10 research outputs found

    Shattered Sets and the Hilbert Function

    Get PDF
    We study complexity measures on subsets of the boolean hypercube and exhibit connections between algebra (the Hilbert function) and combinatorics (VC theory). These connections yield results in both directions. Our main complexity-theoretic result demonstrates that a large and natural family of linear program feasibility problems cannot be computed by polynomial-sized constant-depth circuits. Moreover, our result applies to a stronger regime in which the hyperplanes are fixed and only the directions of the inequalities are given as input to the circuit. We derive this result by proving that a rich class of extremal functions in VC theory cannot be approximated by low-degree polynomials. We also present applications of algebra to combinatorics. We provide a new algebraic proof of the Sandwich Theorem, which is a generalization of the well-known Sauer-Perles-Shelah Lemma. Finally, we prove a structural result about downward-closed sets, related to the Chvatal conjecture in extremal combinatorics

    Sign rank versus VC dimension

    Full text link
    This work studies the maximum possible sign rank of N×NN \times N sign matrices with a given VC dimension dd. For d=1d=1, this maximum is {three}. For d=2d=2, this maximum is Θ~(N1/2)\tilde{\Theta}(N^{1/2}). For d>2d >2, similar but slightly less accurate statements hold. {The lower bounds improve over previous ones by Ben-David et al., and the upper bounds are novel.} The lower bounds are obtained by probabilistic constructions, using a theorem of Warren in real algebraic topology. The upper bounds are obtained using a result of Welzl about spanning trees with low stabbing number, and using the moment curve. The upper bound technique is also used to: (i) provide estimates on the number of classes of a given VC dimension, and the number of maximum classes of a given VC dimension -- answering a question of Frankl from '89, and (ii) design an efficient algorithm that provides an O(N/log⁥(N))O(N/\log(N)) multiplicative approximation for the sign rank. We also observe a general connection between sign rank and spectral gaps which is based on Forster's argument. Consider the N×NN \times N adjacency matrix of a Δ\Delta regular graph with a second eigenvalue of absolute value λ\lambda and Δ≀N/2\Delta \leq N/2. We show that the sign rank of the signed version of this matrix is at least Δ/λ\Delta/\lambda. We use this connection to prove the existence of a maximum class C⊆{±1}NC\subseteq\{\pm 1\}^N with VC dimension 22 and sign rank Θ~(N1/2)\tilde{\Theta}(N^{1/2}). This answers a question of Ben-David et al.~regarding the sign rank of large VC classes. We also describe limitations of this approach, in the spirit of the Alon-Boppana theorem. We further describe connections to communication complexity, geometry, learning theory, and combinatorics.Comment: 33 pages. This is a revised version of the paper "Sign rank versus VC dimension". Additional results in this version: (i) Estimates on the number of maximum VC classes (answering a question of Frankl from '89). (ii) Estimates on the sign rank of large VC classes (answering a question of Ben-David et al. from '03). (iii) A discussion on the computational complexity of computing the sign-ran

    Unlabeled sample compression schemes and corner peelings for ample and maximum classes

    Full text link
    We examine connections between combinatorial notions that arise in machine learning and topological notions in cubical/simplicial geometry. These connections enable to export results from geometry to machine learning. Our first main result is based on a geometric construction by Tracy Hall (2004) of a partial shelling of the cross-polytope which can not be extended. We use it to derive a maximum class of VC dimension 3 that has no corners. This refutes several previous works in machine learning from the past 11 years. In particular, it implies that all previous constructions of optimal unlabeled sample compression schemes for maximum classes are erroneous. On the positive side we present a new construction of an unlabeled sample compression scheme for maximum classes. We leave as open whether our unlabeled sample compression scheme extends to ample (a.k.a. lopsided or extremal) classes, which represent a natural and far-reaching generalization of maximum classes. Towards resolving this question, we provide a geometric characterization in terms of unique sink orientations of the 1-skeletons of associated cubical complexes

    COMs: Complexes of Oriented Matroids

    Full text link
    In his seminal 1983 paper, Jim Lawrence introduced lopsided sets and featured them as asymmetric counterparts of oriented matroids, both sharing the key property of strong elimination. Moreover, symmetry of faces holds in both structures as well as in the so-called affine oriented matroids. These two fundamental properties (formulated for covectors) together lead to the natural notion of "conditional oriented matroid" (abbreviated COM). These novel structures can be characterized in terms of three cocircuits axioms, generalizing the familiar characterization for oriented matroids. We describe a binary composition scheme by which every COM can successively be erected as a certain complex of oriented matroids, in essentially the same way as a lopsided set can be glued together from its maximal hypercube faces. A realizable COM is represented by a hyperplane arrangement restricted to an open convex set. Among these are the examples formed by linear extensions of ordered sets, generalizing the oriented matroids corresponding to the permutohedra. Relaxing realizability to local realizability, we capture a wider class of combinatorial objects: we show that non-positively curved Coxeter zonotopal complexes give rise to locally realizable COMs.Comment: 40 pages, 6 figures, (improved exposition

    Unlabeled Sample Compression Schemes and Corner Peelings for Ample and Maximum Classes

    Get PDF
    We examine connections between combinatorial notions that arise in machine learning and topological notions in cubical/simplicial geometry. These connections enable to export results from geometry to machine learning. Our first main result is based on a geometric construction by H. Tracy Hall (2004) of a partial shelling of the cross-polytope which can not be extended. We use it to derive a maximum class of VC dimension 3 that has no corners. This refutes several previous works in machine learning from the past 11 years. In particular, it implies that the previous constructions of optimal unlabeled compression schemes for maximum classes are erroneous. On the positive side we present a new construction of an optimal unlabeled compression scheme for maximum classes. We leave as open whether our unlabeled compression scheme extends to ample (a.k.a. lopsided or extremal) classes, which represent a natural and far-reaching generalization of maximum classes. Towards resolving this question, we provide a geometric characterization in terms of unique sink orientations of the 1-skeletons of associated cubical complexes

    Testing, Learning, Sampling, Sketching

    Get PDF
    We study several problems about sublinear algorithms, presented in two parts. Part I: Property testing and learning. There are two main goals of research in property testing and learning theory. The first is to understand the relationship between testing and learning, and the second is to develop efficient testing and learning algorithms. We present results towards both goals. - An oft-repeated motivation for property testing algorithms is to help with model selection in learning: to efficiently check whether the chosen hypothesis class (i.e. learning model) will successfully learn the target function. We present in this thesis a proof that, for many of the most useful and natural hypothesis classes (including halfspaces, polynomial threshold functions, intersections of halfspaces, etc.), the sample complexity of testing in the distribution-free model is nearly equal to that of learning. This shows that testing does not give a significant advantage in model selection in this setting. - We present a simple and general technique for transforming testing and learning algorithms designed for the uniform distribution over {0, 1}^d or [n]^d into algorithms that work for arbitrary product distributions over R d . This leads to an improvement and simplification of state-of-the-art results for testing monotonicity, learning intersections of halfspaces, learning polynomial threshold functions, and others. Part II. Adjacency and distance sketching for graphs. We initiate the thorough study of adjacency and distance sketching for classes of graphs. Two open problems in sublinear algorithms are: 1) to understand the power of randomization in communication; and 2) to characterize the sketchable distance metrics. We observe that constant-cost randomized communication is equivalent to adjacency sketching in a hereditary graph class, which in turn implies the existence of an efficient adjacency labeling scheme, the subject of a major open problem in structural graph theory. Therefore characterizing the adjacency sketchable graph classes (i.e. the constant-cost communication problems) is the probabilistic equivalent of this open problem, and an essential step towards understanding the power of randomization in communication. This thesis gives the first results towards a combined theory of these problems and uses this connection to obtain optimal adjacency labels for subgraphs of Cartesian products, resolving some questions from the literature. More generally, we begin to develop a theory of graph sketching for problems that generalize adjacency, including different notions of distance sketching. This connects the well-studied areas of distance sketching in sublinear algorithms, and distance labeling in structural graph theory

    Shattering Extremal Systems

    No full text

    Shattering, Graph Orientations, and Connectivity

    No full text
    We present a connection between two seemingly disparate fields: VC-theory and graph theory. This connection yields natural correspondences between fundamental concepts in VC-theory, such as shattering and VC-dimension, and well-studied concepts of graph theory related to connectivity, combinatorial optimization, forbidden subgraphs, and others. In one direction, we use this connection to derive results in graph theory. Our main tool is a generalization of the Sauer-Shelah Lemma (Pajor, 1985; BollobĂĄs and Radcliffe, 1995; Dress, 1997; Holzman and Aharoni). Using this tool we obtain a series of inequalities and equalities related to properties of orientations of a graph. Some of these results appear to be new, for others we give new and simple proofs. In the other direction, we present new illustrative examples of shattering-extremal systems- a class of set-systems in VC-theory whose understanding is considered by some authors to be incomplete (BollobĂĄs and Radcliffe, 1995; Greco, 1998; RĂłnyai and MĂ©szĂĄros, 2011). These examples are derived from properties of orientations related to distances and flows in networks.
    corecore