21 research outputs found

    Investigation of thin gate-stack Z2-FET devices as capacitor-less memory cells

    Get PDF
    Thin-oxide Z2-FET cells operating as capacitor-less DRAM devices are experimentally demonstrated. Both the retention time and memory window demonstrate the feasibility of implementing this cell in advanced 28 nm node FD SOI technology. Nevertheless a performance drop and higher variability with respect to thicker oxide Z2-FET cells are observed.H2020 REMINDER European project (grant agreementNo 687931) and TEC2014-59730 are thanked for financialsupport

    2D-TCAD Simulation on Retention Time of Z2FET for DRAM Application

    Get PDF
    Traditional memory devices are facing more challenges due to continuous down-scaling. 6T-SRAM suffers from variability [1-2] and reliability [3-4] issues, which introduce cell stability problems. DRAM cells with one transistor, one capacitor (1T1C) struggle to maintain refresh time [5-6]. Efforts have been made to find new memory solutions, such as one transistor (1T) solutions [7-9]. Floating body based memory structures are among the potential candidates, but impact ionization or band-to-band tunnelling (B2BT) limits their refresh time [10]. A recently proposed zero impact ionization and zero subthreshold swing device named Z2FET [9, 11-12] has been demonstrated and is a promising candidate for 1T DRAM memory cell due to technology advantages such as CMOS technology compatibility, novel capacitor-less structure and sharp switching characteristics. In the Z2FET memory operation, refresh frequency is determined by data retention time. Previous research [11-12] is lacking systematic simulation analysis and understanding on the underlying mechanisms. In this paper, we propose a new simulation methodology to accurately extract retention time in Z2FET devices and understand its dependency on applied biases, temperatures and relevant physical mechanisms. Since the stored ‘1’ state in Z2FET is an equilibrium state [9, 11-12] and there is no need to refresh, we will concentrate on state ‘0’ retention. Two types of ‘0’ retention time: HOLD ‘0’ and READ ‘0’ retention time will be discussed separately

    Dual PN Source/Drain Reconfigurable FET for Fast and Low-Voltage Reprogrammable Logic

    Get PDF
    Schottky junction reconfigurable FETs suffer from limited output currents to drive the following stages, jeopardizing their viability for high-end applications. This drawback becomes dramatic at low voltages. In this work, an analogous novel low-bias reprogrammable device is presented. It features a dual PN doping at source and drain which improves the driving current density thanks to the presence of both electron and hole reservoirs within the same structure. 3D-TCAD results for this innovative device on advanced Silicon-on-Insulator technology are presented and compared with traditional reconfigurable FETs and CMOS structures

    Extended analysis of the Z2-FET: Operation as capacitor-less eDRAM

    Get PDF
    This article has been accepted for publication by IEEE "Navarro Moral, C.; et al. Extended analysis of the Z2-FET: Operation as capacitor-less eDRAM. IEEE Transactions on Electron Devices, 64(11): 4486-4491 (2017). DOI: 10.1109/TED.2017.2751141(c) 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works."The Z2-FET operation as capacitorless DRAM is analyzed using advanced 2-D TCAD simulations for IoT applications. The simulated architecture is built based on actual 28-nm fully depleted silicon-on-insulator devices. It is found that the triggering mechanism is dominated by the front-gate bias and the carrier’s diffusion length. As in other FB-DRAMs, the memory window is defined by the ON voltage shift with the stored body charge. However, the Z2-FET’s memory state is not exclusively defined by the inner charge but also by the reading conditions

    Memory Operation of Z2-FET Without Selector at High Temperature

    Get PDF
    This work was supported in part by the REMINDER European Project under Grant 687931; in part by the Ministry of Trade, Industry, & Energy (MOTIE)under Grant 10080526; and in part by the Korea Semiconductor Research Consortium (KSRC) Support Program for the development of future semiconductor devices.The electrical performance of Z2-FET and memory operations of matrix are demonstrated at high temperatures up to 125 ◦C. The sharp subthreshold slope is maintained and the reliable operation is ensured within the memory window of 229 mV even though the turn on voltage of ‘0’- and ‘1’-states are shifted to lower voltage. The ‘0’-state current remains low while the ‘1’-state current gradually increases as the temperature increases leading to higher current margin. At the elevated temperature, the potential barriers are slightly reduced but does not collapse, which leads to the successful memory operation. However, increasing the temperature over 125 ◦C, the potential barrier at the ‘0’-state is significantly reduced and causes the failure of memory operation with high ‘0’-state current. The matrix demonstrates reliable memory operations without using selector circuits even at 125 ◦C.REMINDER European Project 687931Ministry of Trade, Industry, Energy (MOTIE) 10080526Korea Semiconductor Research Consortium (KSRC

    Dispositifs innovants à pente sous le seuil abrupte (du TEFT au Z -FET)

    Get PDF
    Tunnel à effet de champ (TFET) et un nouveau composant MOS à rétroaction que nous avons nommé le Z2-FET.Le Z2-FET est envisagé pour la logique faible consommation et pour les applications mémoire compatibles avecles technologies CMOS avancées. Nous avons étudié de manière systématique des TFETs avec différents oxydesde grille, matériaux et structures de canal, fabriqués sur silicium sur isolant totalement déserté (FDSOI). Lesmesures de bruit à basse fréquence (LFN) sur TFETs montrent la prédominance d'un signal aléatoiretélégraphique (RTS), qui révèle sans ambiguïté le mécanisme d effet tunnel. Un modèle analytique combinantl effet tunnel et le transport dans le canal a été développé, montrant un bon accord entre les résultatsexpérimentaux et les simulations.Nous avons conçu et démontré un nouveau dispositif (Z2-FET, pour pente sous le seuil verticale et zéroionisation par impact), qui présente une commutation extrêmement abrupte (moins de 1 mV par décade decourant), avec un rapport ION / IOFF >109, un large effet de hystérésis et un potentiel de miniaturisation jusqu'à 20nm. La simulation TCAD a été utilisée pour confirmer que la commutation électrique du Z2-FET fonctionne parl'intermédiaire de rétroaction entre les flux des électrons et trous et leurs barrières d'injection respectives. LeZ2-FET est idéalement adapté pour des applications mémoire à un transistor. La mémoire DRAM basée sur leZ2-FET montre des performances très bonnes, avec des tensions d'alimentation jusqu'à 1,1 V, des temps derétention jusqu'à 5,5 s et des vitesses d'accès atteignant 1 ns. Une mémoire SRAM utilisant un seul Z -FET estégalement démontrée sans nécessité de rafraichissement de l information stockée.Notre travail sur le courant GIDL intervenant dans les MOSFETs de type FDSOI a été combiné avec leTFET afin de proposer une nouvelle structure de TFETs optimisés, basée sur l'amplification bipolaire du couranttunnel. Les simulations de nouveau dispostif à injection tunnel amélioré par effet bipolaire (BET-FET) montrentdes résultats prometteurs, avec des ION supérierus à 4mA/ m et des pentes sous le seuil SS inférieures à 60mV/dec sur plus de sept décades de courant, surpassant tous les TFETs silicium rapportés à ce jour.La thèse se conclut par les directions de recherche futures dans le domaine des dispositifs à pente sous leseuil abrupte.This thesis is dedicated to studying sharp switching devices, including the tunneling field-effect-transistor(TFET) and a new feedback device we have named the Z2-FET, for low power logic and memory applicationscompatible with modern silicon technology. We have extensively investigated TFETs with various gate oxides,channel materials and structures, fabricated on fully-depleted silicon-on-insulator (FD-SOI) substrates.Low-frequency noise (LFN) measurements were performed on TFETs, showing the dominance of randomtelegraphy signal (RTS) noise, which reveals the tunneling mechanism. An analytical TFET model combiningtunneling and channel transport has been developed, showing agreement with the experimental and simulationresults.We also conceived and demonstrated a new device named the Z2-FET (for zero subthreshold swing andzero impact ionization), which exhibits extremely sharp switching with subthreshold swing SS 4.10-3 A/ mand SS < 60 mV/dec over 7 decades of current, outperforming all silicon-compatible TFETs reported to date.The thesis concludes with future research directions in the sharp-switching device arena.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Thorough understanding of retention time of Z2FET memory operation

    Get PDF
    A recently reported zero impact ionization and zero subthreshold swing device Z2FET is a promising candidate for capacitor-less dynamic random access memory (DRAM) memory cell. In the memory operation, data retention time determines refresh frequency and is one of the most important memory merits. In this paper, we have systematically investigated the Z2FET retention time based on a newly proposed characterization methodology. It is found that the degradation of HOLD ``0'' retention time originates from the gated-silicon on insulator (SOI) portion rather than the intrinsic-SOI region of the Z2FET. Electrons accumulate under front gate and finally collapse the potential barrier turning logic ``0''-``1.'' It appears that Shockley-Read-Hall (SRH) generation is the main source for electrons accumulation. Z2FET scalability has been investigated in terms of retention time. As the Z2FET is downscaled, the mechanism dominating electrons accumulation switches from SRH to parasitic injection of electrons from the cathode. The results show that the downscaling of Lg has little effect on data ``0'' retention, but Lin is limited to ~ 125 nm. An optimization method of the fabrication process is proposed based on this new understanding, and Lin can be further scaled down to 75 nm. We have demonstrated by 2-D TCAD simulation that Z2FET is a promising DRAM cells' candidate particularly for Internet-of-Things applications

    양성 피드백 전계 효과 트랜지스터를 활용한 저전력 시냅스 소자

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 전기·정보공학부, 2020. 8. 박병국.신경망 모방 시스템은 폰 노이만 구조의 계산 시스템이 가지는 약점인 복잡한 인식 문제를 해결과 에너지 소비의 효율성의 가능성으로 수년간 많은 분야에서 연구되고 있고 일부는 상용화 단계에까지 이르렀다. 이 신경 모방 시스템은 시냅스 모방 소자와 뉴런 회로로 이루어 지는데 시냅스 모방 소자는 신호전달과 기억 기능을 담당하고 있다. 시냅스는 전체 신경모방 시스템에서 가장 큰 부분을 차지 한다. 따라서 시스템내 대부분의 전력 소비가 시냅스 부분에서 일어나게 되므로 저전력 구현이 필수적인 요소다. 이런 이유로 저전력 소자에 특화된 소자인 터널 전계 효과 트랜지스터 (TFET), 네거티브 커페시터 전계효과 트랜지스터 (NCFET), 강유전계 효과 트랜지스터 (FeFET) 및 피드백 전계 효과 트랜지스터 (FBFET) 등이 연구되고 있다. 이런 다양한 소자중에 현재의 상보형 금속-산화물-반도체 (CMOS) 공정을 그대로 사용할 수 있는 피드백 전계 효과 트랜지스터는 뉴런 회로와 동시에 제작이 필요한 신경망 모방 시스템에서 대량 생산 가능성에 있어서 매우 유리하다. 본 논문에서는 이 피드백 전계 효과 트랜지스터를 기반으로 하고 NAND 플래시 메모리 구조에서 사용하는 파울러 노르다임 터널링(Fowler-Nordheim tunneling)을 방식으로 차치 트랩 층에 시냅스 소자의 가중치를 기억하는 방식의 시냅스 장치를 제안하고 있다. 해당 소자의 저전력 특성과 구동 방법을 테크놀로지 컴퓨터 지원 설계 (TCAD) 시뮬레이션을 사용하여 유효성을 확인 하였고, 서울대 반도체 공동 연구소 (ISRC) 의 CMOS 공정을 사용하여 소자를 제작하였고 전기적 특성 측정을 통해 제안된 방법을 확인 및 검증 하였다.The neuromorphic system has been widely used and commercialized in many fields in recent years due to its potential for complex problem solving and low energy consumption. The basic elements of this neuromorphic system are synapse and neuron circuit, in which synapse research is focused on emerging electronic devices such as resistive change memory (RRAM), phase-change memory (PCRAM), magnetoresistive random-access memory (MRAM), and FET-based devices. Synapse is responsible for the memory function of the neuromorphic system, that is, the current sum quantization with the specific weight value. and the neuron is responsible for integrating signals that have passed through the synapse and transmitting information to the next synapse. Since the synapse element is the largest portion of the whole system, It consumes most of the power of the entire system. So low power implementation is essential for the synapse device. In order to reduce power consumption, it is necessary to lower the off-current leakage and operate on low voltage. To overcome the limitation of MOSFETs in terms of ION/IOFF ratio, small sub-threshold swing and power consumption, various devices such as a tunneling field-effect transistor (TFET), negative capacitor field-effect transistor (NCFET), ferroelectric field-effect transistor (FeFET), and feedback field-effect transistor (FBFET) have been studied. Another important factor in synapse devices is the cost aspect. The deep learning technology that made Alpha-go exist is also an expensive system. As we can see from the coexistence of supercomputers and personal computers in the past, the development of low-cost chips that can be used by individuals, in the end, is inevitable. Because a CMOS compatible process must be possible since the neuron circuit is needed to fabricate at the same time, which helps to ensure mass productivity. FET-based devices are CMOS process compatible, which is suitable for the mass production environment. A positive FBFET (Feedback Field Effect Transistor) device has a very low sub-threshold current, SS (subthreshold swing) performance, and ION/IOFF ratio at the low operating voltage. We are proposing the synaptic device with a positive FBFET with a storage layer. From the simulation study, the operation method is studied for the weight modulation of the synaptic device and electrical measurement confirms accumulated charge change by program and erase condition each. These results for the synaptic transistor in this dissertation can be one of the candidates in low power neuromorphic systems.1 Introduction 1 1.1 Limitation of von Neumann Architecture computing 1 1.2 Biological Synapse 3 1.3 Spiking Neural Network (SNN) 5 1.4 Requirements of synaptic device 7 1.5 Advantage of Feedback Field-effect transistor (FBFET) 9 1.6 Outline of the Dissertation 10 2 Positive Feedback FET with storage layer 11 2.1 Normal operation Principle of FBFET 14 2.2 Operation Mechanism by Drain Input Pulse 16 2.3 Weight Modulation Mechanism 20 2.4 TCAD Simulation Result for Weighted Sum 23 2.5 TCAD Simulation Result for Program and Erase 28 2.6 Array structure and Inhibition scheme 31 3 Fabrication and Measurement 36 3.1 Fabrication process of FBFET synapse 37 3.2 Measurement result 41 3.3 Hysteresis Reduction 49 3.4 Temperature Compensation method 53 4 Modeling and High level simulation 56 4.1 Compact modeling for SPICE 56 4.2 SPICE simulation for VMM 60 5 Conclusion 64 5.1 Review of Overall Work 64 5.2 Future work 65 Abstract (In Korean) 75Docto

    A Split-Gate Positive Feedback Device With an Integrate-and-Fire Capability for a High-Density Low-Power Neuron Circuit

    Get PDF
    Hardware-based spiking neural networks (SNNs) to mimic biological neurons have been reported. However, conventional neuron circuits in SNNs have a large area and high power consumption. In this work, a split-gate floating-body positive feedback (PF) device with a charge trapping capability is proposed as a new neuron device that imitates the integrate-and-fire function. Because of the PF characteristic, the subthreshold swing (SS) of the device is less than 0.04 mV/dec. The super-steep SS of the device leads to a low energy consumption of ∼0.25 pJ/spike for a neuron circuit (PF neuron) with the PF device, which is ∼100 times smaller than that of a conventional neuron circuit. The charge storage properties of the device mimic the integrate function of biological neurons without a large membrane capacitor, reducing the PF neuron area by about 17 times compared to that of a conventional neuron. We demonstrate the successful operation of a dense multiple PF neuron system with reset and lateral inhibition using a common self-controller in a neuron layer through simulation. With the multiple PF neuron system and the synapse array, on-line unsupervised pattern learning and recognition are successfully performed to demonstrate the feasibility of our PF device in a neural network

    Null convention logic circuits for asynchronous computer architecture

    Get PDF
    For most of its history, computer architecture has been able to benefit from a rapid scaling in semiconductor technology, resulting in continuous improvements to CPU design. During that period, synchronous logic has dominated because of its inherent ease of design and abundant tools. However, with the scaling of semiconductor processes into deep sub-micron and then to nano-scale dimensions, computer architecture is hitting a number of roadblocks such as high power and increased process variability. Asynchronous techniques can potentially offer many advantages compared to conventional synchronous design, including average case vs. worse case performance, robustness in the face of process and operating point variability and the ready availability of high performance, fine grained pipeline architectures. Of the many alternative approaches to asynchronous design, Null Convention Logic (NCL) has the advantage that its quasi delay-insensitive behavior makes it relatively easy to set up complex circuits without the need for exhaustive timing analysis. This thesis examines the characteristics of an NCL based asynchronous RISC-V CPU and analyses the problems with applying NCL to CPU design. While a number of university and industry groups have previously developed small 8-bit microprocessor architectures using NCL techniques, it is still unclear whether these offer any real advantages over conventional synchronous design. A key objective of this work has been to analyse the impact of larger word widths and more complex architectures on NCL CPU implementations. The research commenced by re-evaluating existing techniques for implementing NCL on programmable devices such as FPGAs. The little work that has been undertaken previously on FPGA implementations of asynchronous logic has been inconclusive and seems to indicate that asynchronous systems cannot be easily implemented in these devices. However, most of this work related to an alternative technique called bundled data, which is not well suited to FPGA implementation because of the difficulty in controlling and matching delays in a &#039;bundle&#039; of signals. On the other hand, this thesis clearly shows that such applications are not only possible with NCL, but there are some distinct advantages in being able to prototype complex asynchronous systems in a field-programmable technology such as the FPGA. A large part of the value of NCL derives from its architectural level behavior, inherent pipelining, and optimization opportunities such as the merging of register and combina- tional logic functions. In this work, a number of NCL multiplier architectures have been analyzed to reveal the performance trade-offs between various non-pipelined, 1D and 2D organizations. Two-dimensional pipelining can easily be applied to regular architectures such as array multipliers in a way that is both high performance and area-efficient. It was found that the performance of 2D pipelining for small networks such as multipliers is around 260% faster than the equivalent non-pipelined design. However, the design uses 265% more transistors so the methodology is mainly of benefit where performance is strongly favored over area. A pipelined 32bit x 32bit signed Baugh-Wooley multiplier with Wallace-Tree Carry Save Adders (CSA), which is representative of a real design used for CPUs and DSPs, was used to further explore this concept as it is faster and has fewer pipeline stages compared to the normal array multiplier using Ripple-Carry adders (RCA). It was found that 1D pipelining with ripple-carry chains is an efficient implementation option but becomes less so for larger multipliers, due to the completion logic for which the delay time depends largely on the number of bits involved in the completion network. The average-case performance of ripple-carry adders was explored using random input vectors and it was observed that it offers little advantage on the smaller multiplier blocks, but this particular timing characteristic of asynchronous design styles be- comes increasingly more important as word size grows. Finally, this research has resulted in the development of the first 32-Bit asynchronous RISC-V CPU core. Called the Redback RISC, the architecture is a structure of pipeline rings composed of computational oscillations linked with flow completeness relationships. It has been written using NELL, a commercial description/synthesis tool that outputs standard Verilog. The Redback has been analysed and compared to two approximately equivalent industry standard 32-Bit synchronous RISC-V cores (PicoRV32 and Rocket) that are already fabricated and used in industry. While the NCL implementation is larger than both commercial cores it has similar performance and lower power compared to the PicoRV32. The implementation results were also compared against an existing NCL design tool flow (UNCLE), which showed how much the results of these implementation strategies differ. The Redback RISC has achieved similar level of throughput and 43% better power and 34% better energy compared to one of the synchronous cores with the same benchmark test and test condition such as input sup- ply voltage. However, it was shown that area is the biggest drawback for NCL CPU design. The core is roughly 2.5&amp;times; larger than synchronous designs. On the other hand its area is still 2.9&amp;times; smaller than previous designs using UNCLE tools. The area penalty is largely due to the unavoidable translation into a dual-rail topology when using the standard NCL cell library
    corecore