect as putting a balun on the coaxial cables; 2) The connected 

λ/4 T.Ls forms a λ/2 T.L, the outside shield of the coaxial cable then forms a ‘dipole-

mode’ that could couple to the coil. The RF shield employed isolates the cables and the 

‘dipole’ from the coil. While effective, the shielding is too restrictive for the insertion of 

a receive array and the associated hardware and cabling.  

One option to overcome this difficulty is to use traditional baluns as was done in 

the unilateral transmit coil. However, as stated above, connected baluns could form a 
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‘dipole’ mode that potentially affect the coil performance. Furthermore, the bulky LC 

baluns still requires a lot of space, which is a big concern for 32- channel receive array 

installation. 

In this design modified for array insertion, shielded twinaxial cables (RG108), 

instead of traditional coaxial cables are used as the λ/4 T.Ls.  The shielded twinaxial cables 

allow balanced signal transmission and therefore eliminate the need for integrated baluns 

or RF shields, allowing space for the receive array integration. Care needs to be taken, 

however, to balance the signal in the twinaxial cables. 

4.3.2 Coil Design 

The design of the coil itself, including the Helmholtz pair and the saddle pair 

follows the same principle as the previously reported unilateral quadrature coil [52]. The 

Helmholtz pair consists of two loops, each with 160 mm i.d. and 172 mm o.d.  12 equally-

spaced breaks of 2 mm distance segmented each loop.  One capacitor across each break 

(except for the feed point) has a value of 11 pF. Passive-Plus 1111C 1.5 kV capacitors are 

utilized. 

A concentric coplanar shield surrounds each loop, with 180 mm i.d. and 187 mm 

o.d., and has two 2 mm breaks, 90° and 270° from the coil feed point. 1800 pF capacitors 

are used to avoid eddy current. 

The two loops are coaxially spaced 80 mm apart, with each loop’s copper and 

components facing the center of the coil volume. Each loop element is fed from a CVP by 

a length of RG108 (Pasternack) shielded twinaxial cables. The length of each is about 16.5 

cm.  
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The match and tune board included three capacitors: two for balanced match and 

one for tune.  Two of these capacitors—the tune capacitor and the match capacitor in series 

with the feed cable’s center conductor—are Sprague-Goodman SGNMNC1206E 2-20 pF 

6 kV variable capacitors.  The third capacitor—the match capacitor in series with the feed 

cable’s shield—was an ATC 100C 7.2 kV 11.0 pF fixed capacitor, approximately equal 

to the value of the variable match capacitor when the coil was loaded.  In order to decouple 

the transmit coil during receive, PIN diodes (MA4P7441F-1091T) are added onto the 

CVP.  

The saddle coils are mounted on the inside of a 152 mm i.d. acrylic tube, with 

copper and components facing outward.  Designed to have an angular aperture of 120° on 

the 76 mm radius, the coil follows a rectangular shape with inner measurements (when 

flat) of 153 mm wide x 81.4 mm tall, outer measurements (when flat) of 165.2 mm wide 

x 93.6 mm tall, and a shielding conductor of 3.8 mm trace width spaced 4.5 mm outside 

of the coil rectangle.  12 breaks of 2 mm distance segments each rectangle: four breaks 

each on the top and bottom, and two breaks each on the sides.  One capacitor across each 

break (except for the feed point) has a nominal value of 13 pF.  Passive-Plus (rebranded 

Dalian Dalicap) 1111C 1.5 kV capacitors are utilized. 

The shielding conductor has two 2 mm breaks, adjacent to the left- and right-side 

coil breaks.  1800 pF capacitors are placed across the gaps to avoid gradient-induced eddy 

current. 

The match and tune board includes three capacitors: two for balanced match and 

one for tune.  Two of these capacitors—the tune capacitor and the match capacitor in series 
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with the feed cable’s center conductor—are Sprague-Goodman SGNMNC1206E 2-20 pF 

6 kV variable capacitors.  The third capacitor—the match capacitor in series with the feed 

cable’s shield—is a Passive-Plus 2225C 7.2 kV 13 pF fixed capacitor, approximately 

equal to the value of the variable match capacitor when the coil is loaded. In order to 

couple DC power to the PIN diode, RF chokes (Bourns, 8230-14-RC) are added parallel 

with the matching capacitors. 

In order to shield the E field from the distributed capacitor, a 1 cm x 0.8 cm copper 

patch adhere to the other side of the PCB, under each segmentation capacitor. The feed 

position does not have a copper patch to avoid disturbing the Forced-current condition. 

Each loop element is fed from a CVP by a length of RG108 (Pasternack) shielded 

twinaxial cables. The length of each cable is about 16.5 cm.  

In order to decouple the transmit coil during receive, PIN diodes (MA4P7441F-

1091T) are added to the CVP.  

4.3.3 Transmission with Shielded Twinaxial Cable 

Twinaxial cables (RG 108, Pasternack) are used to connect the coil elements and 

the matching network, including the quarter-wave length cable and another short cable 

that compensates for the impedance variation.  

Traditionally, coax cables are used for MRI coil transmission and reception. In 

FCE coils, however, the coil elements are balanced devices, and the cable used to excite 

the coil needs to be balanced. On the unilateral quadrature breast coil we used coax cable 

(EZ-form-86) to excite the coil element, and a LC type can balun was included to avoid 

common-mode current radiation. 
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In constructing the switched mode bilateral/unilateral breast coil we’ve determined 

that the two consectively-connected quarter-wave baluns forms a dipole mode. This is 

because the balun is designed to create an open circuit close to the coil, so looking at the 

outside shield, the equivalent circuit is as Fig. 20: 

 

 

Fig. 20. Dipole mode formed by the baluns on connected FCE coaxial cables 

 

 

With the bilateral coil the situation become more complicated due to the inclusion 

of multiple quarter-wave cables. So, in the switched-mode coil a shield is inserted between 

the coil and the quarter-wave cables. As described before, the shield blocks the space 

needed for 32 channel receive array insert. The unilateral breast coil also has bulky LC 

can baluns integrated on the coax that limits the space available. 

On the modified coil, we use the shielded twinax cable to connect between coil 

elements and matching network. The twinax cable chosen is RG108 from Pasternack. The 

cable has a characteristic impedance of 78 ohms. With the twinax cable the signal is 

transferred in a balanced manner and there is no return path (a third conductor) as does the 

coax cable. There is no need to integrate balun/cable trap on the twinax cable. The twinax 
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cable selected are flexible cables that makes the installation of receive array much easier. 

Using twinax cable would also require the matching circuit be balanced. 

However the benefit from using twinax cable does come with a cost. Twinax cable 

typically has higher loss at high frequency. Compared to the coax we used previously- 

EZ-form-86, it has slightly higher loss as shown in Table 2: 

 

Table 2 Losses of different cables (twinax vs. coax) 

 Loss frequency 

RG 108 twinax 16.2 dB/100 ft 400 MHz 

EZflex-86 15 dB/100 ft 500 MHz 

 

 

The amount of difference in loss is not likely to make a big difference given the 

very short cable length being used. Furthermore, a twinaxial cable that has even lower loss 

may be found. 

In order to couple DC biasing signal to the PIN diode, two bias tees, one for the 

Helmholtz pair and one for the saddle pair, were included. The isolation between DC and 

RF ports on the bias tee was measured to be -50 dB, which is sufficient for normal 

operation. Should the DC port and RF port be designed orthogonal to each other on the 

layout, higher isolation may be achieved, which should be considered in the future. The 

insertion loss is less than 0.1 dB 

The 1H elements were initially tested without the addition of bias-T circuitry or the 

presence of receive array elements.   
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4.3.4 Coil Testing-Bench Measurement 

The impedance of the Helmholtz pair loop is provided in Table 3, when unloaded: 

Table 3 Modified bilateral transmit coil-impedance of all Helmholtz pair element 

Loop location Z 

Left top 7.1+j24.7 

Left bottom 7.4+j25 

Right top 7.4+j26 

Right bottom 7.4+j26.7 

 

The impedance of the saddle pair loop is provided in Table 4, when unloaded: 

Table 4 Modified bilateral transmit coil-impedance of all saddle pair elements 

Loop location Z 

Left-left loop 21+j100 

Left-right loop 20+j98.3 

Right-left loop 19+j102 

Right-right loop 20+j98.5 

 

The B field produced by the bilateral coil was measured at five places at each coil 

(left and right): top loop center, coil center, bottom loop center, left loop center, right loop 

center. Quadrature combiners (ZX10Q-2-3-S+, Minicircuit) were used on the transmit 

side and the receive side, together with RF cables with same length, to characterize the 

quadrature excitation and reception capability. The measurement was taken with a 
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shielded quadrature probe on network analyzer HP4195A and the result is provided in 

Table 5.  

 

Table 5 S21 measurement at different locations inside the transmit coil, measured 

with a shielded probe 

S21 data 

(in dB) 

Top loop 

center 

coil 

center 

bottom loop 

center 

left loop 

center 

right loop 

center 

Left coil -32.5  -33.7 -33.7 -35.3 -34.4 

Right coil -32 -33 -31.5 -34.6 -34 

 

 

Good homogeneity is achieved from the Helmholtz pair. The most significant 

inhomogeneity is brought by the saddle pair. 

The coupling between Helmholtz pair and saddle pair was determined through a 

S21 measurement. The S21 measurement between Helmholtz pair and saddle pair when 

matched and tuned shows a coupling of -22 dB. 

4.3.5 Detuning 

The method for detuning a FCE coil has been shown in section 3.4. In order to 

decouple the transmit coil during receive, PIN diodes (MA4P7441F-1091T) are added to 

the CVPs. -5V/detune signal and +12 V/tune signal was provided on bench. In section 3.4, 

a S11 based mode-splitting method was used to qualitatively measure the decoupling 

performance. For this coil, a double-loop probe S21 measurement method is used to 
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quantitatively assess the decoupling performance. The size of the probe needs to be large 

because of the relatively low sensitivity of the large coil, as is shown in Fig. 21. 

 

 

Fig. 21. Photo of the double-probe detuning setup 

 

 

Fig. 22. S21 measurement: Tuning vs. Detuning. Helmholtz pair 
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Fig. 23. S21 measurement: Tuning vs. Detuning. Saddle pair 

 

 

In both cases (Fig. 22 and Fig. 23), the isolation at coil center achieved through 

detuning is above 25 dB. At the edge of the coil conductor, the isolation is lower but is 

kept below 15 dB. 

Detuning is also verified with a loop coil with 7 cm diameter (roughly the size of 

the 32 channel receive element). By looking at the return loss, any coupling can be easily 

visualized as a mode split. When positioned inside the transmit coil, the loop coil heavily 

couples to both the Helmholtz pair as well as the saddle pair. When detuning signal is 

applied, there is still a frequency shift of the resonance, however the mode split degenerate 

to a single resonance.  
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4.3.6 Coil Testing – MRI Experiments 

The coil is compared with the previous design (operated in bilateral mode) on the 

bench using an S21 measurement between the coil and a shielded quadrature probe input 

to a quadrature combiner. Imaging of a canola oil phantom was performed on a Philips 7T 

Achieva system, with the transmit coil operating in transmit/receive mode (THRIVE w/o 

fat suppression, FOV: 150 mm × 286 .452mm × 370 mm (AP × FH × RL), resolution: 

372 ×  368, TR: 4.0 ms). The 32 channel receive array was designed by others, for 

insertion into the transmit coil with detachable boards on each element that include the 

active detuning network, match and tune capacitors, and a balun.  

The bilateral coil modified for array insertion is shown in Fig. 24, with dimensions 

and the twinaxial cable addition labeled. The quadrature S21 bench measurement 

comparison indicates an improvement of 1.2 dB in efficiency over the previous shielded 

version. This is at least partially due to the fact that the modified version does not include 

PIN diodes for switching to unilateral operation. The phantom images acquired from the 

coil in T/R mode are shown in Fig. 25, demonstrating homogeneous excitation. The 

Philips drive scale required for a 90-degree tip angle is 0.45 as compared to 0.51 for the 

shielded version, in agreement with the improvement in efficiency predicted by the bench 

measurements. The array is shown successfully integrated into the bilateral FCE coil in 

Fig. 26. The bilateral coil easily matched and tuned over the range required with and 

without the array inserted. 
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Fig. 24. (Left) The switched-mode bilateral breast coil reported earlier; (Right) 

Modified FCE bilateral coil for receive insertion. Each Helmholtz pair consists of 

two 166mm loops spaced 80 mm apart, with a concentric coplanar shield 

surrounding each loop. Each saddle pair consists of two 165 x 94 mm rectangular 

coils mounted inside a 3D printed cylindrical tube with an inner diameter of 152mm. 

Reprinted with permission from [56]. 
 

 

Fig. 25. MR Image (coronal) taken from FCE bilateral coil. Homogeneous 

excitation is achieved. Reprinted with permission from [56]. 
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Fig. 26. Bilateral FCE transmit coil with 32- channel array coil. A) front view of the 

bilateral coil with array coil integrated. The λ/4 T.L. are connected from the two 

Helmholtz pairs to a CVP, then from CVP to the match and tune network (M/T). B) 

side view of the integrated coil and array. Reprinted with permission from [56]. 

 

4.4 Method for Simultaneous Tuning in Switched-Mode FCE Coils 

Previously we have designed a 7T bilateral/unilateral breast coil using the 

FCE+switchable FOV concept [54]. In bilateral mode uniform excitation is achieved; In 

unilateral mode signal in the unused coil is successfully suppressed to avoid patient’s 

exposure to heat. However, the difference in loading causes the coil to render different 

impedance in different modes. Although the difference in impedance between unilateral 

modes is often similar and does not require retuning, that between unilateral mode and 

bilateral mode is not to be overlooked, and therefore require retuning. This is inconvenient 

and time consuming during a clinical scan. Here, we explains a design that can potentially 

eliminate the need for retuning. 

The method is to have the two symmetric coil elements sharing a tunable reactive 

element:  
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Fig. 27. Equivalent circuit for different modes 

 

 

Equivalent circuit for different modes. (a) shows the original design where two 

coil elements are isolated. (b-d) shows the proposed design in different modes  

In dual mode (Fig. 27 (b)), no net current flows through C1 because equal current 

is forced to the two symmetric coil elements using FCE.  Tuning C1 will not affect coil 

impedance. In single mode, however (Fig. 27 (c)-(d)), the unused element is detuned. In 

this case, current flows through C1 instead of the detuned element, and tuning C1 will 

change the impedance of the coil. Therefore, carefully choosing C1 can reduce the 

difference in impedance of different modes and avoid retuning between mode switching.  

For proof of concept, two loop coils (7cm x 8cm, separated by 2cm) were built. 

Each element breaks up at four places for placing segmentation capacitors and the tunable 

capacitor C1. Mode switching is controlled using two power supplies. Impedance at CVP 

and the coil return loss was measured at 200MHz (Larmor frequency for 4.7 T) before and 

after adopting the proposed modification. Additionally, B1 profile of the proposed design 

was measured at 2cm away from the coil, in three modes (Fig. 28). 

The results show that by having two coil elements sharing a tunable reactive 

element, minimal difference between return loss in three modes can be achieved, and 

retuning can be avoided. The B1 map shows the expected field pattern for different modes. 
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Impedance and return loss before and after proposed modification is provided in Table 6. 

 

 

Table 6 Impedance and return loss before and after the modification 

 

Single mode-coil 1 Single mode-coil 2 

Dual 

mode 

Impedance at CVP, before 

modification (in ohm) 

2.2+j33.4 2.4+j36.5 1+j17.5 

Impedance at CVP, after 

modification (in ohm) 

4+j53.6 4.9+j54.6 5.8+j53.7 

Overall return loss, before 

modification (in dB) 

-21.7 dB -10.2 dB -0.6 dB 

Overall return loss, after 

modification (in dB) 

-21.8 dB -25.9 dB -21.7 dB 

 

 

When measuring return loss, coil was tuned for Mode 1. Coil was not retuned after 

mode switching. As can be seen, the proposed modification reduced the difference 

between impedance of different mode and eliminate the need for retuning. 



 

63 

 

 

Fig. 28. Photo of the FCE coil modified for simultaneous tuning 

 

 

 

Fig. 29. Profile across the coil in different modes, after the modification. Values are 

scaled to the global maximum. 
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Photo of the coil with the proposed design and B1 map across the coil in three 

modes are shown in Fig. 28 and Fig. 29, respectively. The dashed line in the photo 

indicates the position of measurement. In dual mode uniform excitation is achieved, while 

in single mode sufficient suppression of the detuned coil is observed as before the 

modification. 

This method could be useful for rung element based coil too. However, it may not 

be applicable to elements such as dipoles, as there is not return path for current. 

A limitation of this method is that the added component can only make up for the 

reactance difference between the two modes, but not the resistance difference. If the 

resistance is wildly different, the method may not work as well. However, for low-Q cases, 

the return loss may not be very different even when resistance is not close, between the 

two modes. 
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CHAPTER V 

SWITCHABLE TRANSMIT ELEMENT FOR SPINE IMAGING AT 7T 

5.1 Introduction 

MRI is frequently used in clinical routines for diagnosing diseases in the spine cord 

[86-90]. Examples include tumor staging, multiple sclerosis and vascular malfunctions. 

High field spine imaging is difficult due to the large field of view (FOV) required. Given 

the varying depth of the spine within patients’ body, it is especially difficult on the RF 

transmission side due to its requirement on both the length and the depth of the B1 field. 

The traditional design involves the use of a long structure, taking the form of either dipole 

or microstrip transmission line.  

However, in many cases, it is desirable to excite only part of the spine while 

redundant power decomposition in other places is avoided. An example of this is the axial 

acquisition of the spinal cord.  Therefore it is of interest to use the FCE+switchable FOV 

principle on spine coil design.  

In this chapter, the switchable FOV 7T spine coil design is investigated using a 

variety of methods, including simulations, bench measurements, and MR experiments. 

The first goal is to choose a suitable element that gives the highest B1/√SAR10g_max 

efficiency at 5cm deep [35], with uniform excitation pattern. In section 5.2, rung elements 

with different configurations are compared in terms of B1/√SAR10g_max efficiency and 

B1/√input_power efficiency. The height of the rung and the configuration of the ground is 

discussed and optimized. In section 5.3, a switchable rung element for 7T spine imaging 
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was implemented for the proof of concept and was tested on bench; In section 5.4, the 

possibility of using multiple short dipoles to form a switchable spine coil is investigated. 

The effect of using a short dipole on transmit efficiency is discussed. Although this topic 

is briefly discussed in [91, 92], the discussion is limited in a few geometries and is based 

on FDTD simulations only. Here several numerical methods are used to validate the 

comparison; In section 5.4, a segmented element design using Forced-Current Excitation 

and a switching circuit is presented. Comparison is made between a rung and a dipole. 

Also in this section, a few more configurations/element designs are considered, and a 

segmented dipole design was chosen as the final design. The segmented dipole was 

implemented and tested on bench and through MR experiments with a 7T body scanner. 

Large FOV is obtained when the segmented dipole is in long mode, and improved 

B1/√SAR10g_max efficiency is found when the dipole is in short mode. 

5.2 Rung Element Configurations for Spine Imaging at 7T 

A rung element, as presented in [52], can be designed to be long enough to provide 

coverage for the spine. A switchable rung element that contains three short rung elements 

can be designed to provide switchable FOV. Many different configurations are possible 

to provide such capability. Meanwhile, there are parameters that need to be adjusted to 

find the best performance candidate (e.g, the height of the rung). As a first step, some 

initial configurations of rung elements are modeled and compared in this chapter. 
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5.2.1 Initial Trials 

In the first trial, the phantom is extracted from [91], which is 50 cm x 50 cm x 50 

cm, with dielectric constant of 34 and conductivity of 0.4 S/m. The switchable rung 

element can be made separate or consecutive, as shown in Fig. 30. When only one of the 

elements are excited, all other elements are open-circuited at the feed point, as explained 

in section 3.6. 

 

 

Element and phantom 

 

 

Model 1-Three separate rungs with a 

uniform ground 

 

Model 2-Three connected rungs with a 

uniform ground 

Fig. 30. Model rendering for rungs and dipoles in different configurations 
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B1 is calculated in the central sagittal planes (Fig. 31), with all cases scaled to 1W 

input power. 

 

 B1 map, calculated at central sagittal plane (in 

dB, reference to global maximum) 

Maximum 10g 

averaged SAR  

Three separate rungs, 

Excite all elements 

 

0.86 W/kg 

Three separate rungs, 

Excite only the 

middle element 

 

1.54 W/kg 

 

Fig. 31. B1 pattern and maximum 10g averaged SAR in each case 
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Three consecutive 

rungs,  

Excite all elements 

 

0.86 W/kg 

Three consecutive 

rungs, 

Excite only the 

middle element 

 

1.44 W/kg 

 

Fig. 31. Continued 

 

The B1/√input_power profile as well as B1/√SAR10g_max efficiency along y 

direction for all cases, are plotted in Fig. 32 and Fig. 33, respectively: 
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Fig. 32. B1/√input_power efficiency comparison between separate rungs and 

connected rungs, in different modes 
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Fig. 33. B1/√SAR10g_max efficiency comparison between separate rungs and connected 

rungs, in different modes 
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not expected. As a result, the short mode (when only one element is excited) does not have 

the expected B1/√input_power efficiency advantage over the long mode (when all 

elements are excited). This, is suspected to be due to the continuous ground shared by the 

three elements, which promoted longer current distribution along z. 

The different configurations do not show significant difference in terms of 
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the separate rung configuration should be used due to its unbalanced structure. The need 

for balun is avoided in this configuration.  

5.2.2 Uniform Ground vs. Separate Ground for Rung Element 

In the last section, it was noted that the residual signal from the detuned elements 

is still significant, as is shown in Fig. 34. 

 

 

Fig. 34. Three short rungs - middle only vs. all three excited 

 

 

Even when only the middle rung is excited, the field distribution is very widely 

spread across the imaging region.  

It is suspected that when using a uniform ground across three elements, the current 

on the ground extends to the area where the ‘detuned’ elements are located, resulting in 

the residual signals as shown in Fig. 34. After a serious of investigation using simulation, 

it is concluded that each short rung need to have a dedicated ground plane to have more 

focused field distribution, as shown in Fig. 35: 
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Fig. 35. Three short rungs configuration-a uniform ground vs. three separate 

grounds 

 

 

When using separate grounds the residual signal from the ‘detuned’ elements is 

largely suppressed, as shown in Fig. 36: 

 

Fig. 36. Pattern from the configuration where separate grounds are used 

 

5.2.3 Height of the Rung 

Initially it was assumed that having a larger height could improve the penetration 

of the rung, as the opposing current on the signal and on the ground are further separated. 

EM simulations were performed on the same phantom, with the distance between signal 

and ground varying. B1/√input_power with different height is compared along the central 

y direction in Fig. 37:  
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Fig. 37. Sagittal B1 pattern for rung element of different height 

 

 

There is no significant difference in efficiency at 5 cm into the phantom. The 

efficiency was found to be highest when height =1.2 cm. This is convenient since the half-

inch acrylic is about the thickness. The width of the shield was set at 10 cm at first, but 

was increased to 15 cm after optimization of the B1 efficiency. 

Dipole has been used for 7T spine imaging [35]. The transverse B1 field pattern is 

different between rung and dipole elements. Although the sagittal plane and coronal plane 

field pattern of the rung looks reasonably uniform, there is an obvious asymmetry in the 

transverse pattern (Fig. 38). This is one of the disadvantages of the rung when compared 

to the dipole.  
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Fig. 38. Transverse field pattern comparison - rung vs. dipole 

 

 

This is a known problem with regular element at 7T when a return path of the 

current is found. The B1 field pattern of the dipole looks more simple and uniform. This, 

as proved by Raaijmakers et al [91], may facilitate the development of parallel transmit 

array system without complicating the mutual coupling problem. Further quantitative 

comparisons between the rung and the dipole is provided elsewhere in this dissertation 

(section 5.5): 

5.3 A Segmented Rung Element with FCE and Selectable FOV 

Although studied in detail using electromagnetic simulation, as is described in the 

previous sections, it is desirable to build a switchable FCE spine coil element for the proof 

of concept.  

As is briefly described in the introduction section, the large field of view (FOV) 

for spine imaging requires a long RF coil for surveying the spine. At lower field a body 
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coil can be used for transmission with an array for reception. However most 7T system 

does not have a body coil. Additionally, at 7T it may be desirable to tailor the RF coil 

length such that only the desired portion of spine, e.g. cervical, thoracic or lumbar zone is 

excited while redundant power deposition into other part of the body, is avoided. Qi et al 

has reported a segmented coil design at 7T where the FOV can be adjusted to a certain 

degree [93]. However the design requires the dipole to be fed from the very middle of the 

entire structure, and does not allow the user to select the FOV near the edge of the coil, 

therefore is limited in terms of flexibility. As a proof of concept a switchable length rung 

design using a straightforward design which can provide uniform field distribution as well 

as enhanced flexibility for varying the FOV, are designed. A similar concept has been 

demonstrated previously with a switchable unilateral/bilateral 7T breast coil [54]. In this 

work, the design is scaled to three elements on a 37 cm long rung intended for use in a 

spine coil.  

Based on the simulation results from section 5.2, three short current rungs, 11cm 

each and with 2 cm gap between them, are aligned in the z direction to form a 37 cm long 

spine coil. Each rung is segmented every 2cm with a 33pF capacitor. A ground plane, 

serving as the current return path, lies 1.2 cm beneath each current rung. According to the 

simulation results in section 5.2, the ground planes need to be separated between the three 

elements to enable successful FOV switching, and the 1.2 cm height was chosen according 

to B1 efficiency. The rungs are fed from the side with ¾ wavelength coax cables with very 

low loss semi-rigid cable (EZ form-141). Three DC signals are generated from a power 
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supply module to control the switching circuit:  a +15V bias activates the corresponding 

rung, while a -15V bias detunes it. The photo of the coil is shown in Fig. 39. 

 

 

Fig. 39. (Left) Front side of the coil. The rungs are fed from the side. (Right) Back 

side of the coil, with the switching circuit, the coax cable, and the matching circuit. 

Reprinted with permission from [94]. 

 

 

With the ability to enable or detune each of the three elements, the coil is equipped 

with eight different operating modes in total, with one of the modes being ‘all off’, 

reserved for future integration of a receive array. Depending on the region of interest, the 

user can pick from any of the eight modes for imaging. The design is especially useful for 

continuous axial image acquisition of the spine cord, if equipped together with smart 

devices such as a Rasperry-pi Microprocessor. The coil was tested on bench in four modes. 

With the same input power applied, the efficiency of the coil in the four modes were 

measured using a shielded probe and a network analyzer with S21 method. The 
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measurement was taken along z direction with 1cm resolution, at 4cm away from the coil 

in the y direction at 298 MHz, which is the larmor frequency at 7T.  

The four modes being tested are left coil only (Mode A), middle coil only (Mode 

B), right coil only (Mode C) and all coils (Mode A+B+C). The B1 maps were plotted 

together and scaled to the global maximum in Fig. 40. Mode A+B+C demonstrate uniform 

excitation across a large FOV, which results from an equal current distribution achieved 

at each rung. Modes A-C demonstrate higher power efficiency in the corresponding area: 

The efficiency of mode A-C is 3.5-4 dB higher than that of Mode A+B+C, in the 

corresponding region.  Additional modes,  with two of the three rungs excited were 

possible but not presented.  

 

 

Fig. 40. Bench measurement in four modes. Mode 4 demonstrates uniform excitation 

across large FOV, while mode 1-3 demonstrate higher B1/√input_power efficiency 

(3.5-4 dB) at the corresponding region. Reprinted with permission from [94]. 
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As a proof of concept, this work uses current rung as the basic element due to its 

simplicity, however as described by the simulation result, this method can be used for any 

type of coil element. In fact, in section 5.5, a segmented dipole design is proposed and 

more quantitatively analysis is provided. In addition, the coil structure can be divided into 

more elements (more than three) if smaller FOV and higher B1 efficiency is required.  

In this design, FCE is used to excite a three-element spine coil. It is also configured 

such that each small coil segment can be activated or detuned through electronic control, 

giving flexible FOV variation. A large FOV gives large coverage while a smaller FOV 

allows more focused RF power, potentially important in some applications requiring either 

low whole-body SAR or localized high B1 values. In addition, when multiple elements are 

activated, the FCE method ensures uniform current delivery to the different element and 

prevents mode splits due to coupling. The previously reported switchable 

unilateral/bilateral demonstrated the ‘FCE+selectable FOV’ being applied to two elements 

(the left breast coil and the right breast coil). This rung element designed for spine imaging 

also proves the scalability of the ‘FCE+variable FOV’ concept, through the use of three 

closely spaced elements. This ‘extendable rung’ design will be used as the element in a 

two-element spine array, as will be described in the following section.  

Furthermore, the choice of the basic element, will be studied more carefully in 

section 5.5. 
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5.4 The Effect of the Length of a Dipole on Transmit Efficiency 

5.4.1 Description 

As described in the previous section, long dipole has been used in 7T spine 

imaging. However, to have a switchable FOV spine coil we need to use multiple shorter 

element that can be individually turned on and off. Unlike loop element, which is well-

understood, the impact from the length of the dipole on the efficiency and penetration 

remains unclear. There has been only a few publications that studied the size of dipole in 

high field MRI [91, 92]. In order to further validate the feasibility of using a short dipole 

as a RF coil, numerous simulations as well as analytical methods on short dipole vs. long 

dipole is presented in this section. The idea is that smaller dipole should render better B1 

efficiency than the long one, and can be used as a RF coil for MRI.  

5.4.2 Electromagnetic Simulation 

First the simulation was performed in XFDTD, the 37 cm regular dipole and the 

11 cm dipole (three of them in a row in the z direction, with a gap of 2 cm between 

elements) are modeled. The elements are placed 4 cm away from the phantom. The 

phantom has an electrical property of (𝜀𝑟 = 59, 𝜎 = 0.79 𝑆/𝑚) as in the paper where the 

long dipole is used for spine imaging [35]. The simulation is at 298 MHz. Input power is 

scaled to 1W in all cases. Since the goal here is to get a general idea whether a short dipole 

can be used as a feasible RF coil, the depth where the investigation is initially made is 10 

cm, unlike other comparisons in this dissertation regarding spine imaging where 5 cm is 

of interest. The rendering of the model is in Fig. 41 and the result is provided in Table 7. 
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Later in this section, the depth of interest is changed to 5 cm in accordance with literature 

[35]. 

 

Fig. 41. Long dipole and three short dipoles as modeled in Remcom XFDTD 

 

 

Table 7 Impedance, B1 and SAR results calculated from XFDTD with three cases: 

Long dipole; Three short dipoles (excite all); Three short dipoles (excite only the 

middle one) 

Model 

 

37 cm dipole 11 cm dipole, only center 

one turned on 

11 cm dipole, all 

turned on 

Impedance 29.8-j4.3 1.9-j477.4 3-j461.3, 2.9-j446, 3-

j461.3 

1g maximum SAR 0 dB 4.5 dB -0.5 dB 

B1 @ 10 cm into the 

phantom 

0 dB 2.9 dB -1.8 dB 

B1/√SAR1g_max @ 

10cm into the 

phantom 

0 dB -1.6 dB -1.3 dB 
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According to the simulation, the shorter dipole actually has better 

B1/√input_power efficiency, given the more concentrated power distribution. The 

performance in B1/√SAR1g_max efficiency of the short dipole however, decreases with 

depth. This may be due to the fact that the longer dipole, which is closer to resonance 

length, can radiate better than the short dipoles. However, the feasibility of using short 

dipole as RF coil is still proved considering the two efficiency comparisons together. 

5.4.3 Numerical Validation-Methods 

Two more numerical approach was used to compare the B1 and impedance of the 

two cases. These numerical methods can predict B1/√input_power efficiency but not 

B1/√SAR1g_max (except the method-of-moment based simulation software), and therefore 

only B1/√input_power result is presented. 

Method#1: Analytical approach, using derived analytical expressions from Harrington’s 

electromagnetic text book and Balanis’ text book [95, 96], which assumes sine-wave 

distribution on the dipole: 

𝐼𝑒(𝑧′) = {
𝐼0𝑠𝑖𝑛 [𝑘(

𝑙

2
− 𝑧′)] , 0 ≤ 𝑧′ ≤ 𝑙/2

𝐼0𝑠𝑖𝑛 [𝑘(
𝑙

2
+ 𝑧′)] , −𝑙/2 ≤ 𝑧′ ≤ 0

 

𝑅𝑟 =
2𝑃𝑟𝑎𝑑

|𝐼0|2
=

η

2𝜋
{𝐶 + ln(𝑘𝑙) − 𝐶𝑖(𝑘𝑙) + 1/2sin (𝑘𝑙)×[𝑆𝑖(2𝑘𝑙) − 2𝑆𝑖(𝑘𝑙)]}

+
1

2 cos(𝑘𝑙)
×[𝐶 + ln (

𝑘𝑙

2
) + 𝐶𝑖(2𝑘𝑙) − 2𝐶𝑖(𝑘𝑙)] 

And 𝑅𝑖𝑛 = [
𝐼0

𝐼𝑖𝑛
]

2

𝑅𝑟 
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𝑋𝑚 =
η

2𝜋
{2𝑆𝑖(𝑘𝑙) + cos(𝑘𝑙) [2𝑆𝑖(𝑘𝑙) − 𝑆𝑖(2𝑘𝑙)] − sin (𝑘𝑙)[2𝐶𝑖(𝑘𝑙) − 𝐶𝑖(2𝑘𝑙)

− 𝐶𝑖(
2𝑘𝑎2

𝑙
)]} 

𝑋𝑖𝑛 = (
𝐼0

𝐼𝑖𝑛
)2,𝑋𝑚 =

𝑋𝑚

𝑠𝑖𝑛2(𝑘𝑙/2)
  

𝐴𝑧 =
1

4𝜋
∫

𝐼(𝑧′)𝑒−𝑗𝑘|𝑟−𝑟′|

|𝑟 − 𝑟′|
𝑑𝑧′

𝐿
2

−
𝐿
2

 

Where, |𝑟 − 𝑟′| = √𝑟2 + 𝑧′2 − 2𝑟𝑧′ cos 𝜃 

𝐄 = −jωμ𝐀 +
1

𝑗𝜔𝜖
∇(∇ ∙ 𝑨) 

𝐇 = ∇x𝐀 

The radius of antenna wire is assumed to be 5 mm. 

Method#2: Use the 4NEC2 simulation program available online. 

(http://www.qsl.net/4nec2/?). Here, the radius of antenna wire is assumed to be 1.5 mm 

(due to segmentation limitations from the software). 

Method#3: A full-wave simulator developed by Dr. Steven Wright based on Method of 

Moment 

5.4.4 Numerical Validation-Results 

An 18.4 cm dipole was added to the comparison, to setup possible design of 

segmented dipole (which will be described in a following section). The comparison results 

are provided in Table 8-10. 

http://www.qsl.net/4nec2/
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Table 8 Impedance comparison in different simulation environments and analytical 

approach. Comparison is made between dipoles of different length 

 Analytical 4NEC2 Remcom MoM (SW) 

L=11 cm 2.38-j464.3 1.87-j795 1.96-j 487.11 3.3-j750 

L=37 cm 32.4-j116.1 34.1-j171 45.26-j 15.88 34.5-j128 

L=18.4 cm 6.9-j346 NA 4-j247 5.97-j370 

 

 

Table 9 Calculated B1 field scaled to input current. Comparison is made between 

dipoles of different length at 4 cm away 

 Analytical 4NEC2 Remcom MoM (SW) 

L=11 cm 2.66 uT N/A 1.98 uT 2.15 uT 

L=37 cm 4.52 uT N/A 4.08 uT 4.15 uT 

 

 

Table 10 Calculated B1 field scaled to input power. Comparison is made between 

dipoles of different length at 4 cm away 

 analytical 4NEC2 Remcom MoM (SW) 

L=11 cm 2.44 uT N/A 2.00 uT 1.67 uT 

L=37 cm 1.12 uT N/A 0.82 uT 1 uT 

 

The resistance agrees well between the three approaches. Reactance is different 

because 4NEC assumes the antenna to be cylinder but Remcom modeled it to be flat. 

The field is slightly different, which could be due to the same reason, plus the fact 

that Remcom uses copper instead of PEC.  
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It is clear that the small dipole shows better efficiency than the long dipole in terms 

of raw B1/√input_power efficiency, due to the more local power distribution. It is also 

shown that the B1/√SAR1g_max of a short dipole is also comparable to that of the long dipole 

in depth of interest. And therefore, the short dipole is a viable option as a transmit element 

for spine/body imaging at 7T. 

It needs to be noted that the B1/√input_power comparisons made in this section is 

taking into account the element only, and is not considering the potential losses in the 

matching network.  

5.5 A Segmented Dipole Design with FCE and Selectable FOV for 7T Spine 

Imaging 

5.5.1 Introduction 

Recently, a 37 cm dipole transmit element was demonstrated for spine imaging at 

7T [35]. The design provides a large field of view (FOV) and demonstrates good radio 

frequency (RF) penetration. However, the current distribution on a dipole follows a 

sinusoidal distribution, and most of the power, in the form of magnetic field or electric 

field, is concentrated in the phantom underneath its center.  

B1 per unit maximum 10g averaged SAR (B1/√SAR10g_max) is an important figure 

of merit in high field RF coil design, and is extensively studied in multiple 7T research 

articles [91, 92, 97]. Because of its power distribution, the B1/√SAR10g_max, is intrinsically 

low towards the end of a long dipole. In other words, in order to get sufficient B1 field 

towards the edge, one may have to allow high E field under the center of the dipole. The 
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length of patients’ spine can vary significantly [98]. In order to investigate potential 

lesions at different locations on a spine without moving the patient, it is important to 

increase the B1/√SAR10g_max efficiency at the edge of a long dipole. Furthermore, in 7T 

spine imaging it is often desirable to tailor the length of the coil, such that only the desired 

part of the spine (e.g. cervical, thoracic or lumbar zone) is excited, while redundant heat 

decomposition into other parts of the spine is avoided. To address these challenges, a 

segmented approach that allows adjustable FOV and reconfigurable power allocation can 

be utilized.  

Although it is possible to use multiple power amplifiers and parallel transmission 

method to achieve adjustable field of view, the method is difficult to scale [30, 99]. For 

example, if we want to have two elements under the patient’s spine, and have each of these 

elements segmented into three short elements in the z direction, the number of power 

amplifiers required is six, which is often not available at clinical sites. Even with enough 

power amplifiers, one still needs to consider decoupling strategies, which is a complicated 

topic by itself for dense transmit array [37, 38, 40-44, 46-48, 100, 101]. Instead, an 

approach that allows for adjustable FOV without the need for additional power amplifiers 

is desired. 

A segmented dipole that uses PIN diode at varies locations along the dipole has 

been reported, and has the capability to alter FOV [93]. However, the design requires the 

dipole be fed from the center of the entire dipole, limiting the variety of FOV that can be 

achieved. Previously we have reported a breast coil at 7T that allows switchable FOV [54, 

55]. In this paper, using a similar principle, we present a design that provides a large FOV, 
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but also allows flexible FOV and power allocation switching. The method utilizes FCE, a 

method that guarantees equal current delivery to multiple elements [45]. With properly 

designed modification, the method enables switchable FOV, while maintaining the feature 

of FCE [54]. FCE feeding network has extra loss in the feed cables, but does not affect 

B1/√SAR10g_max since the loss is not in the phantom.  

Two types of coil element were compared in electromagnetic simulation to target 

for optimum B1/√SAR10g_max efficiency for spine imaging. One of the elements was chosen 

as the final design, and was implemented and tested both on bench. The element was also 

tested with a phantom in a 7T body scanner.  

5.5.2 Element Comparison 

General description 

Radiative dipole has been shown to have advantages over traditional elements such 

as loop coils and microstrip elements, in terms of B1/√SAR10g_max efficiency or excitation 

pattern [97]. When it comes to spine imaging, element that is sufficiently long along the z 

direction is required. A long dipole, such as the one reported in [35], or a rung element, 

such as the one reported in [52], are possible candidates. Both elements can be segmented 

to enable switchable FOV. In this design, three segments along the z direction are used, 

with each element having their own feed. 

The two types of elements, dipole and rung, were modeled and compared using 

full-wave electromagnetic simulation (Remcom XFDTD). In section 5.2, we already 

considered a few configurations with the rung element and determined that separate 

ground is required to achieve good decoupling. And for the dipole we only considered the 
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configuration where three short dipole are separated. In this section, two different 

configurations were considered: Having three separate short dipoles, separated by a 

smaller gap (same as section 5.2), or having adjacent dipoles sharing a leg. Separate 

dipoles and segmented dipoles were compared between themselves before being 

compared to the rung element.  

To sum up, there are four cases that need to be compared before finalizing the 

design, as shown in Fig. 42: 

• Case#1-Long dipole (Fig. 42(a)): A standard 37 cm long dipole [35], with 1.2 

cm width and 2 mm gap between the legs, was modeled as the reference. 

• Case#2-Separate rung element (Fig. 42(b)): Three separate rungs, each 11.6 cm 

long and 1.2 cm wide, was modeled. The total length of the structure is also 37 

cm, same as reported in [94]. Each rung is 1.2 cm above a corresponding ground 

plane of the size 11.8 cm (z) x 15 cm (x). Each rung was segmented by 33pF 

distributed capacitors every 2cm.  

• Case#3-Separate dipoles (Fig. 42(c)): Three separate dipoles, each 11.6 cm long 

and 1.2 cm wide, separated by 1.1 cm, was modeled. The total length of the 

structure is also 37 cm. All dipoles were fed from the middle. 

• Case#4-Segmented dipoles (Fig. 42(d)):  A 37 cm long, 1.2 cm wide dipole was 

segmented at three equally spaced locations, forming four pieces of conductors 

separated by three 2 mm gaps. In this case, each dipole segment is 18.4 cm, and 

the neighboring dipole elements share a mutual leg. Each dipole is fed from the 

corresponding gap. 



 

89 

 

 

Fig. 42. Four different designs with the same overall length (37 cm), top 

view. Case 1 (a): standard dipole; Case 2 (b): separate rungs (ground is displayed 

as black); Case 3 (c): separate dipoles; Case 4 (d): segmented dipole 

 

 

Fig. 43. Phantom model, and the sagittal plane where B1 is calculated. The 

bore of the magnet is modeled but not displayed. 
 

15 cm 
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The phantom modeled is 25 x 15 x 40 cm3 (X x Y x Z), with dielectric constant of 

77 and conductivity of 0.6 S/m to approximate human muscle [97]. The phantom is placed 

2 cm away in the y direction from the element (Fig. 43). The bore of the magnet, is model 

as a cylindrical copper sheet with a diameter of 59 cm.  

In case# 2-4, the elements are designed to be driven by FCE. The FCE method 

uses quarter-wave transmission lines to connect from a common-voltage point to multiple 

coil elements. The current delivered to the coil elements are equal despite mutual coupling 

and difference in loading. In electromagnetic simulation, the feeds of the elements are 

modeled as high impedance (1000 ohm) current sources to simulate the forced-current 

condition. When simulating the coil in modes where only a few elements are used and the 

others are detuned, the activated elements were fed with the high impedance current source 

while the detuned elements are left open-circuited at their feeds, which also simulate the 

detuning capability of the FCE method [54, 84]. In case# 2-4, each element can be turned 

on or off and enables various modes: Namely, Mode A (-z element only), Mode B (z=0 

element only), Mode C (+z element only), Mode A+B+C (all elements), as illustrated in 

Fig. 44. 

 

 

Fig. 44. Mode definition for segmented and separated configuration 
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In each case, B1 field were calculated at the central sagittal plane, as is shown in 

Fig. 43.  

Comparison between separated or segmented dipole 

When using dipole as the element, we can either have the three short dipoles 

separated by a short gap, or have the adjacent dipoles sharing a leg. The two configurations 

have their own advantages and drawbacks.  

The two different dipole configurations-separate and segmented were compared. 

The B1 pattern in the central sagittal plane was calculated (Fig. 45).  

 

Fig. 45. (Top) Calculated B1 pattern of the separate dipoles (case 3) and 

(Bottom) the segmented dipole (case 4) calculated from simulation. The segmented 

dipole provides a more continuous excitation pattern. 

 

 

When mutual legs are shared between adjacent segmented dipoles, the current 

along the 37 cm dipole is more continuous and the B1 field produced is more uniform, 

whereas the separate dipole configuration have current nulls between short dipoles. In this 

case, we chose the segmented dipole configuration over the separate dipole configuration 

for better B1 pattern. However, it’s worthy to note that the separate design allows more 

focused power decomposition in the short modes (Mode A, Mode B, Mode C), and 

therefore can achieve higher B1/√SAR10g_max efficiency in local areas. Should the highest 
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B1/√SAR10g_max efficiency be wanted in certain cases, the separate dipole configuration 

can still be a viable option.  

Comparison between rung and dipole 

A rung element operates in traditional quasi-static regime by breaking the long 

rung up by capacitors [52]. A dipole, on the other hand, was used due to its radiative 

behavior. Therefore, the two elements may behave differently in terms of RF penetration 

and field uniformity.  

The B1/√SAR10g_max efficiency was compared between the dipole and the rung 

element along the y direction. The comparison was made at the center location (x=z=0). 

In this comparison, the two elements are set to Mode B (z=0 element only). At this point 

the separate dipole configuration is no longer considered as an option for the final design, 

so the comparison to be made is between segmented dipole and rung element, which is 

case#2 and #4. B1/√SAR10g_max efficiency vs. depth of case #2 and #4, operated in Mode 

B was compared at the center, as marked in Fig. 46.  

 

 

Fig. 46. Calculated B1/√SAR10g_max pattern of the separate rung (Left) and 

the segmented dipole (Right) in the central sagittal plane. The y direction profiles 

where B1/√SAR10g_max efficiency was compared are marked with dashed black line. 
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Fig. 47. Calculated B1/√SAR10g_max efficiency comparison between the 

separated rung (Mode B) and the segmented dipole (Mode B). The profile position 

being compared was shown in Fig. 46. 

 

 

Looking at the B1/√SAR10g_max efficiency profile along the y direction vs depth, 

that of the rung element is significantly lower, especially at deeper locations. This is likely 

due to the current return pass provided by the ground plane and the B1 field cancellation.  

For the rung element, the field increased at the phantom-air interface. This is 

caused by the standing wave artifact, which appears to be more prominent with the rung 

element. For all other depth, the dipole has obvious advantage.  

Accordingly, the segmented dipole, was chosen as the final configuration for the 

switchable transmit element.  
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Segmented dipole-Comparison between different modes 

Once the segmented dipole was chosen as the final design, to demonstrate the 

effect from mode switching, the B1/√SAR10g_max efficiency of the segmented dipole was 

compared to the standard dipole along the z direction at 5 cm deep into the phantom [35] 

in different modes. 

A B1/√SAR10g_max comparison was made in the z direction between all modes 

(Mode A~C, Mode A+B+C) and the standard dipole, as indicated by Fig. 48. The profile 

comparison is presented in Fig. 49. 

 

 

Fig. 48. Z direction profile being compared as marked in the calculated 

B1/√SAR10g_max pattern of the reference standard dipole 
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Fig. 49. Calculated z direction profile comparison at 5cm deep. Comparison 

was made between the segmented dipole in different modes and the standard 

dipole. The ability to switch FOV is observed. 

 

 

The advantage of using a segmented design where each short element can be 

turned on and off, is obvious from Fig. 49. When switched to Mode A or C, the segmented 

design provides 0-4 dB higher B1/√SAR10g_max efficiency than the standard dipole in the 

corresponding area.  

5.5.3 Element Design and Implementation 

The segmented dipole was etched on a 0.1’’ FR4 board, with the dimension 

described in Case#4. The common-voltage point (CVP) was upgraded to a PIN diode 

based switching circuit to enable mode switching.  
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Fig. 50. Left: Layout of the coil, including the dipole, quarter-wave feedlines 

with baluns incorporated, switching circuit as well as matching circuit; Right: 

schematic of the switching circuit 

 

 

The schematic of the switching circuit is provided in Fig. 50. The circuit 

determines the status (enabled or detuned) of each of the three coils through biasing two 

PIN diodes for each channel (take D1 and D2 for example). An external controller takes 

three ‘on-off’ digital signals and translates each one of them to two supply signals, which 

biases the two PIN diodes on the switching circuit. An ‘on’ signal drives a -5 V, 100 mA 

supply output and +35 V supply output, which forward biases D1 and reverse biases D2, 

respectively. D1 connects the quarter-wave feedline to the CVP, while D2 acts as an open 

circuit and does not affects the RF signal; On the other hand, a ‘off’ signal drives a +35 V 

supply output and a -5 V, 100 mA supply output, which reverse biases D1 and forward 

biases D2, respectively. D1 disconnects the quarter-wave feedline from the CVP, while 

D2 acts as a short circuit. The quarter-wave transmission line translates the short circuit 

to an open circuit at the coil feed, detuning that coil [54]. 

C M&

λ/4 

D

R
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The layout of the switching circuit inevitably creates phase shift which will impact 

the FCE condition. The quarter wave coaxial lines (EZ-form-141), originally calculated 

as 17.6 cm, need to be shortened to compensate for that: The impedance at the CVP was 

monitored when a floating quarter wave feedline was connected to the switching circuit 

and an ‘on’, ‘off’, ‘off’ control signal was provided to channel A-C. The quarter-wave 

coax line was trimmed until a short circuit was observed on the network analyzer (HP 

4195A). This process was repeated on all three feed cables. 

D2 is designed to detune the unused coil by providing a short circuit at quarter-

wave away from the coil. The impedance presented by D2 needs to be adjusted to 

compensate for the shortened quarter-wave cable: The trimmed quarter-wave coax line 

was connected to the switching circuit while the impedance at the other end of the cable 

is monitored. An ‘off’, ‘off’, ‘off’ control signal was provided to channel A-C. An inductor 

was added in series with D2, and its value was adjusted until an open circuit was observed 

on the network analyzer. This process was repeated on all three channels. 

Capacitively terminated bazooka baluns were integrated onto the quarter-wave 

coax lines to reduce common mode current on its outside shield [102, 103]. A λ/4 bazooka 

balun is not used here because the actual length of the FCE feed cables are shorter than 

λ/4, as explained above. In order to reduce the coupling to the driven dipoles, the coax 

cables were arranged so that the majority of them lies on the equal-potential plane of the 

dipole (transverse plane in this case).   

An identical segmented dipole element was later duplicated to target for better 

axial coverage, as is done in [35]. The spacing between the two coils is determined to be 
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6 cm according to [35]. Two standard dipoles [35] with the same dimensions were built 

for comparison. 

5.5.4 Bench Measurement 

The square root of SAR is linearly proportional to the electric field, and therefore 

B1/√SAR10g_max efficiency of a coil is essentially a reflection of its B1/max E field property 

[18]. The B1/max E field of a coil is related to the performance of the coil element only, 

and is independent of its feeding network. 

The FCE method introduces extra loss to the coil system due to the standing wave 

in the feed cables, which is not modeled in the simulation. It needs to be noted that the 

loss occurs in the feeding network, and does not affect the delivered B1/max E field in the 

phantom.  

The B1/max E field was measured for the segmented dipole in Mode A, Mode B, 

Mode C, Mode A+B+C and for the reference standard dipole. The measurement was made 

at 5cm deep in the phantom (0.6 S/m saline water [97], same as used in the simulation) 

along the z direction, as is indicated in Fig. 48. The measurement was made using a 

shielded magnetic field probe [104], an E field probe [105] and a HP4195A network 

analyzer.  

It is still of interest to know how much power is lost through the feeding network, 

so the B1/√input_power was also characterized for the elements compared, using a 

shielded magnetic field probe [104]. As opposed to B1/max E, when scaled to the same 

input power, the B1 efficiency acquired is affected by the loss in the feeding network. The 

difference between the two measurements is the additional loss brought by FCE. 
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The B1/max E field and B1/√input_power was measured for the segmented dipole 

in long mode, and was compared to the reference dipole. The difference between the two 

comparisons, was found to be 2.2 dB. This is the additional loss brought by the FCE 

feeding network, and is irrelevant to the B1/√SAR10g_max or B1/max E field performance. 

The B1/max E field measurement result is shown in Fig. 51. Due to the natural fall-

off of the B1 field around the edge of the standard long dipole, the segmented dipole in 

short modes exhibits 0~4 dB higher efficiency in the local area than the standard dipole. 

When set to the long mode, the segmented dipole has a flatter but longer profile than the 

standard dipole.  

It is also obvious from the result that when operated in short mode, the other part 

of the segmented dipole is detuned. There is residual signal around the edge, due to the 

finite quality factor of the detuning circuit, but is at least 20 dB below the maximum signal. 

Therefore, unnecessary power decomposition into the unwanted area can be avoided.  
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Fig. 51. B1/max E results measured on bench at 5cm into the phantom. 

Comparison was made between the segmented dipole in different modes and the 

standard dipole 

 

5.5.5 MR Experiment 

As mentioned before, an identical segmented dipole element was duplicated to 

target for better axial coverage, as is done in [35]. The segmented dipoles were tested with 

a Philips 7T Achieva system in transmit/receive mode. The dipoles were loaded with 0.6 

S/m saline water made into an agar gel phantom, placed 2 cm away from the dipoles.  

It needs to be noted that although each segmented dipole was driven by FCE, the 

two dipoles together, were driven through a two-channel multi transmit system, where the 

phase of each dipole can be adjusted [35]. For the segmented dipole, the phase of the two 

channels were adjusted to find the optimum SNR at 5 cm into the phantom when the dipole 

was in Mode A. Once the optimum phase setting was found, the same setting was used for 
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all modes due to their intrinsic similarity. The same experiment was then repeated for the 

reference standard dipole set.  

The segmented dipoles were tested in four modes-Mode A, Mode B, Mode C as 

well as Mode A+B+C. Mode A+B, Mode A+C and Mode B+C are possible but not 

measured. For each mode, sagittal T1-weighted fast gradient echo (THRIVE) images were 

obtained with the following scan parameters: 

FOV 300 x 400 x 200 mm (RL x FH x AP), resolution 2 x 2 x 2 mm 

(overcontiguous), TR/TE/FA: 4.0 ms/0.97 ms/8, for a total scan time of 0.58 minutes. 

The same experiment was then repeated for the reference dipole set. 

In order to examine the B1/√input_power efficiency, flip angle series experiment 

was performed at a voxel of 2 x 2 x 2 cm3 at 5 cm into the phantom, directly underneath 

the center of the dipole set (z=x=0). This measurement does take into account the loss in 

the feeding network, and therefore is expected to be different than the B1/√SAR10g_max 

results. The experiment was repeated for the standard dipole, the segmented dipole in the 

long mode (Mode A+B+C) and the short mode (Mode B). The drive scale (input power) 

was set to be a fixed value while the length of the RF excitation pulse was varied to search 

for the maximum response, which corresponds to a 90 degree flip angle. The TR used 

between RF pulses is 5 second to allow full T1 relaxation. 

Axial coverage improvement by Multi-transmit 

The segmented dipole has adjustable FOV and a large coverage in the long mode 

in the z direction, however its axial coverage is limited. Having two of them driven by two 

independent transmit channels greatly improves that. In optimizing the transmit phase for 
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the two channels, it was found that the maximum signal intensity at 5 cm into the phantom 

occurs with the phase setting of 0 and 90, which is in good agreement with the results 

presented in [35]. This applies to both the standard dipole and the segmented dipole. The 

improved axial coverage when driving two segmented dipoles is shown in Fig. 52. 

 

 

Fig. 52. Effect from using two dipoles together: (a) Axial image from 

segmented dipole element #1 (b) Axial image from segmented dipole element #2 (c) 

Axial image from two segmented dipoles transmitting at the same time. When two 

dipoles are used, the axial coverage is improved. 

 

 

Sagittal images in all modes 

The THRIVE images obtained in central sagittal plane under this configuration, is 

shown in Fig. 53. 

(a) (b) (c) 
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Fig. 53. Sagittal THRIVE images from the segmented dipoles (a-d) and the 

reference standard dipoles (e): (a) Segmented dipoles-Mode A.  (b) Segmented 

dipoles-Mode B. (c) Segmented dipoles-Mode C. (d) Segmented dipoles-Mode 

A+B+C. (c) Reference standard dipoles. For the segmented dipole, in long mode, 

long coverage in z direction is achieved; In short mode, signal in the ‘off’ region is 

largely suppressed. 

 

 

The axial images demonstrate good axial coverage in   multi-transmit 

configuration. The sagittal images in different modes demonstrate successful mode-

switching capability. In long mode, a large coverage in the z direction was obtained, and 

may be used as a survey mode in clinical applications; In short modes, the ability to 

smoothly shift the FOV is observed. The signal in the unwanted region is successfully 

suppressed.  

(a) (b) (c) 

(d) (e) 
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The Flip angle series calibrating for a 90 degree flip angle at 5cm deep is performed 

on the segmented dipole (in long mode and in short mode) and the standard dipole. The 

drive scale (input power) was set to be a fixed value while the length of the RF excitation 

pulse linearly increases to search for the maximum response in each case. In each 

experiment, the length of the RF pulse increases linearly, giving a series of response 

spectrum. When the coil is more efficient, the maximum response (90 degree flip angle) 

would occur under a shorter RF pulse, at an earlier stage of the flip angle series. The result 

is presented in Fig. 54. 

 

 

Fig. 54. Flip angle series experiment performed on the segmented dipole and 

the standard dipole. Horizontal axis indicates the pulse number in the series. The 

length of the RF pulse is linearly proportional to the pulse number. The maximum 

signal corresponds to 90 degree flip angle. 
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For the standard dipole, the 90 degree flip angle was found on pulse #12; For the 

segmented dipole, the 90 degree flip angle was found on pulse #18 for the long mode 

(Mode A+B+C), and on pulse #12 for the short mode (Mode B). Since the length of the 

RF pulse is linearly proportional to the pulse index, it can then be calculated that: In terms 

of B1/√input_power efficiency, the standard dipole is similar as the short mode in the 

segmented dipole, and is 1.5 times (3.5 dB) higher than the long mode in the segmented 

dipole. This difference includes the loss in the FCE network, and therefore is not the same 

as B1/√SAR10g_max, which was presented in Fig. 49 and Fig. 51.   

5.5.6 Conclusions 

Long dipoles have been used for spine imaging. The low B1/√SAR10g_max 

efficiency towards the end of the dipole calls for a flexible design where segments of a 

long structure can be turned on and off to manipulate the power distribution. 

In this work, several design options for a switchable FOV, long element targeted 

for 7T spine imaging were compared in simulation. A long dipole, segmented into three 

smaller, overlapping dipoles was chosen as the final design. The flexible design allows 

higher B1/√SAR10g_max towards the end of the dipole. The segmented dipole was 

implemented by utilizing FCE and a PIN-diode switching circuit. Each segment of the 

dipole can be activated or detuned by an electronic control.  

The segmented dipole was evaluated on bench and on a phantom in a 7T body 

scanner. It was also compared to the standard dipole that has been published. The FCE 

feeding network does bring extra loss to the segmented dipole, especially in the long mode. 

However, the loss is restrained in the circuit instead of the phantom, and therefore does 
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not affect the B1/√SAR10g_max efficiency. The next step is to investigate methods to 

improve the raw B1/√input_power efficiency, which may require the use of bigger coaxial 

cables or partially matching the dipoles before the λ/4 cables. 

The design of the FCE configuration and the switching circuit layout is 

independent of the coil element used. In other words, one can use any coil element desired. 

In this case, a segmented dipole configuration was selected to obtain uniform excitation 

and continuous FOV switching.  
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CHAPTER VI  

CONCLUSIONS AND DISCUSSIONS 

6.1 Conclusions 

MRI/MRS at 7T faces many challenges. Reduced RF wavelength and phase 

interference often calls for the use of multiple elements in a coil. Controlling the current 

across the elements is challenging due to mutual coupling between them. 7T breast 

imaging and spine imaging is particularly challenging also due to the large FOV required. 

In addition, the ability to switch FOV without using multiple expensive power amplifiers 

is desired in these applications. Switching to a smaller FOV will improve power efficiency 

in the local area while avoiding power deposition in areas not of interest. 

 The theory of FCE is analyzed in this dissertation using ABCD matrices. The 

method delivers equal current to multiple elements despite mutual coupling. The upgrade 

of the FCE configuration enables each element to be turned on and off with the inclusion 

of PIN diodes and biasing circuits, enabling switchable FOV. The FCE feeding network 

introduces extra losses due to the standing wave formed in the cable. This loss can be 

quantified with known attenuation, cable length and coil impedance, and can potentially 

be compensated for by partially matching the coil, use low loss cables, etc. 

 A switchable unilateral/bilateral breast coil at 7T was designed and implemented 

under the ‘FCE+switchable FOV’ principle. The coil can be switched electronically 

between unilateral mode or bilateral mode.  The coil was investigated through EM 

simulations, bench measurements and MR experiments. Uniform excitation was found in 
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all modes due to the use of FCE. In particular, symmetric performance was found in 

bilateral mode, and excellent signal localization is seen in unilateral mode with the 

contralateral signal largely suppressed. In unilateral mode, the coil is found to be about 3 

dB more efficient than bilateral mode in terms of B1/√input_power. This can potentially 

be useful in power-demanding applications such as proton-decoupled spectroscopy in a 

unilateral breast. B1/√SAR10g_max efficiency of the coil does not change with mode 

switching, as the two coils have identical structures.  

 A modified version of the bilateral coil was implemented specifically for the 

insertion of a 32-channel receive array. Shielded twinaxial cables were used on this coil 

as the FCE feed cables to avoid the need for baluns or a RF shield, creating room for array 

insertion. This coil provides uniform excitation as tested through MR experiments and 

houses the receive array successfully. 

 A segmented dipole at 7T for spine imaging was designed and implemented under 

the ‘FCE+switchable FOV’ principle. A dipole was selected due to improved penetration, 

when compared to a rung. The segmented dipole has a total of three segments, with the 

adjacent elements sharing a mutual leg. Each element can be turned on or off by the 

switching network, giving a switchable FOV. The segmented dipole was investigated in 

simulation, on bench and through MR experiments using a phantom, and was compared 

to a regular dipole of the same total length. When operated in long mode, the segmented 

dipole provides large FOV due to FCE. In short mode, the signal other regions are largely 

suppressed, and the FOV can be smoothly shifted when switching between the short 

modes. The ability to switch FOV and adjust power distribution gives the segmented 
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dipole 0~4 dB advantage over the regular dipole in terms of B1/√SAR10g_max efficiency. 

The use of FCE degrades the B1/√input_power performance due to the remote matching 

network. It was found that in the short mode, the segmented dipole is as efficient as the 

regular dipole in terms of B1/√input_power efficiency; In long mode, the segmented dipole 

is 3.5 dB less efficient due to the introduced loss. Of particular note is that the loss is 

restricted in the feeding network, not in the phantom, so the B1/√SAR10g_max efficiency is 

not affected. Possible means of alleviating this loss is summarized in section 6.2. 

6.2 Possible Improvements 

 As discussed in section 3.4, the FCE feeding network introduces loss to the system. 

Reducing this loss involves 1. Reducing the attenuation of the λ/4 transmission lines (Use 

lower-loss cables); 2. Reducing the reflection coefficient at the element feed. Partially 

matching the coil should drive down the reflection coefficient and reduce the overall loss. 

However, only a series element can be used for this purpose, given that a shunt element 

could cause the ‘forced current’ at the coil feed to be split between that and the coil.  

 With the switching capability integrated, it was found that coil in different modes 

could present different impedance to the matching circuit, requiring retuning in different 

modes. Section 4.4 describes a potential method to alleviate this effect by having two coils 

sharing a mutual reactive element. This may be employed in future FCE coils to avoid 

retuning. A further upgrade of the switched-mode coil may involve the use of smart 

devices, such as microprocessors, to automatically determine the desired mode based on 



 

110 

 

the coil location and the pulse sequence, and to provide the capability of switching during 

the sequence. 
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APPENDIX A THE USE OF INFRARED CAMERA IN DEBUGGING RF COILS 

AND ESTIMATING CURRENT DISTRIBUTION 

Capacitor failures are common in RF transmit coils, due to the high peak voltage 

across it or the high RMS current running through it. Either the dielectric break down 

(caused by peak voltage) or the thermal stress (caused by RMS current) could cause 

damage in capacitors. However, it is not always possible to tell if a capacitor has failed 

under high power, since the appearance may look normal and the behavior on the bench 

may not be  

Additionally, it is often of interest to measure the RF current distribution around 

the coil. Typically, this is done through a ‘current probe’ which is essentially a tiny 

shielded magnetic field probe. The probe is made so small such that it only picks up local 

magnetic field, and therefore is an indicator of the RF current running next to it. However 

it is an extremely sensitive measurement-the relative position between the coil and the 

probe greatly affect the reading of the probe. 

It was found through experiment that thermal camera is very useful in achieving 

both goals. For example, unstable behavior was found with the segmented dipole during 

the test at UTSW on 2/20/17. On the bench however, no abnormal behavior was found 

using the VNA, which is a low power test. High power test was then performed together 

with a FLIR thermal camera. 270 W peak power was injected to the segmented dipole 

described in details in section 5.5. The thermal picture of the match and tune circuits are 

shown in Fig. 55: 
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Fig. 55. Extra heat observed in the tuning capacitor 

 

  

On the match and tune board are two capacitors: A tuning cap and a matching cap. 

They were all Voltronics NMHVE55 variable capacitors, which is rated for 600 V 

maximum voltage. According to the thermal reading, the tuning cap was heating much 

more than the matching cap, and goes up to 260 F, which indicates a potential capacitor 

failure. After switching the voltronic caps to Sprague-goodman capacitors, which are rated 

for 6 kV maximum voltage, the issue went away, as is shown in Fig. 56. With the same 

input power, the capacitors gets to maximum of 170 F, and there was no unexplainable 

difference between the matching cap and the tuning cap. Therefore, it was concluded that 

the previous capacitor had failed either to high peak voltage or high temperature, before 

the above test. 
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Fig. 56. Thermal images of match and tune cap after new capacitors were installed, 

and the reference photo 

 

 

It can also be seen from the thermal photo that the difference in the heating of the 

capacitors are highly visible, and that metal shows up as dark because of the reflection it 

gives. A potential application for this is then to use the thermal camera to map the current 

distribution on a loop coil that is broken up by capacitors (Fig. 57): Since the copper shows 

up as dark, the reading on the distributed capacitors will be highly visible.  
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Fig. 57. A loop coil broken up by distributed capacitors 

 

 

The temperature is related to heating which is proportional to the square of RF current: 

Q = 𝐼2𝑅  

So the temperature indicates the magnitude of the current going through the 

capacitors. However, the sensitivity of the method needs to be investigated further. One 

drawback of this method is that it does not provide phase information. 


