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Abstract

We study several problems about sublinear algorithms, presented in two parts.

Part I: Property testing and learning. There are two main goals of research in
property testing and learning theory. The first is to understand the relationship between
testing and learning, and the second is to develop efficient testing and learning algorithms.
We present results towards both goals.

� An oft-repeated motivation for property testing algorithms is to help with model
selection in learning: to efficiently check whether the chosen hypothesis class (i.e.
learning model) will successfully learn the target function. We present in this thesis
a proof that, for many of the most useful and natural hypothesis classes (includ-
ing halfspaces, polynomial threshold functions, intersections of halfspaces, etc.), the
sample complexity of testing in the distribution-free model is nearly equal to that
of learning. This shows that testing does not give a significant advantage in model
selection in this setting.

� We present a simple and general technique for transforming testing and learning al-
gorithms designed for the uniform distribution over {0, 1}d or [n]d into algorithms
that work for arbitrary product distributions over Rd. This leads to an improve-
ment and simplification of state-of-the-art results for testing monotonicity, learning
intersections of halfspaces, learning polynomial threshold functions, and others.

Part II. Adjacency and distance sketching for graphs. We initiate the thorough
study of adjacency and distance sketching for classes of graphs. Two open problems in
sublinear algorithms are: 1) to understand the power of randomization in communication;
and 2) to characterize the sketchable distance metrics. We observe that constant-cost
randomized communication is equivalent to adjacency sketching in a hereditary graph
class, which in turn implies the existence of an efficient adjacency labeling scheme, the
subject of a major open problem in structural graph theory. Therefore characterizing the
adjacency sketchable graph classes (i.e. the constant-cost communication problems) is the
probabilistic equivalent of this open problem, and an essential step towards understanding
the power of randomization in communication.

This thesis gives the first results towards a combined theory of these problems and uses
this connection to obtain optimal adjacency labels for subgraphs of Cartesian products,
resolving some questions from the literature. More generally, we begin to develop a theory
of graph sketching for problems that generalize adjacency, including different notions of
distance sketching. This connects the well-studied areas of distance sketching in sublinear
algorithms, and distance labeling in structural graph theory.
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Chapter 1

Introduction

One of the symptoms of approaching nervous breakdown is the belief that one’s
work is terribly important... If I were a medical man, I should prescribe a
holiday to any patient who considered his work important. – Bertrand Russell1

Let me now explain why the work in this thesis is terribly important. It is a misfortune of
humanity that we must often make decisions with incomplete and unreliable information.
This is a misfortune that we increasingly inflict upon our algorithms, too. Although unlucky
for the computers that serve us, this is lucky for computer scientists because, by studying
these algorithms, we gain (incomplete, unreliable) information about the human condition.
Considering the importance of making decisions, it is therefore inarguable that the study
of such algorithms is the most urgent scientific – indeed, humanitarian – endeavor. This
thesis was once the most recent progress in this study.

Classical computer science and algorithm design, including almost all standard under-
graduate material, focuses on computational problems where the algorithm is given an
input x and must compute a function f(x), either exactly or approximately. An important
assumption is that the entire input is known to the algorithm. In other words, the algo-
rithm has access to all relevant information about the problem, and the question is how
many computational resources are required to process this information.

These classical algorithms operate in a universe that is both small and certain. It is
small because the input x must be small: an efficient algorithm in the classical sense, which
runs in time polynomial in the size of x, or even linear in the size of x, will be prohibitively

1The Conquest of Happiness, Chapter 5.
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expensive when x is very large. And it is certain because the algorithms have complete
information about x and the problem they are required to solve.

A cursory examination of our universe reveals that it is neither small nor certain. We
ourselves must constantly make decisions based upon data which are both incomplete and
uncertain, and this is increasingly true of our computer programs as well. A human decision
is an attempt to compute a function f(x) where x is the state of the universe, observable
only through a weak and often inaccurate lens. As the role of computers expands, from
performing well-defined tasks like arithmetic, to making automated decisions in the real
world, our algorithms must operate in the large and uncertain universe that humans occupy.

It is therefore necessary to study algorithms that compute functions f(x) when x is
large and intractable, accessible only through a lens that is weak and untrustworthy. This
thesis is a small piece of the mechanism to cope with this misfortune that we now share
with our computers.

1.1 Thesis Overview

This thesis studies several problems about sublinear algorithms. Sublinear algorithms elim-
inate the small universe assumption (which assumes that the algorithm can observe all rel-
evant information in a reasonable amount of time), and often challenge the certain universe
assumption too (which assumes that the algorithms has perfectly accurate observations).
Sublinear algorithms are algorithms that compute something about the input x without
observing the entire input x, and often under severe restrictions on the type of observations
that they can make.

It is helpful to imagine that the input x and the algorithm itself are split between
several entities and that their communication is limited in quantity or in type. For example,
communication may be restricted to certain types of messages, or to a certain number of
bits. Part I of this thesis studies the oracle model, where the input is held by an oracle
(or set of oracles), and the algorithm learns about the input only through communication
with this oracle. Part II of this thesis studies the communication and sketching models. In
the communication model, the input is split between two parties who must communicate
as little as possible to solve a problem; and in the sketching model, the input is held by an
algorithm that produces a small sketch to send to a second algorithm, which must compute
the output.

2



Part I: The Oracle Model. The oracle model captures both machine learning algo-
rithms and property testing algorithms. In this model, x is held by an oracle who answers
certain types of questions about x. The goal is to solve the problem while asking as few
questions as possible, and also to weaken the oracle as much as possible so that it answers
the least-informative types of questions. While it is of practical and theoretical interest to
design more efficient testing and learning algorithms (and this thesis presents a number of
these), the main focus of Part I is the relationship between these two types of algorithms,
formalized in the testing vs. learning question. This question, asked by Goldreich, Gold-
wasser, & Ron [GGR98], is one of the most important questions in sublinear algorithms
because it asks when testing algorithms can be used to improve the process of model se-
lection. This is one of the most commonly suggested applications for property testing, but
this thesis will show that in many natural and practical cases it is not possible.

We formally introduce this model and the related questions in Section 1.2, along with
a summary of the results contained in this thesis. A detailed treatment of the results is in
Chapters 2 and 3. This part of the thesis includes results from [BFH21] (coauthored with
Eric Blais and Renato Ferreira Pinto Jr.) and [HY21] (coauthored with Yuichi Yoshida).

Part II: The Communication and Sketching Model. In the second part of this
thesis, we study the phenomenon of constant-cost randomized communication. Some com-
munication problems (like Equality) can be computed with a randomized communication
protocol whose cost does not increase with the size of the inputs. Understanding this phe-
nomenon is essential for understanding randomized communication, but we will see that it
is also closely related to major open problems in structural graph theory and distributed
data structures. This thesis introduces a model where the input (a graph G from a certain
class F) is held by a sketching algorithm that must produce small randomized “sketches”
of the vertices of G, so that a second party who does not know G can decide adjacency
or distance between vertices using only the sketches. These types of sketches are natural
to study on their own, but they also form a connection between constant-cost commu-
nication, distance sketching, and informative labeling schemes ; in particular, we use this
correspondence to resolve a few open questions from the recent literature on adjacency
labeling schemes.

We introduce these problems and their connections in Section 1.3, and we give a detailed
treatment in Chapters 4 to 7. This part of the thesis includes results from [Har20], [HWZ22]
(coauthored with Sebastian Wild and Viktor Zamaraev), [EHK22] (coauthored with Louis
Esperet and Andrey Kupavskii), and [EHZ22] (coauthored with Louis Esperet and Viktor
Zamaraev).

3



1.2 The Oracle Model

In the oracle model, the input x is held by an oracle, or a set of oracles, which provide
the algorithm with information about x by responding to requests of a certain form. Two
main areas of research on the oracle model are 1) the testing vs. learning question, and 2)
designing efficient testing and learning algorithms. In Section 1.2.1, we give an example
that motivates the oracle model. Section 1.2.2 gives formal definitions of the oracle model,
machine learning, and property testing algorithms. In Section 1.2.3, we discuss our results
towards the testing vs. learning question, and in Section 1.2.4, we discuss our results on
designing efficient testing and learning algorithms.

1.2.1 Motivating Example

Modern astronomy requires not only advanced telescopes, which produce enormous amounts
of data, but also algorithms for processing those data. One important type of processing
is to identify or distinguish particular astronomical phenomena, such as identifying grav-
itational lens effects [MMA+19] or distinguishing between stars and galaxies [SNHM+18]
(see also [Bar19] and the references therein).

To motivate the oracle model of computation, the problems of learning and testing, and
some of the specific problems we study in this thesis, consider the problem of designing
an algorithm to detect gravitational lens effects (as in [MMA+19, N+19]). Say that our
telescope produces observations which are n×n matrices of photon counts: so the telescope
has an n×n array of sensors, and produces observations X ∈ Nn×n which record the number
of photons hitting each sensor. For now, we retain the (egregiously unrealistic) certainty
assumption of the universe, discussed above, which in particular means that there is a
well-defined function lens : Nn×n → {0, 1} which satisfies lens(X) = 1 if and only if X is
an observation of a gravitational lens effect2. Our goal is to produce an algorithm that
computes the function lens.

However, even under the assumption that lens is a well-defined function, we may not
actually know what that definition is. And, if we did, an algorithm that computes it is
likely too complicated to implement in a reasonable amount of time. Instead of creating
the algorithm ourselves, we want an algorithm that creates our algorithm for us: a learning
algorithm. Here are some requirements and restrictions on this learning algorithm:

2This assumption is unrealistic for a number of reasons, including that a gravitational lens effect is a
human categorization of empirical observations, with no formal mathematical definition.
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1. Its access to the input is restricted. The input to this learning algorithm is the
function lens : Nn×n → {0, 1}, and the desired output is an algorithm that computes
lens. But the algorithm cannot see the whole input: we scientists don’t even know what
the input is. The learning algorithm only gets to see certain examples X and their labels
lens(X). That is, the learning algorithm can interact with its input only in a restricted
way. We model this by saying that the input is held by an oracle, who responds to
certain types of requests. The learning algorithm probably cannot construct its own
examples and ask for labels, which would require algorithmically producing reasonable
telescope images3. So we give the input to an oracle who can only provide random
examples drawn from some probability distribution D (which we think of, informally,
as the distribution over images received from the telescope). Of course, we also don’t
know D, so the algorithm should work for any D.

2. It sees only a small number of examples. We cannot allow the learning algorithm
to see every possible example of a telescope image before producing its output. There
are too many possible telescope images, and the scientists are not paid enough to assign
labels to every single one. We must require that the learning algorithm produces its
output after seeing an extremely small number of examples, compared to the total
number of possible telescope images.

3. It cannot be able to output any arbitrary function. We cannot expect the
learning algorithm to contain every possible function f : Nn×n → {0, 1} in its output
space; it would require unbounded time to produce these functions. So we instead choose
a certain hypothesis class H of functions that the algorithm could produce efficiently,
and restrict the algorithm to produce a function from this class.

4. It must be reasonably accurate. We cannot expect the algorithm to be 100%
accurate, because of all the restrictions we’ve placed on it. We could demand that
the algorithm is accurate on 99% of possible telescope images, but this would not be
helpful: many possible images might have extremely low likelihood of appearing in our
telescope. It might be the case that the images we actually see comprise only 1% of
possible telescope images. We want to be accurate with respect to D, the probability
distribution over observed images (which we don’t know). It also might be the case that
our chosen hypothesis class H is not powerful enough to be accurate. So we ask that

3The training data in [MMA+19] are synthetic, produced using physics simulations. So it is sometimes
possible for an algorithm to produce query points, although here it is computationally expensive. But the
particular setup of [MMA+19] is unusual; see references in [Bar19] for more typical situations.
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our algorithm produces a function f ∈ H such that

P
X∼D

[f(X) 6= lens(X)] ≤ OPT + ε ,

where OPT = infg∈H P
X∼D

[g(X) 6= lens(X)] is the optimal performance of H, and ε > 0

is our desired accuracy.

This informally introduces the problem of learning, and the motivation for the oracle
model. To motivate property testing, we consider a standard method for designing a learn-
ing algorithm. We first choose some set of efficiently computable features of a telescope
image. Call these f1, . . . , fk : Nn×n → R. For each image X, we can construct a feature
vector f(X) = (f1(X), f2(X), . . . , fd(X)) in Rd. In this way, we transform each example
(X, lens(X)) into an example (f(X), lens(X)) in Rd×{0, 1}. (This is often called the kernel
trick.)

Then, we apply the support-vector machine (SVM) algorithm, which will attempt to
find a hyperplane in Rd that separates the 0-valued transformed examples from the 1-
valued transformed examples. Our choice to use an SVM and our choice of features define
a hypothesis class H: the resulting learning algorithm will produce an output in H. We
want to know whether our choices will work. This is the subject of a typical applied
machine learning paper: to make choices like this and see if they work. This is usually
done by running the learning algorithm on some sample data and checking its accuracy on
a test set.

What if there was an algorithm which could efficiently test whether a hypothesis class
H will work (i.e. check whether OPT = 0 or OPT < ε), without having to run the learning
algorithm? This could help enormously with the task of choosing a learning algorithm. We
could, say, select a set of features and run a testing algorithm to see if SVM will produce
good results, before investing in a learning algorithm. This application was suggested
by Goldreich, Goldwasser, & Ron [GGR98], who formalized the testing vs. learning
question:

Question 1.2.1 (Testing vs. Learning). Which hypothesis classes H can be tested more
efficiently than they can be learned?

This is not the only proposed application of property testing algorithms, but it is one of
the most common. But testing algorithms do not seem to be used this way in practice. In
this thesis, we give theoretical results showing that this application is not feasible in some
of the most common settings. In particular, we will prove that when the input distribution
D is unknown and unrestricted, the algorithm sees only samples, and the hypothesis class

6



is a hyperplane or another practically useful class (as in the SVM example above), a testing
algorithm cannot improve significantly upon the efficiency of a learning algorithm. In other
words, the empirical method of running the learning algorithm and checking if it worked
is, provably, almost optimal.

1.2.2 Definitions: Oracles, Testing, and Learning

We now give formal definitions of the model and problems introduced in the previous
subsection.

Definition 1.2.2 (Distance). Let X be some domain, let D be a probability distribution
over X , and let H be a set of functions X → {0, 1} (measurable with respect to D). Then
we define the following (we will drop the subscript D when it is clear from context):

distD(f, g) := P
x∼D

[f(x) 6= g(x)]

distD(f,H) := inf
g∈H

distD(f, g) .

For a domain X , a set H of functions X → {0, 1}, and a class D of probability dis-
tributions over X , we define an oracle algorithm as follows. Let O = {O1,O2, . . . } be a
collection of oracles. An algorithm in the O-oracle model is given as input a parameter
ε > 0, a function X → {0, 1}, and a probability distribution D over X . On each input
(f,D) ∈ H×D, the oracles are instantiated as O1(f,D),O2(f,D), . . . , which can provide
certain information about (f,D) upon request, at unit cost. The algorithm is allowed to
be randomized, and each request to an oracle has unit time cost. Some standard types of
oracles are:

� Query Oracle: Given any query point x ∈ X , the oracle responds with f(x).

� Sample Oracle: Upon request, the oracle responds with an independently random
sample point x ∼ D.

� Labeled-Sample Oracle: Upon request, the oracle responds with a pair (x, f(x)),
where x ∼ D is sampled independently from D.

We will refer to algorithms with access to the query and sample oracle as operating in the
query model, and refer algorithms with access to only the labeled-sample oracle as operating
in the labeled-sample model. We will sometimes write query for the set O containing the
query and sample oracle, and samp for the set O containing only the labeled-sample oracle.
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For a set of oracles O and an algorithm A that operates in the O-oracle model, the
O-oracle complexity of A is the supremum over all pairs (f,D) ∈ H × D of the number
of requests to the oracles in O made by A on input (f,D), as a function of ε. For oracle
sets O that contain more than one type of oracle, we are also interested in the number of
requests made to each oracle. For an algorithm in the query model, we say that the query
complexity of A is the supremum over all (f,D) ∈ H×D of the number of requests made
by A to the query oracle, and the sample complexity is similarly defined as the number of
requests made by A to the sample oracle.

We may now define property testing and learning algorithms.

Definition 1.2.3 (Property Testing). Let X be some domain, let H be a set of functions
X → {0, 1}, let D be a set of probability distributions over X , and let O be a set of oracles.
An O-oracle tester for H under D is an algorithm satisfying the following:

Input: ε > 0 and O-oracle access to (f,D) where f : X → {0, 1} and D ∈ D.

Output:

1. If f ∈ H, the algorithm outputs Yes with probability at least 2/3;

2. If distD(f,H) ≥ ε, the algorithm outputs No with probability at least 2/3.

For a set of oracles O, a set of functions H, and a class of distributions D, we will write
testOH,D(ε) for the minimum O-oracle complexity of an O-oracle algorithm satisfying the
above conditions. If we replace condition (1) with the following condition:

1′ If f ∈ H, the algorithm outputs Yes with probability 1;

then we call the algorithm a one-sided tester, and we write otestOH,D(ε) for the minimum
O-oracle complexity of a one-sided O-oracle tester satisfying the conditions. Finally, if our
algorithm takes as input 0 ≤ ε1 < ε2 instead of ε and is required to satisfy the following
conditions:

1∗ If distD(f,H) ≤ ε1, the algorithm outputs Yes with probability at least 2/3;

2∗ If distD(f,H) ≥ ε2, the algorithm outputs No with probability at least 2/3,

then we call the algorithm (ε1, ε2)-tolerant. We will write testOH,D(ε1, ε2) for the minimum
O-oracle complexity of a (ε1, ε2)-tolerant O-oracle tester satisfying these conditions. We
remark that testOH,D(0, ε) is not necessarily equal to testOH,D(ε).

Definition 1.2.4 (Learning). Let X be some domain, let H be a set of functions X →
{0, 1}, let D be a set of probability distributions over X , and let O be a set of oracles. An
O-oracle improper agnostic learner for H under D is an algorithm satisfying the following:
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Input: Parameter ε > 0, and oracle access to (f,D), where f : X → {0, 1} and D ∈ D.

Output: With probability at least 2/3, a function g : X → {0, 1} that satisfies:

distD(f, g) ≤ distD(f,H) + ε .

For a set of oracles O, a set of functions H, and a class of distributions D, we will write
alearnOH,D(ε) for the minimum O-oracle complexity of an O-oracle algorithm satisfying
the above conditions. If we replace condition (2) with the same condition, but add the
requirement that g ∈ H, then we call the algorithm a proper agnostic learner, and write
aplearnOH,D(ε) for the optimal complexity of such an algorithm. Finally, if we change the
input so that it has the promise f ∈ H, we obtain a (non-agnostic) improper learner
and a proper learner, respectively. We write learnOH,D(ε) and plearnOH,D(ε) for the optimal
complexities of these types of algorithms.

For both learning and testing algorithms, the oracle set O, the function class H, and
the class of input distributions D will be usually be clear from context. In this case
we drop the sub- and superscripts for these parameters. We will write testquery, testsamp,
plearnquery, plearnsamp, etc., for the oracle complexities in the query and labeled-sample
model, respectively.

1.2.3 Testing vs. Learning

Recall that there are two main questions we can ask about testing and learning algorithms.
The first is the testing vs. learning question of [GGR98], which we now restate more
formally:

Testing vs. Learning: Which hypothesis classes H, under which sets of distributions D
and which oracle models, can be tested more efficiently than they can be learned?

The second is algorithm design: for a given hypothesis class H and set of distributions D,
what is the most efficient tester or learner for H under D? Answering the second question,
by giving tight bounds on both testing and learning a class H, would answer the testing
vs. learning question for that class. In this respect, if our goal is to understand both
testing and learning algorithms, the testing vs. learning question is a prerequisite. Below,
we introduce our results on testing vs. learning, from the paper [BFH21] coauthored with
Eric Blais and Renato Ferreira Pinto Jr.; the details of these results are in Chapter 2. We
return to designing efficient testers and learners in Section 1.2.4 and Chapter 3.
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A simple but foundational result on the testing vs. learning question is that a (proper)
learning algorithm can be used as a testing algorithm [GGR98]. This essentially formalizes
the standard empirical practice of running the learning algorithm and checking its correct-
ness on a test set. This formally justifies the testing vs. learning question, since we need
not be concerned with the case where testing is less efficient than learning.

Theorem 1.2.5 ([GGR98]). Let H be any hypothesis class of functions X → {0, 1}, let D
be any set of probability distributions over X , and let ε > 0. Let O be a set of oracles that
contains the labeled sample oracle. Then

testO(ε) = O
(
plearnO(ε/2)

)
+O(1/ε) .

We want to know when testO(ε) � plearnO(ε). To approach a general theory of testing
vs. learning, we should focus on:

1. The models of learning that are most well-understood; and,

2. The hypothesis classes and probability distributions that are either the most funda-
mental, or are the most practically useful.

The learning model that is most well-understood is the distribution-free labeled-sample
model, known as the Probably Approximately Correct (PAC) learning model of Valiant
[Val84]. In fact, for the purposes of this thesis, PAC learning is completely understood4.
In this model, the algorithm has access only to the labeled-sample oracle, and the set D of
distributions is unrestricted5. In [GGR98], the authors “stress that [this model] is essential
for some of the potential applications” listed in that paper, but despite much recent interest
in both distribution-free and sample-based testing (e.g. [GS09, BBBY12, AHW16, GR16,
CFSS17, BMR19, BY19, Har19, FY20, RR20]), even basic questions for this model remain
unanswered.

Are there any testable classes? Having chosen the distribution-free labeled-sample
model to study, we should look for the most natural hypothesis classes. But first, we
should ask: in this model, are there any hypothesis classes for which test(ε) � plearn(ε)?
Consider first the class H of all functions X → {0, 1}. This is the hardest class to learn
(indeed, when X is infinite, learning is impossible), but the easiest class to test: always
output Yes.

4This is because we are not concerned with time complexity or constant factors, and we will treat ε as
a small constant.

5Some technical restrictions on measurability are necessary, see [SB14].
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A slightly less trivial example was given in [GGR98]: H is the class of functions f :
{0, 1}d → {0, 1} which takes value 1 on x ∈ {0, 1}d if x1 = 1 and is otherwise unrestricted.
This class requires Ω(2d) labeled samples to learn, but only O(1/ε) labeled samples to test.
However, this class is not “natural”, in the sense that it is not intrinsically interesting.
Are there “natural” classes of functions that are easier to test than to learn? This thesis
provides two: monotone functions (over an arbitrary partially ordered finite domain), the
juntas, both of which are central to the literature on property testing.

Theorem 1.2.6. Let H be the class of k-juntas on domain {0, 1}d, for any k = k(d). Then

otestsamp
H (ε) = O

(
k2k/2 log(d/k)

ε

)
, whereas for constant ε, plearnsamp(ε) = Ω(2k).

Theorem 1.2.7. Let X be any finite partial order with n = |X |, and let H be the class
of monotone functions X → {0, 1}. Then testsamp(ε) = O (

√
n/ε). On the other hand,

plearnsamp(ε) = Θ(width(X )/ε), where width(X ) is the size of the largest antichain in X .

Testing Halfspaces. Having checked that some natural hypothesis classes do indeed
satisfy testsamp(ε)� plearnsamp(ε), so that our question is non-trivial, we should now identify
the most important hypothesis classes to focus on. Arguably the most fundamental and
practically useful hypothesis class is the class of halfspaces6. Recall from Section 1.2.1 that
halfspaces (which are the class learned by SVMs) are used frequently in practice. They may
also be the most fundamental: they are geometrically simple, they have been studied since
the 1950s, and they are the class learned by the perceptron, a simplified model of a single
neuron developed in the very early literature on neural networks. Therefore, a central goal
for understanding testing vs. learning is to understand the complexity of testing halfspaces
with the labeled-sample oracle, under arbitrary distributions.

Testing halfspaces has been studied under the Gaussian distribution and uniform dis-
tribution over {0, 1}d (in the query model) [MORS10], the Gaussian distribution (in the
labeled-sample model) [BBBY12], and under rotation-invariant distributions (in the labeled-

sample model) [Har19]. Prior to this thesis, the best known lower bound was Ω̃(
√
d) for

the standard Gaussian distribution over Rd [BBBY12], compared to Θ(d) for learning; the

best known upper bound in the labeled-sample model is a matching Õ(
√
d) under the class

D of all rotation-invariant distributions over Rd [Har19]. This left open the possibility that

there is an efficient Õ(nc)-sample tester for some constant c < 1, even c = 1/2, in the gen-
eral distribution-free setting. One of the main results of this thesis (from [BFH21]) is that

6One might argue that deep neural networks are the most practically useful hypothesis class. Testing
this hypothesis class is beyond the scope of this thesis, and indeed a theoretical understanding of deep
neural networks appears to be beyond the scope of modern science.
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this is impossible. We essentially resolve the testing vs. learning question for (arguably)
the most important special case: halfspaces in the labeled-sample model.

Theorem 1.2.8. Let H be the set of halfspaces with domain Rd or {0, 1}d, let D be the
set of all probability distributions over the domain. Then for some constant ε > 0,

testsamp(ε) = Ω

(
d

log d

)
= Ω̃ (plearnsamp(ε)) .

In follow-up work of Chen & Patel [CP22], our technique was extended to get a Ω̃(d) lower
bound for testing halfspaces even in the query model.

A General Theory. Although this resolves one of the central problems for understand-
ing testing vs. learning, our goal is a more general theory. We present some progress
towards this goal. Any theory of testing vs. learning must explain the relationship between
testing and the Vapnik-Chervonenkis (VC) dimension. The labeled-sample complexity of
learning a class H (i.e. the complexity of PAC learning) is determined entirely by the VC
dimension of H, which is defined as follows. A set T ⊆ X is shattered by H if for every
` : T → {0, 1} there is a function f ∈ H that agrees with ` on all points in T . The VC
dimension of H with respect to S ⊆ X is

VCS(H) := max{k : ∃T ⊆ S of size |T | = k that is shattered by H}.

We will write VC(H) = VCX (H). The “fundamental theorem of PAC learning” is as follows
(see e.g. [SB14] and [BHMZ20]).

Theorem 1.2.9 (Fundamental Theorem of PAC Learning). Let H be any set of functions
X → {0, 1}, let D be the set of all distributions7 over X . Then

plearnsamp(ε) =

{
O

(
VC(H)

ε
log

1

ε

)
,Ω

(
VC(H)

ε

)}
aplearnsamp(ε) = Θ

(
VC(H)

ε2

)
.

This thesis makes progress towards understanding the relationship between testing and
VC dimension, by defining a related quantity called the lower VC or LVC dimension, and
relating the labeled-sample complexity of testing to the LVC and VC dimensions.

Informally, the LVC dimension of a class H quantifies the number of examples required
to prove that a function f : X → {0, 1} satisfies f /∈ H, which is a fundamental quan-
tity for testing with one-sided error. Intuitively, many natural hypothesis classes H (like

7These distributions must actually satisfy some technical measurability conditions, see [SB14].
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halfspaces, intersections of halfspaces, polynomial threshold functions, decision trees, and
others) satisfy the interesting property that to prove that H cannot approximate a target
function f requires almost as many sample points as it takes to learn H. We show that,
whenever this is the case, it also requires nearly as many sample points to gather sufficient
statistical evidence that H cannot approximate f .

Formally, for any subset S ⊆ X , define the LVC dimension of H with respect to S as

LVCS(H) := max{k : ∀T ⊆ S of size |T | = k, T is shattered by H}.

See Chapter 2 (Definition 2.1.2) for a discussion of this definition. Our main theorem on
testing vs learning is the following:

Theorem 1.2.10. There are constants C, ε0 > 0 such that the following holds. Let H be
a set of functions X → {0, 1}, let D be the set of all distributions over X , and let S ⊆ X
satisfy |S| ≥ 5 · VCS(H) and LVCS(H) ≥ C · VCS(H)3/4

√
logVCS(H). Then for all ε < ε0,

testsamp(ε) = Ω

(
LVC2

S(H)

VCS(H) logVCS(H)

)
.

In particular, if LVCS(H) = Ω(VC(H)), then

testsamp(ε) = Ω

(
VC(H)

logVC(H)

)
.

This gives theoretical evidence that the often-cited motivation for property testing, to
aid in model selection for learning algorithms, is essentially impossible in many practical
cases, specifically when the input distribution is unstructured and when the hypothesis
class has large LVC dimension. It is also interesting that, in general, the logVC factor
in the denominator is necessary: it follows from our lower bound and an upper bound of

[GR16] that there exists a hypothesis class with testsamp(ε) = Θ
(

VC(H)
logVC(H)

)
(for constant

ε). This logarithmic factor comes from the support-size estimation problem (see [VV11a,
WY19]), which is the main ingredient in our proof, and where a logarithmic improvement
is considered significant.

Using our general theorem, we obtain nearly optimal impossibility results for a wide
range of hypothesis classes of fundamental importance to learning theory. A summary of
these results is given in Table 1.1. These results, formal definitions, and proofs are given
in detail in Chapter 2.
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Domain Class H testsamp(ε) VC(H)

[n] or R Unions of k intervals Ω
(

k
log k

)
Θ(k)

Rn Halfspaces Ω
(

n
logn

)
Θ(n)

Intersections of k halfspaces Ω
(

nk
log(nk)

)
Θ(nk log k)

Degree-k PTFs over Rn Ω

(
(n+kk )

log (n+kk )

)
Θ
((
n+k
k

))
Size-k decision trees Ω

(
k

log k

)
Ω(k)

{0, 1}n Halfspaces Ω
(

n
logn

)
Θ(n)

Degree-k PTFs Ω
(

(n/4ek)k

k log(n/k)

)
Θ
((

n
≤k

))
Size-k decision trees Ω

(
k

log k·log log k

)
Ω(k), O(k log n)

Table 1.1: Summary of lower bounds in Chapter 2. See the citations in that chapter for
calculations of the VC dimension.

Unions of Intervals (Section 2.3.1). Balcan, Blais, Blum, & Yang [BBBY12] (see
also [KR00, Nee14]) showed that there is an algorithm that can test unions of k intervals
over any distribution on [0, 1] with only O(

√
k) samples — as long as the distribution is

known to the algorithm. Our lower bound for this class shows that the sample must be
quadratically larger if the distribution is not known to the algorithm.

Our bound also has implications for the active testing model [BBBY12], where a tester
can draw some unlabelled samples from the unknown distribution D and then query the
value of the target function on any of the sampled points. Blum and Hu [BH18] showed that
it is possible to tolerantly test unions of k intervals in this model with O(k) samples and

O(1) queries. Theorem 2.3.2 implies that Ω̃(k) samples are necessary, even for intolerant
active testers (regardless of how many samples are queried), so their result is essentially
optimal.

Intersections of Halfspaces & PTFs (Sections 2.3.3, 2.4.2 and 2.5.2). Intersec-
tions of halfspaces [BEHW89, CMK19] and polynomial threshold functions [KS04, HS07,
DHK+10, OS10] have received much attention in the learning theory literature, but very
few bounds are known on the sample or query complexity for testing these classes. As far
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as we know, the only bound known for testing intersections of k halfspaces is an upper
bound of exp(k log k) queries for testing the class over the Gaussian distribution [DMN19]
and no bound is known for testing polynomial threshold functions of degree greater than
1. So our results appear to establish the first non-trivial lower bounds specific for either of
these classes in any model of property testing.

Decision Trees (Sections 2.3.4 and 2.4.3). Kearns and Ron [KR00] first studied
the problem of testing size-k decision trees, showing that Ω(

√
k) samples are necessary

to test the class over the uniform distribution and that this bound can be matched in
the parameterized property testing model where the algorithm must only distinguish size-
k decision trees from functions that are far from size-k′ decision trees over the uniform
distribution for some k′ > k. The sample complexity of the (non-parameterized) size-
k decision tree testing problem over the uniform distribution is not known. (The query
complexity for testing size-k decision trees is also far from settled: despite recent notes to
the contrary in [Sağ18, Bsh20], the best current lower bound for the query complexity of
testing size-k decision trees is Ω(log k) [CGM11, Tan20]; see also [BBM12] for a stronger
lower bound for testers with one-sided error.)

Other Models of Testing (Section 2.6). Our techniques can also be used to establish
lower bounds for other models of testing. First, we show an application to testing radius
clustering, a problem introduced by Alon et al. [ADPR03]. Here we define the class Ck
of all sets of points X ⊆ Rn that can be covered by the union of at most k unit-radius
balls. A distribution D on Rn is k-clusterable if its support is in Ck, and it is ε-far from
k-clusterable if the total variation distance between D and any k-clusterable distribution

is at least ε. Alon et al. [ADPR03] prove an upper bound of O
(
nk log(nk)

ε

)
samples for

one-sided testing of k-clusterability when the distribution is uniform over an unknown set
of points. We present an improved bound of O

(
nk log k

ε
log 1

ε

)
that follows from modern VC

dimension results.

Prior to this work, the only lower bound for the sample complexity of this problem was
Epstein and Silwal’s recent lower bound of Ω(n/ε) samples for ε-testing 1-clusterability
with one-sided error [ES20]. We give a lower bound for two-sided error testers that is tight
up to poly-log factors.

We also obtain lower bounds on testing feasibility of linear programs, in the model
defined recently by Epstein & Silwal [ES20]. Here, the algorithm sees a random subset of
linear constraints for an LP and must decide whether the program is feasible, or whether
at least an ε fraction of the constraints must be removed to achieve feasibility. We obtain
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unif({±1}d) unif([n]d) Gaussian ∀ Products

1-Sided Testing Mono-
tonicity
(Query model)

Õ
(√

d
ε2

)
[KMS18]

Õ
(
d5/6

ε4/3

)
[BCS20]

Õ
(
d5/6

ε4/3

)
[BCS20]

Õ
(
d5/6

ε4/3

)
queries,

Õ
((

d
ε

)3
)

samples

(Thm. 1.2.11)

1-Sided Testing Con-
vex Sets
(Sample model)

– –
(
d
ε

)(1+o(1))d

2Ω(d)

[CFSS17]

(
d
ε

)(1+o(1))d

(Thm. 3.4.1)

Tolerant Testing Func-
tions of k Convex Sets
(Sample model)

– – –
(
dk
ε

)O(d)

(Thm. 3.4.3)

Tolerant Testing k-
Alternating Functions
(Sample model)

–
(
dk
τ

)O( k√d
τ2

)
τ = ε2− 3ε1
[CGG+19]

–
(
dk
τ

)O( k√d
τ2

)
τ = ε2 − ε1
(Thm. 3.7.2)

Table 1.2: Efficient testing algorithms. Empty cells mean there are no prior results.

lower bounds on two-sided error testers for these problems, whereas [ES20] gave lower
bounds for one-sided error.

1.2.4 Designing Efficient Algorithms

We now turn our attention to the second major question about testing and learning al-
gorithms: for a given hypothesis class H and class of distributions D, what is the most
efficient tester or learner for H under D?

For any class H, the goal is to obtain testers or learners which not only minimize
the number of requests to the oracles, but also that work for the least restricted class of
distributions D. A standard approach to designing such algorithms is to choose a simple
class D, like the uniform distribution over {0, 1}d or the standard Gaussian distribution
over Rd, design an efficient algorithm for testing or learning H under this restricted class
D, and then attempt to generalize.

Most “simple” distributions in Rd are product distributions, where the coordinates of
a random sample x ∼ D are independent random variables; for example, the uniform
distribution over {0, 1}d or [n]d and the standard Gaussian distribution over Rd are all
product distributions. So a natural step is to take an algorithm for one of these simple
distributions and generalize it to work for the class D of all product distributions over Rd.
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unif({±1}d) unif([n]d) Gaussian ∀ Products

Functions of k
Convex Sets

Ω(2d) – d
O
(√

d
ε4

)
, 2Ω(

√
d)

[KOS08]
O
(

1
ε2

(
6dk
ε

)d)
(Thm. 3.4.4)

Functions of k
Halfspaces

d
O
(
k2

ε4

)
[KKMS08]

(dn)
O
(
k2

ε4

)
[BOW10]

dO( log k

ε4
),

poly
(
d,
(
k
ε

)k)
[KOS08, Vem10a]
(Intersections
only)

(
dk
ε

)O( k2
ε4

)
(Thm. 1.2.12)

Degree-k PTFs dψ(k,ε)

[DHK+10]
(dn)ψ(k,ε)

[DHK+10,
BOW10]

dψ(k,ε)

[DHK+10,
BOW10]

(
dk
ε

)ψ(k,ε)

(Thm. 1.2.13)

k-Alternating
Functions

2
Θ
(
k
√
d
ε

)
[BCO+15]

(
dk
τ

)O( k√d
τ2

)
(Testing)
[CGG+19]

–
(
dk
ε

)O( k√d
ε2

)
(Thm. 3.7.2)

Table 1.3: Efficient learning algorithms. Empty cells mean there are no prior results.
All algorithms are agnostic except that of [Vem10a]. The PTF result for the Gaus-
sian follows from the two cited works but is not stated in either. All statements
are informal, see references for restrictions and qualifications. For PTFs, ψ(k, ε) :=

min
{
O(ε−2k+1

), 2O(k2) (log(1/ε)/ε2)
4k+2

}
.

Chapter 3 presents a simple and general algorithm design method, called downsam-
pling, for accomplishing this step of generalization (which appears in the paper [HY21],
coauthored with Yuichi Yoshida). Using downsampling we obtain several new algorithms
whose complexity is significantly better than the previous state-of-the-art, for a number of
important testing and learning problems like learning intersections of halfspaces or poly-
nomial threshold functions, and testing monotonicity. Furthermore, the downsampling
technique is conceptually simple and allows short, clear proofs. For example, we improve
upon the recent monotonicity tester of Black, Chakrabarty, & Seshadhri [BCS20] while
shortening the proof from ∼ 25 pages to 2. We briefly discuss these results here, and give a
detailed treatment in Chapter 3. See Table 1.2 for a summary of property testing results,
and Table 1.3 for a summary of learning results.
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Testing Algorithms. One of the most well-studied problems in the property testing lit-
erature is testing monotonicity ; we already discussed a result of this thesis on testing mono-
tonicity in the previous section. Not only is monotonicity a simple and natural property,
but testing monotonicity has also revealed many interesting connections to graph theory,
such as the construction of Ruzsá-Szemerédi graphs [FLN+02] and directed isoperimetry
[CS16, KMS18]. As discussed in the previous section, monotonicity is, in general, more
efficiently testable than learnable; the question is, just how efficiently is it testable, given
various restrictions on the domain and probability distribution?

Previous work on this problem has mostly focused on uniform probability distributions
(exceptions include [AC06, HK07, CDJS17, BFH21]) and finite domains. Most progress on
this question has been for the hypergrids [n]d endowed with the natural partial order, and
with Boolean-valued functions. The case [2]d is well understood: there is a non-adaptive

Õ(
√
d/ε2)-query tester due to Khot, Minzer, & Safra [KMS18] (following earlier sublinear

upper bounds [CS16, CST14]), a matching non-adaptive lower bound of Ω̃(
√
d) queries due

to Chen, Waingarten, & Xie [CWX17] (following earlier lower bounds [FLN+02, CDST15]),

and an adaptive lower bound of Ω̃(d1/3), also due to Chen, Waingarten, & Xie [CWX17]
(following an earlier bound of Belovs & Blais [BB16]). The general case of [n]d is less
understood. Ailon & Chazelle [AC06] gave a monotonicity tester for real-valued functions
under product distributions on [n]d, with query complexity O(1

ε
d2d log n). Chakrabarty,

Dixit, Jha, & Seshadhri [CDJS17] improved this to O(1
ε
d log n) and gave a matching lower

bound that applies to real-valued (but not Boolean-valued) functions.

For Boolean-valued functions, Black, Chakrabarty, & Seshadhri [BCS20] recently gave

an upper bound of Õ(d5/6/ε4/3) and, following the general plan outlined above, showed how
to generalize the algorithm to work for the set D of product distributions over Rd. Their
algorithm for product distributions uses Õ(d5/6/ε4/3) queries and O((d/ε)7) samples. In
this thesis, we obtain a simpler tester for [n]d with the same query complexity, and improve
the result for product distributions while greatly simplifying the proof.

Theorem 1.2.11. There is a one-sided non-adaptive tester for monotonicity under product
distributions over Rd, with query complexity Õ(d5/6/ε4/3) and sample complexity Õ((d/ε)3).

Our downsampling technique also easily yields new results for testing convex sets. As
shown in Table 1.2, we get a one-sided error tester in the sample model, under product
distributions, that matches the complexity of the tester of [CFSS17] for the Gaussian, and
we get a tolerant tester for functions of k convex sets.
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Learning Algorithms. For learning algorithms, it is important to consider the time
complexity, not just the oracle complexity8. For example, even though the class of inter-
sections of two halfspaces in Rd has an upper bound of O(d) on the VC dimension [CMK19],
and therefore an upper bound on the sample complexity, there is no efficient algorithm for
producing an intersection of two halfspaces that agrees with the sample unless P = NP
[BR92]. Finding efficient improper learning algorithms for intersections of halfspaces is a
major open problem [DKS18, KOS04].

There is a similar barrier for agnostically learning degree-k polynomial threshold func-
tions (PTFs). Degree-k PTFs in Rd have VC dimension Θ

((
d+k
k

))
= O((d + k)k), and

therefore there is an upper bound of O((d+ k)k/ε2) on the number of samples required for
agnostic learning (see [SB14]). But it is hard (assuming P 6= NP or the unique games con-
jecture) to agnostically and properly learn PTFs under general distributions [DOSW11].
It is therefore important to find efficient improper agnostic learning algorithms under re-
stricted distributions.

Prior work on these two problems has shown that there are efficient algorithms for
certain fixed distributions, like the uniform distribution over {±1}d [KKMS08, DHK+10]
or the Gaussian [KOS08, Vem10a]. A natural step is to generalize these algorithms to
the hypergrid [n]d and then to arbitrary product distributions; this was done by Blais,
O’Donnell, & Wimmer [BOW10] but the algorithm’s complexity depended on n and there-
fore the generalization to product distributions could only be done under some restric-
tions. In this thesis, we use downsampling (which is a very different technique from that
of [BOW10]) to eliminate the dependence on n and the restrictions on the product dis-
tribution. Below, we write H for the class of halfspaces and Bk for the class of functions
f(x) = g(h1(x), . . . , hk(x)) where g : {±1}k → {±1} is arbitrary and each hi ∈ H is
a halfspaces (so that intersections of two halfspaces are in B2 ◦ H). See Table 1.3 for a
comparison to prior results, and note that our results match the exponents of the earlier
results and eliminate the dependence on n.

Theorem 1.2.12. There is a distribution-free, improper agnostic learning algorithm for
Bk ◦ H under (continuous or finite) product distributions over Rd, with time complexity

min


(
dk

ε

)O( k2
ε4

)
, O

(
1

ε2

(
3dk

ε

)d) .

8In the property testing literature, it is common to ignore the time complexity, since it is often the
case that the time complexity is not much higher than the oracle complexity. But this assumption is not
always justified.
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Theorem 1.2.13. There is an improper agnostic learning algorithm for degree-k PTFs
under (finite or continuous) product distributions over Rd, with time complexity

min

{(
kd

ε

)ψ(k,ε)

, O

(
1

ε2

(
9dk

ε

)d)}
.

As seen in Table 1.3, we also get new learning results for arbitrary functions of k convex
sets (where the prior work only studied a single convex set) and obtain a nearly optimal
exponent; and k-alternating functions, where we again nearly match the optimal exponent
for the uniform distribution over the hypercube {±1}d. All of our results are agnostic
learners. Our proofs show that the powerful polynomial regression technique of [KKMS08]
can be generalized to work for product distributions.

1.3 The Sketching and Communication Model

The first part of this thesis studied the oracle model, where the input is held by an oracle
(or set of oracles), who responds to certain types of requests. The second part of this thesis
studies a model where both the input and the algorithm is split among several parties. We
think of the input as being too large to share completely, so decisions must again be made
with incomplete information, although as algorithm designers we now have control over
all parties. There are many models for studying problems like this (e.g. in distributed
computing); we will study communication complexity, sketching, and informative graph
labeling.

Understanding the power of randomness in communication is one of the main goals
in communication complexity (see e.g. [CLV19, PSW20, HHH21b]). A simple but funda-
mental result in communication complexity is that two parties, Alice and Bob, can check
whether their inputs x and y are identical using only a constant number of bits of commu-
nication, regardless of the size of x and y, when they share a source of randomness. This
is known as the Equality function, and it is the standard example of the power of ran-
domness in communication [NK96, RY20]. Although this “shared source of randomness”
seems like an unrealistic assumption, this technique is extremely common in practice. It
is standard to use a hash function like SHA256, which produces a constant-size hash value
independent of file size, to check whether two files are the same. One motivation of the
second part of this thesis is to understand which other decision problems can be similarly
compressed to constant-size messages. This problem has also been studied concurrently
and independently in another line of work by others [HHH21b, CHZZ22, HHP+22].

20



One of the conceptual contributions of this thesis is to relate this problem to a ma-
jor open problem in structural graph theory and distributed computing, about adjacency
labeling schemes for graphs. For a class F of graphs, an adjacency labeling scheme (in-
troduced by Kannan, Naor, & Rudich [KNR92] and Muller [Mul89], consists of a decoder
algorithm D, such that for any G ∈ F there is a function ` : V (G) → {0, 1}∗ (which we
call a labeling) that allows adjacency between any two vertices x and y to be decided by
D using only `(x) and `(y). More generally, informative labeling schemes, introduced by
Peleg [Pel05], allow the decoder to decide some other “local” information (like distance)
about x and y. The main open problem in this area is what we will call the Implicit Graph
Question, which asks which (hereditary) classes of graphs admit efficient adjacency labels.
We introduce this question formally in Section 1.3.1.

This thesis initiates the thorough study of randomized labeling schemes, which we call
sketches, where the labels are assigned by a randomized algorithm, and the decoder must
be correct with probability at least 2/3; we will define these formally in Section 1.3.2. We
will see that constant-cost communication problems are equivalent to constant-size ran-
domized adjacency labeling schemes (i.e. adjacency sketches). Furthermore, constant-size
randomized labeling schemes can be easily derandomized to obtain efficient deterministic
labeling schemes. In this way, we consider the problem of determining the constant-cost
randomized communication problems to be the probabilistic version of the Implicit Graph
Question. We introduce these concepts formally in Section 1.3.2. Lest the reader suspect
that we have diverged too far from Part I of this thesis, we note that constant-cost com-
munication problems also correspond to problems which can be represented as halfspaces
with constant margin, and can therefore be learned efficiently using the classic perceptron
algorithm (see Remark 1.3.12).

We have chosen the term sketch to emphasize the similarity of these randomized labeling
schemes to the previously-studied sketching problems in the field of sublinear algorithms.
Labeling schemes and (the more common notion of) sketches are important primitives for
distributed computing, streaming, communication, data structures for approximate nearest
neighbors, and even classical algorithms (see e.g. [KNR92, GP03, Spi03, Pel05, EIX22],
and [AMS99, Ind06, AK08, Raz17, AKR18] and references therein). As such, a great
deal of research has been done on finding other spaces having nice sketching and labeling
properties. Labeling schemes for adjacency are the most commonly-studied, and the next
most well-studied labeling schemes are for distance (e.g. [GPPR04, GL07a, GP08, WP11,
AGHP16b, AGHP16a, FGNW17] and approximate distance (e.g. [Pel00, GKK+01, Tho04,
TZ05]).

The most well-studied problem in sketching is to identify metric spaces which admit
approximate distance threshold (ADT) sketches, as defined in [SS02]. Here, n points
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X ⊆ X in a metric space (X , dist), should be assigned random sketches sk : X → {0, 1}∗
such that dist(x, y) ≤ r or dist(x, y) ≥ αr can be determined (with high probability)
from sk(x) and sk(y). The goal is to obtain sketches of constant size (independent of
n). Determining which metric spaces have such sketches is a well-known open problem in
sublinear algorithms (see e.g. [AK08, Jay09, Raz17]).

This thesis studies sketches for adjacency, distance, and approximate distance in graphs.
We will formally relate informative labeling to communication complexity and sketching;
surprisingly, the only prior work making this observation appears to be the unpublished
manuscript of Andoni & Krauthgamer [AK08] which we learned of recently. The only prior
work on randomized labeling schemes is a paper of Fraigniaud & Korman [FK09].

In Section 1.3.1, we will introduce the adjacency labeling problem. In Section 1.3.2, we
will introduce the probabilistic version, graph sketching. We then proceed in Section 1.3.4
and Section 1.3.5 to discuss our results.

1.3.1 Graph Labeling and Implicit Representations

A marked9 graph on n vertices is a graph G with vertex set [n], where two marked graphs
on [n] are equal if they have the same edge set E ⊆ [n]× [n] (i.e. they may be isomorphic
without being equal). A class F of graphs is a set of marked graphs that is closed under
isomorphism. The function n 7→ |Fn| which counts the number of n-vertex graphs is called
the speed (and observe that two isomorphic graphs are counted separately unless they are
also equal).

Consider the problem of efficiently representing a graph. The two most well-known
graph representations are the adjacency matrix and the adjacency list. A graph may
also be represented implicitly, where for each n ∈ N there is an abstract space Xn and a
symmetric relation Rn ⊆ Xn × Xn, where an n-vertex graph is obtained by choosing n
points x ∈ Xn and putting an edge xy when (x, y) ∈ Rn. For example, an interval graph
is one which can be represented by taking the space Xn to be the set of all intervals in R,
where Rn relates two intervals if and only if they intersect. A unit disk graph is one where
each vertex may be associated with a point in R2 such that two vertices are adjacent if
and only if their points have Euclidean distance at most 1.

Unfortunately, in these examples, vertices are associated with elements of a continuous
space: it may not be possible to actually write them down (or store them in a computer).

9The standard terminology is to call these graphs labeled, but this is not to be confused with graph
labeling schemes.
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We would like to replace the space (Xn,Rn) that defines our class with a finite set, as small
as possible. In particular, we want to replace Xn with a set of (short) binary strings, so
that we may represent vertices of our graphs with a small number of bits. We formalize
this as follows.

A class of graphs F admits an adjacency labeling of size s(n) if there is a relation
D : {0, 1}∗ × {0, 1}∗ → {0, 1} over binary strings such that for every G ∈ F on n vertices,
there is a labeling ` : V (G)→ {0, 1}s(n) where

∀x, y ∈ V (G) : xy ∈ E(G) =⇒ D(`(x), `(y)) = 1

xy /∈ E(G) =⇒ D(`(x), `(y)) = 0 .

Here, D is a relation over the space of binary strings, and each graph is implicitly repre-
sented as a set of n points in this space, each labeled by a binary string of length s(n).
Without a small bound on the size, every graph admits such a representation (see ex-
amples below). These types of size-bounded implicit representations were introduced by
Kannan, Naor, & Rudich [KNR92] and Muller [Mul89]. They are useful because “local”
information – adjacency between two vertices – can be decided from their labels, without
requiring “global” information about the rest of the graph structure. These labels can
be easily distributed among many parties so that they can determine adjacency without
knowing the whole graph. Consider these examples, from [KNR92] and [Spi03]:

Example 1.3.1. Recall the unit disk graphs, where every vertex can be associated with a
point in Rd so that vertices are adjacent if and only if they have Euclidean distance at most
1. The natural encoding is to simply convert the coordinates to binary representation. But
McDiarmid & Müller showed that this requires 2Ω(n) bits [MM13].

Example 1.3.2. The class of all graphs admits an adjacency labeling of size dlog ne+ n.
Label each vertex x ∈ [n] of a graph G with the name of x, along with its row in the
adjacency matrix of G. Define D as the algorithm which checks if two vertices x, y are
adjacent by checking the appropriate entry of the adjacency matrix included in the labels.
This can be shortened to dlog ne+n/2 by including only the even elements or odd elements
of the adjacency matrix, depending on the parity of the name of the vertex.

Example 1.3.3. The class of interval graphs admits an adjacency labeling of size 2dlog(2n)e,
because for an interval graph on n vertices, we may assign a number in [2n] to the end-
points of the n intervals according to their natural ordering, and label each vertex using
its two endpoints.

Example 1.3.4. The class of degree 3 graphs admits an adjacency labeling of size 4dlog ne,
since we can use the name of each vertex along with its adjacency list as the label. Improved
labelings for bounded-degree graphs have been studied in [ELO08, But09, AR14, AAH+17].
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Example 1.3.5. The class of forests has an adjacency labeling of size 2dlog ne, since we
can assume that each component tree is rooted, and label each vertex with its own name
and the name of its parent. More generally, a graph has degeneracy k if there is a total
order on its vertices so that each vertex has at most k neighbors larger than it in the
ordering; a forest has degeneracy 1. The class of degeneracy k graphs has an adjacency
labeling of size (1 + k)dlog ne, where we simply use the adjacency list for each vertex,
pruned to include only the vertices later in the ordering. Improved labelings for trees and
forests have been studied in [Chu90, AR02, FK10, ADK17].

Example 1.3.6. Planar graphs have adjacency labels of size 5dlog ne because they have
degeneracy 4 (and labels of size 4dlog ne using their arboricity instead of degeneracy).
This was one of the main observations of [Mul89, KNR92], and it has been improved to
log n+ o(log n) after significant effort [GL07b, BGP20, DEG+21, GJ22].

The latter four examples have an interesting property: the adjacency labels are of size
O(log n), only a constant-factor larger than what is required to give each vertex a unique
label. The main open problem in graph labeling, posed in [KNR92], is to identify the graph
classes which admit such an efficient adjacency labeling. It is usually assumed that the
graph classes are hereditary : a hereditary class is one that is closed under taking induced
subgraphs. This is a standard assumption on a graph class (see e.g. [NO12]) and it is
quite natural: it should be the case that the n-vertex graphs of a class F are somehow
related to the N -vertex graphs, for n < N . Without the hereditary structure, one could
imagine the class of graphs obtained by taking an arbitrary

√
log n-vertex graph G and

adding n −
√

log n independent vertices to obtain an n-vertex graph. This class has an
O(log n) adjacency labeling but it is not due to any interesting properties. We then have
the formal statement of the Implicit Graph Question:

Question 1.3.7 (Implicit Graph Question). Which hereditary classes of graphs admit an
adjacency labeling of size O(log n)?

This question has received significant attention; see the references above and e.g. [Spi03,
ACLZ15] and the references therein. [KNR92] observed that a necessary condition is that
any such class must have at most |Fn| = 2O(n logn) graphs on n vertices (because the graphs
can be encoded using the O(n log n) total bits in the labels assigned to each vertex). It
was suggested in [KNR92] and conjectured in [Spi03] that this is also a sufficient condition.
This was often called the Implicit Graph Conjecture in the literature. It was refuted by
Hatami & Hatami [HH21] shortly after they learned of the problem and its connection to
communication complexity from the paper [HWZ22] presented in this thesis. This leaves
the question wide-open (and in need of a new name).
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A further motivation for this question from the perspective of communication com-
plexity (given in [Har20]), is that adjacency labeling for a class F is a generalization of
simultaneous message passing (SMP) communication. In the standard SMP model, Al-
ice and Bob receive inputs x and y to a (Boolean) function f(x, y). They each send one
message to a third-party referee who must output f(x, y). It is important in this model
that all three parties are given the function f in advance. We arrive at the adjacency
labeling problem by removing this assumption: instead, Alice and Bob are given f which
belongs to some class F , and the third-party referee knows the general class F but not
the specific function f . The general upper bound of dlog ne on communication in the SMP
model (where n is the size of the input domain) no longer holds when the referee is not
given f in advance, and the question is how much extra information must be included in
the messages to compensate. The Implicit Graph Question asks when this ignorance on
the part of the referee increases the complexity by at most a constant factor.

This thesis is mainly concerned with the probabilistic version of this question, intro-
duced formally in the next section. However, as stated earlier, these questions are formally
related by the observation that randomized labels can be derandomized to obtain adja-
cency labels of size O(log n). We use this relationship to resolve some problems from the
recent literature on adjacency labeling, and we extend these techniques to design optimal
adjacency labeling schemes for subgraphs and induced subgraphs of Cartesian products,
resolving the Implicit Graph Question in these cases and improving upon the best-known
bounds of Chepoi, Labourel, & Ratel [CLR20].

1.3.2 Graph Sketching

Our study of graph sketching originated with the observation in the previous section that
graph labeling is a generalization of SMP communication. It then becomes natural to
consider the randomized version of this model, which corresponds to designing randomized
labeling schemes, and we were particularly motivated by a few simple observations derived
from the examples above.

Recall Example 1.3.4 (max-degree 3 graphs) and Example 1.3.5 (bounded degeneracy
graphs). These graph classes have O(log n)-bit adjacency labels, which are just the pruned
adjacency lists. One can simply replace the pointers (vertex names) in these lists with
hashes, as in the Equality communication protocol, to get constant-size sketches, from
which adjacency can be computed with high probability. On the other hand, Example 1.3.3
(interval graphs) used a different technique to get O(log n) adjacency labels: it was required
to compare integers. This cannot be turned into a constant-size sketch: this would imply
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a constant-cost randomized communication protocol for the Greater-Than problem,
which cannot exist (see Appendix B).

These observations should be followed by recalling these results about hypercube:

1. Adjacency in the hypercube can be computed (with high probability) from sketches
of constant size (which follows from the Hamming distance communication proto-
col [HSZZ06], see the simple exposition given in Section 4.1);

2. Distinguishing between dist(x, y) ≤ r and dist(x, y) > r can be done with sketches of
size depending only on r (which also follows from the Hamming distance protocol, see
Chapter 4);

3. Distinguishing between dist(x, y) ≤ r and dist(x, y) > αr (for constant α > 1) can be
done with sketches of size independent of r and n [KOR00].

These recollections raise the question of which classes of graphs have similarly efficient
sketches. We now formally define these three graph sketching problems. For a graph class
F , we say:

1. F admits an adjacency sketch of size s(n) if there is a function D : {0, 1}∗ × {0, 1}∗ →
{0, 1} such that ∀G ∈ F on n vertices, there is a random function sk : V (G)→ {0, 1}s(n)

satisfying

∀x, y ∈ V (G) : P [D(sk(x), sk(y)) = 1 ⇐⇒ x, y are adjacent] ≥ 2/3 .

F is adjacency sketchable if it admits an adjacency sketch of constant size.

2. F admits a small-distance sketch of size s(n, r) if for every r ∈ N there is a function
Dr : {0, 1}∗ × {0, 1}∗ → {0, 1} such that ∀G ∈ F on n vertices, there is a random
function sk : V (G)→ {0, 1}s(n,r) satisfying

∀x, y ∈ V (G) : P [Dr(sk(x), sk(y)) = 1 ⇐⇒ distG(x, y) ≤ r] ≥ 2/3 .

F is small-distance sketchable if it admits a small-distance sketch of size independent of
n. We are borrowing the terminology from small-distance labeling [ABR05, GL07a].

3. For constant α > 1, F admits an α-approximate distance threshold (ADT) sketch of size
s(n) if for every r ∈ N there is a function Dr : {0, 1}∗ × {0, 1}∗ → {0, 1} such that
∀G ∈ F on n vertices, there is a random function sk : V (G)→ {0, 1}s(n) satisfying

∀x, y ∈ V (G) : dist(x, y) ≤ r =⇒ P [Dr(sk(x), sk(y)) = 1] ≥ 2/3

dist(x, y) > αr =⇒ P [Dr(sk(x), sk(y)) = 0] ≥ 2/3 .
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For a constant α > 1, we say that F is α-ADT sketchable if F admits an α-ADT sketch
with size independent of n. F is ADT sketchable if there is a constant α > 1 such that
F is α-ADT sketchable. We discuss some nuances of ADT sketch size in Section 6.4. It
is important to note here that we want sketches whose size is independent of r, unlike
small-distance sketching where the size is allowed to depend on r but the sketch is
required to make exact distinctions.

These definitions lead immediately to the questions we study in this thesis.

Question 1.3.8. Which hereditary graph classes are adjacency sketchable?

We think of this question as the probabilistic version of the well-studied Implicit Graph
Question (Question 1.3.7), and note that the only prior result on randomized adjacency
labels appears in a paper of Fraigniaud & Korman [FK09] who independently observed the
constant-size labels for trees and proved that no constant-size sketch with one-sided error
exists for the complements of trees.

Recall that Question 1.3.8 is equivalent to the question of which communication prob-
lems have constant-cost protocols; we establish this equivalence, and introduce the basics
of adjacency sketching, in Chapter 4. We will put this question in context of structural
graph theory by discussing the lattice of hereditary graph classes and where the adjacency
sketchable classes belong in this lattice. We briefly discuss our results towards this question
below, in Sections 1.3.3 to 1.3.5. Next, we introduce the question

Question 1.3.9. Which hereditary graph classes are small-distance sketchable?

Prior to this thesis, the only result towards this question that we are aware of is the above-
mentioned communication protocol for Hamming distance [HSZZ06]. One might wonder
whether such a sketch exists for planar graphs. Planar graphs are extremely well-studied,
and it is quite natural to imagine Alice and Bob each having vertices in a planar graph and
desiring to compute whether they are within a certain radius of each other. This question
was posed in [Har20], which presented a sketch for determining dist(x, y) ≤ 2 vs dist(x, y) >
2 in planar graphs. We resolved this question in [HWZ22] and in more generality in
[EHK22] using sparsity theory [NO12] and the theory of first-order transductions of graphs.

Finally, we introduce a graph version of the approximate distance sketching problem
that has seen significant attention in sublinear algorithms:

Question 1.3.10. Which hereditary graph classes are ADT sketchable?
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Most work on approximate distance sketching has focused on norms [AKR18], and the
only prior work on graphs that we are aware of is the unpublished manuscript of Andoni
& Krauthgamer [AK08].

Note that small-distance sketching implies adjacency sketching, by definition. The
opposite implication is false, as witnessed by the class of graphs with arboricity 2 (see
Example 6.3.2). For ε < 1, it is also true that (1 + ε)-ADT sketches imply adjacency
sketches. It seems reasonable to suspect that the small-distance and approximate distance
problems are also related in some way. So we ask:

Question 1.3.11. What is the relationship, if any, between adjacency, small-distance, and
ADT sketching?

Finally, we remark upon an interesting connection to learning theory which gives an
additional motivation for Question 1.3.8, although this connection will not be exploited in
our results.

Remark 1.3.12. Write Sd−1 for the unit sphere in Rd. For a bipartite graphG = (X, Y,E),
we say that φX : X → Sd−1, φY : Y → Sd−1 is a d-dimensional dot-product representation
of G if

∀x ∈ X, y ∈ Y : xy ∈ E ⇐⇒ 〈φX(x), φY (y)〉 ≥ 0 .

We say that the margin of φX , φY is mar(φX , φY ) := min(x,y)∈X×Y |〈φX(x), φY (y)〉|. We may
then define the margin complexity of G as mc(G) := minφX ,φY (mar(φX , φY ))−1, where the
minimum is taken over all d-dimensional dot-product representations of G in all dimensions
d. For a class F of graphs, we define mc(F) := supG∈F mc(G).

Linial & Shraibman [LS09] proved an equivalence (up to constant factors) between
discrepancy and margin; in our terms, this means a bipartite graph G with a constant-cost
protocol computing adjacency has mc(G) = O(1). Then any class F with a constant-size
adjacency sketch has mc(F) = O(1). It is an easy exercise to prove the converse: any
class with mc(F) = O(1) has a constant-size adjacency sketch, which can be obtained by
sampling random halfspaces h through the origin and recording the sign of φX(x) with
respect to each h in the sketch. So the existence of constant-size adjacency sketches is
equivalent to the condition mc(F) = O(1). We may think of the vertices y ∈ Y of any
graph G = (X, Y,E) ∈ F as a halfspace Hy := {x ∈ X : 〈φX(x), φY (y)〉 ≥ 0}, so Y
corresponds to a hypothesis class over X. A classic result of learning theory is that this
class can be learned by the perceptron algorithm making at most mc(G)2 mistakes. We
therefore have that, in adjacency sketchable graph classes, the hypothesis class defined by
the columns (or rows) of the adjacency matrix can be learned efficiently by the perceptron.
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1.3.3 Results I: Subgraphs of Cartesian Products

We introduce our model of sketching in Chapter 4 and present some basic results and
definitions. These include the formal relation between constant-cost communication and
adjacency sketching and labeling, the notion of probabilistic universal graphs (which are
the probabilistic version of induced-universal graphs), some basic facts about the lattice
of hereditary graph classes, and, as a warm-up, an adjacency sketch and corresponding
adjacency labeling scheme for induced subgraphs of hypercubes.

This leads us to Chapter 5, which presents some results for Cartesian products, taken
from the papers [HWZ22] and [EHZ22], that demonstrate the usefulness of randomized
communication complexity techniques in the study of adjacency labeling schemes, as well
as the limitations of randomized communication based on the standard example of the
Equality problem.

We introduce some notation. For two graphs G and H, we write G ⊂ H if G is a
subgraph of H, and G @ H if it is an induced subgraph. For a set F of graphs, we write

mon(F) := {G : ∃H ∈ F , G ⊂ H} and

her(F) := {G : ∃H ∈ F , G @ H}

for the monotone closure and hereditary closure of F , respectively.

Cartesian products. Let d ∈ N and G1, . . . , Gd be any graphs. The Cartesian product
G1 �G2 � · · ·�Gd is the graph whose vertices are the tuples (v1, . . . , vd) ∈ V (G1)× · · · ×
V (Gd), and two vertices v, w are adjacent if and only if there is exactly one coordinate
i ∈ [d] such that (vi, wi) ∈ E(Gi) and for all j 6= i, vj = wj.

For any set of graphs F , we will define the set of graphs F� as all graphs obtained by
taking a product of graphs in F :

F� := {G1 �G2 � · · ·�Gd : d ∈ N,∀i ∈ [d] Gi ∈ F} .

For a fixed graph G we will write Gd for the d-wise Cartesian product of G. For example,
the hypercube on n = 2d vertices is the Cartesian product Kd

2 . We refer to the classes
mon({K2}�) and her({K2}�) as the subgraphs and induced subgraphs of hypercubes, re-
spectively.

Cartesian products have appeared several times in the recent literature on labeling
schemes [CLR20, AAL21, AAA+22], and are extremely natural for the problem of ad-
jacency labeling. For example, taking F to be the class of complete graphs, a labeling

29



scheme for her(F�) is equivalent to an encoding ` : T → {0, 1}∗ of a set of strings T ⊆ Σ∗,
with Σ being an arbitrarily large finite alphabet, such that a decoder who doesn’t know T
can decide whether x, y ∈ T have Hamming distance 1, using only the encodings `(x) and
`(y). Replacing complete graphs with, say, paths, one obtains induced subgraphs of grids
in arbitrary dimension. Switching to mon(F�) allows arbitrary edges of these products
to be deleted. An adjacency labeling scheme of size O(log2 n) for the subgraphs of the
hypercube follows from a folklore bound of log n on their degeneracy (see e.g. [Gra70])
combined with a general O(k log n) bound on the size of labeling schemes for graphs of
degeneracy k [KNR92]. Prior to this thesis, no improvement on this was known, even for
induced subgraphs; in fact, it was unknown even whether these classes satisfy the required
condition |Fn| ≤ 2O(n logn).

It is also natural to consider the problem of constructing induced-universal graphs (or
simply universal graphs) for Cartesian products. A sequence of graphs (Un)n∈N are uni-
versal graphs of size n 7→ |V (Un)| for a hereditary class F if every G ∈ Fn is an induced
subgraph of Un. [KNR92] observed that an adjacency labeling scheme of size s(n) is equiva-
lent to a universal graph of size 2s(n), so that universal graphs of size poly(n) are equivalent
to adjacency labels of size O(log n). This is especially interesting for the classes her(F�),
since Cartesian products have natural universal graphs by definition: if Un is a universal
graph for F then for large enough d = d(n), Ud

n is a universal graph for her(F�). How-
ever, in general, it has at least exponential size: a star with n − 1 leaves is a member of
her({K2}�) but the smallest product it can be embedded into is Kn−1

2 .

Adjacency and Small-Distance Sketching (Section 5.1). Designing an adjacency
labeling scheme for induced subgraphs of hypercubes (rather, the weaker question of prov-
ing bounds on |Fn|) was an open problem of Alecu, Atminas, & Lozin [AAL21]. They also
asked whether any graph class of unbounded functionality (which we will not define here)
has an adjacency labeling schemes of size O(log n), and they proved that hypercubes have
unbounded functionality. These latter two questions are answered by the following theo-
rem, which easily follows by derandomizing the communication protocol for 1-Hamming
Distance, for which we give a simple exposition in Section 4.1.

Theorem 1.3.13. There is a constant-size adjacency sketch for her({K2}�), and conse-
quently an adjacency labeling scheme of size O(log n).

We generalize this result to arbitrary Cartesian products, by showing that the Cartesian
product essentially preserves constant-size sketches.
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Theorem 1.3.14. Let F be a hereditary class of graphs that admits a small-distance
sketch of size s(n, k). Then F� admits a small-distance sketch of size O(s(n, k) · k2 log k).
Consequently, if F is adjacency sketchable, then her(F�) is adjacency sketchable and admits
an adjacency labeling scheme of size O(log n).

Adjacency Labeling (Section 5.1). Theorem 1.3.14 does not yet help to understand
adjacency labeling schemes when F is not adjacency sketchable, and it also does not
help to understand adjacency labeling schemes for the subgraphs of Cartesian products,
i.e. the classes mon(F�). Indeed, these latter classes are not adjacency sketchable (see
Theorem 1.3.19 below).

Chepoi, Labourel, & Ratel [CLR20] recently studied the structure of general Cartesian
products with the motivation of designing adjacency labeling schemes for the monotone
classes mon(F�). They observe that for G ∈ mon({K2}�), a bound of vc(G) on the degen-
eracy of G holds by an inequality of Haussler [Hau95], where vc(G) is the VC dimension
of G. Extending this relation to more general Cartesian products, they give upper bounds
on the label size for a number of special cases but do not improve in general upon the
O(log2 n) bound for subgraphs of hypercubes.

We extend our techniques from Theorem 1.3.14 to achieve the optimal O(log n), and
in general show how to construct optimal labels for all subgraphs and induced subgraphs
of Cartesian products. In terms of universal graphs, our proof shows that one can obtain
universal graphs for her(F�) and mon(F�) from the universal graphs Un for F , although
this transformation may not be clearly interpretable from a graph theoretic perspective.

Theorem 1.3.15. Let F be a hereditary class with an adjacency labeling scheme of size
s(n). Then:

1. her(F�) has a labeling scheme of size at most 4s(n) +O(log n).

2. mon(F�) has a labeling scheme where each G ∈ mon(F�) on n vertices is given labels
of size at most 4s(n) +O(δ(G) + log n), where δ(G) is the degeneracy of G.

This theorem is optimal up to constant factors (see Section 5.1.4). All of the labeling
schemes of Chepoi, Labourel, & Ratel [CLR20] are obtained by bounding δ(G) and apply-
ing the black-box O(δ(G) · log n) bound of [KNR92]. For example, they get labels of size
O(d log2 n) when the base class F has degeneracy d, by showing that mon(F�) has degener-
acy O(d log n). Our result can substituted for that black-box, replacing the multiplicative
O(log n) with an additive O(log n), thereby improving all of the results of [CLR20]; for
example, achieving O(d log n) when F has degeneracy d.
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Recall that the Implicit Graph Question asks for adjacency labels of size O(log n),
which requires a bound of log |Fn| = O(n log n) on the number of graphs in the class.
One may generalize the question to ask for adjacency labels that meet the information-
theoretic minimum for encoding a graph in the class; in other words, we may ask when
labels of size O( 1

n
log |Fn|) are possible. Say that a hereditary class F admits an efficient

labeling scheme if it either admits a constant-size labeling scheme (which is equivalent to
the condition log |Fn| = o(n log n) [Sch99]; we include here the case where F is finite), or it
admits a labeling scheme of size O( 1

n
log |Fn|). Equivalently, the class F admits a universal

graph of size poly(|Fn|1/n). Then Theorem 1.3.15 has the following consequence, which
follows from the fact that it is optimal.

Corollary 1.3.16. If a hereditary class F has an efficient labeling scheme, then so do
her(F�) and mon(F�).

The Limitations of Equality (Section 5.2) Recall that the Equality communi-
cation problem is the standard example of randomization in communication, and that
computing equality is the purpose of standard practical hashing algorithms like SHA256.
We call any communication protocol, sketch, or labeling scheme equality-based if it reduces
to a constant number of instances of Equality (see Chapter 4 for a formal definition).
One fundamental question is whether Equality is the only way to use randomness to
achieve constant cost protocols.

To formalize this, we can define deterministic communication protocols with access to a
unit-cost Equality oracle. In this type of protocol, the two players Alice and Bob can each
construct a binary string and give it to the oracle, who deterministically reports whether
they have given identical strings or not; the players are charged 1 bit of communication to
use the oracle.

Our question now becomes: Can any constant-cost randomized protocol be simulated
by a constant-cost deterministic protocol of this type? Recent work [CLV19] has studied the
power of the Equality oracle and shown that it does not capture the power of randomized
communication in the non-constant setting, but this leaves our question open. We show
that the hypercubes give a negative answer. This result was also proved concurrently
and independently, using a different technique, by Hambardzumyan, Hatami, & Hatami
[HHH21b].

Theorem 1.3.17. There is no constant-cost equality-based protocol for computing adja-
cency in Kd

2 .
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Adjacency in the hypercube (and its generalizations, including Cartesian products and
k-Hamming Distance for constant k) remain the only examples known to us of constant-
cost communication problems that cannot be reduced to Equality.

It was observed by Bonamy & Girão (communicated to us by Louis Esperet) that
our proof technique may be generalized to show the following. (Note that the induced
subgraphs of hypercubes are bipartite and contain no K2,3 subgraph.)

Theorem 1.3.18. For any t ∈ N, if F is any class of bipartite graphs with no Kt,t subgraph,
then F admits a constant-size equality-based adjacency sketch if and only if it has bounded
degeneracy.

One non-trivial application of this theorem is for point-box incidence graphs, which
are bipartite graphs G = (P,B,E) where P is a set of points in R2 and B is a set of
axis-aligned boxes, with an edge pb ∈ E for p ∈ P, b ∈ B if and only if p ∈ b. Restricting
ourselves to the K2,2-free point-box incidence graphs, we know that if these graphs have
O(n) edges then they have bounded degeneracy and therefore a constant-size equality-
based adjacency sketch. However, a recent construction [BCS+21] shows that these graphs
may have Ω(n logn

log logn
) edges and therefore no equality-based adjacency sketch. In fact, this

holds for the restricted class of K2,2-free dyadic point-box incidence graphs, where there is
a matching upper bound on the number of edges.

1.3.4 Results II: Monotone Classes of Graphs

In Chapter 6 we give our results for monotone classes of graphs, from the paper [EHK22],
coauthored with Louis Esperet and Andrey Kupavskii. A class of graphs is monotone
if it is closed under taking subgraphs. Monotone classes are ubiquitous in graph theory;
examples include planar graphs, bounded treewidth graphs, bounded degree graphs, minor-
closed classes, and so on. For these classes, we give a complete theory of adjacency and
small-distance sketching, and make progress towards a theory of ADT sketching.

To answer Question 1.3.11 about the relationship between adjacency, small-distance,
and ADT sketching, we give a high-level hierarchy. Let ADJ be the adjacency sketchable
monotone graph classes, SD the small-distance sketchable monotone graph classes, and
ADT the ADT sketchable monotone graph classes. Then

ADT ( SD ( ADJ .

That SD ⊆ ADJ follows by definition, and SD 6= ADJ is witnessed by the class of arboricity-
2 graphs (Example 6.3.2), so the challenging part of this hierarchy is ADT ( SD. Our
results clarify these relations as follows.
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Adjacency Sketching (Section 6.2) Recall that a graph has degeneracy δ if all of its
subgraphs have a vertex of degree at most δ, and a graph class F has bounded degeneracy
if there is some constant δ such that all G ∈ F have degeneracy δ. Bounded degeneracy
graphs have a simple equality-based adjacency sketch obtained by replacing the vertex
names in the pruned adjacency list with hashes, as mentioned at the top of Section 1.3,
which gives a bound of O(δ log δ) on the sketch size; we can also get an improved bound of
O(δ) using Bloom filters (Lemma 4.2.16). For monotone classes, we show that these types
of sketches are always sufficient:

Theorem 1.3.19. Let F be a monotone class of graphs. Then F is adjacency sketchable
if and only if F has bounded degeneracy.

Small-Distance Sketching (Section 6.3). Next, we answer Question 1.3.9 by char-
acterizing the monotone graph classes that are small-distance sketchable as exactly those
with bounded expansion (as in [NO12]; see our Definition 6.1.1). Informally, bounded ex-
pansion means that the edge density of a graph increases only as a function of r when
contracting subgraphs of radius r into a single vertex. Many graph classes of theoreti-
cal and practical importance have bounded expansion, including bounded-degree graphs,
proper minor-closed graph classes, and graphs of bounded genus [NO12], along with many
random graph models and real-world graphs [DRR+14].

To state our theorem, we briefly describe a more general type of sketch, called first-
order sketching, which we introduce in this thesis (taken from [HWZ22]). A graph class
F is first-order sketchable if any first-order (FO) formula φ(x, y) over the vertices and
edge relation of the graph (with two free variables whose domain is the set of vertices)
is sketchable (see Section 4.2.1). This type of sketch was introduced in [HWZ22] and
generalizes small-distance sketching, along with (for example) testing whether vertices x, y
belong to a subgraph isomorphic to some fixed graph H. We show that, for monotone
graph classes, first-order sketchability is equivalent to small-distance sketchability.

Theorem 1.3.20. Let F be a monotone class of graphs. Then the following are equivalent:

1. F is small-distance sketchable;

2. F is first-order sketchable;

3. F has bounded expansion.

The implications (3) =⇒ (2) =⇒ (1) do not require monotonicity, and (2) =⇒ (1)
holds by definition. We actually prove a stronger version of (3) =⇒ (2) than this theorem

34



requires: Our proof holds for all class of structurally bounded expansion, which are classes
obtained by first-order (FO) transductions of classes with bounded expansion. This proof,
using the recent structural result of [GKN+20], does not give explicit bounds on the sketch
size. To get explicit bounds, we give a separate proof of (3) =⇒ (1) that gives, as a
corollary, a bound polynomial in r for planar graphs and Kt-minor free graphs.

Approximate Distance Threshold Sketching (Section 6.4). Keeping in mind The-
orem 1.3.20, a reasonable question is whether ADT sketching for monotone classes is also
determined by expansion. Our first result is that bounded expansion is necessary.

Theorem 1.3.21. If a monotone class F is ADT sketchable, then it has bounded expan-
sion.

Combined with Theorem 1.3.20, this proves ADT ⊆ SD. We are then concerned with
the converse of this theorem. We show that the class of max-degree 3 graphs, which has
bounded expansion exponential in r [NO08], is not ADT sketchable.

Theorem 1.3.22. For any α > 1, any α-ADT sketch for the class of graphs with maximum

degree 3 has size at least Ω(n
1

4α
−ε), for any constant ε > 0.

This establishes that ADT 6= SD. But max-degree 3 graphs have exponential expansion.
Smaller bounds on the expansion are associated with structural properties: for example, in
monotone classes, polynomial expansion is equivalent to the existence of strongly sublinear
separators [DN16]. One may then wonder if smaller bounds on the expansion suffice to
guarantee ADT sketchability. We prove that this is not the case for two natural examples:
subgraphs of the 3-dimensional grid (with polynomial expansion [NO12]), and subgraphs
of the 2-dimensional grid with crosses (with linear expansion [Dvo21]) are not ADT sketch-
able. We strengthen this result by showing that one can obtain monotone classes of graphs
with expansion that grows arbitrarily slowly, which are not ADT sketchable.

Theorem 1.3.23. For any function ρ tending to infinity, there exists a monotone class
of expansion r 7→ ρ(r) that is not ADT sketchable. Moreover, for any ε > 0, there exists
a monotone class F of expansion r 7→ O(rε), such that, if F admits an α-ADT sketch of
size s(n), then we must have s(n) = nΩ(1/α).

We will conclude Chapter 6 with a brief discussion of upper bounds for ADT sketching.
Using the sketches obtained from sparse covers, combined with results of [Fil20] on sparse
covers (based on [KPR93, FT03]), we obtain the following, which complements our The-
orem 1.3.23; note that the graph classes with constant expansion are exactly the proper
minor-closed classes [NO12].
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Corollary 1.3.24. For any t ≥ 4, the class of Kt-minor-free graphs has a O(2t)-ADT
sketch of size O(t2 log t). The sketch is equality-based and has one-sided error. As a
consequence, every monotone class of constant expansion is ADT sketchable.

See Chapter 6 for a deeper discussion of upper bounds.

1.3.5 Results III: Beyond Monotone Classes

Chapter 7 will discuss our results on more general classes of graphs, from the paper
[HWZ22] coauthored with Sebastian Wild and Viktor Zamaraev. To state these results,
we introduce the notion of stability of a graph class. The name stability is taken from the
literature on model checking, e.g. [CS18, NMP+21, GPT21].

The Greater-Than communication problem is the problem fn : [n] × [n] → {0, 1}
defined as f(i, j) = 1 if and only if i > j. This problem has a lower bound of Ω(log n)
in the randomized SMP model of communication and Ω(log log n) in the public-coin two-
way model of communication (see references in Appendix B), and therefore any graph class
which encodes the Greater-Than problem cannot have constant-size adjacency sketches.
We formalize this by introducing the chain number.

For any graph G, the chain number ch(G) is the maximum number k such that there
exist disjoint sets of vertices {a1, . . . , ak} and {b1, . . . , bk} in V (G) such that aibj ∈ E(G)
if and only if i ≤ j. It is clear that the Greater-Than problem on domain [k] can be
reduced to adjacency in any graph with ch(G) ≥ k. We say that a class F is stable if there
is some fixed k such that ch(G) ≤ k for all G ∈ F . Intuitively, a class is stable if arbitrarily
large instances of Greater-Than cannot be found inside F . Therefore, stability is a
necessary condition for adjacency sketchability.

We now have two necessary conditions for sketchability of a hereditary graph class F :
the condition |Fn| = 2O(n logn), and stability. We will show that in many cases, these two
conditions are also sufficient. However, these conditions are not always sufficient, which
we discuss at the end.

Interval and Permutation Graphs (Section 7.1). Two typical examples of graph
classes with adjacency labels of size O(log n) are the interval graphs (Example 1.3.3) and
permutation graphs. A graph is a permutation graph if each vertex can be associated with a
point in R2, such that two vertices x, y ∈ R2 are adjacent if and only if they are comparable
in the natural partial order on R2 (where x = (x1, x2) ≤ (y1, y2) = y when x1 ≤ y1 and
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x2 ≤ y2). Both of these classes are defined in such a way that demands comparison
between numbers, so it is easy to see that the Greater-Than communication problem
can be reduced to adjacency in graphs that belong to these classes, giving a lower bound of
Ω(log n) on the adjacency sketch size. Both of these classes have simple adjacency labeling
schemes of size O(log n), so the sketch size is Θ(log n); in other words, randomization does
not give a significant advantage.

However, we find that eliminating the Greater-Than subproblems is sufficient to
drop the sketch size to O(1). In other words, if we fix a constant k and let F be the
hereditary subclass of the interval or permutation graphs with ch(G) ≤ k for all G ∈ F ,
we obtain constant-size sketches. We remark that the proofs for these two closely-related
classes are actually quite different. In both cases, our sketches are equality-based (i.e. they
reduce the problem to a constant number of instances of Equality).

Theorem 1.3.25. Let F be any hereditary subclass of interval or permutation graphs.
Then F is adjacency sketchable if and only if it is stable.

Bipartite Graphs (Section 7.2). A Boolean-valued communication problem is defined
by a Boolean matrix, and may therefore be interpreted as a bipartite graph. To characterize
the adjacency sketchable classes, it is sufficient to consider only the classes of bipartite
classes. Any hereditary class F of graphs can be defined by a unique (possibly infinite)
set of forbidden induced subgraphs : a set of graphs H which may not appear as an induced
subgraphs of any G ∈ F .

Therefore, a natural step towards understanding adjacency sketchability is to consider
the bipartite graph classes defined by a single forbidden induced subgraph. These are
called monogenic bipartite graph classes. For a bipartite graph H, we will refer to the
class of bipartite graphs that forbid H as an induced subgraph10 as the H-free bipartite
graphs. Recall that adjacency sketchable classes must have at most 2O(n logn) unique n-
vertex graphs, and that these graph classes are said to have factorial speed, so we must
restrict our attention to the graphs H where the H-free bipartite graphs have factorial
speed. As was the case for interval and permutation graphs, we find that stability is
equivalent to adjacency sketchability:

Theorem 1.3.26. Let H be a bipartite graph such that the class H of H-free bipartite
graphs has at most factorial speed. Then any hereditary subclass F of H is adjacency
sketchable if and only if it is stable.

10Bipartite graphs require a more careful definition of induced subgraph; see Chapter 7.
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To prove this theorem, we require new structural results for some classes of bipartite
graphs. Previous work [All09, LZ17] has shown that a class of H-free bipartite graphs
is factorial only when H is an induced subgraph of P7, S1,2,3, or one of the infinite set
{F ∗p,q}p,q∈N (defined in Section 7.2). We construct a new decomposition scheme for the
F ∗p,q-free graphs whose depth is controlled by the chain number, and we show that the
chain number controls the depth of the decomposition of [LZ17] for P7-free graphs.

Remarks on the Stability Condition. The stability condition has in interesting re-
lationship to the structure of hereditary graph classes, due to [Ale92, BT95, SZ94, Ale97],
which we discuss in more detail in Chapter 4. Briefly, the hereditary graph classes F which
satisfy log |Fn| = Θ(n log n) are sometimes called the factorial layer of the lattice of hered-
itary graph classes. This layer is separated from the layers below: if a hereditary graph
class has log |Fn| = o(n log n) then it must have log |Fn| = O(n); there is nothing in be-
tween. There are several other “jumps” in the quantity |Fn|. There are 9 hereditary graph
classesM with the property that any class in the factorial layer must contain at least one
of these classesM as a subclass. Three of these classes, the chain graphs, co-chain graphs,
and threshold graphs are not stable, and in fact a class is stable if and only if it does not
contain any of these. The other 6 minimal classes admit constant-size adjacency sketches.
A similar result holds for another “jump” in |Fn| which occurs at the Bell numbers, where
the chain graphs, co-chain graphs, and threshold graphs are again minimal classes above
this jump and the remaining minimal classes admit constant-size sketches.

Due to the fundamental role of stability in the structure of hereditary graph classes, and
the fact that stability was (surprisingly) sufficient for constant-size sketches in the interval
and permutation graphs, monogenic bipartite graph classes, and classes of structurally
bounded expansion, we conjectured in an early version of the paper [HWZ22] that stability
is a sufficient condition for sketchability among classes with |Fn| = 2O(n logn).

We now have several examples of stable classes with |Fn| = 2O(n logn), but which are not
sketchable. One example was quickly provided by Hambardzumyan, Hatami, & Hatami
[HHH21a] using a construction from their concurrent work [HHH21b]. Hatami & Hatami
extended this construction to refute the Implicit Graph Conjecture [HH21]. More examples
can be found with the help of Theorem 1.3.19, which showed that any monotone class has
a constant-size adjacency sketch if and only if it has bounded degeneracy. For a monotone
graph class, having bounded degeneracy is equivalent to the condition that each n-vertex
graph has at most O(n) edges. Also, for any hereditary graph class F with O(n log n)
edges and log |Fn| = O(n log n) has the property that when we take the monotone closure
G = mon(F), we get |Gn| ≤ 2O(n logn) · 2O(n logn). This is because any graph G ∈ G is a
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spanning subgraph of some H ∈ F (i.e. G ⊂ H and V (G) = V (H)) and each H ∈ F with
O(n log n) edges has at most 2O(n logn) spanning subgraphs. Any such class must also be
stable, since any monotone class that is not stable contains all bipartite graphs.

Choosing any hereditary class F with |Fn| = 2O(n logn) and with the number of edges be-
tween ω(n) andO(n log n) then produces a class mon(F) which is stable and has |mon(F)n| =
2O(n logn), but which has ω(n) edges and therefore is not sketchable. Examples include the
subgraphs of the hypercube and subgraphs of the K2,2-free incidence graphs between points
and dyadic boxes studied in [BCS+21], discussed at the bottom of Section 1.3.3.
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Chapter 2

Distribution-Free Sample-Based
Testing

It is a fact, beyond comprehension,
Accepted by all, without abstention,

Studied by many, with much extension,
That all things relate to VC dimension.

We begin Part I with results on the testing vs. learning question, which appeared in
the paper [BFH21], coauthored with Eric Blais and Renato Ferreira Pinto Jr. Recall from
Section 1.2.2 the definitions of property testing and learning. As discussed in Section 1.2.3,
we are interested in identifying the hypothesis classes where the labeled-sample complexity
of testing is much less than that of learning. The most important example to keep in mind
is the class of halfspaces. In this chapter, for a given hypothesis class H (which will be clear
from context), we will write simply test(ε) := testOH(ε) where O is just the labeled-sample
oracle, and we will similarly write plearn(ε) := plearnOH(ε).

The fundamental result of PAC learning (see e.g. [SB14]) is that the VC dimension of
H determines the labeled-sample complexity of learning. A set T ⊆ X is shattered by H
if for every ` : T → {0, 1} there is a function f ∈ H that agrees with ` on all points in T .
The VC dimension of H with respect to S ⊆ X is

VCS(H) := max{k : ∃T ⊆ S of size |T | = k that is shattered by H}.

We will write VC(H) := VCX (H). When ε > 0 is constant, plearn(ε) = Θ(VC(H)), so to
understand the relationship between test(ε) and plearn(ε), it is necessary to understand the
relationship between test(ε) and the VC dimension.
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The VC dimension has appeared in the property testing literature, but its use has
mostly been limited to upper bounds (e.g. [GGR98, ADPR03, BBBY12, AFZ19]). Since
plearn(ε) = O(VC(H)/ε) (Theorem 1.2.9) and test(ε) = O(plearn(ε/2)+1/ε) (Theorem 1.2.5),
we may conclude that test(ε) = O(VC(H)/ε). This can be improved to one-sided error (at
a small cost in terms of ε) by using a direct proof that does not go through the testing-
to-learning reduction of [GGR98]: for the sake of completeness, we show in Theorem 2.1.1

that otest(ε) = O
(

VC(H)
ε

log 1
ε

)
.

We are interested in determining the cases where the VC dimension is also a lower
bound on test(ε). Such lower bounds would be desirable not only for understanding the
relationship between testing and learning, but also because they would be combinatorial
in nature, obtained via an analysis of the structure of the function class, whereas nearly
all known lower bounds in sample-based property testing (e.g., [GGR98, KR00, BBBY12,
BY19, RR20]) are distributional : a probability distribution specific to the problem is con-
structed and shown to be hard to test.

The VC dimension cannot, in general, be a lower bound on the sample complexity of
testing: consider the following example from [GGR98]. Let H be the set of all Boolean
functions f : {0, 1}n → {0, 1} that satisfy f(x) = 1 for all x ∈ {0, 1}n with x1 = 1.
VC(H) = Θ(2n) since the 2n−1 points x with x1 = 0 are shattered, while test(ε) = O(1/ε).
Therefore, the relationship of VC dimension to (distribution-free sample-based) property
testing is more complicated than to (PAC) learning, and we must introduce some new
ideas.

This thesis introduces the lower VC (LVC) dimension and uses it to obtain lower
bounds. We introduce and motivate the LVC dimension in the next section and present
our main theorem of this chapter in Section 2.2. The applications of our theorem to
halfspaces, unions of intervals, intersections of halfspaces, etc. are in Sections 2.3 to 2.6.

Our lower bounds show that many of the most natural hypothesis classes in learning
theory cannot be tested significantly more efficiently than they can be learned. It is also
necessary to study the converse question: whether there are any natural hypothesis classes
that are more efficiently testable than learnable. We present two examples in Section 2.7:
monotone Boolean functions and k-juntas. We also give an example where our main lower
bound is tight, and where giving the tester access to queries can achieve significantly better
results than the lower bound for labeled samples given by our main theorem.
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2.1 LVC Dimension and One-Sided Error Testing

We relate the labeled-sample complexity of testing to the VC dimension by introducing
the lower VC (LVC) dimension. Although our goal is to obtain lower bounds for two-sided
error testers, we motivate this notion by studying the labeled-sample complexity of testing
with one-sided error. First, an upper bound on one-sided error testing in terms of the
VC dimension: We remark that this result is likely not new, though we have not found a
reference for it (a similar proof with a weaker bound was presented in [ADPR03]).

Theorem 2.1.1. Let H be a set of functions X → {0, 1} with finite d = VC(H) > 0. Then
for any ε > 0, otest(ε) = O

(
d
ε

log 1
ε

)
.

Proof. Let f : X → {0, 1} be the input function, and let D be the input distribution over
X . The algorithm is as follows. Draw a set S of m = O

(
d
ε

log 1
ε

)
labelled examples from

D and accept if there exists h ∈ H such that f(x) = h(x) for all x ∈ S; otherwise, reject.

If f ∈ H then this algorithm accepts with probability 1, so assume that f is ε-far from
H. Define the class f ⊕H := {f ⊕h : h ∈ H} and observe that a set is shattered by f ⊕H
iff it is shattered by H. By standard VC dimension arguments (e.g. [SB14] Theorem 28.3),
with probability at least 2/3 a sample S of size m is an ε-net for f ⊕H, meaning that for
every h ∈ H, if P

x∼D
[f(x) 6= h(x)] = P

x∼D
[(f ⊕ h)(x) = 1] ≥ ε then there exists x ∈ S such

that (f ⊕ h)(x) = 1, i.e. f(x) 6= h(x). Since P
x∼D

[f(x) 6= h(x)] ≥ ε for every h ∈ H, this

implies that the algorithm rejects.

Now we consider the problem of obtaining a lower bound for one-sided testers. A one-
sided tester must obtain proof that the input function f : X → {0, 1} does not belong to H
before it can reject. The LVC dimension quantifies the minimum size of this proof. Observe
that a set T ⊆ X that is shattered cannot be a proof that f /∈ H. The VC dimension is the
largest number d such that there exists a shattered set of size d. A reasonable attempt to
define the minimum “proof size” is to take the largest number d′ such that all sets of size
d′ are shattered. But this is not sufficient: any 3 points on a line in Rn are not shattered
by the class of halfspaces, so we would have d′ = 2, which is not helpful for getting strong
lower bounds for testing halfspaces.

Therefore we define LVC dimension with respect to a set S ⊆ X , which we think of as
the largest subset of the domain that forbids “small” proofs, as appear in the bad example
above. For example, to choose a good set S for halfspaces, we would choose S to avoid
any 3 points on a line; e.g. we choose S to be in general position. Formally, we define the
following.
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Definition 2.1.2 (Lower VC Dimension). For any class H of Boolean-valued functions
over X and any subset S ⊆ X , define the LVC dimension (or Lower Vapnik-Chervonenkis
dimension) of H with respect to S to be

LVCS(H) := max{k : ∀T ⊆ S of size |T | = k, T is shattered by H}.

The definition of LVC dimension differs from that of the VC dimension only by the re-
placement of the existential quantifier with a universal one. This immediately implies that
LVC(H) ≤ VC(H) for every class H and motivates our choice to call this measure “lower”
VC dimension. And in some cases, the LVC dimension of a class can be much smaller than
its VC dimension. (See Section 2.5.1 for a discussion of some concepts in learning theory
related to LVC dimension.) It is not hard to prove that the LVC dimension is a lower
bound on one-sided testing.

Proposition 2.1.3. Let H be a set of functions X → {0, 1}, let ε > 0, and let D be any
distribution over X such that there exists f : X → {0, 1} with distD(f,H) > ε. Then any
one-sided ε-tester for H over D requires at least LVCS(H) queries, where S is the support
of D, under the assumption that all queries fall within S.

Remark 2.1.4. The above proposition holds even even for adaptive testers using queries.
The final assumption holds in particular for testers in the labeled-sample model.

Proof. Suppose A is any algorithm that makes at most q queries, where q ≤ LVCS(H),
and for any function f : X → {0, 1} let Qf be the distribution of query sequences
((x1, f(x1)), . . . , (xq, f(xq))) made by the algorithm on input f . Since the algorithm has
one-sided error, it must accept every sequence Qh ∼ Qh with probability 1 when h ∈ H.
Consider any f : X → {0, 1} and any sequence Qf ∈ supp(Qf ). Since q ≤ LVCS(H)
and each xi ∈ S, the set {x1, . . . , xq} is shattered by H, so there exists h ∈ H such that
h(xi) = f(xi) for each i; therefore there is Qh ∈ supp(Qh) such that Qh = Qf . Then for
every f,Qf ∼ Qf is accepted with probability 1, a contradiction.

The LVC dimension does not, however, immediately lead to a lower bound for testers
with two-sided error. Whereas one-sided testers must find proof of f /∈ H before they
reject, a two-sided tester must only find sufficiently strong evidence. The main result of
this chapter will show that whenever the necessary proof is sufficiently large, the number
of samples required to obtain evidence is also large.

We can obtain a weaker (but more general) result towards this goal by applying a result
of Goldreich & Ron [GR16] that relates one- to two-sided error testers.
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Theorem 2.1.5 ([GR16], Theorem 1.3 part 1). For every class H of functions X → {0, 1}
with X finite, if there is a distribution-free sampling ε-tester for H using q(ε) samples, then
there is a one-sided error sampling ε-tester for H over the uniform distribution on X using
at most Õ(q(ε)2) samples.

Using this result, we get a general relationship between two-sided testers and LVC dimen-
sion. We will significantly strengthen this lower bound in the next section.

Corollary 2.1.6. Let H be a class of functions X → {0, 1} where X is finite, let ε > 0,
and let S ⊆ X be such that there exists a distribution D supported on S and a function
f : X → {0, 1} satisfying distD(f,H) > ε. Then

testH(ε) = Ω̃(
√
LVCS(H)) .

Proof. This follows from Theorem 2.1.5 and Proposition 2.1.3.

2.2 General Lower Bound

Our main theorem gives a general lower bound on the labeled-sample complexity of two-
sided error testing in terms of the VC and LVC dimensions of H.

Theorem 2.2.1. There are constants C, ε0 > 0 such that for any class H of Boolean-
valued functions over X and any S ⊆ X , if |S| ≥ 5 · VCS(H) and LVCS(H) ≥ C ·
VCS(H)3/4

√
logVCS(H), then for all ε ≤ ε0,

testH(ε) = Ω

(
LVCS(H)2

VCS(H) logVCS(H)

)
.

This bound is tight in the sense that there are classes H for which testH(ε) = Θ
(

VC(H)
logVC(H)

)
(for any constant ε), while LVCS(H) = VC(H) for some S with |S| ≥ 5 · VC(H).

Before we begin, we discuss some examples that illuminate why the conditions in the
theorem are important, i.e. the choice of a subset S ⊆ X with large LVCS(H) and the
condition |S| ≥ 5 · VCS(H). Unlike a learning algorithm, a property tester can halt and
reject as soon as it sees proof that the unknown function f : X → {0, 1} does not belong
to the class. Therefore, we aim to find subsets S ⊆ X where small “certificates” of non-
membership cannot exist. This motivates the definition of LVCS(H): any subset T ⊆ S of
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size |T | ≤ LVCS(H) cannot contain any certificates of non-membership, for any function
f /∈ H. So we want to find sets where LVCS(H) is as large as possible relative to VC(H).
On the other hand, if LVCS(H) = VC(H) but |S| = VC(H), then the class H restricted to
S is trivial: it contains all possible functions on S, so testing is still easy. |S| must be large
enough so that most functions are far from H, and this will be guaranteed in general when
|S| > 5 ·VCS(H) (the constant 5 is somewhat arbitrary). The following examples illustrate
these phenomena. In the first example, LVCX (H) is constant, but a careful choice of large
S allows LVCS(H) = VC(H), and we will obtain lower bounds for this class:

Example 2.2.2. Let Ln be the set of halfspaces Rn → {±1}. As is well-known, VCRn(Ln) =
n + 1. But LVCRn(Ln) = 2, since any 3 colinear points cannot be shattered. On the
other hand, if S ⊆ Rn is a set of points in general position and |S| > n + 1, then
LVCS(Ln) = VCS(Ln) = n+ 1.

In the second example, the conditions of our theorem fail: finding a good set S is
impossible, and indeed there is an efficient distribution-free sample-based tester; see The-
orem 2.7.9.

Example 2.2.3. Let M be the set of monotone functions P → {0, 1} where P is any
partial order (f : P → {0, 1} is monotone if f(x) ≤ f(y) whenever x < y). Recall that an
antichain is a set of points x ∈ P that are incomparable. Observe that a set T is shattered
by M if and only if it is an antichain: a monotone function can take arbitrary values on
an antichain, whereas if x, y ∈ T are comparable, say x < y, then f(x) ≤ f(y) so T cannot
be shattered. Therefore LVCS(M) = VCS(M) = |S| if S is an antichain, and if S is not an
antichain then LVCS(M) = 2 while VCS(M) is the size of the largest antichain in S.

We now turn to the proof of Theorem 2.2.1. The proof uses two main ingredients: lower
bounds on the support size estimation problem, and the Sauer–Shelah–Perles theorem.

2.2.1 Ingredient 1: Support Size Distinction

A fundamental problem in the field of distribution testing is support size estimation: Given
sample access to an unknown finitely-supported distribution D where each element occurs
with probability at least 1/n (for some n), estimate the size of the support up to an additive
εn error. Valiant & Valiant [VV11a, VV11b] showed that for constant ε, the number of

samples required for this problem is Θ
(

n
logn

)
. We will adapt this lower bound (in fact

an improved version of Wu and Yang [WY19]) to give lower bounds on distribution-free
property testing.
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Definition 2.2.4 (Support-Size Distinction Problem). For any n ∈ N and 0 < α < β ≤ 1,
define SSD(n, α, β) as the minimum number m ∈ N such that there exists an algorithm
that for any input distribution p over [n], takes m samples from p and distinguishes with
probability at least 2/3 between the cases:

1. | supp(p)| ≤ αn and ∀i ∈ supp(p), pi ≥ 1/n; and,

2. | supp(p)| ≥ βn and ∀i ∈ supp(p), pi ≥ 1/n.

Valiant & Valiant [VV11a] and Wu & Yang [WY19] each prove lower bounds on support-
size estimation and they do so essentially by proving lower bounds on support-size distinc-
tion. We note that the bound of [VV11a] holds for SSD(n, α, β) when 1/2 < α < β < 1,
but this gap of at most 1/2 is not sufficient for our purposes, so we use the improved version
of [WY19]. However, their lower bound on SSD is not stated explicitly, and therefore we
state and prove the following bound explicitly in Appendix A.

Theorem 2.2.5 ([WY19]). There exists a constant C such that, for any δ ≥ C
√

logn
n1/4 and

δ ≤ α < β ≤ 1− δ,

SSD(n, α, β) = Ω

(
n

log n
log2 1

1− δ

)
.

2.2.2 Ingredient 2: Sauer–Shelah–Perles Lemma

We will need the Sauer–Shelah–Perles lemma (see e.g. [SB14]), for which we recall the
following definitions:

Definition 2.2.6. Let H be a set of functions X → {0, 1} and let S ⊆ X . We will define
the shattering number as

sh(H, S) := |{T ⊆ S | T is shattered by H}| .

We define the growth function as

Φ(H, S) := |{` : S → {0, 1} | ∃h ∈ H ∀x ∈ S, `(x) = h(x)}| .

We state a version of the Sauer–Shelah–Perles lemma that follows from the so-called
Sandwich Theorem, rediscovered by numerous authors (see e.g. [Mor12]):

Lemma 2.2.7 (Sauer–Shelah–Perles). Let H be a class of functions X → {0, 1} and let
S ⊆ X with VCS(H) = d. Then Φ(H, S) ≤ sh(H, S) ≤

∑d
i=0

(|S|
i

)
.
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This lemma gives us a bound on the probability that a random function over a large
set is far from the hypothesis class H.

Lemma 2.2.8. There is a constant K > 1 (in particular, K = 3.04 suffices) and constants
L > 0, ε0 > 0 (depending on K) such that, if H is a class of functions X → {0, 1} with
VC(H) = d and T ⊆ X has size |T | ≥ Kd, then a uniformly random labelling ` : T → {0, 1}
satisfies, with probability at least 1− e−Ld, ∀h ∈ H : P

x∼T
[h(x) 6= `(x)] > ε0.

Proof. For any T ⊆ X of size |T | = m, and each h ∈ H, the number of functions ` : T →
{0, 1} that differ from h on at most εm points of T is at most

∑εm
i=1

(
m
i

)
. Therefore, by

the Sauer-Shelah-Perles lemma, the number of labellings ` : T → {0, 1} that differs on at
most εm points from the closest h ∈ H is at most(

d∑
i=0

(
m

i

))
·

(
εm∑
i=0

(
m

i

))
≤
(em
d

)d
·
(em
εm

)εm
=
(em
d

)d
·
(e
ε

)εm
.

The probability that a uniformly random ` : T → {0, 1} satisfies this condition is therefore
at most (em

d

)d
·
(e
ε

)εm
· 2−m = (Ke)d(e/ε)Kεd2−Kd = 2d(log(Ke)+Kε log(e/ε)−K)

= ed(ln(Ke)+Kε ln(e/ε)−K ln(2)) .

For any K > 1 satisfying K ln(2) > 1+ln(K), there is L > 0, ε0 > 0 such that the exponent
d (ln(Ke) +Kε ln(e/ε)−K ln(2)) < −Ld for all ε < ε0.

2.2.3 Main Reduction

We now present the main reduction for the proof of Theorem 2.2.1. This reduction is
inspired by a proof in the recent work of Epstein & Silwal [ES20]. The reduction can be
described intuitively as follows. Suppose there is a class H of functions X → {0, 1} and a
set S ⊆ X such that are two thresholds t1 < t2 where:

1. Any set T ⊂ S of size |T | ≤ t1 is shattered by H; and,

2. A random function on any subset T ⊂ S of size |T | ≥ t2 is far from H with high
probability.
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Then a distribution-free tester must accept any function (with high probability) when
the distribution has support size at most t1, and reject a random function (with high
probability) when the distribution has support size at least t2. This is made formal in our
main lemma:

Lemma 2.2.9. Let H be a set of functions X → {0, 1}. Suppose S ⊆ X has size |S| = n
and 0 < α < β ≤ 1 satisfy the following conditions:

1. ∀T ⊂ S such that |T | ≤ αn, T is shattered by H; and,

2. ∀T ⊆ S such that |T | ≥ βn, a uniformly random labelling ` : T → {0, 1} satisfies
with probability at least 9/10 the condition

∀h ∈ H : P
x∼T

[`(x) 6= h(x)] ≥ ε/β .

Then testH(ε) = Ω(SSD(n, α, β)).

Proof. Let f : S → {0, 1} be a uniformly random function, let φ : [n]→ S be any bijection,
and let D be any distribution over [n] with D(x) ≥ 1/n for all x ∈ supp(D). Write φD for
the distribution over S of φ(x) when x ∼ D. We make two claims.

First, if D has support size at most αn then distφD(f,H) = 0. Let T = supp(φD).
Then since |T | ≤ αn, by the first condition there exists h ∈ H such that h(x) = f(x) on
all x ∈ T . So distφD(f, h) = 0.

Second, if D has support size at least βn then with probability at least 9/10 over the
choice of f , distφD(f,H) ≥ ε. Let T = supp(φD) and for any h ∈ H write ∆(f, h) =
{x ∈ T : f(x) 6= h(x)}. Since |T | ≥ βn we have by assumption that, with probability
at least 9/10 over the choice of f , for uniform x ∼ T , P [x ∈ ∆(f, h)] ≥ ε/β. Therefore
|∆(f, h)| ≥ ε

β
|T | ≥ εn. Since φD(x) = D(φ−1(x)) ≥ 1/n for every x ∈ T , this means that

for every h ∈ H, P
x∼φD

[f(x) 6= h(x)] ≥ 1
n
|∆(f, h)| ≥ ε.

Assume there is a distribution-free tester A that uses m samples. The algorithm for
support-size distinction is as follows. Given input distribution D over [n], choose a uni-
formly random f : S → {0, 1}, draw m samples Q = (x1, . . . , xm) from φD and let
Qf = ((x1, f(x1)), . . . , (xm, f(xm))); run A on the samples Qf and accept D iff A outputs
1.

First suppose that D has support size at most αn. There exists a function h ∈ H with
distφD(f, h) = 0, so f(x) = h(x) for all x ∈ supp(φD). Therefore the samples Qf and Qh
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have the same distribution, and the algorithm must output 1 on Qh with probability at
least 5/6, so it must output 1 on Qf , and therefore accept D, with probability at least 5/6.

Next suppose that D has support size at least βn. Then the uniformly random function
f : S → {0, 1} is ε-far from H with respect to φD with probability at least 9/10. Assuming
this occurs, algorithm A must output 0 with probability at least 5/6, so D is rejected with
probability at least 2/3. We conclude

testH(ε) = Ω(SSD(n, α, β)) .

2.2.4 Proof of the Main Lower Bound

Combining Theorem 2.2.5 with Lemma 2.2.8, we obtain the most general form of our main
theorem:

Theorem 2.2.10. Let H be a class of functions X → {0, 1} and suppose there is a set
S ⊆ X and a value δ ∈ (0, 1/2) such that, for n = |S|, the following hold:

1. K · VCS(H) ≤ (1− δ)n, where K is the constant from Lemma 2.2.8; and,

2. LVCS(H) ≥ δn; and,

3. δ ≥ C
√

logn
n1/4 where C is the constant from Theorem 2.2.5.

Let d := VCS(H). Then for some constant ε0 > 0 and all 0 < ε < ε0,

testH(ε) = Ω

(
n

log n
log2 1

1− δ

)
.

Proof. Let α := 1
n
LVCS(H), β := 1

n
K · VCS(H), so that α ≥ δ and β ≤ 1 − δ. Then from

Theorem 2.2.5,

SSD(n, α, β) = Ω

(
n

log n
log2 1

1− δ

)
.

By definition of LVC, any set T ⊆ S with |T | ≤ αn satisfies condition 1 of Lemma 2.2.9,
and by Lemma 2.2.8, any set T ⊆ S such that |T | ≥ βn = K · VCS(H) satisfies condition
2 for sufficiently small (constant) ε > 0, so by Lemma 2.2.9,

testH(ε) = Ω(SSD(n, α, β)) = Ω

(
n

log n
log2 1

1− δ

)
.

Finally, since 1
1−δ ≥ 1 and n = Ω(d/(1−δ)) = Ω(d), we get a bound of Ω

(
d

log d
log2 1

1−δ

)
.
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The following simplified bound proves Theorem 2.2.1 from the introduction and will
also be used in most of our applications.

Corollary 2.2.11. There is a constant L > 0 such that the following holds. Let S ⊆ X
satisfy n := |S| ≥ 5 · VCS(H). If LVCS(H) > L · VCS(H)3/4

√
logVCS(H), then

testH(ε) = Ω

(
LVCS(H)2

VCS(H) logVCS(H)

)
.

Proof. We may assume n = |S| = 5 · VCS(H) since by taking subsets of a set S of size
larger than VCS(H), we do not decrease the LVC dimension and do not increase the VC
dimension; we can choose a subset that also does not decrease the VC dimension. We may
set K = 4 in Theorem 2.2.10. Let δ = LVCS(H)

2KVCS(H)
, so

δn =
LVCS(H)

2KVCS(H)
· 5VCS(H) ≤ LVCS(H) .

We also have (1− δ)n ≥
(
1− 1

8

)
5 · VCS(H) ≥ 4VCS(H) = K · VCS(H). Finally,

δ =
LVCS(H)

8VCS(H)
≥
L
√

logVCS(H)

8VCS(H)1/4
=

51/4L
√

log(n/5)

8n1/4
,

so for large enough constant L > 0 this is at least C
√

logn
n1/4 for the constant C in Theo-

rem 2.2.5, so the conditions for Theorem 2.2.10 are satisfied, and we obtain a lower bound
of

Ω

(
VCS(H)

logVCS(H)
log2 1

1− δ

)
.

Finally, using the inequality log2 1
1−δ ≥ log2(eδ) = Ω(δ2) we get the conclusion.

2.3 Application: Geometric Classes

In this section, we use Theorem 2.2.1 to prove lower bounds on the number of samples
required to test unions of intervals, halfspaces, and intersections of halfspaces.

Technical note: For the domain Rn, the tester may assume that the distribution D is
defined on the same σ-algebra as the Lebesgue measure. The distributions arising from
the above reduction are finitely supported but for the functions considered in this paper,
one may replace finitely supported distributions with distributions that are absolutely
continuous with respect to the Lebesgue measure without changing the results, by replacing
each point in the support with an arbitrarily small ball.
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2.3.1 Unions of Intervals

A function f : R→ {0, 1} is a union of k intervals if there are k intervals [a1, b1], . . . , [ak, bk],
where we allow ai = −∞ and bi =∞, such that f(x) = 1 iff x is contained in some interval
[ai, bi]. Let Ik denote the class of such functions.

The analysis of the LVC dimension of Ik is a straightforward variant of the standard
analysis of the VC dimension of the class and serves as a good introduction to the high-level
structure of the arguments that will be used in later proofs as well.

Proposition 2.3.1. LVCR(Ik) = VCR(Ik) = 2k.

Proof. Let S ⊂ R have size 2k and let ` : S → {0, 1} be arbitrary. Write S = {s1, . . . , s2k}
where s1 < · · · < s2k and partition S into k consecutive pairs (si, si+1) for odd i. Then
for each pair (si, si+1) we can choose a single interval that contains exactly the points in
si, si+1 labelled 1 by `. Therefore S is shattered by k intervals.

On the other hand, let S ⊂ R have size |S| = 2k+ 1, let s1 < · · · < s2k+1 be the points
in S, and suppose `(i) = 1 iff i is odd. Then any interval can contain at most 1 point of
S labelled 1, unless it also contains a 0-point. Therefore S is not shattered. So a set S is
shattered iff |S| ≤ 2k, implying the conclusion.

Applying Corollary 2.2.11, we obtain:

Theorem 2.3.2. For some constant ε > 0, testIk(ε) = Ω
(

k
log k

)
.

2.3.2 Halfspaces

A halfspace is a function f : Rn → {±1} of the form f(x) = sign (w0 +
∑n

i=1wixi) where
each wi ∈ R. In this subsection, write Ln for the class of halfspaces (or Linear threshold
functions) with domain Rn.

The analysis of the LVC dimension follows immediately from the following well-known
shattering properties of halfspaces. (See, e.g., [SB14].)

Proposition 2.3.3. Any set S ⊂ Rn of size n + 1 in general position can be shattered by
Ln, and any set T ⊂ Rn of n linearly independent vectors can be shattered by Ln. No set
of size n+ 2 is shattered by Ln.

Applying Corollary 2.2.11, we obtain our lower bound for domain Rn:
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Theorem 2.3.4. For all small enough constants ε > 0, the number of samples required to
test the class Ln of halfspaces over Rn satisfies

testLn(ε) = Ω

(
n

log n

)
.

Proof. This holds by Corollary 2.2.11, since we may choose any set S ⊂ Rn of size |S| ≥
5(n+1) in general position, which by the above proposition satisfies LVCS(Ln) = VCS(Ln) =
n+ 1.

2.3.3 Intersections of Halfspaces

Let L∩kn denote the class of all Boolean-valued functions obtained by taking the intersections
of k halfspaces over Rn. Formally, L∩kn is the set of functions

f(x) = h1(x) ∧ h2(x) ∧ · · · ∧ hk(x)

where each hi is a halfspace. It was recently shown by Csikós, Mustafa, & Kupavskii
[CMK19] that the VC dimension of this class is

VC(L∩kn ) = Ω(nk log k) ,

matching the upper bound given in [BEHW89]. Csikós et al. remark that it was long
assumed (incorrectly) that the VC dimension of the class was Θ(nk), which is what one
might intuitively expect. We exhibit an infinite set S on which VCS(L∩kn ) = LVCS(L∩kn ) =
Θ(nk). We do so with an analysis of alternating functions and polynomial threshold
functions.

For any n, define the mapping ψ : R→ Rn as follows:

ψn(x) :=

{
(x, x2, x3, . . . , xn) if n is even

(0, x, x2, . . . , xn−1) if n is odd .

Let Am be the set of function R→ {0, 1} that alternate at most m times.

Proposition 2.3.5. The set P of functions sign(p(x)) on R where p is a polynomial of
degree at most d is equal to the set Ad.
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Proof. This follows from the fact that number of alternations of the function sign(p) is
exactly the number of zeroes of p, which is at most d. On the other hand, any function
alternating at most d times may be represented by sign(p) where p is a polynomial whose
zeroes are exactly the points where the function alternates.

Proposition 2.3.6. For any even m and any k, A∪km = Amk.

Proof. It is clear that the union of k m-alternating functions will alternate at most mk
times, so A∪km ⊆ Amk, so we must show that Amk ⊆ A∪km . We will do so by induction on
k, where the base case k = 1 is trivial. For k > 1, let f ∈ Amk and let t1 < · · · < tmk
be the alternations (i.e. f is constant on each interval (ti, ti+1) and (−∞, t1), (tmk,∞)).
There are two cases: First suppose that the first alternation of f ∈ Amk alternates from 0
to 1; or, symmetrically, suppose that the last alternation of f alternates from 1 to 0. Then
the function g equal to f on x ≤ tm and 0 on x > tm is the union of m/2 intervals, and
g ∈ Am. Let f ′ be 0 on x ≤ tm and equal to f on x > tm, so that f is the union of f ′

and g, and f ′ ∈ Am(k−1). By induction f ′ is the union of k− 1 m-alternating functions, so

f ∈ Am ∪ A∪(k−1)
m = A∪km .

In the second case, the first and last alternations of f alternate from 1 to 0 and 0 to
1, respectively. Let g take value 1 on (−∞, t1], [tmk,∞) as well as on the first m/2 − 1
intervals [t2, t3], [t4, t5], . . . , [tm−2, tm−1], and 0 otherwise. Then g ∈ Am and the function

f ′ = f − g is in Am(k−1). So by induction f ′ ∈ A∪(k−1)
m and f ∈ Am ∪ A∪(k−1)

m = A∪km .

Proposition 2.3.7. For any even m, any k, and any set S ⊆ R with |S| > mk,VCS(A∩km ) =
LVCS(A∩km ) = mk + 1.

Proof. For a class H, write H of the set of functions f = −g where g ∈ H (i.e. the set
of complements of functions in H). Note that Am = Am since the complement preserves
alternations. By De Morgan’s laws, (Hn)∩k = H∪kn . Then A∩km = (Am)∩k = A∪km =
Amk = Amk. The conclusion follows since VCS(Amk) = LVCS(Amk) = mk + 1 by the same
argument as for unions of intervals.

Lemma 2.3.8. For any k ≥ 1 and S ⊂ R with |S| > nk + 1, if n is even then
LVCψn(S)(L∩kn ) = VCψn(S)(L∩kn ) = nk+1 and if n is odd then LVCψn(S)(L∩kn ) = VCψn(S)(L∩kn ) =
(n− 1)k + 1.

Proof. First suppose that n is even and consider a halfspace h(y) = sign(t +
∑n

i=1 wiyi),
where y = ψn(x) for some x ∈ S. Then h(ψn(x)) = sign(t+

∑n
i=1wix

i), which is the sign of
a degree-n polynomial on x. Therefore the set of halfspaces h on the set ψ(S) is equivalent
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to the set of degree-n polynomials on S, which by Proposition 2.3.5 is equal to the set of
n-alternating functions, so by Proposition 2.3.7 we have LVCψ(S)(L∩kn ) = VCψ(S)(L∩kn ) =
VC(A∩kn ) = nk + 1. When n is odd, the same argument shows that LVCψn(S)(L∩kn ) =
VCψn(S)(L∩kn ) = (n− 1)k + 1.

Applying Corollary 2.2.11 with a sufficiently large set S ⊂ R, we obtain the theorem:

Theorem 2.3.9. For any n, k and sufficiently small constant ε > 0

testL∩kn (ε) = Ω

(
nk

log(nk)

)
.

2.3.4 Decision Trees

For any parameters n and k, let Tn,k denote the set of functions f : [0, 1]n → {0, 1} which
can be computed by decision trees with at most k nodes, where each node is of the form
“xi < t?” for some t ∈ R.

We can bound the LVC dimension of decision trees using the same argument as for
unions of intervals.

Proposition 2.3.10. Let S ⊂ Rn be any subset of the line {x ∈ Rn : x2 = · · · = xn = 0}
with |S| > k. Then LVCS(Tn,k) = VCS(Tn,k) = k + 1.

Proof. Observe that on any sequence s1 < s2 < · · · < sm in S, any function f ∈ Tn,k can
alternate at most k times, since there are at most k nodes in the decision tree labelled
“x1 < t” for some values t. Therefore T ⊆ S is shattered iff |T | ≤ k + 1.

Combining this proposition with Corollary 2.2.11 completes the proof of the lower
bound for testing decision trees:

Theorem 2.3.11. For any k, n, and small enough constant ε > 0, testTn,k(ε) = Ω
(

k
log k

)
.

2.4 Application: Boolean Functions

The techniques used in the last section do not carry over to classes of functions over the
Boolean hypercube. This is because {±1}n is very far from being in general position—
indeed, up to 2n−1 points can belong to an affine subspace of dimension n − 1, by, for
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example, taking the subspace obtained by setting the first coordinate to 1. In this section,
we will instead choose the set S uniformly at random from {±1}n and show that the
properties we need for the reduction in Lemma 2.2.9 hold with high probability.

2.4.1 Halfspaces

We first introduce some notation and a theorem that will be used also for PTFs in the
next subsection. For a vector a ∈ {0, 1}n and x ∈ Rn we will write xa =

∏n
i=1 x

a(i)
i . Write

|a| =
∑

i a(i). Let ψk : Rn → R( n
≤k) be defined as follows:

ψk(x) = (xa)a∈{0,1}n:|a|≤k .

We will use the following theorem of Abbe, Shpilka, & Wigderson [ASW15]:

Theorem 2.4.1 ([ASW15]). Let n, k,m be positive integers such that

m <

(
n− log

(
n
≤k

)
− t

≤ k

)
.

Then for independent, uniformly random vectors x1, . . . , xm ∼ {±1}n, the vectors

ψk(x1), . . . , ψk(xm) ∈ {±1}(
n
≤k)

are linearly independent with probability at least 1− 2−t.

Let L±n denote the set of halfspaces (or linear threshold functions) over {±1}n.

Theorem 2.4.2. For every n and all sufficiently small constant ε > 0,

testL±n (ε) = Ω

(
n

log n

)
.

Proof. Set m := 5(n + 1), α := 1/11, β := 4/5. We will repeat the reduction from
SSD(m,α, β) to testing L±n as in Lemma 2.2.9 and Theorem 2.2.10 with the fixed set
S replaced by a random set S of size m drawn from {±1}n. First suppose that the input
distribution D over [m] has support size at most αm < n/2. Then T := supp(φD) is a uni-
formly random subset of {±1}n of size at most n/2, so since |T | ≤ n/2 < n− log(1+n)−C
for any constant C, by Theorem 2.4.1 (with k = 1), the points in T are linearly independent
with probability at least 9/10. In this case, T is shattered by L±n , so the remainder of the
proof goes through as in Lemma 2.2.9. When D has support size at least βm = 4(n+ 1),
the proof goes through as in Lemma 2.2.9 and Corollary 2.2.11 with the constant K = 4,
and we obtain the lower bound.
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2.4.2 Polynomial Threshold Functions

Let Pn,k denote the class of polynomial threshold functions with degree k over {±1}n. The
above mapping ψk : {±1}n → {±1}d with d =

(
n
≤k

)
establishes an equivalence between

PTFs and halfspaces in a higher dimension:

Lemma 2.4.3. Write d :=
(
n
≤k

)
. A set S ⊆ Rn is shattered by Pn,k if and only if ψk(S) is

shattered by L±d .

Proof. We shall index the coordinates of {±1}d with vectors a ∈ {0, 1}n satisfying |a| ≤ k.
Let ` : S → {±1} be any labelling of S. Note that ψk is a bijection (which can be seen just
from the vectors a with |a| = 1. If there is a degree-k polynomial p(x) =

∑
a∈{0,1}n,|a|≤k wax

a

such that sign(p(x)) = `(x) for every x ∈ S, then for every x ∈ S we have

`(x) = sign(p(x)) = sign

w0 +
∑

a∈{0,1}n,|a|≤k

wax
a

 = sign

w0 +
∑

a∈{0,1}n,|a|≤k

waψk(x)a

 .

Observe that the function on the right is an LTF in L±d , so there is an LTF consistent with
the labelling ` ◦ψ−1

k on ψk(S). So, if S is shattered by Pn,k then ψk(S) is shattered by L±d ,
because ψk acts also as a bijection between labellings of S and ψk(S). On the other hand,
the same equation shows that for any labelling ` : ψk(S)→ {±1}, if there is an LTF f : Rd

such that f(ψk(x)) = `(ψk(x)) for each x ∈ ψk(S) then there is a PTF g : Rn → {±1} such
that g(x) = f(ψ(x)) = `(ψ(x)) for each x ∈ S. Therefore S is shattered by Pk iff ψk(S) is
shattered by L±d .

Theorem 2.4.4. Write P±n,k for the set of degree-k PTFs with domain {±1}n. There exists
some constant C ′ such that for all k < n/C ′ and for sufficiently small constant ε > 0,

testP±n,k
(ε) = Ω

(n−log (nk)−O(1)

≤k

)2(
n
≤k

)
log
(
n
≤k

)
 = Ω

(
(n/4ek)k

k log(n/k)

)
.

Proof. Let d :=
(
n
≤k

)
and set m := 5d. Let β := 4/5, t := log(10), and

α :=
1

5

(
n

≤ k

)−1(n− log
(
n
≤k

)
− t

≤ k

)
As was the case with halfspaces, we let S be a uniformly random set of m points drawn
from {±1}n, let φ : [m] → S be a random mapping obtained by assigning a uniform and
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independently random x ∈ S to each i ∈ [m], and complete the reduction from SSD(m,α, β)
to testing Pn,k as in Lemma 2.2.9 and Theorem 2.2.10, which we verify below.

We must first verify that α ≥ C
√

logm
m1/4 , where C is the constant in Theorem 2.2.5, for

which it suffices to prove that α ≥ Ĉ
√

log d
d1/4

for a slightly larger Ĉ > C, since m = 5d. For
an appropriately large choice of constant C ′, and sufficiently large n > 2t,

log

(
n

≤ k

)
+ t ≤ log

(
n

≤ n/C ′

)
+ t ≤ log

((
en

n/C ′

)n/C′)
+ t ≤ log

(
(C ′)n/C

′
)

+ t

=
n

C ′
log(eC ′) + t ≤ n/2 ,

so

α ≥ 1

5

(
n

≤ k

)−1(
n/2

≤ k

)
≥ 1

5

( n
2k

)k ( k

en

)k
=

(
1

2e

)k
.

For any constant η > 0, we may assume C ′ > (Ĉ2e)
1

1/4−η , so that, using k
n
≤ 1

C′
≤ 1

(C2e)
1

1/4−η
,

we get

Ĉ

√
log d

d1/4
≤ C

1

d1/4−η ≤ Ĉ

(
k

n

)k(1/4−η)

≤ Ĉ

(
1

(Ĉ2e)
1

1/4−η

)k(1/4−η)

≤ 1

5

(
1

2e

)k
≤ α .

Now we verify correctness. Suppose that the input distribution D over [m] has support
size at most αm and let T := supp(φD). T is a (multi)set of at most

αm = d

(
n

≤ k

)−1(n− log
(
n
≤k

)
− t

≤ k

)
=

(
n− log

(
n
≤k

)
− t

≤ k

)
uniformly random points from {±1}n, so by Theorem 2.4.1 the probability that the points
ψk(T ) are linearly independent is at least 9/10. In that case, ψk(T ) is shattered by the
halfspaces Hd over {±1}d so by Lemma 2.4.3, T is shattered by Pn,k. Therefore, as in
Lemma 2.2.9, the tester for Pn,k will output 1 with probability at least 5/6, so the distri-
bution D is accepted with probability at least 2/3.

Now suppose that the input distribution D over [m] has support size at least βm = 4d,
and let T = supp(φD). Since φ is a random mapping (with replacement), we must first
show that, with high probability, |T | ≥ Kd for the constant K > 3.04 in Lemma 2.2.8.
Since k ≤ n/C ′ for a sufficiently large constant C ′, we have 4d = 4

(
n
≤k

)
≤ 4(eC ′)n/C

′ ≤ 2cn

for constant c < 1/3. Therefore the probability that a random point x in T is unique is
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at least 1 − 4d
2n
≥ 1 − 2(c−1)n. By the union bound, the probability that any point fails to

be unique is at most 4d2(c−1)n = 4
(
n
≤k

)
2(c−1)n ≤ 2(2c−1)n < 2−n/3. When this occurs, the

support of φD has size at least 4d so, as in Theorem 2.2.10, we may apply Lemma 2.2.8
to conclude that a random labelling f : {±1}n → {±1} satisfies distφD(f,Pn,k) ≥ ε with
probability at least 9/10, for some small enough constant ε > 0. Then the tester for Pn,k
will output 0 with probability at least 5/6, so the distribution D is rejected with probability
at least 2/3.

We obtain a lower bound of Ω
(

d
log d

log2 1
1−α

)
, since 1 − β ≥ α. Using the inequality

log2 1
1−x ≥ log2 1

e−x
= log2(ex) = Ω(x2), we get

d

log d
log2 1

1− α
= Ω

(
d

log d
α2

)
= Ω

(n−log(d)−t
≤k

)2

d log d

 .

To obtain the simplified bound, use n− log(d)− t ≤ n/2 from above, and
(
n/2
≤k

)
≥ (n/2k)k

to get

Ω

(
(n/2k)2k

d log d

)
= Ω

(
(n/2k)2k

(en/k)kk log(en/k)

)
= Ω

(
(n/4ek)k

k log(n/k)

)
.

2.4.3 Decision Trees

Let Bn,k be the set of functions f : {0, 1}n → {0, 1} defined by decision trees with k nodes
of the form “xi = 1?”. When k � log n, fairly tight bounds on the VC dimension of Bn,k
are known.

Lemma 2.4.5 (Mansour [Man97]). VC(Bn,k) is between Ω(k) and O(k log n).

A lower bound on the LVC dimension of Bn,k is also easily established.

Proposition 2.4.6. Every subset T ⊆ {0, 1}n of size at most k is shattered by Bn,k.

Proof. We prove by induction on k that any set T ⊆ S of size k is shattered by a decision
tree with at most k leaves. Clearly when k = 1, for any subset T ⊆ S of size |T | = 1,
decision trees with 0 nodes and 1 leaf shatter T . For k > 1, there exists a coordinate i ∈ [n]
such that T0 := {x ∈ T : xi = 0} 6= ∅ and T1 := {x ∈ T : xi = 1} 6= ∅. Now T0 is a subset
of size k− |T1| < k so by induction it is shattered by subtrees with at most k− |T1| leaves,
while T1 is shattered by subtrees with at most |T1| leaves. Therefore T is shattered by a
tree with at most k leaves. Since the number of nodes is at most the number of leaves, T
is shattered by Bn,k.
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We are now ready to bound the sample and tolerant-query complexities for testing
decision trees.

Theorem 2.4.7. For any k, n ≥ log k + log log k + Ω(1), and sufficiently small constant
ε > 0,

testBn,k(ε) = Ω

(
k

log k · log log k

)
.

Proof. Let S ⊂ {0, 1}n be a subcube with dimension m := log(6C) + log k + log log log k
and let d = VCS(Bn,k). Then by Lemma 2.4.5, for some constant C and sufficiently large
k,

d ≤ Ck log(m) = Ck log log(6Ck log log k) ≤ Ck log log(k2) = Ck(log log k + 1) ,

so that

(1− δ)|S| = (1− δ)2m = 6Ck log log k − k = 5Ck log log k + Ck(log log k − 1/C)

≥ 5Ck(log log k + 1) ≥ 5d .

By Proposition 2.4.6, LVCS(Bn,k) ≥ k, so for δ = 1
6C log log k

,

LVCS(Bn,k) ≥ k = δ6Ck log log k = δ|S| ,

therefore the conditions for Theorem 2.2.10 are satisfied. We obtain a lower bound of

Ω

(
k log log k

log k
log2 1

1− 1
log log k

)
.

Using the inequality log2 1
1−1/x

≥ log2 1
e−1/x = log2(e1/x) = Ω(1/x2), we get

Ω

(
k log log k

log k
log2 1

1− 1
log log k

)
= Ω

(
k log log k

log k
log2 1

1− 1
log log k

)

= Ω

(
k log log k

(log k)(log log(k))2

)
= Ω

(
k

log k · log log k

)
.
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2.5 Application: Maximum Classes and Analytic Dud-

ley Classes

In this section we discuss the relation between the LVC dimension and the Sauer–Shelah–
Perles lemma, and specifically a refinement of this lemma known sometimes as the sandwich
theorem. A special type of hypothesis class that has been well-studied in the literature is
called a maximum class, which is one where the Sauer–Shelah–Perles lemma is tight in a
certain way. It is interesting that the useful condition LVC(H) = VC(H) characterizes the
cases where the lemma is tight in another way (explained below). Our main theorem leads
to general lower bounds when we can find a large subset S ⊆ X on which the hypothesis
class is maximum. Of special interest are results of Johnson [Joh14] showing that analytic
Dudley classes are maximum on a large set S, leading us to easily-applicable lower bounds
for natural algebraically-defined hypothesis classes. These include PTFs over Rd as well
as trigonometric polynomial thresholds and balls (Theorem 2.5.10).

2.5.1 LVC and the Sauer-Shelah-Perles Lemma

Recall the Sauer-Shelah-Perles lemma and the associated definitions: Let H be a set of
functions X → {0, 1} and let S ⊆ X . The shattering number is

sh(H, S) := |{T ⊆ S | T is shattered by H}| ,

and the growth function is

Φ(H, S) := |{` : S → {0, 1} | ∃h ∈ H ∀x ∈ S, `(x) = h(x)}| .

Sauer-Shelah-Perles lemma. Let H be a class of functions X → {0, 1} and let S ⊆ X
with VCS(H) = d. Then Φ(H, S) ≤ sh(H, S) ≤

∑d
i=0

(|S|
i

)
.

Much research has studied the cases where this inequality is tight in various ways: A
class is called maximum on S ([GW94, FW95, KW07, Joh14, AMY16, MW16, CCMW19])
if the sequence of inequalities is tight, i.e. H is maximum on S if

Φ(H, S) = sh(H, S) =
d∑
i=0

(
|S|
i

)
.

A class is called shatter-extremal on S (see e.g. [Mor12, MW16, CCMW19]) if the first
inequality is tight, i.e.

Φ(H, S) = sh(H, S) .
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We are not aware of any studies of the case where the second inequality sh(H, S) ≤∑d
i=0

(|S|
i

)
is tight; our requirement LVCS(H) = VCS(H) fills in the gap:

Proposition 2.5.1. A set H of functions X → {0, 1} satisfies LVCS(H) = VCS(H) on a
set S ⊆ X if and only if sh(H, S) =

∑d
i=0

(|S|
i

)
, for d = VCS(H).

Proof. This follows from the fact that
∑d

i=0

(|S|
i

)
is exactly the number of sets of size at

most d; if the equality holds, all such sets are shattered, so LVCS(H) = d. On the other
hand if LVCS(H) = d then all sets of size at most d are shattered, so the equality holds.

We can therefore conclude:

Proposition 2.5.2. A set H of functions X → {0, 1} is maximum on S ⊆ X if and only
if it is both shatter-extremal on S and LVCS(H) = VCS(H).

Then we easily obtain lower bounds for maximum classes using Corollary 2.2.11.

Theorem 2.5.3. Let H be a set of functions X → {0, 1}. Suppose there is S ⊆ X such
that H is maximum on S and d := VCS(H) satisfies |S| ≥ 5d. Then for sufficiently small
constant ε > 0,

testH(ε) = Ω

(
d

log d

)
.

Examples of maximum classes include the set of functions f : [n] → {0, 1} with at
most n/5 1-valued points [MW16] (studied in Section 2.7.1), unions of k intervals [Flo89],
and positive halfspaces (halfspaces with normal vectors w ∈ Rn satisfying xi ≥ 0) [FW95].
Another standard example is the set of sign vectors arising from an arrangement of hyper-
planes:

Example 2.5.4 ([GW94]). Let H be a set of n > d hyperplanes in Rd and write H =
{h1, . . . , hn} where each hi : Rd → {±1} is of the form hi(x) = sign(t +

∑d
j=1wjxj)

for some t, wj ∈ R. Assume that the hyperplanes are in general position. Let H be
the set of functions fx : [n] → {±1} obtained by choosing x ∈ Rd obtained by setting
fx(i) = hi(x). Then VC[n](H) = d and H is maximum on [n], as proved by Gartner &
Welzl [GW94]. Therefore, for any such set H where n ≥ 5d we obtain via Theorem 2.5.3
that testH(ε) = Ω(d/ log d).
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2.5.2 Analytic Dudley Classes

Some examples of maximum classes and classes with LVCS(H) = VCS(H) that are arguably
more pertinent to property testing can be obtained from a family of classes called Dudley
classes [BL98].

Definition 2.5.5 (Dudley Class). A class H of functions X → {±1} is a Dudley class if
there exists a set F of functions X → R and a function h : X → R such that:

� F is a vector space, i.e. ∀f, g ∈ F , λ ∈ R, f + g ∈ F and λf ∈ F ;

� Every g ∈ H can be written as g(x) = sign(f(x) + h(x)).

We will refer to F as the vector space of H and h as the threshold of H.

The VC dimension of Dudley classes is equal to the dimension of the vector space F :

Theorem 2.5.6 ([WD81] Theorem 3.1). Let H be any Dudley class with vector space F .
Then VC(H) = dim(F).

This theorem implies that LVCS(H) = VCS(H) on a set S ⊆ X if and only if the
dimension of the vector space remains the same when restricted to any subset of S:

Corollary 2.5.7. Let H be a Dudley class of functions X → {±1} with vector space F of
functions X → R and threshold h. Then for any set S ⊆ X , VCS(H) = LVCS(H) if and
only if the vector space F restricted to any T ⊆ S of size |T | = d = VCS(H) has dimension
d.

Proof. This follows from the above theorem, since for any T ⊆ S of size |T | = d on which
F has dimension d, VCT (H) = d, so T is shattered.

A useful condition on Dudley classes that guarantees the above condition was described
by Johnson [Joh14]. Recall that a function f : Rn → R is analytic if it is infinitely
differentiable and for every x in the domain, there is an open set U 3 x such that f is
equal to its Taylor series expansion on U . We will call a Dudley class analytic if its threshold
h and each f in the basis of F is analytic. Johnson proves the following (rewritten in our
terminology):

Theorem 2.5.8 ([Joh14]). Let H be any analytic Dudley class on domain [0, 1]n with
VC(H) = d. Then for any N > n there exists a set S ⊂ [0, 1]n of size |S| = N such that H
is maximum on S with VCS(H) = d.
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Then by taking N ≥ 5d in the above theorem and applying Theorem 2.5.3, we obtain:

Corollary 2.5.9. Let H be any analytic Dudley class and suppose VC(H) = d. Then for
some constant ε > 0,

testH(ε) = Ω

(
d

log d

)
.

Examples of analytic Dudley classes include halfspaces (for which we have already
proved the lower bound) and PTFs. Other examples due to [Joh14] are balls in Rn and
trigonometric polynomial threshold functions in Rd:

Theorem 2.5.10. For sufficiently small constant ε > 0, the following classes H satisfy
the given lower bounds for both testH(ε):

1. Degree-k PTFs on domain Rn satisfy the lower bound Ω

(
(n+kk )

log (n+kk )

)
.

2. Balls in Rn, i.e. functions f : Rn → {±1} of the form f(x) = sign(t − ‖x − z‖2),

satisfy the lower bound Ω
(

n
logn

)
.

3. Signs of trigonometric polynomials, i.e. functions R2 → {±1} of the form:

f(x, y) = sign

(
t+

d∑
k=1

ak cos(kx) +
d∑

k=1

bk sin(kx)− y

)
,

which satisfy the lower bound Ω
(

d
log d

)
.

2.6 Application: Other Models of Testing

Now we apply our techniques to a couple other models of testing. Specifically, we obtain
the first lower bounds for two-sided error testers for testing k-Clusterability (as introduced
in [ADPR03]) and testing feasibility of linear programs (as introduced in [ES20]).

2.6.1 Testing Clusterability

For a point x ∈ Rn and radius r > 0, define Br(x) = {y ∈ Rn : ‖x− y‖2 ≤ r}. Alon, Dar,
Parnas, & Ron [ADPR03] introduced the problem of testing clusterability with radius cost:
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Definition 2.6.1 (Radius Clustering). Say that a probability distribution D over Rn is
k-clusterable if there exist k centers c1, . . . , ck ∈ Rn such that supp(D) ⊆ ∪ki=1B1(ci). An
ε-tester for k-clusterability is a randomized algorithm A that is given sample access to D
and must satisfy the following:

1. If D is k-clusterable then P [A(D) = 1] ≥ 2/3; and,

2. If D is ε-far from being k-clusterable in total variation distance, then P [A(D) = 0] ≥
2/3.

Alon et al. [ADPR03] prove an upper bound of O
(
nk log(nk)

ε

)
samples for one-sided

testing of k-clusterability when the distribution is uniform over an unknown set of points.
The following theorem updates the upper bound of [ADPR03] using modern VC dimension
results; it follows from the same ε-net argument found in Theorem 2.1.1 (see also [Har14]),
and the fact that the VC dimension of unions of k balls is at most O(nk log k) [CMK19].

Theorem 2.6.2 (Improved version of [ADPR03]). There is a one-sided, distribution-free
ε-tester for k-clusterability in Rn with sample complexity O

(
nk log k

ε
log 1

ε

)
.

We give a lower bound for two-sided error testers that is tight up to poly-log factors for
all values of k up to 2n/6. Let Snr = {x ∈ Rn : ‖x‖2 = r} be the points on the hypersphere
of radius r.

Proposition 2.6.3. For every δ > 0 there is η > 0 such that a uniformly random set of
n points P drawn from Sn1+η is contained within some ball B1(x) with probability at least
1− δ.

Proof. Unless all n points in P lie on a hyperplane through the origin (which occurs with
probability 0), there is a hyperplane through the origin such that all points in P lie on one
side. Consider the distribution of P conditional on this event, and without loss of generality
assume that the hyperplane is {x : x1 = 0} so that all points x ∈ P satisfy x1 > 0. Let
η > 0 and consider the ball B of radius 1 centered at z = (

√
(1 + η)2 − 1, 0, . . . , 0). Let

x ∈ Sn1+η satisfy x1 ≥ z1 =
√

(1 + η)2 − 1 =
√
η(2− η). Then since ‖x‖2

2 = (1 + η)2,

‖x− z‖2
2 = (x1 − z1)2 +

n∑
i=2

x2
i = (x1 − z1)2 + (1 + η)2 − x2

1

= z2
1 − 2x1z1 + (1 + η)2 ≤ (1 + η)2 − z2

1 = 1 ,
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so all points x with x1 ≥ z1 are contained within the ball B. Conditioned on x1 > 0, the
probability that x2

1 ≥ η(2 − η) is at least the probability that y2
1 ≥ η(2 − η) for y drawn

uniformly randomly from Sn1 . This probability goes to 1 as η → 0, so the probability that
x2

1 ≥ η(2− η) also approaches 1 as η → 0. The conclusion follows.

Proposition 2.6.4. For every constant δ, η > 0, there is a constant ε0 > 0 such that, for
all ε < ε0 and for a uniformly random set P of m = 2n points drawn from Sn1+η, with
probability at least 1− e−δn, no subset T ⊂ P of size (1− ε)m is contained within a ball of
radius 1.

Proof. Let t = (1− ε)m > n and let T ⊂ P have size |T | = t. If the points T are contained
within a ball of radius 1 then they are contained within a centered halfspace, because the
intersection of the ball with Sn1+η is equal to the intersection of some halfspace with Sn1+η.
The probability that t uniformly random points on the surface of the sphere lie within
some hemisphere is 21−t∑n−1

k=0

(
t−1
k

)
[Wen62]. There are at most

(
m
t

)
subsets of size t, so

the probability that any of these subsets lie within a hemisphere is at most(
m

m− t

)
21−t

(
et

n

)n
≤ 21−(1−ε)m

(e
ε

)εm(et
n

)n
= 21+εm log(e/ε)−(1−ε)m+n log( e(1−ε)mn )

= 21+ε2n log(e/ε)−(1−ε)2n+n log(e(1−ε)2)

≤ 21−2n(1−ε log(4e2/ε)) .

The conclusion holds since ε log(4e2/ε)→ 0 as ε→ 0.

Proposition 2.6.5 (Balls and bins). Fix C > 0, 0 < δ ≤ 1, and let n, k be positive integers
with k ≤ 1

10
eδ

2Cn/3. Then if Cnk balls are deposited into k bins uniformly at random, the
following hold:

1. With probability at least 9/10, every bin receives at most (1 + δ)Cn balls;

2. With probability at least 9/10, every bin receives at least (1− δ)Cn balls.

Proof. Let Xij be the indicator variable for the event that the i-th ball goes into the j-th

bin, and let the random variable Lj =
∑Cnk

i=1 Xij denote the final load on the j-th bin.
Note that E [Lj] = Cn. By the multiplicative Chernoff bound, we have:

1. P [Lj ≥ (1 + δ)Cn] ≤ e−δ
2Cn/3; and
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2. P [Lj ≤ (1− δ)Cn] ≤ e−δ
2Cn/3.

In both cases, by the union bound, the probability that the respective event occurs for any
Lj (1 ≤ j ≤ k) is at most k · e−δ2Cn/3 ≤ 1/10, as desired.

Lemma 2.6.6. For k < 1
10
en/6, let A1, . . . , Ak be spheres in Rn of radius 1 + η for suffi-

ciently small η > 0, such that the minimum distance between any two spheres is 3. Define
the following distribution S over

⋃n
i=1Ai: Draw i ∈ [k] uniformly at random and then draw

x ∼ Ai uniformly at random. Then:

1. If S is a set of m ≤ nk/2 independent points drawn from S, then with probability at
least 9/10, there are k balls of radius 1 whose union contains S;

2. If S is a set of 4nk ≤ m ≤ 8nk independent points drawn from S and ε > 0 is a
sufficiently small constant, then with probability at least 81/100, no union of k balls
of radius 1 contains more than (1− ε)m points of S.

Proof. First suppose that m ≤ nk/2. If each sphere Ai receives at most n sample points
then by Proposition 2.6.3, setting δ, η > 0 arbitrarily small in the statement of that propo-
sition, for each sphere Ai there is a ball Bi of radius 1 containing all points S ∩ Ai with
probability arbitrarily close to 1, so there are k balls containing all points of S. Propo-
sition 2.6.5 (with C = 1/2 and δ = 1) shows that the maximum load of any sphere is at
most n with probability at least 9/10, so the first conclusion holds.

Now suppose that 4nk ≤ m ≤ 8nk. Note that no ball of radius 1 can contain points
from more than 1 sphere Ai. Proposition 2.6.5 (with C = 4 and δ = 1/2) shows that the
minimum load of any sphere is at least 2n with probability at least 9/10. Assume that this
occurs for the rest of this argument.

Let Si = S ∩ Ai for i = 1, . . . , k, and say that Si is difficult if no ball of radius 1
contains at least (1 − ε′)|Si| points in Si, for constant ε′ to be defined. Since |Si| ≥ 2n,
Proposition 2.6.4 gives that P [Si is difficult] ≥ 1− e−δn. Setting δ = 1/6 and by the union
bound, the probability that every Si is difficult is at least 1−k·e−δn ≥ 1− 1

10
en/6e−δn = 9/10.

Fix ε′ corresponding to δ = 1/6 in Proposition 2.6.4.

Assume that every Si is difficult, and consider any set of k balls B1, . . . , Bk. Denote
their union by B =

⋃
iBi. Then for each Si, we have that |B ∩ Si| ≥ (1 − ε′)|Si| only if

at least two balls Bj1 , Bj2 intersect Si. Thus, this can only happen for at most k/2 such
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Si’s. Assume without loss of generality that S1, . . . , S` have at least (1 − ε′)-fraction of
their points covered by B, so that ` ≤ k/2. It follows that

|S \B| ≥
k∑

i=`+1

ε′|Si| ≥
k

2
· ε′ · 2n ≥ ε′m

8
.

Which satisfies the second claim for ε = ε′/8, and this happens with probability at least
9/10 · 9/10 = 81/100 over the choice of S.

Theorem 2.6.7. For sufficiently small constant ε > 0, any ε-tester for k-clusterability in

Rn requires at least Ω
(

nk
log(nk)

)
samples.

Proof. Let N = 8nk and let α = 1/16, β = 1/2. We will prove a reduction from support-
size distinction to k-clusterability; we may assume that the tester for k-clusterability has
success probability at least 5/6 due to standard boosting techniques. For an input distribu-
tion D over [N ] with densities at least 1/N , construct spheres A1, . . . , Ak as in Lemma 2.6.6.
Construct the map φ : [N ]→

⋃k
i=1Ai by sampling s1, . . . , sN ∼ S, where S is the distribu-

tion from Lemma 2.6.6, and setting φ(i) = si. Then simulate the tester for k-clusterability
by giving the tester samples φ(i) for i ∼ D. We will write φD for the distribution over⋃k
i=1Ai obtained by sampling i ∼ D and returning φ(i).

First suppose that | supp(D)| ≤ αN . Then supp(φD) is a set of at most αN = nk/2
points sampled from S, so by Lemma 2.6.6, with probability at least 9/10 over the choice
of φ the distribution φD is k-clusterable, so the tester will output 1 with probability at
least 5/6, so the total probability of success is at least 2/3.

Next suppose that | supp(D)| ≥ βN so supp(φD) is a set of between βN = 4nk and
N = 8nk points sampled from S. Then by Lemma 2.6.6, for sufficiently small constant
ε > 0, with probability at least 81/100 over the choice of φ, X := supp(φD) is at least ε/β-
far from k-clusterable according to the uniform distribution over X. Since D (and therefore
φD) has densities at least 1/N on X, any k-clusterable distribution φD must be at least
(ε/β)|X|

N
≥ ε-far from φD. Therefore the ε-tester will output 0 with probability at least 5/6,

so the total probability to output 0 is at least 2/3. So the algorithm solves support-size
distinction with parameters N = 8nk, α = 1/16, β = 1/2. Finally, by Theorem 2.2.5, the

number of samples required is at least Ω
(

N
logN

)
= Ω

(
nk

log(nk)

)
.

2.6.2 Uniform Distributions and Testing LP-Type Problems

Epstein & Silwal [ES20] recently introduced property testing for LP-Type problems, which
are problems that generalize linear-programming. The algorithm has query access to a set
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S of constraints and must determine with high probability whether an objective function
φ satisfies φ(S) ≤ k or if at least an ε-fraction of constraints must be removed in order to
satisfy φ(S) ≤ k. We refer the reader to their paper for the definition of their model and
results in full generality, and describe only a special case here.

Definition 2.6.8 (Testing Feasibility [ES20]). A tester for feasibility of a set of linear
equations is an algorithm that performs as follows. On an input set S of linear equations
over Rn, the algorithm samples equations s ∼ S uniformly at random, and must satisfy
the following:

1. If S is feasible, i.e. there exists x ∈ Rn that satisfies all equations S, then the
algorithm outputs 1 with probability at least 2/3;

2. If at least ε|S| equations must be removed or flipped for the system to be feasible,
then the algorithm outputs 0 with probability at least 2/3.

Epstein & Silwal obtain a two-sided tester for this problem.

Theorem 2.6.9 ([ES20]). There is a tester for feasibility in Rn with two-sided error and
sample complexity O(n/ε).

Testing if a set X ⊆ Rn with labels ` : X → {±1} is realizable by a halfspace can be
solved by their algorithm, since for each x ∈ X one can add the constraint `(x) · (w0 +∑n

i=1wixi) ≥ 1 to S, with variables w0, w1, . . . , wn. On the other hand, they prove a lower
bound for one-sided error:

Theorem 2.6.10 ([ES20]). Testing with one-sided error whether a set X ⊆ Rn with labels
` : X → {±1} is realizable by a halfspace or whether at least ε|X| labels must be changed
to become realizable by a halfspace requires at least Ω(d/ε) samples.

Remark 2.6.11. [ES20] does not specify that their lower bound is for one-sided error;
however, their proof relies on a claim that is true only for one-sided error [Sil20], namely
that distinguishing between uniform distributions with support size d and uniform distri-
butions with support size 3d requires at least d + 1 samples – with two-sided error, this
can be done with only O(

√
d) samples via a birthday paradox argument.

We would like to prove lower bounds on two-sided error algorithms. However, our
reduction from support-size distinction will not work for this, because the model of LP
testing uses the uniform distribution as its distance measure, and the distributions that
occur in the reduction are not uniform. We can fix this by replacing the lower bound of
Wu & Yang [WY19] with a weaker lower bound of [RRSS09] that uses distributions D over
[n] with densities that are integer multiples of 1/n:
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Theorem 2.6.12 ([RRSS09] Theorem 2.1). Let SSDZ(n, δ, 1 − δ) be the support-size dis-
tinction problem under the promise that the input distribution D has densities that are
integer multiples of 1/n. Then for every δ ≥ 2

√
logn
n1/4 ,

SSDZ(n, δ, 1− δ) = Ω(n1−γ) ,

where γ = 2
√

log(1/δ)+ 1
2

log log(n)+1

logn
. In particular, for constant δ, the lower bound is n1−o(1).

We can now prove the following lower bound on testing linear separability:

Theorem 2.6.13. Testing with two-sided error whether a set X ⊆ Rn with labels ` : X →
{±1} is realizable by a halfspace or whether at least ε|X| labels must be changed to become
realizable by a halfspace requires at least n1−o(1) samples.

Proof. Repeat the proof of Theorem 2.2.10 and Lemma 2.2.9 with input distributions D
over [n] where for each i ∈ supp(D),D(i) is an integer multiple of 1/n. We obtain a set of
points X = supp(φD) ⊆ Rn and labels ` : X → {±1} with integer probabilities, and we let
S be the set of linear constraints constructed from X, ` as above, with each x ∈ S occurring
with multiplicity t when D(φ−1(x)) = t/n. We may simulate samples from S by samples
from D. Therefore we obtain a lower bound of n1−o(1) by the theorem of [RRSS09].

2.7 Upper Bounds

In this section we will prove upper bounds to complement the above lower bounds. First
we study symmetric classes of functions, which have been noted by Sudan [Sud10] and
Goldreich & Ron [GR16] to be closely related to support size estimation. These classes
establish the optimality of Theorem 2.2.1, and show that the lower bound cannot in general
be extended to testers in the query model (on the other hand, follow-up work of Chen &
Patel [CP22] has shown that the lower bound can be extended to the query model for
halfspaces).

Next, we show that there are natural classes of Boolean-valued functions, k-juntas and
monotone functions for which efficient distribution-free sample-based testing is possible.

2.7.1 Symmetric Classes

We first show that our lower bound in Theorem 2.2.10 is optimal, in the sense that there
exists a property H where d = LVCS(H) = VCS(H) ≤ |S|/5 and the sample complexity
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of distribution-free testing is Θ(d/ log d). The upper bound will follow from a theorem of
Goldreich & Ron [GR16] for symmetric properties.

Definition 2.7.1. A set H of functions [n] → {0, 1} is symmetric if for any permutation
σ : [n] → [n], for any function f ∈ H, it is also the case that f ◦ σ ∈ H. Equivalently,
H is symmetric iff there is a function φ : [n] → {0, 1} such that f ∈ H iff φ(k) = 1 when
k = |{i ∈ [n] : f(i) = 1}|.

Proposition 2.7.2. Let H be any symmetric class of functions [n] → {0, 1}. Then for
any set S ⊆ [n], LVCS(H) = VCS(H).

Proof. This follows from the fact that if T ⊆ S is shattered by H, then every T ′ ⊆ S with
|T ′| = |T | is also shattered.

Symmetric properties are interesting because, as observed by Goldreich & Ron [GR16],
there is a distribution-free testing upper bound for these sets that can be obtained by the
support-size estimation algorithm of Valiant & Valiant [VV11a, VV11b]. Together with
our lower bound, this shows that distribution-free testing symmetric sets H is essentially
equivalent to deciding support size.

Theorem 2.7.3 (Goldreich & Ron [GR16], Claim 7.4.2). For any symmetric class H of

functions [n]→ {0, 1}, testH(ε) = poly(1/ε) ·O
(

n
logn

)
.

On the other hand, consider the class Sn of functions [n]→ {0, 1} such that f : [n]→
{0, 1} is in Sn iff |{i ∈ [n] : f(i) = 1}| ≤ n/5.

Theorem 2.7.4. LVC[n](Sn) = VC[n](Sn) = n/5 and for small enough constant ε > 0,

testSn(ε) = Θ

(
n

log n

)
.

Proof. Any negative certificate for a function f /∈ Sn must have size at least n/5 + 1 so
LVC[n](Sn) ≥ n/5. On the other hand, any set T of size n/5 is shattered since we may
assign 0 to all values [n] \ T . Therefore Corollary 2.2.11 and Theorem 2.7.3 imply the
conclusion.

Next we show that the lower bound for (0, ε)-tolerant adaptive testers cannot be ex-
tended to intolerant testers. Parnas, Ron, & Rubinfeld [PRR06] observed that, when
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testing over the uniform distribution, any ε-tester with uniformly (but not necessarily in-
dependently) distributed queries is in fact (ε′, ε)-tolerant for some ε′ > 0 (depending on the
query cost). Since our lower bound in Theorem 2.2.10 holds even for (0, ε)-tolerant testers,
one might then wonder if it holds also for intolerant testers, in light of the observation of
[PRR06]. However, this is not the case, and the counterexample is the same class of sym-
metric functions discussed above. This class exhibits a nearly-maximal separation between
tolerant and intolerant testing in the distribution-free model, even when the intolerant
tester has uniformly distributed and non-adaptive queries.

Theorem 2.7.5. There is a two-sided non-adaptive query tester for Sn with query com-
plexity O

(
1
ε2

)
, and yet every adaptive (0, ε)-tolerant tester for Sn has query complexity

Ω
(

n
logn

)
for small enough constant ε > 0.

Proof. The lower bound follows from Corollary 2.2.11. For the upper bound, consider the
algorithm that makes m = 50

ε2
ln(3) uniformly random samples, sets X equal to the number

of sample points with value 1, and rejects iff X > (1 + ε/2)m
5

.

Let D, f be the input distribution and function, and suppose that f ∈ Sn. Since the
queries are made uniformly at random, it follows that E [X] ≤ n/5. Thus by Hoeffding’s
inequality,

P
[
X > (1 + ε/2)

m

5

]
≤ P

[
X > E [X] +

εm

10

]
≤ exp

(
−mε

2

50

)
≤ 1/3 .

Now suppose that distD(f,H) > ε. Let N = {x ∈ [n] : f(x) = 1} and observe that
|N | > n/5. Write D(x) for the probability density of x according to D, let A ⊂ N be
the n/5 points x ∈ N with largest value D(x), and let B = N \ A. Observe that for all
x ∈ A, y ∈ B,D(x) > D(y), so the average D(x) in A is larger than the average D(x) in
B. Write D(A) :=

∑
x∈AD(x),D(B) :=

∑
x∈B D(x). Since distD(f,H) > ε it must be that

D(B) > ε since otherwise the function f ′ obtained by flipping the values in B is in H and
satisfies distD(f,H) ≤ distD(f, f ′) ≤ ε.

5

n
≥ D(A)

|A|
≥ D(B)

|B|
≥ ε

|B|

so |B| ≥ εn/5. Therefore the number of 1-valued points according to f is |N | = |A|+ |B| ≥
(1 + ε)n

5
, so E [X] ≥ (1 + ε)m

5
. By Hoeffding’s inequality:

P
[
X ≤ (1 + ε/2)

m

5

]
≤ P

[
X ≤ E [X]− εm

10

]
≤ exp

(
−mε

2

50

)
≤ 1/3 .
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2.7.2 k-Juntas

A k-junta {0, 1}n → {0, 1} on n variables is a function that depends on only k of the n
variables; these are of great interest in testing and learning because if a function depends on
k � n variables then the complexity of learning may be significantly reduced. Blais [Bla09]
gave a nearly optimal tester in the query model for product distributions, and Bshouty
[Bsh19] recently presented a tester in the distribution-free query model, with query cost

Õ(k/ε), but there are no known upper bounds in the sample-based distribution-free model.
The VC dimension of k-juntas is at least 2k since any subcube of dimension k can be
shattered. We prove a polynomial improvement over the VC dimension for distribution-
free sample-based testers when k > log log n using the following version of the birthday
problem.

Proposition 2.7.6. Let p be any distribution over [n]. The probability that m independent

samples drawn from p are all distinct is at most e−
(m−1)2

2n .

Proof. It is known that the worst case probability distribution p is uniform over [n] [Mun77].
For the uniform distribution over [n], the probability that all m independent samples are
distinct is at most

m−1∏
i=0

(
1− i

n

)
≤

m−1∏
i=0

e−
i
n = exp

(
− 1

n

m−1∑
i=0

i

)
= exp

(
−m(m− 1)

2n

)
.

Theorem 2.7.7. There is a distribution-free sample-based ε-tester for k-juntas on domain

{0, 1}n with one-sided error and sample complexity O
(
k2k/2 log(n/k)

ε

)
.

Proof. For a set S ⊆ [n] of size n − k we will arrange the points x ∈ {0, 1}n into “rows”
and “columns”; for every partial assignment ρ : S → {0, 1} let row Rρ be the set of points
x ∈ {0, 1}n such that ∀i /∈ S, xi = ρ(i), and for every partial assignment γ : S → {0, 1} let
column Cγ be the set of points x ∈ {0, 1}n such that ∀i ∈ S, xi = γ(i).

The tester is as follows: On input f : {0, 1}n → {0, 1} and distribution p, sample a set

Q of s ·m points, where s = O
(
log
(
n
k

))
and m = O

(
2k/2

ε

)
; since

(
n
k

)
≤
(
en
k

)k
, the sample

complexity is sm = O
(
k2k/2 log(n/k)

ε

)
. Reject if for every set S ⊂ [n] of n − k variables,

there exists a row ρ : S → {0, 1} that contains x, y ∈ Q ∩ Rρ such that f(x) 6= f(y); we
will call such a pair x, y a witness for S. This has one-sided error because a k-junta has a
set S of variables such that f is constant on every row.
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Let p : {±1}n → R be a probability distribution over {±1}n. Let f : {0, 1}n → {0, 1}
and let S ⊂ [n] be a set of n− k variables. For each ρ : S → {0, 1} write

r0
ρ :=

∑
x∈Rρ:f(x)=0

p(x) r1
ρ :=

∑
x∈Rρ:f(x)=1

p(x)

Suppose that ∑
ρ:S→{0,1}

min(r0
ρ, r

1
ρ) < ε .

Then f is ε-close to a k-junta, because we can define the k-junta h as follows. For each x
we can set h(x) = 0 if r0

ρ ≥ r1
ρ and h(x) = 1 if r0

ρ < r1
ρ, where ρ is the partial assignment

defining the row Rρ containing x. Since h is constant on each row, it does not depend on
any of the variables that are not assigned by ρ : S → {0, 1}, i.e. it does not depend on any
of the n− k variables in S. And by definition,

distp(f, h) =
∑

ρ:S→{0,1}

min(r0
ρ, r

1
ρ) < ε .

If f is ε-far, then every set S of n− k variables satisfies∑
ρ:S→{0,1}

min(r0
ρ, r

1
ρ) ≥ ε .

For any fixed S, we can bound the probability that the set Q does not contain any witness
as follows. Without loss of generality assume that r0

ρ ≤ r1
ρ for every ρ, and choose a set

Tρ ⊆ Rρ such that

r0
ρ =

∑
x∈Tρ:f(x)=0

p(x) =
∑

x∈Tρ:f(x)=1

p(x) ,

which we may do since, without loss of generality, we may adjust the probabilities p(x) in
each row without changing the probability of finding a witness, as long as the totals r0

ρ, r
1
ρ

are invariant. Note that if two random points x, y ∼ p fall in Tρ, then with probability 1/2
we will have f(x) 6= f(y). Therefore

P
Q

[∃x, y, ρ : f(x) 6= f(y), x, y ∈ Rρ] ≥
1

2
· P
Q

[∃ρ : Tρ contains ≥ 2 points] .

Let T = ∪ρ:S→{0,1}Tρ and observe that
∑

x∈T p(x) =
∑

ρ r
0
ρ ≥ ε, so in expectation there are

εm points in Q ∩ T . By the Chernoff bound,

P
[
|Q ∩ T | < εm

2

]
≤ exp

(
−εm

8

)
= o(1) .
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Assume there are at least εm/2 points in T . By Proposition 2.7.6, the probability that no
Tρ contains at least 2 points is, for N = 2k being the number of rows, at most

exp

(
−
(
εm
2
− 1
)2

2N

)
<

1

2
,

since m = Ω
(√

N
ε

)
. Therefore the probability of finding a witness for S is at least

1

2
· P
Q

[∃ρ : Tρ contains ≥ 2 points] ≥ 1

2
· (1− o(1)) · 1

2
= (1− o(1))

1

4
>

1

5
.

By repeating the sampling procedure s = O
(
log
(
n
k

))
times, the probability of failing to

find a witness is at most (4/5)s < 1
3

(
n
k

)−1
. Then by the union bound, the probability that

there exists S on which the tester fails to find a witness is at most 1/3, since there are at
most

(
n
k

)
such sets.

2.7.3 Monotonicity in General Posets

A basic result in testing monotonicity of Boolean functions over the uniform distribution
is that at most O(

√
n/ε) uniform samples are necessary for any partial order of size n

[FLN+02]. We extend this result to the distribution-free setting. The VC dimension of
the class of monotone functions over any poset P is the width, i.e. the size of the largest
antichain in P . For example, the standard partial ordering of the hypercube {0, 1}n has
width Θ(2n/

√
n) since the set of points x ∈ {0, 1}n with Hamming weight n/2 is an

antichain of size
(
n
n/2

)
. Therefore, for the hypercube, distribution-free sample-based testing

can be done with sample complexity O(2n/2) = Õ(
√
VC).

For sets X, Y and a set of order pairs E ⊆ X × Y , we call the triple (X, Y,E) a
bipartite partial order, where the edges E define the following partial order on X ∪ Y :
x < y iff (x, y) ∈ E. Fischer et al. [FLN+02] observed that for the uniform distribution,
monotonicity on general finite posets reduces to testing on bipartite posets; we generalize
their reduction to the distribution-free setting:

Lemma 2.7.8. If for every bipartite partial order (X, Y,E) of size |X| = |Y | = n there is
a distribution-free sample-based ε-tester for monotonicity with sample complexity m(n, ε)
then for every partial order P of size |P | = n there is a distribution-free sample-based
ε-tester for monotonicity with sample complexity m(n, ε/2).
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Proof. On any partial order P with distribution p and input function f : P → {0, 1},
consider the following reduction: let X, Y be separate copies of P and for each x ∈ P write
x1, x2 for the copies of x in X, Y respectively. Define a set of edges E ⊂ X × Y where
(x1, y2) ∈ E iff x < y in P . Define the distribution q over X ∪ Y as q(x1) = 1

2
p(x) for

each x ∈ X and q(y2) = 1
2
p(y2) for each y ∈ Y . Define the function g : X ∪ Y → {0, 1}

as g(x1) = f(x), g(y2) = f(y) for each x1 ∈ X, y2 ∈ Y . Observe that we can simulate
a random sample from q labelled by g by sampling x ∼ p and taking x1, x2 with equal
probability, labelling it with f(x).

It is clear that if f is monotone on P then g is monotone on (X, Y,E), since (x1, y2) ∈ E
implies x < y in P . Suppose now that g is ε-close to monotone in (X, Y,E) according to q,
and let h be monotone on (X, Y,E) minimizing distance to g. Define f ′ : P → {0, 1, ∗} as
follows: For x ∈ P , if h(x1) = h(x2) = f(x) set f ′(x) = f(x), and otherwise set f ′(x) = ∗.
Then ∑

x∈P :f ′(x)=∗

p(x) =
∑
x∈P

1 [h(x1) 6= f(x) ∨ h(x2) 6= f(x)] p(x)

≤
∑
x∈P

(1 [h(x1) 6= f(x)] + 1 [h(x2) 6= f(x)]) p(x)

=
∑
x∈P

1 [h(x1) 6= g(x1)] p(x) +
∑
x∈P

1 [h(x2) 6= g(x2)] p(x)

= 2
∑
x∈P

1 [h(x1) 6= g(x1)] q(x1) + 2
∑
x∈P

1 [h(x2) 6= g(x2)] q(x2)

= 2distq(g, h) < 2ε .

Now construct a monotone function f ′′ : P → {0, 1} as follows. Take any total order
≺ consistent with the partial order on P . For each x ∈ P in order of ≺, if f ′(x) = ∗
set f ′′(x) = maxy<x f

′′(y), otherwise set f ′′(x) = f ′(x) = f(x). Then distp(f, f
′′) ≤∑

x∈P :f ′(x)=∗ p(x) < 2ε. Suppose that f ′′ is not monotone, so there are x < y such that

f ′′(x) = 1, f ′′(y) = 0; assume x is a minimal point where this occurs. Since x ≺ y it must
be the case that f ′(y) 6= ∗, so f ′(y) = f(y) = 0. Since f ′ is monotone except on ∗-valued
points, it must be that f ′(x) = ∗, and 1 = f ′′(x) = maxz<x f

′′(z). But then z < x and
f ′′(z) = 1, f ′′(y) = 0, so x was not minimal, a contradiction. Thus f ′′ is monotone and
dist(f, f ′′) < 2ε.

We therefore conclude that if f is ε-far from monotone on P according to p then g is
at least (ε/2)-far from monotone on (X, Y,E) according to q. Therefore, by simulating the
distribution-free one-sided sample-based tester on (X, Y,E) with parameter ε/2 we obtain
a distribution-free one-sided tester for P .
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Theorem 2.7.9. For any finite partial order P of size |P | = n, there is a distribution-free,

one-sided, sample-based ε-tester for monotonicity with sample complexity O
(√

n
ε

)
.

Proof. By Lemma 2.7.8, it suffices to consider bipartite partial orders. Let (X, Y,E) be a
bipartite partial order. On input f : X ∪ Y → {0, 1} and distribution p : X ∪ Y → R,

the tester will sample a set Q of m = O
(√

n
ε

)
points from p and reject if there exist

x ∈ X ∩ Q, y ∈ Y ∩ Q such that x < y and f(x) = 1, f(y) = 0; we call such a pair a
violating pair.

Suppose f is ε-far from monotone. Let X1 := {x ∈ X : f(x) = 1} and Y0 := {y ∈ Y :
f(y) = 0}. For each x ∈ X1 let Vx := {y ∈ Y0 : x < y} be the set of points y ∈ Y0 such
that (x, y) is a violating pair, and define q(x) :=

∑
y∈Vx p(y) be the total probability mass

of all the points y such that (x, y) is a violating pair. Suppose for contradiction that∑
x∈X1

min(p(x), q(x)) < ε .

Construct a monotone function h as follows. For each x ∈ X1 (in arbitrary order), if
p(x) < q(x) set h(x) = 0, otherwise set h(y) = 1 for all y ∈ Vx. The resulting function
is now monotone since each violating pair (x, y) now has either h(x) = 0 or h(y) = 1.
The distance between f and h increases by at most min(p(x), q(x)) for each x ∈ X1, so
distp(f, h) < ε, a contradiction. Therefore we must have

∑
x∈X1

min(p(x), q(x)) ≥ ε.

Define a new distribution r on X ∪ Y that is initialized to r = p but then is updated
to set r(x) = min(p(x), q(x)) for each x ∈ X1, reassigning the remaining probability mass
p(x) − r(x) to an arbitrary point not in X1 ∪ Y0 (we may assume such a point exists
since otherwise f is the trivial function where every pair x < y is a violating pair). This
reassignment can only decrease the probability of finding a violating pair in the sample
Q. Under the new distribution r(X1) =

∑
x∈X1

r(x) =
∑

x∈X1
min(p(x), q(x)) ≥ ε, and

for each x ∈ X1, r(x) ≤ r(Vx). Let R be a set of m independent points drawn from r, so
P [Q contains a violating pair] ≥ P [R contains a violating pair].

Now observe that for each x ∈ X1, the probability that R contains some violating pair
(x, y) is at least the probability that x occurs twice in R; this is because r(Vx) = q(x) ≥
r(x). We will now bound the probability that there exists x ∈ X1 that occurs twice in R.
The expected number of points in R ∩ X1 is E [|R ∩X1|] = m

∑
x∈X1

r(x) ≥ εm. By the
Chernoff bound,

P
[
|R ∩X1| <

εm

2

]
≤ exp

(
−εm

8

)
= o(1) .
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Assuming |R∩X1| ≥ εm
2

, by Proposition 2.7.6, the probability that each x ∈ R∩X1 occurs
at most once in R is at most

exp

(
−(|R ∩X1| − 1)2

2|X1|

)
≤ exp

(
−((εm/2)− 1)2

2n

)
< 1/4 ,

for sufficiently large m = O
(√

n
ε

)
. Therefore

P [∃x ∈ X1, x occurs at least twice in R] ≥ 1− 1

4
− o(1) ≥ 2

3
.

Finally,

P [Q contains a violating pair] ≥ P [R contains a violating pair]

≥ P [∃x ∈ X1, x occurs at least twice in R] ≥ 2

3
.
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Chapter 3

Testing and Learning under Product
Distributions

After decades of school, I can attest,
After uncountable books consumed without rest,
After exercise problems at the teacher’s request,

All I can do is to learn and to test.

In this chapter, we study the second direction of research in testing and learning:
designing efficient algorithms that work under the weakest possible restrictions on the
class of input distributions D. The previous chapter made progress towards a theory of
testing vs. learning when D is essentially unrestricted and the complexity of the algorithm
is measured by the number of requests to the labeled-sample oracle. In the present chapter
we are not explicitly concerned with theorizing about testing vs. learning. Instead we
focus on optimizing the cost of the algorithms in terms of the number of requests to the
query, sample, or labeled-sample oracles, as well as (for learning algorithms) their time
complexity; and on eliminating restrictions on the class of input distributions D.

Compared to the previous chapter, two important differences for learning algorithms
in this chapter are:

� When D is restricted, the VC dimension no longer determines the labeled-sample
complexity of a learning algorithm. Indeed, there are classes, like convex sets, which
can be learned under product distributions (as we will show), even though they have
infinite VC dimension and are therefore not learnable when D is unrestricted.
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� We are now concerned with time complexity, not only the number of requests to
labeled-sample oracle; the importance of this was emphasized in Section 1.2.4.

Recall from Section 1.2.4 that the goal for this chapter is to design testing and learning
algorithms for the case where D is any product distribution over Rd. This is the natural
generalization of many of the special cases for which algorithms have been developed in
the prior literature, such as the uniform distribution over {±1}d or the standard Gaussian
over Rd.

This chapter provides a general framework for designing distribution-free testing and
learning algorithms under product distributions on Rd, which may be finite or continuous.
This framework, which we call downsampling, improves upon previous methods (in partic-
ular, [BCS20, BOW10]), in a few ways. It is more general and does not apply only to a
specific type of algorithm [BOW10] or a specific problem [BCS20], and we use it to obtain
many other results. It is conceptually simpler. And it allows quantitative improvements
over both [BOW10] and [BCS20].

See Table 1.2 in Chapter 1 for a summary of our results in property testing, and Ta-
ble 1.3 for a summary of our results in learning. In Section 3.1, we give an informal
description of our techniques, and we introduce the main definitions and lemmas in Sec-
tion 3.2. The following sections present the proofs of the results. For simplicity, we first
handle only continuous product distributions, and handle finite distributions separately in
Section 3.8.

3.1 Techniques

What connects these diverse problems is a notion of rectilinear surface area or isoperimetry
that we call “block boundary size”. There is a close connection between learning & testing
and various notions of isoperimetry or surface area (e.g. [CS16, KOS04, KOS08, KMS18]).
We show that testing or learning a class H on product distributions over Rd can be reduced
to testing and learning on the uniform distribution over [r]d, where r is determined by the
block boundary size, and we call this reduction “downsampling”. The name downsampling
is used in image and signal processing for the process of reducing the resolution of an image
or reducing the number of discrete samples used to represent an analog signal. We adopt
the name because our method can be described by analogy to image or signal processing
as the following 2-step process:
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1. Construct a “digitized” or “pixellated” image of the function f : Rd → {±1} by
sampling from the distribution and constructing a grid in which each cell has roughly
equal probability mass; and

2. Learn or test the “low-resolution” pixellated function.

As long as the function f takes a constant value in the vast majority of “pixels”, the low
resolution version seen by the algorithm is a good enough approximation for testing or
learning. The block boundary size is, informally, the number of pixels on which f is not
constant.

This technique reduces distribution-free testing and learning problems to the uniform
distribution in a way that is conceptually simpler than in the prior work [BOW10, BCS20].
However, some technical challenges remain. The first is that it is not always easy to bound
the number of “pixels” on which a function f is not constant – for example, for PTFs.
Second, unlike in the uniform distribution, the resulting downsampled function class on
[r]d is not necessarily “the same” as the original class – for example, halfspaces on Rd

are not downsampled to halfspaces on [r]d, since the “pixels” are not of equal size. Thus,
geometric arguments may not work, unlike the case for actual images.

A similar technique of constructing “low-resolution” representations of the input has
been used and rediscovered ad-hoc a few times in the property testing literature; in prior
work, it was restricted to the uniform distribution over [n]d [KR00, Ras03, FR10, BY19,
CGG+19] (or the Gaussian in [CFSS17]). In this thesis, we aim to provide a unified and
generalized study of this simple and powerful technique.

3.1.1 Block Boundary Size

Informally, we define the r-block boundary size bbs(H, r) of a class H of functions Rd →
{0, 1} as the maximum number of grid cells on which a function f ∈ H is non-constant,
over all possible r×· · ·×r grid partitions of Rd (which are not necessarily evenly spaced) –
see Section 3.2 for formal definitions. Whether downsampling can be applied to H depends
on whether

lim
r→∞

bbs(H, r)
rd

→ 0 ,

and the complexity of the algorithms depends on how large r must be for the non-constant
blocks to vanish relative to the whole rd grid. A general observation is that any function
class H where downsampling can be applied can be learned under unknown product dis-
tributions with a finite number of samples; for example, this holds for convex sets even
though the VC dimension is infinite.
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Proposition 3.1.1 (Consequence of Lemma 3.4.8). Let H be any set of functions Rd →
{0, 1} (measurable with respect to continuous product distributions) such that

lim
r→∞

bbs(H, r)
rd

= 0 .

Then there is some function δ(d, ε) such that H is distribution-free learnable under product
distributions, up to error ε, with δ(d, ε) samples.

For convex sets, monotone functions, k-alternating functions, and halfspaces, bbs(H, r)
is easy to calculate. For degree-k PTFs, it is more challenging. We say that a function
f : Rd → {0, 1} induces a connected component S if for every x, y ∈ S there is a continuous
curve in Rd from x to y such that f(z) = f(x) = f(y) for all z on the curve, and S is a
maximal such set. Then we prove a general lemma that bounds the block boundary size
by the number of connected components induced by functions f ∈ H.

Lemma 3.1.2 (Informal, see Lemma 3.6.6). Suppose that for any axis-aligned affine sub-
space A of affine dimension n ≤ d, and any function f ∈ H, f induces at most kn connected
components in A. Then for r = Ω(dk/ε), bbs(H, r) ≤ ε · rd.

This lemma in fact generalizes all computations of block boundary size in this thesis
(up to constant factors in r). Using a theorem of Warren [War68], we get that any degree-
k polynomial Rd → {±1} achieves value 0 in at most εrd grid cells, for sufficiently large
r = Ω(dk/ε) (Corollary 3.6.8).

3.1.2 Polynomial Regression

The second step of downsampling is to find a testing or learning algorithm that works for the
uniform distribution over the (not necessarily evenly-spaced) hypergrid. Most of our learn-
ing results use polynomial regression. This is a powerful technique introduced in [KKMS08]
that performs linear regression over a vector space of functions that approximately spans
the hypothesis class. This method is usually applied by using Fourier analysis to construct
such an approximate basis for the hypothesis class [BOW10, DHK+10, CGG+19]. This
was the method used, for example, by Blais, O’Donnell, & Wimmer [BOW10] to achieve
the poly(dn)-time algorithms for intersections of halfspaces.

We take the same approach but we use the Walsh basis for functions on domain [n]d

(see e.g. [BRY14]) instead of the bases used in the prior works. We show that if one
can establish bounds on the noise sensitivity in the Fourier basis for the hypothesis class
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restricted to the uniform distribution over {±1}d, then one gets a bound on the number
of Walsh functions required to approximately span the “downsampled” hypothesis class.
In this way, we establish that if one can apply standard Fourier-analytic techniques to the
hypothesis class over the uniform distribution on {±1}d and calculate the block boundary
size, then the results for the hypercube essentially carry over to the distribution-free setting
for product distributions on Rd.

An advantage of this technique is that both noise sensitivity and block boundary size
grow at most linearly during function composition: for functions f(x) = g(h1(x), . . . , hk(x))
where each hi belongs to the class H, the noise sensitivity and block boundary size grow
at most linearly in k. Therefore learning results for H obtained in this way are easy to
extend to arbitrary compositions of H, which is how we get our result for intersections of
halfspaces.

3.2 Downsampling

We will now introduce the main definitions, notation, and lemmas required by our main
results. The purpose of this section is to establish the main conceptual component of the
downsampling technique: that functions with small enough block boundary size can be
efficiently well-approximated by a “coarsened” version of the function that is obtained by
random sampling. See Figure 3.1 for an illustration of the following definitions.

Definition 3.2.1 (Block Partitions). An r-block partition of Rd is a pair of functions
block : Rd → [r]d and blockpoint : [r]d → Rd obtained as follows. For each i ∈ [d], j ∈ [r−1]
let ai,j ∈ R such that ai,j < ai,j+1 and define ai,0 := −∞, ai,r := ∞ for each i. For each
i ∈ [d], j ∈ [r] define the interval Bi,j := (ai,j−1, ai,j] and pick a point bi,j ∈ Bi,j. The
function block : Rd → [r]d is defined by setting block(x) to be the unique vector v ∈ [r]d

such that xi ∈ Bi,vi for each i ∈ [d]. The function blockpoint : [r]d → Rd is defined
by setting blockpoint(v) = (b1,v1 , . . . , bd,vd); note that blockpoint(v) ∈ block−1(v) where
block−1(v) := {x ∈ Rd : block(x) = v}.

Definition 3.2.2 (Block Functions and Coarse Functions). For a function f : Rd → {±1},
we define fblock : [r]d → {±1} as fblock := f ◦ blockpoint and f coarse : Rd → {±1} as
f coarse := fblock ◦ block = f ◦ blockpoint ◦ block. For any set H of functions Rd → {±1},
we define Hblock := {fblock | f ∈ H}. For a distribution µ over Rd and an r-block partition
block : Rd → [r]d we define the distribution block(µ) over [r]d as the distribution of block(x)
for x ∼ µ.
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Figure 3.1: Left: Random grid X (pale lines) with induced block partition (thick lines)
and blockpoint values (dots), superimposed on f−1(1) (gray polygon). Right: f coarse (grey)
compared to f (polygon outline).

Definition 3.2.3 (Induced Block Partitions). When µ is a product distribution over Rd,
a random grid X of length m is the grid obtained by sampling m points x1, . . . , xm ∈ Rd

independently from µ and for each i ∈ [d], j ∈ [m] defining Xi,j to be the jth-smallest
coordinate in dimension i among all sampled points. For any r that divides m we define
an r-block partition depending on X by defining for each i ∈ [d], j ∈ [r − 1] the point
ai,j := Xi,mj/r so that the intervals are Bi,j := (Xi,m(j−1)/r, Xi,mj/r] when j ∈ {2, . . . , r− 1}
and Bi,1 = (−∞, Xi,m/r], Bi,r = (Xi,m(r−1)/r,∞); we let the points bi,j defining blockpoint
be arbitrary. This is the r-block partition induced by X.

Definition 3.2.4 (Block Boundary Size). For a block partition block : Rd → [r]d, a
distribution µ over Rd, and a function f : Rd → {±1}, we say f is non-constant on a block
v ∈ [r]d if there are sets S, T ⊂ block−1(v) such that ∀s ∈ S, t ∈ T : f(s) = 1, f(t) = −1;
and S, T have positive measure (in the product of Lebesgue measures). For a function
f : Rd → {±1} and a number r, we define the r-block boundary size bbs(f, r) as the
maximum number of blocks on which f is non-constant, where the maximum is taken over
all r-block partitions block : Rd → [r]d. For a set H of functions Rd → {±1}, we define
bbs(H, r) := max{bbs(f, r) | f ∈ H}.

The total variation distance between two distributions µ, ν over a finite domain X is
defined as

‖µ− ν‖TV :=
1

2

∑
x∈X

|µ(x)− ν(x)| = max
S⊆X
|µ(S)− ν(S)| .
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The essence of downsampling is apparent in the next proposition. It shows that the distance
of f to its coarsened version f coarse is bounded by two quantities: the fraction of blocks
in the r-block partition on which f is not constant, and the distance of the distribution
block(µ) to uniform. When both quantities are small, testing or learning f can be done by
testing or learning f coarse instead. The uniform distribution over a set S is denoted unif(S):

Proposition 3.2.5. Let µ be a continuous product distribution over Rd, let X be a random
grid, and let block : Rd → [r]d be the induced r-block partition. Then, for any measurable
f : Rd → {±1}, the following holds with probability 1 over the choice of X:

P
x∼µ

[f(x) 6= f coarse(x)] ≤ r−d · bbs(f, r) + ‖block(µ)− unif([r]d)‖TV .

Proof. We first establish that, with probability 1 over X and x ∼ µ, if f(x) 6= f coarse(x)
then f is non-constant on block(x). Fix X and suppose there exists a set Z of positive
measure such that for each x ∈ Z, f(x) 6= f coarse(x) but f is not non-constant on block(x),
i.e. for V = block−1(block(x)), either µ(V ∩ f−1(1)) = µ(V ) or µ(V ∩ f−1(−1)) = µ(V ).
Then there is v ∈ [r]d such that for V = block−1(v), µ(Z ∩ V ) > 0. Let y = blockpoint(v).
If µ(V ∩ f−1(f(y)) = µ(V ) then µ(Z ∩ V ) = 0, so µ(V ∩ f−1(f(y)) = 0. But for random
X, the probability that there exists v ∈ [r]d such that µ(V ∩ f−1(blockpoint(v))) = 0 is 0,
since blockpoint(v) is random within V .

Assuming that the above event occurs,

P
x∼µ

[f(x) 6= f coarse(x)] ≤ P
x∼µ

[f is non-constant on block(x)]

≤ P
v∼[r]d

[f is non-constant on v] + ‖block(µ)− unif([r]d)‖TV .

Since v ∼ [r]d is uniform, the probability of hitting a non-constant block is at most r−d ·
bbs(f, r).

Next we give a bound on the number of samples required to ensure that block(µ) is
close to uniform. We need the following lemma.

Lemma 3.2.6. Let µ be continuous probability distribution over R, m, r ∈ N such that r
divides m, and δ ∈ (0, 1/2). Let X be a set of m points sampled independently from µ.
Write X = {x1, . . . , xm} labeled such that x1 < · · · < xm (and write x0 = −∞). Then for
any i ∈ [r],

P
[
µ
(
x(i−1)(m/r), xi(m/r)

]
<

1− δ
r

]
≤ 4 · e−

δ2m
32r .
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Proof. We assume that i−1 ≤ r/2. If i−1 > r/2 then we can repeat the following analysis
with the opposite ordering on the points in X. Write x∗ = x

(i−1)
m
r

and β = µ(−∞, x∗].
First suppose that (1 − δ/2) i−1

r
< β < (1 + δ/2) i−1

r
≤ (1 + δ/2)/2; we will bound the

probability of this event later.

Let t ∈ R be the point such that µ(x∗, t] = (1 − δ)/r (which must exist since µ is
continuous). Let η = δ

1−δ ≥ δ. Write X∗ = {x ∈ X : x > x∗}. The expected value of

|X∗ ∩ (x∗, t]| is |X∗| 1−δ
r(1−β)

=
(
1− i−1

r

)
1−δ

r(1−β)
, where the factor 1− β in the denominator is

due to the fact that each element of X∗ is sampled from µ conditional on being larger than
x∗. The event µ(x∗, xi(m/r)] < (1 − δ)/r occurs if and only if |X∗ ∩ (x∗, t]| > m/r, which
occurs with probability

P
[
|X∗ ∩ (x∗, t]| > m

r

]
= P

[
|X∗ ∩ (x∗, t]| > m

(
1− (i− 1)

r

)
1− δ

r(1− β)
(1 + η)

]
where

1 + η =
(1− β)

(1− δ)
(
1− i−1

r

) ≥ (1− (1 + δ/2) i−1
r

)
(1− δ)

(
1− i−1

r

) =
1

1− δ

(
1− (δ/2)(i− 1)

r − (i− 1)

)
≥ 1− δ/2

1− δ
= 1 +

δ

2(1− δ)
≥ 1 + δ/2 .

Since the expected value satisfies

|X∗| 1− δ
r(1− β)

≥ m

r
(1− i− 1

r
)
2(1− δ)
1− δ/2

≥ m

r
(1− δ/2) ≥ m

2r
,

the Chernoff bound gives

P
[
|X∗ ∩ (x∗, t]| > m

r

]
≤ exp

(
− δ

2|X∗|(1− δ)
3 · 4 · r(1− β)

)
≤ e−

δ2m
3·4·2r .

Now let t ∈ R be the point such that µ(x∗, t] = (1+δ)/r. The expected value of |X∗∩(x∗, t]|
is now |X∗| 1+δ

r(1−β)
. The event µ(x∗, xi(m/r)] > (1 + δ)/r occurs if and only if |X∗ ∩ (x∗, t]| <

m/r, which occurs with probability

P
[
|X∗ ∩ (x∗, t]| < m

r

]
= P

[
|X∗ ∩ (x∗, t]| < m

(
1− i− 1

r

)
1 + δ

r(1− β)
(1− η)

]
where

1− η =
1− β

(1 + δ)(1− i−1
r

)
≤

1− (1 + δ/2) i−1
r

(1 + δ)
(
1− i−1

r

) =
1

1 + δ

(
1 +

(δ/2)(i− 1)

r − (i− 1)

)
≤ 1 + δ/2

1 + δ
= 1− δ/2

1 + δ
≤ 1− δ

4
.
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The expected value satisfies |X∗| 1+δ
r(1−β)

> m/r, so the Chernoff bound gives

P
[
|X∗ ∩ (x∗, t]| < m

r

]
≤ exp

(
− δ2|X∗|(1 + δ)

2 · 42 · r(1− β)

)
≤ e−

δ2m
2·42 .

It remains to bound the probability that (1 − δ/2) i−1
r
< β < (1 + δ/2) i−1

r
. Define t ∈ R

such that µ(−∞, t] = (1 + δ/2) i−1
r

. β = µ(−∞, x∗] ≥ (1 + δ/2) i−1
r

if and only if x∗ > t,

i.e. |X ∩ (−∞, t]| < i−1
r

. The expected value of |X ∩ (−∞, t]| is m (1+δ/2)(i−1)
r

, so for

η = δ/2
1+δ/2

≥ δ/3, the Chernoff bound implies

P
[
|X ∩ (−∞, t]| < m

i− 1

r

]
= P

[
|X ∩ (−∞, t]| < m

(1 + δ/2)(i− 1)

r
(1− η)

]
≤ e−

δ2m(1+δ/2)(i−1)
18r ≤ e−

δ2m
18r .

Now define t ∈ R such that µ(−∞, t] = (1− δ/2) i−1
r

. β = µ(−∞, x∗] ≤ (1− δ/2) i−1
r

if and

only if x∗ < t, i.e. |X∩ (−∞, t]| > i−1
r

. The expected value of |X∩ (−∞, t]| is m (1−δ/2)(i−1)
r

,
so for η = δ

2−δ ≥ δ/2,

P
[
|X ∩ (−∞, t]| > m

i− 1

r

]
= P

[
|X ∩ (−∞, t]| > m

(1− δ/2)(i− 1)

r
(1 + η)

]
≤ e−

δ2m(1−δ/2)(i−1)
2·4r ≤ e−

δ2m
42r .

The conclusion then follows from the union bound over these four events.

Lemma 3.2.7. Let µ = µ1 × · · · × µd be a product distribution over Rd where each µi is
continuous. Let X be a random grid with length m sampled from µ, and let block : Rd → [r]d

be the r-block partition induced by X. Then

P
X

[
‖block(µ)− unif([r]d)‖TV > ε

]
≤ 4rd · e−

ε2m
18rd2

Proof. For a fixed grid X and each i ∈ [d], write pi : [r] → [0, 1] be the probability
distribution on [r] with pi(z) = µi(Bi,z). Then block(µ) = p1 × · · · × pd.

Let δ = 4ε
3d

. Suppose that for every i, j ∈ [d]× [r] it holds that 1+δ
r
≤ pi(j) ≥ 1−δ

r
. Note

that dδ = 4ε
3
≤ ln(1 + 2ε) ≤ 2ε. Then for every v ∈ [r]d,

P
u∼µ

[block(u) = v] =
d∏
i=1

pi(vi)

{
≤ (1 + δ)dr−d ≤ edδr−d ≤ (1 + 2ε)r−d

≥ (1− δ)dr−d ≥ (1− dδ)r−d ≥ (1− 2ε)r−d .
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So

‖block(µ)− unif([r]d)‖TV =
1

2

∑
v∈[r]d

| P
u∼µ

[block(u) = v]− r−d| ≤ 1

2

∑
v∈[r]d

2εr−d = ε .

By Lemma 3.2.6 and the union bound, the probability that there is some i ∈ [d], j ∈ [r]

that satisfies pi(j) < (1− δ)/r is at most 4rd · e−
ε2m
18rd2 .

3.3 Testing Monotonicity

The main result of [BCS20] is a “domain reduction” theorem, allowing a change of domain
from [n]d to [r]d where r = poly(d/ε); by applying this theorem together with their earlier

Õ(d
5/6

ε4/3
poly log(dn))-query tester in [?] for the uniform distribution on [n]d, they obtain a

tester for monotone functions with query complexity independent of n. Our result replaces
this domain reduction method with a simpler two-page argument, and gives a different
generalization to the distribution-free case. We present the short proof of the domain re-
duction result for [n]d in the next section, and follow it with the general tester monotonicity
under product distributions in Section 3.3.2.

3.3.1 Testing Monotonicity on the Hypergrid

Our monotonicity tester will use as a subroutine the following tester for diagonal functions.
For a hypergrid [n]d, a diagonal is a subset of points {x ∈ [n]d : x = v+λ~1, λ ∈ Z} defined
by some v ∈ [n]d. A function f : [n]d → {0, 1} is a diagonal function if it has at most one
1-valued point in each diagonal.

Lemma 3.3.1. There is an ε-tester for diagonal functions on [n]d, with one-sided error
and query complexity O

(
1
ε

log2(1/ε)
)
.

Proof. For each t ∈ [n] let Dt be the set of diagonals with size t. For any x ∈ [n]d let
diag(x) be the unique diagonal that contains x. For input f : [n]d → {0, 1} and any

x ∈ [n]d, let R(x) = |{y∈diag(x):f(y)=1}|
|diag(x)| .

Suppose that f is ε-far from diagonal. Then f must have at least εnd 1-valued points;
otherwise we could set each 1-valued point to 0 to obtain the constant 0 function. Now

87



observe

E
x∼[n]d

[R(x)] = E
x∼[n]d

[
n∑
t=1

∑
L∈Dt

1 [diag(x) = L]
|{y ∈ L : f(y) = 1}|

t

]

=
n∑
t=1

∑
L∈Dt

P
x∼[n]d

[x ∈ L]
|{y ∈ L : f(y) = 1}|

t

=
n∑
t=1

∑
L∈Dt

t

nd
|{y ∈ L : f(y) = 1}|

t

=
1

nd
|{y ∈ [n]d : f(y) = 1}| ≥ ε .

For each i, define Ai =
{
x ∈ [n]d : 1

2i
< R(x) ≤ 1

2i−1

}
. Let k = log(4/ε). Then

ε ≤ E [R(x)] ≤
∞∑
i=1

|Ai|
nd

max
x∈Ai

R(x) ≤
∞∑
i=1

|Ai|
nd2i−1

≤
k∑
i=1

|Ai|
nd2i−1

+
∞∑

i=k+1

1

2i−1

≤
k∑
i=1

|Ai|
nd2i−1

+
1

2k−1
≤

k∑
i=1

|Ai|
nd2i−1

+
ε

2

=⇒ ε

2
≤

k∑
i=1

|Ai|
nd2i−1

.

Therefore there is some ` ∈ [k] such that |A`| ≥ εnd2`−1

2k
.

The tester is as follows. For each i ∈ [k]:

1. Sample p = k
ε2i−2 ln(6) points x1, . . . , xp ∼ [n]d.

2. For each j ∈ [p], sample q = 2i+2 ln(12) points y1, . . . , yq from diag(xi) and reject if
there are two distinct 1-valued points in the sample.

The query complexity of the tester is
∑k

i=1 42 ln(6) ln(12) k
ε2i

2i = O
(

1
ε

log2(1/ε)
)
.

The tester will clearly accept any diagonal function. Now suppose that f is ε-far from
having this property, and let ` ∈ [k] be such that |A`| ≥ εnd2`−2

k
. On iteration i = `, the

algorithm samples p = k
ε2`−2 ln(6) points x1, . . . , xp. The probability that ∀j ∈ [p], xj /∈ A`

is at most (
1− |A`|

nd

)p
≤
(

1− ε2`−2

k

)p
≤ exp

(
−εp2

`−2

k

)
≤ 1/6 .
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Now assume that there is some xj ∈ A`, so that R(xj) > 2−`. Let A,B ⊂ diag(xj)
be disjoint subsets that partition the 1-valued points in diag(xi) into equally-sized parts.
Then for y sampled uniformly at random from diag(xj), P [y ∈ A] ,P [y ∈ B] ≥ 2−(`+1).
The probability that there are at least 2 distinct 1-valued points in y1, . . . , yq sampled by
the algorithm is at least the probability that one of the first q/2 samples is in A and one of
the last q/2 samples is in B. This fails to occur with probability at most 2(1−2−(`+1))q/2 ≤
2e−q2

−(`+2) ≤ 1/6. So the total probability of failure is at most 2/6 = 1/3.

Theorem 3.3.2. There is a non-adaptive monotonicity tester on domain [n]d with one-

sided error and query complexity Õ
(
d5/6

ε4/3

)
.

Proof. Set r = d4d/εe, and assume without loss of generality that r divides n. Partition
[n] into r intervals Bi = {(i − 1)(n/r) + 1, . . . , i(n/r)}. For each v ∈ [r]d write Bv =
Bvi × · · · × Bvd . Define block : [n]d → [r]d where block(x) is the unique vector v ∈ [r]d

such that x ∈ Bv. Define block−↓(v) = min{x ∈ Bv} and block−↑(v) = max{x ∈ Bv},
where the minimum and maximum are with respect to the natural ordering on [n]d. For
f : [n]d → {0, 1}, write fblock : [r]d → {0, 1}, fblock(v) = f(block−↓(v)). We may simulate
queries v to fblock by returning f(block−↓(v)). We will call v ∈ [r]d a boundary block if
f(block−↓(v)) 6= f(block−↑(v)).

The test proceeds as follows: On input f : [n]d → {0, 1} and a block v ∈ [r]d, define
the following functions:

g : [n]d → {0, 1}, g(x) =

{
fblock(block(x)) if block(x) is not a boundary block

f(x) if block(x) is a boundary block.

b : [r]d → {0, 1}, b(v) =

{
0 if v is not a boundary block

1 if v is a boundary block.

h : [r]d → {0, 1}, h(v) =

{
fblock(v) if v is not a boundary block

0 if v is a boundary block.

Queries to each of these functions can be simulated by 2 or 3 queries to f . The tester
performs:

1. Test whether g = f , or whether dist(f, g) > ε/4, using O(1/ε) queries.

2. Test whether b is diagonal, or is ε/4-far from diagonal, using Lemma 3.3.1, with
O
(

1
ε

log2(1/ε)
)

queries.
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3. Test whether h is monotone or ε/4-far from monotone, using the tester of [?] with

Õ
(
d5/6

ε4/3

)
queries.

Claim 3.3.3. If f is monotone, the tester passes all 3 tests with probability 1.

Proof of claim. To see that g = f , observe that if v = block(x) is not a boundary block
then f(block−↓(v)) = f(block−↑(v)). If f(x) 6= fblock(block(x)) then f(x) 6= f(block−↓(v))
and f(x) 6= f(block−↑(v)) while block−↓(v) � x � block−↑(v), and this is a violation of the
monotonicity of f . Therefore f will pass the first test with probability 1.

To see that f passes the second test with probability 1, observe that if f had 2 boundary
blocks in some diagonal, then there are boundary blocks u, v ∈ [r]d such that block−↑(u) ≺
block−↓(v). But then there is x, y ∈ [n]d such that block(x) = u, block(y) = v and f(x) =
1, f(y) = 0; since x � block−↑(u) ≺ block−↓(v) � y, this contradicts the monotonicity of f .
So f has at most 1 boundary block in each diagonal.

To see that h is monotone, it is sufficient to consider the boundary blocks, since all
other values are the same as fblock. Let v ∈ [r]d be a boundary block, so there exist
x, y ∈ [n]d such that block(x) = block(y) and f(x) = 1, f(y) = 0. Suppose u ≺ v is
not a boundary block (if it is a boundary block then h(u) = h(v) = 0). If h(u) = 1
then f(block−↓(u)) = 1, but block−↓(u) ≺ block−↓(v) � y while f(block−↓(u)) > f(y), a
contradiction. So it must be that h(u) = 0 whenever u ≺ v. For any block u ∈ [r]d such
that v ≺ u, we have 0 = h(v) ≤ h(u), so monotonicity holds. Since the tester of Black,
Chakrabarty, & Seshadhri has one-sided error, the test passes with probability 1.

Claim 3.3.4. If g is ε/4-close to f , b is ε/4-close to diagonal, and h is ε/4-close to
monotone, then f is ε-close to monotone.

Proof of claim. Let hcoarse : [n]d → {0, 1} be the function hcoarse(x) = h(block(x)). Suppose
that f(x) 6= hcoarse(x). If v = block(x) is not a boundary block of f then hcoarse(x) = h(v) =
fblock(v) = g(x), so f(x) 6= g(x). If v is a boundary block then hcoarse(x) = h(v) = 0 so
f(x) = 1, and b(v) = 1.

Suppose for contradiction that there are more than ε
2
rd boundary blocks v ∈ [r]d, so

there are more than ε
2
rd 1-valued points of b. Any diagonal function has at most drd−1

1-valued points. Therefore the distance of b to diagonal is at least

r−d
( ε

2
rd − drd−1

)
=
ε

2
− d

r
=
ε

2
− ε

4
=
ε

4
,
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a contradiction. So f has at most ε
2
rd boundary blocks. Now

dist(f, hcoarse) = dist(f, g) + P
x∼[n]d

[f(x) = 1, block(x) is a boundary block]

≤ ε

4
+ r−d · εr

d

2
=

3

4
ε .

Let p : [r]d → {0, 1} be a monotone function minimizing the distance to h, and let pcoarse :
[n]d → {0, 1} be the function pcoarse(x) = p(block(x)). Then

dist(hcoarse, pcoarse) = P
x∼[n]d

[h(block(x)) 6= p(block(x))] = P
v∼[r]d

[h(v) 6= p(v)] ≤ ε/4 .

Finally, the distance of f to the nearest monotone function is at most

dist(f, pcoarse) ≤ dist(f, hcoarse) + dist(hcoarse, pcoarse) ≤ 3

4
ε+

1

4
ε = ε .

These two claims suffice to establish the theorem.

3.3.2 Monotonicity Testing under Product Distributions

The previous section used a special case of downsampling, tailored for the uniform distri-
bution over [n]d. We will call a product distribution µ = µ1×· · ·×µd over Rd continuous if
each of its factors µi are continuous (i.e. absolutely continuous with respect to the Lebesgue
measure). The proof for discrete distributions is in Section 3.8.4.

Theorem 1.2.11. There is a one-sided non-adaptive tester for monotonicity under product
distributions over Rd, with query complexity Õ(d5/6/ε4/3) and sample complexity Õ((d/ε)3).

Proof. We follow the proof of Theorem 3.3.2, with some small changes. Let r = d16d/εe.
The tester first samples a grid X with length m = O

(
rd2

ε2
log(rd)

)
and constructs the

induced (r + 2)-block partition, with cells labeled {0, . . . , r + 1}d. We call a block v ∈
{0, . . . , r+1}d upper extreme if there is some i ∈ [d] such that vi = r+1, and we call it lower
extreme if there is some i ∈ [d] such that vi = 0 but v is not upper extreme. Call the upper
extreme blocks U and the lower extreme blocks L. Note that [r]d = {0, . . . , r+1}d\(U∪L).

For each v ∈ [r]d, we again define block−↑(v), block−↓(v) as, respectively, the supremal
and infimal point x ∈ Rd such that block(x) = v. The algorithm will ignore the extreme
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blocks U ∪L, which do not have a supremal or an infimal point. Therefore it is not defined
whether these blocks are boundary blocks.

By Lemma 3.2.7, with probability at least 5/6, we will have ‖block(µ)−unif({0, . . . , r+
1})‖TV ≤ ε/8. We define b, h as before, with domain [r]d. Define g similarly but with
domain Rd and values

g(x) =


1 if block(x) ∈ U
0 if block(x) ∈ L
f(x) if block(x) ∈ [n]d is a boundary block

fblock(block(x)) otherwise.

If f is monotone, it may now be the case f 6= g, but we will have f(x) = g(x) for all x with
block(x) ∈ [r]d, where the algorithm will make its queries. The algorithm will test whether
f(x) = g(x) on all x with block(x) ∈ [r]d, or ε/8-far from this property, which can be again
done with O(1/ε) samples. Note that if f is ε/8-close to having this property, then

distµ(f, g) ≤ P
x∼µ

[
block(x) /∈ [n]d

]
+ ε/8

≤ d(r + 2)d−1

(r + 2)d
+ ε/8 + ‖block(µ)− unif([r]d ∪ U ∪ L)‖TV

≤ ε

16
+
ε

8
+
ε

4
≤ ε

2
.

The algorithm then proceeds as before, with error parameter ε/2. To test whether g = f ,
the algorithm samples from µ and throws away any sample x ∈ Rd with block(x) /∈ [r]d. It
then tests b and h using the uniform distribution on [r]d. It suffices to prove the following
claim, which replaces Claim 3.3.4.

Claim 3.3.5. If g is ε/2-close to f , b is ε/16-close to diagonal, and h is ε/8-close to
monotone, then f is ε-close to monotone.

Proof of claim. Let p : [r]d → {0, 1} be a monotone function minimizing the distance to

h. Then p(v) 6= h(v) on at most εrd

8
blocks v ∈ [r]d. Define pcoarse : Rd → {0, 1} as

pcoarse(x) = p(block(x)) when block(x) ∈ [r]d, and pcoarse(x) = g(x) when block(x) ∈ U ∪ L.
Note that pcoarse is monotone.

By the triangle inequality,

distµ(f, pcoarse) ≤ distµ(f, g) + distµ(g, pcoarse) .
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From above, we know distµ(f, g) ≤ ε/2. To bound the second term, observe that since b is
ε/16-close to diagonal, there are at most

ε

16
rd + drd−1 ≤ ε

16
rd +

d

r
rd ≤ ε

16
rd +

ε

16
rd =

ε

8
rd

boundary blocks. Then observe that if g(x) 6= pcoarse(x) then block(x) ∈ [r]d and either
block(x) is a boundary block, or g(x) = fblock(block(x)) = h(block(x)) and h(block(x)) 6=
p(block(x)). Then

distµ(g, pcoarse) ≤

 1

(r + 2)d

∑
v∈[r]d

1 [v is a boundary block, or h(v) 6= p(v)]


+ ‖block(µ)− unif({0, . . . , r + 1}d)‖TV

≤ εrd

8rd
+
εrd

8rd
+
ε

4
≤ ε

2
.

This concludes the proof.

3.4 Learning and Testing Functions of Convex Sets

Let C be the set of functions f : Rd → {±1} such that f−1(1) is convex. This class
of functions was one of the first classes of functions in continuous space Rd → {0, 1} to
be studied in the property testing literature. This problem has been studied in various
models of testing [Ras03, RV04, CFSS17, BMR19, BB20]. In this section we consider the
labeled-sample model, as in Chapter 2.

Chen et al. [CFSS17] gave a tester for C in this model under the Gaussian distribution
on Rd with one-sided error and sample complexity (d/ε)O(d), along with a lower bound (for
one-sided testers) of 2Ω(d). We match their upper bound while generalizing the tester to
be distribution-free under product distributions. This is proved in Section 3.4.1.

Theorem 3.4.1. There is a sample-based distribution-free one-sided ε-tester for C under

(finite or continuous) product distributions that uses at most O
((

6d
ε

)d)
samples.

Recall the definition of an (ε1, ε2)-tolerant tester from Definition 1.2.3. Tolerantly test-
ing convex sets has been studied by [BMR16] for the uniform distribution over the 2-
dimensional grid, but not (to the best of our knowledge) in higher dimensions. We obtain
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a sample-based tolerant tester (and distance approximator) for convex sets in high dimen-
sion. In fact, we get a tolerant tester for the class of all functions of k convex sets, defined
as follows.

Definition 3.4.2 (Function Composition). Write Bk for the set of all Boolean functions
g : {±1}k → {±1}. For a set H of functions h : Rd → {±1}, we will define the composition
Bk ◦ H as the set of functions of the form f(x) = g(h1(x), . . . , hk(x)) where g ∈ Bk and
each hi belongs to H.

We obtain a distance approximator for Bk ◦ C, proved in Section 3.4.2.

Theorem 3.4.3. Let B′ ⊂ Bk. There is a sample-based distribution-free algorithm un-
der (finite or continuous) product distributions that approximates distance to B′ ◦ C up

to additive error ε using O
(

1
ε2

(
3dk
ε

)d)
samples. Setting ε = (ε2 − ε1)/2 we obtain an

(ε1, ε2)-tolerant tester with sample complexity O

(
1

(ε2−ε1)2

(
6dk
ε2−ε1

)d)
.

General distribution-free learning of convex sets is not possible, since this class has
infinite VC dimension. However, they can be learned under the Gaussian distribution.
Non-agnostic learning under the Gaussian was studied by Vempala [Vem10a, Vem10b].
Agnostic learning under the Gaussian was studied by Klivans, O’Donnell, & Servedio
[KOS08] who presented a learning algorithm with complexity dO(

√
d/ε4), and a lower bound

of 2Ω(
√
d).

Unlike the Gaussian, there is a trivial lower bound of Ω(2d) in arbitrary product dis-
tributions, because any function f : {±1}d → {0, 1} belongs to this class. However, unlike
the general distribution-free case, we show that convex sets (or any functions of convex
sets) can be learned under unknown product distributions. This is proved in Section 3.4.3.

Theorem 3.4.4. There is an agnostic learning algorithm for Bk ◦ C under (finite or con-

tinuous) product distributions over Rd, with time complexity O
(

1
ε2
·
(

6dk
ε

)d)
.

All our algorithms will follow from more general results that actually hold for any class
H with bounded r-block boundary size; i.e. bounded block-boundary size is sufficient to
guarantee learnability in product distributions. We first state some important properties
of the composed function class Bk ◦H that make downsampling effective for these classes.

Proposition 3.4.5. Let H be any class of functions Rd → {±1} and fix any r. Then
bbs(Bk ◦ H, r) ≤ k · bbs(H, r).
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Proof. If f(·) = g(h1(·), . . . , hk(·)) is not constant on block−1(v) then one of the hi is not
constant on that block. Therefore bbs(f, r) ≤

∑k
i=1 bbs(hi, r) ≤ k · bbs(H, r).

Lemma 3.4.6. For any r, bbs(Bk ◦ C, r) ≤ 2dkrd−1.

Proof. We prove bbs(C, r) ≤ 2drd−1 by induction on d; the result will hold by Proposi-
tion 3.4.5. Let bbs(C, r, d) be the r-block boundary size in dimension d. Recall that block
v ∈ [r]d is the set Bv = B1,v1 × · · · × Bd,vd where Bi,j = (ai,j−1, ai,j] for some ai,j−1 < ai,j.
Let f ∈ C.

For d = 1, if there are 3 intervals B1,i1 , B1,i2 , B1,i3 , i1 < i2 < i3, on which f is not
constant, then within each interval the function takes both values {±1}. Thus, there are
points a ∈ B1,i1 , b ∈ B1,i2 , c ∈ B1,i3 such that f(a) = 1, f(b) = −1, f(c) = 1, which is a
contradiction.

For each block Bv, let Av = {a1,v1}×B2,v2 × . . .×Bd,vd be the “upper face”. For d > 1,
let P ⊆ [r]d be the set of non-constant blocks Bv such that f is constant on the upper face
and let Q be the set of non-constant blocks that are non-constant on the upper face, so
that bbs(f, r, d) = |P | + |Q|. We argue that |P | ≤ 2rd−1: for a vector w ∈ [r]d−1 define
the line Lw := {v ∈ [r]d | ∀i > 1, vi = wi}. If |P ∩ Lw| ≥ 3 then there are t, u, v ∈ Lw
with t < u < v such that f is constant on At, Au, Av but non-constant on Bt, Bu, Bv. Let
x, y, z be points in Bt, Bu, Bv respectively such that f(x) = f(y) = f(z) = 1. If f is
constant −1 on At or Au then there is a contradiction since the lines through (x, y) and
(y, z) pass through At, Au; so f is constant 1 on At, Au. But then there is a point q ∈ Au
with f(q) = −1, which is a contradiction since it is within the convex hull of At, Au. So
|Lw ∩ P | < 3; since there are at most rd−1 lines Lw, |P | ≤ 2rd−1.

To bound |Q|, observe that for each block v ∈ Q, f is non-constant on the plane
{a1,v1}×Rd−1, there are (r−1) such planes, f is convex on each, and the r-block partition
induces an r-block partition on the plane where f is non-constant on the corresponding
block. Then, by induction |Q| ≤ (r − 1) · bbs(C, r, d− 1) ≤ 2(d− 1)(r − 1)rd−2. So

bbs(C, r, d) ≤ 2
[
(d− 1)(r − 1)rd−2 + rd−1

]
< 2drd−1 .

The above two lemmas combine to show that

r−d · bbs(Bk ◦ C, r) ≤ r−d(2dkrd−1) = 2dk/r ≤ ε

when r = d2dk/εe.
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3.4.1 Sample-Based One-sided Tester

First, we prove a one-sided sample-based tester for convex sets.

Theorem 3.4.1. There is a sample-based distribution-free one-sided ε-tester for C under

(finite or continuous) product distributions that uses at most O
((

6d
ε

)d)
samples.

Proof. We prove the result for continuous distributions. The proof for finite distributions
is in Theorem 3.8.18.

On input distribution µ and function f , let r = d6d/εe so that r−d · bbs(C, r) ≤ ε/3.

1. Sample a grid X of size m = O
(
rd2

ε2
log(rd/ε)

)
large enough that Lemma 3.2.7

guarantees ‖block(µ)− unif([r]d)‖TV < ε/9 with probability 5/6.

2. Take q = O
(
rd

ε

)
samples Q and accept if there exists h ∈ C such that f(x) =

hcoarse(x) on all x ∈ Q that are not in a boundary block of h.

This tester is one-sided since for any h ∈ C, h(x) = hcoarse(x) for all x ∈ Q that are
not in a boundary block, regardless of whether the r-block decomposition induced by X
satisfies ‖block(µ) − unif([r]d)‖TV ≤ ε/3. Now suppose that distµ(f, C) > ε, and suppose
that ‖block(µ) − unif([r]d)‖TV ≤ ε. For h ∈ C, let Bh ⊆ [r]d be the set of non-constant
blocks. If ∃h ∈ C such that P

x∼µ
[hcoarse(x) 6= f(x) ∧ block(x) /∈ Bh] < ε/9, then

distµ(f, hcoarse) ≤ P
x∼µ

[block(x) ∈ Bh] + P
x∼µ

[hcoarse(x) 6= f(x) ∧ block(x) /∈ Bh]

≤ r−d · bbs(C, r) + ‖block(µ)− unif([r]d)‖TV +
ε

9

≤
(

1

3
+

2

9

)
ε =

5

9
· ε .

Therefore

distµ(f, h) ≤ distµ(f, hcoarse) + distµ(hcoarse, h)

≤ distµ(f, hcoarse) + r−d · bbs(C, r) + ‖block(µ)− unif([r]d)‖TV

≤ 5

9
ε+

1

3
· ε+

1

9
ε = ε ,
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a contradiction. So it must be that for every h ∈ C,P [f(x) 6= hcoarse(x) ∧ x /∈ Bh] ≥ ε/9.

There are at most
(
rd
ε
3
rd

)
≤ (3e/ε)εr

d/3 choices of boundary set B. Because the 1-valued

blocks must be the convex hull of the boundary points, for each boundary set B there are
at most 2 choices of function hcoarse with boundary B (with a second choice occurring when
the complement of hcoarse is also a convex set with the same boundary). Therefore, by the
union bound, the probability that f is accepted is at most(

3e

ε

) ε
3
rd

·
(

1− ε

9

)q
≤ e

ε
(
rd

3
− q

9

)
,

which is at most 1/6 for sufficiently large q = O
(
rd + 1

ε

)
.

3.4.2 Sample-Based Distance Approximator

Our sample-based distance approximator follows from the following general result.

Lemma 3.4.7. For any set H of functions Rd → {±1}, ε > 0, and r satisfying r−d ·
bbs(H, r) ≤ ε/3, there is a sample-based distribution-free algorithm for product distributions

that approximates distance to H up to additive error ε using O
(
rd

ε2

)
samples.

Proof. On input distribution µ and function f : Rd → {0, 1}, let r = 3dk/ε, then:

1. Sample a grid X of size m = O( rd
2

ε2
log rd

ε
) large enough that Lemma 3.2.7 guarantees

‖block(µ)− unif([r]d)‖TV < ε/3 with probability 5/6.

2. Let Hcoarse be the set of all functions hcoarse where h ∈ H; note that |Hcoarse| ≤ 2r
d
.

3. Draw q = O
(
rd

ε2

)
samples Q and output the distance on Q to the nearest function

in Hcoarse.

We argue that with probability at least 5/6, Hcoarse is an 5
6
ε-cover of H. With probability

at least 5/6, ‖block(µ)− unif([r]d)‖TV < ε/6. Then by Proposition 3.2.5, for any h ∈ H,

P
x∼µ

[h(x) 6= hcoarse(x)] ≤ r−d · bbs(f, r) + ‖block(µ)− unif([r]d)‖TV ≤
(

2

3
+

1

6

)
ε =

5

6
ε ,

so Hcoarse is a 5
6
ε-cover; assume this event occurs.

97



Write distQ(f, g) := 1
q

∑
x∈Q 1 [f(x) 6= g(x)]. By the union bound and Hoeffding’s in-

equality, with q samples we fail to get an estimate of distµ(f,Hcoarse) up to additive error
1
6
ε with probability at most

|Hcoarse| · max
hcoarse∈Hcoarse

P
Q

[
|distµ(f, hcoarse)− distQ(f, hcoarse)| > 1

6
ε

]
≤ |Hcoarse| exp

(
−2

qε2

36

)
<

1

6
,

for appropriately chosen q = O
(

1
ε2

log(|Hcoarse|)
)

= O
(
rd

ε2

)
. Assume this event occurs. We

want to show that |distQ(f,Hcoarse) − distµ(f,H)| ≤ ε. Let h ∈ H minimize distµ(f, h) so
distµ(f, h) = distµ(f,H). Then

distQ(f,Hcoarse) ≤ distQ(f, hcoarse) ≤ distµ(f, hcoarse) +
ε

6

≤ distµ(f, h) + distµ(h, hcoarse) +
ε

6
≤ distµ(f,H) + ε .

Now let g ∈ H minimize distQ(f, gcoarse) so distQ(f, gcoarse) = distQ(f,Hcoarse). Then

distQ(f,Hcoarse) = distQ(f, gcoarse) ≥ distµ(f, gcoarse)− ε

6
≥ distµ(f, hcoarse)− ε

6

≥ distµ(f, h)− distµ(h, hcoarse)− ε

6
≥ distµ(f, h)− ε ,

which concludes the proof.

Applying the bound on bbs(Bk, r) we conclude:

Theorem 3.4.3. Let B′ ⊂ Bk. There is a sample-based distribution-free algorithm un-
der (finite or continuous) product distributions that approximates distance to B′ ◦ C up

to additive error ε using O
(

1
ε2

(
3dk
ε

)d)
samples. Setting ε = (ε2 − ε1)/2 we obtain an

(ε1, ε2)-tolerant tester with sample complexity O

(
1

(ε2−ε1)2

(
6dk
ε2−ε1

)d)
.

3.4.3 Agnostic Learning

We begin our learning results with an agnostic learning algorithm for functions of k convex
sets: the class Bk ◦ C. For a distribution D over Rd × {±1} and an r-block partition
block : Rd → [r]d, define the distribution Dblock over [r]d × {±1} as the distribution of
(block(x), b) when (x, b) ∼ D.
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Lemma 3.4.8. Let H be any set of functions Rd → {±1}, let ε > 0, and suppose r satisfies
r−d · bbs(H, r) ≤ ε/3. Then there is an distribution-free agnostic learning algorithm for

continuous product distributions that learns H in O
(
rd+rd2 log(rd/ε)

ε2

)
samples and time.

Proof. On input distribution D:

1. Sample a grid X of size m = O( rd
2

ε2
log(rd/ε)) large enough that Lemma 3.2.7 guar-

antees ‖block(µ)− unif([r]d)‖TV < ε/3 with probability 5/6, where block : Rd → [r]d

is the induced r-block partition.

2. Agnostically learn a function g : [r]d → {±1} with error ε/3 and success probability
5/6 using O(rd/ε2) samples from Dblock. Output the function g ◦ block.

The second step is accomplished via standard learning results ([SB14] Theorem 6.8): the
number of samples required for agnostic learning is bounded by O(1/ε2) multiplied by the
logarithm of the number of functions in the class, and the number of functions [r]d → {±1}
is 2r

d
. Assume that both steps succeed, which occurs with probability at least 2/3. Let

f ∈ H minimize P
(x,b)∼D

[f(x) 6= b]. By Proposition 3.2.5,

P
x∼µ

[f(x) 6= f coarse] ≤ r−d · bbs(f, r) + ‖block(µ)− unif([r]d)‖TV < 2ε/3 .

Then

P
(x,b)∼D

[g(block(x)) 6= b] = P
(v,b)∼Dblock

[g(v) 6= b] ≤ P
(v,b)∼Dblock

[
fblock(v) 6= b

]
+ ε/3

= P
(x,b)∼D

[f coarse(x) 6= b] + ε/3 < P
(x,b)∼D

[f(x) 6= b] + ε .

Lemma 3.4.8 then gives the following result for continuous product distributions, with
the result for finite distributions following from Theorem 3.8.18.

Theorem 3.4.4. There is an agnostic learning algorithm for Bk ◦ C under (finite or con-

tinuous) product distributions over Rd, with time complexity O
(

1
ε2
·
(

6dk
ε

)d)
.

3.5 Polynomial Regression and Learning Functions of

Halfspaces

Let H be the set of halfspaces and recall from Definition 3.4.2 that Bk ◦ H is the class
of arbitrary functions of k halfspaces. Intersections of k halfspaces (the most important
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subclass of Bk ◦ H) have VC dimension Θ(dk log k) [BEHW89, CMK19], so the sample
complexity of learning is known, but it is not possible to efficiently find k halfspaces whose
intersection is correct on the sample, unless P = NP [BR92]. Therefore the goal is to
find efficient “improper” algorithms that output a function other than an intersection of
k halfspaces. Several learning algorithms for intersections of k halfspaces actually work
for arbitrary functions of k halfspaces. Klivans, O’Donnell, & Servedio [KOS04] gave a
(non-agnostic) learning algorithm for Bk ◦ H over the uniform distribution on {±1}d with
complexity dO(k2/ε2), Kalai, Klivans, Mansour, & Servedio [KKMS08] presented an agnostic
algorithm with complexity dO(k2/ε4) in the same setting using “polynomial regression”.

Blais, O’Donnell, & Wimmer [BOW10] studied how to generalize polynomial regression
to arbitrary product distributions. With their method, they obtained an agnostic learning
algorithm for Bk ◦ H with complexity (dn)O(k2/ε4) for product distributions X1 × · · · ×Xd

where each |Xi| = n, and complexity dO(k2/ε4) for the “polynomially bounded” continuous
distributions. This is not a complete generalization, because, for example, on the grid [n]d

its complexity depends on n. This prevents a full generalization to the domain Rd. Their
algorithm also requires some prior knowledge of the support or support size. We use a
different technique and fully generalize the polynomial regression algorithm to arbitrary
product distributions.

Theorem 1.2.12. There is a distribution-free, improper agnostic learning algorithm for
Bk ◦ H under (continuous or finite) product distributions over Rd, with time complexity

min


(
dk

ε

)O( k2
ε4

)
, O

(
1

ε2

(
3dk

ε

)d) .

Recall that downsampling reduces learning H in Rd to learning Hblock over [r]d, and
Hblock is not the set of halfspaces over [r]d. Fortunately, agnostically learning a halfspaces
h is commonly done by giving a bound on the degree of a polynomial p that approximates
h [KOS04, KOS08, KKMS08], and we will show that a similar idea also suffices for learning
Hblock. In the next section, we present a general algorithm based on polynomial regression,
and then introduce the Fourier analysis necessary to apply the general learning algorithm
to halfspaces, polynomial threshold functions, and k-alternating functions.

3.5.1 A General Learning Algorithm

The learning algorithm in this section essentially replaces step 2 of the brute force algorithm
(Lemma 3.4.8) with the “polynomial regression” algorithm of Kalai et al. [KKMS08]. Our
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general algorithm is inspired by an algorithm of Canonne et al. [CGG+19] for tolerantly
testing k-alternating functions over the uniform distribution on [n]d; we state the regression
algorithm as it appears in [CGG+19]. For a set F of functions, span(F) is the set of all
linear combinations of functions in F :

Theorem 3.5.1 ([KKMS08, CGG+19]). Let µ be a distribution over X , let H be a class
of functions X → {±1} and F a collection of functions X → R such that for every h ∈ H,
∃f ∈ span(F) where E

x∼µ

[
(h(x)− f(x))2] ≤ ε2. Then there is an algorithm that, for any

distribution D over X × {±1} with marginal µ over X , outputs a function g : X → {±1}
such that P

(x,b)∼D
[g(x) 6= b] ≤ infh∈H P

(x,b)∼D
[g(x) 6= b] + ε, with probability at least 11/12,

using at most poly(|F|, 1/ε) samples and time.

Our general learning algorithm will apply to any hypothesis class that has small r-block
boundary size, and for which there is a set of functions F that approximately span the
class Hblock. This algorithm is improved to work for finite (rather than only continuous)
product distributions in Lemma 3.8.17.

Lemma 3.5.2. Let ε > 0 and let H be a set of measurable functions f : Rd → {±1} that
satisfy:

1. There is some r = r(d, ε) such that bbs(H, r) ≤ ε
3
· rd;

2. There is a set F of functions [r]d → R satisfying: ∀f ∈ H,∃g ∈ span(F) such that
for v ∼ [r]d,E

[
(fblock(v)− g(v))2

]
≤ ε2/4.

Let n = poly(|F|, 1/ε) be the sample complexity of the algorithm in Theorem 3.5.1, with
error parameter ε/2. Then there is an agnostic learning algorithm for H on continuous
product distributions over Rd, that uses O(max(n2, 1/ε2) · rd2 log(dr)) samples and runs in
time polynomial in the sample size.

Proof. We will assume n > 1/ε. Let µ be the marginal of D on Rd. For an r-block partition,
let Dblock be the distribution of (block(x), b) when (x, b) ∼ D. We may simulate samples
from Dblock by sampling (x, b) from D and constructing (block(x), b). The algorithm is as
follows:

1. Sample a grid X of length m = O(rd2n2 log(rd)) large enough that Lemma 3.2.7
guarantees ‖block(µ)−unif([r]d)‖TV < 1/12n with probability 5/6. Construct block :
Rd → [r]d induced by X. We may construct the block function in time O(dm logm)
by sorting, and once constructed it takes time O(log r) to compute.
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2. Run the algorithm of Theorem 3.5.1 on a sample of n points from Dblock to learn the
class Hblock; that algorithm returns a function g : [r]d → {±1}. Output g ◦ block.

Assume that step 1 succeeds, which occurs with probability at least 5/6. By condition
2, the algorithm in step 2 is guaranteed to work on samples (v, b) ∈ [r]d × {±1} where
the marginal of v is unif([r]d); let Dunif be the distribution of (v, b) when v ∼ unif([r]d)
and b is obtained by sampling (x, b) ∼ (D | x ∈ block−1(v)). The algorithm of step 2 will
succeed on Dunif ; we argue that it will also succeed on the actual input Dblock since these
distributions are close. Observe that for samples (v, b) ∼ Dunif and (block(x), b′) ∼ Dblock,
if v = block(x) then b, b′ each have the distribution of b′ in (x, b′) ∼ (D | block(x) = v).
Therefore

‖Dunif −Dblock‖TV = ‖(v, b)− (block(x), b′)‖TV = ‖v − block(x)‖TV

= ‖block(µ)− unif([r]d)‖TV <
1

12n
.

It is a standard fact that for product distributions P n, Qn, ‖P n −Qn‖TV ≤ n · ‖P −Q‖TV;
using this fact,

‖(Dunif)n − (Dblock)n‖TV ≤ n · ‖Dunif −Dblock‖TV <
1

12
.

We will argue that step 2 succeeds with probability 5/6; i.e. that with probability 5/6,

P
(v,b)∼Dblock

[g(v) 6= b] < inf
h∈H

P
(v,b)∼Dblock

[
hblock(v) 6= b

]
+ ε/2 .

Let E(S) be the event that success occurs given sample S ∈ ([r]d×{±1})n. The algorithm
samples S ∼ (Dblock)n but the success guarantee of step 2 is for (Dunif)n; this step will still
succeed with probability 5/6:

P
S∼(Dunif)n

[E(S)] ≥ P
S∼(Dblock)n

[E(S)]− ‖(Dunif)n − (Dblock)n‖TV

> P
S∼Dn

[E(S)]− 1

12
≥ 11

12
− 1

12
=

5

6
.

Assume that each step succeeds, which occurs with probability at least 1− 2 · (5/6) = 2/3.
By Proposition 3.2.5, our condition 1, and the fact that n > 1/ε, we have for any h ∈ H
that

P
x∼µ

[h(x) 6= hcoarse(x)] ≤ r−d · bbs(H, r) + ‖block(µ)− unif([r]d)‖TV ≤ ε/3 +
1

12n
< ε/2 .
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The output of the algorithm is g ◦ block, which for any h ∈ H satisfies:

P
(x,b)∼D

[g(block(x)) 6= b] = P
(v,b)∼Dblock

[g(v) 6= b] ≤ P
(v,b)∼Dblock

[
hblock(v) 6= b

]
+ ε/2

= P
(x,b)∼D

[hcoarse(x) 6= b] + ε/2

≤ P
(x,b)∼D

[h(x) 6= b] + P
x

[h(x) 6= hcoarse(x)] + ε/2

< P
(x,b)∼D

[h(x) 6= b] + ε .

Then P [g(block(x)) 6= b] ≤ infh∈H h(x) 6= b+ ε, as desired.

3.5.2 Fourier Analysis on [n]d

We will show how to construct a spanning set F to satisfy condition 2 of the general
learning algorithm, by using noise sensitivity and the Walsh basis. For any n, let u ∼ [n]d

uniformly at random and draw v ∈ [n]d as follows: vi = ui with probability δ, and vi is
uniform in [n] \ {ui} with probability 1− δ. The noise sensitivity of functions [n]d → {±1}
is defined as:

nsn,δ(f) := P
u,v

[f(u) 6= f(v)] =
1

2
− 1

2
· E
u,v

[f(u)f(v)] .

Note that we include n in the subscript to indicate the size of the domain. We will use
nsr,δ(f) to obtain upper bounds on the spanning set, and we will obtain bounds on nsr,δ
by relating it to ns2,δ, for which many bounds are known. For a function f : [n]d → {±1},
two vectors u, v ∈ [r]d, and x ∈ {±1}d, define [u, v]x ∈ [n]d as the vector with [u, v]xi = ui
if xi = 1 and vi if xi = −1. Then define fu,v : {±1}d → {±1} as the function fu,v(x) =
f([u, v]x). The next lemma is essentially the same as the reduction in [BOW10].

Lemma 3.5.3. Let H be a set of functions f : Rd → {±1} such that for any linear
transformation A ∈ Rd×d, the function f ◦A ∈ H, and let block : Rd → [r]d be any r-block
partition. Let ns2,δ(H) = supf∈H ns2,δ(f) where ns2,δ(f) is the δ-noise sensitivity on domain
{±1}d. Then nsr,δ(f

block) ≤ ns2,δ(H).

Proof. Let u ∼ [r]d and let v be uniform among the vectors [r]d where ∀i, vi 6= ui. Now let
x ∼ {±1}d uniformly at random and let y be drawn such that yi = xi with probability δ
and yi = −xi otherwise. Then [u, v]x is uniform in [r]d, because [u, v]xi is ui or vi with equal
probability and the marginals of ui, vi are uniform. [u, v]yi = [u, v]xi with probability 1− δ
and is otherwise uniform in [r] \ {[u, v]xi }. Let f : [r]d → {±1} and δ ∈ [0, 1]. Let (u′, v′)
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be an independent copy of (u, v) and observe that nsr,δ(f
block) = P

[
fblock(u′) 6= fblock(v′)

]
.

Now observe that ([u, v]x, [u, v]y) has the same distribution as (u′, v′), so:

E
u,v

[ns2,δ(fu,v)] = E
u,v

[
P

x,y∼δx
[f([u, v]x) 6= f([u, v]y)]

]
= E

u,v,(x,y)δ

[1 [f([u, v]x) 6= f([u, v]y)]]

= E
u′,v′

[1 [f(u′) 6= f(v′)]] = nsr,δ(f
block) .

For any u, v ∈ [r]d, define the function Φu,v : {±1}d → [r]d by Φu,v(x) = blockpoint([u, v]x).
This function maps {±1}d to a set {b1,i1 , b1,j1} × · · · × {bd,id , bd,jd} and can be obtained by
translation and scaling, which is a linear transformation. Therefore fu,v = f ◦ Φ−1

u,v, so we
are guaranteed that fu,v ∈ H. So

nsr,δ(f) = E
u,v

[ns2,δ(fu,v)] ≤ ns2,δ(H) .

We define the Walsh basis, an orthonormal basis of functions [n]d → R; see e.g. [BRY14].
Suppose n = 2m for some positive integer m. For two functions f, g : [n]d → R, define
the inner product 〈f, g〉 = Ex∼[n]d [f(x)g(x)]. The Walsh functions {ψ0, . . . , ψm}, ψi : [n]→
{±1} can be defined by ψ0 ≡ 1 and for i ≥ 1, ψi(z) := (−1)biti(z−1) where biti(z − 1) is the
ith bit in the binary representation of z − 1, where the first bit is the least significant (see
e.g. [BRY14]). It is easy to verify that for all i, j ∈ {0, . . . ,m}, if i 6= j then 〈ψi, ψj〉 = 0,
and Ex∼[n][ψi(x)] = 0 when i ≥ 1. For S ⊆ [m] define ψS =

∏
i∈S ψi and note that for any

set S ⊆ [m], S 6= ∅,

E
x∼[n]

[ψS(x)] = E
x∼[n]

[∏
i∈S

ψi(x)

]
= E

x∼[n]

[
(−1)

∑
i∈S biti(x−1)

]
= 0 (3.1)

since each bit is uniform in {0, 1}, while ψ∅ ≡ 1. For S, T ⊆ [m],

〈ψS, ψT 〉 = Ex∼[n][ψS(x)ψT (x)] = Ex[ψS∆T (x)] ,

where S∆T is the symmetric difference, so this is 0 when S∆T 6= ∅ (i.e. S 6= T ) and 1
otherwise; therefore {ψS : S ⊆ [m]} is an orthonormal basis of functions [n]→ R. Identify
each S ⊆ [m] with the number s ∈ {0, . . . , n− 1} where biti(s) = 1 [i ∈ S]. Now for every
α ∈ {0, . . . , n − 1}d define ψα : [n]d → {±1} as ψα(x) =

∏d
i=1 ψαi(xi) where ψαi is the

Walsh function determined by the identity between subsets of [m] and the integer αi ∈
{0, . . . , n−1}. It is easy to verify that the set {ψα : α ∈ {0, . . . , n− 1}d} is an orthonormal
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basis. Every function f : [n]d → R has a unique representation f =
∑

α∈{0,...,n−1}d f̂(α)ψα

where f̂(α) = 〈f, ψα〉.

For each x ∈ [n]d and ρ ∈ [0, 1] define Nρ(x) as the distribution over y ∈ [n]d where
for each i ∈ [d], yi = xi with probability ρ and yi is uniform in [n] with probability 1− ρ.
Define Tρf(x) := E

y∼Nρ(x)
[f(y)] and stabρ(f) := 〈f, Tρf〉. For any α ∈ {0, . . . , n− 1}d,

Tρψα(x) = E
y∼Nρ(x)

[ψα(y)] = E
y∼Nρ(x)

[
d∏
i=1

ψαi(yi)

]
=

d∏
i=1

E
yi∼Nρ(xi)

[ψαi(yi)]

=
d∏
i=1

[
ρψαi(xi) + (1− ρ) E

z∼[n]
[ψαi(z)]

]
.

If αi ≥ 1 then E
z∼[n]

[ψαi(z)] = 0; otherwise, ψ1 ≡ 1 so E
yi∼Nρ(xi)

[ψ0(yi)] = 1. Therefore

Tρψα(x) = ρ|α|ψα(x) ,

where |α| is the number of nonzero entries of α; so T̂ρf(α) = 〈ψα, Tρf〉 = 〈Tρψα, f〉 =

ρ|α|f̂(α). Since Tρ is a linear operator,

stabρ(f) = 〈f, Tρf〉 =
∑
α

ρ|α|f̂(α)2 .

Note that for f : {±1}d → {±1}, stabρ(f) is the usual notion of stability in the analysis
of Boolean functions.

Proposition 3.5.4. For any f : [n]d → {±1} and any δ, ρ ∈ [0, 1], nsn,δ(f) = 1
2
− 1

2
·

stab1− n
n−1

δ(f).

Proof. For v ∼ Nρ(u), vi = ui with probability ρ + 1−ρ
n

, so in the definition of noise

sensitivity, v is distributed as Nρ(u) where (1 − δ) = ρ + 1−ρ
n

, i.e. δ = 1 − ρ − 1−ρ
n

=
(1− 1/n)− ρ(1− 1/n) = (1− ρ)(1− 1/n); or, ρ = 1− n

n−1
δ. By rearranging, we arrive at

the conclusions.

Proposition 3.5.5. For any f : [n]d → R and t = 2
δ
,
∑

α:|α|≥t f̂(α)2 ≤ 2.32 · nsn,δ(f).
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Proof. Following [KOS04]:

2nsn,δ(f) = 1−
∑
α

(
1− n

n− 1
δ

)|α|
f̂(α)2 ≥ 1−

∑
α

(1− δ)|α|f̂(α)2

=
∑
α

(1− (1− δ)|α|)f̂(α)2 ≥
∑

α:|α|≥2/δ

(1− (1− δ)|α|)f̂(α)2

≥
∑

α:|α|≥2/δ

(1− (1− δ)2/δ)f̂(α)2 ≥ (1− e−2)
∑

α:|α|≥2/δ

f̂(α)2 .

The result now holds since 2/(1− e−2) < 2.32.

Lemma 3.5.6. Let H be a set of functions [n]d → {±1} where n is a power of 2, let
ε, δ > 0 such that ∀h ∈ H, nsn,δ(h) ≤ ε2/3, and let t = d2

δ
e. Then there is a set F of

functions [n]d → R of size |F| ≤ (nd)t, such that that for any h ∈ H, there is a function
p ∈ span(F) where E

[
(h(x)− p(x))2] ≤ ε2.

Proof. Let p =
∑
|α|<t f̂(α)φα. Then by Proposition 3.5.5,

E
[
(p(x)− f(x))2] = E

∑
|α|≥t

f̂(α)φα(x)

2 = E

∑
|α|≥t

∑
|β|≥t

f̂(α)f̂(β)φα(x)φα(x)


=
∑
|α|≥t

∑
|β|≥t

f̂(α)f̂(β)〈φα, φβ〉 =
∑
|α|≥t

f̂(α)2 ≤ ε2 .

Therefore p is a linear combination of functions φα =
∏d

i=1 φαi where at most t values
αi ∈ {0, . . . , n − 1} are not 0. There are at most ((n− 1)d)t such products since for each
non-constant φαi we choose i ∈ [d] and αi ∈ [n− 1]. We may take F to be the set of these
products.

3.5.3 Learning Functions of Halfspaces

To apply Lemma 3.5.2, we must give bounds on bbs(Bk ◦ H, r) and the noise sensitivity:

Lemma 3.5.7. Fix any r. Then bbs(Bk ◦ H, r) ≤ dkrd−1.

Proof. Any halfspace h(x) = sign(〈w, x〉− t) is unate, meaning there is a vector σ ∈ {±1}d
such that the function hσ := sign(〈w, xσ〉 − t), where xσ = (σ1x1, . . . , σdxd), is monotone.

106



For any r-block partition block : Rd → [r]d defined by values {ai,j} for i ∈ [d], j ∈ [r − 1],
we can define blockσ : Rd → [r]d as the block partition obtained by taking {σi · ai,j}. The
number of non-constant blocks of h in block is the same as that of hσ in blockσ, but hσ is
monotone. Thus the bound on bbs for monotone functions holds, so bbs(H, r) ≤ drd−1 by
Lemma 3.7.3, and Proposition 3.4.5 gives bbs(Bk ◦ H, r) ≤ dkrd−1.

The bounds on noise sensitivity follow from known results for the hypercube.

Proposition 3.5.8. Let h1, . . . , hk : [n]d → {±1} and let g : {±1}k → {±1}. Let f :=
g ◦ (h1, . . . , hk). Then nsδ(f) ≤

∑k
i=1 nsδ(hi).

Proof. For u, v drawn from [n]d as in the definition of noise sensitivity, the union bound
gives nsδ(f) = P

u,v
[f(u) 6= f(v)] ≤ P

u,v
[∃i : hi(u) 6= hi(v)] ≤

∑k
i=1 nsδ(hi).

Lemma 3.5.9. Let f = g ◦ (h1, . . . , hk) ∈ Bk ◦ H. For any r-block partition block : Rd →
[r]d, and any δ ∈ [0, 1], nsr,δ(f

block) = O(k
√
δ).

Proof. It is known that ns2,δ(H) = O(
√
δ) (Peres’ theorem [O’D14]). Let A be any full-rank

linear transformation and let h ∈ H, h ◦ A ∈ H. This holds since for some w ∈ Rd, t ∈ R,
h(Ax) = sign(〈w,Ax〉 − t) = sign(〈Aw, x〉 − t), which is a halfspace. Then Lemma 3.5.3
implies nsr,δ(h

block) ≤ ns2,δ(H) = O(
√
δ) and we conclude with Proposition 3.5.8.

Theorem 1.2.12. There is a distribution-free, improper agnostic learning algorithm for
Bk ◦ H under (continuous or finite) product distributions over Rd, with time complexity

min


(
dk

ε

)O( k2
ε4

)
, O

(
1

ε2

(
3dk

ε

)d) .

Proof. Here we prove only the continuous distribution case. The finite case is proved in
Theorem 3.8.18.

For r = ddk/εe, we have r−d · bbs(Bk ◦ H, r) ≤ ε by Lemma 3.5.7, so condition 1
of Lemma 3.5.2 holds. Lemma 3.5.9 guarantees that for any f ∈ Bk ◦ H, nsr,δ(fblock) =

O(k
√
δ). Setting δ = Θ(ε4/k2) so that nsr,δ(f

block) ≤ ε2/3, we obtain via Lemma 3.5.6
a set F of size |F| ≤ (rd)O(k2/ε4) satisfying condition 2 of Lemma 3.5.2. Then for n =
poly(|F|, 1/ε) we apply Lemma 3.5.2 to get an algorithm with sample complexity

O
(
rd2n2 log(rd)

)
= O

(
d3k

ε
log(dk/ε)

)
·
(
dk

ε

)O( k2
ε4

)
.

The other time complexity follows from Lemma 3.4.8.
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3.6 Learning Polynomial Threshold Functions

A function f : Rd → {±1} is a degree-k PTF if there is a degree-k polynomial p : Rd → R
such that f(x) = sign(p(x)). Write Pk for the class of degree-k PTFs. Degree-k PTFs
in Rd can be PAC learned in time dO(k) using linear programming [KOS04], but agnostic
learning is more challenging. Diakonikolas et al. [DHK+10] previously gave an agnostic
learning algorithm for degree-k PTFs in the uniform distribution over {±1}d with time
complexity dψ(k,ε), where

ψ(k, ε) := min
{
O(ε−2k+1

), 2O(k2)
(
log(1/ε)/ε2

)4k+2
}
.

The main result of that paper is an upper bound on the noise sensitivity of PTFs. Combined
with the reduction of [BOW10], this implies an algorithm for the uniform distribution
over [n]d with complexity (dn)ψ(k,ε) and for the Gaussian distribution with complexity
dψ(k,ε). Our agnostic learning algorithm for degree-k PTFs eliminates the dependence on n
and works for any unknown product distribution over Rn, while matching the complexity
of [DHK+10] for the uniform distribution over the hypercube. We prove this theorem in
the remainder of the section.

Theorem 1.2.13. There is an improper agnostic learning algorithm for degree-k PTFs
under (finite or continuous) product distributions over Rd, with time complexity

min

{(
kd

ε

)ψ(k,ε)

, O

(
1

ε2

(
9dk

ε

)d)}
.

As for halfspaces, we will give bounds on the noise sensitivity and block boundary size
and apply the general learning algorithm. The bound on noise sensitivity will follow from
known results on the hypercube [DHK+10] and a trick from [BOW10], but the bound on
the block boundary size is much more difficult to obtain than for halfspaces.

3.6.1 Block-Boundary Size of PTFs

A theorem of Warren [War68] gives a bound on the number of connected components of
Rd after removing the 0-set of a degree-k polynomial. This bound (Theorem 3.6.7 below)
will be our main tool.

A set S ⊆ Rd is connected1 if for every s, t ∈ S there is a continuous function p :
[0, 1] → S such that p(0) = s, p(1) = t. A subset S ⊆ X where X ⊆ Rd is a connected

1Here we are using the fact that connected and path-connected are equivalent in Rd.
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component of X if it is connected and there is no connected set T ⊆ X such that S ⊆ T .
Write comp(X) for the number of connected components of X.

A function ρ : Rd → (R∪{∗})d is called a restriction and we will denote |ρ| = |{i ∈ [d] :
ρ(i) = ∗}|. The affine subspace Aρ induced by ρ is Aρ := {x ∈ Rd | xi = ρ(i) if ρ(i) 6= ∗}
and has affine dimension |ρ|.

For n ≤ d, let An be the set of affine subspaces Aρ obtained by choosing a restriction
ρ with ρ(i) = ∗ when i ≤ n and ρ(i) 6= ∗ when i > n, so in particular Ad = {Rd}.

Let f : Rd → {±1} be a measurable function and define the boundary of f as:

∂f := {x ∈ Rd | ∀ε > 0,∃y : ‖x− y‖2 < ε, f(y) 6= f(x)} .

This is equivalent to the boundary of the set of +1-valued points, and the boundary of any
set is closed. Each measurable f : Rd → {±1} induces a partition of Rd \ ∂f into some
number of connected parts. For a set H of functions f : Rd → {±1} and n ≤ d, write

M(n) := max
f∈H

max
A∈An

comp(A \ ∂f) .

For each i ∈ [d] let Pi be the set of hyperplanes of the form {x ∈ Rd | xi = a} for

some a ∈ R. An (r, n,m)-arrangement for f is any set A \
(
∂f ∪

⋃m
i=1

⋃r−1
j=1 Hi,j

)
where

A ∈ An and Hi,j ∈ Pi such that all Hi,j are distinct. Write Rf (r, n,m) for the set of
(r, n,m)-arrangements for f . Define

Pr(n,m) := max
f∈H

max{comp(R) | R ∈ Rf (r, n,m)}

and observe that Pr(n, 0) = M(n).

Proposition 3.6.1. For any set H of functions f : Rd → {±1} and any r > 0, bbs(H, r) ≤
Pr(d, d)− rd.

Proof. Consider any r-block partition, which is obtained by choosing values ai,j ∈ R for
each i ∈ [d], j ∈ [r − 1] and defining block : Rd → [r]d by assigning each x ∈ Rd the
block v ∈ [r]d where vi is the unique value such that ai,vi−1 < xi ≤ ai,vi , where we define
ai,0 = −∞, ai,r =∞. Suppose v is a non-constant block, so there are x, y ∈ block−1(v)\∂f
such that f(x) 6= f(y). Let Hi,j = {x ∈ Rd | xi = ai,j} and let B = ∂f ∪

⋃
i,j Hi,j.

Consider the set Rd \B. Since x /∈ ∂f there exists some small open ball Rx around x such
that ∀x′ ∈ Rx, f(x′) = f(x); and since x ∈ block−1(v), Rx ∩ block−1(v) is a set of positive
Lebesgue measure. Since B has Lebesgue measure 0, we conclude that (Rx∩block−1(v))\B
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has positive measure, so there is x′ ∈ block−1(v) \ B with f(x′) = f(x). Likewise, there
is y′ ∈ block−1(v) \ B with f(y′) = f(y) 6= f(x′). Therefore x′, y′ must belong to separate
components, so block−1(v) \B is partitioned into at least 2 components. Meanwhile, each
constant block is partitioned into at least 1 component. So

Pr(d, d) ≥ 2 · (# non-constant blocks) + (# constant blocks) = bbs(H, r) + rd .

The following fact must be well-known, but not to us:

Proposition 3.6.2. Let A be an affine subspace of Rd, let B ⊂ A, and for a ∈ R let
H = {x ∈ Rd | x1 = a}. Then

comp(A \ (H ∪B))− comp(A \B) ≤ comp(H \B) .

Proof. Let G be the graph with its vertices V being the components of A \ (H ∪ B) and
the edges E being the pairs (S, T ) where S, T are components of A \ (H ∪ B) such that
∀s ∈ S, s1 < a, ∀t ∈ T, t1 > a, and there exists a component U of A\B such that S, T ⊂ U .
Clearly comp(A\(H∪B)) = |V |; we will show that comp(A\B) is the number of connected
components of G and that |E| ≤ comp(H \ B). This suffices to prove the statement. We
will use the following claim:

Claim 3.6.3. Let U be a connected component of A \ B. If S, T ∈ V and there is a path
p : [0, 1]→ U such that p(0) ∈ S, p(1) ∈ T and either ∀λ, p(λ)1 ≤ a or ∀λ, p(λ)1 ≥ a, then
S = T .

Proof of claim. Assume without loss of generality that p(λ)1 ≤ a for all λ. Let P =
{p(λ) | λ ∈ [0, 1]}. Since U is open we can define for each λ a ball B(λ) 3 p(λ) such that
B(λ) ⊂ U . Consider the sets Ba(λ) := {x ∈ B(λ) | x1 < a}, which are open, and note
that for all α, β ∈ [0, 1], if p(α) ∈ B(β) then Ba(α) ∩Ba(β) 6= ∅ since p(α)1, p(β)1 ≤ a.

Assume for contradiction that there is λ such that Ba(λ) is not connected to S or T ;
then let λ′ be the infimum of all such λ, which must satisfy λ′ > 0 since p(0) ∈ S. For
any α, if p(α) ∈ B(λ′) and Ba(α) is connected to S or T then since Ba(λ

′) ∩ Ba(α) it
must be that Ba(λ) is connected as well; therefore Ba(α) is not connected to either S or
T . But since p is continuous, there is α < λ′ such that p(α) ∈ B(λ′), so λ′ cannot be the
infimum, which is a contradiction. Therefore every λ has Ba(λ) connected to either S or
T . If S 6= T , this is a contradiction since there must then be α, β such that p(α) ∈ B(β)
but Ba(α), Ba(β) are connected to S, T respectively. Therefore S = T .
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We first show that comp(A \ B) is the number of graph-connected components of G.
Suppose that vertices (S, T ) are connected, so there is a path S = S0, . . . , Sn = T in G.
Then there are connected components Ui of A\B such that Si−1, Si ⊂ Ui; so Si ⊂ Ui∩Ui+1,
which implies that

⋃
i Ui ⊂ A \ B is connected. Therefore we may define Φ as mapping

each connected component {Si} of G to the unique component U of A\B with
⋃
i Si ⊂ U .

Φ is surjective since for each component U of A\B there is some vertex S (a component of
A\(H∪B)) such that S ⊆ U : this is U itself if U ∩H = ∅. For some connected component
U of A \ B, let S, T ⊆ U be vertices of G, and let s ∈ S, t ∈ T ; since U is connected,
there is a path p : [0, 1]→ U such that s = p(0), t = p(1). Let S = S0, . . . , Sn = T be the
multiset of vertices such that ∀λ ∈ [0, 1],∃i : p(λ) ∈ Si; let ψ(λ) ∈ {0, . . . , n} be the index
such that p(λ) ∈ Sψ(λ), and order the sequence such that if α < β then ψ(α) ≤ ψ(β) (note
that we may have Si = Sj for some i < j if p(λ) visits the same set more than once). Then
for any i, Si, Si+1 ⊆ U since the path visits both and is contained in U . If Si, Si+1 are
on opposite sides of H, then there is an edge (Si, Si+1) in G; otherwise, the above claim
implies Si = Si+1. Thus there is a path S to T in G; this proves that Φ is injective, so
comp(A \B) is indeed the number of graph-connected components of G.

Now let (S, T ) ∈ E, so there is a component U of A \ B such that S, T ⊂ U . For any
s ∈ S, t ∈ T there is a continuous path ps,t : [0, 1]→ U where ps,t(0) = s, ps,t(1) = t. There
must be some z ∈ [0, 1] such that ps,t(z) ∈ H, otherwise the path is a path in Rd \ B and
S = T . Since ps,t(z) ∈ H ∩ U , so ps,t(z) /∈ B, there is some component Z ∈ CH containing
ps,t(z). We will map the edge (S, T ) to an arbitrary such Z, for any choice s, t, z, and show
that it is injective. Suppose that (S, T ), (S ′, T ′) map to the same Z ∈ CH . Without loss of
generality we may assume that S, S ′ lie on the same side of H and that ∀x ∈ S∪S ′, x1 < a.
Then there are s ∈ S, s′ ∈ S ′, t ∈ T, t′ ∈ T ′, and z, z′ ∈ [0, 1] such that ps,t(z), ps′,t′(z

′) ∈ Z.
Then since Z is a connected component, we may take z, z′ to be the least such values
that ps,t(z), ps′,t′(z) ∈ Z, and connected ps,t(z), ps′,t′(z) by a path in Z to obtain a path
q : [0, 1] → U such that q(0) = s, q(1) = s′, and ∀λ, q(λ)1 ≤ a. Then by the above claim,
S = S ′; the same holds for T, T ′, so the mapping is injective. This completes the proof of
the proposition.

Proposition 3.6.4. For any set H of measurable functions f : Rd → {±1} and any r > 1,

Pr(n,m) ≤ Pr(n,m− 1) + (r − 1) · Pr(n− 1,m− 1) .

Proof. Let A ∈ An and ai,j ∈ R, i ∈ [m], j ∈ [r − 1] such that the number of connected
components in A \B, where B = ∂f ∪

⋃
i,j Hi,j and Hi,j = {x ∈ A | xi = ai,j}, is Pr(n,m).
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For 0 ≤ k ≤ r − 1 let

Bk := ∂f ∪

(
m−1⋃
i=1

r−1⋃
j=1

Hi,j

)
∪

(
k⋃
j=1

Hm,j

)
,

so that B = Br−1 and Bk = Bk−1 ∪ Hm,k. Since B0 is an (r, n,m − 1)-arrangement,
comp(A \ B0) ≤ Pr(n,m − 1). For k > 0, since Bk is obtained from Bk−1 by adding a
hyperplane Hm,k, Proposition 3.6.2 implies

comp(A \Bk) ≤ comp(A \Bk−1) + comp(H \Bk−1) ≤ comp(A \Bk−1) + Pr(n− 1,m− 1) ,

because H \Bk−1 is an (r, n− 1,m− 1)-arrangement. Iterating r − 1 times, once for each
added hyperplane, we arrive at

Pr(n,m) = comp(A \B)

= comp(A \B0) +
r−1∑
k=1

(comp(A \Bk)− comp(A \Bk−1))

≤ Pr(n,m− 1) + (r − 1)Pr(n− 1,m− 1) .

Lemma 3.6.5. For any set H of measurable functions Rd → {±1} and any r,

Pr(d, d) ≤ (r − 1)d +
d−1∑
i=0

(
d

i

)
·M(d− i) · (r − 1)i .

Proof. Write s = r − 1 for convenience. We will show by induction the more general
statement that for any m ≤ n ≤ d,

Pr(n,m) ≤
m∑
i=0

(
m

i

)
·M(n− i) · si

where we define M(0) := 1. In the base case, note that Pr(n, 0) = M(n). Assume the
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statement holds for Pr(n
′,m′) when n′ ≤ n,m′ < m. Then by Proposition 3.6.4,

Pr(n,m) ≤ Pr(n,m− 1) + s · Pr(n− 1,m− 1)

≤
m−1∑
i=0

(
m− 1

i

)
·M(n− i) · si +

m−1∑
i=0

(
m− 1

i

)
·M(n− 1− i) · si+1

≤
m−1∑
i=0

(
m− 1

i

)
·M(n− i) · si +

m∑
i=1

(
m− 1

i− 1

)
·M(n− i) · si

= M(n) +M(n−m) · sm +
m−1∑
i=1

((
m− 1

i

)
+

(
m− 1

i− 1

))
·M(n− i) · si

=
m∑
i=0

(
m

i

)
·M(n− i) · si .

Lemma 3.6.6. Let H be a set of functions f : Rd → {±1} such that for some k ≥ 1,
M(n) ≤ kn. Then for any ε > 0 and r ≥ 3dk/ε, bbs(H, r) < ε · rd.

Proof. Write s = r − 1. By Proposition 3.6.1 and Lemma 3.6.5, the probability that v is
a non-constant block is

bbs(r)

rd
≤ r−d

(
Pr(d, d)− rd

)
≤ r−d

(
d−1∑
i=0

[(
d

i

)
·M(d− i) · si

]
+ sd − rd

)

≤ r−d
d−1∑
i=0

(
d

i

)
·M(d− i) · si .

Split the sum into two parts:

bd/2c∑
i=0

(
d

i

)
· M(d− i) · si

rd
+

dd/2e−1∑
i=1

(
d

i

)
· M(i) · sd−i

rd

≤
bd/2c∑
i=0

(
d

i

)
· k

d−i · ri

rd
+

dd/2e−1∑
i=1

(
d

i

)
· k

i · rd−i

rd

≤
bd/2c∑
i=0

dikd−i · ri

rd
+

dd/2e−1∑
i=1

diki · rd−i

rd
≤
bd/2c∑
i=0

εd−i

3d−idd−i
+

dd/2e−1∑
i=1

εi

3i

≤ ε

3
+

dd/2e−1∑
i=2

εi

3i
+ bd/2c · εdd/2e

3dd/2eddd/2e
≤ ε

3
+
ε

3

∞∑
i=1

εi

3i
+
εdd/2e

3dd/2e
≤ ε .
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It is a standard fact that for degree-k polynomials, M(1) ≤ k, and a special case of a
theorem of Warren bounds gives a bound for larger dimensions:

Theorem 3.6.7 ([War68]). Polynomial threshold functions p : Rd → {±1} of degree k
have M(n) ≤ 6(2k)n.

Since M(1) ≤
√

24k and 6(2k)n ≤ (
√

24k)n, for n > 1, Lemma 3.6.6 gives us:

Corollary 3.6.8. For r ≥ 3
√

24dk/ε, r−d · bbs(Pk, r) < ε.

3.6.2 Application

As was the case for halfspaces, our reduction of noise sensitivity on [r]d to {±1}d requires
that the class Pk is invariant under linear transformations:

Proposition 3.6.9. For any f ∈ Pk and full-rank linear transformation A ∈ Rd×d, f ◦A ∈
Pk.

Proof. Let f(x) = sign(p(x)) where p is a degree-k polynomial and let cq
∏d

i=1 x
qi
i be a

term of p, where c ∈ R and q ∈ Zd≥0 such that
∑

i qi ≤ k. Let Ai ∈ Rd be the ith row of A.
Then

d∏
i=1

(Ax)qii =
d∏
i=1

(
d∑
j=1

Ai,jxj

)qi

= pq(x)

where pq(x) is some polynomial of degree at most
∑d

i=1 qi ≤ k. Then p ◦ A =
∑

q cqpq
where q ranges over Z≥0 with

∑
i qi ≤ k, and each pq has degree at most k, so p ◦ A is a

degree-k polynomial.

The last ingredient we need is the following bound of Diakonikolas et al. on the noise
sensitivity:

Theorem 3.6.10 ([DHK+10]). Let f : {±1}d → {±1} be a degree-k PTF. Then for any
δ ∈ [0, 1],

ns2,δ(f) ≤ O(δ1/2k)

ns2,δ(f) ≤ 2O(k) · δ1/(4k+2) log(1/δ) .
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Putting everything together, we obtain a bound that is polynomial in d for any fixed k, ε,
and which matches the result of Diakonikolas et al. [DHK+10] for the uniform distribution
over {±1}d.

Theorem 1.2.13. There is an improper agnostic learning algorithm for degree-k PTFs
under (finite or continuous) product distributions over Rd, with time complexity

min

{(
kd

ε

)ψ(k,ε)

, O

(
1

ε2

(
9dk

ε

)d)}
.

Proof. We prove the continuous case here; the finite case is proved in Theorem 3.8.18.

Let r = d9dk/εe, so that by Corollary 3.6.8, condition 1 of Lemma 3.5.2 is satisfied.
Due to Proposition 3.6.9, we may apply Theorem 3.6.10 and Lemma 3.5.3 to conclude that
for all f ∈ Pk

nsr,δ(f
block) ≤ O(δ1/2k)

nsr,δ(f
block) ≤ 2O(k) · δ1/(4k+2) log(1/δ) .

In the first case, setting δ = O(ε2
k+1

) we get nsr,δ(f
block) < ε2/3, so by Lemma 3.5.6 we

get a set F of functions [r]d → R of size |F| ≤ (rd)
O

(
1

ε2
k+1

)
satisfying condition 2 of

Lemma 3.5.2. For n = poly(|F|, 1/ε), Lemma 3.5.2 implies an algorithm with sample size

O(rd2n2 log(rd)) = O

(
d3k

ε
log(dk/ε)

)
·
(
kd

ε

)O( 1

ε2
k+1

)
.

In the second case, setting δ = O

((
2O(k) log(2k/ε)

ε2

)4k+2
)

, we again obtain ns(fblock)r,δ ≤ ε2/3

and get an algorithm with sample size

(
kd

ε

)2O(k2)( log(1/ε)

ε2
)
4k+2

.

The final result is obtained by applying Lemma 3.4.8.
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3.7 Learning & Testing k-Alternating Functions

A function f : X → {±1} on a partial order X is k-alternating if for every chain x1 <
. . . < xk+2 there is i ∈ [k+ 1] such that f(xi) = f(xi+1). In other words, on any chain, the
function changes value at most k times. Monotone functions are examples of 1-alternating
functions. We consider k-alternating functions on Rd with the usual partial order: for
x, y ∈ Rd we say x < y when xi ≤ yi for each i ∈ [d] and x 6= y.

Learning k-alternating functions on domain {±1}d was studied by Blais et al. [BCO+15],
motivated by the fact that these functions are computed by circuits with few negation gates.
They show that 2Θ(k

√
d/ε) samples are necessary and sufficient in this setting. Canonne

et al. [CGG+19] later obtained an algorithm for (ε1, ε2)-tolerant testing k-alternating
functions, when ε2 > 3ε1, in the uniform distribution over [n]d, with query complexity

(kd/τ)O(k
√
d/τ2), where τ = ε2 − 3ε1.

We obtain an agnostic learning algorithm for k-alternating functions that matches the
query complexity of the tester in [CGG+19], and nearly matches the complexity of the (non-
agnostic) learning algorithm of [BCO+15] for the uniform distribution over the hypercube.

Theorem 3.7.1. There is an agnostic learning algorithm for k-alternating functions under
(finite or continuous) product distributions over Rd that runs in time at most

min


(
dk

ε

)O( k√d
ε2

)
, O

(
1

ε2

(
3kd

ε

)d) .

We also generalize the tolerant tester of [CGG+19] to be distribution-free under product
distributions, and eliminate the condition ε2 > 3ε1.

Theorem 3.7.2. For any ε2 > ε1 > 0, let τ = (ε2 − ε1)/2, there is a sample-based (ε1, ε2)-

tolerant tester for k-alternating functions using
(
dk
τ

)O( k√d
τ2

)
samples, which is distribution-

free under (finite or continuous) product distributions over Rd.

To prove these theorems, we require a bound the block boundary size, which has been
done already by Canonne et al.. We include the proof because their work does not share
our definition of block boundary size, and because we have used it in our short proof of
the monotonicity tester in Section 3.3.1.

Lemma 3.7.3 ([CGG+19]). The r-block boundary size of k-alternating functions is at most
kdrd−1.
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Proof. Let f be k-alternating, let block : Rd → [r]d be any block partition and let v1, . . . , vm
be any chain in [r]d. Suppose that there are k + 1 indices i1, . . . , ik+1 such that f is
not constant on block−1(vij). Then there is a set of points x1, . . . , xk+1 such that xj ∈
block−1(vij) and xj 6= xj+1 for each j ∈ [k]. But since vi1 < · · · < vik+1

, x1 < · · · < xk+1

also, which contradicts the fact that f is k-alternating. Then every chain in [r]d has at
most k non-constant blocks, and we may partition [r]d into at most drd−1 chains by taking
the diagonals v + λ~1 where v is any vector satisfying ∃i : vi = 1 and λ ranges over all
integers.

Canonne et al. also use noise sensitivity bound to obtain a spanning set F ; we quote
their result.

Lemma 3.7.4 ([CGG+19]). There is a set F of functions [r]d → R, with size

|F| ≤ exp O

(
k
√
d

ε2
log(rd/ε)

)
,

such that for any k-alternating function h : [r]d → {±1}, there is g : [r]d → R that is a
linear combination of functions in F and E

x∼[r]d

[
(h(x)− g(x))2] ≤ ε2.

Finally, we prove Theorem 3.7.1.

Proof of Theorem 3.7.1. We prove the continuous case; see Theorem 3.8.18 for the finite
case.

Let r = ddk/εe and let block : Rd → [r]d be any r-block partition. By Lemma 3.7.3,
the first condition of Lemma 3.5.2 is satisfied. Now let f ∈ H and consider fblock. For
any chain v1 < v2 < · · · < vm in [r]d, it must be blockpoint(v1) < blockpoint(v2) < · · · <
blockpoint(vm) since every x ∈ block−1(vi), y ∈ block−1(vj) satisfy x < y when vi < vj;
then f alternates at most k times on the chain blockpoint(v1) < · · · < blockpoint(vm)
and, since fblock(vi) = f(blockpoint(vi)), f

block is also k-alternating. Therefore the set
F of functions given by Lemma 3.7.4 satisfies condition 2 of Lemma 3.7.3, and we have

n = poly(|F|, 1/ε) = exp O
(
k
√
d

ε2
log(rd/ε)

)
. Applying Lemma 3.5.2 gives an algorithm

with sample complexity

O
(
rd2n2 log(rd)

)
= O

d3k

ε
log(dk/ε) ·

(
dk

ε

)O( k√d
ε2

) =

(
dk

ε

)O( k√d
ε2

)
.

The other sample complexity follows from Lemma 3.4.8.
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Next we prove Theorem 3.7.2.

Proof of Theorem 3.7.2. The following argument is for the continuous case, but generalizes
to the finite case using the definitions in Section 3.8.

Let H be the class of k-alternating functions. Suppose there is a set K ⊂ H, known to
the algorithm, that is a (τ/2)-cover. Then, taking a set Q of q = O( 1

ε2
log |K|) independent

random samples from µ and using Hoeffding’s inequality,

P
Q

[
∃h ∈ K : |distQ(f, h)− distµ(f, h)| > τ

2

]
≤ |K| ·max

h∈K
P
[
|distQ(f, h)− distµ(f, h)| > τ

2

]
≤ |K| · 2 exp

(
−qτ

2

2

)
< 1/6 .

Then the tester accepts if distQ(f,K) < ε1 + τ and rejects otherwise; we now prove that
this is correct with high probability. Assume that the above estimation is accurate, which
occurs with probability at least 5/6. If distµ(f,H) ≤ ε1 then distµ(f,K) ≤ distµ(f, h) +
distµ(h,K) ≤ ε1 + τ/2. Then for g ∈ K minimizing distµ(f, g),

distQ(f,K) ≤ distQ(f, g) < distµ(f, g) +
τ

2
≤ ε1 + τ ,

so f is accepted. Now suppose that f is accepted, so distQ(f,K) < ε1 + τ . Then

distµ(f,H) ≤ distµ(f, g) ≤ distQ(f, g) +
τ

2
< ε1 +

3

2
τ = ε1 +

3

4
(ε2 − ε1) ≤ ε2 .

What remains is to show how the tester constructs such a cover K.

Consider the learning algorithm of Theorem 3.7.1 with error parameter τ/12, so r =
d12dk/τe. Let X be the grid constructed by that algorithm and let block : Rd → [r]d

be the induced r-block partition. We may assume that with probability at least 5/6,
‖block(µ) − unif([r]d)‖TV < τ/12; suppose that this event occurs. The learner then takes

m =
(
dk
τ

)O( k√d
τ2

)
additional samples to learn the class Hblock with domain [r]d. For every

f ∈ H the learner has positive probability of outputting a function h : [r]d → {0, 1}
with P

v

[
h(v) 6= fblock(v)

]
< τ/12 (where v is chosen from block(µ)). Let K′ be the set of

possible outputs of the learner; then K′ is a (τ/12)-cover for Hblock. Construct a set Kblock

by choosing, for each h ∈ K′, the nearest function g ∈ K with respect to the distribution
block(µ). Then Kblock is a (τ/6)-cover, since for any function fblock ∈ Hblock, if h ∈ K′ is the
nearest output of the learner and g ∈ Kblock is nearest h, then by the triangle inequality
fblock has distance at most τ/6 to g with respect to block(µ). Finally, construct a set
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K ⊂ H by taking each function h ∈ H such that hcoarse = h and hblock ∈ Kblock (note
that there exists h ∈ H such that hcoarse = h since hcoarse is k-alternating when hblock is
k-alternating). Then K is a (τ/2)-cover since for any f ∈ H, when h ∈ K minimizes

P
v∼block(µ)

[
fblock(v) 6= hblock

]
,

distµ(f,K)

≤ distµ(f, f coarse) + distµ(f coarse,K)

≤ r−d · bbs(H, r) + P
v∼block(µ)

[
fblock(v) 6= hblock(v)

]
+ 2‖block(µ)− unif([r]d)‖TV

< τ/6 + τ/6 + 2τ/12 ≤ τ/2 .

Now we bound the size of Kblock. Since there are m samples and each sample v ∼ block(µ) is
in [r]d, labelled by {0, 1}, there are at most (rd)m2m possible sample sequences, so at most
(2rd)m outputs of the learner (after constructing X), so |Kblock| ≤ (2rd)m. Therefore, after
constructing X, the tester may construct Kblock and run the above estimation procedure,

with q = O
(

1
τ2
dm log r

)
=
(
dk
τ

)O( k√d
τ2

)
.

3.8 Discrete Distributions

We will say that a distribution µi over R is finite if it is a distribution over a finite set
X ⊂ R. In this section, we extend downsampling to work for finite product distributions:
distributions µ = µ1×· · ·×µd such that all µi are finite. As mentioned in the introduction,
our algorithms have the advantage that they do not need to know in advance whether the
distribution is continuous or finite, and if they are finite they do not need to know the
support. This is in contrast to the algorithms of Blais et al. [BOW10], which work for
arbitrary finite product distributions but must know the support (since it learns a function
under the “one-out-of-k encoding”). Our algorithms have superior time complexity for
large supports.

We begin with an example of a pathological set of functions that illustrates some of the
difficulties in the generalization.

Example 3.8.1. The Dirichlet function f : R → {±1} is the function that takes value 1
on all rational numbers and value −1 on all irrational numbers. We will define the Dirichlet
class of functions as the set of all functions f : Rd → {±1} such that f(x) = −1 on all
x with at least 1 irrational coordinate xi, and f(x) is arbitrary for any x with all rational
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coordinates. Since the Lebesgue measure of the set of rational numbers is 0, in any contin-
uous product distribution, any function f in the Dirichlet class satisfies P [f(x) 6= −1] = 0;
therefore learning this class is trivial in any continuous product distribution since we may
output the constant −1 function. And bbs(f, r) = 0 for this class since no block contains a
set S of positive measure containing 1-valued points. On the other hand, if µ is a finitely
supported product distribution, then it may be the case that it is supported only on points
with all rational coordinates. In that case, the Dirichlet class of functions is the set of
all functions on the support, which is impossible to learn when the size of the support is
unknown (since the number of samples will depend on the support size). It is apparent
that our former definition of bbs no longer suffices to bound the complexity of algorithms
when we allow finitely supported distributions.

Another difficulty arises for finitely supported distributions with small support: for
example, the hypercube {±1}d. Consider what happens when we attempt to sample a
uniform grid, as in the first step of the algorithms above. We will sample many points x
such that x1 = 1 and many points such that x1 = −1. Essentially, the algorithm takes
a small domain {±1}d and constructs the larger domain [r]d, which is antithetical to the
downsampling method. A similar situation would occur in large domains [n]d where some
coordinates have exceptionally large probability densities and are sampled many times.
Our algorithm must be able to handle such cases, so we must redefine the grid sampling
step and block partitions to handle this situation. To do so, we introduce augmented
samples : for every sample point x ∼ µ we will append a uniformly random value in [0, 1]d.

3.8.1 Augmented Samples & Constructing Uniform Partitions

For augmented points a, b,∈ R × [0, 1], where a = (a, a′), b = (b, b′), we will define a total
order by saying a < b if a < b, or a = b and a′ < b′. Define interval (a, b] := {c | a < c ≤ b}.
For convenience, when a ∈ R×[0, 1] and a = (a, a′) we will write ξ(a) = a. If x ∈ Rd×[0, 1]d

is an augmented vector (i.e. each coordinate xi is an augmented point), we will write
ξ(x) = (ξ(x1), . . . , ξ(xd)); and when S ⊆ Rd × [0, 1]d is a set of augmented points, we will
write ξ(S) = {ξ(x) | x ∈ S}.

Definition 3.8.2 (Augmented Block Partition). An augmented r-block partition of Rd is
a pair of functions block : Rd× [0, 1]d → [r]d and blockpoint : [r]d → Rd obtained as follows.
For each i ∈ [d], j ∈ [r − 1] let ai,j ∈ R × [0, 1] such that ai,j < ai,j+1 and define ai,0 =
(−∞, 0), ai,r = (∞, 1). For each i ∈ [d], j ∈ [r] define the interval Bi,j = (ai,j−1, ai,j] and a
point bi,j ∈ R× [0, 1] such that ai,j ≤ bi,j ≤ ai,j+1. The function block : Rd × [0, 1]d → [r]d
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is defined by setting block(x) to be the unique vector v ∈ [r]d such that xi ∈ Bi,vi for

each i ∈ [d]. Observe that block
−1

(v) := {x : block(x) = v} is a set of augmented points
in Rd × [0, 1] and that it is possible for two augmented points x, y to satisfy ξ(x) = ξ(y)
while block(x) 6= block(y). The function blockpoint : [r]d → Rd is defined by setting
blockpoint(v) = (ξ(b1,v1), . . . , ξ(bd,vd)); note that this is a non-augmented point.

Definition 3.8.3 (Block Functions and Coarse Functions). For a function f : Rd → {±1}
we will define the functions fblock : [r]d → {±1} as fblock := f ◦ blockpoint and for each
z ∈ [0, 1]d we will define f coarse

z : Rd → {±1} as f coarse
z (x) := fblock(block(x, z)). Unlike

in the continuous setting, f coarse
z depends on an additional variable z ∈ [0, 1]d, which is

necessary because a single point x ∈ Rd may be augmented differently to get different block
values. For a distribution µ over Rd define the augmented distribution µ over Rd × [0, 1]d

as the distribution of (x, z) when x ∼ µ and z is uniform in [0, 1]d. For an augmented
r-block partition block : Rd × [0, 1]d → [r]d we define the distribution block(µ) over [r]d as
the distribution of block(x) for x ∼ µ.

Definition 3.8.4 (Augmented Random Grid). An augmented random grid X of length m
is obtained by sampling m augmented points x1, . . . , xm ∼ µ and for each i ∈ [d], j ∈ [m]
defining X i,j to the be jth smallest coordinate in dimension i by the augmented partial
order. For any r that divides m we define an augmented r-block partition depending on X
by defining for each i ∈ [d], j ∈ [r− 1] the points ai,j = X i,mj/r, (and ai,0 = (−∞, 0), ai,r =
(∞, 1)), so that the intervals areBi,j = (X i,m(j−1)/r, X i,mj/r] for j ∈ {2, . . . , r−1} andBi,1 =

((−∞, 0), X i,m/r], Bi,r = (X i,m(r−1)/r, (∞, 1)]. We set the points bi,j defining blockpoint :

[r]d → Rd to be bi,j = X i,k for some X i,k ∈ Bi,j. This is the augmented r-block partition
induced by X.

Definition 3.8.5 (Augmented Block Boundary). For an augmented block partition block :
Rd × [0, 1]d → [r]d, a distribution µ over Rd, and a function f : Rd → {±1}, we say f is

non-constant on an augmented block block
−1

(v) if there are sets S, T ⊂ block
−1

(v) such
that µ(ξ(S)), µ(ξ(T )) > 0 and for all s ∈ S, t ∈ T : f(s) = 1, f(t) = −1. For a function
f : Rd → {±1} and a number r, we define the augmented r-block boundary size bbs(f, r) as
the maximum number of blocks on which f is non-constant with respect to a distribution
µ, where the maximum is taken over all augmented r-block partitions.

The augmented block partitions satisfy analogous properties to the previously-defined
block partitions:

Lemma 3.8.6. Let X be an augmented random grid with length m sampled from a finite
product distribution µ, and let block : Rd× [0, 1]d → [r]d be the augmented r-block partition
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induced by X. Then

P
X

[
‖block(µ)− unif([r]d)‖TV > ε

]
≤ 4rd · exp

(
− mε2

18rd2

)
.

Proof. Let µi be a finitely supported distribution with support S ⊂ R, and let η =
1
2

mina,b∈S |a − b|. Let µ′i be the distribution of xi + ηzi where xi ∼ µi and zi ∼ [0, 1]
uniformly at random; note that µ′i is a continuous distribution over R. For x = (x, x′), y =
(y, y′) ∈ R× [0, 1], observe that x < y iff x+ ηx′ < y + ηy′. Therefore,

P
x,y∼µi

[x < y] = P
x,y∼µ′i

[x < y] .

By replacing each finitely supported µi with µ′i we obtain a continuous product distribution
µ′ such that block(µ) is the same distribution as block(µ′), so by Lemma 3.2.7 the conclusion
holds.

Proposition 3.8.7. For any continuous or finite product distribution µ over Rd, any
augmented r-block partition block : Rd × [0, 1]d → [r]d constructed from a random grid X,
and any f : Rd → {±1},

P
x∼µ,z∼[0,1]d

[f(x) 6= f coarse
z (x)] ≤ r−d · bbs(f, r) + ‖block(µ)− unif([r]d)‖TV .

Proof. The result for continuous product distributions holds by Proposition 3.2.5 and the
fact that bbs(f, r) ≤ bbs(f, r), so assume µ is a finite product distribution, and let S =
supp(µ).

Suppose that for (x, z) sampled from µ, f(x) 6= f coarse
z (x), and let v = block(x, z). Then

for y = blockpoint(v), f(x) 6= f(y) and x, y ∈ ξ(block−1
(v)). The points x, y clearly have

positive measure because µ is finite, so v a non-constant block. Then

P
x∼µ,z∼[0,1]d

[f(x) 6= f coarse
z (x)] ≤ P

x,z

[
block(x, z) is non-constant

]
≤ P

v∼[r]d
[v is non-constant] + ‖block(µ)− unif([r]d)‖TV .

3.8.2 Augmented Block-Boundary Size and Noise Sensitivity

To obtain learning algorithms for k-alternating functions, functions of k convex sets, func-
tions of k halfspaces, and degree-k PTFs, we must provide a bound on bbs.
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For a finite set X ⊂ Rd and a function f : Rd → {±1}, we will call a function
f ′ : Rd → {±1} a blowup of f (with respect to X) if ∀x ∈ X there exists an open ball
Bx 3 x where ∀y ∈ Bx, f

′(y) = f(x). We will call a set H of functions f : Rd → {±1}
inflatable if for every finite product set X = X1× · · · ×Xd and f ∈ H, there exists f ′ ∈ H
that is a blowup of f with respect to X.

Proposition 3.8.8. Let H be a inflatable set of functions. Then bbs(H, r) ≤ bbs(H, r).

Proof. Let block : Rd× [0, 1]d → [r]d be an augmented r-block partition defined by param-
eters bi,j ∈ R× [0, 1] for i ∈ [d], j ∈ [r−1], and write bi,j = (bi,j, b

′
i,j). Let X = X1×· · ·×Xd

be any finite product set, and let f ∈ H; we will bound the number of non-constant blocks
We construct a (non-augmented) r-block partition as follows. Let η > 0 be sufficiently
small that:

� ∀x ∈ X, the rectangle Rx := [x1, x1 + η]× · · · × [xd, xd + η] is contained within Bx,

� ∀i ∈ [d], [xi, xi + η] ∩Xi = {xi}; and

� ∀i ∈ [d], bi,j + η < bi,j+1 unless bi,j = bi,j+1.

Such an η exists since the number of constraints is finite. Then define block : Rd →
[r]d by the parameters ci,j = bi,j + η · b′i,j. Note that ci,j = bi,j + η · b′i,j ≤ bi,j + η <

bi,j+1 ≤ ci,j+1. Let v ∈ [r]d and suppose that f is non-constant on block
−1

(v), so there

are x, y ∈ block
−1

(v) ∩ (X × [0, 1]d) such that f(x) 6= f(y), where x = (x, x′), y = (y, y′),
and ∀i ∈ [d], xi, yi ∈ (bi,vi−1, bi,vi ] where we define (b, b] = {b}. Consider block−1(v) =
(c1,v1−1, c1,v1 ]× · · · × (cd,vd−1, cd,vd ].

Since xi ∈ (bi,vi−1, bi,vi ], xi ∈ (bi,vi−1, bi,vi ] (where we define (b, b] = {b}) and x′i ∈
(b′i,vi−1, b

′
i,vi

]. Therefore xi+η ·x′i ≤ bi,vi +η · b′i,vi = ci,vi and xi+η ·x′i > bi,vi−1 +η · b′i,vi−1 =

ci,vi−1 so x+η ·x′ ∈ block−1(v). Also, x+η ·x′ is in the rectangle Rx ⊂ Bx so there is a ball
around x+ η · x′, containing only points with value f ′(x) = f(x). Likewise, there is a ball
around y + η · y′ inside block−1(v) containing only points with value f ′(y) = f(y) 6= f ′(x).
Since these balls must intersect block−1(v) on sets with positive measure (in the product
of Lebesgue measures), f ′ is non-constant on block−1(v), which proves the statement.

Lemma 3.8.9. The set Ak of k-alternating functions is inflatable.

Proof. Let f ∈ Ak and let X = X1 × · · · × Xd be a finite set. We use the standard
ordering on Rd. Let u ∈ Rd. We claim that the set {x ∈ X : x ≤ u} has a unique
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maximum. Suppose otherwise, so there are x, y ≤ u that are each maximal. Let x ∧ y =
(max(x1, y1), . . . ,max(xd, yd)). Then x ∨ y ∈ X and x ∧ y > x, y but u ≥ x ∧ y, a
contradiction. For every u ∈ Rd, write u↓ for this unique maximum. Let η > 0 be small
enough that ∀x ∈ X, (x+ η ·~1)↓ = x; such a value exists since X is finite. Define the map
φ(u) = (u+(η/2)·~1)↓ and ∀u ∈ Rd, we define f ′(u) := f(φ(u)), and argue that this satisfies
the required properties. It is clear by our choice of η that f ′(x) = f((x+(η/2) ·~1)↓) = f(x).
Since φ is order-preserving (i.e. if u < v then φ(u) ≤ φ(v)), f ′ is k-alternating. Now consider
the ball B(x) := {y ∈ Rd : ‖y−x‖2 < η/2}. Since |yi−xi| < η/2 for all y ∈ B(x), we have
φ(y) = (y1 + η/2, . . . , yd + η/2)↓ ≤ (x1 + η, . . . , xd + η)↓ = x, and φ(y) ≥ (x1, . . . , xd)

↓ = x
so f ′(y) = f(φ(y)) = f(x).

Lemma 3.8.10. The set C of indicator functions of convex sets is inflatable.

Proof. Let f : Rd → {±1} indicate a closed convex set, let S = f−1(1) be this set, and
write δ(x) := min{‖x − y‖2 : y ∈ S} (this minimum exists since S is closed). Let X be
any finite set and let δ = min{δ(x) : x ∈ X \ S}. Consider S ′ = {x : δ(x) ≤ δ/2}, and
let f ′ be the indicator function for this set. Then f ′(x) = f(x) for all x ∈ X. Finally, S ′

is closed, and it is convex since for any two points x, y, it is well-known that the function
λ 7→ δ(λx+ (1− λ)y) is convex for λ ∈ [0, 1].

Lemma 3.8.11. The set H of halfspaces is inflatable.

Proof. It suffices to show that for any finite set X (not necessarily a product set) and any
halfspace f(x) = sign(〈w, x〉 − t), there is a halfspace f ′(x) = sign(〈w, x〉 − t′) such that
f(x) = f ′(x) for all x ∈ X but 〈w′, x〉 − t 6= 0 for all x ∈ X; this is a commonly-used
fact. Let δ = min{−(〈w, x〉 − t) : 〈w, x〉 − t < 0}. It must be the case that δ > 0. Then
f ′(x) = sign(〈w, x〉 − t+ δ/2) satisfies the condition.

Lemma 3.8.12. The set Pk of degree-k PTFs is inflatable.

Proof. This follows from the above proof for halfspaces, since for any finite X we may
map x ∈ X to its vector (xk1, x

k
2, . . . ) of monomials, so that any polynomial p(x) is a linear

threshold function in the space of monomials.

For a set H of functions f : Rd → {±1} and an augmented r-block partition block :

Rd → [r]d, we will write Hblock
:= {fblock : f ∈ H} for the set of block functions fblock :

[r]d → {±1}; note that this is not necessarily the same set of functions as Hblock defined
for continuous distributions. We must show that the same learning algorithms used above

for learning Hblock will work also for Hblock
. For the brute-force learning algorithm of
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Lemma 3.4.8, this is trivial, but for the regression algorithm in Lemma 3.5.2 we must show

that there exists a set F such that each fblock ∈ Hblock
is close to a function g ∈ span(F).

For functions of halfspaces and PTFs, we used the bound on noise sensitivity, Lemma 3.5.3,
to construct a set F of functions suitable for the regression algorithm. The proof for that
lemma works without modification for augmented block partitions, so we have the following:

Lemma 3.8.13. Let H be any family of functions f : Rd → {±1} such that, for any linear
transformation A : Rd → Rd, if f ∈ H then f ◦A ∈ H. Let block : Rd× [0, 1]d → [r]d be any
augmented r-block partition. Let ns2,δ(H) := supf∈H ns2,δ(f). Then nsr,δ(f

block) ≤ ns2,δ(H).

3.8.3 Rounding the Output

After learning a function g : [r]d → {±1}, we must output a function g′ : Rd → {±1}.
In the continuous setting, we simply output g ◦ block. In the finite setting, we cannot
simply output g ◦ block since block : Rd × [0, 1]d → [r]d requires an additional argument
z ∈ [0, 1]d. For example, if the distribution µ is a finitely supported distribution on {±1}d,
then for each point x ∈ {±1}d there may be roughly (r/2)d points v ∈ [r]d for which

(x, z) ∈ block
−1

(v) for an appropriate choice of z ∈ [0, 1]d, and these points v may have
different values in g. The algorithm must choose a single value to output for each x. We do
so by approximating the function x 7→ E

z
[gz(x)] and then rounding it via the next lemma.

Lemma 3.8.14. Fix a domain X , let γ : X → [−1, 1], and let ε > 0. There is an algorithm
such that, given query access to γ and sample access to any distribution D over X ×{±1},
uses at most O (log(1/δ)/ε2) samples and queries and with probability at least 1−δ produces
a value t such that

P
(x,b)∼D

[sign(f(x)− t) 6= b] ≤ 1

2
E

(x,b)∼D
[|f(x)− b|] + ε .

Proof. Let T be the set of functions x 7→ sign(γ(x) − t) for any choice of t ∈ [−1, 1]. We
will show that the VC dimension of T is 1. Suppose for contradiction that two points
x, y ∈ X are shattered by T , so in particular there are s, t ∈ R such that sign(f(x)−s) = 1
and sign(f(y) − s) = −1, while sign(f(x) − t) = −1 and sign(f(y) − t) = 1. Without
loss of generality, suppose s < t. But then sign(f(y) − s) ≥ sign(f(y) − t), which is a
contradiction. Therefore, by standard VC dimension arguments ([SB14], Theorem 6.8),
using O(log(1/δ)/ε2) samples and choosing t to minimize the error on the samples, with
probability at least 1− δ we will obtain a value t such that

P
(x,b)∼D

[sign(γ(x)− t) 6= b] ≤ P
(x,b)∼D

[sign(γ(x)− t∗) 6= b] + ε
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where t∗ minimizes the latter quantity among all values [−1, 1]. Since the algorithm can
restrict itself to those values t ∈ [−1, 1] for which γ(x) = t for some x in the sample, the
value minimizing the error on the sample can be computed time polynomial in the number
of samples. Next, we show that the minimizer t∗ satisfies the desired properties. Suppose
that t ∼ [−1, 1] uniformly at random. For any y ∈ [−1, 1], b ∈ {±1},

P
t

[sign(y − t) 6= b] =

P
t

[t > y] = 1
2
|b− y| if b = 1

P
t

[t ≤ y] = 1
2
|y − b| if b = −1 .

Therefore

E
t∼[−1,1]

[
P

(x,b)∼D
[sign(γ(x)− t) 6= b]

]
= E

(x,b)∼D

[
P
t

[sign(f(x)− t) 6= b]
]

=
1

2
E

(x,b)∼D
[|γ(x)− b|] ,

so we can conclude the lemma with

P
(x,b)∼D

[sign(γ(x)− t∗) 6= b] ≤ 1

2
E

(x,b)∼D
[|γ(x)− b|] .

Lemma 3.8.15. Let block : Rd× [0, 1]d → [r]d be an augmented r-block partition. There is
an algorithm which, given ε, δ > 0, query access to a function g : [r]d → {±1} and sample
access to a distribution D over Rd × {±1}, outputs a function g′ : Rd → {±1} such that,
with probability 1− δ,

P
(x,b)∼D

[g′(x) 6= b] ≤ P
(x,b)∼D,z∼[0,1]d

[
g(block(x, z)) 6= b

]
+ ε ,

uses at most O
(
d log(r)
ε2

log 1
δ

)
samples and queries, and runs in time polynomial in the

number of samples.

Proof. For z ∈ [0, 1]d, write gz(x) = g(block(x, z)). For any (x, b),

|E
z

[gz(x)]− b| = |bP
z

[gz(x) = b]− bP
z

[gz(x) 6= b]− b| = | − 2bP
z

[gz(x) 6= b] | = 2P
z

[gz(x) 6= b] ,

so
1

2
E

(x,b)∼D

[
|E
z

[gz(x)]− b|
]

= P
(x,b)∼D,z

[gz(x) 6= b] .

The algorithm will construct a function γ(x) ≈ E
z

[gz(x)] and then learn a suitable param-

eter t for rounding γ(x) to sign(γ(x)− t).
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First the algorithm samples a set Z ⊂ [0, 1]d of size m = 2d ln(r) ln(1/δ)
ε2

and construct

the function γ(x) = 1
m

∑
z∈Z g(block(x, z)). Fix Z ⊂ [0, 1]d and suppose x ∈ Rd satisfies

γ(x) 6= E
z

[gz(x)]. Then there must be w, z ∈ [0, 1]d such that block(x, z) 6= block(x,w),

otherwise gz(x) = gw(x) for all z, w so for all w, γ(x) = gw(x) = E
z

[gz(x)]. There can be

at most rd values of x ∈ Rd for which ∃z, w ∈ [0, 1]d : block(x, z) 6= block(x,w), so by the
union bound and the Hoeffding bound,

P
Z

[
∃x ∈ Rd : |γ(x)− E

z
[gz(x)] | > ε

]
≤ rd max

x∈X
P
Z

[
|γ(x)− E

z
[gz(x)] | > ε

]
≤ 2rd exp

(
−mε

2

2

)
< δ .

Therefore with probability at least 1 − δ/2, γ satisfies |γ(x) − E
z

[gz(x)] | ≤ ε for all x.

Suppose this occurs. Then

1

2
E

(x,b)∼D
[|γ(x)− b|] ≤ 1

2
E

(x,b)∼D

[
|E
z

[gz(x)]− b|+ |γ(x)− E
z

[gz(x)] |
]

≤ P
(x,b)∼D,z

[gz(x) 6= b] +
ε

2
.

Now we apply Lemma 3.8.14 with error ε/2, using O(log(1/δ)/ε2) samples and polynomial
time, to output a value t such that with probability 1− δ/2,

P
(x,b)∼D

[sign(γ(x)− t) 6= b] ≤ 1

2
E

(x,b)
[|γ(x)− b|] +

ε

2
≤ P

(x,b)∼D,z
[gz(x) 6= b] + ε .

3.8.4 Algorithms for Finite Distributions

We now state improved versions of our monotonicity tester and two general learning algo-
rithms: the “brute force” learning algorithm (Lemma 3.4.8) and the “polynomial regres-
sion” algorithm (Lemma 3.5.2). Using these algorithms we obtain the same complexity
bounds as for continuous product distributions, but the algorithms can now handle finite
product distributions as well.

Theorem 1.2.11. There is a one-sided non-adaptive tester for monotonicity under product
distributions over Rd, with query complexity Õ(d5/6/ε4/3) and sample complexity Õ((d/ε)3).

Proof. The proof of Theorem 1.2.11 goes through as before, with block replaced by block,

block−↓(v) replaced with block
−↓

(v) defined as the infimal element x such that block(x) = v,
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and block−↑(v) defined as the supremal element x such that block(x) = v, and g redefined
appropriately.

Next, we move on to the learning algorithms:

Lemma 3.8.16. Let H be any set of functions Rd → {±1}, let ε > 0, and suppose r
satisfies r−d · bbs(H, r) ≤ ε/3. Then there is an agnostic learning algorithm for H that

uses O
(
rd+rd2 log(rd/ε)

ε2

)
samples and time and works for any distribution D over Rd×{±1}

whose marginal on Rd is a finite or continuous product distribution.

Proof. On input distribution D:

1. Sample a grid X of size m = O( rd
2

ε2
log(rd/ε)) large enough that Lemma 3.8.6 guaran-

tees ‖block(µ)−unif([r]d)‖TV < ε/3 with probability 5/6, where block : Rd× [0, 1]d →
[r]d is the induced augmented r-block partition.

2. Agnostically learn a function g : [r]d → {±1} with error ε/3 and success probability
5/6 using O(rd/ε2) samples from Dblock.

3. Run the algorithm of Lemma 3.8.14 using O
(
d log r
ε2

)
samples to obtain g′ and output

g′.

The proof proceeds as in the case for continuous distributions (Lemma 3.4.8). Assume
all steps succeed, which occurs with probability at least 2/3. After step 3 we obtain
g : [r]d → {±1} such that, for any h ∈ H,

P
(v,b)∼Dblock

[g(v) 6= b] ≤ P
(v,b)∼Dblock

[
hblock(v) 6= b

]
+ ε/3 .

By Lemma 3.8.14 and Proposition 3.8.7, the output satisfies,

P
(x,b)∼D

[g′(x) 6= b] ≤ P
(x,b)∼D,z

[
g(block(x, z)) 6= b

]
+ ε/3

≤ P
(x,b)∼D,z

[
hblock(block(x, z)) 6= b

]
+ 2ε/3

≤ P
(x,b)∼D

[h(x) 6= b] + P
x,z

[h(x) 6= hcoarsez (x)] + 2ε/3

≤ P
(x,b)∼D

[h(x) 6= b] + ε .
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We now state the general learning algorithm from Lemma 3.5.2, improved to allow
finite product distributions.

Lemma 3.8.17. Let ε > 0 and let H be a set of measurable functions f : Rd → {±1} that
satisfy:

1. There is some r = r(d, ε) such that bbs(H, r) ≤ ε · rd;

2. There is a set F of functions [r]d → R satisfying: ∀f ∈ H,∃g ∈ span(F) such that
for v ∼ [r]d,E

[
(fblock(v)− g(v))2

]
≤ ε2.

Let n = poly(|F|, 1/ε) be the sample complexity of the algorithm in Theorem 3.5.1. Then
there is an agnostic learning algorithm for H on finite and continuous product distributions
over Rd, that uses O(max(n2, 1/ε2) · rd2 log(dr)) samples and runs in time polynomial in
the sample size.

Proof. Let D be the augmented distribution, where x ∼ D is obtained by drawing x ∼ D
and augmenting it with a uniformly random z ∈ [0, 1]d. We will assume n > 1/ε. Let µ be
the marginal of D on Rd. For an augmented r-block partition, let Dblock be the distribution
of (block(x), b) when (x, b) ∼ D. We may simulate samples from Dblock by sampling (x, b)
from D and constructing (block(x), b). The algorithm is as follows:

1. Sample a grid X of length m = O(rd2n2 log(rd)); by Lemma 3.8.6, this ensures that
‖block(µ)− unif([r]d)‖TV < 1/12n with probability 5/6. Construct block : Rd → [r]d

induced by X.

2. Run the algorithm of Theorem 3.5.1 on a sample of n points from Dblock; that algo-
rithm returns a function g : [r]d → {±1}.

3. Run the algorithm of Lemma 3.8.14 using O
(
d log r
ε2

)
samples to obtain g′ and output

g′.

The proof proceeds as in the case for continuous distributions (Lemma 3.5.2). Assume
all steps succeed, which occurs with probability at least 2/3. After step 3 we obtain
g : [r]d → {±1} such that, for any h ∈ H,

P
(v,b)∼Dblock

[g(v) 6= b] ≤ P
(v,b)∼Dblock

[
hblock(v) 6= b

]
+ ε/3 .
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By Lemma 3.8.14 and Proposition 3.8.7, the output satisfies,

P
(x,b)∼D

[g′(x) 6= b] ≤ P
(x,b)∼D,z

[
g(block(x, z)) 6= b

]
+ ε/3

≤ P
(x,b)∼D,z

[
hblock(block(x, z)) 6= b

]
+ 2ε/3

≤ P
(x,b)∼D

[h(x) 6= b] + P
x,z

[h(x) 6= hcoarsez (x)] + 2ε/3

≤ P
(x,b)∼D

[h(x) 6= b] + ε .

Theorem 3.8.18. There are agnostic learning algorithms for functions of convex sets,
functions of halfspaces, degree-k PTFs, and k-alternating functions achieving the sample
and time complexity bounds in Theorems 1.2.12, 1.2.13, 3.4.4 and 3.7.1, that work for any
finite or continuous product distribution over Rd.

Proof. This follows from the same arguments as for each of those theorems, except with the
bounds from Proposition 3.8.8 and Lemmas 3.8.9 to 3.8.12 to bound bbs; Lemma 3.8.13
to bound the noise sensitivity; and the improved general algorithms of Lemmas 3.8.16
and 3.8.17.
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Chapter 4

Sketching Adjacency and Distances
in Graphs

The people wander across the plane,
searching for each other in vain.

Praying to their god divine,
“Am I near the friends of mine?”

they discover to their great surprise,
their prayers are of constant size!

Here begins Part II, where we introduce adjacency and distance sketching in hereditary
classes of graphs. More generally, we introduce f -sketching where f is a partial function,
parameterized by a graph G, that takes two vertices as arguments. The main examples
are adjacency, exact distance thresholds, approximate distance thresholds, and certain
first-order formulas, introduced in Section 4.2.1. We begin to develop a theory of the
graph classes which admit constant-size f -sketches; we call these classes f -sketchable. This
chapter introduces the basic facts about sketching, which are taken from [Har20, HWZ22].
The main three important facts about these sketches are:

1. Constant-cost randomized communication problems are equivalent to hereditary graph
classes that are adjacency sketchable. Therefore we may attempt to develop a the-
ory of constant-cost communication from a structural graph theory perspective by
studying adjacency sketching. See Section 4.2.2.

2. Any adjacency sketchable class admits a constant-size probabilistic universal graph
(PUG), which is a probabilistic variant of an induced-universal graph, as introduced
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by Rado [Rad64]. This is in parallel with the equivalence between adjacency la-
beling and induced-universal graphs observed by Kannan, Naor, & Rudich. See
Section 4.2.3.

3. Any f -sketchable class admits a deterministic f -labeling scheme with labels of size
O(log n). In particular, adjacency sketchable classes admit adjacency labeling schemes
of size O(log n), the subject of the main open problem in the area. See Sections 4.2.4
and 4.3.

There is a particular category of f -sketch that we call special attention to: the equality-
based sketch, which we define in Section 4.2.5, and which has a special relationship to
items (1) and (3). A constant-size equality-based f sketch is one that corresponds to a
randomized constant-cost communication protocol that can be simulated by a constant-
cost deterministic protocol with access to a unit-cost Equality oracle. Equality-based
sketches also capture a common type of labeling scheme, including the original adjacency
labeling schemes for bounded arboricity graphs in [KNR92]. We will use these types of
sketches extensively, and we show some of their limitations in Chapter 5.

As a consequence of item (1), constant-cost communication problems correspond to a
certain subset of hereditary graph classes. Hereditary graph classes form a lattice, whose
structure has been explored thoroughly in the literature. In Section 4.3 we give an overview
of this literature and give some simple results that place constant-cost communication and
the adjacency sketchable classes in this context.

As a warm-up, we begin with an extremely simple proof of an adjacency sketch for
the induced subgraphs of the hypercube and some of its consequences: the first adjacency
labeling scheme for the induced subgraphs of the hypercube, and the first non-trivial upper
bounds on the number of unique subgraphs and induced subgraphs of the hypercube. We
will extend these ideas in Chapter 5.

4.1 Warm-Up: The Hypercube

Recall from Chapter 1 that for any set of graphs F we define mon(F) as the monotone
closure of F , which is the set of subgraphs of graphs G ∈ F , and her(F) as the hereditary
closure, which is the set of induced subgraphs of graphs G ∈ F . We have also defined

F� = {G1� · · ·�Gd : d ∈ N, Gi ∈ F} .

The hypercube is the d-wise Cartesian product Kd
2 of the single edge K2, and we write

H = her({K2}�) for the class of induced subgraphs of hypercubes.
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For a class of graphs F , a one-sided error adjacency sketch with size s is a function
D : {0, 1}∗×{0, 1}∗ → {0, 1} such that, for every graph G ∈ F , there is a random function
sk : V (G)→ {0, 1}s satisfying

∀x, y ∈ V (G) : xy ∈ E(G) =⇒ P
sk

[D(sk(x), sk(y)) = 1] = 1

xy /∈ E(G) =⇒ P
sk

[D(sk(x), sk(y)) = 0] ≥ 1/4 .

The value 1/4 is chosen for convenience in the following proof.

Theorem 4.1.1. H has a one-sided error adjacency sketch of size 4.

Proof. For any G ∈ her({K2}�), we may identify the vertices V of G with a subset binary
strings in {0, 1}d, such that two vertices x, y ∈ V ⊆ {0, 1}d are adjacent if and only if they
differ on one coordinate.

Define D : {0, 1}∗ × {0, 1}∗ → {0, 1} such that D(u, v) = 1 if and only if the vector
w = u⊕ v has Hamming weight 1 (where u⊕ v is the coordinate-wise XOR). For a graph
G ∈ H on vertex set V ⊆ {0, 1}d, choose a random function sk : {0, 1}d → {0, 1}4 by
choosing a uniformly random map p : [d]→ [4]. For each i ∈ [4], define

sk(x)i :=
⊕

j∈p−1(i)

xj .

Suppose that xy ∈ E(G) so that they differ on exactly one coordinate. For any choice of
p : [d] → [4], we may partition the coordinates into four sets Ai = p−1(i). One of these
sets Ai contains the differing coordinate and will have wi = 1, while the other three sets
Aj will have wj = 0, so

P
sk

[D(sk(x), sk(y)) = 1] = 1 .

Now suppose xy /∈ E(G). If x = y then we have sk(x) = sk(y) so D(sk(x), sk(y)) = 0 with
probability 1. Now suppose that x, y differ on t ≥ 2 coordinates. We will show that w has
Hamming weight 1 with probability at most 3/4. Note that w is obtained by the random
process where ~0 = w(0), w = w(t), and w(i) is obtained from w(i−1) by flipping a uniformly
random coordinate.

Observe that, for i ≥ 1, P
[
w(i) = ~0

]
≤ 1/4. This is because w(i) = ~0 can occur only if

w(i−1) has Hamming weight 1, so the probability of flipping the 1-valued coordinate is 1/4.
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Then, for t ≥ 2, we have

P
[
|w(t)| = 1

]
= Ew(t−1)

[
P
[
|w(t)| = 1 | w(t−1)

]]
= P

[
w(t−1) = ~0

]
+ P

[
w(t−1) 6= ~0

]
· P
[
|w(t)| = 1 | w(t−1) 6= ~0

]
≤ 1

4
+

1

2
=

3

4
.

It is interesting to note that the decoder of this sketch simply checks adjacency in K4
2 . So,

all induced subgraphs of hypercubes can be “probabilistically embedded” in K4
2 . This is

defined formally in Definition 4.2.5.

Some consequences of this theorem are as follows.

Theorem 4.1.2. There exists an adjacency labeling scheme for H of size O(log n).

Proof. By the probabilistic method. For a graph G ∈ H on n vertices, choose k = 5dlog ne,
and let sk(1), . . . , sk(k) : V (G) → {0, 1}4, be independently randomly chosen as above. To
each x ∈ V (G), assign a random label with size 4k as follows:

sk(x) = (sk(1)(x), . . . , sk(k)(x)) ,

Let D′ be the decoder defined for the adjacency sketch above. On a pair of inputs
sk(x), sk(y), the decoder will output D(sk(x), sk(y)) = 1 if D′(sk(i)(x), sk(i)(y)) = 1 for
all i ∈ [k]. If x, y are adjacent, we have from above that P [D(sk(x), sk(y)) = 1] = 1.
Otherwise, we have

P [D(sk(x), sk(y)) = 1] = P
[
∀i ∈ [k] : D′(sk(i)(x), sk(i)(y)) = 1

]
≤ (3/4)k

By the union bound, the probability that there exist two non-adjacent vertices x, y ∈ V (G)
such that D(sk(x), sk(y)) = 1 is at most

n(n− 1)

2
· P [D(sk(x), sk(y)) = 1] <

n(n− 1)

2

(
3

4

)k
< 1

Therefore, for every G on n vertices, there exists a deterministic function sk : V (G) →
{0, 1}4k such that D(sk(x), sk(y)) is correct for all pairs x, y ∈ V (G).

An immediate consequence is an upper bound on the number of unique induced subgraphs
of the hypercube.
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Corollary 4.1.3. The number of n-vertex induced subgraphs of a hypercube is at most
2O(n logn).

As discussed in Chapter 1, the above results resolve two open questions of Alecu,
Atminas, & Lozin [AAL21]. A further consequence is a bound on the number of subgraphs.
The best known bound was previously 2O(n log2 n) (see e.g. [CLR20]).

Corollary 4.1.4. The number of n-vertex graphs subgraphs of a hypercube is at most
2O(n logn).

Proof. The number of edges of an n-vertex subgraph of a hypercube is at most n log n
[Gra70] (or see below), so every n-vertex subgraph of a hypercube has at most 2n logn

spanning subgraphs. Every subgraph of the hypercube is a spanning subgraph of an induced
subgraph, so the number of subgraphs is at most 2n logn · 2O(n logn).

Here is a simple proof of the upper bound on the number of edges in a subgraph of the
hypercube, which we present for the sake of completeness of this warm-up.

Proposition 4.1.5. Any n-vertex subgraph of a hypercube has at most n log n edges.

Proof. By induction on n. The claim holds trivially for n = 1. For n > 1, assume that
G is a subgraph of Qd with vertex set V (G) ⊆ {0, 1}d. Let G0 be the induced subgraph
on vertices x ∈ V (G) with x1 = 0, and G1 be the induced subgraph on vertices x ∈ V (G)
with x1 = 1. We may assume that G0, G1 are non-empty (otherwise G is a subgraph of
Qd−1). Write n = n0 + n1 where n0 = |V (G0)|, n1 = |V (G1)|. Assume without loss of
generality that n0 ≤ n1, and observe that the number of edges in G between V (G0) and
V (G1) is at most min(n0, n1) = n0, since these edges form a matching between V (G0) and
V (G1). Then, by induction, we have

|E(G)| ≤ |E(G0)|+ |E(G1)|+ n0 ≤ n0 log(n0) + n1 log(n1) + n0

= n0 log(2n0) + n1 log(n1) ≤ n0 log(n0 + n1) + n1 log(n0 + n1)

= (n0 + n1) log(n0 + n1) = n log n .

4.1.1 Notation and Terminology

All graphs in this work are simple, i.e. undirected, without loops and multiple edges. A
class of graphs F is a set of graphs closed under isomorphism, where we assume that an
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n-vertex graph G ∈ F has vertex set [n]. We write Fn for the set of graphs G ∈ Fn on
vertex set [n]. The speed of a class F is the function n 7→ |Fn|.

Let G be a graph and let v be a vertex in G. A vertex that is adjacent to v is called
a neighbour of v. The set of all neighbours of v is called the neighbourhood of v and it
is denoted as N(v). The degree of v is the number of neighbours of v and it is denoted
as deg(v). A bipartite graph is a graph whose vertex set can be partitioned into two
independent sets. A colored bipartite graph is a bipartite graph with a given bipartition of
its vertex set. We denote a colored bipartite graph by a triple (X, Y,E), where X, Y is the
partition of its vertex set into two parts, and the function E : X × Y → {0, 1} defines the
edge relation. If a bipartite graph G is connected, it has a unique partition of its vertices
into two parts and therefore there is only one colored bipartite graph corresponding to G;
(note that (X, Y,E) and (Y,X,E) are considered the same colored bipartite graph). If G
is disconnected, however, there is more than one corresponding colored bipartite graph.

For colored bipartite graphs G = (X, Y,E) and H = (X ′, Y ′, E ′), we say that H is an
induced subgraph of G, and write H @ G, when there is an injective map φ : X ′ ∪ Y ′ →
X ∪ Y that preserves adjacency and preserves parts. The latter means that the images
φ(X ′) and φ(Y ′) satisfy either φ(X ′) ⊆ X,φ(Y ′) ⊆ Y or φ(X ′) ⊆ Y, φ(Y ′) ⊆ X. A colored
bipartite graph G = (X, Y,E) is called biclique if every vertex in X is adjacent to every
vertex in Y , and G is called co-biclique if E = ∅.

For any graph G = (V,E) and subset W ⊆ V , we write G[W ] for the subgraph of G
induced by W . For disjoint sets X, Y ⊆ V , we write G[X, Y ] for the colored bipartite
graph (X, Y,E ′) where for (x, y) ∈ X × Y , (x, y) ∈ E ′ if and only if (x, y) ∈ E.

We also write G for the graph complement of G, i.e. the graph (V,E) where (x, y) ∈ E
if and only if (x, y) /∈ E. The bipartite complement, G, of a colored bipartite graph

G = (X, Y,E) is the graph G = (X, Y,E) with (x, y) ∈ E if and only if (x, y) /∈ E for
x ∈ X, y ∈ Y .

The disjoint union of two graphs G = (V,E) and H = (V ′, E ′) is the graph G + H =
(V ∪ V ′, E ∪ E ′).

4.2 Graph Sketching: The Basics

We will define a general notion of sketching. For a class F of graphs, we will write f to
refer to a set {fG}G∈F of partial functions fG : V (G) × V (G) → {0, 1, ∗} indexed by the
graphs G ∈ F . For example, f could be the set of adjacency functions where fG(x, y) = 1
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if and only if x, y are adjacent in G, and fG(x, y) = 0 otherwise. Or f could be a “gap”
distance function where fG(x, y) = 1 if distG(x, y) ≤ k, fG(x, y) = 0 if distG(x, y) > 2k,
and fG(x, y) = ∗ otherwise.

For a graph class F and δ > 0, we define an f -sketch with error δ for F as a decoder
D : {0, 1}∗ × {0, 1}∗ → {0, 1}, such that for every G ∈ F the following holds. There is a
probability distribution over functions sk : V (G)→ {0, 1}∗, such that for all x, y ∈ V (G),

fG(x, y) 6= ∗ =⇒ P [D(sk(x), sk(y)) = fG(x, y)] ≥ 1− δ

We define the size of the sketch as

max
G∈Fn

sup
sk

max
x∈V (G)

|sk(x)| ,

where the supremum is over the set of functions sk : V (G) → {0, 1}∗ in the support of
the distribution defined for G, and |sk(x)| is the number of bits of sk(x). We will refer to
f -sketches with error 1/3 as f -sketches, and will say that a class F is f -sketchable if there
exists an f -sketch for F with size that does not depend on the number of vertices n.

For a graph class F , we also define an f -labeling scheme for F similar to above, except
that for every G ∈ F there is a deterministic function ` : V (G)→ {0, 1}∗ such that for all
x, y ∈ V (G),

fG(x, y) 6= ∗ =⇒ D(`(x), `(y)) = fG(x, y) .

4.2.1 Types of Sketches: Adjacency, Distance, and First-Order

Given a graph G, the length of a path P in G is the number of edges of P . Given two
vertices x, y ∈ V (G), we define distG(x, y) to be the infimum of the length of a path between
x and y in G; we define distG(x, y) =∞ if there exists no path between x and y. Notice that
(V (G), distG) is a metric space (with possibly infinite distances between pairs of vertices if
G is disconnected).

We now define certain important types of f -sketches. Let F be a class of graphs. For
any r1 ≤ r2, a distance-(r1, r2) sketch for F is an f -sketch, as defined above, when for any
graph G we define the function

fG(x, y) =


1 if distG(x, y) ≤ r1

0 if distG(x, y) > r2

∗ otherwise.
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The size of such a sketch may depend on r1, r2, the number of vertices n, or other graph
parameters. In Chapter 1, we defined adjacency, small-distance, and approximate distance
threshold (ADT) sketching. We redefine these sketching problems here, using the above
formulation:

1. A class F is adjacency sketchable if it is distance-(1, 1) sketchable;

2. A class F is small-distance sketchable if for every r ≥ 1 it is distance-(r, r) sketchable.
For simplicity, we will write distance-r sketch instead of distance-(r, r) sketch.

3. A class F is α-ADT sketchable if for every r ≥ 1 it is distance-(r, αr) sketchable, and
furthermore the size of the sketch does not depend on r.

We will also define first-order (FO) sketchable classes, for which we require some terminol-
ogy. A relational vocabulary Σ is a set of relation symbols, with each R ∈ Σ having an arity
arity(R) ∈ N \ {0}. A Σ-structure A consists of a domain A, and for each relation symbol
R ∈ Σ an interpretation RA ⊆ Aarity(R), which is a relation. Fix a countably infinite set X
of variables. Atomic formulas of vocabulary Σ are of the form

� x = y for x, y ∈ X; or,

� R(x1, . . . , xr) for x1, . . . , xr ∈ X, R ∈ Σ and r = arity(R), which evaluates to true
when (x1, . . . , xr) ∈ R.

First-order (FO) formulas of vocabulary Σ are inductively defined as either atomic formu-
las, or a formula of the form ¬φ, φ ∧ ψ, φ ∨ ψ, or ∃x.φ or ∀x.ψ, where φ and ψ are each
FO formulas. A free variable of a formula φ is one which is not bound by a quantifier. We
will write φ(x1, x2, . . . , xk) to show that the free variables of φ are x1, . . . , xk ∈ X. For a
value u ∈ A, we write φ[u/x] for the formula obtained by substituting the constant u for
the free variable x.

Let φ(x, y) be any formula with two free variables and relational vocabulary Σ =
{E ′, R1, . . . , Rk} where E ′ is symmetric of arity 2 and each Ri has arity 1. We will say that
a graph class F is φ-sketchable if it is f -sketchable for any f chosen as follows. For any
graph G = (V,E), we choose any Σ-structure with domain V where E is the interpretation
of the symbol E ′. Then set fG(u, v) = 1 if and only if φ(u/x, v/y) evaluates to true.

We remark that for any graph G, there are many ways to choose a Σ-structure with
domain V with E being the interpretation of E ′. To be first-order sketchable, a class F
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must be f -sketchable for every such choice of functions fG. A concrete example is that,
for any r ∈ N, we can choose the formula

φ(x, y) = ∃u1, u2, . . . , ur−1 :

(E ′(x, u1) ∨ x = u1) ∧ (E ′(u1, u2) ∨ u1 = u2) ∧ · · · ∧ (E ′(ur, y) ∨ ur = y) ,

which evaluates to true if and only if distG(x, y) ≤ r. So any class that is first-order
sketchable must be small-distance sketchable.

4.2.2 Communication Complexity

constant speed

polynomial speed

exponential speed

factorial speed

superfactorial speed

planar graphs

interval graphs

communication
problems

randomized
constant

deter-
ministic
constant

F

Adj

Adj

F

Adj

Adj

Figure 4.1: The communication-to-graph correspondence. Section 4.3 describes the lattice
on the right. Communication problems with constant-cost randomized protocols (green)
are mapped to the set of hereditary graph classes with constant-size adjacency sketches
(green) by F. This is a subset of the classes that admit O(log n)-size adjacency labels
(blue). Adjacency sketchable classes are mapped to constant-cost communication problems
by Adj.

We now establish the communication-to-graph correspondence mentioned in Chapter 1,
Section 1.3. We refer the reader to [NK96, RY20] for an introduction to communication
complexity. A communication problem is a sequence f = (fn)n∈N of functions1 fn : [n] ×

1In the literature, the domain is usually {0, 1}n × {0, 1}n. We use [n] × [n] to highlight the graph
interpretation.
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[n]→ {0, 1}. For any communication problem f = (fn)n∈N, write CC(fn) for the cost of the
optimal two-way, randomized protocol (Definition 4.2.1) computing fn, and write CC(f)
for the function n 7→ CC(fn). We may represent fn as a bipartite graph Fn = ([n], [n], fn)
where fn defines the edge relation.

For a function f : X ×Y → {0, 1}, we will write CC(f) for the optimal two-way, public-
coin randomized communication cost of f . Informally, in this model, the players Alice and
Bob share a source of randomness. Alice receives input x, Bob receives input y, and they
communicate by sending messages back and forth using their shared randomness. After
communication, Bob must output a (random) value b ∈ {0, 1} such that b = fn(x, y) with
probability at least 2/3. The cost of such a protocol is the maximum over all inputs of the
number of bits communicated between the players. Formally, the definition is as follows.

Definition 4.2.1. A two-way public-coin communication protocol is a probability distri-
bution over communication trees. For input size n, a communication tree Tn is a binary
tree with each inner node being a tuple (p,m) where p ∈ {A,B} and m : [n]→ {0, 1}, and
each edge of Tn is labeled either 0 or 1. Each leaf node is labeled either 0 or 1. For any
fixed tree Tn and inputs x, y ∈ [n], communication proceeds by setting the current node
c to the root node. At each step of the protocol, if c is an inner node (A,m) then Alice
sends m(x) to Bob and both players set c to the child along the edge labeled m(x). If c
is an inner node (B,m) then Bob sends m(y) to Alice, and both players set c to the child
along the edge labeled m(y). The protocol terminates when c becomes a leaf node, and
the output is the value of the leaf node; we write T (x, y) for the output of communication
tree T on inputs x, y.

For communication problem f = (fn)n∈N, a randomized protocol must satisfy Tn(x, y) =
fn(x, y) with probability at least 2/3, where the probability is over the choice of Tn. The
cost of a protocol for fn is the minimum value d such that all trees Tn in the support of
the distribution have depth at most d.

We now describe the central communication-to-graph correspondence, which is illus-
trated in Figure 4.1. For any undirected graph G = (V,E), we identify E with the function
E : V × V → {0, 1} where E(x, y) holds true (E(x, y) = 1) if and only if (x, y) is an edge
of G.

We will define the hereditary class F(f) associated with f as the smallest hereditary
class that contains each Fn, as follows. For graphs G,H, we write H @ G if H is an
induced subgraph of G. Recall that for any set of graphs G, we define the hereditary
closure her(G) := {H : ∃G ∈ G, H @ G}. By definition, her(G) is a hereditary graph class
that includes G. We then define

F(f) := her ({F1, F2, . . . }) .
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In the other direction, for any set of graphs F , we define the natural Adjacency communi-
cation problem, which captures the complexity of the two-player game of deciding whether
the players are adjacent in a given graph G ∈ F . A communication problem contains only
one function fn for each input size n, whereas F contains many graphs of size n. The
Adjacency problem should capture the maximum complexity of computing adjacency
in any graph G ∈ F , so for each input size n ∈ N, we choose from Fn the graph where
adjacency is hardest to compute. Let ≺ be a total order on functions [n] × [n] → {0, 1}
that extends the partial order ≺′ defined by fn ≺′ gn ⇐⇒ CC(fn) < CC(gn). We define
the Adjacency problem as AdjF = (fn)n∈N, where

fn = max{gn : ([n], gn) ∈ Fn}

and the maximum is with respect to ≺. Here we have written gn : [n] × [n] → {0, 1} for
the edge relation in the graph ([n], gn). It follows that for any communication problem f ,
we have f = AdjF where F = {F1, F2, . . . }, since Fn is a singleton; but it is not true that
f = AdjF(f), since for each n ∈ N, AdjF(f) effectively chooses the hardest subproblem of
size n of any fm for m ≥ n.

Proposition 4.2.2. For any communication problem f = (fn)n∈N and hereditary graph
class F :

1. CC(f) = O(1) if and only if F(f) is adjacency sketchable;

2. F is adjacency sketchable if and only if CC(AdjF) = O(1).

Proof. First suppose that F is adjacency sketchable, so that there is an adjacency sketch
of constant size s, and write Adj = (Adjn)n∈N for the communication problem AdjF .
Let D be the decoder of the adjacency sketch. We obtain a constant-cost communication
protocol for Adj as follows. For each n ∈ N, let Gn ∈ Fn be the graph such that Adjn is
the edge relation of Gn. On inputs x, y ∈ [n], Alice and Bob sample the random function
sk : V (Gn) → {0, 1}s and Alice sends sk(x) to Bob, which requires at most s bits of
communication. Then Bob simulates the decoder on D(sk(x), sk(y)). By definition

P
sk

[
D(sk(x), sk(y)) = Adjn(x, y)

]
≥ 2/3 .

Now suppose that CC(Adj) = k for some constant k. For any G ∈ Fn it holds that the
edge relation gn : [n]× [n]→ {0, 1} for G satisfies CC(gn) ≤ CC(Adjn) ≤ k, by definition.
For each G ∈ F , let P(G) be the probability distribution over communication trees defined
by an optimal communication protocol for the edge relation of G. Then it holds that every
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communication tree in the support of P(G) has depth at most CC(Adj). So there is some
d, such that, for every G ∈ F , all communication trees T in the support of P(G) have depth
at most d. We define the adjacency sketch for F as follows. For every G = (V,E) ∈ F ,
construct the random sketch sk by sampling T ∼ P(G), and then for every v ∈ V :

For every node c of T , append to the label sk(v) the following:

1. If c is an inner node (p,m) (with p ∈ {A,B} and m : [n]→ {0, 1}), append
the symbol p and the value m(v).

2. If c is a leaf with value b, append the symbol L and the value b.

We define the decoder D as follows. On input (sk(u), sk(v)), the decoder simulates the
communication tree T on (u, v) using the values m(u),m(v) for each inner node. We
therefore obtain

P
sk

[D(sk(u), sk(v)) = E(u, v)] = P
T∼P(G)

[T (u, v) = E(u, v)] ≥ 2/3 .

Consider F(f) = her({F1, F2, . . . }) for the graphs Fn on vertex set [n] with edge relation
fn. Then it holds for any G ∈ F(f) that there exists n ∈ N such that G @ Fn. But then the
edge relation g of G satisfies CC(g) ≤ CC(fn) ≤ k, since the communication problem g is
a subproblem of fn. We may then construct adjacency sketches by the scheme above.

Standard distance sketching (as distinct from the graph sketching problems that we discuss
in this thesis) is usually compared to communication in the simultaneous message passing
(SMP) model (e.g. [AK08]). We will briefly discuss the relationship between our notion of
f -sketching and SMP communication. This relationship was the subject of [Har20].

In the SMP model, Alice and Bob are given (private) inputs x, y ∈ [n] to problem
fn : [n]× [n]→ {0, 1}. They use shared randomness to send random messages A(x), B(y)
to a third-party referee, who must output fn(x, y) with probability at least 2/3 over the
choice of messages. The complexity of the protocol is maxx,y max(|A(x)|, |B(y)|).

The difference between the SMP model and the sketching model, as we have defined
it, is that all parties in the SMP model know the function fn in advance. In our sketching
model, the function fn depends on the graph G given to Alice and Bob (but not the
referee), so the referee does not know it in advance. One important consequence is that
communication in the SMP model always has an upper bound of dlog ne, whereas this is
not true in the sketching model.
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4.2.3 Probabilistic Universal Graphs

Universal graphs were introduced in [Rad64]. Kannan, Naor, & Rudich [KNR92] observed
that adjacency labeling schemes of sizeO(log n) are equivalent to polynomial-sized universal
graphs.

Definition 4.2.3. Let F be a class of graphs. A sequence U = (U1, U2, . . . ) of graphs is
called a universal graph for F if for every n ∈ N and every graph G ∈ Fn, it holds that
G @ Un. The size of the universal graph is the function n 7→ |V (Un)|.
Proposition 4.2.4 ([KNR92]). A hereditary graph class F admits a universal graph of
size poly(n) if and only if it admits an adjacency labeling scheme of size O(log n).

We will call the analogous object for adjacency sketching a probabilistic universal graph
(PUG) and define it as follows.

Definition 4.2.5. Let F be a class of graphs. A sequence U = (U1, U2, . . . ) of graphs is
called a probabilistic universal graph for F if for every n ∈ N and every G ∈ Fn there is a
probability distribution over functions φG : V (G)→ V (Un) such that

∀x, y ∈ V (G) : xy ∈ E(G) =⇒ P
φG

[φG(x)φG(y) ∈ E(Un)] ≥ 2/3

xy /∈ E(G) =⇒ P
φG

[φG(x)φG(y) /∈ E(Un)] ≥ 2/3 .

The size of the probabilistic universal graph is the function n 7→ |V (Un)|. If there is a
constant k such that F admits a probabilistic universal graph of size at most k, then F
admits a constant-size probabilistic universal graph. We remark that in this case we must
have a finite number of unique graphs in the sequence U and therefore (by taking the graph
union of these) we may instead assume that U1 = U2 = · · · .

Following the same proof as [KNR92], we have:

Proposition 4.2.6. Suppose a hereditary graph class F admits an adjacency sketch of size
s(n). Then F has a PUG of size 2s(n).

Proof. Let D be the decoder for the adjacency sketch for F . For every n ∈ N, we take Un
to be the graph on vertices {0, 1}s(n) and edge set xy ∈ E(Un) ⇐⇒ D(x, y) = 1. For any
G ∈ Fn, choose a random sk : V (G)→ {0, 1}s(n) defined by the adjacency sketch. Observe
that for all u, v ∈ V (G),

P
sk

[sk(u)sk(v) ∈ E(Un)] = P
sk

[D(sk(u), sk(v)) = 1] ,

from which the conclusion follows by definition.
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An interesting example is that, by examining the adjacency sketch for the hypercube in
Section 4.1, we see that a constant-dimensional hypercube Kd

2 is a PUG for the class of
induced subgraphs of hypercubes (although we note that the proof in Section 4.1 does not
establish that K4

2 is a PUG; this is because we used error 3/4 instead of 1/3 in that proof,
which was sufficient due to its one-sided error).

4.2.4 Boosting and Derandomization

Like most randomized algorithms, we can boost sketches to arbitrarily high accuracy.

Proposition 4.2.7. For any graph class F , any partial function f parameterized by the
graphs in F , and any 0 < δ1 < δ2 < 1/2 (which may depend on n), if F admits an
f -sketch of error δ2(n) of size s(n), then it admits an f -sketch of error δ1(n) with size

O
(
s(n) · 1

(1/2−δ2(n))2
log 1

δ1(n)

)
.

Proof. Let D be the decoder for the f -sketch with error δ2. For any n ∈ N and any
graph G ∈ Fn, write δ1 = δ(n) and δ2 = δ2(n). Let sk(1), . . . , sk(k) : V (G) → {0, 1}s(n) be
independently random, drawn from the distribution defined by the f -sketch of error δ2. For
any x ∈ V (G) we then define the random function sk(x) = (sk(1)(x), sk(2)(x), . . . , sk(k)(x)).
We define the decoder D′ such that on inputs sk(x), sk(y), it outputs

D′(sk(x), sk(y)) = majority
(
D(sk(1)(x), sk(1)(y)), . . . , D(sk(k)(x), sk(k)(y))

)
.

Assume fG(x, y) 6= ∗. Write Xi = 1
[
fG(x, y) = D(sk(i)(x), sk(i)(y))

]
, which indicates

whether the decoder was correct on the ith instance, so that the Xi are independently
and identically distributed Bernoulli random variables with some parameter p ≥ δ2. Write
X =

∑k
i=1Xi. Then by standard concentration inequalities (see [BLM13], Exercise 2.10),

P
sk

[D′(sk(x), sk(y)) = 0] = P
sk

[X < k/2] = P
sk

[X − pk < k(1/2− p)]

≤ e−k(1/2−p)2/2 ≤ e−k(1/2−δ2)2/2 .

This is at most δ1 when k ≥ 2
(1/2−δ2)2

ln(1/δ1).

Lemma 4.2.8. Suppose a class F admits an f -sketch of size s(n). Then F admits an
f -labeling of size O(s(n) log n).
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Proof. By Proposition 4.2.7, we obtain an f -sketch with error 1
3n2 and size t(n) = O(s(n) log n);

let D be the decoder for this sketch. Then for any graph G ∈ F there is a random
sk : V (G)→ {0, 1}t(n) such that, by the union bound:

P
sk

[∃x, y ∈ V (G) : f(x, y) 6= ∗, D(sk(x), sk(y)) 6= f(x, y)]

≤ n2 max
x,y∈V (G)

P
sk

[f(x, y) 6= ∗, D(sk(x), sk(y)) 6= f(x, y)] ≤ n2 · 1

3n2
=

1

3
.

Therefore there exists a fixed, deterministic function sk : V (G) → {0, 1}t(n) that satisfies
the requirements of an f -labeling.

Newman’s Theorem is a classic result that bounds the number of uniform random bits
required to choose a randomized public-coin communication protocol. We give a version
of this theorem for sketching. This gives an alternative proof for Lemma 4.2.8, since we
may concatenate all O(log n) size s(n) sketches obtained from each setting of the random
bits.

Theorem 4.2.9 (Newman’s Theorem for Sketching). Let ε, δ > 0 and suppose there is an
ε-error f -sketch for the class F with size s(n). Then there is a (ε + δ)-error f -sketch of

size s(n) for the class F that uses at most log log
(
nO(1/δ2)

)
bits of randomness to generate

the sketch.

Proof. Let D be the decoder of the ε-error f -sketch, and let G ∈ Fn. We suppose that
the random sketch sk : V (G) → {0, 1}s(n) is obtained from a choice of random seed r ∼ ρ
sampled from distribution ρ, so that for each r ∈ supp(ρ) we write skr for the sketch
obtained deterministically from r.

For any x, y ∈ V (G), we will say that a random seed r ∈ supp(ρ) is bad for x, y if
fG(x, y) 6= ∗ and D(skr(x), skr(y)) 6= fG(x, y). We will write bad(x, y, r) for the event that
r is bad for x, y. We say that a fixed set r1, r2, . . . , rm ∈ supp(ρ) of seeds fails for x, y if
fG(x, y) 6= ∗ and

P
i∼[m]

[bad(x, y, ri)] > ε+ δ .

We write fail(x, y, r1, . . . , rm) if the set r1, . . . , rm fails for x, y. Note that fail(x, y, r1, . . . , rm)
occurs if and only if

m∑
i=1

1 [bad(x, y, ri)] > m(ε+ δ) .
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Let r1, . . . , rm be independent seeds drawn from ρ. The expected number of pairs x, y ∈
V (G) such that r1, . . . , rm fails for x, y is

E
r1,...,rm

[∑
x,y

1 [fail(x, y, r1, . . . , rm)]

]
≤ n2 max

x,y
E

r1,...,rm
[1 [fail(x, y, r1, . . . , rm)]]

= n2 max
x,y

P
r1,...,rm

[fail(x, y, r1, . . . , rm)]

= n2 max
x,y

P
r1,...,rm

[
m∑
i=1

1 [bad(x, y, ri)] > m(ε+ δ)

]
.

For a fixed x, y, write Xi = 1 [bad(x, y, ri)]. We have that X1, . . . , Xm are independent
Bernoulli random variables with some parameter p < ε. Then (by [BLM13], Exercise 2.10)
we have

P
r1,...,rm

[
m∑
i=1

Xi > m(ε+ δ)

]
= P

r1,...,rm

[
m∑
i=1

Xi − pm > m(ε+ δ − p)

]
≤ e−mδ

2/3 .

Choosing any m > 3δ2 ln(n2), we see that this is less than 1. Therefore there exist fixed
seeds r1, . . . , rm such that 1 [fail(x, y, r1, . . . , rm)] = 0 for all pairs x, y. We then obtain
a new sketch with error (ε + δ) by choosing i ∼ [m] uniformly at random using at most

dlogme = log ln
(
nO(1/δ2)

)
bits, and assigning the sketch skri(x) to each vertex x.

4.2.5 Equality-Based Labelings

An equality-based labeling scheme is one which assigns to each vertex a deterministic
label, comprising a data structure of size s that holds k “equality codes”, which can
be used only for checking equality. These labeling schemes: 1) capture the constant-
cost randomized communication protocols that can be simulated by a constant-cost de-
terministic communication protocol with access to an Equality oracle (as studied in
e.g. [CLV19, BBM+20, HHH21b]); and 2) capture a common type of adjacency labels,
including those of [KNR92] for bounded arboricity graphs; see also [Cha18, CLR20] for
other recent examples.

One might formalize these schemes in a few ways. We choose a definition intended
to simplify notation, rather than optimize label size, since we care mainly about constant
vs. non-constant. For the sake of readability, we write

Eq(a, b) = 1 [a = b] .
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Definition 4.2.10 (Equality-Based Labeling Scheme). Let F be a class of graphs and
let f : N × N × F → {0, 1, ∗} be a partial function. An (s, t, k)-equality-based f -labeling
scheme for F is an algorithm D, called a decoder, which satisfies the following. For every
G ∈ F with vertex set [n] and every x ∈ [n], there is a sequence of the form

`G(x) = [(p1(x) | ~q1(x)), (p2(x) | ~q2(x)), . . . , (pt(x) | ~qt(x))] ,

where the vectors pi(x) ∈ {0, 1}∗ are called the prefixes, and the entries of the vectors
~qi(x) ∈ N∗ are called equality codes (which we may assume are positive integers). We must
have

∑t
i=1 |pi(x)| ≤ s and

∑t
i=1 |~qi(x)| ≤ k (recall that given a vector v of binary numbers

or integers, |v| denotes the number of entries of v). We insist on the fact that k bounds
the total number of equality codes associated with any vertex x, but not necessarily the
total number of bits needed to store these codes (see Example 4.2.11 below, where k = 2
but storing the codes would require 2 log n bits per vertex). On inputs `G(x), `G(y), the
algorithm D chooses a function Dp(x),p(y), where p(x) = (p1(x), . . . , pt(x)), and outputs

Dp(x),p(y)(Qx,y) ,

where
Qx,y(i1, i2, j1, j2) = Eq ((~qi1(x))j1 , (~qi2(x))j2) (4.1)

is the set of equality values for every pair of equality codes. It is required that, for every
G ∈ F and x, y ∈ V (G),

fG(x, y) 6= ∗ =⇒ Dp(x),p(y)(Qx,y) = fG(x, y) .

We will say that a class F admits a constant-size equality-based f -labeling scheme if there
exist constant s, t, k such that F admits an (s, t, k)-equality-based f -labeling scheme. We
make the further distinction of calling a labeling scheme (s, t, k)-disjunctive if it is an
(s, t, k)-equality-based labeling scheme, where each function Dp(x),p(y) is simply a disjunc-
tion over a subset of values Qx,y(i1, i2, j1, j2).

When an element (pi(x) | ~qi(x)) in an equality-based label has pi(x) of size 0, we will write
(− | ~qi(x)); similarly, we write (p1(x) | −) when ~qi(x) is empty.

Example 4.2.11. The adjacency labeling scheme of [KNR92] for forests can be written
as an equality-based labeling scheme. For each x in an n-vertex forest G with arbitrar-
ily rooted trees, which we assume has vertex set [n], we assign the label `G(x) = [(− |
(x, p(x)))] where p(x) is the parent of x if it has one, or 0 otherwise. Here ~q1(x) =
(x, p(x)) ∈ N2. The decoder simply outputs the disjunction of p(x) = y or p(y) = x, so in
fact this is a (0, 1, 2)-disjunctive labeling scheme.
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An equality-based labeling scheme is easily transformed into a standard deterministic
labeling scheme or a sketch. We sketch the proof for the sake of clarity.

Proposition 4.2.12. Let F be a class of graphs and f : N×N×F → {0, 1, ∗} be a partial
function. If there is an (s, t, k)-equality-based f -labeling scheme for F then there is an
f -sketch for F of size at most O(s + t + k log k). If the scheme is disjunctive, the sketch
has one-sided error: when f(x, y,G) = 1, the sketch will produce the wrong output with
probability 0.

Proof sketch. Choose a random function ξ : N → [w] for w = 3k2. For any vertex x of a
graph G, replace each vector ~qi(x) = (qi,1(x), . . . , qi,m(x)) with (ξ(qi,1(x)), . . . , ξ(qi,m(x))).
We have replaced each of the (at most) k equality codes (~qi(x))j with ξ((qi(x))j), using
k logw = O(k log k) bits in total. The sketch has size O(s + t + k log k) since we must
include each pi(x) (using s bits in total), the O(k log k) bits for the equality codes, and
O(t) bits to encode the symbols ( | ).

For two vertices x, y, write Qξ
x,y(i1, i2, j1, j2) = 1 [ξ((~qi1(x))i2) = ξ((~qj1(y))j2)]. Since

there are at most k equality codes in each label, there are at most k2 equality comparisons.
By the union bound, the probability that any of these comparisons have

1 [ξ((~qi1(x))i2) = ξ((~qj1(y))j2)] 6= 1 [(~qi1(x))i2 = (~qj1(y))j2 ]

is at most k2 · (1/w) = 1/3, so with probability at least 2/3 all of the comparisons made
by the decoder have the correct value, so the decoder will be correct. Note that when
(~qi1(x))i2 = (~qj1(y))j2 , the random values under ξ will be equal with certainty. We conclude
from this that disjunctive schemes will produce sketches with one-sided error.

Here we give some simple adjacency sketches for equivalence graphs and bounded-
arboricity graphs that we will require for our later results.

Definition 4.2.13. A graph G is an equivalence graph if it is a disjoint union of cliques.
A colored bipartite graph G = (X, Y,E) is a bipartite equivalence graph if it is a colored
disjoint union of bicliques, i.e. if there are partitions X = X1∪ · · ·∪Xm, Y = Y1∪ · · ·∪Ym
such that each G[Xi, Yi] is a biclique and each G[Xi, Yj] is a co-biclique when i 6= j.

The equivalence graphs are exactly the P3-free graphs and the bipartite equivalence
graphs are exactly the P4-free bipartite graphs. The following fact is an easy exercise.

Fact 4.2.14. The equivalence graphs and the bipartite equivalence graphs admit constant-
size equality-based labeling schemes.
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Definition 4.2.15. A graph G = (V,E) has arboricity α if its edges can be partitioned
into at most α forests.

In the next lemma, we interpret the classic labeling scheme of [KNR92] as an equality-
based labeling scheme, and we obtain adjacency sketches for bounded-arboricity graphs
that improves slightly upon the näıve bound in Proposition 4.2.12 and in [Har20].

Lemma 4.2.16. For any α ∈ N, let A be the family of graphs with arboricity at most α.
Then A admits a constant-size equality-based adjacency labeling scheme. A also admits an
adjacency sketch of size O(α).

Proof. For any graph G ∈ An with vertex set [n], partition the edges of G into forests
F1, . . . , Fα and to each tree in each forest, identify some arbitrary vertex as the root. For
every vertex x, assign equality codes q1(x) = x and for i ∈ [α] set qi+1(x) to be the parent
of x in forest Fi; if x is the root assign qi+1(x) = 0. For vertices x, y, the decoder outputs(

α∨
j=2

Eq(q1(x), qj(y))

)
∨

(
α∨
j=2

Eq(q1(y), qj(x))

)
.

This is 1 if and only if y is the parent of x or x is the parent of y in some forest Fi.

One can apply Proposition 4.2.12 to obtain an O(α logα) adjacency sketch. We can
improve this using a Bloom filter, since the output is simply a disjunction of equality checks.
To each i ∈ [n], assign a uniformly random number r(i) ∼ [6α], and to each vertex x assign
the sketch (r(x), b(x)) where b(x) ∈ {0, 1}6α satisfies b(x)i = 1 if and only if r(qj(x)) = i
for some j ∈ {2, . . . , α + 1}. On input (r(x), b(x)) and (r(y), b(y)), the decoder outputs
1 if and only if b(x)r(y) = 1 or b(y)r(x) = 1. If y is a parent of x in any of the α forests,
then y = qj(x) for some j, so b(x)r(y) = b(x)r(qj(x)) = 1 and the decoder will output 1 with
probability 1. Similarly, if x is a parent of y in any of the α forests, the decoder will output
1 with probability 1. The decoder fails only when x, y are not adjacent and r(x) = r(qj(y))
or r(y) = r(qj(x)) for some j. By the union bound, this occurs with probability at most
2α · 1

6α
= 1/3, as desired. The size of the sketches is O(log(α) + α) = O(α).

Remark 4.2.17. Disjunctive labeling schemes with s = 0 (i.e. the p values are empty)
can be transformed into locality-sensitive hashes (LSH) [IM98]. A (r1, r2, γ1, γ2)-LSH must
map any two points x, y with dist(x, y) ≤ r1 to the same hash value with probability at
least γ1, and map any two points x, y with dist(x, y) > r2 to the same hash value with
probability at most γ2, where r1 < r2 and γ1 > γ2. By boosting the success probability
of each Equality check in the disjunction, and then sampling a uniformly random term
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from the disjunction, one obtains an LSH with distance parameters that depend on the
original sketch. All of the equality-based sketches presented in this chapter, except the
first-order sketches, are of this form.

An equality-based communication protocol is a deterministic protocol that has access to
an Equality oracle. Specifically, at each step of the protocol, the players can decide to
(exactly) compute an instance of Equality at unit cost. Informally, this means that the
nodes of the communication tree are either standard nodes, as in deterministic two-way
communication, or Equality nodes. Formally, we define these protocols as follows.

Definition 4.2.18 (Equality-based Communication Protocol). An equality-based commu-
nication protocol for a communication problem f = (fn)n∈N, fn : [n] × [n] → {0, 1} is a
deterministic protocol of the following form. For each n there is a binary communication
tree Tn whose inner nodes are either:

1. Communication nodes of the form (p,m), where p is a symbol in {A,B} and m :
[n]→ {0, 1}; or,

2. Equality nodes of the form (a, b), where a, b : [n]→ N,

and edges are labeled in {0, 1}. Leaf nodes of the T are labeled with values in {0, 1}. On
input x, y ∈ [n], the players Alice and Bob perform the following. Each player keeps track
of the current node c, which begins at the root of T . The protocol proceeds as follows:

1. If c is a leaf node, the protocol outputs the label of that node.

2. If c = (p,m) is a communication node and p = A, then Alice computes m(x) and
sends the result to Bob, and both players reset c to be the child labeled with edge
value m(x). If p = B then Bob computes m(y) and sends the result to Alice and c
becomes the child labeled with edge value m(y).

3. If c = (a, b) is an equality node, then c moves to the child labeled with edge value
Eq[a(x), b(y)].

For a communication tree T and inputs x, y, we will write T (x, y) for the output of the
protocol T . We will write CCEq(fn) for the minimum depth of such a tree that computes fn,
and CCEq(f) for the function n 7→ CCEq(fn). The equality-based communication protocol
is constant-cost if CCEq(f) = O(1).
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It was observed in [CLV19] that Equality nodes can simulate standard communication
nodes. We include a proof for the sake of clarity.

Proposition 4.2.19. For any equality-based communication tree T , there is an equality-
based communication tree T ′ with the same depth as T , with all nodes being equality nodes,
and such that T ′(x, y) = T (x, y) on all inputs x, y.

Proof. Consider any node (p,m) in T with p ∈ {A,B}. If p = A, replace this node with
an equality node (a, b) where a(x) = m(x) and b(y) = 1. If p = B, replace this node with
an equality node (a, b) where a(x) = 1 and b(y) = m(y). We now observe that for any x, y,
if p = A then the output of the node is 1 if and only if 1 = m(x), and if p = B then the
output of the node is 1 if and only if 1 = m(y). So the output of this node is the same as
the original node (p,m). We may replace each node in the tree in such a way to produce
T ′.

Proposition 4.2.20. Let F be any hereditary graph class. If F admits a constant-size
equality-based labeling scheme, then there is a constant-size equality-based protocol for
AdjF .

Proof. Suppose there is a constant-size equality-based labeling scheme for F . For any
G ∈ Fn, we can compute the edge relation g : [n]× [n]→ {0, 1} with a protocol as follows.
On input x and y, Alice and Bob compute p(x), p(y) and qi(x), qi(y) for each i ∈ [k]. Alice
sends p(x) to Bob using s bits of communication, and then using k2 calls to the Equality
oracle, they compute each pair Eq(qi(x), qj(y)) and construct Qx,y. Then Bob outputs
Dp(x),p(y)(Qx,y).

4.2.6 Lower Bound for the Class of All Graphs

Here we prove a general lower bound for size of an adjacency sketch for the class of all
graphs. Below, we will write adjG : V (G)× V (G)→ {0, 1} for the function which satisfies
adjG(x, y) = 1 if and only if xy is an edge of G.

Theorem 4.2.21. Let G be the class of all graphs. Any adjacency sketch for G has size
s(n) = Ω(n).

Proof. Consider any sketch for G with decoder D and fix any n. For any graph G on n
vertices, let sk denote the random sketch function. For any x, y ∈ V (G), write F (x, y) =
1 [D(sk(x), sk(y)) 6= adjG(x, y)], so that

E [F (x, y)] = P [D(sk(x), sk(y)) 6= adjG(x, y)] ≤ 1/3 .
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Then for a uniformly randomly chosen pair of distinct vertices (x, y), we have

E
sk

[
E
x,y

[F (x, y)]

]
= E

(x,y)

[
E
sk

[F (x, y)]
]
≤ 1/3 ,

so there exists a fixed function fG : V (G)→ {0, 1}s(n) such that

E
x,y

[D(fG(x), fG(y)) 6= adjG(x, y)] ≤ 1/3 .

Suppose that G,G′ have fG = fG′ , and define dist(G,G′) = P
x,y

[adjG(x, y) 6= adjGG
′(x, y)],

where x, y is a uniformly random pair of distinct vertices. Write N =
(
n
2

)
. The number of

graphs G′ with dist(G,G′) ≤ 1/3 is at most

N/3∑
k=0

(
N

k

)
≤
(
eN

N/3

)N/3
= 2

N
3

(log(e)+logN−log(N/3)) = 2
N
3

log(3e)

There are at most 2s(n)·n functions f : [n]→ {0, 1}s(n). For each function that arises as fG

for some graph G, there are most 2
N
3

log(3e) graphs G with fG = f . Since we must cover
the set of all 2N graphs, we must have

2N ≤ 2
N
3

log(2e) · 2s(n)·n ≤ 2
n(n−1)

6
log(2e)+s(n)·n .

Therefore

s(n) · n ≥ n(n− 1)

2
− n(n− 1)

6
log(2e)

s(n) ≥ n− 1

2
− n− 1

6
log(2e)

≥ n− 1

2
− n− 1

6
(2.45) ≥ 3− 2.45

6
(n− 1) .

This concludes the proof.

4.2.7 Stability and Forbidden Induced Subgraphs

An important notion in the structure of hereditary graph classes, with respect to adjacency
sketching, is stability. We take this notion and terminology from the literature on first-
order model checking; see e.g. [CS18, NMP+21, GPT21]. Recall the chain number from
Chapter 1, Section 1.3.5.
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Definition 4.2.22 (Chain Number). For a graph G, the chain number ch(G) is the max-
imum number k for which there exist disjoint sets of vertices {a1, . . . , ak}, {b1, . . . , bk} ⊆
V (G) such that (ai, bj) ∈ E(G) if and only if i ≤ j. For a graph class F , we write
ch(F) = maxG∈F ch(G). If ch(F) =∞, then F has unbounded chain number, otherwise it
has bounded chain number.

As in [CS18, NMP+21] we call graph classes of bounded chain number stable (they
are called graph-theoretically stable in [GPT21]). These classes have many interesting
properties, including stronger versions of Szemerédi’s Regularity Lemma [MS14] and the
Erdős-Hajnal property [CS18], and they play a central role in algorithmic graph theory
[GPT21]. Stability is also important for understanding sketching and communication.

This is clearly illustrated by the Greater-Than problem, which is defined as GTn :
[n]× [n]→ {0, 1}, where GTn(x, y) = 1 if and only if x ≤ y. It is straightforward to check
that, if a hereditary class F has unbounded chain number, then the Greater-Than
problem on domain [n] can be reduced to the problem of computing adjacency in some
graph G ∈ F2n.

Recall the SMP model of communication from Section 4.2.2. It is known that on domain
[n], the SMP complexity of Greater-Than is Θ(log n) (see the bibliographic remark in
Appendix B).

Lemma 4.2.23. If a hereditary graph class F is not stable, then any adjacency sketch for
F has size at least Ω(log n).

Proof. This follows from the fact that an adjacency sketch for F can be used to construct
a communication protocol for Greater-Than in the SMP model of communication. The
construction is as follows. Let D be the decoder for an adjacency sketch for F , and let
s(n) be the size of the adjacency sketch. Given inputs x, y ∈ [n], Alice and Bob can
compute GTn(x, y) in the SMP model by choosing a graph G ∈ F with ch(G) = n, so
there exist disjoint sets of vertices {a1, . . . , an}, {b1, . . . , bn} such that (ai, bj) are adjacent
if and only if i ≤ j. Since F is hereditary, the induced subgraph H @ G on vertices
{a1, . . . , an, b1, . . . , bn} is in F . Alice and Bob draw random sketches sk(ax), sk(by) of size
s(2n) according to the adjacency sketch for H, and send them to the referee, who outputs
D(sk(ax), sk(by)). This communication protocol has complexity at most s(2n), so by the
lower bound on the SMP complexity of Greater-Than, we must have s(2n) = Ω(log n)
for any n.

Therefore, any adjacency sketchable graph class must have bounded chain number; i.e. it
is stable. In other words, if f is any communication problem with CC(f) = O(1) then
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F(f) is stable. In the next subsection we will see that stability is closely related to the
structure of the lattice of hereditary graph classes, and in particular the set of minimal
factorial classes.

We conclude this section with a useful characterization of stable graph families via
forbidden induced subgraphs. It is a well-known fact that any hereditary graph family can
be defined by its set of minimal forbidden induced subgraphs. That is, for any hereditary
family F , there is a unique minimal set of graphs H such that F is the family H-free
graphs, i.e. F = Free(H), where

Free(H) := {G : ∀H ∈ H, H 6@ G} .

One can show (Proposition 4.3.4) that a graph family F has a bounded chain number
(i.e. F is stable) if and only if

F ⊆ Free(H◦◦p , H
•◦
q , H

••
r ), for some choice of p, q, r,

where H◦◦p is a half-graph, H•◦q is a co-half-graph, and H••r is a threshold graph (Defini-
tion 4.3.2, depicted in Figure 4.2). For any F , we denote by stable(F) the set of all stable
subfamilies of F .

a1

a2

a3

a4

a5

b1
b2
b3
b4
b5

H◦◦5 H•◦5 H••5

Figure 4.2: Examples of the half-graph, co-half-graph, and threshold graphs.

4.2.8 Example: k-Hamming Distance

Here we give an example to help to understand the communication-to-graph correspondence
and some of its nuances.

The k-Hamming Distance problem HDk requires Alice and Bob to decide whether
the Hamming distance between their inputs x, y ∈ {0, 1}d is at most k(d). It has complexity
Θ(k(d) log k(d)) when k(d) = o(

√
d) [HSZZ06, Sağ18]. Setting k(d) to be non-constant,

we will see that the non-constant bound on the communication complexity is “caused” by
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Greater-Than subproblems. We will show that every t ∈ N we can choose d sufficiently
large to construct disjoint sets {a(1), . . . , a(t)}, {b(1), . . . , b(t)} ⊂ {0, 1}d so that dist(ai, bj) ≤
k(d) if and only if i ≤ j. We choose d such that k = k(d) ≥ t and define a

(i)
r = 1 if and

only if r = i and b
(j)
r = 1 if and only if r > d− k + j or r ≤ j.

For i ≤ j it holds that a
(i)
i = b

(j)
i = 1 while b(j) takes value 1 on exactly k − 1 other

coordinates, so dist(a(i), b(j)) ≤ k. On the other hand, if i > j then a
(i)
i = 1, b

(j)
i = 0 and

b(j) takes value 1 on exactly k other coordinates, so dist(a(i), b(j)) = k + 1.

This illustrates some subtleties of the correspondence. Write n = 2d and think of do-
main {0, 1}d as [n] = [2d]. Let k(d) = ω(1). Then CC(HDk

n) = Θ(k(d) log k(d)). The
corresponding hereditary graph family F(HDk) has unbounded chain number, so for every
m there is G ∈ F(HDk) with chain number m. So CC(AdjF(HDk)) = Ω(log d) = Ω(log log n).
But for k(d) = log log log d, say, this is a doubly-exponential increase in complexity. This
shows how the hereditary closure within the map F “blows up” any non-constant subprob-
lem.

4.3 Adjacency Sketching and the Lattice of Heredi-

tary Graph Classes

The hereditary graph classes form a lattice, since for any two hereditary classes F and H,
it holds that F ∩ H and F ∪ H are also hereditary classes. In this section we review the
structure of this lattice, and give some basic results that place the set of constant-PUG
classes within this lattice.

4.3.1 The Speed of Hereditary Graph Classes

The speed |Fn| of a hereditary graph class cannot be arbitrary. Classic results of Alekseev
[Ale92, Ale97], Bollobás & Thomason [BT95], and Scheinerman & Zito [SZ94] have clas-
sified some of the possible speeds of hereditary graph classes. Scheinerman & Zito [SZ94]
and Alekseev [Ale97] showed that the four smallest layers of hereditary graph classes are
the following:

1. The constant layer contains classes F with log |Fn| = Θ(1), and hence |Fn| = Θ(1),

2. The polynomial layer contains classes F with log |Fn| = Θ(log n),
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L••L•◦L◦◦M••M•◦M◦◦

C••C•◦C◦◦
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Figure 4.3: The lattice of hereditary graph families, including the minimal factorial classes
(circles) and minimal classes above the Bell numbers (purple squares and circles; there are
infinitely many of the squares). The bold vertical line separates the stable from unstable
hereditary classes. Positive results contained in this thesis (mostly in Chapter 7) are
represented in green. The red X boxes are the stable, factorial classes known not to be
adjacency sketchable, including the construction of [HHH21a] and any monotone factorial
class with ω(n) edges.
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3. The exponential layer contains classes F with log |Fn| = Θ(n),

4. The factorial layer contains classes F with log |Fn| = Θ(n log n).

The graph classes with subfactorial speed (the first three layers) have simple structure
[SZ94, Ale97]. As demonstrated by earlier examples, the factorial layer is substantially
richer and includes many graph classes of theoretical or practical importance. Despite
this, no general characterization is known for them apart from the definition.

4.3.2 Constant-Size Deterministic Labeling Schemes

This thesis asks which subset of the hereditary factorial classes correspond to the communi-
cation problems with constant-cost randomized protocols. Replacing randomized protocols
with deterministic protocols, we get a question that is quickly answered by the existing
literature (this corresponds to the gray-colored areas in Figure 4.1. By the argument in
Proposition 4.2.2, these protocols correspond to constant-size (deterministic) adjacency
labeling schemes, so our question is answered by a result of Scheinerman [Sch99]: a hered-
itary class F admits a constant-size adjacency labeling scheme if and only if it belongs
to the constant, polynomial, or exponential layer. Such classes have a bounded number of
equivalence classes of vertices, where two vertices x, y are equivalent if their neighborhoods
satisfy N(x) \ {y} = N(y) \ {x}.

The relationship between constant-size adjacency labels and constant-cost deterministic
communication follows from the arguments in Section 4.2.2.

Proposition 4.3.1. A communication problem f admits a constant-cost deterministic pro-
tocol if and only if F(f) is in the constant, polynomial, or exponential layer. A hereditary
graph class F is in the constant, polynomial, or exponential layer if and only if there is a
constant-cost deterministic protocol for AdjF .

On the other hand, adjacency labels for a factorial class must have size Ω(log n) since
graphs in the minimal factorial classes can have Ω(n) equivalence classes of vertices, and
each equivalence class requires a unique label. So there is a jump in label size from O(1)
in the subfactorial layers to Ω(log n) in the factorial layer.

4.3.3 Minimal Factorial Classes

The factorial layer has a set of 9 minimal classes, which satisfy the following:
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1. Every factorial class F contains at least one minimal class;

2. For each minimal classM, any hereditary subclassM′ ⊂M has subfactorial speed.

These classes were identified by Alekseev [Ale97], and similar results were independently
obtained by Balogh, Bollobás, & Weinreich [BBW00].

Each minimal factorial class is either a class of bipartite graphs, or a class of co-bipartite
graphs (i.e. complements of bipartite graphs), or a class of split graphs (i.e. graphs whose
vertex set can be partitioned into a clique and an independent set). Six of the minimal
classes are the following:

� M◦◦ is the class of bipartite graphs of degree at most 1.

� M•◦ is the class of graphs whose vertex set can be partitioned into a clique and an
independent set such that ever vertex in each of the parts is adjacent to at most one
vertex in the other part.

� M•• is the class of graphs whose vertex set can be partitioned into two cliques such
that every vertex in each of the parts is adjacent to at most one vertex in the other
part.

� L◦◦, L•◦,L•• are defined similarly to the classes M◦◦, M•◦, M••, respectively, with
the difference that vertices in each of the parts are adjacent to all but at most one
vertex in the other part.

The other three minimal classes motivate our focus on the stable factorial classes. They
are defined as follows (see Figure 4.2).

Definition 4.3.2 (Chain-Like Graphs). For any k ∈ N, the half-graph is the bipartite
graph H◦◦k with vertex sets {a1, . . . , ak} and {b1, . . . , bk}, where the edges are exactly the
pairs (ai, bj) that satisfy i ≤ j. The threshold graph H•◦k is the graph defined the same way,
except including all edges (ai, aj) where i 6= j. The co-half-graph H••k is the graph defined
the same way as the threshold graph but also including all edges (bi, bj) for i 6= j. We
define the following hereditary classes, which we collectively refer to as chain-like graphs
(C◦◦ is sometimes called the class of chain graphs):

C◦◦ := her{H◦◦k : k ∈ N} , C•◦ := her{H•◦k : k ∈ N} , C•• := her{H••k : k ∈ N} .

Proposition 4.3.3 ([Ale97]). The minimal factorial classes are

M◦◦,M•◦,M••,L◦◦,L•◦,L••, C◦◦, C•◦, C•• .
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It is clear from the definitions that the classes C◦◦, C•◦, C•• are not stable, while the other
minimal classes are. A consequence of Ramsey’s theorem is that a hereditary graph class
F is stable if and only if it does not include any of C◦◦, C•◦, C••:

Proposition 4.3.4. Let F be a hereditary class of graphs. Then F has bounded chain
number if and only if C◦◦, C•◦, C•• 6⊆ F .

Proof. Let ∗∗ ∈ {••, •◦, ◦◦} and suppose C∗∗ ⊆ F . By definition, C∗∗ contains H∗∗k for any
k ∈ N, so ch(C∗∗) =∞ and if C∗∗ ⊆ F then ch(F) ≥ ch(C∗∗) =∞.

Now suppose C∗∗ 6⊆ F for every ∗∗ ∈ {••, •◦, ◦◦}. Then for every ∗∗ ∈ {••, •◦, ◦◦} there
is some m∗∗ such that all graphs G ∈ F are H∗∗m∗∗-free. Hence, for m = max(m••,m•◦,m◦◦),
all graphs G ∈ F are {H••m , H•◦m , H◦◦m }-free.

It was proved in [CS18] that, due to Ramsey’s theorem, for every m ∈ N there exists
a sufficiently large k = k(m) such that any {H••m , H•◦m , H◦◦m }-free graph G has ch(G) < k.
Hence ch(F) < k.

The following statement is easily proved from Lemma 4.2.23. This shows that the
minimal factorial classes are adjacency sketchable if and only if they are stable.

Fact 4.3.5. M◦◦,M•◦,M••,L◦◦,L•◦,L•• admit constant-size equality-based adjacency la-
bels (and therefore constant-size PUGs), while C◦◦, C•◦, C•• have adjacency sketches of size
Ω(log n) (and therefore have PUGs of size nΩ(1)).

Unlike standard universal graphs and adjacency labels, PUGs and adjacency sketches ex-
hibit a large quantitative gap between the chain-like graphs and the other minimal factorial
classes, suggesting that stable factorial classes behave much differently than other factorial
classes and may be worth studying separately, which has not yet been done in the context
of understanding the factorial layer of graph classes.

4.3.4 The Bell Numbers Threshold

The Bell numbers threshold is another speed threshold within the factorial layer. The Bell
number Bn is the number of different set partitions of [n], or equivalently the number of n-
vertex equivalence graphs; asymptotically it is Bn ∼ (n/ log n)n. Similarly to the factorial
layer itself, there is a set of minimal classes above the Bell numbers. Unlike the factorial
layer, the set of minimal classes above the Bell numbers is infinite. It has been characterized
explicitly [BBW05, ACFL16]. Once again, the classes C◦◦, C•◦, C•• are minimal. This means

159



that all hereditary classes below the Bell numbers are stable. Structural properties of these
classes were given in [BBW00], which we use to prove the following.

Theorem 4.3.6. Let F be a hereditary graph class. Then:

1. If F is a minimal class above the Bell numbers, then F admits a constant-size
equality-based labeling scheme (and therefore a constant-size PUG), unless F ∈
{C◦◦, C•◦, C••}.

2. If F has speed below the Bell numbers, then F admits a constant-size equality-based
labeling scheme (and therefore a constant-size PUG).

The proof of this theorem is straightforward; it nearly follows by definition, but there are
many definitions. We present this proof in the remainder of the section.

Tools

We will use the following tools to prove our results for the classes below the Bell numbers,
and the minimal classes above the Bell numbers.

Proposition 4.3.7 (Bounded vertex addition). Let c ∈ N and let X be a class of graphs.
Denote by F the class of all graphs each of which can be obtained from a graph in X by
adding at most c vertices. If X admits a constant-size equality-based labeling scheme, then
so does F .

Proof. Let G ∈ F and let W ⊆ V (G) be such that G[V \W ] ∈ X and |W | ≤ c. Given
a constant-size adjacency sketch for G[V \W ] we will construct a constant-size adjacency
sketch for G. Identify the vertices W with numbers [c]. For every vertex x ∈ V \ W ,
assign the label (0, a(x), p(x) | q(x)) where a(x) ∈ {0, 1}c satisfies a(x)i = 1 if and only if
x is adjacent to vertex i ∈ [c], and (p(x) | q(x)) is the label of x in G[V \W ]. For every
vertex i ∈ W = [c], assign the label (1, i, a(i) | −). On inputs (0, a(x), p(x) | q(x)) and
(0, a(y), p(y) | q(y)) for x, y ∈ V \W , the decoder for F simulates the decoder for X on
(p(x) | q(x)) and (p(y) | q(y)). On inputs (0, a(x), p(x) | q(x)) and (1, i, a(i) |−), the decoder
outputs a(x)i. On inputs (1, i, a(i) | −) and (1, j, a(j) | −) the decoder outputs a(i)j.

Definition 4.3.8. Let k ∈ N and F a graph class. We denote by S(F , k) the class of all
graphs that can be obtained by choosing a graph G ∈ F , partitioning V (G) into at most
k sets V1, V2, . . . , Vr, r ≤ k, and complementing edges between some pairs of sets Vi, Vj,
i 6= j, and within some of the sets Vi.
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Proposition 4.3.9 (Bounded complementations). Let k ∈ N and let F be a class that
admits a constant-size equality-based labeling scheme. Then S(F , k) admits a constant-
size equality-based labeling scheme.

Proof. Let G be a graph in S(F , k) that is obtained from a graph in H ∈ F by partitioning
V (H) into at most k subsets and complementing the edges between some pairs of sets and
also within some of the sets. To construct a constant-size equality-based labeling for G,
we use a constant-size equality-based labeling for H and extend the label of every vertex
by an extra dlog ke+k bits. The first dlog ke of these extra bits are used to store the index
of the subset in the partition to which the vertex belongs, and the remaining k bits are
used to store the information of whether the edges within the vertex’s partition class are
complemented or not and also whether the edges between the vertex’s partition class and
each of the other partition classes are complemented or not.

Now given new labels of two vertices we first extract the old labels and apply the
decoder to infer the adjacency in H. Then we use the extra information about the partition
classes and their complementations to deduce whether the adjacency needs to be flipped
or not.

Classes Below the Bell Number

We need the following definition for describing the structure of hereditary classes below
the Bell number.

Definition 4.3.10. Let k be a positive integer, let D be a graph with loops allowed on
the vertex set [k], and let F be a simple graph on the same vertex set [k]. Let H ′ be the
disjoint union of infinitely many copies of F , and for i = 1, . . . , k, let Vi be the subset of
V (H ′) containing vertex i from each copy of F . Now we define H to be the graph obtained
from H ′ by connecting two vertices u ∈ Vi and v ∈ Vj if and only if (u, v) is an edge in H ′

but not an edge in D, or (u, v) is not an edge in H ′ but an edge in D. Finally, we denote
by R(D,F ) the hereditary class consisting of all the finite induced subgraphs of H.

To better explain the above definition, we note that the infinite graph H ′ consists of
k independent sets V1, V2, . . . , Vk such that a pair of distinct sets Vi, Vj induce a perfect
matching if (i, j) is an edge in F , and Vi, Vj induce a graph without edges otherwise. The
connected components of H ′ are each isomorphic to F , so H ′ has maximum degree at most
k. Then the graph H is obtained from H ′ by complementing H ′[Vi] whenever i has a loop
in D, and applying the bipartite complementation to H ′[Vi, Vj] whenever (i, j) is an edge
in D.
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For any k ∈ N, letR(k) =
⋃
R(D,F ), where the union is over all graphs D,F satisfying

Definition 4.3.10. We show the following result.

Proposition 4.3.11. For any natural number k, the class R(k) admits a constant-size
equality-based labeling scheme.

Proof. From the description above, it follows that H, and therefore any of its induced
subgraphs, can be partitioned into at most k sets, each of which is either a clique or
an independent set, and the bipartite graph spanned by the edges between any pair of
sets is either of maximum degree at most 1 or of maximum co-degree at most 1, i.e. the
complement has degree at most 1. Observe that by applying to H (respectively, any of its
induced subgraphs) the same complementations according to D again, we turn the graph
into H ′ (respectively an induced subgraph of H ′), i.e. to a graph of degree at most k. This
shows that, for Yk the class of graphs with maximum degree at most k, R(k) ⊆ S(Yk, k).
The claim then follows from Lemma 4.2.16 and Proposition 4.3.9.

Lemma 4.3.12 ([BBW00, BBW05]). For every hereditary class F below the Bell numbers,
there exist constants c, k such that for all G ∈ F there exists a set W of at most c vertices
so that G[V \W ] belongs to R(D,F ) for some k-vertex graphs D and F .

Corollary 4.3.13. Any hereditary class F below the Bell numbers admits a constant-size
equality-based labeling scheme, and therefore a constant-size adjacency sketch.

Proof. Let F be a hereditary class below the Bell numbers, and let c and k be natural
numbers as in Lemma 4.3.12, i.e. for every graph G in F there exist a k-vertex graph D
with loops allowed and a simple k-vertex graph F so that after removing at most c vertices
from G we obtain a graph from R(D,F ) ⊆ R(k).

By Proposition 4.3.7, F admits a constant-size equality-based labeling scheme if R(k)
does, and the latter follows from Proposition 4.3.11.

Minimal Classes Above the Bell Number

We denote by P the class of path forests, i.e. graphs in which every component is a path.
The following theorem of [BBW05, ACFL16] enumerates the minimal hereditary classes
above the Bell number.

Theorem 4.3.14 ([BBW05, ACFL16]). Let F be a minimal hereditary class above the
Bell numbers, i.e. every proper hereditary subfamily of F is below the Bell numbers. Then
either F ⊆ S(P , k) for some integer k, or F is one of the following 13 classes:
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(1) The class K1 of all graphs whose connected components are cliques (equivalence
graphs);

(2) The class K2 of all graphs whose connected components are stars (star forests);

(3) The class K3 of all graphs whose vertices can be partitioned into an independent set
I and a clique Q, such that every vertex in Q has at most one neighbor in I;

(4) The class K4 of all graphs whose vertices can be partitioned into an independent set
I and a clique Q, such that every vertex in I has at most one neighbor in Q;

(5) The class K5 of all graphs whose vertices can be partitioned into two cliques Q1, Q2,
such that every vertex in Q2 has at most one neighbor in Q1

(6) The classes Ki for i ∈ [5], where Ki is the class of complements of graphs in Ki;

(7) C◦◦, C•◦, or C••.

Corollary 4.3.15. Any minimal hereditary class F above the Bell numbers, except C◦◦, C•◦,
and C••, admits a constant-size equality-based labeling scheme.

Proof. If F ⊆ S(P , k) for some k, then the result follows from Proposition 4.3.9 and
Lemma 4.2.16 as the graphs in P have arboricity 1. The result for K1 follows by Fact 4.2.14.
The result for K2 follows from Lemma 4.2.16 as the graphs in K2 have arboricity 1. The
result for K3, K4, and K5 follows from Proposition 4.3.9 as each of these classes is a subclass
of S(K2, 2). The result for Ki, i ∈ [5] also follows from Proposition 4.3.9 as Ki ⊆ S(Ki, 1)
for every i ∈ [5].
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Chapter 5

Sketching and Labeling for Cartesian
Products

Left and right, up and down,
so many directions that we could go,

forward and back, or all around,
but all we really need to know,

in any dimension we have found,
is whether we’re adjacent though.

In this chapter, we study the effect of the Cartesian product operation on the size
of sketches and labels. This chapter includes results from [HWZ22] (coauthored with
Sebastian Wild and Viktor Zamaraev) and [EHZ22] (coauthored with Louis Esperet and
Viktor Zamaraev). Recall that for a class F , we define

F� = {G1�G2� · · ·�Gd : d ∈ N, Gi ∈ F} ,

where � denotes the Cartesian product operation. In Section 5.1, we show that the Carte-
sian product essentially preserves the efficiency of sketches and labels for the base class F .
As a consequence, we obtain optimal adjacency labeling schemes for the classes her(F�)
and mon(F�) for any base class F . The proofs in this section follow a technique from
[HWZ22] but have been significantly simplified and improved using arguments from our
follow-up work [EHZ22].

In Section 5.2, we show that one cannot obtain constant-size adjacency sketches for the
induced subgraphs of hypercubes (i.e. the class her({K2}�)) using equality-based sketches.
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In other words, any deterministic communication protocol with access to an oracle for
Equality cannot have constant cost.

5.1 Sketches and Labeling Schemes

Our strategy for designing adjacency labeling schemes for the monotone classes mon(F�)
is as follows. Suppose G ⊂ G1� · · ·�Gd is a subgraph of a Cartesian product. Then
V (G) ⊆ V (G1)× · · · × V (Gd). Let H ⊂I G1� · · ·�Gd be the subgraph induced by V (G),
so that E(G) ⊆ E(H). One may think of G as being obtained from the induced subgraph
H by deleting some edges. Then two vertices x, y ∈ V (G) are adjacent if and only if:

1. There exists exactly one coordinate i ∈ [d] where xi 6= yi;

2. On this coordinate, xiyi ∈ E(Gi); and,

3. The edge xy ∈ E(H) has not been deleted in E(G).

We construct the labels for vertices in G in three phases, which check these conditions in
sequence.

Our construction for Phase 2 is similar to our method for proving that the Cartesian
product preserves constant-size adjacency and small-distances sketches, so we present the
argument for the latter, which is the following theorem from Chapter 1:

Theorem 1.3.14. Let F be a hereditary class of graphs that admits a small-distance
sketch of size s(n, k). Then F� admits a small-distance sketch of size O(s(n, k) · k2 log k).
Consequently, if F is adjacency sketchable, then her(F�) is adjacency sketchable and admits
an adjacency labeling scheme of size O(log n).

We briefly mention how to use a similar argument to obtain the required lemma for
Phase 2 of our labeling schemes. We then proceed with Phase 3 to prove

Theorem 1.3.15. Let F be a hereditary class with an adjacency labeling scheme of size
s(n). Then:

1. her(F�) has a labeling scheme of size at most 4s(n) +O(log n).

2. mon(F�) has a labeling scheme where each G ∈ mon(F�) on n vertices is given labels
of size at most 4s(n) +O(δ(G) + log n), where δ(G) is the degeneracy of G.
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The optimality of our results on labeling schemes are presented in Section 5.1.4. This
implies

Corollary 1.3.16. If a hereditary class F has an efficient labeling scheme, then so do
her(F�) and mon(F�).

5.1.1 Phase 1: Hamming Distance

In this section, for any finite alphabet Σ and d ∈ N, and any two strings x, y ∈ Σd, we will
write dist(x, y) for the Hamming distance between x and y. For a vector x ∈ {0, 1}d we
will write |x| for the Hamming weight of x, i.e. the number of nonzero coordinates. Our
goal is to find a sketch which allows us to determine dist(x, y) ≤ k in any finite alphabet.
We begin with the binary alphabet and then show how to reduce to this case in general.

Proposition 5.1.1. For any d, k ∈ N, there is a probability distribution over functions
h : {0, 1}d → {0, 1}q, where q = O(k2), such that for any x, y ∈ {0, 1}d it holds that

dist(x, y) ≤ k =⇒ P [dist(h(x), h(y)) ≤ k] = 1 ,

and P [dist(h(x), h(y)) = dist(x, y)] > 3/4 ,

dist(x, y) > k =⇒ P [dist(h(x), h(y)) ≤ k] < 1/4 .

Proof. The function h : {0, 1}d → {0, 1}q is chosen randomly as follows. For each i ∈ [d], let
r(i) ∼ [q] be independently and uniformly random. For each j ∈ [q], write R(j) = r−1(j),
and for any x ∈ {0, 1}d write xR(j) =

⊕
i∈R(j) xi. We then define any x ∈ {0, 1}d, we then

define
h(x) = (xR(1), xR(2), . . . , xR(q)) .

Suppose that x, y ∈ {0, 1}d have dist(x, y) ≤ k and write ∆ = {i ∈ [d] : xi 6= yi}. If
xR(j) 6= yR(j) then there is i ∈ R(j) such that xi 6= yi. So it must be that dist(h(x), h(y)) ≤
dist(x, y) ≤ k, with probability 1. Now, by the union bound

P [∃i, i′ ∈ ∆ : i 6= i′ ∧ r(i) = r(i′)] ≤ k2

2
· 1

q
< 1/4 ,

for an appropriate choice of q = O(k2). If this bad event does not occur, then we have
dist(h(x), h(y)) = dist(x, y) as desired, since there are exactly |∆| values j ∈ [d] such that
xR(j) ⊕ yR(j) 6= 0. On the other hand, if dist(x, y) > k, then we have

dist(h(x), h(y)) = |h(x)⊕ h(y)| =
∣∣⊕
i∈∆

er(i)
∣∣ .
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Then P [dist(h(x), h(y))] < 1/4 for the appropriate choice of q = O(k2) due to Proposi-
tion 5.1.4, proved below.

We may generalize this to arbitrary alphabets as follows.

Lemma 5.1.2. For any finite alphabet Σ, any d ∈ N, and any k ∈ N, there exists a
probability distribution over maps h : Σd → {0, 1}m such that m = O(k2) and, for all
x, y ∈ Σd,

dist(x, y) ≤ k =⇒ P [dist(h(x), h(y)) ≤ 2k] = 1

and P [dist(h(x), h(y)) = 2 · dist(x, y)] > 3/4

dist(x, y) > k =⇒ P [dist(h(x), h(y)) ≤ 2k] < 1/4 .

Proof. We may assume without loss of generality that Σ = [n]. We may then define the
map σ : [n]→ {0, 1}n as σ(i) = ei, where ei is the vector that has all 0 coordinates except
coordinate i. We then define φ : Σd → {0, 1}dn as

φ(x) = (σ(x1), σ(x2), . . . , σ(xd)) .

This has the property that for all x, y ∈ Σd,

dist(φ(x), φ(y)) = 2 · dist(x, y) ,

which can be seen by observing that when xi 6= yi, σ(xi) and σ(yi) differ on exactly on
the two coordinates xi, yi ∈ [n]. The conclusion then follows by Proposition 5.1.4, proved
below.

It remains to prove the proposition used above. We will require the next claim. Here
we write ei ∈ {0, 1}d for the standard basis vector.

Claim 5.1.3. For any k ∈ N and δ > 0, let q ≥ 2 (k+1)(2k+1)
δ

. Let z ∈ {0, 1}d. Then for
t = k + 1 and i1, . . . , it ∼ [q] chosen independently and uniformly at random, we have

P [|z ⊕ ei1 ⊕ · · · ⊕ eit | ≤ k] < δ .

Proof. Let Z1 = {j ∈ [q] : zj = 1}. First consider the case |Z1| > k + t. Then
P [|z ⊕ ei1 ⊕ . . .⊕ eit | ≤ k] = 0. So we restrict our attention to the case |Z1| ≤ k + t.
By the union bound,

P [∃a ∈ [t] : ia ∈ Z1] ≤ t · |Z1|
q
≤ t(k + t)

q
=

(k + 1)(2k + 1)

q
< δ/2 .
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Under the condition that ∀a ∈ [t] : ia /∈ Z1, we have |z ⊕ ei1 ⊕ . . .⊕ eit | ≥ |Z1|. If |Z1| > k
we are done. Otherwise, let D be the event that ia 6= ib for each distinct a, b ∈ [t]. Then
by the union bound and the fact that k ≤ q/2,

P [¬D | ∀a : ia /∈ Z1] ≤
(
t

2

)
1

q − |Z1|
≤ (k + 1)2

2(q − k)
≤ (k + 1)(2k + 1)

q
< δ/2 .

In the event of |Z1| ≤ k, ∀a ∈ [t] : ia /∈ Z1, and D, we have |z⊕ ei1 ⊕ · · · ⊕ eit | ≥ |Z1|+ t ≥
k + 1. By the union bound, this occurs with probability less than δ.

Proposition 5.1.4. For any r, k ∈ N with r > k and δ > 0, let q ≥ 2 (k+1)(2k+1)
δ

, and let
i1, . . . , ir ∼ [q] be independently and uniformly random. Then

P [|ei1 ⊕ · · · ⊕ eir | ≤ k] < δ .

Proof. This follows by using Claim 5.1.3 by choosing s = r−(k+1) (where we have s ≥ 0),
with z = ei1 ⊕ · · · ⊕ eis if s ≥ 1 and z = ~0 if s = 0.

5.1.2 Phase 2: Combining Coordinate-Wise Sketches

In the second phase of the sketch, we are guaranteed that there are at most k coordinates
i ∈ [d] in our Cartesian product graph where vertices x and y differ, and we wish to combine
the sketches for each coordinate i ∈ [d] in such a way that the sketches for the differing
coordinates can be recovered. It is convenient to have sketches for the factors Gi which
can be combined by the XOR operation while retaining the ability to compute the output.
For this purpose we define an XOR encoding.

Definition 5.1.5 (XOR encoding). For any s, t ∈ N, an (s, t)-XOR encoding is a function
enc : {0, 1}s → {0, 1}t such that, for all distinct unordered pairs {x, y}, {x′, y′} ∈ {0, 1}s ×
{0, 1}s with {x, y} 6= {x′, y′}, x 6= y, and x′ 6= y′, it holds that

enc(x)⊕ enc(y) 6= enc(x′)⊕ enc(y′) .

We will also require the property that the all-zero vector ~0 is not in the image of enc.

An XOR encoding has the property that for any z = enc(x)⊕ enc(y), one can uniquely
recover the unordered pair {x, y}.

Lemma 5.1.6. For any s ∈ N, there exists an (s, 4s)-XOR encoding.

168



Proof. Let φ : {0, 1}s → {0, 1}4s be uniformly randomly chosen, so that for every z ∈
{0, 1}s, φ(z) ∼ {0, 1}4s is a uniform and independently random variable. For any two
distinct pairs {z1, z2}, {z′1, z′2} ∈

({0,1}s
2

)
where z1 6= z2, z′1 6= z′2, and {z1, z2} 6= {z′1, z′2},

the probability that φ(z1) ⊕ φ(z2) = φ(z′1) ⊕ φ(z′2) is at most 2−4s, since at least one of
the variables φ(z1), φ(z2), φ(z′1), φ(z′2) is independent of the other ones. Therefore, by the
union bound,

P [∃{z1, z2}, {z′1, z′2} : φ(z1)⊕ φ(z2) = φ(z′1)⊕ φ(z′2)] ≤
(

2s

2

)2

2−4s ≤ 1

4
.

The probability that ~0 is in the image of φ is at most 2s · 2−4s. Then there is φ : {0, 1}s →
{0, 1}4s such that ~0 is not included in the image, where each distinct pair {z1, z2} ∈

({0,1}s
2

)
is assigned has a distinct unique value φ(z1)⊕φ(z2). So the function Φ({z1, z2}) = φ(z1)⊕
φ(z2) is a one-to-one map

({0,1}s
2

)
→ {0, 1}4s.

In the next theorem, keep in mind that, unlike adjacency, distances in G are not
necessary preserved in the induced subgraphs of G. So the result for the hereditary closure
her(F�) holds for adjacency but not distances.

Theorem 1.3.14. Let F be a hereditary class of graphs that admits a small-distance
sketch of size s(n, k). Then F� admits a small-distance sketch of size O(s(n, k) · k2 log k).
Consequently, if F is adjacency sketchable, then her(F�) is adjacency sketchable and admits
an adjacency labeling scheme of size O(log n).

Proof. Let D : {0, 1}∗ × {0, 1}∗ → {0, 1} be the decoder for the k-distance sketch for F .
We design the sketches for F� as follows. Consider a graph G ∈ F� on n vertices, so that
G = G1�G2� · · ·�Gd for some d ∈ N and Gi ∈ F for each i ∈ [d]. Each Gi has at most
n vertices and therefore a k-distance sketch of size at most s = s(n). We may boost this
sketch to have error probability at most 1/8k and size t = O(s log k). Observe that for any
two vertices x, y we have

distG(x, y) =
d∑
i=1

distGi(xi, yi) .

We construct the sketch as follows.

1. Treating the vertices in each Gi as characters of the alphabet [n], randomly choose
the function h : [n]→ {0, 1}m given by Lemma 5.1.2. To each x, use m = O(k2) bits
to assign the value h(x) = h(x1 · · ·xd).
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2. Choose a uniformly random function r : [d]→ [8k2].

3. Let enc : {0, 1}t → {0, 1}4t be the XOR encoding given by Lemma 5.1.6. For each
i ∈ [d], choose the random function ski : V (Gi) → {0, 1}t defined by the (boosted)
k-distance sketch for Gi. For each vertex x = (x1, . . . , xd), and each j ∈ [8k2], use
4t = O(s log k) bits to append to the sketch the string⊕

i∈r−1(j)

enc(ski(xi)) ,

using 8k2 ·O(s log k) bits in total for each x.

The decoder operates as follows. Given the sketches for x, y ∈ V (G):

1. If dist(h(x), h(y)) > k, output “> k”, otherwise continue to the next step. By
Lemma 5.1.2, if there are more than k coordinates on which x, y differ, the decoder
will output “> k” with probability at least 3/4. Below, we assume that this has
occurred, and assume that there are at most k coordinates I ⊆ [d] where x, y differ.

2. For each j ∈ [8k2], the decoder may compute

zj =
⊕

i∈r−1(j)

enc(ski(xi))⊕ enc(ski(yi)) ,

using the XOR of the relevant parts of each sketch. The probability that there exist
i, i′ ∈ I such that r(i) = r(i′) is at most |I|/8k2 ≤ 1/8. Assuming that this does not
occur, we have for each i ∈ I that

zr(i) =
⊕

i′:r(i′)=r(i)

enc(ski′(xi′))⊕ enc(ski′(yi′))

= enc(ski(xi))⊕ enc(ski(yi))⊕

 ⊕
i′ 6=i:r(i′)=r(i)

enc(ski′(xi′))⊕ enc(ski′(yi′))


= enc(ski(xi))⊕ enc(ski(yi)) 6= ~0 .

We may then recover each pair {ski(xi), ski(yi)} for i ∈ I from the values zj. Then we
compute D(ski(xi), ski(yi)) = D(ski(yi), ski(xi)) (it is important that D is symmetric,
since we do not recover the order of ski(xi) and ski(yi)). If any of these report that
distGi(xi, yi) > k, output “> k”. Otherwise, continue. The probability that any of
these outputs of D is incorrect is at most k · 1/8k = 1/8.
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3. Finally, output
∑

i∈I D(ski(xi), ski(yi)). From the previous step, we are guaranteed
that D(ski(xi), ski(yi)) = distGi(xi, yi).

This concludes the proof of the first part of the theorem. The second part about adjacency
sketching follows from the fact that a constant-size adjacency sketch for F� is also a
constant-size adjacency sketch for its hereditary closure her(F�).

It is easy to modify the above proof to obtain the following lemma for adjacency labeling.
In this case we may XOR together the labels of all coordinates, instead of partitioning them
as was done in step 2 and 3 of the sketch above. The additive O(log n) in the theorem
comes from using Lemma 5.1.2 for k = 1, derandomized via Lemma 4.2.8.

Lemma 5.1.7. Let F be a hereditary class of graphs that admits an adjacency labeling
scheme of size s(n). Then her(F�) admits an adjacency labeling scheme of size 4s(n) +
O(log n).

5.1.3 Phase 3: Subgraphs

We now abandon sketching and complete our proof of Theorem 1.3.15. In the third phase
of our adjacency labeling scheme for Cartesian products, we are promised that the vertices
x, y form an edge in the induced subgraph H @ G1� · · ·�Gd, and we must check if this
edge has been deleted in E(G). There is a minimal and perfect tool for this task:

Theorem 5.1.8 (Minimal Perfect Hashing). For every m, k ∈ N, there is a family Pm,k of
hash functions [m]→ [k] such that, for any S ⊆ [m] of size k, there exists h ∈ Pm,k where
the image of S under h is [k]. The function h can be stored in k ln e + log logm + o(k +
log logm) bits of space and it can be computed by a randomized algorithm in expected time
O(k + log logm).

Minimal perfect hashing has been well-studied and we are very grateful to Sebastian
Wild for preventing us from trying to reinvent this. A proof of the space bound appears
in [Meh84] and significant effort has been applied to improving the construction and eval-
uation time. We take the above statement from [HT01]. We now conclude the proof of
Theorem 2.2.10 by applying the next lemma to the class G = her(F�), using the labeling
scheme for her(F�) obtained in Lemma 5.1.7 (note that mon(her(F�)) = mon(F�)).

Lemma 5.1.9. Let G be any graph class which admits an adjacency labeling scheme of
size s(n). Then mon(G) admits an adjacency labeling scheme where each G ∈ mon(G) on
n vertices has labels of size s(n) +O(δ(G) + log n), where δ(G) is the degeneracy of G.
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Proof. Let G ∈ mon(G) have n vertices, so that it is a subgraph of H ∈ G on n vertices.
The labeling scheme is as follows.

1. Fix a total order ≺ on V (H) such that each vertex x has at most δ = δ(G) neighbors
y in H such that x ≺ y; this exists by definition. We will identify each vertex x with
its position in the order.

2. For each vertex x, assign the label as follows:

(a) Use s(n) bits for the adjacency label of x in H.

(b) Use log n bits to indicate x (the position in the order).

(c) Let N+(x) be the set of neighbors x ≺ y. Construct a perfect hash function
hx : N+(x)→ [δ] and store it, using O(δ + log log n) bits.

(d) Use δ bits to write the function edgex : [δ] → {0, 1} which takes value 1 on
i ∈ [δ] if and only if xy is an edge of G, where y is the unique vertex in N+(x)
satisfying hx(y) = i.

Given the labels for x and y, the decoder performs the following:

1. If xy are not adjacent in H, output “not adjacent”.

2. Otherwise xy are adjacent. If x ≺ y, we are guaranteed that y is in the domain of
hx, so output “adjacent” if and only if edgex(hx(y)) = 1. If y ≺ x, output “adjacent”
if and only if edgey(hy(x)) = 1.

This concludes the proof.

5.1.4 Optimality

We now prove the optimality of our labeling schemes, and Corollary 1.3.16. We require:

Proposition 5.1.10. For any hereditary class F , let δ(n) be the maximum degeneracy of
an n-vertex graph G ∈ her(F�). Then her(F�) contains a graph H on n vertices with at
least n · δ(n)/4 edges, so mon(F�) contains all 2n·δ(n)/4 spanning subgraphs of H.
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Proof. Since G has degeneracy δ = δ(n), it contains an induced subgraph G′ @ G with
minimum degree δ and n1 ≤ n vertices. If n1 ≥ n/2 then G itself has at least δn1/2 ≥ δn/4
edges, and we are done. Now assume n1 < n/2. Since G ∈ her(F�), G @ H1� · · ·�Ht for
some t ∈ N and Hi ∈ F . So for any d ∈ N, the graph (G′)d @ (H1� · · ·�Ht)

d belongs to
her(F�). Consider the graph H @ (G′)d defined as follows. Choose any w ∈ V (G′), and
for each i ∈ [d] let

Vi := {(v1, v2, . . . , vd) : vi ∈ V (G′) and ∀j 6= i, vj = w} ,

and let H be the graph induced by vertices V1 ∪ · · · ∪Vd. Then H has dn1 vertices, each of
degree at least δ, since each v ∈ Vi is adjacent to δ other vertices in Vi. Set d = dn/n1e, so
that H has at least n vertices, and let m = dn1−n, which satisfies m < n1. Remove any m
vertices of V1. The remaining graph H ′ has n vertices, and at least (d−1)n1 ≥ n−n1 > n/2
vertices of degree δ. Then H ′ has at least δn/4 edges.

The next proposition shows that Theorem 2.2.10 is optimal up to constant factors. It
is straightforward to check that this proposition implies Corollary 1.3.16.

Proposition 5.1.11. Let F be a hereditary class whose optimal adjacency labeling scheme
has size s(n) and which contains a graph with at least one edge. Then any adjacency
labeling scheme for her(F�) has size at least Ω(s(n) + log n), and any adjacency labeling
scheme for mon(F�) has size at least Ω(s(n) + δ(n) + log n), where δ(n) is the maximum
degeneracy of any n-vertex graph in mon(F�).

Proof. Since F ⊆ her(F�) and F ⊆ mon(F�), we have a lower bound of s(n) for the label-
ing schemes for both of these classes. Since F contains a graph G with at least one edge, the
Cartesian products contain the class of hypercubes: her({K2}�) ⊆ her(F�) ⊆ mon(F�).
A labeling scheme for her({K2}�) must have size Ω(log n) (which can be seen since each
vertex of Kd

2 has a unique neighborhood and thus requires a unique label). This estab-
lishes the lower bound for her(F�), since the labels must have size max{s(n),Ω(log n)} =
Ω(s(n) + log n). Finally, by Proposition 5.1.10, the number of n-vertex graphs in mon(F�)
is at least 2Ω(nδ(n)), so there is a lower bound on the label size of Ω(δ(n)), which implies a
lower bound of max{s(n),Ω(log n),Ω(δ(n))} = Ω(s(n) + δ(n) + log n) for mon(F�).

5.2 Impossibility Results for Equality-Based Sketches

In this section we give a characterization of the graph classes that admit constant-size
equality-based labeling schemes (equivalently, constant-cost equality-based communication
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protocols). Independently of our work, Hambardzumyan, Hatami, & Hatami [HHH21b]
gave a different characterization of Boolean matrices (i.e. bipartite graphs) that admit
constant-cost equality-based communication protocols: they show that any such matrix M
is a linear combination of a constant number of adjacency matrices of bipartite equivalence
graphs.

Our characterization applies to a bipartite transformation of a graph class, as follows.
For any graph G = (V,E), we define the colored bipartite graph

bip(G) := (V1, V2, E
′)

where V1 and V2 are copies of V and (v1, v2) ∈ E ′ is an edge in bip(G) if and only if
(v1, v2) ∈ E. In other words, bip(G) is obtained by treating the (symmetric) adjacency
matrix of G as the adjacency matrix for a bipartite graph instead.

It is convenient to put equality-based labeling schemes into a restricted form, which we
call diagonal.

Definition 5.2.1 (Diagonal Labeling Scheme). We call an (s, t, k)-equality-based labeling
scheme k-diagonal if s = 0 and t = 1, so that the labels are of the form

(− | ~q(x)) ,

and there is a function η : {0, 1}k → {0, 1} such that the decoder satisfies, for all x, y,

D(Qx,y) = η(Qx,y(1, 1), Qx,y(2, 2), . . . , Qx,y(k, k)) .

It is possible to transform any constant-cost equality-based communication protocol for
graphs G ∈ F into a diagonal labeling scheme for bip(F). We remark that it is not
necessarily possible, in general, to get a diagonal labeling scheme for F itself (as opposed
to bip(F)). Bipartiteness allows us to achieve the symmetry required by diagonal labeling.

Lemma 5.2.2. Let F be any hereditary graph class. If there is a constant-cost equality-
based communication protocol for AdjF , then, for some constant k, bip(F) has a k-diagonal
labeling scheme. As a consequence, if F is any hereditary graph class that admits an
equality-based adjacency labeling scheme, then for some constant k, bip(F) admits a k-
diagonal labeling scheme.

Proof. We design a labeling scheme for bip(F) as follows. Write d = CCEq(AdjF), which is
a constant. For any G ∈ Fn, there is an equality-based communication tree T with depth
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at most d that computes adjacency in G. Write bip(G) = (X, Y,E) where X, Y are copies
of the vertex set of G.

Order the nodes of T such that each vertex precedes its children, and the subtree below
the 0-valued edge precedes the subtree below the 1-valued edge. By Proposition 4.2.19 we
may assume that all nodes in T are equality nodes. We may also assume that the tree is
complete, and that leaf nodes alternate between 0 and 1 outputs in the order just defined.
Let (a1, b1), . . . , (at, bt) be the inner nodes of T (which are all equality nodes), in the order
just defined.

� For each x ∈ X, define the equality codes qi(x) = ai(x) for each i ∈ [t]. Set
qt+1(x) = 0.

� For each y ∈ Y , define the equality codes qi(x) = bi(x) for each i ∈ [t]. Set qt+1(y) =
1.

It holds that t ≤ 2d since all trees have depth at most d. We define η : {0, 1}t+1 → {0, 1}
as the function that, on input w ∈ {0, 1}t+1, outputs 0 if wt+1 = 1, and otherwise simulates
the decision tree with node i having output wi. (Note that we have assumed that all trees
are complete, with depth d, with the same outputs on each leaf, so that the output of the
tree is determined by the output of each node.) Then on input x ∈ X, y ∈ Y , we get

η (Eq(q1(x), q1(y)), . . . ,Eq(qt(x), qt(y)),Eq(0, 1))

= η (Eq(a1(x), b1(y)), . . . ,Eq(at(x), bt(y))Eq(0, 1)) = T (x, y)

which is 1 if and only if x, y is an edge in bip(G). On inputs x, y ∈ X or x, y ∈ Y , we get

η (Eq(q1(x), q1(y)), . . . ,Eq(qt(x), qt(y)),Eq(0, 0)) = 0

or
η (Eq(q1(x), q1(y)), . . . ,Eq(qt(x), qt(y)),Eq(1, 1)) = 0

respectively, as desired. The final consequence in the statement of this lemma follows from
Proposition 4.2.20.

Recall that a graph G is an equivalence graph if it is the disjoint union of cliques, and
a colored bipartite graph G = (X, Y,E) is a bipartite equivalence graph if it is a colored
disjoint union of bicliques.
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Definition 5.2.3. For a constant t ∈ N, we say that a class F of bipartite graphs is
t-equivalence interpretable if there exists a function η : {0, 1}t → {0, 1}, such that the
following holds. For every G = (X, Y,E) in F , there exists a vertex-pair coloring κ :
X × Y → {0, 1}t, where:

1. For every i ∈ [t], the graph (X, Y,Ei), where Ei = {(x, y) ∈ X × Y : κ(x, y)i = 1}, is
a bipartite equivalence graph;

2. For every x ∈ X, y ∈ Y , (x, y) ∈ E if and only if η(κ(x, y)) = 1.

Definition 5.2.4. For a constant t ∈ N, we say that a class F of graphs is strongly
t-equivalence interpretable if there exists a function η : {0, 1}t → {0, 1}, such that the
following holds. For every G = (V,E) in F , there exists a vertex-pair coloring κ : V ×V →
{0, 1}t, where:

1. κ(x, y) = κ(y, x) for every pair x, y;

2. For every i ∈ [t], the graph (V,Ei), where Ei = {(x, y) : κ(x, y)i = 1}, is an equiva-
lence graph;

3. For every x, y ∈ V , (x, y) ∈ E if and only if η(κ(x, y)) = 1.

Lemma 5.2.5. A hereditary graph class F has a constant-size equality-based labeling
scheme if and only if bip(F) is t-equivalence interpretable for some constant t.

Proof. Suppose that F has a constant-size equality-based labeling scheme. By Proposi-
tion 4.2.20 and Lemma 5.2.2, bip(F) has a size t diagonal labeling for some constant t. Let
η : {0, 1}t → {0, 1} be the function in the diagonal labeling.

Let G ∈ F so that bip(G) ∈ bip(F). Write bip(G) = (X, Y,E) where X, Y are copies
of the vertices of G. Each vertex x ∈ X ∪ Y has a label of the form (q1(x), . . . , qt(x)).

For each i ∈ [t] and x ∈ X, y ∈ Y , define the color κ(x, y)i = Eq(qi(x), qi(y)). Consider
the graph with edges (x, y) ∈ X × Y if and only if κ(x, y)i = 1. Let x, x′ ∈ X and
y, y′ ∈ Y satisfy κ(x, y)i = κ(x′, y)i = κ(x′, y′)i = 1, so that (x, y, x′, y′) forms a path.
Then qi(x) = qi(y) = qi(x

′) = qi(y
′), so κ(x, y′)i = 1 and (x, y′) is an edge. So this graph

must be P4-free; i.e. it is a bipartite equivalence graph.

Finally, it holds that for any x ∈ X, y ∈ Y ,

η(κ(x, y)1, . . . , κ(x, y)t) = η(Eq(q1(x), q1(y)), . . . ,Eq(qt(x), qt(y)))
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which is 1 if and only if x, y is an edge in bip(G).

Now suppose that bip(F) is t-equivalence interpretable. It suffices to construct a la-
beling scheme for the graphs bip(G) for G ∈ F . Write bip(G) = (X, Y,E) and let
κ(x, y) ∈ {0, 1}t be the coloring of vertex pairs x ∈ X, y ∈ Y . For each i ∈ [t] we let
Ei be the edge set of the equivalence graph such that (x, y) ∈ Ei if and only if κ(x, y)i = 1.
Give an arbitrary numbering to the bicliques in Ei and define qi(x) to be the number of
the biclique to which x belongs. It then holds that for any x ∈ X, y ∈ Y ,

η(Eq(q1(x), q1(y)), . . . ,Eq(qt(x), qt(y))) = η(κ(x, y)1, . . . , κ(x, y)t) ,

which is 1 if and only if (x, y) is an edge of bip(G). Therefore we have obtained a t-diagonal
labeling scheme.

Proposition 5.2.6. Let F be a hereditary class of (uncolored) bipartite graphs. If bip(F)
is t-equivalence interpretable then F is strongly (t+ 1)-equivalence interpretable.

Proof. Let η : {0, 1}t → {0, 1} be the function that witnesses F as t-equivalence inter-
pretable and consider any bipartite graph G ∈ F with a fixed bipartition (X, Y ) of its ver-
tices. Then bip(G) = (X1∪Y1, X2∪Y2, E

′∪E ′′) is the disjoint union of G′ = (X1, Y2, E
′) and

G′′ = (X2, Y1, E
′′), where G′ and G′′ are each isomorphic to G. By definition of equivalence-

interpretable, there are graphs B1, . . . , Bt with parts X1 ∪Y1 and X2 ∪Y2 where each Bi is
a bipartite equivalence graph, and such that each pair x ∈ X1 ∪ Y1, y ∈ X2 ∪ Y2 is an edge
of bip(G) if and only if

η(B1(x, y), . . . , Bt(x, y)) = 1,

where Bi(x, y) = 1 if (x, y) is an edge in Bi, and Bi(x, y) = 0 otherwise. Clearly, each Bi

induces a bipartite equivalence graph when restricted the vertices of G′. We now consider
graphs B′i on vertex set X1∪Y2 where (x, y) is an edge if and only if x, y belong to the same
biclique in Bi. B

′
i is an equivalence graph since it is obtained by taking a disjoint union of

bicliques and connecting every two vertices belonging to one of the bicliques. Now define the
graph B′t+1 on vertices X1∪Y2 such that (x, y) is an edge if and only if x, y ∈ X1 or x, y ∈ Y2,
so that B′t+1 is an equivalence graph. We define the function η′ : {0, 1}t+1 → {0, 1} by
setting η′(w) = 0 if wt+1 = 1 and otherwise setting η′(w) = η(w1, . . . , wt). It then holds
that for every (x, y) ∈ X1 × Y2,

η′
(
B′1(x, y), . . . , B′t(x, y), B′t+1(x, y)

)
= η (B1(x, y), . . . , Bt(x, y))

which is 1 if and only if x, y are adjacent in G′. On the other hand, for x, y ∈ X1 or
x, y ∈ Y2, we have η′

(
B′1(x, y), . . . , B′t(x, y), B′t+1(x, y)

)
= 0, so the same property holds.

Consequently, G′ is strongly (t+ 1)-equivalence interpretable. Since G is isomorphic to G′,
it is also strongly (t+ 1)-equivalence interpretable.
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5.2.1 Equality-Based Labeling Fails for the Hypercube

We now prove the following theorem from the introduction. This will follow from Theo-
rem 5.2.9, which proves the same statement for equality-based labeling schemes. This is
equivalent, by Proposition 4.2.20.

Theorem 1.3.17. There is no constant-cost equality-based protocol for computing adja-
cency in Kd

2 .

The d-dimensional hypercube Hd is the d-wise Cartesian product P�d2 of the single edge.
The class H = her({Hd : d ∈ N}) of induced subgraphs of the hypercubes is sometimes
called the class of cubical graphs. In this section, we will use Lemma 5.2.5 to prove that
the class of cubical graphs does not admit an equality-based labeling scheme. In our proof,
we will employ some results from the literature.

Theorem 5.2.7 ([ARSV06]). For every k and ` ≥ 6, there exists d0(k, `) such that for
every d ≥ d0(k, `), every edge coloring of Hd with k colors contains a monochromatic
induced cycle of length 2`.

For a graph G, its equivalence covering number eqc(G) is the minimum number k such
that there exist k equivalence graphs Fi = (V,Ei), i ∈ [k], whose union (V,∪ki=1Ei) coincides
with G. We denote by Cn and Pn the cycle and the path on n vertices, respectively.

Theorem 5.2.8 ([LNP80, Alo86]). For every n ≥ 3, it holds that and eqc(Cn), eqc(Pn) ≥
log n− 1.

For two binary vectors x, y ∈ {0, 1}t, we write x � y if xi ≤ yi for all i ∈ [t], and we
also write x ≺ y if x � y and x 6= y.

Theorem 5.2.9. The classH does not admit a constant-size equality-based labeling scheme.

Proof. Suppose, towards a contradiction, that H admits a constant-size equality-based
labeling scheme. Then, since H is a class of bipartite graphs, by Lemma 5.2.5 and Propo-
sition 5.2.6, there exists a t such that H is strongly t-equivalence interpretable.

Let k = 2t, ` = 2t+1 and let n ≥ n0(k, `), where n0(k, `) is the function from Theo-
rem 5.2.7. Let V and E be the vertex and the edge sets of the hypercube Hn respectively.
Let κ : V × V → {0, 1}t and η : {0, 1}t → {0, 1} be the functions as in Definition 5.2.4
witnessing that the hypercube Hn is strongly t-equivalence interpretable. Color every edge
(a, b) of Hn with κ(a, b). Since the edges of Hn are colored in at most k = 2t different
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colors, by Theorem 5.2.7 it contains a monochromatic induced cycle C = (V ′, E ′) of length
2` = 2t+2. Let κ∗ ∈ {0, 1}t be the color of the edges of C.

Claim 1. For every distinct a, b ∈ V ′ that are not adjacent in C, we have κ∗ ≺ κ(a, b).

Proof. Since every connected component of an equivalence graph is a clique, it follows that
for every i ∈ [t], κ∗i = 1 implies κ(x, y)i = 1 for every x, y ∈ V ′. Hence, κ∗ � κ(a, b).
Furthermore, since a and b are not adjacent in C, we have that κ(a, b) 6= κ∗, as otherwise
we would have η(κ(a, b)) = η(κ∗) = 1 and hence a and b would be adjacent.

Now let I ⊆ [t] be the index set such that i ∈ I if and only if κ∗i = 0 and there exist
a, b ∈ V ′ with κ(a, b)i = 1. For every i ∈ I let Fi = (V ′, E ′i), where E ′i = {(a, b) | a, b ∈
V ′, κ(a, b)i = 1}. Clearly, all these graphs are equivalence graphs. By construction and
Claim 1, we have that the union ∪i∈IFi contains none of the edges of C and contains
all non-edges of C, in other words the union coincides with C. Thus eqc(C) ≤ |I| ≤ t.
However, by Theorem 5.2.8, eqc(C) ≥ log |V ′| − 1 ≥ t+ 1, a contradiction.

We now describe a generalization of this proof due to Bonamy & Girão, which was
communicated to us by Louis Esperet. We require the following lemma:

Lemma 5.2.10. For any k, t, ` ∈ N, there is an integer d such that if a Kt,t-free graph
G has average degree at least d, and its edges are colored with at most k colors, then G
contains a monochromatic path of length at least ` as an induced subgraph.

Proof. We first claim that it suffices to consider the case t = 2. Suppose t > 2. It was
proved in [KLST20] that every K2t-free graph (including any Kt,t-free graph) of sufficiently
large average degree contains a bipartite induced subgraph with large average degree. It
was proved in [McC21] that any Kt,t-free bipartite graph of sufficiently large average degree
contains a K2,2-free induced subgraph of large average degree. Combining these results,
we have that any Kt,t-free graph G of sufficiently large average degree contains an induced
subgraph G′ of large average degree which is also K2,2-free. Therefore it suffices to consider
the case t = 2.

Consider a K2,2-free graph G with large average degree, whose edges are colored with
at most k colors. Then there exists a color c such that the graph Gc induced by the edges
of color c has large average degree 2d, where d is an arbitrarily-large integer. Then Gc has
an induced subgraph G′c with minimum degree at least d. Since d may be arbitrarily large,
we can get d > `.

We now construct a monochromatic induced path in G as follows. Suppose have have
obtained a path Pt−1 = (v1, . . . , vt−1), for t − 1 < ` where each (vi, vi+1) is an edge of
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G′c. Let N ′c(vt−1) be the neighbors of vt−1 in G′c and suppose for contradiction that all
vertices u ∈ N ′c(vt−1) \ P are adjacent in G to some vi with i < t− 1. Since v has at least
d > ` > t− 1 neighbors, there are two vertices u,w ∈ N ′c(vt−1) \ P that are adjacent in G
to both vt−1 and vi, for some i < t − 1. But then {vi, vt−1}, {u,w} form an induced K2,2.
Therefore we may find some vertex u ∈ N ′c(vt−1) which is not adjacent in G to any of the
previous vertices of the path. Since this holds for any t−1 < `, therefore we may construct
a path in G′c of length ` which is an induced path in G.

We then obtain the following result from Chapter 1, following the same reasoning as in
Theorem 5.2.9.

Theorem 1.3.18. For any t ∈ N, if F is any class of bipartite graphs with no Kt,t subgraph,
then F admits a constant-size equality-based adjacency sketch if and only if it has bounded
degeneracy.
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Chapter 6

Sketching for Monotone Graph
Classes

As our abilities continue to expand,
we reach out with an extended hand,

towards a question yet more grand.
Our grasp exceeded, we understand,

that it was only weakly reachable!

The previous chapter established the basics of graph sketching. We introduced adja-
cency, small-distance, first-order (FO), and approximate distance threshold (ADT) sketches.
The goal is to identify the hereditary graph classes which admit constant-size sketches of
these types. In this chapter, we develop a theory of these sketching problems for the special
case of monotone graph classes. Recall the questions from Chapter 1:

Question 1.3.8. Which hereditary graph classes are adjacency sketchable?

Question 1.3.9. Which hereditary graph classes are small-distance sketchable?

Question 1.3.10. Which hereditary graph classes are ADT sketchable?

Question 1.3.11. What is the relationship, if any, between adjacency, small-distance, and
ADT sketching?

This chapter will answer Questions 1.3.8, 1.3.9, and 1.3.11, and make progress towards an
answer of Question 1.3.10, for monotone classes of graphs. This chapter is derived from
the paper [EHK22], coauthored with Louis Esperet and Andrey Kupavskii.
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6.1 Preliminaries: Bounded Expansion

We require the notion of expansion from sparsity theory, as discussed in [NO12], and some
of its equivalences stated in Theorem 6.1.5.

Definition 6.1.1 (Bounded Expansion). Given a graph G and an integer r ≥ 0, a depth-r
minor of G is a graph obtained by contracting pairwise disjoint connected subgraphs of
radius at most r in a subgraph of G. For any function f , we say that a class of graphs
G has expansion at most f if any depth-r minor of a graph of G has average degree at
most f(r) (see [NO12] for more details on this notion). We say that a class G has bounded
expansion if there is a function f such that G has expansion at most f .

Note that, for example, every proper minor-closed family has constant expansion.

Definition 6.1.2 (Weakly r-reachable). Given a total order (V,<) on the vertex set V of
a graph G and an integer r ≥ 0, we say that a vertex a vertex v ∈ V is weakly r-reachable
from a vertex u ∈ V if there is a path of length at most r connecting v to u in G, and such
that for any vertex w on the path, v ≤ w (in words, v is the smallest vertex on the path
with respect to (V,<)). For a graph G and an integer r ≥ 0, we denote by wcolr(G) the
smallest integer k for which the vertex set of G has a total order (V,<) such that for any
vertex u ∈ V , at most k vertices are weakly r-reachable from u with respect to (V,<). For
a graph class F , we write wcolr(F) for the supremum of wcolr(G), for G ∈ F .

Definition 6.1.3 ((k, `)-Subdivisions). For a graph G and two integers 0 ≤ k ≤ `, a
(k, `)-subdivision of G is any graph obtained from G by subdividing each edge of G at
least k times and at most ` times (i.e. , we replace each edge of G by a path with at least
k and an most ` internal vertices). A (k, k)-subdivision is also called a k-subdivision for
simplicity;

Definition 6.1.4 (Depth-r Topological Minor). We say that H is a depth-r topological
minor of a graph G if G contains a (0, 2r)-subdivision of H as a subgraph. In the proof
below it will be convenient to use the following equivalent definition of bounded expan-
sion [NO12].

Theorem 6.1.5. For a class F of graphs, the following are equivalent:

1. F has bounded expansion.

2. There is a function f : N→ N such that for any r ∈ N, wcolr(F) ≤ f(r).
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3. There is a function f : N→ N such that for any r ∈ N and any G ∈ F , any depth-r
topological minor of G has average degree at most f(r).

We will also require the following fact about the expansion of monotone classes, which is a
simple consequence of Theorem 6.1.5 (see for instance [NO15]) combined with a result of
Kühn & Osthus [KO04]. The girth of a graph G is defined as the size of a shortest cycle
in G (if G is acyclic, its girth is infinite).

Corollary 6.1.6. Let F be a monotone class of unbounded expansion. Then there is a
constant r ≥ 0, so that for any d ≥ 0, F contains an r-subdivision of a bipartite graph of
minimum degree at least d and girth at least 6.

Proof. Since F has unbounded expansion, it follows from Theorem 6.1.5 that there exists
an r ≥ 0, such that depth-r topological minors of F have unbounded average degree. Since
each edge in a depth-r topological minor is subdivided at most 2r times, if F contains a
depth-r topological minor H of average degree at least d, F also contains a 2r′-subdivision
of a subgraph H ′ of H, for some r′ ≤ r, such that H ′ has average degree at least d

2r+1

(recall that F is monotone). It follows that there exists an integer r′′ ≤ 2r such that for
infinitely many d, F contains an r′′-subdivision of a graph of average degree at least d.
It was proved by Kühn and Osthus [KO04] that any graph of sufficiently large average
degree contains a bipartite subgraph of large minimum degree and girth at least 6. As F
is monotone, the desired result follows.

6.2 Adjacency Sketching

In this section, we prove Theorem 1.3.19, and include the additional equivalent state-
ment that F admits a constant-size disjunctive adjacency sketch. We think of disjunctive
sketches as the simplest possible use of randomization in a sketch, with the theorem estab-
lishing that the simplest possible sketches are sufficient for monotone classes.

Theorem 6.2.1. Let F be a monotone class of graphs. Then the following are equivalent:

1. F is adjacency sketchable.

2. F admits a constant-size disjunctive adjacency labeling scheme.

3. F has bounded arboricity.
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A disjunctive labeling scheme for graphs of arboricity k can be obtained from the adjacency
labeling scheme of [KNR92], as in Example 4.2.11. This leads to a sketch of size O(k log k)
by Proposition 4.2.12, which was improved slightly in [HWZ22]:

Proposition 6.2.2 ([HWZ22]). Let F be any class with arboricity at most k. Then F
admits a (0, 1, k + 1)-disjunctive adjacency labeling scheme, and an adjacency sketch of
size O(k).

Therefore, to prove Theorem 6.2.1, it suffices to prove (1) =⇒ (3), which we will prove
by contrapositive.

Consider a graph G = (V,E), let f : V × V → {0, 1, ∗} be a partial function, and let
µ be a probability distribution over V × V that is supported on pairs (x, y) which satisfy
f(x, y) 6= ∗. Let X, Y ⊆ V . Then we define the discrepancy of R = X × Y as

Discµ,f (G,R) =

∣∣∣∣Pµ [(x, y) ∈ R ∩ f−1(1)
]
− P

µ

[
(x, y) ∈ R ∩ f−1(0)

]∣∣∣∣ ,
where (x, y) is drawn from µ. The discrepancy of G under µ is defined as

Discµ,f (G) = max
R

Discµ,f (G,R) ,

where the maximum is over all sets R = X × Y with X, Y ⊆ V . The following lemma
is essentially a restatement of a standard lower-bound technique in communication com-
plexity. For completeness (and because we are using sketches instead of communication
protocols), we present a proof.

Lemma 6.2.3. Let G = (V,E) be any graph on n vertices, let F be any class of graphs
containing G, and let f be a partial function parameterized by graphs in F . Let µ be any
probability distribution over V × V supported on a subset of {(x, y) : fG(x, y) 6= ∗}. Then
any f -sketch for Fn has size at least 1

2
log 1

3Discµ,f (G)
.

Proof. Let s denote the size of the adjacency sketch for Fn. Let D : {0, 1}s × {0, 1}s →
{0, 1} be the decoder, and let sk : V → {0, 1}s be the (random) adjacency sketch function
for G. By definition, for any x, y ∈ V , we have

P [D(sk(x), sk(y)) = fG(x, y)] ≥ 2/3 ,

so
P
sk

[D(sk(x), sk(y)) = fG(x, y)]− P
sk

[D(sk(x), sk(y)) 6= fG(x, y)] ≥ 1/3 .
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Using linearity of expectation, we get

E
sk

[1 [D(sk(x), sk(y)) = fG(x, y)]− 1 [D(sk(x), sk(y)) 6= fG(x, y)]] ≥ 1/3 .

Taking the expectation over randomly chosen (x, y) ∼ µ, we have

1/3 ≤ E
(x,y)∼µ

E
sk

[1 [D(sk(x), sk(y)) = fG(x, y)]− 1 [D(sk(x), sk(y)) 6= fG(x, y)]]

= E
sk

E
(x,y)∼µ

[1 [D(sk(x), sk(y)) = fG(x, y)]− 1 [D(sk(x), sk(y)) 6= fG(x, y)]]

= E
sk

[
P

(x,y)∼µ
[D(sk(x), sk(y)) = fG(x, y)]− P

(x,y)∼µ
[D(sk(x), sk(y)) 6= fG(x, y)]

]
.

Therefore, there exists a fixed, deterministic function ` : V → {0, 1}s such that

1/3 ≤ P
(x,y)∼µ

[D(`(x), `(y)) = fG(x, y)]− P
(x,y)∼µ

[D(`(x), `(y)) 6= fG(x, y)] .

Since the range of ` has size at most S = 2s, we can partition V = V1∪ · · ·∪VS such that `
is constant on each set Vi. For each i, j ≤ S, write Ri,j = Vi × Vj. Note that D(`(x), `(y))
takes the same value for each (x, y) ∈ Ri,j, so

P
(x,y)∼µ

[(x, y) ∈ Ri,j ∧D(`(x), `(y)) = fG(x, y)]

− P
(x,y)∼µ

[(x, y) ∈ Ri,j ∧D(`(x), `(y)) 6= fG(x, y)]

≤
∣∣∣∣ P
(x,y)∼µ

[(x, y) ∈ Ri,j ∧ fG(x, y) = 1]− P
(x,y)∼µ

[(x, y) ∈ Ri,j ∧ fG(x, y) = 0]

∣∣∣∣
= Discµ,f (G,Ri,j) .

Then, since the sets Ri,j partition the pairs V × V , we have

1/3 ≤
∑

1≤i,j≤S

Discµ,f (G,Ri,j) ≤ S2 ·Discµ,f (G) .

We therefore must have

s = logS ≥ log

√
1

3 ·Discµ,f (G)
=

1

2
log

1

3 ·Discµ,f (G)
,

as desired.
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A spanning subgraph of a graph G = (V,E) is a subgraph of G with vertex set V . Our
next lemma will give a lower bound on the adjacency sketch size for the class G of spanning
sugraphs of a graph G of minimum degree d. We will actually prove the lower bound for a
weaker type of adjacency sketch, which is only required to be correct on pairs (x, y) that
were originally edges in G. This stronger statement is not necessary for the current section,
but will be used in the proof of Theorem 6.3.11.

For a graph G = (V,E) and the class G of spanning subgraphs of G, and any subgraph
H ∈ G, we will define the partial function adjEH : V × V → {0, 1, ∗} as

adjEH(x, y) =

{
adjH(x, y) if (x, y) ∈ E
∗ otherwise.

We show by the probabilistic method that there is a distribution µ and a subgraph of G
with discrepancy O(1/

√
d) with respect to µ. We will require the standard Chernoff bound

for the binomial distribution with parameters n and 1
2

(see Corollary A.1.2 in [AS16]): for
any t > 0,

P
[
|Bin(n, 1

2
)− n

2
| > t

]
< 2 exp(−2t2/n).

Lemma 6.2.4. Let G = (V,E) be a graph of minimum degree d, and let G be the class of
spanning subgraphs of G. Then any adjE-sketch for G requires size at least Ω(log d).

Proof. Let H be a random spanning subgraph of G obtained by including each edge of G
with independently with probability 1/2. Note that H ∈ G with probability 1. Let m = |E|
and let µ be the probability distribution over V × V such that for every (x, y) ∈ V × V ,
we have µ((x, y)) = 1/m if (x, y) ∈ E, and µ((x, y)) = 0 otherwise (so that µ is uniform
over the edges of G). For simplicity, write Discµ for Discµ,f where f = adjE.We will prove
that Discµ(H) is small, with nonzero probability over H.

Consider a set R = X×Y with X, Y ⊆ V , and let k ≤ m be the number of edges (x, y)
of G with (x, y) ∈ R. Let H be any subgraph of G with |E(H) ∩R| = ` ≤ k. Then

Discµ(H,R) =

∣∣∣∣Pµ [(x, y) ∈ E(H) ∩R]− P
µ

[(x, y) ∈ R \ E(H)]

∣∣∣∣
=

∣∣∣∣ `m − k − `
m

∣∣∣∣ =
|2`− k|
m

.
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For fixed R = X × Y , it then holds that Discµ(H, R) is a random variable |2`−k|
m

, where
` ∼ Bin(k, 1/2). Then, by the Chernoff bound, we have for any ε > 0 that

P [Discµ(H, R) > ε] = P
[∣∣Bin

(
k, 1

2

)
− k

2

∣∣ > εm
]
≤ 2 exp

(
−2ε2m2/k

)
≤ 2 exp

(
−2ε2m

)
,

where the last inequality is due to k ≤ m. There are at most 22n sets R = X×Y ⊆ V ×V ,
so by the union bound,

P [∃R = X × Y ⊆ V × V : Discµ(H, R) > ε] ≤ 22n+1 exp
(
−2ε2m

)
= exp

(
(2n+ 1) ln(2)− 2ε2m

)
.

Now, since G has minimum degree d, we have m ≥ dn/2. Setting ε = Ω
(

1√
d

)
with a

sufficiently large implicit multiplicative constant, we get an upper bound on this probability
of

exp
(
(2n+ 1) ln(2)− 2ε2m

)
≤ exp

(
(2n+ 1) ln(2)− 2ε2dn

)
< 1 .

Therefore there exists a subgraph H with Discµ(H) = O(1/
√
d). Applying Lemma 6.2.3,

we see that any adjacency sketch for G must have size at least Ω(log(
√
d)) = Ω(log d).

We may now complete the proof of Theorem 6.2.1. We aim to prove (3) =⇒ (1), which we
will prove by contrapositive: i.e. that any class of unbounded arboricity has non-constant
adjacency sketch size.

Lemma 6.2.5. Let F be any monotone class of graphs with unbounded arboricity. Then
F does not admit a constant-size adjacency sketch.

Proof. It is well-known that the degeneracy of a graph is within factor 2 of the arboricity,
so the degeneracy of F must also be unbounded. Then for any integer d ∈ N, there is
a graph G ∈ F with degeneracy at least d. By definition, G contains a subgraph H of
minimum degree at least d. Let G be the class of spanning subgraphs of G, which satisfies
G ⊆ F , since F is monotone. Then by Lemma 6.2.4, any adjacency sketch for G must
have size at least Ω(log d). Then for any integer d, we obtain a lower bound of Ω(log d)
on the size of an adjacency sketch for F ; it follows that any adjacency sketch for F is of
non-constant size.

6.3 Small-Distance Sketching

In this section we prove Theorem 1.3.20. As in Theorem 6.2.1 from the previous section,
we refine the theorem by showing that the sketches are in fact disjunctive.
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Theorem 6.3.1. Let F be a monotone class of graphs. Then the following are equivalent:

1. F is small-distance sketchable.

2. For some function f : N→ N and every r ∈ N, F admits a disjunctive small-distance
labeling scheme of size f(r).

3. F is first-order sketchable.

4. F has bounded expansion.

It holds by definition that (3) =⇒ (1) and (2) =⇒ (1), even without the assumption of
monotonicity. We will prove (4) =⇒ (3) and (4) =⇒ (2) using different methods. We
prove (4) =⇒ (3) (again without the assumption of monotonicity) in Section 6.3.1 using
the structural result of [GKN+20]. This proof does not give explicit bounds on the sketch
size. (4) =⇒ (2) is proved in Section 6.3.2 and gives explicit upper bounds on the sketch
size. The final piece of the theorem, (1) =⇒ (4), is proved in Section 6.3.3.

A consequence of Theorem 6.3.1 is that the set of small-distance sketchable monotone
classes is a proper subset of the adjacency sketchable classes. We can also reach this
conclusion with following simple but illustrative example.

Example 6.3.2. Consider any graph G. The subdivision G′ of G is obtained by replacing
each edge xy with two edges xz and zy, for a newly-added vertex z. The subdivision G′

always has arboricity at most 2, and two vertices of G are adjacent if and only if they have
distance 2 in G′. Therefore, if there was a constant-size distance-(2, 2) sketch for the class
of arboricity 2 graphs, we would obtain a constant-size adjacency sketch for the class of all
graphs, which is a contradiction of Theorem 4.2.21.

6.3.1 Bounded Expansion Implies FO Labeling Schemes

To prove that any class of bounded expansion is first-order sketchable, we use the result
of [GKN+20] that shows how to decompose any class of (structurally) bounded expansion
into a number of graphs of bounded shrubdepth. We will require an adjacency sketch for
classes of bounded shrubdepth, given below.
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Adjacency Sketching for Bounded Shrubdepth

We must first define shrubdepth. A connection model for a graph G is a rooted tree T
whose nodes are colored with a bounded number of colors such that:

� the vertices of G are the leaves of T ; and

� for two vertices u, v ∈ V (G), whether u and v are adjacent in G depends only on the
colors of u and v in T , and the color of the lowest common ancestor of u and v in T .

To avoid ambiguity, we say G has vertices while T has nodes. Note that we can assume
without loss of generality that all leaves are at the same distance from the root in T . A
class G has bounded shrubdepth if there are some d, k ∈ N such that every G ∈ G has a
connection model of depth d with colors in [k] (we recall that the depth of a rooted tree T
is the maximum number of vertices on a root-to leaf path in T ).

Lemma 6.3.3. Any class G of bounded shrub-depth admits a constant-size equality-based
adjacency labeling scheme.

Proof. Let d, k be such that any graph G ∈ G has a connection model TG of depth d using
color set [k]. We denote by ϕG : [k]3 → {0, 1} the function such that if u has color a, v has
color b, and the lowest common ancestor of u and v has color c in TG, then u and v are
adjacent in G if and only if ϕG(a, b, c) = 1. For every node u of T , write χ(u) for the color
of u in the connection model.

We now construct our equality-based labels for G. For any vertex x, let t1(x), t2(x),
. . . , td(x) be the leaf-to-root path for x, where t1(x) = x and td(x) is the root of T . Then
the label for x is the sequence (ϕG | −), (χ(t1(x)) | t1(x)), . . . , (χ(td(x)) | td(x)). On inputs

(ϕG | −), (χ(t1(x)) | t1(x)), . . . , (χ(td(x)) | td(x)) ,

(ϕG | −), (χ(t1(y)) | t1(y)), . . . , (χ(td(y)) | td(y)) ,

the decoder operates as follows. It finds the smallest i ∈ [d] such that 1 [ti(x) = ti(y)] and
outputs ϕG(χ(t1(x)), χ(t1(y)), χ(ti(x))).

The correctness of this labeling scheme follows from the fact that we will have ti(x) =
ti(y) if and only if the node ti(x) = ti(y) is an ancestor of both x and y in T , so the smallest
i ∈ [d] such that ti(x) = ti(y) identifies the lowest common ancestor of x and y.
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Structurally Bounded Expansion Implies First-Order Sketching

Following [GKN+20], we say that a class of graphs has structurally bounded expansion if it
can be obtained from a class of bounded expansion by first-order (FO) transductions. We
omit the precise definition of FO transductions in this thesis, as they are not necessary to
our discussion, and instead refer the reader to [GKN+20]. We just note that a particular
case of FO transduction is the notion of FO interpretation, which is of specific interest
to us. Consider an FO formula φ(x, y) with two free variables and relational vocabulary
Σ = {F,R1, . . . , Rk} where F is symmetric of arity 2. We will say that a graph class
F ′ is an FO interpretation of a graph class F with respect to φ if for any graph G′ =
(V,E ′) ∈ F ′ there is a graph G = (V,E) ∈ F and a Σ-structure with domain V where
E is the interpretation of the symbol F , such that for any pair u, v ∈ V , uv ∈ E ′ if and
only if φ(u/x, v/y) evaluates to true. For instance, if φ(u/x, v/y) encodes the property
distG(u, v) ≤ r for some fixed integer r ≥ 1 (which can be written as an FO formula),
then the corresponding FO interpretation of the class F is the class of all graph powers
{Gr |G ∈ F}. FO transductions are slightly more involved, as it is allowed to consider a
bounded number of copies of a graph before applying the formula, and then it is possible
to delete vertices. We will use the following structural result for classes of structurally
bounded expansion, proved in [GKN+20].

Theorem 6.3.4 ([GKN+20]). A class G of graphs has structurally bounded expansion if
and only if the following condition holds. For every p ∈ N, there is a constant m = m(p)
such that for every graph G ∈ G, one can find a family F(G) of vertex subsets of G with
|F(G)| ≤ m and the following properties:

� for every X ⊆ V (G) with |X| ≤ p, there is A ∈ F(G) such that X ⊆ A; and

� the class {G[A] |G ∈ G, A ∈ F(G)} of induced subgraphs has bounded shrubdepth.

We directly deduce the following result.

Lemma 6.3.5. Any class G of structurally bounded expansion admits a constant-size
equality-based adjacency labeling scheme.

Proof. Let m and F be given by applying Theorem 6.3.4 to G with p = 2. By definition,
for every graph G ∈ G and every pair of vertices u, v ∈ V (G), there is a set A ∈ F(G)
containing u and v. Moreover, F(G) contains at most m sets and the family C of all graphs
G[A], for G ∈ G, and A ∈ F(G), has bounded shrubdepth. It follows from Lemma 6.3.3
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that there is a constant-size equality-based adjacency labeling scheme for C. We denote
the decoder of this scheme by D, and the corresponding labels as `′G[A].

Consider some graph G ∈ G, and let F(G) = {A1, . . . , Am}. For each vertex x of G and
i ∈ [m], we write a(x) = (a1(x), . . . , am(x)) where ai(x) = 1 [x ∈ Ai]. Then we define the
label for x by taking the prefix a(x) and appending the labels `′G[Ai]

(x) for each induced

subgraph G[Ai] ∈ C to which x belongs. Given the labels for vertices x and y, the decoder
finds any i ∈ [m] such that ai(x) = ai(y) = 1; and outputs D′(`′G[Ai]

(x), `′G[Ai]
(y)). Such

a number i ∈ [m] always exists due to Theorem 6.3.4. The correctness of this labeling
scheme follows from Theorem 6.3.4 and Lemma 6.3.3.

Since FO-transductions compose (see e.g. [NOdMS22]), sketching FO formulas in a class
of structurally bounded expansion is equivalent to sketching adjacency in another class of
structurally bounded expansion. We obtain the following direct corollary of Lemma 6.3.5.

Corollary 6.3.6. Any class G of structurally bounded expansion is first-order sketchable.

As the property distG(x, y) ≤ r can be written as an FO formula, this directly implies
that classes of bounded expansion are small-distance sketchable. However, this does not
tell anything on the size of the sketches as a function of r, unlike the approach using weak
coloring numbers described in the next section.

6.3.2 Bounded Expansion Implies Small-Distance Sketching

Recall the definition of weak reachability from Definition 6.1.2. We give a quantitative
bound on the small-distance sketch of any graph class F in terms of wcolr(F). Recall
from Theorem 6.1.5 that any class with bounded expansion has wcolr(F) ≤ f(r) for some
function f(r); therefore we obtain the existence of small-distance sketches for any class of
bounded expansion.

Theorem 6.3.7. For any r ∈ N, any class F has an (0, r,wcolr(F))-disjunctive distance-
(r, r) labeling scheme.

Proof. Let G ∈ F , and consider a total order (V,≺) such that for any vertex x ∈ V , at
most wcolr(F) vertices are weakly r-reachable from v in G with respect to (V,≺). We
say that vertex y ∈ V has x-rank k if y is weakly k-reachable from x but not weakly
(k − 1)-reachable from x. For each vertex x and k ∈ [r], write Sk(x) for the set of vertices
y with x-rank k.
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We construct a disjunctive labeling scheme as follows. Each vertex x is assigned the
label

(− | ~q1(x)), (− | ~q2(x)), . . . , (− | ~qr′(x))

where r′ ≤ r is the maximum number such that Sr′(x) 6= ∅, and the equality codes ~qi(x)
are names of vertices in the set Si(x). Each label contains at most wcolr(G) equality codes,
plus a constant number of bits per equality code and O(r) bits to separate the elements
of the list. Given labels for x and y, the decoder outputs 1 if and only if there exist
0 ≤ i, j ≤ r such that i + j ≤ r and Si(x) ∩ Sj(y) 6= ∅, which can be checked using the
equality codes in ~qi(x) and ~qj(y).

Suppose that distG(x, y) ≤ r and let P ⊆ V (G) be a path of length distG(x, y). Let
z ∈ P be the minimal element of P with respect to ≺. Then z is weakly i-reachable
from x and weakly j-reachable from y, for some values i, j such that i + j ≤ r. Then
z ∈ Si(x) ∩ Sj(y), so the decoder will output 1 given the labels for x and y. On the
other hand, if the decoder outputs 1, then there are values i, j such that i + j ≤ r and
Si(x)∩Sj(y) 6= ∅. Let z ∈ Si(x)∩Sj(y), so that z is weakly i-reachable from x and weakly
j-reachable from y. Then distG(x, y) ≤ distG(x, z) + distG(z, y) ≤ i+ j ≤ r.

We noticed after proving this result that a similar idea was used in [GKS17, Lemma
6.10] to obtain sparse neighborhood covers in nowhere-dense classes.

We will need the following quantitative results for planar graphs and graphs avoiding
some specific minor, due to [vdHOQ+17].

Theorem 6.3.8 ([vdHOQ+17]). For any planar graph G, and any integer r ≥ 0, wcolr(G) ≤
(2r + 1)

(
r+2

2

)
= O(r3).

Theorem 6.3.9 ([vdHOQ+17]). For any integer t ≥ 3, any graph G with no Kt-minor,
and any integer r ≥ 0, wcolr(G) ≤

(
r+t−2
t−2

)
(t− 3)(2r + 2) = O(rt−1).

In the proof of Theorem 6.3.7, the equality codes are just the names of vertices; so we can
use dlog ne bits to encode each of the wcolr(F) equality codes to obtain an adjacency label.
Then, combined with Proposition 4.2.12, we obtain the following corollary:

Corollary 6.3.10. If a class F has bounded expansion, then F has a small-distance sketch
of size at most O(r+ wcolr(F) log(wcolr(F))). If F is the class of planar graphs, then the
sketch has size O(r3 log r) and if F is the class of Kt-minor free graphs for some fixed
integer t ≥ 3, then the sketch has size O(rt−1 log r). Furthermore, F admits a distance-
(r, r) labeling scheme of size O(r+ wcolr(F) log n); if F is the class of planar graphs, then
the scheme has size O(r3 log n) and if F is the class of Kt-minor free graphs, then the
scheme has size O(rt−1 log n).
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6.3.3 Small-Distance Sketching Implies Bounded Expansion

To complete the proof of Theorem 6.3.1, we must show that any monotone class of graphs
that is small-distance sketchable has bounded expansion, which we do by contrapositive.
In fact, we will prove a stronger statement: even having a weaker (r, 5r−1)-distance sketch
of size f(r) implies bounded expansion.

Theorem 6.3.11. Let F be a monotone class of graphs and assume that there is a function
f such that for any r ≥ 1, F has a (r, 5r − 1)-distance sketch of size f(r). Then F has
bounded expansion.

Proof. Assume for the sake of contradiction that F has unbounded expansion. By Corol-
lary 6.1.6, there is a constant k such that for every d ≥ 0, F contains a k-subdivision of
some bipartite graph G = (V,E) of minimum degree at least d and girth at least 6. Let
G be the class consisting of the graph G, together with all its spanning subgraphs. By
monotonicity, F contains k-subdivisions of all the graphs of G.

Recall the definition of the partial function adjE parameterized by graphs H ∈ G, from
the discussion preceding Lemma 6.2.4. We will show that the (k+ 1, 5(k+ 1)− 1)-distance
sketch of size f(k+1) for F can be used to obtain a adjE-sketch for G, which must have size
Ω(log d) due to Lemma 6.2.4. This is a contradiction since we must have f(k) = Ω(log d)
for arbitrarily large d, whereas f(k + 1) is a constant independent of d.

Let H be any spanning subgraph of G and let H(k) denote the k-subdivision of H. Con-
sider two vertices u, v ∈ V (H) ⊆ V (G) that are adjacent in G. Observe that distH(k)(u, v) =
(k + 1)distH(u, v), and thus if u, v are adjacent in H then distH(k)(u, v) ≤ k + 1. Assume
now that u, v are non-adjacent in H. Since u, v are adjacent in G, G has girth at least 6,
and H is a spanning subgraph of G, it follows that in this case distH(u, v) ≥ 5, and thus
distH(k)(u, v) ≥ 5(k+ 1). Therefore, by using the same decoder as the (k+ 1, 5(k+ 1)− 1)-
distance sketch for F , and using the random sketch sk defined for G, we obtain an adjEH-
sketch for H. This gives an adjE-sketch for G of size f(k + 1).

In our proof of Theorem 6.3.11 we have used Corollary 6.1.6, which is based on the
result of [KO04], stating that every graph of large minimum degree contains a bipartite
subgraph of girth at least 6 and large minimum degree. The following stronger statement
was conjectured by Thomassen [Tho83].

Conjecture 6.3.12 ([Tho83]). For every integer k, every graph of sufficiently large min-
imum degree contains a bipartite subgraph of girth at least k and large minimum degree.
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Note that if Conjecture 6.3.12 is true, it readily follows from our proof that the constant
5 in Theorem 6.3.11 can be replaced by an arbitrarily large constant. Compare this with
Theorem 6.4.7 in the next section, where we prove this result for randomized labeling
schemes whose label size is constant (independent or r).

6.4 Approximate Distance Threshold Sketching

In this section, we prove Theorems 1.3.21 and 1.3.23. Recall that a class F admits an α-
ADT sketch of size s(n) if for every r ∈ N there is a function Dr : {0, 1}∗×{0, 1}∗ → {0, 1}
such that every graph G ∈ F on n vertices admits a probability distribution over functions
sk : V (G)→ {0, 1}s(n) such that, for all x, y ∈ V (G),

distG(u, v) ≤ r =⇒ P [Dr(sk(u), sk(v)) = 1] ≥ 2/3 ,

distG(u, v) > αr =⇒ P [Dr(sk(u), sk(v)) = 0] ≥ 2/3 .

We emphasize that the size of the sketch should not depend on r, especially when s(n) is
constant (unlike in the notion of small-distance sketches studied in previous sections). A
desirable property of these sketches is that the decoder Dr does not depend on r either,
so that Dr = Dr′ = D for every r, r′. We will call such sketches distance-invariant. We
remark that any α-ADT sketch can be made distance-invariant by including the value of r
in the sketch using log n bits, which is useful to keep in mind for some of the lower bounds
below. However, our main goal is to determine when constant-size sketches are possible,
and for this goal distance-invariance does not make any qualitative difference, as shown in
the following simple proposition:

Proposition 6.4.1. If F admits a constant-size α-ADT sketch, then F admits a constant-
size distance-invariant α-ADT sketch.

Proof. Let s be the size of the α-approximate distance sketch. Then it holds that for
every r ∈ N, the function Dr has domain {0, 1}s × {0, 1}s. There are at most 222c

functions {0, 1}s × {0, 1}s → {0, 1}; therefore there are at most 222s distinct functions
Dr : {0, 1}s × {0, 1}s → {0, 1}. We obtain a distance-invariant α-approximate distance
sketch as follows. For each G ∈ F , each r ∈ N, and each u ∈ V (G), we sample skr from the
distribution defined by the constant-size sketch with decoder Dr, and we construct sk′(u)
by concatenating at most 22s bits to specify the function Dr. We then define the decoder
D : {0, 1}22s+s × {0, 1}22s+s → {0, 1} on inputs sk′(u), sk′(v) as Dr(sk(u), sk(v)), where Dr

is the function specified by sk′(u).
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We will show that for monotone classes, ADT sketching implies small-distance sketching
(and therefore adjacency sketching). Any class (monotone or not) that is adjacency sketch-
able contains at most 2O(n logn) graphs on n vertices, so any monotone ADT-sketchable class
must satisfy this condition also. One may wonder if these conditions hold for non-monotone
ADT-sketchable classes. The next simple example shows that this is not so.

Example 6.4.2. Consider the class of graphs obtained by choosing any graph G and
adding an arbitrary path, with one endpoint connected to all vertices of G. The set of n-
vertex graphs in this class contains all (n−1)-vertex graphs as induced subgraphs, so it has
more than 2O(n logn) graphs and is not adjacency sketchable. But it is 2-ADT sketchable:
every pair of vertices in G have distance at most 2 and are equidistant to all other vertices,
so we may essentially reduce the problem to a single path. Here we have included a path
instead of a single vertex so that the graph class has unbounded diameter.

6.4.1 Lower Bound for the Class of All Graphs

Recall that G is the class of all graphs, and for an integer N , we will write GN for the class
of all graphs with vertex set [N ]. Recall that Theorem 4.2.21 proved an Ω(N) lower bound
for adjacency sketching in G; we now prove the analogous result for ADT sketching. It
follows from Theorem 3.4 in [TZ05] that for any r, G admits an (r, αr)-distance labeling
scheme with labels of size O(n2/α log2−2/α n). In [TZ05] a lower bound was also given, but
this was for deterministic approximate distance labels, which must allow an approximate
computation of all distance. We give a stronger result (although the proof is nearly the
same) that holds even for the case where we allow only a (1, α)-distance sketch; our bound
of Ω(n1/α) has nearly the same dependence on α as the upper bound.

We will need the following classical result (see Lemma 15.3.2 in [Mat13] and the refer-
ences therein).

Lemma 6.4.3 ([Mat13]). For any ` ≥ 2 and n ≥ 2, there is an n-vertex graph with at
least 1

9
n1+1/` edges and without any cycle of length at most `+ 1.

The proof of the following lower bound is inspired by a seminal proof of Matoušek on
non-embeddability of graph metrics in Euclidean space [Mat96] (see also Proposition 5.1
in [TZ05] for a closer application on approximate distance oracles).

Theorem 6.4.4. For any α ≥ 2 and n ≥ 2, there exists a class F of n-vertex graphs such
that any distance-(1, α) labeling scheme for F requires labels of size at least 1

9
n1/α.
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Proof. For α ≥ 2 and n ≥ 2, let G be an n-vertex graph with m ≥ 1
9
n1+

1
α edges and without

any cycle of length at most α + 1 (given by Lemma 6.4.3). Consider a (deterministic)
distance-(1, α) distance labeling scheme for the class of all spanning subgraphs of G. Let
H be a subgraph of G. Note that for any edge uv ∈ E(G), u and v are at distance 1 in
H if uv ∈ E(H), and are at distance greater than α otherwise (since G has no cycle of
length at most α+1). It follows that given the labels of u and v in H, the decoder outputs
1 if uv ∈ E(G) and 0 otherwise. Consequently, for any two distinct subgraphs H1, H2 of
G, the sequences of labels of the vertices v1, v2, . . . , vn of G in H1 and H2 are distinct. As
there are 2m such subgraphs, some subgraph H of G is such that the sequence of labels of

v1, v2, . . . , vn in H takes at least m ≥ 1
9
n1+

1
α bits, and thus some vertex of H has a label

of size at least 1
9
n1/α, as desired.

Due to Lemma 4.2.8, we obtain the following immediate corollary.

Corollary 6.4.5. For any α ≥ 2 and n ≥ 2, there exists a class F of n-vertex graphs such
that any distance-(1, α) sketch for F requires labels of size Ω(n1/α/ log n).

Note that in Theorem 6.4.4 and Corollary 6.4.5, we do not assume that the distance labeling
scheme under consideration is distance-invariant (indeed, we only use the case r = 1 to
obtain the lower bound).

Lower Bound for Bounded-Degree Graphs

We now prove that a monotone class may have bounded expansion but still have a lower
bound of nΩ(1/α) on the α-ADT sketch size. This bound holds for the class of graphs of
maximum degree 3, which has expansion exponential in r [NO12].

Write Fn,3 for the class of all n-vertex graphs of maximum degree at most 3. We will
need the following construction: Given an N -vertex graph G and an integer ` ≥ 2 logN+1,
let G[`] be any graph obtained from G as follows: each vertex v of G is associated with
a rooted balanced binary tree Tv in H, whose leaves are indexed by the neighbors of v in
G (the trees Tv are balanced, so they have depth at most logN). Then H consists in the
disjoint union of all trees Tv, for v ∈ V (G), together with paths connecting the leaf of Tv
indexed by u to the leaf of Tu indexed by v, for any edge uv of G. The length of the path
connecting these two leaves is such that the distance in H between the root of Tv and the
root of Tu is precisely `.

Theorem 6.4.6. Assume that there is a real α such that the class Fn,3 has a distance-

invariant α-ADT sketch of size s(n). Then for any ε > 0, we have s(n) = Ω
(
n

1
4α
−ε
)

.
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Proof. Recall that G is the class of all graphs, and GN is the class of all graphs on vertex
set [N ]. For a graph G ∈ GN , consider the graph H := G[`] as defined above, with
` = d4 logNe. We denote the root of each tree Tv in H by rv (see the paragraph above for
the definition of Tv). Observe that for any u, v ∈ V (G),

`
2
· distG(u, v) ≤ (`− 2 logN)distG(u, v) ≤ distH(ru, rv) ≤ ` · distG(u, v).

Note that H ∈ Fn, with n ≤ N ·2N+
(
N
2

)
·5 logN ≤ 8N2 logN , for sufficiently large N . We

construct a distance-(1, 2α) sketch for GN as follows. Let D be the decoder for the α-ADT
sketch for F . Given G ∈ GN , the encoder computes a graph H as above. Since H ∈ Fn,
for any r ∈ N there is a probability distribution over functions skr : V (H) → {0, 1}s(n)

such that for all u, v ∈ V (H):

distH(u, v) ≤ r =⇒ P [D(skr(u), skr(v)) = 1] ≥ 2/3 ,

distH(u, v) > αr =⇒ P [D(skr(u), skr(v)) = 0] ≥ 2/3 .

To obtain a sketch for G, draw sk` : V (H)→ {0, 1}s(n) from the appropriate distribution,
and assign to each vertex v ∈ V (G) the value sk′(v) = sk(rv). We establish the correct-
ness of this sketch as follows. Let u, v ∈ V (G) and suppose that distG(u, v) ≤ 1. Then
distH(ru, rv) ≤ `, so we have

P [D(sk`(ru), sk`(rv)) = 1] ≥ 2/3 .

Now suppose distG(u, v) > 2α. Then distH(ru, rv) > α`, so we have

P [D(sk`(ru), sk`(rv)) = 0] ≥ 2/3 .

We therefore have a (1, 2α)-distance sketch for FN of size s(n). Assume for contradic-

tion that s(n) = O

(
n

1
4α
−ε
)

for some ε > 0. By Corollary 6.4.5, it must be that

any distance-(1, 2α) sketch for GN has size Ω(N1/2α/ logN). Therefore we must have

s(n) = Ω(N1/2α/ logN), so N1/2α/ logN = O

(
n

1
4α
−ε
)

. But n ≤ 8N2 logN for suffi-

ciently large N , so
N1/2α

logN
= O

(
N

1
2α
−2ε log

1
4α
−εN

)
,

which is a contradiction.
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6.4.2 ADT Sketching Implies Bounded Expansion

We now prove that if a monotone class F is ADT sketchable, then F has bounded ex-
pansion. This is an extension of a similar (unpublished) result for classes of bounded
Assouad-Nagata dimension.

Theorem 6.4.7. Let F be any monotone class of graphs that is α-ADT sketchable, for
some α > 1. Then F has bounded expansion.

Proof. Let F have unbounded expansion, and suppose for the sake of contradiction that it
admits an α-approximate distance sketch of constant size s. By Proposition 6.4.1, we may
assume that the sketch is distance-invariant. Write D : {0, 1}s × {0, 1}s → {0, 1} for the
decoder, and for every G ∈ F and integer r, write skG,r : V (G)→ {0, 1}s for the associated
(random) sketch.

Since F has unbounded expansion, by Corollary 6.1.6, there exists an integer p ≥ 0
such that for any integer t, F contains a p-subdivision of a graph of minimum degree at
least t. Then, by a recent result of Liu & Montgomery [LM20], for any integer t there is
an integer kt ≥ 0 such that F contains a kt-subdivision of the complete graph Kt.

Recall that G is the class of all graphs. We will design an α-approximate distance sketch
for G. For any t ∈ N, let G ∈ Gt. Then for kt defined above, F contains a kt-subdivision
of the complete graph Kt. Since F is monotone, it also contains the kt-subdivision G(kt)

of G. Now observe that, for any u, v ∈ V (G) ⊆ V (G(t)) and integer r, we have

distG(u, v) ≤ r =⇒ distG(t)(u, v) ≤ (kt + 1)r

distG(u, v) ≥ αr =⇒ distG(t)(u, v) ≤ α(kt + 1)r .

Therefore, with probability at least 2/3 over the choice of skG(t),(kt+1)r, we have

D(skG(t),(kt+1)r(u), skG(t),(kt+1)r(v)) =

{
1 if distG(u, v) ≤ r

0 if distG(u, v) ≥ αr ,

as desired; so G admits and distance-invariant α-approximate distance sketch of constant
size s. But this contradicts Theorem 6.4.4.

A natural question is whether this can be proved directly, without using the theory of
sparsity and the fairly involved result of Liu and Montgomery [LM20].
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6.4.3 Lower Bound: Grids

The two-dimensional grid with crosses is a standard example of a class with bounded
expansion [NOW12]. Let Gd denote the class of all finite subgraphs of the d-dimensional
grid with all diagonals (the strong product of d paths). It is was proved in [Dvo21] that
for even d, the expansion of Gd is r 7→ Θ(rd/2), and in particular the expansion of G2 is
r 7→ Θ(r).

Lemma 6.4.8. For any graph G of maximum degree 3, there exists a constant k = kG
such that G2 contains the k-subdivision of G.

Proof sketch. Observe first that G2 contains arbitrarily large complete graphs as minors
(see Figure 6.1, left, where the clique minor is obtained by contracting each thick path into
a single vertex). It follows that for any graph G, some graph of G2 contains G as a minor.
Note that for a graph G of maximum degree at most 3, a graph H contains G as a minor
if and only if H contains a subdivision of G. It follows that for any graph G of maximum
degree 3, some sufficiently large grid H of G2 contains a subdivision of G as a subgraph.
For a vertex u of G, we denote by π(u) its image in H (in a copy of some subdivision of G
in H), and for any edge uv in G, we denote the corresponding path of the subdivision of
G in H between π(u) and π(v) by Puv.

π(u)

π(v)
P ′
uv

Ruv

π(v)

π(u)

P ′′
uveuv

Figure 6.1: A large clique minor in a 2-dimensional grid with diagonals (left), and a way
to increase the lengths of the path P ′uv using the private areas Ruv (right).

For λ ≥ 1, a λ-refinement of the grid H is obtained by replacing each (1 × 1)-cell of
the grid H by a (λ × λ)-grid. Note that if H contains a subdivision of G as above, then
any λ-refinement of H contains a subdivision of G, where each path Puv is replaced by a
path P ′uv of length λ|Puv|. Note that after performing a λ-refinement, we can assume in
addition that for any edge uv of G, H contains a (λ

2
× λ

2
)-subgrid Ruv that intersects the

subdivision of G in H in a single edge euv, which is included in P ′uv (see Figure 6.1, right).

Using the subgrid Ruv, we can replace euv by a path of any length between 1 and
(λ

2
−1)2 ≥ λ2/16 (assuming λ ≥ 4) between its endpoints, turning P ′uv into a new path P ′′uv
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of length |P ′uv| + ` = λ|Puv| + ` (for any possible value of 0 ≤ ` ≤ λ2/16), in such a way
that the vertices π(u), u ∈ V (G), and the paths P ′′uv, uv ∈ E(H), still form a subdivision
of G in H.

Note that a path Puv of maximum length can replaced by a path P ′′uv of length λ|Puv|
after the λ-refinement, while a path Pxy of minimum length can be replaced by a path
P ′′xy of any length between λ|Pxy| and λ|Pxy|+ λ2/16 ≥ λ|Puv|, where the inequality holds
whenever λ ≥ 16|Puv| − 16|Pxy|. It follows that by taking λ sufficiently large, we obtain a
subdivision of G in H where all edges of G correspond to paths of the same length in H,
as desired.

Using a similar argument to the above, we obtain a similar result for subgraphs of 3-
dimensional grids. Write P3 for the class of subgraphs of the 3-dimensional grid; i.e. the
class of finite subgraphs of the Cartesian product P 3, where P is the infinite path. We
omit this proof due to its similarity to the one above.

Lemma 6.4.9. For any graph G of maximum degree 3, there exists a constant k = kG
such that P contains the k-subdivision of G.

We easily deduce the following simple corollary.

Corollary 6.4.10. The classes G2 and P are not ADT sketchable.

Proof. The proof is similar to that of Theorem 6.4.7. Suppose for contradiction that, for
some constant α > 1, the class admits a constant-size α-approximate distance sketch. Then
by Proposition 6.4.1, we can assume that the sketch is distance-invariant. By Lemma 6.4.8,
this can be used to design an α-approximate distance sketch for the class of all graphs of
maximum degree 3, contradicting Theorem 6.4.6.

6.4.4 Lower Bound for Classes of Low Expansion

Now we show that there is no non-constant bound on the expansion that guarantees the ex-
istence of constant-size ADT sketches. We achieve this by constructing classes of graphs of
arbitrarily low non-constant expansion, which cannot admit constant-size α-ADT sketches
for any constant α > 1. We start with a simple variant of [GKR+18, Theorem 4.5].

For a function f : N → N such that f(n) → ∞ when n → ∞, we define f−1(n) :=
max{k | f(k) ≤ n}. We recall that for an N -vertex graph G and an integer ` ≥ 2 logN + 1,
the graph G[`] was defined just before the statement of Theorem 6.4.6.
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Lemma 6.4.11. Let f be a function such that f(n)→∞ when n→∞. For any n-vertex
graph G, and any integer r ≥ 0, every depth-r minor of G[6f(6n2) + 2 log n] has average
degree at most max{4, f−1(r)}.

Proof. Let H = G[6f(6n2) + 2 log n], and let H ′ be any depth-r minor of H. Observe that
G[2 log n+ 1] has at most 2n2 +

(
n
2

)
≤ 3n2 vertices, and thus tree-width at most 3n2. The

graph H itself is obtained from G[2 log n+1] by subdividing some edges, an operation that
leaves the tree-width unchanged. It follows that H also has tree-width at most 3n2. Since
tree-width is a minor-monotone parameter, H ′ also has tree-width at most 3n2 and is thus
3n2-degenerate. It follows that H ′ has average degree at most 6n2. If r ≥ f(6n2), then
6n2 ≤ f−1(r) and thus H ′ has average degree at most f−1(r), as desired. Assume now that
r ≤ f(6n2). In this case, since H ′ is obtained from disjoint trees by connecting their leaves
with paths of length at least 6f(6n2), it can be checked that H ′ is 2-degenerate, and thus
has average degree at most 4.

Theorem 6.4.12. For any function ρ tending to infinity, there exists a monotone class
of expansion r 7→ ρ(r) that is not ADT sketchable. Moreover, for any ε > 0, there exists
a monotone class F of expansion r 7→ O(rε), such that, if F admits an α-ADT sketch of
size s(n), then we must have s(n) = nΩ(1/α).

Proof. Let ρ : N → N be function tending to infinity, so that ρ−1 is a non-decreasing
function tending to infinity. We proceed as in the proof of Theorem 6.4.6, setting `(N) =
6ρ−1(6N2) + 2 logN (instead of ` = d4 logNe). For any N -vertex graph G, G[`(N)] ∈ Fn,3
with n ≤ 6N2(ρ−1(6N2) + 2 logN). By Lemma 6.4.11, any depth-r minor of such a
graph G[`(N)] has average degree at most max{4, ρ(r)}. It follows that the monotone
class F of all graphs G[`(N)] for G ∈ GN and their subgraphs has expansion at most
r 7→ max{4, ρ(r)}.

By the same argument as in Theorem 6.4.6, if there is a distance-invariant α-ADT
sketch for F of size s(n) (which is a non-decreasing function in n), we obtain a (1, 2α)-
distance sketch for G of size N 7→ s(n). Then, due to Corollary 6.4.5,

N
1

2α/ logN = O (s(n)) = O
(
s
(
6N2(ρ−1(6N2) + 2 logN)

))
.

It is clear that, for any choice of ρ, we cannot have s(n) constant, which establishes the
first part of the theorem. To get the second part, let ε > 0 and suppose that we choose
ρ(r) = rε so that ρ−1(r) = r1/ε, and assume for contradiction that s(n) = no(1/α). Then

N
1

2α/ logN = O
(
s
(
6N2((6N2)1/ε + 2 logN)

))
= O

(
N o(1/α)

)
,

which means we must have s(n) = nΩ(1/α) as desired.

201



6.4.5 Upper Bounds

The weak diameter of a subset S of vertices of a graph G is the maximum distance in
G between two vertices of S. Given a graph G, a (σ, τ,D)-sparse cover is a family C of
subsets of V (G) of weak diameter at most D, such that (i) for each u ∈ V (G), there is a
set C ∈ C such that B(u, D

σ
) ⊆ C (where B(u, r) denotes the ball of radius r centered in

u), and (ii) each vertex u ∈ V (G) lies in at most τ sets of C.
We say that a graph G admits a (σ, τ)-sparse cover scheme if for any D, it admits a

(σ, τ,D)-sparse cover. We say that a graph class F has a (σ, τ)-sparse cover scheme if any
graph of F has such a scheme1). Classes of graphs with (σ, τ)-sparse cover schemes are also
known as classes of Assouad-Nagata dimension at most τ − 1 in metric geometry [Ass82]
(see also [LS05]).

The following result is a simple consequence of the definition of sparse covers. Note that
here the size of the labels is independent of r, in contrast with the setting of Theorem 6.3.7
and its corollaries.

Theorem 6.4.13. If a graph class F has a (σ, τ)-sparse cover scheme, then for any r > 0,
F has distance-invariant, disjunctive σ-ADT labeling scheme with labels of size O(τ).

Proof. By the definition of sparse covers, for any r > 0, there is a family C of subsets of
V (G) of weak diameter at most σr, such that (i) for each u ∈ V (G), there is a set C ∈ C
such that B(u, r) ⊆ C, and (ii) each vertex u ∈ V (G) lies in at most τ sets of C.

We may now define a disjunctive σ-ADT labeling scheme. Assign each set C ∈ C a
unique number in N, and for each vertex x, let S(x) be the set of names of the (at most
τ) sets C containing x. For each vertex x ∈ V (G), the equality code ~q(x) contains the
names S(x), and we assign x the label (− | ~q(x)). On inputs (− | ~q(x)) and (− | ~q(y)), the
decoder outputs 1 if and only S(x) ∩ S(y) 6= ∅ (which can be checked using the equality
codes).

Suppose distG(x, y) ≤ r. Since there is a set C ∈ C such that B(x, r) ⊆ C, we also
have y ∈ C, and thus S(x) ∩ S(y) 6= ∅. Now suppose that distG(x, y) > σr. Since each set
C ∈ C has weak diameter at most σr, there is no set C ∈ C containing both x and y and
thus S(x) ∩ S(y) = ∅.

Using results of [Fil20] on sparse covers (based on [KPR93, FT03]), we deduce the
following immediate corollary.

1It is usually assumed that in addition, such schemes can be computed efficiently, that is in time
polynomial in the size of the graph.
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Corollary 6.4.14. For any t ≥ 4, the class of Kt-minor free graphs has a distance-
invariant O(2t)-ADT sketch of size O(t2 log t).

Padded Decompositions

We will see now how to get improved sketches using padded decompositions. These improved
sketches have some disadvantages: they have two-sided error, and they are not equality-
based. For a graph G, a probability distribution P over partitions of V (G) is said to be
(β, δ,D)-padded if

� for each partition P in the support of P , each set of P has diameter at most D, and

� for any u ∈ V (G) and any 0 ≤ γ ≤ δ, the ball B(u, γD) is included in some set of a
random partition from P with probability at least 2−βγ.

We say that a graph G admits a (β, δ)-padded decomposition scheme if for any D, it admits
a (β, δ,D)-padded distribution over partitions of V (G). We say that a graph class F has
a (β, δ)-padded decomposition scheme if any graph of F has such a scheme.

Theorem 6.4.15. If a graph class F has a (β, δ)-padded decomposition scheme, then F
admits a distance-invariant α-ADT sketch of size 2, where α = max(1

δ
, β

log(3/2)
).

Proof. Fix some r > 0, and some graph G ∈ F . Let γ = min(δ, 1
β

log(3/2)). Note that

0 ≤ γ ≤ δ and 2−βγ ≥ 2
3
. Let D = r/γ, and let P be a (β, δ,D)-padded distribution over

partitions of V (G). Let P be a partition of V (G) drawn according to the distribution P .
Then each set of P has diameter at most D = r/δ. Assign a random identifier id(S) to
each set S ∈ P, drawn uniformly at random from the set {1, 2, 3}. The label of each vertex
u ∈ V (G) simply consists of the identifier id(S) of the unique set S ∈ P such that u ∈ S.
Given the labels of u and v, the decoder outputs 1 if and only the labels are equal. Note
that the decoder is clearly distance-invariant.

Assume first that d(u, v) ≤ r, then since v is in the ball of radius r = γD centered in u,
it follows that u and v are in the same set S ∈ P with probability at least 2−βγ ≥ 2

3
. If u

and v are in the same set S ∈ P, then their labels are equal with probability 1. It follows
that if d(u, v) ≤ r, the decoder outputs 1 with probability at least 2/3, as desired.

Assume now that d(u, v) > r/γ. Since each set in P has diameter at most D = r/γ,
it follows that u and v are in different sets of P with probability 1. As each set S ∈ P
is assigned a random element from {1, 2, 3}, u and v have the same label with probability
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1
3
. It follows that if d(u, v) > r/γ, the decoder outputs 0 with probability 1 − 1

3
= 2

3
, as

desired.

Although this sketch does use randomization for an equality check, it also uses ran-
domization to construct the padded decomposition, and so it is not equality-based.

It was proved in [AGG+19] that for t ≥ 4, the class of Kt-minor free graphs admits a
(320t, 1

160
)-padded decomposition scheme. It was also proved in [LS10] (see also [AGG+19])

that for any g ≥ 0, the class of graphs embeddable on a surface of Euler genus g admits
a (O(log g),Ω(1))-padded decomposition scheme. We obtain the following two corollaries,
and again emphasize that these sketches have two-sided error.

Corollary 6.4.16. For any t ≥ 4, the class of Kt-minor free graph has a distance-invariant
O(t)-ADT sketch with labels of at most 2 bits.

Corollary 6.4.17. For any g ≥ 0, the class of graphs embeddable on a surface of Euler
genus g has a distance-invariant O(log g)-ADT sketch with labels of at most 2 bits.

Observe that padded decomposition schemes must include the entire ball B(u, γD) in a
random partition with sufficiently large probability. This is not necessary for the purposes
of sketching: we only require that any two points u, v of distance at most r are included
in a random partition. So a weaker notion that also implies the existence of an α-ADT
sketch is the following. We say that a graph G has a (σ, τ,D)-padded cover if there is a
probability distribution C on the covers of V (G) such that

� for each cover C in the support of C, each set of C has diameter at most D and each
vertex u ∈ V (G) lies in at most τ sets of C, and

� for any u, v ∈ V (G) with d(u, v) ≤ D
σ

, the pair {u, v} is included in some set of a
random cover from C with probability at least 2

3
.

We say that a graph G admits a (σ, τ)-padded cover scheme if for any D, it admits a
(σ, τ,D)-padded cover. We say that a graph class F has a (σ, τ)-padded cover scheme if
any graph of F has such a scheme.

Note that there is nothing special about the value 2
3

in the definition above. Up to
sampling multiple times from C (and thus multiplying τ by a constant), this value can be
replaced by any positive constant. The proofs of Theorems 6.4.13 and 6.4.15 can easily be
combined to give the following result.
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Theorem 6.4.18. If a graph class F has a (σ, τ)-padded cover scheme, then F has a
distance-invariant σ-ADT sketch with labels of size O(τ log τ).

A diagram showing the relation between the notions of sparse covers, padded decom-
positions, and padded covers is depicted in Figure 6.2.

Bounded Assouad-Nagata dimension

=

(O(1), O(1))-sparse cover scheme

(O(1), O(1))-padded decomposition scheme

(O(1), O(1))-padded cover scheme

Figure 6.2: Relation between the different notions that imply ADT sketchability.

A natural question is the following: Which graph classes have (σ, τ)-padded cover
schemes, for constant σ and τ? Is there a significant difference with the class of graphs
that admit (σ, τ)-sparse cover schemes? And a significant difference with classes that admit
σ-ADT sketches?

We remark that lower bounds for sketching therefore imply lower bounds on sparse
covers, padded decompositions, and padded covers. For example, the communication com-
plexity lower bound of [AK08] implies that bounded-degree expanders do not admit padded
covers or sparse covers, which is something that we were unable to prove directly.
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Chapter 7

Graph Sketching Beyond Monotone
Classes

The king was asked, which number is greater?
By his highness’s portrait’s creator.

As the king boasted, “this is easy to do”,
the artist cried “I cannot sketch this for you”.

Although the artist was certainly able,
sadly the king was just simply unstable.

Having developed a complete theory of adjacency, small-distance, and first-order sketch-
ing for monotone classes of graphs, we now turn our attention to non-monotone classes.
Our goal is to study a diverse set of graph classes, to get some idea of what conditions
are sufficient for constant-size adjacency sketches. The results in this chapter are from
[HWZ22], coauthored with Sebastian Wild and Viktor Zamaraev.

Recall the definition of the chain number from Section 1.3.5 and the discussion on
its relation to the lattice of hereditary graph classes from Section 4.2.7. We repeat the
definition here for convenience. For a graph G, the chain number ch(G) is the maximum
number k for which there exist disjoint sets of vertices {a1, . . . , ak}, {b1, . . . , bk} ⊆ V (G)
such that (ai, bj) ∈ E(G) if and only if i ≤ j. For a graph class F , we write ch(F) =
maxG∈F ch(G). If ch(F) = ∞, then F has unbounded chain number, otherwise it has
bounded chain number. We also refer to classes with bounded chain number as stable.

We will see in this chapter three examples of hereditary graph classes which do not admit
adjacency sketches because they are not stable, but when we enforce the stability condition
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they become sketchable. (A fourth example from the paper [HWZ22] was the class of graphs
with bounded twin-width, which we do not include here because it is superceded by our
result for classes with structurally bounded expansion in Chapter 6.)

Our first two examples are the interval and permutation graphs, which are two of the
most well-studied geometric intersection graph classes. Here we give explicit upper bounds
on the size of the adjacency sketches in terms of the chain number.

Third, we study the monogenic classes of bipartite graphs, which are those obtained
by excluding a single bipartite graph H as an induced subgraph. We remark that to
understand constant-size adjacency sketches, it is sufficient to consider bipartite graphs.
Any hereditary class of bipartite graphs is defined by a unique set H of forbidden induced
subgraphs (which may be infinite). This motivates our choice to study the classes obtained
by forbidding a single induced subgraph.

7.1 Interval and Permutation Graphs

Interval graphs are the intersection graphs of intervals on the real line, and are arguably
the most studied class of geometric intersection graphs. It is fairly easy to see that interval
graphs are not stable, so by Lemma 4.2.23 any adjacency sketch for this class has size
Ω(log n), and there is a simple, matching upper bound of O(log n) achieved by deterministic
adjacency labeling [KNR92] (see Example 1.3.3).

Definition 7.1.1 (Interval graph). A graph G is an interval graph if there exists an interval
realization `, r : V (G) → R with `(v) ≤ r(v) for all v ∈ V (G) so that u, v ∈ V (G) are
adjacent in G if and only if [`(u), r(u)] ∩ [`(v), r(v)] 6= ∅.

Permutation graphs are another important factorial class of geometric intersection
graphs (like interval graphs, they are a subclass of line segment intersection graphs). They
admit a straightforward O(log n)-bit adjacency labeling scheme that follows from their
definition, and it is also simple to show that they are not stable, so there is a matching
Ω(log n) lower bound on their adjacency sketch size.

Definition 7.1.2 (Permutation Graph). A graph G is a permutation graph on n vertices
if each vertex can be identified with a number i ∈ [n], such that there is a permutation π
of [n] where i, j are adjacent if and only if i < j and π(i) > π(j).

Our goal is to determine which hereditary graph classes admit constant-size adjacency
sketches. Neither of these classes admit constant-size sketches. Therefore it is informative

207



to ask how much these classes must be restricted before constant-size sketches become
possible. In other words, we would like to know which hereditary subclasses of interval and
permutation graphs are adjacency sketchable. We find that in both cases it is exactly the
stable subclasses.

Theorem 1.3.25. Let F be any hereditary subclass of interval or permutation graphs.
Then F is adjacency sketchable if and only if it is stable.

This theorem follows from Theorem 7.1.7 (interval graphs) and Theorem 7.1.19 (per-
mutation graphs), proved below.

7.1.1 Interval Graphs

The proof will rely on bounding the clique number of interval graphs with bounded chain
number.

Lemma 7.1.3. Let F be a class of interval graphs with bounded clique number, i.e. there
is a constant c so that for any graph G ∈ F , the maximal clique size is at most c. Then F
admits a constant-size equality-based labeling scheme.

Proof. Any interval graph is chordal and the treewidth of a chordal graph is one less its
clique number. It follows that any interval graph G with clique number at most c has
treewidth at most c − 1. Graphs of treewidth c − 1 have arboricity at most O(c), and
therefore, by Lemma 4.2.16, F admits a constant-size equality-based labeling scheme and
an adjacency sketch of size O(c).

It is not possible in general to bound the clique number of interval graphs with bounded
chain number, because there may be an arbitrarily large set of vertices realized by identical
intervals, which forms an arbitrarily large clique. Our first step is to observe that, for the
purpose of designing an equality-based labeling scheme, we can ignore these duplicate
vertices (called true twins in the literature).

Definition 7.1.4. For a graph G = (V,E), two distinct vertices x, y are called twins if
N(x) \ {y} = N(y) \ {x}, where N(x), N(y) are the neighbourhoods of x and y in G.
Twins x and y are true twins if they are adjacent, and false twins if they are not adjacent.
The false-twin relation and true-twin relation are equivalence relations.

A graph is true-twin-free if it does not contain any vertices x, y that are true twins,
and it is false-twin-free if it does not contain any vertices x, y that are false twins. It is
twin-free if it is both true-twin-free and false-twin-free.
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Lemma 7.1.5. Let F be any hereditary graph class and let F ′ be either the set of true-
twin free members of F , or the set of false-twin free members of F . If F ′ admits an
(s, k)-equality based labeling scheme, then F admits an (s, k + 1)-equality based labeling
scheme.

Proof. We prove the lemma for F ′ being the true-twin free members of F ; the proof for
the false-twin free members is similar. Let G ∈ F . We construct a true-twin-free graph
G′ ∈ F ′ as follows. Let T1, . . . , Tm ⊆ V (G) be the equivalence classes under the true-twin
relation, so that for any i, any two vertices x, y ∈ Ti are true twins. For each i ∈ [m], let
ti ∈ Ti be an arbitrary element, and let T = {t1, . . . , tm}. We claim that G[T ] is true-twin
free.

Suppose for contradiction that ti, tj are true twins in G[T ]. Let x ∈ Ti, y ∈ Tj. Since
ti, tj are adjacent in G[T ], they are adjacent in G. Then x is adjacent to tj since x, ti are
twins. Since tj, y are twins, x is adjacent to y. So G[Ti, Tj] is a biclique. Now suppose
that z ∈ Tk for some k /∈ {i, j}, and assume z is adjacent to x. Then z is adjacent to ti
since x, ti are twins, and ti is adjacent to tk since z, tk are twins. Since ti, tj are twins,
it also holds that tj is adjacent to tk and to z. So y is adjacent to z. Then for any z it
holds that x, z are adjacent if and only if y, z are adjacent. So x, y are true twins, for any
x ∈ Ti, y ∈ Tj. But then Ti ∪ Tj is an equivalence class under the true-twin relation, which
is a contradiction.

Therefore, G[T ] is true-twin free and a member of F , so G[T ] ∈ F ′. For any x ∈ V (G),
assign the label (p(ti) | q(ti), i) where (p(ti) | q(ti)) is the label of ti in the equality-based
labeling scheme for F ′, and i ∈ [m] is the unique index such that x ∈ Ti. The decoder for
F performs the following on labels (p(ti) | q(ti), i) and (p(tj) | q(tj), j). If i = j output 1;
otherwise simulate the decoder for F ′ on labels (p(ti) | q(tj)) and (p(tj) | q(tj)). For vertices
x, y in G, if x, y are true twins then i = j and the decoder outputs 1. Otherwise, the
adjacency between x and y is equivalent to the adjacency between ti, tj in G[T ], which is
computed by the decoder for F ′, as desired.

The true-twin free interval graphs with bounded chain number also have bounded clique
number.

Lemma 7.1.6. Let G be a true-twin free interval graph and let G contain a clique of c
vertices. Then G has chain number at least b

√
c/2c.

Proof. Since G is interval, there is an interval realization `, r : V (G)→ R with `(v) ≤ r(v)
for all v ∈ V (G) so that u, v ∈ V (G) are adjacent if and only if [`(u), r(u)] ∩ [`(v), r(v)] 6=
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∅. We can assume without loss of generality that no two endpoints are the same. We
abbreviate i(v) = [`(v), r(v)]. Let X = {x1, . . . , xc} be the c vertices that form a c-
clique in G, arranged so that `(x1) < `(x2) < · · · < `(xc). Consider the sequence r =
(r(x1), . . . , r(xc)) of right endpoints. By the Erdős-Szekeres theorem [ES35], any sequence
of at least R(k) = (k−1)2+1 distinct numbers contains either an increasing or a decreasing
subsequence of length at least k. Setting k = b

√
cc, we have R(k) ≤ c, so there is a

clique over k vertices y1, . . . , yk with `(y1) < · · · < `(yk) and either r(y1) < · · · < r(yk) or
r(y1) > · · · > r(yk). Graphically speaking, the intervals for y1, . . . , yk either form a staircase
or a (step) pyramid. In either case, `(yk) < min{r(y1), r(yk)}, so m = (min{r(y1), r(yk)}+
`(yk))/2 is contained in all i(yj). We will assume the staircase case, r(y1) < · · · < r(yk);
see Figure 7.1. The pyramid case is similar.

`(x1) r(x1)

`(x2) r(x2)

`(x3) r(x3)

`(x4) r(x4)

`(x5) r(x5)

`(x6) r(x6)

`(x7) r(x7)

`(x8) r(x8)

`(x9) r(x9)

m

y1

y2 = a1

y3

y4 = a2

y5 = a3

z1 = b1

z2

z3 = b2

z4 = b3

Figure 7.1: Example illustrating the notation from the proof of Lemma 7.1.6. The fat blue
and red intervals, a1, . . . , a3 resp. b1, . . . , b3, form an induced subgraph with chain number
3.

Now, since G is true-twin free, for every v, v′ ∈ X, there must be u ∈ V (G) with
i(v) ∩ i(u) = ∅ and i(v′) ∩ i(u) 6= ∅ or vice versa, so i(u) must lie entirely to the left or
entirely to the right of i(v) or i(v′). In particular, for pair yj, yj+1 with j ∈ [k − 1], there
must be zj ∈ V (G) adjacent to exactly one of these vertices. So the endpoints of i(zj) are
on the same side of m (“left” or “right” of m) and the endpoint closer to m must be either
between `(yj) and `(yj+1) or between r(yj) and r(yj+1).

Among the k − 1 intervals i(z1), . . . , i(zk−1), at least h = d(k − 1)/2e are one the
same side of m. Assume the majority is on the right; the other case is similar. So for
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1 ≤ j1 < · · · < jh ≤ k − 1 intervals i(zj1), . . . , i(zjh) are all to the right of m. Define
B = (b1, . . . , bh) = (zj1 , . . . , zjh) and A = (a1, . . . , ah) = (yj1+1, . . . , yjh+1). By definition,
`(b1) < r(a1) < `(b2) < r(a2) < · · · < `(bh) < r(ah), so ai is adjacent to bj if and only if
j ≤ i. Hence G[A,B] is isomorphic to H◦◦h . It is easy to check that h = d(b

√
cc − 1)/2e =

b
√
c/2c.

With these preparations, the proof of the main result of this section becomes easy.

Theorem 7.1.7. Let F be a stable class of interval graphs. Then F admits a constant-size
equality-based adjacency labeling scheme.

Proof. Since F is stable, we have ch(F) = k for some constant k. Let F ′ be the set of
true-twin-free members of F , and let G′ ∈ F ′. Then ch(G′) ≤ k, and hence the clique
number of G′ is at most 4(k + 1)2 by (contraposition of) Lemma 7.1.6. So F ′ is a class of
interval graphs with clique number bounded by 4(k + 1)2, and hence by Lemma 7.1.3, it
admits a constant-size equality-based labeling scheme (and a size O(k2) adjacency sketch).
By Lemma 7.1.5, so does F .

Remark 7.1.8. We obtain an adjacency sketch of size O(k2) for interval graphs with chain
number k. There is another, less direct proof of the above theorem that uses twin-width
instead of Lemma 7.1.5, but does not recover this explicit bound on the sketch size. We
prove in [HWZ22] that any stable class F with bounded twin-width admits a constant-size
equality-based labeling scheme. Although interval graphs do not have bounded twin-width,
some subclasses of interval graphs (e.g. unit interval graphs) are known to have bounded
twin-width [BKTW20]. We observe in [HWZ22] that any stable class of interval graphs
has bounded twin-width but we omit the proof from this thesis.

7.1.2 Permutation Graphs

We will denote by ≺ the standard partial order on R2, where (x1, x2) ≺ (y1, y2) if x1 ≤ y1

and x2 ≤ y2 and (x1, x2) 6= (y1, y2).

The following alternative representation of permutation graphs is well-known (although
one should note that adjacency is sometimes defined as between incomparable pairs, instead
of comparable ones – this is equivalent since the complement of a permutation graph is
again a permutation graph).
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A0 B0

B1

A1

B2A2

B3A3

B4A4

a(1)

b(1)

a(2)

b(2)

a(3)

b(3)

a(4)

b(4)

a(5)

Figure 7.2: The permutation graph decomposition.

Proposition 7.1.9. For any permutation graph G there is an injective mapping φ :
V (G) → R2 such that x, y ∈ V (G) are adjacent if and only if φ(x), φ(y) are compara-
ble in the partial order ≺. This mapping also satisfies the property that no two vertices
x, y have φ(x)i = φ(y)i for either i ∈ [2].

We will call this the R2-representation of G. From now on we will identify vertices
of G with their R2-representation, so that a vertex x of G is a pair (x1, x2) ∈ R2. For a
permutation graph G with fixed R2-representation, any i ∈ [2], and any t1 < t2, we define

Vi(t1, t2) := {x ∈ V (G) : t1 < xi < t2} .

We need the following lemma, which gives a condition that allows us to increment the
chain number.

Lemma 7.1.10. For a graph G and a set A ⊂ V (G), suppose u, v ∈ V (G) \A are vertices
such that u has no neighbors in A, while v is adjacent to u and to every vertex in A. Then
ch(G[A ∪ {u, v}]) > ch(G[A]).

Proof. Suppose ch(G[A]) = k and let {a1, . . . , ak, b1, . . . , bk} be the vertices such that ai, bj
are adjacent if and only if i ≤ j. Then set ak+1 = u and bk+1 = v, and verify that
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vertices {a1, . . . , ak+1, b1, . . . , bk+1} satisfy Definition 4.2.22, so ch(G[A∪{u, v}]) ≥ k+ 1 >
ch(G[A]).

A bipartite graph G = (X, Y,E) is called a chain graph if it belongs to C◦◦. Chain
graphs are exactly the 2K2-free bipartite graphs, where 2K2 is the disjoint union of two
edges.

Proposition 7.1.11. For any t ∈ R, any R2-representation of a permutation graph G,
and for each i ∈ [2], G[Vi(−∞, t), Vi(t,∞)] is a chain graph.

Proof. Let V1(−∞, t) = {a(1), . . . , a(s)} and V1(t,∞) = {b(1), . . . , b(t)} where the vertices

{a(i)} and {b(i)} are sorted in increasing order in the second coordinate. Since a
(i)
1 < t <

b
(j)
1 for every i, j, it holds that a(i), b(j) are adjacent if and only if a

(i)
2 ≤ b

(j)
2 . To prove

the statement we will show that G[Vi(−∞, t), Vi(t,∞)] is 2K2-free. Suppose, towards a
contradiction, that a(i1), a(i2), b(j1), b(j2) induce a 2K2 in the graph, where a(i1) is adjacent
to b(j1) and a(i2) is adjacent to b(j2). Assume, without loss of generality, that a

(i1)
2 < a

(i2)
2 .

Since a(i2) is adjacent to b(j2), we have that a
(i2)
2 ≤ b

(j2)
2 , which together with the previous

inequality imply that a
(i1)
2 < b

(j2)
2 , and hence a(i1) is adjacent to b(j2), a contradiction.

Any subclass of C◦◦ has a constant-size adjacency labeling scheme, because C◦◦ is a
minimal factorial class. We give an explicit bound on the size of the labeling scheme, so
that we can get an explicit bound on the size of the labels for permutation graphs.

Proposition 7.1.12. Let F ⊂ C◦◦ be a hereditary class of chain graphs of chain number
at most k. Then F admits an adjacency labeling scheme of size O(log k).

Proof. Let G ∈ F , so that G @ H◦◦r for some r ∈ N. Then we can partition V (G) into
independent sets A and B, such that the following holds. There is a total order ≺ defined
on V (G) = A ∪ B such that for a ∈ A and b ∈ B, a, b are adjacent if and only if a ≺ b.
Then we may identify each a ∈ A and each b ∈ B with a number in [n], such that the
ordering ≺ is the natural ordering on [n].

Let A1, . . . , Ap ⊂ [n] be the set of (non-empty) maximal intervals such that each Ai ⊆ A,
and letB1, . . . , Bq ⊆ [n] be the set of (non-empty) maximal intervals such that eachBi ⊆ B.
We claim that p, q ≤ k + 1. Suppose for contradiction that p ≥ k + 2. Since A1, . . . , Ap
are maximal, there exist b1, . . . , bp−1 ∈ B such that a1 < b1 < a2 < b2 < · · · < bp−1 < ap,
where we choose ai ∈ Ai arbitrarily. But then {a1, . . . , ap−1}, {b1, . . . , bp−1} is a witness
that ch(G) ≥ p− 1 ≥ k + 1, a contradiction. A similar proof shows that q ≤ k + 1.

213



We construct adjacency labels for G as follows. To each x ∈ A, assign 1 bit to indicate
that x ∈ A, and append the unique number i ∈ [k + 1] such that x belongs to interval
Ai. To each y ∈ B, assign 1 bit to indicate that y ∈ B, and append the unique number
j ∈ [k + 1] such that y ∈ Bj. It holds that for x ∈ A, y ∈ B, x, y are adjacent if and only
if i ≤ j. Therefore, on seeing the labels for x and y, the decoder simply checks that x ∈ A
and y ∈ B (or vice versa) and outputs 1 if i ≤ j.

Definition 7.1.13 (Permutation Graph Decomposition). For a permutation graph G with
a fixed R2-representation, where G,G are both connected, we define the following partition.
Let a(1) be the vertex with minimum a

(1)
2 coordinate, and let b be the vertex with maximum

b2 coordinate. If b1 < a
(1)
1 , perform the following. Starting at i = 1, construct the following

sequence:

(1) Let b(i) be the vertex with maximum b
(i)
2 coordinate among vertices with b

(i)
1 > a

(i)
1 .

(2) For i > 1, let a(i) be the vertex with minimum a
(i)
1 coordinate among vertices with

a
(i)
2 < b

(i−1)
2 .

Let β be the smallest number such that b(β+1) = b(β) and α the smallest number such that
a(α+1) = a(α). Define these sets:

For 2 ≤ i ≤ α, define Ai := {a(i+1)} ∪
(
V1(a

(i+1)
1 , a

(i)
1 ) ∩ V2(b

(i−1)
2 , b

(i)
2 )
)

For 2 ≤ i ≤ β, define Bi := {b(i)} ∪
(
V1(a

(i)
1 , a

(i−1)
1 ) ∩ V2(b

(i−1)
2 , b

(i)
2 )
)

A1 := {a(2)} ∪
(
V1(a

(2)
1 , a

(1)
1 ) ∩ V2(a

(1)
2 , b

(1)
2 )
)

A0 := {a(1)} ∪
(
V1(a

(1)
1 , b

(1)
1 ) ∩ V2(a

(1)
2 , a

(2)
2 )
)

B1 := {b(1)} ∪
(
V1(a

(1)
1 ,∞) ∩ V2(a

(2)
2 , b

(1)
2 )
)

B0 :=
(
V1(b

(1)
1 ,∞) ∩ V2(a

(1)
2 , a

(2)
2 )
)
.

If b1 > a
(1)
1 , define the map φ : R2 → R2 as φ(x) = (−x1, x2) and apply φ to each vertex in

the R2-representation of G; it is easily seen that the result is an R2-representation of G.
Then apply the above process to G.

It is necessary to ensure that b(1) is well-defined, i.e. that the set of points x with
x1 > a

(1)
1 is non-empty, so that the maximum is taken over a non-empty set.
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Proposition 7.1.14. If G is connected then there exists x ∈ V (G) such that x1 > a
(1)
1 .

Proof. Suppose otherwise. Then every x ∈ V (G) distinct from a(1) has x2 > a
(1)
2 by

definition, and x1 < a
(1)
1 . But then x is not adjacent to a(1). So a(1) has no neighbors,

contradicting the assumption that G is connected.

Proposition 7.1.15. If G is connected and b1 < a
(1)
1 , then b(1) 6= b(2).

Proof. Suppose b(2) = b(1). Then b
(1)
2 = b

(2)
2 is maximum among all vertices x with x1 > a

(2)
1 ,

so b1 < a
(2)
1 . But all vertices x with x1 < a

(2)
1 satisfy x2 > b

(1)
2 = b

(2)
2 , so they cannot have

an edge to V1(a
(2)
1 ,∞). Both V1(a

(2)
1 ,∞) and V1(−∞, a(2)

1 ) are non-empty, so the graph is
not connected.

Proposition 7.1.16. If G is connected, the sets {Ai}αi=0, {Bi}βi=0 form a partition of V (G).

Proof. Let C = {x : x1 ≥ a
(α)
1 , x2 ≤ b

(β)
2 }. There are no vertices x with x1 > a

(α)
1 and

x2 > b
(β)
2 , since this would contradict the definition of b(β); likewise, there are no vertices

x with x1 < a
(α)
1 and x2 < b

(β)
2 , since this would contradict the definition of a(α). Now

suppose x1 < a
(α)
1 , x2 > b

(β)
2 . Then x has no edge to any vertex y ∈ C. Then the set

of vertices with x1 < a
(α)
1 , x2 > b

(β)
2 must be empty, otherwise V (G) is partitioned into

C, V (G) \ C where V (G) \ C 6= ∅ has no edges to C.

Then we may assume that every vertex x is in C; we will show that it belongs to some
Ai or Bi. We may assume that x has distinct x1, x2 coordinates from all a(i), b(i), otherwise
we would have x = b(i) or x = a(i), so x is an element of some Ai or Bi.

Let i be the smallest number such that x2 < b
(i)
2 . Suppose i ≥ 2. By definition it must

be that x1 > a
(i+1)
1 . If x1 > a

(i−1)
1 , then x2 < b

(i−1)
2 by definition, which contradicts the

choice of i. So it must be that a
(i+1)
1 < x1 < a

(i−1)
1 and b

(i−1)
2 < x2 < b

(i)
2 . The set of

points that satisfy this condition is contained in Ai ∪ Bi. Now suppose i = 1. Again, it
must be that x1 > a

(2)
1 by definition, and also a

(1)
2 < x2 < b

(1)
2 . The points satisfying these

conditions are easily seen to be partitioned by A0, B0, A1, B1.

For any subset A ⊂ V (G) and any two vertices u, v ∈ V (G) \ A, we will say that u, v
cover A if u has no edge into A and v is adjacent to u and every vertex in A. Then by
Lemma 7.1.10, if u, v cover A, then ch(G) > ch(G[A]).

Proposition 7.1.17. If G is connected and b1 < a
(1)
1 , then for each D ∈ {Ai}αi=0∪{Bi}βi=0,

ch(G[D]) < ch(G).
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Proof. Each x ∈ B0 satisfies x1 > b
(1)
1 > a

(1)
1 and a

(1)
2 < x2 < a

(2)
2 < b

(1)
2 , so b(1) has no

neighbors in B0 while a(1) is adjacent to b(1) and all vertices in B0, so a(1), b(1) cover B0.

Each x ∈ B1 satisfies x1 > a
(1)
1 > b

(2)
1 > a

(2)
1 and a

(1)
2 < x2 < b

(1)
2 < b(2), so b(2) has no

neighbors in B1 and a(2) is adjacent b(2) and all vertices in B1, so a(2), b(2) cover B1.

Each x ∈ A0 satisfies b
(1)
1 > x1 ≥ a

(1)
1 > a

(2)
1 and x2 < a

(2)
2 < b

(1)
2 , so a(2) has no

neighbors in A0 and b(1) is adjacent to a(2) and all vertices in A0, so a(2), b(1) cover A0.

Next we show that for any 1 ≤ i ≤ α, Ai is covered by a(i), b(i). By definition each
x ∈ Ai satisfies x1 < a

(i)
1 < b

(i)
1 and a

(i)
2 < b

(i−1)
2 < x2 < b

(i)
2 , so a(i) has no neighbors in Ai

while b(i) is adjacent to a(i) and all vertices in Ai.

Finally, we show that for any 2 ≤ i ≤ β, Bi is covered by a(i), b(i−1). By definition each
x ∈ Bi satisfies a

(i)
1 < x1 < a

(i−1)
1 < b

(i−1)
1 and a

(i)
2 < b

(i−1)
2 < x2, so b(i−1) has no neighbors

in Bi while a(i) is adjacent to b(i−1) and all vertices in Bi.

Lemma 7.1.18. Let G ∈ P be any permutation graph. Then one of the following holds:

(1) G is disconnected;

(2) G is disconnected;

(3) There is a partition V (G) = V1 ∪ · · · ∪ Vm such that:

� ch(G[Vi]) < ch(G) for each i ∈ [m], or ch(G[Vi]) < ch(G) for each i ∈ [m];

� For each i ∈ [m], there is a set J(i) ⊂ {Vt}t∈[m] of at most 4 parts such that for
each W ∈ J(i), G[Vi,W ] is a chain graph; and

� One of the following holds:

– For all i ∈ [m] and W ∈ {Vt}t∈[m] \ J(i), G[Vi,W ] is a co-biclique; or,

– For all i ∈ [m] and W ∈ {Vt}t∈[m] \ J(i), G[Vi,W ] is a biclique.

Proof. Assume G,G are connected. Perform the decomposition of Definition 7.1.13. We
will let m = α + β + 2 and let V1, . . . , Vm be the sets {Ai}αi=0 ∪ {Bi}βi=0.

Case 1: b1 < a
(1)
1 . Then V1, . . . , Vm is a partition due to Proposition 7.1.16, and

ch(G[Vi]) < ch(G), i ∈ [m] holds by Proposition 7.1.17. For Vi = A1 we define the cor-
responding set J(i) = {A0, B0, B1, B2}. Since all sets Vi, Vj with i 6= j are separated by
a horizontal line or a vertical line, it holds by Proposition 7.1.11 that G[Vi, Vj] is a chain

graph. Now let W /∈ J(i). Observe that all x ∈ W must satisfy x1 < a
(2)
1 and x2 > b

(1)
2 , so

x is not adjacent to any vertex in A1. So G[A1,W ] is a co-biclique.
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Now for Vi ∈ {A0, B0, B1}, we let J(i) = {A0, B0, A1, B1} \ Vi. Similar arguments as
above hold in this case to show that G[Vi,W ] is a co-biclique for each W /∈ J(i).

For Vi = Aj for some j > 1, we define J(i) = {Bj, Bj+1}. For any W /∈ J(i) with

W 6= Aj, it holds either that all x ∈ W satisfy x1 < a
(i+1)
1 and x2 > b

(j)
2 , or that all x ∈ W

satisfy x1 ≥ a
(j)
1 and x2 ≤ b

(j−1)
2 ; in either case x is not adjacent to any vertex in Aj, so

G[Aj,W ] is a co-biclique.

For Vi = Bj for some j > 1, we define J(i) = {Aj, Aj−1}. Similar arguments to the
previous case show that G[Bj,W ] is a co-biclique for each W /∈ J(i),W 6= Bj. This
concludes the proof for case 1.

Case 2: b1 > a
(1)
1 . In this case we transform the R2-representation of G using φ to

obtain an R2-representation of G and apply the arguments above to obtain V1, . . . , Vm
such that ch(G[Vi]) < ch(G) for each i ∈ [m], and each Vj ∈ {Vt}t∈[m] \ J(i) satisfies that
G[Vi, Vj] is a co-biclique; then G[Vi, Vj] is a biclique as desired.

Theorem 7.1.19. Let F be a stable subclass of permutation graphs. Then F admits a
constant-size equality-based labeling scheme.

Proof. Since F is stable, we have ch(F) = k for some constant k.

We apply an argument similar to Lemma 7.2.2. For any G ∈ F , we construct a
decomposition tree where each node is associated with either an induced subgraph of G,
or a bipartite induced subgraph of G, with the root node being G itself. For each node G′,
we decompose G′ into children as follows,

1. If G′ is a chain graph, the node is a leaf node.

2. If G′ is disconnected, call the current node a D-node, and let the children G1, . . . , Gt

be the connected components of G′.

3. If G
′

is disconnected, call the current node a D-node, and let C1, . . . , Ct ⊆ V (G′) be

such that G
′
[Ci], i ∈ [t] are the connected components of G

′
. Define the children to

be Gi = G[Ci], i ∈ [t].

4. Otherwise construct V1, . . . , Vm as in Lemma 7.1.18 and let the children be G[Vi] for
each i ∈ [m] and G[Vi, Vj] for each i, j such that i ∈ [m] and Vj ∈ J(i). Call this
node a P -node.
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We will show that this decomposition tree has bounded depth. As in the decomposition
for bipartite graphs, on any leaf-to-root path there cannot be two adjacent D-nodes or D-
nodes. As in the proof of Claim 7.2.25, if G′′ is associated with a D-node and its parent
G′ is associated with a D-node, and G′′′ is any child of G′′, then ch(G′) > ch(G′′′). On the
other hand, if G′′ is associated with a D-node and its parent is associated with a D-node,
then ch(G′) > ch(G′′′).

Now consider any P -node associated with G′, with child G′′. By Lemma 7.1.18, it
holds that either G′′ is a bipartite induced subgraph of G′ that is a chain graph, or G′′

has ch(G′′) < ch(G′) or ch(G′′) < ch(G′). It is easy to verify that ch(G) ≤ ch(G) + 1 for
any graph G. Now, since every sequence G′′′, G′′, G′ of inner nodes along the leaf-to-root
path in the decomposition tree must satisfy ch(G′′′) < ch(G′) or ch(G′′′) < ch(G′) and
ch(G) ≤ k + 1, it must be that the depth of the decomposition tree is at most 2(2k + 1).

Now we construct an equality-based labeling scheme. For a vertex x, we construct a
label at each node G′ inductively as follows.

1. If G′ is a leaf node, it is a chain graph with chain number at most k. We may assign
a label of size O(log k) due to Proposition 7.1.12.

2. If G′ is a D-node with children G1, . . . , Gt, append the pair (D | i) where the equality
code i is the index of the child Gi that contains x, and recurse on Gi.

3. If G′ is a D-node with children G1, . . . , Gt, append the pair (D | i) where the equality
code i is the index of the child Gi that contains x, and recurse on Gi.

4. If G′ is a P -node, let V1, . . . , Vm be partition of V (G′) as in Lemma 7.1.18, and for
each i let J(i) be the (at most 4) indices such that G′[Vi, Vj] is a chain graph when
j ∈ J(i). Append the tuple

(P, b, `1(x), `2(x), `3(x), `4(x) | i, j1, j2, j3, j4)

where b indicates whether all G′[Vi, Vj], j /∈ J(i) are bicliques or co-bicliques; the
equality code i is the index such that x ∈ Vi, the equality codes j1, . . . , j4 are the
elements of J(i), and `s(x) is the O(log k)-bits adjacency label for x in the chain
graph G′[Vi, Vjs ]. Then, recurse on the child G′[Vi].

Given labels for x and y, which are sequences of the tuples above, the decoder iterates
through the pairs and performs the following. On pairs (D, i), (D, j) the decoder outputs
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0 if i 6= j, otherwise it continues. On pairs (D, i), (D, j), the decoder outputs 1 if i 6= j,
otherwise it continues. On tuples

(P, b, `1(x), `2(x), `3(x), `4(x) | i, j1, j2, j3, j4)

(P, b, `1(y), `2(y), `3(y), `4(y) | i′, j′1, j′2, j′3, j′4) ,

the decoder continues to the next tuple if i = i′. Otherwise, the decoder outputs 1 if
i /∈ {j′1, . . . , j′4} and i′ /∈ {j1, . . . , j4} and b indicates that G′[Vi, Vj] are bicliques for j /∈ J(i);
it outputs 0 if b indicates otherwise. If i = j′s and i′ = jt then the decoder outputs the
adjacency of x, y using the labels `t(x), `s(y). On any tuple that does not match any of
the above patterns, the decoder outputs 0.

Since the decomposition tree has depth at most 2(2k + 1), each label consists of O(k)
tuples. Each tuple contains at most O(log k) prefix bits (since adjacency labels for the chain
graph with chain number at most k have size at most O(log k)) and at most 5 equality
codes. So this is an (O(k log k), O(k))-equality-based labeling scheme.

The correctness of the labeling scheme follows from the fact that at any node G′, if
x, y belong to the same child of G′, the decoder will continue to the next tuple. If G′ is
the lowest common ancestor of x, y in the decomposition tree, then x and y are adjacent
in G if and only if they are adjacent in G′. If G′ is a D- or D-node then adjacency is
determined by the equality of i, j in the tuples (D | i), (D | j) or (D | i), (D | j). If G′ is
a P -node and i /∈ J(i′) (equivalently, i′ /∈ J(i)) then adjacency is determined by b. If
i ∈ J(i′) (equivalently, i′ ∈ J(i)) then i = j′s and i′ = jt for some s, t, and the adjacency of
x, y is equivalent to their adjacency in G[Vi, Vi′ ] = G[Vj′s , Vjt ], which is a chain graph, and
it is determined by the labels `t(x), `s(y).

Remark 7.1.20. We get an explicit O(k log k) bound on the size of the adjacency sketch in
terms of the chain number k, due to Proposition 4.2.12; this explicit bound would not arise
from the alternate proof that goes through bounded expansion (proper subclasses of per-
mutation graphs have bounded twin-width [BKTW20], and therefore stable subclasses of
permutation graphs have structurally bounded expansion, so we could apply Lemma 6.3.5.

7.2 Monogenic Bipartite Graphs

We consider here classes of colored bipartite graphs, which are bipartite graphs G =
(X, Y,E) with a given bipartition of the vertices into X and Y . Recall from Section 4.1.1
the definitions of induced subgraphs for colored bipartite graphs. For a colored bipartite
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graph H, a hereditary class F of colored bipartite graphs is H-free if it does not contain
H.

In this section we prove the following theorem from Section 1.3.5.

Theorem 1.3.26. Let H be a bipartite graph such that the class H of H-free bipartite
graphs has at most factorial speed. Then any hereditary subclass F of H is adjacency
sketchable if and only if it is stable.

To accomplish this, we present a general type of decomposition scheme that can be
applied in a number of cases. Our proof will proceed by a case analysis of the graphs H for
which the family of H-free bipartite graphs is a factorial class, using the structural results
of [All09, LZ17].

7.2.1 Decomposition Scheme for Bipartite Graphs

In this section we define a decomposition scheme for bipartite graphs.

Definition 7.2.1 ((Q, k)-decomposition tree). Let G = (X, Y,E) be a bipartite graph,
k ≥ 2, and let Q be a hereditary class of bipartite graphs. A graph G admits a (Q, k)-
decomposition tree of depth d if there is a tree of depth d of the following form, with G as the
root. Each node of the tree is a bipartite graph G′ = G[X ′, Y ′] for some X ′ ⊆ X, Y ′ ⊆ Y ,
labelled with either L,D,D, or P as follows

(1) L (leaf node): The graph G′ belongs to Q.

(2) D (D-node): The graph G′ is disconnected. There are sets X ′1, . . . , X
′
t ⊆ X ′ and

Y ′1 , . . . , Y
′
t ⊆ Y ′ such that G[X ′1, Y

′
1 ], . . . , G[X ′t, Y

′
t ] are the connected components of

G′. The children of this decomposition tree node are G[X ′1, Y
′

1 ], . . . , G[X ′t, Y
′
t ].

(3) D (D-node): The graph G′ is disconnected. There are sets X ′1, . . . , X
′
t ⊆ X ′ and

Y ′1 , . . . , Y
′
t ⊆ Y ′ such that G[X ′1, Y

′
1 ], . . . , G[X ′t, Y

′
t ] are the connected components of

G′. The children of this decomposition tree node are G[X ′1, Y
′

1 ], . . . , G[X ′t, Y
′
t ].

(4) P (P -node): The vertex set of G′ is partitioned into at most 2k non-empty sets
X ′1, X

′
2, . . . , X

′
p ⊆ X ′ and Y ′1 , Y

′
2 , . . . , Y

′
q ⊆ Y ′, where p ≤ k, q ≤ k. The children of

this decomposition tree node are G[X ′i, Y
′
j ], for all i ∈ [p], j ∈ [q]. We say that the

P -node G′ is specified by the partitions X ′1, X
′
2, . . . , X

′
p and Y ′1 , Y

′
2 , . . . , Y

′
q .

220



Lemma 7.2.2. Let k ≥ 2 and d ≥ 1 be natural constants, and let Q be a class of bipartite
graphs that admits a constant-size equality-based adjacency labeling scheme. Let F be a
class of bipartite graphs such that each G ∈ F admits a (Q, k)-decomposition tree of depth
at most d. Then F admits a constant-size equality-based adjacency labeling scheme.

Proof. Let G = (X, Y,E) ∈ F . We fix a (Q, k)-decomposition tree of depth at most d for
G. For each node v in the decomposition tree we write Gv for the induced subgraph of G
associated with node v. Each leaf node v has Gv ∈ Q. For some constants s and r, we
fix an (s, r)-equality-based adjacency labeling scheme for Q, and for each leaf node v, we
denote by `′v the function that assigns labels to the vertices of Gv under this scheme.

For each vertex x we will construct a label `(x) that consists of a constant number of
tuples , where each tuple contains one prefix of at most two bits, and at most two equality
codes. First, we add to `(x) a tuple (α(x) | −), where α(x) = 0 if x ∈ X, and α(x) = 1
if x ∈ Y . Then we append to `(x) tuples defined inductively. Starting at the root of the
decomposition tree, for each node v of the tree where Gv contains x, we add tuples `v(x)
defined as follows. Write X ′ ⊆ X, Y ′ ⊆ Y for the vertices of Gv.

� If v is a leaf node, then Gv ∈ Q, and we define `v(x) = (L | −), `′v(x).

� If v is a D-node then Gv is disconnected, with sets X ′1, . . . , X
′
t ⊆ X ′, Y ′1 , . . . , Y

′
t ⊆

Y such that the children v1, . . . , vt are the connected components Gv[X
′
1, Y

′
1 ], . . . ,

Gv[X
′
t, Y

′
t ] of Gv. We define `v(x) = (D | j), `vj(x), where j ∈ [t] is the unique

index such that x belongs to the connected component Gv[X
′
j, Y

′
j ], and `vj(x) is the

inductively defined label for the child node vj.

� If v is a D-node then Gv is disconnected, with sets X ′1, . . . , X
′
t ⊆ X ′, Y ′1 , . . . , Y

′
t ⊆ Y

such that Gv[X ′1, Y
′

1 ], . . . , Gv[X ′t, Y
′
t ] are the connected components of Gv, and the

children v1, . . . , vt of v are the graphs Gv[X
′
1, Y

′
1 ], . . . , Gv[X

′
t, Y

′
t ]. We define `v(x) =

(D | j), `vj(x), where j ∈ [t] is the unique index such that x belongs to Gv[X
′
j, Y

′
j ],

and `vj(x) is the inductively defined label for the child node vj.

� If v is a P -node then let X ′1, . . . , X
′
p ⊆ X ′, Y ′1 , . . . , Y

′
q ⊆ Y ′ be the partitions of X ′, Y ′

with p, q ≤ k. For each (i, j) ∈ [p]× [q], let vi,j be the child node of v corresponding
to the subgraph Gv[X

′
i, Y

′
j ]. If x ∈ X, then there is a unique i ∈ [p] such that x ∈ X ′i,

and we define `v(x) = (P | i, q), `vi,1(x), . . . , `vi,q(x), where `vi,j(x) is the label assigned
to x at node vi,j. If x ∈ Y , then we define `v(x) = (P | i, p), `v1,i(x), . . . , `vp,i(x), where
i ∈ [q] is the unique index such that x ∈ Y ′i .
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First, we will estimate the size of the label `(x) produced by the above procedure. For
every leaf node v, the label `v(x) of x is a tuple consisting of an s-bit prefix and r equality
codes. Let f(i) be the maximum number of tuples added to `(x) by a node v at level i
of the decomposition tree, where the root node belongs to level 0. Then, by construction,
f(i) ≤ 1+k ·f(i+1) and f(d−1) = 1, which implies that the total number of tuples in `(x)
does not exceed f(0) ≤ kd. Since every tuple contains a prefix with at most s′ = max{2, s}
bits, and at most r′ = max{2, r} equality codes, we have that the label `(x) contains a
prefix with at most s′kd bits, and at most r′kd equality codes.

We will now show how to use the labels to define an equality-based adjacency decoder.
Let x and y be two arbitrary vertices of G. The decoder first checks the first tuples
(α(x) | −) and (α(y) | −) of the labels `(x) and `(y) respectively, to ensure that x, y are
in different parts of G and outputs 0 if they are not. We may now assume x ∈ X, y ∈ Y .
The remainder of the labels are of the form `v(x) and `v(y), where v is the root of the
decomposition tree.

� If the labels `v(x), `v(y) are of the form (L | −), `′v(x) and (L | −), `′v(y), then the
decoder simulates the decoder for the labeling scheme for Q, on inputs `′v(x), `′v(y),
and outputs the correct adjacency value.

� If the labels `v(x), `v(y) are of the form (D | i), `vi(x) and (D | j), `vj(y), the decoder
outputs 0 when i 6= j (i.e. x, y are in different connected components of Gv), and
otherwise it recurses on `vi(x), `vi(y).

� If the labels `v(x), `v(y) are of the form (D | i), `vi(x) and (D | j), `vj(y), the decoder

outputs 1 when i 6= j (i.e. x, y are in different connected components of Gv and
therefore they are adjacent in Gv), and otherwise it recurses on `vi(x), `vi(y).

� If the labels `v(x), `v(y) are of the form (P | i, q), `vi,1(x), . . . , `vi,q(x) and (P | j, p),
`v1,j(y), . . . , `vp,j(y) the decoder recurses on `vi,j(x) and `vi,j(y).

It is routine to verify that the decoder will output the correct adjacency value for x, y.

Remark 7.2.3 ((Q, k)-tree for general graphs). A similar decomposition scheme can be
used for non-bipartite graph classes; we do this for permutation graphs in Section 7.1.2.

7.2.2 Monogenic Bipartite Graph Classes

Let H be a finite set of bipartite graphs. It is known [All09] that if the class of H-free
bipartite graphs is at most factorial, then H contains a forest and a graph whose bipartite
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complement is a forest. The converse was conjectured in [LZ17], where it was verified for
monogenic classes of bipartite graphs. More specifically, it was shown that, for a colored
bipartite graph H, the class of H-free bipartite graphs is at most factorial if and only if
both H and its bipartite complement is a forest. It is not hard to show that a colored
bipartite graph H is a forest and its bipartite complement is a forest if and only if H is an
induced subgraph of S1,2,3, P7, or one of the graphs F ∗p,q, p, q ∈ N defined below.

S1,2,3 P7 F ∗3,5

Figure 7.3: The bipartite graphs from Definition 7.2.4

Definition 7.2.4 (S1,2,3, P7, F ∗p,q). See Figure 7.3 for an illustration.

(1) S1,2,3 is the (colored) bipartite graph obtained from a star with three leaves by sub-
dividing one of its edges once and subdividing another edge twice.

(2) P7 is the (colored) path on 7 vertices.

(3) F ∗p,q is the colored bipartite graph with vertex color classes {a, b} and {a1, . . . , ap, c,
b1, . . . , bq, d}. The edges are {(a, ai) | i ∈ [p]}, {(b, bj) | j ∈ [q]}, and (a, c), (b, c).

Combining results due to Allen [All09] (for the S1,2,3 and F ∗p,q cases) and a result of
Lozin & Zamaraev [LZ17] (for the P7 case), we formally state

Theorem 7.2.5 ([All09, LZ17]). Let H be a colored bipartite graph, and let F be the class
of H-free bipartite graphs. If F has at most factorial speed, then F is a subclass of either
the S1,2,3-free bipartite graphs, the P7-free bipartite graphs, or the F ∗p,q-free bipartite graphs,
for some p, q ∈ N.

By the above result, in order to prove Theorem 1.3.26, it is enough to consider the
maximal monogenic factorial classes of bipartite graphs defined by S1,2,3, P7, F ∗p,q. The
first of these results follows from the results on structurally bounded expansion from the
previous chapter:

Lemma 7.2.6. Let F be any stable class of S1,2,3-free bipartite graphs. Then F admits a
constant-size equality-based adjacency labeling scheme, and therefore it is adjacency sketch-
able.
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Proof. It is known that the class of S1,2,3-free bipartite graphs has bounded clique-width
[LV08] and therefore bounded twin-width [BKTW20]. A stable class has bounded twin-
width if and only if it is a first-order transduction of a class of bounded sparse twin-width
[GPT21]. Every class of bounded sparse twin-width has bounded expansion [BGK+21].
Therefore S1,2,3-free bipartite graphs are first-order transductions of a class with bounded
expansion, i.e. they have structurally bounded expansion. That they admit a constant-size
equality-based adjacency labeling follows from Lemma 6.3.5.

The remaining two cases, F ∗p,q- and P7-free bipartite graphs, are treated below.

F ∗
p,q-Free Bipartite Graphs

c

a

a1a2a3

b

b1 b2 b3 b4 b5 d

F ∗3,5

c

a

a1a2a3

b

b1 b2 b3 b4 b5

F3,5

a

a1a2a3

b

b1 b2 b3

T3

Figure 7.4: The bipartite graphs considered in Section 7.2.2.

In this section, we prove Theorem 1.3.26 for classes of F ∗p,q-free bipartite graphs by
developing a constant-size equality-based adjacency labeling scheme for stable classes of
F ∗p,q-free bipartite graphs via a sequence of labeling schemes for special subclasses each
generalizing the previous one.

We denote by Fp,q the bipartite graph with parts {a, b} and {c, a1, . . . , ap, b1, . . . , bq},
and with edges (a, c), (b, c), {(a, ai) | i ∈ [p]}, {(b, bi) | j ∈ [q]}. We also denote by Tp
the bipartite graph on vertex sets {a, b}, {a1, . . . , ap, b1, . . . , bp}, where (a, ai) and (b, bi) are
edges for each i ∈ [p]. So Tp is the disjoint union of two stars with p+ 1 vertices.

Definition 7.2.7. For q, s ∈ N we denote by Zq,s the bipartite graph (X, Y,E) with
|X| = q, |Y | = qs, where X = {x1, . . . , xq}, Y is partitioned into q sets Y = Y1 ∪ . . . ∪ Yq
each of size s, and for every i ∈ [q]:

(1) xi is adjacent to all vertices in Yj for all 1 ≤ j ≤ i, and

(2) xi is adjacent to no vertices in Yj for all i < j ≤ q.
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Note that Zq,s is obtained from H◦◦q by duplicating every vertex in one of the parts s− 1
times. In particular, H◦◦q is and induced subgraph of Zq,s

We start with structural results and an equality-based labeling scheme for one-sided Tp-free
bipartite graphs. A colored bipartite graph G = (X, Y,E) is one-sided Tp-free if it does
not contain Tp as an induced subgraph such that the centers of both stars belong to X.
Note that any Tp-free bipartite graph is also a one-sided Tp-free graph.

Proposition 7.2.8. Let G = (X, Y,E) be any one-sided Tp-free bipartite graph and let
u, v ∈ X satisfy deg(u) ≤ deg(v). Then |N(u) ∩N(v)| > |N(u)| − p.

Proof. For contradiction, assume |N(u) ∩ N(v)| ≤ |N(u)| − p so that |N(u) \ N(v)| ≥ p.
Then since deg(v) ≥ deg(u) it follows that |N(v) \N(u)| ≥ p. But then Tp is induced by
{u, v} and (N(u) \N(v)) ∪ (N(v) \N(u)).

Proposition 7.2.9. Suppose S1, . . . , St ⊆ [n] each have |Si| ≥ n− p where n > pt. Then∣∣∣⋂t
j=1 Sj

∣∣∣ ≥ n− pt.

Proof. Let R be the set of all i ∈ [n] such that for some Sj, i /∈ Sj. Then

|R| ≤
t∑

j=1

(n− |Sj|) ≤
t∑

j=1

p = pt ,

so
∣∣∣⋂t

j=1 Sj

∣∣∣ ≥ n− |R| ≥ n− pt.

Lemma 7.2.10. Fix any constants k, q, p such that k ≥ qp + 1 and let G = (X, Y,E)
be any one-sided Tp-free bipartite graph. Then there exists m ≥ 0 and partitions X =
A0 ∪A1 ∪ . . .∪Am and Y = B1 ∪ . . .∪Bm ∪Bm+1, where Ai 6= ∅, Bi 6= ∅ for every i ∈ [m],
such that the following hold

(1) |Bi| ≥ k, for all i ∈ [m].

(2) For every j ∈ {0, 1, . . . ,m}, every x ∈ Aj has less than k neighbours in
⋃
i≥j+1Bi.

(3) For every i, j, 1 ≤ i ≤ j ≤ m, every x ∈ Aj has more than |Bi| − p neighbours in Bi.

(4) If m ≥ q, then Zq,k−qp is an induced subgraph of G.
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Proof. Let A0 be the set of vertices in X that have less than k neighbours. If A0 = X, then
m = 0, A0, and B1 = Y satisfy the conditions of the lemma. Otherwise, we construct the
remaining parts of partitions using the following procedure. Initialize X ′ = X \A0, Y

′ = Y ,
and i = 1.

1. Let ai be a vertex in X ′ with the least number of neighbours in Y ′.

2. Let Bi be the set of all neighbors of ai in G[X ′, Y ′].

3. Let Ai be the set of vertices in X ′ with degree less than k in G[X ′, Y ′ \ Bi]. Note
that Ai contains ai.

4. X ′ ← X ′ \ Ai, Y ′ ← Y ′ \Bi.

5. If X ′ = ∅, then Bi+1 = Y ′, let m = i, and terminate the procedure; Otherwise
increment i and return to step 1.

Conditions (1) and (2) follow by definition. Next we will prove condition (3) by showing
that for every 1 ≤ i ≤ j ≤ m, every x ∈ Aj has more than |Bi| − p neighbours in Bi.
Suppose, towards a contradiction, that |N(x)∩Bi| ≤ |Bi|− p. Consider X ′, Y ′ as in round
i of the construction procedure, so Bi is the neighbourhood of ai in G[X ′, Y ′]. Then x has
degree at least that of ai in G[X ′, Y ′], and hence the conclusion holds by Proposition 7.2.8.

Finally, to prove condition (4) we will show that for any q ≤ m there exist sets B′1 ⊆
B1, . . . , B

′
q ⊆ Bq so that the vertices {a1, . . . , aq} and the sets B′1, . . . , B

′
q induce Zq,k−pq.

First, observe that by construction for every 1 ≤ i < j ≤ m, ai has no neighbours in Bj.
Now, let i ∈ [m], then by condition (3), for all i ≤ j ≤ m it holds that |N(aj)∩Bi| > |Bi|−p.
Since |Bi| ≥ k > pq, it holds by Proposition 7.2.9 that∣∣∣∣∣Bi ∩

q⋂
j=i

N(aj)

∣∣∣∣∣ ≥ |Bi| − pq ≥ k − pq .

We define B′i = Bi ∩
⋂q
j=iN(aj). Then for each i ∈ [m] it holds that ai is adjacent to all

vertices in B′j for all 1 ≤ j ≤ i, but ai is adjacent to no vertices in B′j for i < j ≤ m. Hence
the vertices {a1, . . . , aq} and the sets B′1, . . . , B

′
q induce Zq,k−pq, which proves condition (4)

and concludes the proof of the lemma.

Lemma 7.2.11. Let p ∈ N and let T be a stable class of one-sided Tp-free bipartite graphs.
Then T admits a constant-size equality-based adjacency labeling scheme.
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Proof. Since T is stable, it does not contain C◦◦ as a subclass. Let q be the minimum
number such that H◦◦q 6∈ T , and let G = (X, Y,E) be an arbitrary graph from T .

Let k = qp + 1 and let X = A0 ∪ A1 ∪ . . . ∪ Am and Y = B1 ∪ . . . ∪ Bm ∪ Bm+1 be
partitions satisfying the conditions of Lemma 7.2.10. Since G does not contain H◦◦q as an
induced subgraph, it holds that m < q.

We construct the labels for the vertices ofG as follows. For a vertex x ∈ X we define `(x)
as a label consisting of several tuples. The first tuple is (0, i |−), where i ∈ {0, 1, . . . ,m} is
the unique index such that x ∈ Ai. This tuple follows by i tuples (−|yj1, y

j
2, . . . , y

j
pj

), j ∈ [i],

where pj < p and {yj1, y
j
2, . . . , y

j
pj
} are the non-neighbours of x in Bj. The last tuple of `(x)

is (− | yi+1
1 , yi+1

2 , . . . , yi+1
k′ ), where k′ < k and yi+1

1 , yi+1
2 , . . . , yi+1

k′ are the neighbours of x in⋃
i≥j+1 Bi. For a vertex y ∈ Y we define `(y) = (1, i | y), where i ∈ [m + 1] is the unique

index such that y ∈ Bi.

Note that, in every label, the total length of prefixes is at most 1+dlogme ≤ 1+dlog qe,
and the total number of equality codes depends only on p, q, and k, which are constants.
Therefore it remains to show that the labels can be used to define an equality-based
adjacency decoder.

Given two vertices x, y in G the decoder operates as follows. First, it checks the first
prefixes in the first tuples of `(x) and `(y). If they are the same, then x, y belong to the
same part in G and the decoder outputs 0. Hence, we can assume that they are different.
Without loss of generality, let `(x) = (0, i | −) and `(y) = (1, j | y), so x ∈ Ai ⊆ X and
y ∈ Bj ⊆ Y .

If j ≤ i, then the decoder compares y with the equality codes yj1, y
j
2, . . . , y

j
pj

of the
(j + 1)-th tuple of `(x). If y is equal to at least one of them, then y is among the non-
neighbours of x in Bj and the decoder outputs 0; otherwise, x and y are adjacent and
the decoder outputs 1. If j > i, then the decoder compares y with the equality codes
yi+1

1 , yi+1
2 , . . . , yi+1

k′ of the last tuples of `(x), and if y is equal to at least one of them, then
y is among the neighbours of x in

⋃
i≥j+1Bi and the decoder outputs 1; otherwise, x and

y are not adjacent and the decoder outputs 0.

Next, we develop an equality-based labeling scheme for stable classes of one-sided Fp,p-free
bipartite graphs. A colored bipartite graph G = (X, Y,E) is one-sided Fp,p-free if it does
not contain Fp,p as an induced subgraph such that the part of Fp,p of size 2 is a subset of
X.
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Proposition 7.2.12. Let G = (X, Y,E) be any one-sided Fp,p-free bipartite graph and let
u, v ∈ X satisfy deg(u) ≤ deg(v). Then either N(u) ∩ N(v) = ∅ or |N(u) ∩ N(v)| >
|N(u)| − p.

Proof. Suppose that N(u)∩N(v) 6= ∅, and for contradiction assume that |N(u)\N(v)| ≥ p.
Since deg(u) ≤ deg(u), this means |N(v)\N(u)| ≥ |N(u)\N(v)| ≥ p. Let w ∈ N(u)∩N(v).
Then {u, v} with {w} ∪ (N(v) \N(u)) ∪ (N(u) \N(v)) induces a graph containing Fp,p, a
contradiction.

Proposition 7.2.13. Let G = (X, Y,E) be any one-sided Fp,p-free bipartite graph and let
x, y, z ∈ X satisfy deg(x) ≥ deg(y) ≥ deg(z) ≥ 2p. Suppose that N(y) ∩N(z) 6= ∅. Then

N(x) ∩N(y) = ∅ ⇐⇒ N(x) ∩N(z) = ∅ .

Proof. Since N(y) ∩ N(z) 6= ∅, it holds that |N(y) ∩ N(z)| > |N(z)| − p ≥ p by Proposi-
tion 7.2.12.

Suppose that N(x)∩N(y) 6= ∅. For contradiction, assume that N(x)∩N(y)∩N(z) = ∅.
Then |N(y) \N(x)| ≥ |N(y)∩N(z)| > |N(z)| − p ≥ p, which contradicts |N(y)∩N(x)| >
|N(y)| − p.

Now suppose that N(x) ∩N(y) = ∅. For contradiction, assume that N(x) ∩N(z) 6= ∅.
Then |N(x)∩N(z)| ≤ |N(z)\N(y)| < p ≤ |N(z)|−p < |N(x)∩N(z)|, a contradiction.

We will say that a bipartite graph G = (X, Y,E) is left-disconnected if there are two
vertices x, y ∈ X that are in different connected components of G. It is left-connected
otherwise.

Proposition 7.2.14. Let G = (X, Y,E) be any one-sided Fp,p-free bipartite graph where
every vertex in X has degree at least 2p. Let x ∈ X have maximum degree of all vertices
in X. If G is left-connected, then for any y ∈ X it holds that |N(y) ∩N(x)| > |N(y)| − p.

Proof. Let y ∈ X. Since G is left-connected, there is a path from y to x. Let y0, y1, . . . , yt
be the path vertices in X, where y = y0, x = yt, and N(yi−1) ∩N(yi) 6= ∅ for each i ∈ [t].
By Propositions 7.2.12 and 7.2.13, it holds that if N(yi)∩N(x) 6= ∅ then |N(yi)∩N(x)| >
|N(yi)| − p and |N(yi−1)∩N(x)| > |N(yi−1)| − p. Therefore the conclusion holds, because
N(yt−1) ∩N(x) = N(yt−1) ∩N(yt) 6= ∅.

Lemma 7.2.15. Fix any constants p, q ≥ 1, let k = (q+ 1)p, and let G = (X, Y,E) be any
connected one-sided Fp,p-free bipartite graph. Then there exists a partition X = X0∪X1∪X2

(where some of the sets can be empty) such that the following hold:
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(1) X0 is the set of vertices in X that have degree less than k.

(2) The induced subgraph G[X1, Y ] is one-sided Tp-free.

(3) The induced subgraph G[X2, Y ] is left-disconnected.

(4) For any r, s such that r < q and p < s ≤ k, if X1 6= ∅ and Zr,s @ G[X2, Y ], then
Zr+1,s−p @ G.

Proof. Let X0 be the set of vertices in X that have degree less then k, and let X ′ = X \X0.
If G[X ′, Y ] is left-disconnected, then we define X1 = ∅ and X2 = X ′.

Assume now that G[X ′, Y ] is left-connected. By Proposition 7.2.14, the highest-degree
vertex x ∈ X ′ satisfies |N(x) ∩N(y)| > |N(y)| − p for every y ∈ X ′. Define X1 as follows:
add the highest-degree vertex x to X1, and repeat until G[X ′ \X1, Y ] is left-disconnected.
Then set X2 = X ′ \X1. Condition 3 holds by definition, so it remains to prove conditions
2 and 4.

For every a, b ∈ X1, note that N(a) ∩ N(b) 6= ∅. Suppose for contradiction that
Tp @ G[X1, Y ], then there are a, b ∈ X1 such that Tp is contained in the subgraph induced
by the vertices {a, b} and (N(a)\N(b))∪(N(b)\N(a)). But then adding any c ∈ N(a)∩N(b)
results in a forbidden copy of induced Fp,p, a contradiction. This proves condition 2.

Now for any r, s such that r < q and p < s ≤ k, suppose that X1 6= ∅ and Zr,s @
G[X2, Y ]. Then there are u1, . . . , ur ∈ X2 and pairwise disjoint sets V1 ⊆ N(u1), . . . , Vr ⊆
N(ur) such that for each i, |Vi| = s, for every 1 ≤ j ≤ i, vi is adjacent to all vertices in Vj,
and for every i < j ≤ r, vi is adjacent to no vertices in Vj.

Let x be the vertex in X1 with least degree, so that x was the last vertex to be added
to X1. Then G[X2 ∪ {x}, Y ] is left-connected but G[X2, Y ] is left-disconnected, and x
is the highest-degree vertex of G[X2 ∪ {x}, Y ] in X2 ∪ {x}. Since u1, . . . , ur are in the
same connected component of G[X2, Y ], but the graph G[X2, Y ] is disconnected, it must
be that there is z ∈ X2 such that N(z) ∩ N(ui) = ∅ for all ui. It is also the case that
|N(x)∩N(z)| > |N(z)| − p ≥ k− p ≥ s− p by Proposition 7.2.14, since x has the highest
degree in X2 ∪ {x}.

Observe that for each Vi ⊆ N(ui) it holds that |N(x) ∩ Vi| ≥ s − p also by Proposi-
tion 7.2.14. Set V ′i = Vi ∩N(x) for each i ∈ [r], and set V ′r+1 = N(x) ∩N(z). Clearly, the
graph induced by {u1, . . . , ur, x}∪V ′1 ∪V ′2 ∪ . . .∪V ′r ∪V ′r+1 contains Zr+1,s−p as an induced
subgraph.
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We will now use the above structural result to construct a suitable decomposition
scheme for stable one-sided Fp,p-free bipartite graphs. Let p, q ≥ 1 be fixed constants, let
k = (q + 1)p, and let Fp,q be the class of one-sided Fp,p-free bipartite graphs that do not
contain H◦◦q as an induced subgraph. Let G = (X, Y,E) ∈ Fp,q. Using Lemma 7.2.15, we
define a decomposition tree T for G inductively as follows. Let Gv be the induced subgraph
of G associated with node v of the decomposition tree and write X ′ ⊆ X, Y ′ ⊆ Y for its
sets of vertices, so Gv = G[X ′, Y ′]. Graph G is associated with the root node of T .

� If Gv is one-sided Tk-free, terminate the decomposition, so v is a leaf node (L-node)
of the decomposition tree.

� If Gv is disconnected (in particular, if it is left-disconnected), then v is a D-node such
that the children are the connected components of Gv.

� If Gv is connected and not one-sided Tk-free, then X ′ admits a partition X ′ = X ′0 ∪
X ′1∪X ′2 satisfying the condition of Lemma 7.2.15. Since Gv is connected, X ′0∪X ′1 6= ∅.
Furthermore, since Gv is not one-sided Tk-free, X ′2 6= ∅. Hence, v is a P -node with
exactly two children v1 and v2, where Gv1 = G[X ′0 ∪ X ′1, Y ′] and Gv2 = G[X ′2, Y

′].
Observe that

(1) Gv1 is one-sided Tk-free, and therefore v1 is a leaf;

(2) Gv2 is left-disconnected, and therefore v2 is a D-node; furthermore, every vertex
x ∈ X ′2 has degree at least k in Gv2 (otherwise it would be included in the set
X ′0).

Proposition 7.2.16. Let Q be the class of one-sided Tk-free bipartite graphs. Then the
graphs in Fp,q admit (Q, 2)-decomposition trees of depth at most 2q.

Proof. By definition, the above decomposition scheme produces (Q, 2)-decomposition trees.
In the rest of the proof we will establish the claimed bound on the depth of any such tree.
Suppose, towards a contradiction, that there exists a graph G = (X, Y,E) ∈ Fp,q such
that the decomposition tree T for G has depth at least 2q + 1. Let P = (v0, v1, v2, . . . , vs)
be a leaf-to-root path in T of length s ≥ 2q + 1, where v0 is a leaf and vs is the root.
Denote by Gvi = G[X i, Y i] the graph corresponding to a node vi in P . By construction,
all internal nodes of P are either D-nodes or P -nodes. Clearly, the path cannot contain
two consecutive D-nodes, as any child of a D-node is a connected graph. Furthermore, a
unique non-leaf child vi of a P -node is a D-node, and every x ∈ X i has degree at least k
in Gvi . Consequently, P -nodes and D-nodes alternated along (the internal part of) P .
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Let vi−1, vi, vi+1, vi+2 be four internal nodes of P , where vi−1 and vi+1 are D-nodes, and
vi and vi+2 are P -nodes. Recall that, since the parent vi+2 of vi+1 is a P -node, every vertex
in Xi+1 has degree at least k in Gvi+1

. Hence, since Gvi is a connected component of Gvi+1
,

every vertex in X i ⊆ X i+1 also has degree at least k. Let X i = X i
0 ∪ X i

1 ∪ X i
2 be the

partition of X i according to the decomposition rules. Since X i
0 ∪X i

1 6= ∅ and X i
0 = ∅, we

conclude that X i
1 6= ∅. Therefore, by Lemma 7.2.15, if the Gvi−1

= G[X i
2, Y

i] contains Zr,s
for some r < q and p < s ≤ k, then Gvi contains Zr+1,s−p.

Let vt be the first D-node in P . Note that t ≤ 2. Every vertex in X t has degree at
least k in Gvt , and therefore Z1,k @ Gvt . By induction, the above discussion implies that
for 1 ≤ i ≤ q − 1, the graph Z1+i,k−ip is an induced subgraph of Gvt+2i−1

. Hence, since
the length of P is at least 2q + 1, we have H◦◦q = Zq,1 @ Zq,k−(q−1)p @ Gvt+2q−3 @ G, a
contradiction.

Lemma 7.2.17. Let p ∈ N and let F be a stable class of one-sided Fp,p-free bipartite
graphs. Then F admits a constant-size equality-based adjacency labeling scheme.

Proof. Since F is stable, it does not contain C◦◦ as a subclass. Let q be the minimum
number such that H◦◦q 6∈ F . Let k = (q + 1)p and let Q be the class of one-sided Tk-free
bipartite graphs. We have that F ⊆ Fp,q, and therefore, by Proposition 7.2.16, the graphs
in F admit (Q, 2)-decomposition trees of depth at most 2q. Hence, by Lemma 7.2.11 and
Lemma 7.2.2, F admits a constant-size equality-based adjacency labeling scheme.

We conclude this section by showing that stable classes of F ∗p,p′-free graphs admit
constant-size equality-based adjacency labeling schemes. For this we will use the above
result for one-sided Fp,p-free graphs and the following

Proposition 7.2.18 ([All09], Corollary 9). Let G = (X, Y,E) be a F ∗p,p-free bipartite graph.
Then there is a partition X = X1 ∪ X2 and Y = Y1 ∪ Y2, where |Y2| ≤ 1, such that both

G[X1, Y1] and G[X2, Y1] are one-sided Fp,p-free.

Theorem 7.2.19. For any constants p, p′ ≥ 1, a stable class F of F ∗p,p′-free bipartite graphs
admits a constant-size equality-based adjacency labeling scheme.

Proof. As before, since F is stable, it does not contain C◦◦ as a subclass. Let q be the
minimum number such that H◦◦q 6∈ F , and assume without loss of generality that p ≥ p′.
It follows that F is a subclass of (F ∗p,p, H

◦◦
q )-free bipartite graphs. Let G = (X, Y,E)

be a member of this class. Let X = X1 ∪ X2, Y = Y1 ∪ Y2 be the partition given by
Proposition 7.2.18. We assign labels as follows.
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We start the label for each vertex with a one-bit prefix indicating whether it is in X
or Y . We then append the following labels. For x ∈ X, we use another one-bit prefix that
is equal to 1 if x is adjacent to the unique vertex Y2, and 0 otherwise. Then, we use one
more one-bit prefix to indicate whether x ∈ X1 or x ∈ X2. If x ∈ X1, complete the label
by using the labeling scheme of Lemma 7.2.17 for G[X1, Y1]. If x ∈ X2, complete the label

by using the labeling scheme of Lemma 7.2.17 for G[X2, Y1].

For y ∈ Y , use a one-bit prefix to indicate whether y ∈ Y2. If y ∈ Y1 then concatenate
the two labels for y obtained from the labeling scheme of Lemma 7.2.17 for G[X1, Y1] and

G[X2, Y1].

The decoder first checks if x, y are in opposite parts. Now assume x ∈ X, y ∈ Y . The
decoder checks if y ∈ Y2 and outputs the appropriate value using the appropriate prefix
from the label of x. Then if x ∈ X1, it uses the labels of x and y in G[X1, Y1]; otherwise it

uses the labels of x and y in G[X2, Y1] and flips the output.

P7-Free Bipartite Graphs

In this section, we prove Theorem 1.3.26 for P7-free bipartite graphs by developing a
constant-size equality-based adjacency labeling scheme for stable classes of P7-free bipartite
graphs

In the below definition, for two disjoint sets of vertices A and B we say that A is
complete to B if every vertex in A is adjacent to every vertex in B; we also say that A is
anticomplete to B if there are no edges between A and B.

Definition 7.2.20 (Chain Decomposition). See Figure 7.5 for an illustration of the chain
decomposition. Let G = (X, Y,E) be a bipartite graph and k ∈ N. We say that G
admits a k-chain decomposition if one of the parts, say X, can be partitioned into subsets
A1, . . . , Ak, C1, . . . , Ck and the other part Y can be partitioned into subsets B1, . . . , Bk,
D1, . . . , Dk in such a way that:

� For every i ≤ k − 1, the sets Ai, Bi, Ci, Di are non-empty. For i = k, at least one of
the sets Ai, Bi, Ci, Di must be non-empty.

� For each i = 1, . . . , k,

– every vertex of Bi has a neighbour in Ai;

– every vertex of Di has a neighbour in Ci;
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� For each i = 2, . . . , k − 1,

– every vertex of Ai has a non-neighbour in Bi−1;

– every vertex of Ci has a non-neighbour in Di−1;

� For each i = 1, . . . , k,

– the set Ai is anticomplete to Bj for j > i and is complete to Bj for j < i− 1;

– the set Ci is anticomplete to Dj for j > i and is complete to Dj for j < i− 1;

� For each i = 1, . . . , k,

– the set Ai is complete to Dj for j < i, and is anticomplete to Dj for j ≥ i;

– the set Ci is complete to Bj for j < i, and is anticomplete to Bj for j ≥ i.

A1 A2 A3 A4

B1 B2 B3 B4

C1C2C3C4

D1D2D3D4

VU every u ∈ U has a neighbour in V

VU every u ∈ U has a non-neighbour in V

VU U is complete to V

Figure 7.5: Example of a 4-chain decomposition.

Remark 7.2.21. In the case of a 2-chain decomposition of a connected P7-free bipartite
graphs, we will also need the fact that every vertex in A2 and every vertex in A1 have a
neighbour in common; and every vertex in C2 and every vertex in C1 have a neighbour in
common. This is not stated explicitly in [LZ17], but easily follows from a proof in [LZ17].
Since the neighbourhood of every vertex in A1 lies entirely in B1, the above fact implies
that every vertex in A2 has a neighbour in B1. Similarly, the neighbourhood of every vertex
in C1 lies entirely in D1, and therefore every vertex in C2 has a neighbour in D1.
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Theorem 7.2.22 ([LZ17]). Let G = (X, Y,E) be a P7-free bipartite graph such that both

G and G are connected. Then G or G admits a k-chain decomposition for some k ≥ 2.

Lemma 7.2.23. Let G = G(X, Y,E) be a connected P7-free bipartite graph of chain number
c that admits a k-chain decomposition for some k ≥ 2. Then there exists a partition of
X into p ≤ 2(c + 1) sets X1, X2, . . . , Xp, and a partition of Y into q ≤ 2(c + 1) sets
Y1, Y2, . . . , Yq such that, for any i ∈ [p], j ∈ [q],

ch(G[Xi, Yj]) < ch(G) .

Proof. Assume, without loss of generality, that X is partitioned into subsets A1, . . . , Ak,
C1, . . . , Ck and Y into subsets B1, . . . , Bk, D1, . . . , Dk satisfying Definition 7.2.20. Since at
least one of the sets Ak, Bk, Ck, Dk is non-empty, and every vertex in Bk has a neighbour
in Ak and every vertex in Dk has a neighbour in Ck, at least one of Ak and Ck is non-
empty. Without loss of generality we assume that Ak is not empty. It is straightforward
to check by definition that for any vertices a2 ∈ A2, a3 ∈ A3, . . . , ak ∈ Ak, and d1 ∈
D1, d2 ∈ D2, . . . , dk−1 ∈ Dk−1 the subgraph of G induced by {a2, a3, . . . , ak, d1, d2, . . . , dk−1}
is isomorphic to H◦◦k−1, which implies that k is at most c+1. We also observe that any path
from a vertex in A1 to a vertex in D1 contains at least 4 vertices, and hence G contains
H◦◦2 and ch(G) ≥ 2. We split our analysis in two cases.

Case 1. k ≥ 3. We will show that for any X ′ ∈ {A1, . . . , Ak, C1, . . . , Ck} and Y ′ ∈
{B1, . . . , Bk, D1, . . . , Dk}, ch(G[X ′, Y ′]) < ch(G). Since ch(G) ≥ 2, the chain number of a
biclique is 1, and the chain number of a co-biclique is 0, we need only to verify pairs of sets
that can induce a graph which is neither a biclique nor a co-biclique. By Definition 7.2.20,
these are the pairs (Ai, Bi), (Ci, Di) for i ∈ [k] and (Ai, Bi−1), (Ci, Di−1) for i ∈ {2, . . . , k}.

We start with the pair (A1, B1). Since D2 is anticomplete to A1, and C2 is complete
to B1, for any vertex d2 ∈ D2 and its neighbour c2 ∈ C2 we have that ch(G[A1, B1]) <
ch(G[A1 ∪ {c2}, B1 ∪ {d2}]) ≤ ch(G). Similarly, since D1 is complete to all A2, A3, . . . , Ak,
and C1 is anticomplete to all B1, B2, . . . , Bk, addition of a vertex d1 ∈ D1 and its neighbour
c1 ∈ C1 to any of the graphs G[Ai, Bi] or G[Ai, Bi−1] for i ∈ {2, . . . , k} strictly increases
the chain number of that graph. Symmetric arguments establish the desired conclusion for
the pairs of sets (Ci, Di), i ∈ [k], and (Ci, Di−1), i ∈ {2, . . . , k}.

In this case, A1, . . . , Ak, C1, . . . , Ck and B1, . . . , Bk, D1, . . . , Dk are the desired partitions
of X and Y respectively.

Case 2. k = 2. Assume first that both A2 and C2 are non-empty. Let c2 be a
vertex in C2, d1 be a neighbour of c2 in D1 (which exists by Remark 7.2.21), and c1

be a neighbour of d1 in C1. Since C2 is complete to B1 and D1 is anticomplete to A1,
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ch(G[A1, B1]) < ch(G[A1∪{c2}, B1∪{d1}]) ≤ ch(G). Similarly, because C1 is anticomplete
to both B1 and B2 and D1 is complete to A2, we have that ch(G[A2, B1]) < ch(G[A2 ∪
{c1}, B1 ∪ {d1}]) ≤ ch(G) and ch(G[A2, B2]) < ch(G[A2 ∪ {c1}, B2 ∪ {d1}]) ≤ ch(G).
Using symmetric arguments we can show that the chain number of each of G[C1, D1],
G[C2, D1], and G[C2, D2] is strictly less than the chain number of G. All other pairs of sets
(X ′, Y ′), where X ′ ∈ {A1, A2, C1, C2} and Y ′ ∈ {B1, B2, D1, D2} induce either a biclique
or a co-biclique, and therefore ch(G[X ′, Y ′]) < ch(G). In this case, A1, A2, C1, C2 and
B1, B2, D1, D2 are the desired partitions of X and Y respectively.

The case when one of A2 and C2 is empty requires a separate analysis. Assume that
A2 6= ∅ and C2 = ∅. The case when A2 = ∅ and C2 6= ∅ is symmetric and we omit the
details. Since C2 is empty, D2 is also empty and therefore A1, A2, C1 is a partition of X,
and B1, B2, D1 is a partition of Y . Let a2 be a vertex in A2, d1 be a vertex in D1, and c1 be
a neighbour of d1 in C1. Let B′1 be the neighbourhood of a2 in B1 and let B′′1 = B1\B′1. We
claim that A1, A2, C1 and B′1, B

′′
1 , B2, D1 are the desired partitions of X and Y respectively.

All the pairs of sets, except (A1, B
′
1) and (A1, B

′′
1 ), can be treated as before and we skip

the details. For (A1, B
′
1), we observe that a2 is complete to B′1 and D1 is anticomplete to

A1, and hence ch(G[A1, B
′
1]) < ch(G[A1 ∪ {a2}, B′1 ∪ {d1}]) ≤ ch(G).

To establish the desired property for (A1, B
′′
1 ), we first observe that by Remark 7.2.21

every vertex in A1 has a neighbour in common with a2, and therefore every vertex in A1

has a neighbour in B′1. If G[A1, B
′′
1 ] is edgeless the property holds trivially. Otherwise, let

P ⊆ A1 and Q ⊆ B′′1 be such that P ∪ Q induces a H◦◦s in G[A1, B
′′
1 ], where s ≥ 1 is the

chain number of the latter graph. Let x be the vertex in P that has degree 1 in G[P,Q],
and let y be a neighbour of x in B′1. We claim that y is complete to P . Indeed, if y is not
adjacent to some x′ ∈ P , then x′, z, x, y, a2, d1, c1 would induce a forbidden P7, where z is
the vertex in Q that is adjacent to every vertex in P . Consequently, G[P ∪ {a2}, Q ∪ {y}]
is isomorphic to H◦◦s+1, and therefore ch(G[A1, B

′′
1 ]) < ch(G).

For two pairs of numbers (a, b) and (c, d) we write (a, b) � (c, d) if a ≤ c and b ≤ d,
and we write (a, b) ≺ (c, d) if at least one of the inequalities is strict.

Lemma 7.2.24. Let G = G(X, Y,E) be a P7-free bipartite graph such that both G and G
are connected, and let c be the chain number of G. Then there exists a partition of X into
p ≤ 2(c+ 2) sets X1, X2, . . . , Xp, and a partition of Y into q ≤ 2(c+ 2) sets Y1, Y2, . . . , Yq
such that for any i ∈ [p], j ∈ [q](

ch(Gi,j), ch(Gi,j)
)
≺
(
ch(G), ch(G)

)
,

where Gi,j = G[Xi, Yj].
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Proof. It is easy to verify that for any k ≥ 2, the graph H◦◦k contains the half graph H◦◦k−1,

which implies that ch(G) ≤ ch(G) + 1 = c+ 1. Furthermore, the bipartite complement of
a P7 is again P7, and hence the bipartite complement of any P7-free bipartite graph is also
P7-free.

By Theorem 7.2.22, G or G admits a k-chain decomposition for some k ≥ 2. Therefore,
by Lemma 7.2.23 applied to either G or G, there exist a partition of X into at most
p ≤ 2(c + 2) sets X1, X2, . . . , Xp, and a partition of Y into at most q ≤ 2(c + 2) sets

Y1, Y2, . . . , Yq such that either ch(Gi,j) < ch(G) holds for any i ∈ [p], j ∈ [q], or ch(Gi,j) <

ch(G) holds for any i ∈ [p], j ∈ [q]. This together with the fact that the chain number of
an induced subgraph of a graph is never larger than the chain number of the graph, implies
the lemma.

We are now ready to specify a decomposition scheme for P7-free bipartite graphs.
Let G = (X, Y,E) be a P7-free bipartite graph of chain number c. Let Q be the class
consisting of bicliques and co-bicliques. We define a (Q, 2(c+ 2))-decomposition tree T for
G inductively as follows. Let Gv be the induced subgraph of G associated with node v of
the decomposition tree and write X ′ ⊆ X, Y ′ ⊆ Y for its sets of vertices, so Gv = G[X ′, Y ′].
Graph G is associated with the root node of T .

� If Gv belongs to Q, then terminate the decomposition, so v is a leaf node (L-node)
of the decomposition tree.

� If Gv does not belong to Q and is disconnected, then v is a D-node such that the
children are the connected components of Gv.

� If Gv does not belong to Q, is connected, and Gv is disconnected, then v is a D-node.

There are setsX ′1, . . . , X
′
t ⊆ X ′ and Y ′1 , . . . , Y

′
t ⊆ Y ′ such thatG[X ′1, Y

′
1 ], . . . , G[X ′t, Y

′
t ]

are the connected components of Gv. The children of this node are G[X ′1, Y
′

1 ], . . . ,
G[X ′t, Y

′
t ].

� If Gv does not belong to Q, and neither Gv, nor Gv is disconnected, then v is a P -
node. Let X ′1, X2, . . . , X

′
p be a partition of X ′ into p ≤ 2(c+2) sets, and Y ′1 , Y2, . . . , Y

′
q

be a partition of Y ′ into q ≤ 2(c+ 2) sets, as in Lemma 7.2.24. The children of this
node are G[X ′i, Y

′
j ], i ∈ [p], j ∈ [q].

Claim 7.2.25. Let T be a decomposition tree as a above, and let Gi = G[Xi, Yi], i = 1, 2, 3,
be internal nodes in T such that G3 is the parent of G2 which is in turn the parent of G1.
Then
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(1) one of G3, G2, and G1 is a P -node, or Gi is D-node and Gi−1 is a D-node for some
i ∈ {3, 2};

(2) if G3 is a D-node and G2 is a D-node, then ch(G1) < ch(G3).

Proof. We start by proving the first statement. Observe that every child a D-node is a
connected graph, and therefore it is not a D-node. Similarly, the bipartite complement
of every child of a D-node is a connected graph, and therefore a D-node cannot have a
D-node as a child. Hence, if none of G3, G2, G1 is a P -node, either G3 is a D-node and
therefore G2 is a D-node, or G3 is a D-node, in which case G2 is a D-node and G1 is a
D-node. In both cases we have a pair of parent-child nodes, where the parent is a D-node
and the child is a D-node.

To prove the second statement, let now G3 be a D-node and G2 be a D-node, i.e.
G[X2, Y2] is disconnected, while G[X3, Y3] is connected, but its bipartite complement is
disconnected. Then there are sets X ′1 ⊆ X2 \X1 and Y ′1 ⊆ Y2 \ Y1 such that G[X ′1, Y

′
1 ] and

G[X1, Y1] are connected components of G[X2, Y2] and at least one of X ′1, Y
′

1 is non-empty.
Also at least one of the sets X ′2 = X3 \ X2 and Y ′2 = Y3 \ Y2 is non-empty, and every
vertex in X ′2 is adjacent in G to every vertex in Y2, and every vertex in Y ′2 is adjacent in
G to every vertex in X2. If exactly one of the sets X ′1 and Y ′1 is non-empty, say Y ′1 , then
X ′2 is also non-empty, as otherwise G[X3, Y3] would be disconnected. Hence, any vertices
x′ ∈ X ′2 and y′ ∈ Y ′1 can augment any half graph H◦◦k in G[X1, Y1] into a half graph H◦◦k+1.
Consequently, ch(G[X1, Y1]) < ch(G[{x′} ∪ X1, {y′} ∪ Y1]) ≤ ch(G3). If both sets X ′1 and
Y ′1 are non-empty, the argument is similar and we omit the details.

Theorem 7.2.26. Let F be a stable class of P7-free bipartite graphs. Then F admits a
constant-size equality-based adjacency labeling scheme.

Proof. Since F is stable, it does not contain C◦◦ as a subclass. Let c be the maximum
number such that H◦◦c ∈ F , and let G = (X, Y,E) be an arbitrary graph from F .

By the above discussion G admits a (Q, 2(c + 2))-decomposition tree, where Q is the
class consisting of bicliques and co-bicliques, and every P -node G′ = G[X ′, Y ′] is specified
by the partition X ′1, . . . , X

′
p of X ′ and the partition Y ′1 , . . . , Y

′
q of Y ′ as in Lemma 7.2.24,

where p and q are bounded from above by 2(c+ 2).

We claim that the depth of such a decomposition tree is at most 6c. To show this we

associate with every node G′ the pair
(
ch(G′), ch(G′)

)
and we will prove that if the length

of the path from the root G to a node G′ is at least 6c, then ch(G′) ≤ 1 or ch(G′) ≤ 1,
which means that G′ is either a biclique or a co-biclique, and therefore is a leaf node.
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Let P be the path from the root to the node G′. By Claim 7.2.25 (1), among any
three consecutive nodes of the path, there exists a P -node, or a pair of nodes labeled with
D and D respectively such that the D-node is the parent of the D-node. In the former
case, by Lemma 7.2.24, for the child node H ′ of the P -node H on the path P , we have(
ch(H ′), ch(H ′)

)
≺
(
ch(H), ch(H)

)
. In the latter case, by Claim 7.2.25 (2), the child of

the D-node on the path P has the chain number strictly less than that of the D-node. In
other words, for every node H in the path P and its ancestor H ′ at distance 3 from H, we

have
(
ch(H ′), ch(H ′)

)
≺
(
ch(H), ch(H)

)
.

Now, since for the root node G we have
(
ch(G), ch(G)

)
≺ (c, c + 1), if P has length

at least 6c, then ch(G′) ≤ 1 or ch(G′) ≤ 1, as required. The result now follows from
Lemma 7.2.2 and a simple observation that class Q admits a constant-size equality-based
adjacency labeling scheme.
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Watrigant. Twin-width II: small classes. In Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1977–1996. SIAM, 2021.

[BGP20] Marthe Bonamy, Cyril Gavoille, and Micha l Pilipczuk. Shorter labeling
schemes for planar graphs. In Proceedings of the ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 446–462. SIAM, 2020.

[BH18] Avrim Blum and Lunjia Hu. Active tolerant testing. In Conference On
Learning Theory (COLT), 2018.

[BHMZ20] Olivier Bousquet, Steve Hanneke, Shay Moran, and Nikita Zhivotovskiy.
Proper learning, Helly number, and an optimal SVM bound. In Conference
on Learning Theory, pages 582–609. PMLR, 2020.

[BKTW20] Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant.
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[Sağ18] Mert Sağlam. Near log-convexity of measured heat in (discrete) time and
consequences. In Proceedings of the IEEE Symposium on Foundations of
Computer Science (FOCS), pages 967–978. IEEE, 2018.

[SB14] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning:
From theory to algorithms. Cambridge University Press, 2014.

[Sch99] Edward R Scheinerman. Local representations using very short labels. Dis-
crete mathematics, 203(1-3):287–290, 1999.

[Sil20] Sandeep Silwal. Personal communication, 2020.

[Smi88] D. V. Smirnov. Shannon’s information methods for lower bounds for proba-
bilistic communication complexity. Master’s thesis, Moscow University, 1988.

[SNHM+18] Ignacio Sevilla-Noarbe, Ben Hoyle, MJ Marchã, MT Soumagnac, K Bechtol,
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Appendix A

Lower Bound on Support Size
Distinction

We provide an exposition of the proof of Theorem 2.2.5 in this section. The proof that
follows is a very slight adaptation of the proof of Wu & Yang [WY19], with the only
changes to their proof being the ones necessary to adapt the lower bound to be on the
decision problem of support size distinction (SSD) instead of the support size estimation
(SSE) problem.

We begin by defining a decision problem for distributions-of-distributions over N.

Definition A.0.1 (Meta-Distribution Decision Problem). Let P ,Q be two distributions
over probability distributions on N. DEC(P ,Q) is the minimum number m such that
there exists an algorithm A that draws a set S of m independent samples from its input
distribution, and its output A(S) satisfies the following:

� P
p∼P,S∼pm

[A(S) = 1] ≥ 2/3; and,

� P
q∼Q,S∼qm

[A(S) = 0] ≥ 2/3.

It is clear that Theorem 2.2.5 follows from the fact that, for any 0 < α < β ≤ 1 such
that α ≥ δ and β ≤ 1− δ,

SSD(n, α, β) ≥ sup
P,Q

DEC(P ,Q) ,
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where the supremum is taken over all distributions P ,Q over distributions on [n] such that
any p ∈ supp(P) has | supp(p)| ≤ δn ≤ αn, any q ∈ supp(Q) has | supp(q)| ≥ (1−δ)n ≥ βn,
and any p ∈ supp(P)∪ supp(Q) has pi ≥ 1/n for each i ∈ supp(p). Therefore, to establish
Theorem 2.2.5, it suffices to prove the following theorem.

Theorem A.0.2 ([WY19]). There is a constant C > 0 such that, for every n ∈ N and every

C
√

logn
n1/4 < δ < 1

2
, there exist distributions P ,Q over the space of probability distributions

on [n], such that DEC(P ,Q) = Ω
(

n
logn

log2 1
1−δ

)
, and where:

� Every p ∈ P has support size at most δn;

� Every p ∈ Q has support size at least (1− δ)n;

� Every p ∈ P ∪Q has p(x) ≥ 1/n for all x ∈ supp(p).

What follows is adapted from the proofs of Wu & Yang [WY19].

Definition A.0.3. For any ν ≥ 0, let Dn(ν) be the set of vectors p ∈ Rn such that
each pi satisfies pi ∈ {0} ∪

[
1+ν
n
, 1
]
, and |1−

∑
i pi| ≤ ν. For p ∈ Dn(ν), we will write

supp(p) = {i ∈ [n] : p(i) > 0}. Note that Dn(0) is the set of probability distributions over
[n] with densities at least 1/n on the support.

Definition A.0.4 (Poisson Sampling Model). Let P ,Q be distributions overDn(ν). Define

D̃EC(P ,Q) as the smallest number m such that there is an algorithm A that does the
following on input p ∈ Dn(ν): For each i ∈ N, A receives a vector s : N → N such that
s(i) ∼ Poi(mp(i)). A(s) outputs 0 or 1, and satisfies:

� P
p∼P,s

[A(s) = 1] ≥ 2/3;

� P
q∼Q,s

[A(s) = 0] ≥ 2/3.

Lemma A.0.5. For any n, ν, suppose that P ,Q are distributions over Dn(ν). Then for
distributions P ′,Q′ over Dn(0) defined by choosing p ∼ P and taking p/

∑
i p(i), or by

choosing q ∼ Q and taking q/
∑

i q(i), respectively,

DEC(P ′,Q′) ≥ Ω((1− ν) · D̃EC(P ,Q)) .
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Proof. First we observe that for any t, conditioned on the event
∑

i si = t, the vector s has
the same distribution as the vector s′ obtained by drawing t points i ∈ N independently
from p/

∑
i p(i) and letting s′i be the number of times item i is observed.

For any k, let Ak be the algorithm that, receiving k independent samples from the
input distribution, has the highest probability of correctly distinguishing P ′ from Q′. Let
m be the minimum number such that Am has success probability at least 9/10, so that

P
p∼P ′,s′

[Am(s′) = 1] ≥ 9/10 P
q∼Q′,s′

[Am(s′) = 0] ≥ 9/10 .

Observe that (by standard boosting techniques), m = Θ(DEC(P ′,Q′)). For some m′ = ρm
(with ρ > 1 to be chosen later), we construct an algorithm in the Poisson testing model
where si ∼ Poi(m′p(i)) and upon receiving a vector s with

∑
i si = t, runs At(s).

P
p∼P,s

[A(s) = 0] =
∞∑
k=0

P [t = k] P
p,s

[
Ak(s) = 0 |

∑
i

si = k

]

=
∞∑
k=0

P [t = k] P
p′,s′

[
Ak(s

′) = 0 |
∑
i

si = k

]
≤ 1

10
P [t ≥ m] + P [t < m] =

1

10
+

9

10
P [t < m] .

The same argument shows that for q ∼ Q,

P
q∼Q,s

[A(S) = 1] ≤ 1

10
+

9

10
P [t < m] ,

so what remains is to bound m′. t is a sum of independent Poisson random variables
Poi(m′pi), so t ∼ Poi(m′

∑
i p(i)), which has mean m′

∑
i p(i) ≥ m′(1 − ν) = (1 − ν)ρm.

For X ∼ Poi(λ) and z < λ we use the inequality:

P [X < z] ≤ (eλ)ze−λ

zz
,

which implies

P [t < m] ≤ (e(1− ν)ρm)me−mρ(1−ν)

mm

= (e(1− ν)ρ)me−mρ(1−ν) = exp (m(ln(e(1− ν)ρ)− ρ(1− ν))) .
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For any constant C > 0 there is C ′ such that for ρ > C ′/(1−ν), this probability is at most
expm(1 + ln(C ′)− C ′) = exp−Cm, so we can choose exp−C < 1/100 to obtain a total
failure probability of at most 1/10 + 9/100 < 1/3, with m′ = ρm = O(m/(1− ν)). Thus

D̃EC(P ,Q) ≤ m′ =
m

1− ν
= O

(
1

1− ν
· DEC(P ′,Q′)

)
.

Lemma A.0.6. Let ν, λ > 0, and Suppose P,Q are random variables taking values in
{0}∪ [1+ν, λ], such that E [P ] = E [Q] = 1,E [P j] = E [Qj] for all j ∈ [L], and |P [P > 0]−
P [Q > 0] | = δ. Then for any α < 1/2, if

2λ

nν2
+

2

nα2δ2
+ n

(
emλ

2nL

)L
< 1/3 ,

then there exist distributions P ,Q over Dn(ν) such that D̃EC(P ,Q) ≥ m, and for each
p ∈ supp(P), q ∈ supp(Q), # supp(q)−# supp(p) ≥ (1−2α)δn and p(x), q(x) > (1+ν)/n
for each x ∈ supp(p), supp(q) respectively.

Proof. Let P ′ be the distribution over vectors Rn obtained by drawing p ∼ 1
n
(P1, . . . , Pn)

where each Pi is an independent copy of P , and let Q′ be the distribution obtained by
drawing q ∼ 1

n
(Q1, . . . , Qn) in the same way. Let ρ = P [P > 0] , γ = P [Q > 0]. Write S

for the set of vectors p such that |1−
∑

i pi| ≤ ν and |# supp(p)− nρ| < αδn, and write T
for the set of vectors q such that |1−

∑
i qi| ≤ ν and |# supp(q)− nγ| ≤ αδn.

We will define P to be the distribution P ′ conditioned on the event S, while Q is the
distribution Q′ conditioned on T . Wu & Yang [WY19] show that these events occur with
high probability (in particular, P ,Q are well-defined). It is clear that for each p ∈ S, q ∈ T ,
we will have

# supp(p)−# supp(q) ≥ nρ− nγ − 2αδn = nδ − 2αδn = (1− 2α)δn ,

as desired, and p(x), q(x) ≥ (1 + ν)/n for all x ∈ supp(p), supp(q) respectively. So it

remains to show the bound on D̃EC(P ,Q).

Let the random variable s(P) be the vector of values seen from a random p ∼ P by a
Poisson sampling algorithm with parameter m, i.e. for s = s(P) and p ∼ P , si ∼ Poi(mpi).
Wu & Yang [WY19] prove that

‖s(P)− s(Q)‖TV ≤
2λ

nν2
+

2

nα2δ2
+ n

(
emλ

2nL

)L
,
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which by assumption is less than 1/3. Therefore, if a Poisson sampling algorithm A out-
puts 1 with probability at least 2/3 over the random variable s(P), it will output 1 with

probability greater than 2/3− 1/3 = 1/3. Therefore D̃EC(P ,Q) ≥ m as desired.

Lemma A.0.7 ([WY19], Lemma 7). For any L ∈ N, ν > 0, λ > 1 + ν, there exist random
variables P,Q such that:

1. P,Q are supported on {0} ∪ [1 + ν, λ];

2. E [P ] = E [Q] = 1 and ∀j ∈ [L],E [P j] = E [Qj]; and,

3. For t =
√

1+ν
λ

,

P [P > 0]− P [Q > 0] =
(1 + t)2

1 + ν
·
(

1− 2t

1 + t

)L
.

Proof of Theorem A.0.2. For any parameters L ∈ N, ν > 0, λ > 1 + ν, we obtain from
Lemma A.0.7 random variables P,Q taking values in {0} ∪ [1 + ν, λ] such that E [P ] =
E [Q] = 1,E [P j] = E [Qj] for all j ∈ [L], and

P [P > 0]− P [Q > 0] =
(1 + t)2

1 + ν
·
(

1− 2t

1 + t

)L
=: ε ,

where t =
√

1+ν
λ

. Then Lemma A.0.6 implies that for any m,n ∈ N and α > 0, we get

distributions P ,Q over Dn(ν) such that D̃EC(P ,Q) ≥ m and # supp(p) − # supp(q) ≥
(1− 2α)εn for all p ∈ supp(P), q ∈ supp(Q), as long as

2λ

nν2
+

2

nα2ε2
+ n

(
emλ

2nL

)L
< 1/3 . (A.1)

Suppose that (1 − 2α)ε = 1 − δ. Then for all p ∈ supp(P) we will have # supp(p) ≥
(1 − 2α)εn = (1 − δ)n, as desired, and for all q ∈ supp(Q) we will have # supp(q) ≤
n− (1− 2α)εn = δn. For any p we also have pi ≥ (1 + ν)/n so the normalized distribution
P ′ defined in Lemma A.0.5 will have densities pi ≥ 1+ν

n
∑
i pi
≥ 1+ν

n(1+ν)
= 1/n, and the same

for Q′. Then for any ν = o(1), we will obtain a lower bound of

DEC(P ′,Q′) = Ω(D̃EC(P ′,Q′)) = Ω(m) .

Therefore, what remains is to prove Equation (A.1) with parameter ε = 1−δ
1−2α

.
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Wu & Yang ([WY19], equation 34) show that for sufficiently large constant C, if δ =

1 − (1 − 2α)ε > C
√

logn
n1/4 and (1 − 2α)ε ≥ n−o(1) (where the latter holds trivially in our

case because (1− 2α)ε ≥ 1− δ > 1/2), then there are parameters such that ν = o(1) and
Equation (A.1) holds with

m = Ω

(
n

log n
log2 1

(1− 2α)ε

)
= Ω

(
n

log n
log2 1

1− δ

)
,

which proves the theorem.
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Appendix B

Bibliographic Remark on
Greater-Than

Recall the lower bound for Greater-Than:

Theorem B.0.1. Any public-coin randomized SMP communication protocol for Greater-
Than on domain [n] requires Ω(log n) bits of communication.

Lower bounds for the Greater-Than problem in various models appear in [KNR99,
MNSW98, Vio15, RS15, ATYY17]. The above theorem is stated in [KNR99] and [MNSW98];
in the latter it is also credited to [Smi88]. In [KNR99] the theorem is stated for one-way
private-coin communication; the result for public-coin SMP communication follows from
the fact that public-coin protocols for problems with domain size n can save at most
O(log log n) bits of communication over the private-coin protocol due to Newman’s theo-
rem.

However, as noted in a CSTheory StackExchange question of Sasho Nikolov [Nik20],
the complete proof is not provided in either of [KNR99, MNSW98]. The same lower bound
for quantum communication complexity is proved in [ATYY17], which implies the above
result. A direct proof for classical communication complexity was suggested as an answer to
[Nik20] by Amit Chakrabarti [Cha20]; we state this direct proof here for completeness and
we thank Eric Blais for communicating this reference to us. We require the Augmented-
Index communication problem and its lower bound from [MNSW98].

Definition B.0.2 (Augmented-Index). In the Augmented-Index communication prob-
lem, Alice receives input x ∈ {0, 1}k and Bob receives an integer i ∈ [k] along with the
values xj for all j > i. Bob should output the value xi.
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Theorem B.0.3 ([MNSW98]). Any public-coin randomized one-way communication pro-
tocol for Augmented-Index requires Ω(k) bits of communication.

Proof of Theorem B.0.1, [Cha20]. Given inputs x ∈ {0, 1}k and i ∈ [k] to the Augmented
Index problem, Bob constructs the string y ∈ {0, 1}k where yj = xj for all j > i and yi = 0,
and yj = 1 for all j < i. Consider the numbers a, b ∈ [2k] where the binary representation
of a is x, with bit k being the most significant and bit 1 the least significant, and the binary
representation of b is y, with the bits in the same order. If xi = 1, then since yi = 0 and
yj = xj for j > i, it holds that b < a. If xi = 0, then since yj = xj for j ≥ i and yj = 1 for
j < i it holds that b ≥ a. Therefore, computing Greater-Than on inputs a, b will solve
Augmented Index. By Theorem B.0.3, the communication cost of Greater-Than for
n = 2k is at least Ω(k) = Ω(log n).
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