
 

 

저 시-비 리- 경 지 2.0 한민  

는 아래  조건  르는 경 에 한하여 게 

l  저 물  복제, 포, 전송, 전시, 공연  송할 수 습니다.  

다 과 같  조건  라야 합니다: 

l 하는,  저 물  나 포  경 ,  저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.  

l 저 터  허가를 면 러한 조건들  적 되지 않습니다.  

저 에 른  리는  내 에 하여 향  지 않습니다. 

것  허락규약(Legal Code)  해하  쉽게 약한 것 니다.  

Disclaimer  

  

  

저 시. 하는 원저 를 시하여야 합니다. 

비 리. 하는  저 물  리 목적  할 수 없습니다. 

경 지. 하는  저 물  개 , 형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


Ph.D. DISSERTATION

Low Power Synaptic Device using
Positive Feedback Field Effect Transistor

with Charge Trap Layer

양성피드백전계효과트랜지스터를활용한저전력
시냅스소자

BY

KIM SUHYEON

AUGUST 2020

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY



Ph.D. DISSERTATION

Low Power Synaptic Device using
Positive Feedback Field Effect Transistor

with Charge Trap Layer

양성피드백전계효과트랜지스터를활용한저전력
시냅스소자

BY

KIM SUHYEON

AUGUST 2020

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY



Low Power Synaptic Device using
Positive Feedback Field Effect Transistor

with Charge Trap Layer

양성피드백전계효과트랜지스터를활용한저전력
시냅스소자

지도교수박병국

이논문을공학박사학위논문으로제출함

2020년 8월

서울대학교대학원

전기 ·정보공학부

김수현

김수현의공학박사학위논문을인준함

2020년 8월

위 원 장: 이종호 (인)
부위원장: 박병국 (인)
위 원: 박철홍 (인)
위 원: 조성재 (인)
위 원: 김형진 (인)



Abstract

The neuromorphic system has been widely used and commercialized in many

fields in recent years due to its potential for complex problem solving and low en-

ergy consumption. The basic elements of this neuromorphic system are synapse and

neuron circuit, in which synapse research is focused on emerging electronic devices

such as resistive change memory (RRAM), phase-change memory (PCRAM), magne-

toresistive random-access memory (MRAM), and FET-based devices.

Synapse is responsible for the memory function of the neuromorphic system, that

is, the current sum quantization with the specific weight value. and the neuron is re-

sponsible for integrating signals that have passed through the synapse and transmitting

information to the next synapse. Since the synapse element is the largest portion of

the whole system, It consumes most of the power of the entire system. So low power

implementation is essential for the synapse device. In order to reduce power consump-

tion, it is necessary to lower the off-current leakage and operate on low voltage. To

overcome the limitation of MOSFETs in terms of ION/IOFF ratio, small sub-threshold

swing and power consumption, various devices such as a tunneling field-effect tran-

sistor (TFET), negative capacitor field-effect transistor (NCFET), ferroelectric field-

effect transistor (FeFET), and feedback field-effect transistor (FBFET) have been stud-
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ied.

Another important factor in synapse devices is the cost aspect. The deep learning

technology that made Alpha-go exist is also an expensive system. As we can see from

the coexistence of supercomputers and personal computers in the past, the develop-

ment of low-cost chips that can be used by individuals, in the end, is inevitable. Be-

cause a CMOS compatible process must be possible since the neuron circuit is needed

to fabricate at the same time, which helps to ensure mass productivity. FET-based

devices are CMOS process compatible, which is suitable for the mass production en-

vironment.

A positive FBFET (Feedback Field Effect Transistor) device has a very low sub-

threshold current, SS (subthreshold swing) performance, and ION/IOFF ratio at the low

operating voltage. We are proposing the synaptic device with a positive FBFET with a

storage layer.

From the simulation study, the operation method is studied for the weight modu-

lation of the synaptic device and electrical measurement confirms accumulated charge

change by program and erase condition each. These results for the synaptic transistor

in this dissertation can be one of the candidates in low power neuromorphic systems.
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Chapter 1

Introduction

1.1 Limitation of von Neumann Architecture computing

The conventional computing system has reached the level of solving almost all prob-

lems in nature based on CMOS logic and memory using von Neumann architecture. [1]

The result was successful in sending humans to the moon and recreating the Big Bang.

The evolution of semiconductors supported it by enabling faster computing through

the development of device technology. But von Neumann also recognized the process-

ing speed bottleneck, which is from existing of data transferring between the memory

system and CPU. The system performance is is determined by the speed of transferring

between CPU and storage through BUS. [2, 3, 4] Fig. 1.1

To solve these problems, parallel computing, in-memory computing, and neuro-

1



Figure 1.1: Basic structure of a classical von Neumann architecture.

morphic computing have been proposed. [6, 7, 8] Parallel computing achieved perfor-

mance improvement. However, It also has a limitation to improve speed by Amdahl’s

law. Fig. 1.2 Currently, in-memory computing and neuromorphic computing are being

studied. Especially, neuromorphic computing become a hot topic because it is inspired

by the biological system and estimated to improve power consumption and perfor-

mance.
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Figure 1.2: Amdahl’s law and strong scaling.

1.2 Biological Synapse

The biological nervous system consists of neurons and synapses. synapse is responsi-

ble for receiving and transmitting signals between neurons. This is called neurotrans-

mission. The signal transmitted through the synapse is integrated through the neuron,

and the neuron sends the signal to the connected post-synapse. These connections are

continuously connected and form a neural network. [5] Fig. 1.3

The essential role of the synapse is to determine the frequency and pattern of the

signal when sending the received signal to the next neuron. One synapse amplifies

the signal, and another synapse attenuates the signal. The characteristic value of each
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Figure 1.3: Series of neurons and synapses

synapse is called synaptic weight. With this combination of synapses and neurons,

humans can recognize and remember the information. From this mechanism, synapse

has to remember a certain weight value. This behavior is similar to a memory device.

And neuron is corresponding to logic circuit.

Biological synapse transmits signals in a chemical way. The electrical signal trans-

mitted to the axon terminal releases a neurotransmitter and transmits information to

the dendritic spine of the next neuron by the receptor. This synapse is classified as an

inhibitory synapse that reduces the membrane potential of the synapse and the excita-

tory synapse that amplifies information. Each synapse changes their strength through

the learning mechanism by changing the receptor structure. This connected system is

explained by the neural network model.
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1.3 Spiking Neural Network (SNN)

The neural network system was created as a digital model by utilizing the existing

semiconductor system. The digital system, called the artificial neural network (ANN)

system, has been well known in computing systems of von Neumann architecture

through Deep-learning algorithms such as a fully connected network (FCN), convo-

lutional neural network (CNN), recurrent neural network (RNN) and so on. [9, 10, 11,

12, 13] This digital system contributed to solving the problem of natural language pro-

cessing and pattern recognition. This system calculates the weighted sum of the input

data with each synapse’s weight value. This weighted sum calculation is vector dot

production. So we called it vector-matrix multiplication (VMM). This operation can

greatly increase the calculation speed by using parallel computing. Therefore, a paral-

lel processor such as a GPU is often used to calculate the ANN model. Matrix multipli-

cation required a large number of parallel devices. This system requires many synapses

and circuits. Therefore, big computing power is mandatory. Then, power consumption

and cost problems are inevitable. To solve this fundamental problem, a hardware-based

analog neural network model was studied. [14, 15, 16, 17, 18, 19, 20, 21, 22, 23] Fig.

1.4 Existing GPU-based digital architecture is classified into a synapse device and

neuron circuit similar to the biological neural network system. The VMM operation

is performed in the logic part based on stored weight value in memory. This memory

5



Figure 1.4: Neural network system for digital and analog model [24]

part architecture is replaced by the memorable device in SNN which called synapse

device. The synaptic device has a role which is information connector and memory of

synaptic weight. And the neuron circuit takes the place of analog CMOS circuit. As

a synapse device candidate, all kinds of the memory devices are being studied from

existing non-volatile memory to emerging devices.

Existing devices are NAND-Flash RAM, NOR-Flash RAM, SRAM, DRAM, and

emerging devices are Resistive-switiching RAM (RRAM), Ferro-electric FET (Fe-

FET), phase-change RAM (PCRAM), and magnetic RAM (MRAM) is being studied.

[25, 26, 27, 28, 29, 30, 31] Fig. 1.5 Each device has a pros and cons as is.

6



(a) (b)

(c) (d)

Figure 1.5: Various synaptic Devices (a) Resistive Switching RAM (RRAM) [26] (b)

Dual gate silicon FET [27] (c) Poly-silicon based synapse [28] (d) Ferroelectric FET

[29]

1.4 Requirements of synaptic device

As described in the previous paragraph, the neuromorphic system must have both

synapse part and neuron part. We can make each part separately. But it’s not efficiency

in terms of cost. The neuron circuit is same as general CMOS circuit that follows a

standard semiconductor process. But if additional special process for synapse device,

there should be performance degradation, product variation, and cost overhead issues.

This is one of most important requirements for synapse mass production. In addition,

7



Figure 1.6: Synaptic device requirements

a low current operation is necessary because the synapse device occupies most of the

entire neural network system.[32]

In addition, weight modulation which is a synapse-specific function is required

to convert the pre-synaptic signal to a specific size and frequency signal according to

each weight size. High-level current quantization property and low current variability

can improve system accuracy. These are whole memory related characteristic. That is

function of program (PGM) and erase (ERS). And high retention property is also re-

quired because energy consumption is quite big in PGM and ERS. An on line learning

function is also required.

Most of all, low current characteristic is the important factor. Even ANN has shown

great achievement in many ways. Super computing power is mandatory. [33] Fig. 1.6
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1.5 Advantage of Feedback Field-effect transistor (FBFET)

FBFETs are representative devices that can meet the requirements of synaptic devices

which are mentioned in previous chapter. FBFETs has attracted attention as a future

low-power device with its ultimate sub-threshold characteristic, high on/off ratio, low

leakage , and low voltage operation. There are many types of FBFEETs such as a dual

gated thyristor, gated diode, Z2-FET, and Z3-FET. [34, 35, 36, 37] These devices are

already used widely for the various fields in the semiconductor business.

FBFETs are operating with very low on current ION because off current IOFF can

be suppressed. [38, 39, 40, 41] and FBFETs can be fabricated with the standard CMOS

mass production method. These two advantages are the most attractive point. That is,

FBFETs can be fabricated with neuron circuits with low operating voltage. If we can

add function of memory in FBFETs, there must be a change to use synaptic device in

powerful ways.
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1.6 Outline of the Dissertation

The purpose of this dissertation is to propose the novel synaptic device using FBFETs

with the storage layer, and the main targets are presentations of the structure of FBFET

synapse, the operation method as synaptic device, PGM-ERS conditions with inhibi-

tion cases in array scheme, fabrication method, and array structure with this device.

Based on the previous discussion, The remainder of this dissertation is organized as

follows. Chapter 2 introduces the basic operation physics of FBFETs and method as

the synaptic device and covers verifying operation by TCAD simulation. In chapter

3, the process flow for the fabrication is described and measurement data of the fab-

ricated device with basic feedback operation, program erase operation, and hysteresis

reduction method will be proposed. and further will be discussed about the temperature

compensation method which is one of the weakest points in FBFETs. FBFETs have

a high sensitivity to temperature because it has basically diode operation. In chapter

5, a device model developed by the current equation from measured data will be dis-

cussed for SPICE simulation for VMM. Chapter 5 concludes this dissertation with a

summary.
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Chapter 2

Positive Feedback FET with storage layer

Fig.2.1 is a device structure. The designed FBFET is a n++-p+-n+-p++-doped double

gates structure. The barrier height of the 1st channel region is adjusted by p-type im-

plantation dose. The well depth of the 2nd channel region can be self-aligned im-

plantation after 1st Gate patterning. A self-aligned implantation can define a precise

junction position. The storage layer(O/N/O) is deposited after 2nd channel implanta-

tion. Only one mask is added compared to a conventional CMOS process. The 1st Gate

controls the potential barrier of the electron. The 2nd Gate is used for a program and

erase operation. The depth of well on the 2nd channel is controlled by the amount of

trapped electron or trapped hole charge in the storage layer which consists of Silicon

Oxide/Silicon Nitride/Silicon Oxide (ONO) structure between the 2nd Gate and the

n+ doped channel. The specific parameters which are used for the simulation are dis-

11



closed in Table Fig.2.1. We use a reasonable value that can match the feature size of

the device which is used as a reference.

Parameter Silicon Value

Gate oxide thickness 0.009µm

Tunnel oxide thickness 0.003µm

Silicon Nitride thickness 0.007µm

Body thickness 0.1µm

Gate length (1, 2) 0.4µm

Body1 (p)/Body2 (n) doping concentration 2 × 1018cm-3

Source (n)/drain (p) doping concentration 1 × 1021cm-3

Table 2.1: Parameters of dual gate charge storable FBFET synapse for TCAD simula-

tion.
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(a)

(b)

Figure 2.1: Schematic illustration (a) 2D scheme with doping profile (b) 3D illustration
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2.1 Normal operation Principle of FBFET

The 1st Gate controls the electron’s potential barrier height, and 2nd Gate adjusts the

potential well depth for charge integration. When the n+ doped source is grounded and

a positive voltage is applied to the 2nd Gate, any charge can not move through channel

by each potential barrier. Once the positive voltage is biased to the 1st Gate and drain,

electrons are injected from the source and accumulate in the n-type potential well

under 2nd Gate. These electrons lower the potential barrier height of the valence band

on the drain side. This barrier lowering allows the hole in the drain to be injected into

the p-doped body under the 1st Gate. In the same way, the accumulated holes lower

the potential barrier of the band at the source side for electron injection. As a result,

the feedback loop can be formed, which makes the potential barrier height be very low

and then the electron and hole currents increase dramatically at some point. The drain

current is not changed by changing 1st Gate voltage level because the FBFET acts like

a forward-biased p-n diode after the energy band is almost flat and the feedback loop

is formed. Fig.2.2

But this mechanism which is triggering by 1st Gate voltage control has a serious

problem. Because FBFET can not be turned off status by 1st Gate voltage control only.

This device stays on-state once it turned on. The only way is to set the drain voltage to

0V to go off-state. From the viewpoint of the synapse device, when the 1st Gate input

14



Figure 2.2: Band diagram of FBFET by 1st Gate input signal.① As 1st Gate voltage

increases, potential barrier of body1 for electron is lowered.② Electron from source

moves to body2 through potential barrier in body1. ③ Electron is accumulated in

body2. It raises the energy band level.④ Potential barrier is lowering by accumulated

electrons in body2. Then holes can move body1. Positive feedback occurs by this flow.

signal disappears, the drain bias voltage must also be synchronized to 0V. This method

is not suitable for asynchronous SNN systems. Therefore, we need to find a way to

control the device with one input signal.
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2.2 Operation Mechanism by Drain Input Pulse

The method using 1st Gate bias voltage can control feedback more intuitively. As men-

tioned earlier, you cannot create an asynchronous SNN system in this way. Therefore,

in order to use it as a synaptic device, it is necessary to control the device by adjusting

the drain bias voltage. When a positive drain bias is applied to 1st Gate while main-

taining an appropriate bias voltage, the hole barrier between the body2 region and the

drain is lowered, and the hole over the barrier is accumulated in body1, thereby low-

ering the conduction band energy of electrons. When the injected hole has a sufficient

lifetime to accumulate in body1, it continuously lowers an electron barrier height in

the body1 region, which is a condition that can make feedback. Fig.2.3

Weight modulation is required for use as a synapse device. When the amount of

charge is adjusted in the O/N/O storage layer under 2nd Gate, an electric field is created

according to the amount of trapped charge, and this electric field changes the channel

potential. Eventually, the energy of the valence band can be controlled by changing the

potential applied to the channel. When the electron is trapped, the band energy can be

linearly raised. Since the body2 well depth becomes shallow, the device can quickly

reach the feedback state. Fig.2.4 2.5
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Figure 2.3: Band diagram of FBFET by drain input signal. ① Hole moves to body1

through barrier of 2nd channel. Accumulated holes make potential barrier lower on

body1. ② Electron from source moves to body2 over potential barrier in body1. ③

Electron is accumulated in body2. It raises the band energy. ④ Potential barrier is

lowering by accumulated electrons in body2. Positive feedback occurs by this flow
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Figure 2.4: Valence band energy increases by amount of trapped electron
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Figure 2.5: Linear correlation is between band energy and trapped density
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2.3 Weight Modulation Mechanism

In ANN, the weighted sum is defined as vector-matrix multiplication. The weight value

of the post neuron is the sum product of the input value and weight of each node. In a

typical SNN, the input signal is defined by the same spike frequency, and the weight

value of each synapse is defined by the device’s threshold voltage (VTH ). When VTH

is large, less current flows, and when VTH is small, a large current flows and the

amount of charge accumulated in the input capacitor of the Integrate-and-Fire neuron

circuit becomes the weighted sum. FBFET synapse can be used current modulation

by controlling device’s turn-on/turn-off time. As soon as the device turns on at the

same input pulse, the number of charges accumulated in the membrane capacitor is

the maximum. Even if FBFET synapse is off with input signal spike, no charge is not

accumulated in membrane capacitor.the relationship between off-state time and the

amount of accumulated charge is linear relation. Fig.2.6

Fig. 2.7 Shows the weighted sum modulation of the FBFET synapse. When the

pulse width is 400 µsec, if the time when the synapse is off is set to tOFF , the amount

of charge accumulated in the membrane capacitor is calculated as follows.

i = Cmem
dvmem

dt
(2.1)
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Figure 2.6: Weighted sum definition for each system ANN, SNN, FBFET synapse

∫
dvmem

dt
dt =

∫ tOFF

0
dt+

∫ PW

tOFF

ION

Cmem
dt (2.2)

∆vmem = −k1tOFF + k2 (2.3)

k1 =
ION

Cmem
, k2 =

ION

Cmem
PW (2.4)

Eventually, the change in membrane voltage is inversely proportional to tOFF .
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Figure 2.7: Weighted sum definition for FBFET synapse

Figure 2.8: Membrane voltage for Integrate-and-Fire neuron circuit

22



2.4 TCAD Simulation Result for Weighted Sum

Fig. 2.9 is a transient simulation result for the behavior of the FBFET synapse ac-

cording to the amount of electron trapped in the nitride storage layer. Device tOFF

decreases as the amount of trapped electrons increases. This is device VTH is corre-

sponding to turn-on time. As a result, when the drain voltage is 0.8V, it shows that it

can be modulated in the sub-µA current. It can be seen that the amount of accumu-

lation charge accumulated in the membrane capacitor of the neuron is proportional to

the trapped charge. At a charge density of 1.0 × 1017 to 7.0 ×S 1017, the operation

window is around 79% and has a relatively large modulation window. In some cases,

it is possible to enlarge the operation window using a larger trap.

It is physically possible to trap electrons close to 1.0 × 1019. So, it is possible to

secure the operation window using high trapped electrons, but the amount of trapped

electrons is limited in accumulation charge modulation. As Fig. Fig. 2.11 shows, the

accumulation charge is saturated when the trapped electron density goes above 1.0 ×

1018. The reason for this is shown in Fig. 2.12. The band energy changes linearly up

to about 1.0 × 1018, but if it is larger than that, the well depth is not sufficient, so that

the time for electrons to accumulate cannot be secured. To solve this, basically, there

is a method of lowering the band energy height by increasing the doping concentration

of the body2 part, and by trapping holes in the storage layer, the band energy can be
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Figure 2.9: Turn-on time modulation by amount of trapped electron

lowered to secure the operation window.
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Figure 2.10: Turn-on time modulation by amount of trapped electron time wise. Delay

time from time of VD-on
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Figure 2.11: Accumulation charge for higher trapped electron
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Figure 2.12: Band diagram for high trapped electron case
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2.5 TCAD Simulation Result for Program and Erase

In order to control the weight of the FBFET synapse, the program operation is needed

to control the number of electron traps in the nitride layer through FN tunneling. Con-

versely, when a negative weight is required, an electron trap can be removed or a hole

can be injected through an erase operation. Fig. 2.13 is the result of the program oper-

ation simulation. The parameters used in the simulation are in Table. 2.2 The trapped

electron are increases as the program pulse are given. Conversely, Trapped electrons

are reduced through the erase operation. This is the same as the operation method

of NAND device under mass production, and Incremental Step Pulse Programming

(ISPP) and Incremental Step Pulse Erasing (ISPE) can be used for accuracy and effi-

ciency of the program and erase. The erase efficiency is relatively low. Fig. 2.14 This

can be solved by applying a higher erase voltage, but there is a limit to hole injec-

tion. Basically, the body2 area is an environment with many donors through n-channel

doping, and the hole is extremely small. Because of this, it is considered that the erase

efficiency is low. To solve this, it can be solved by applying a positive drain bias during

erase and supplying a hole through the drain. Fig.2.15 As a result of the simulation, it

was confirmed that the erase efficiency increased about 100 times when 5 V drain bias

was applied.
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Figure 2.13: Potentiation by electron program

Pulse Width VGate2 Vdrain Vsource

PGM condition 100 µ sec 12 V 0 V 0 V

ERS condition 300 µ sec -10 V 0 V 0 V

Table 2.2: Condition of program and erase operation
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Figure 2.14: Depression by erase operation

Figure 2.15: Hole erase efficiency by applying positive bias at drain
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2.6 Array structure and Inhibition scheme

In order to use it as a synaptic device, the structure and operation method of the array

must be clear. In Fig. 2.16 Through the peripheral circuit, the pre-synaptic input signal

shares the drain input node of the synapse, and 2nd Gate used as the word line for the

program and erase is connected horizontally. The source terminal is connected in the

horizontal direction and connected to the post-synaptic output signal and sent to the

neuron circuit. Fig.2.17 is a 3D array schematic. As shown in the figure, a large penalty

is expected to control gate1 for each device. Therefore, gate1 should be connected in

common to reduce device variation due to floating. In the case of Z2-FET, gate1 is

intrinsic, but device variation may occur in this case. At the same time, it is possible

to implement a more accurate junction profile through the self align doping method of

the body1 region.

The inhibition method is very important for the program and erase operations in

an array structure. A specific device is needed to control to project the correct weight.

In this part, the result of ANN weight should be the same as possible, so the neural

network test through inference is the same. Fig.2.18 Indicates the case of the program

on the target synapse S00. At this time, the program voltage is applied to gate2 and the

program voltage is also applied to S10 connected in the horizontal direction. In this

state, both synapse S00 and S10 are programmed. At this time, if the same voltage as
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Figure 2.16: Synaptic array schematic

the program voltage is applied to the drain voltage, it has the same potential as the

voltage applied to gate2. In this case, as can be seen from the band diagram, the slope

of the band becomes smooth in S01. Therefore, the program is inhibited. Fig. 2.18 (c)

shows that electron trapped charge increases only in the case of S00 which is the target

synapse as a result of the simulation.

Similarly, Fig.2.19 Indicates the erase case. When the erase voltage is applied to

the drain, in the same way, it can be confirmed that the erase is inhibited in the case of

S10, which must be inhibited.
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Figure 2.17: 3D array schematic in bird-eye view
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(a) (b)

(c) (d)

Figure 2.18: Inhibition scheme in program operation (a) 2 by 2 array (b) table of op-

eration voltage (c) Trapped electron density for each case (d) Band diagram for each

case
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(a) (b)

(c) (d)

Figure 2.19: Inhibition scheme in program operation (a) 2 by 2 array (b) table of op-

eration voltage (c) Trapped electron density for each case (d) Band diagram for each

case
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Chapter 3

Fabrication and Measurement

In this chapter, process flow of FBFET synapse is explained with the schematic chart

and final output device picture. Next, the electrical characteristics of fabricated devices

are discussed.
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3.1 Fabrication process of FBFET synapse

Actual process experiments are performed for precisely designed features. Each step

was matched to the target value using a monitoring sample and confirmed using an

optical microscope and an elipso-meter. Fig. 3.1 shows the fabrication process of the

proposed FBFET synapse. The entire process was done with CMOS compatible pro-

cess and only one mask was added for dual-gate structure. Active was defined by

patterning on a silicon-on-insulator (SOI) wafer, and implantation was performed with

BF 2+ at a dose of 1×1013 cm−2. 1×1013 cm−2 doping is the concentration of body1

doping, and the channel doping value of NMOSFET is expected to have a threshold

voltage close to 0cF. 1st Gate oxide was subjected to dry oxidation 950◦C with a 10

nm target. After 1st Gate oxide formation, n+ doped polysilicon 1000Å was deposited

to form 1st Gate and 1st Gate was defined through patterning. Body2 was subjected to

n-type As+ doping at a dose of 2 × 1013 cm−2. The corresponding concentration was

determined through simulation and a relatively high doping concentration was used

to ensure sufficient well depth. Buffer oxide was removed by HF wet etching and dry

oxidation was performed at 800◦C for 30 sec for 3 nm tunneling oxide. After that,

8 nm of Si3N4 as a storage layer was deposited using LPCVD, and then 10 nm of

blocking oxide was deposited using MTO. Finally, for the formation of 2nd Gate, It

was completed through patterning after deposition of n+ doped poly 1000
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A. 3 × 1015 cm−2 high doping of As+ source and BF 2+ drain was performed by

ion implantation. Finally, a contact was formed through a back-end-of-line (BEOL)

process. Fig. 3.1 Shows the entire process flow as a 3D process simulation process. 3D

simulation was performed before the process to improve process accuracy. You can

check the pad of each source / drain / 1st Gate / 2nd Gate with shows SEM image. Fig.

3.3 The show s TEM image of the fabricated double gate FBFET synapse transistor. It

can be confirmed that the profile is correct compared to the target.
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Figure 3.1: Bird-eye view of process flow for fabrication by 3D process simulation

tool
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Figure 3.2: SEM image in bird-eye view

Figure 3.3: Cross sectional TEM image of FBFET synapse
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3.2 Measurement result

Fig. 3.4 shows the measurement result of drain current vs. 1st Gate voltage curves

according to the 2nd Gate voltage. As mentioned in introduction part, FBFET has a

extreme steep switching characteristic with low leakage current. The leakage current

is around 1.0 × 10−13µA. and on current is around 1.0 × 10−7µA. 6 ordered On/Off

ratio is measured with a sub-threshold slope (SS) of less than 0.55 mV/dec. One of

biggest issue in semiconductor device is a limitation to reduce threshold voltage. This

device can have close to 0 V threshold voltage based this measurement data.

To verify VT modulation by 2nd body potential barrier difference, varies 2nd Gate

applied voltage from 1V to 3V. This DC measurement result can be confirmed this

fabricated device is working in the low voltage operation environment.
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Figure 3.4: Low voltage operation measurement of FBFET Synapse (VG1 Operation)

Figure 3.5: Condition for gate1 control measurement
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Fig. 3.6 shows the measurement scheme of PGM transient. 1st read measurement

performs and 12 V 100µsec pulse was applied for each PGM. To remove hysteresis

effect on this measurement, 500µsec delay is placed after PGM operation. Based on

measurement, over 500µsec delay time is needed to avoid hysteresis distortion.

Fig. 3.7 is the overlapped transient measurement data by synchronizing input pulse

time. Initial delay time is largest in the data. But Device on-time delay is reducing by

number of PGM pulse. That is, tOFF value is decreasing by increasing trapped electron

amount on the storage layer. At the same time, delay time difference is also decreasing

as tOFF close to 0 sec. This is predicted from simulation due to small barrier height

between body1 and body2.

Low voltage operation is a strong point for FBFETs device. But we use 2.7 V

drain input signal. Then This device has µA level operation current. This is a reason

from the variation on fabrication. Around 250µ space is measured by TEM image in

Fig. 3.3. This space make floating region on read operation environment. Then, It acts

as a resistance component. To achieve the feedback loop, over 2.5 V drain voltage is

required for this fabricated device.

For the program operation, electrons are moving from body2 region to silicon ni-

tride trap layer by FN-tunneling. Low PGM efficiency can be estimated because body2

region is floating. But even all contact is grounded except for the 2nd Gate, program
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operation is working well. This is because relative high n+ doped is applied on body2.

So we can regard that there is enough electron for program in body2 area.
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Figure 3.6: Program pulse scheme, 100µsecprogrampulse and 500µsec pulse width

for read. source, 1st Gate, and drain are grounded.

Figure 3.7: Potentiation measurement result
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Fig. 3.8 shows the transient measurement result of ERS operation. 15 V and 1 msec

pulse was applied for each PGM relatively high bias voltage than program operation.

tOFF value is increasing by each ERS pulse. tOFF is larger than nominal reference

tOFF . It means that holes are accumulated in storage layer in Fig. 3.9

To secure erase performance, 1 V drain voltage is applied. Low erase efficiency

is estimated due to lack of hole on body2, which is n+ doped. So erase efficiency has

secured by supplying holes from drain side.

Trapped electron on storage layer can not easily erased. So It can move to body2

by applying high erase voltage -15 V. Then It is difficult to see threshold rolling effect

on this situation. It means that delicate erase operation may not be possible.

Non-linear characteristic is observed with several PGM pulse in Fig. 3.10. It is also

shown same result as simulation. To avoid the accumulated charge saturation, doping

concentration amount adjusting is needed. and still accumulation charge amount is

not linear by number of pulse. This problem can be solved by Incremental Step Pulse

Program (ISPP) method.
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Figure 3.8: Depression measurement condition scheme. To secure high erase effi-

ciency, holes can be supplied from drain side by applying 1 V on drain.

Figure 3.9: Depression measurement result
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Figure 3.10: Accumulated charge by PGM/ERS pulse
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3.3 Hysteresis Reduction

The hysteresis of FBFETs is well known as one of biggest problem. [42] When FBFETs

device is on, carrier is occupied on channel region. Even device is turned off, those

carriers still remained. It can change potential barrier height until whole carriers are

disappeared as each carrier life-time. So threshold voltage VT is also affected, usually

VT is decreased.

This hysteresis characteristic may be used in applications such as short term mem-

ory. However, where FBFETs are used as synapse devices, this hysteresis creates a

big problem. Because the pre-synaptic signal is unpredictable, in some cases, a lot of

current can flow as expected.

To avoid this problem, It is needed to set the default delay time of the input signal

to be greater than the hysteresis time. It is necessary to measure the hysteresis of this

synapse device. Fig. 3.11

Figure 3.11: hysteresis measurement scheme
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First, input read signal of 100µsec pulse width is applied for an equilibrium state

with a delay of 1 msec. After that, test input signal is applied according to the delay

time split.

Red and green line is the reference output curve. The black line is the data when

the delay time is 100µsec. As can be seen from the figure, it can be seen that the device

is turned on about 1µsec earlier. It can be confirmed that there is hysteresis with the

carrier remaining in the channel. On the other hand, if a delay of 500µsec is given, the

result similar to the reference data is displayed.

This result concludes that the pre-synaptic signal must have a delay of about

500µsec to guarantee system accuracy. Basically, it must be an additional burden to

the latency problem, which is known as a weakness of SNN. To solve this problem,

the following input signal profile is proposed.

The problem is the carriers remaining in the channel. If the carrier is removed at

the beginning of the pre-synaptic signal, on-time variation can be removed. So, adding

-1 V of 1µsec to the front of the input signal of the synapse will remove the remaining

holes toward the drain. Fig. 3.13
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Figure 3.12: Hysteresis measurement result, red and green line is represented for ref-

erence lien with enough delay time. black line is for 100µsec delay

Figure 3.13: Hysteresis reduction measure scheme
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Figure 3.14: comparison of hysteresis reduction, on-time shift is not shown with dis-

torted input signal

Fig. 3.14 is a comparison of data using a modified input signal and existing hys-

teresis. You can see that the on time shift that actually existed has disappeared.
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3.4 Temperature Compensation method

Another FBFET synapse problem is that the current change with temperature is large.

Basically, in the proposed FBFET synapse, diode current flows when the device is

turned on. Diode current is greatly influenced by temperature. The carrier accumula-

tion rate and the carrier life time are complicatedly affected to device characteristic.

Fig. 3.15 Shows that the properties of the synaptic device greatly change according

to the same input signal as the temperature changes. It can be seen that not only the

on-current is greatly changed, but also the time at which feedback occurs, that is, the

on time delay is shifted by 0.1 msec as 100 K degree changes.

To solve this problem, 1st Gate can be used. Basically, 1st Gate can reduce the

variation of device by applying a specific voltage bias in the normal case. This is

because, if the body1 area is floating, the charge barrier height can be changed in

some cases. This 1st Gate bias can eventually shift the global threshold voltage of the

devices. When a minus voltage is applied to the 1st Gate, the electron barrier increases,

so the threshold voltage becomes large. Using this effect, a temperature compensation

method is proposed. Fig. 3.16

Fig. 3.16 is a chart showing the amount of accumulation charge according to tem-

perature and 1st Gate bias voltage. As the temperature increases, the amount of accu-

mulation charge increases as the bias voltage of the 1st Gate decreases. Assuming that
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Figure 3.15: FBFET synapse characteristics by temperature.

the amount designed through the initial inference was 300 K, in the situation of 310

K, the 1st Gate voltage can be lowered as shown in the figure to ensure accuracy.
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Figure 3.16: Temperature compensation method by applying bias voltage in 1st Gate

based on chip temperature measuring
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Chapter 4

Modeling and High level simulation

In order to perform high level simulation using fabricated FBFET synapse, it is nec-

essary to develop a model based on measurement data. Although simulation can be

performed using Python or MATLAB, high level SPICE simulation was performed to

check more realistic system characteristics.

4.1 Compact modeling for SPICE

To implement FBFET synapse with SPICE, conventional N-type MOSFET (NMOS),

capacitor, and current source with switch were used. As shown in the Fig. 4.1 , when

the VDrain input comes in, the potential of Cbody1 increases, and when the potential

reaches a certain threshold voltage value, the SW1 switch turns on and the calculated

diode current flows.
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The threshold voltage of the FBFET synapse, that is, the amount of trapped charge,

is determined by the size of the capacitor. As the capacitor size decreases, the threshold

voltage also decreases, corresponding to a program phenomenon in which charge is

trapped.

This is a comparison of the model and actual measurement data. Fig. 4.2 This

model is the result of confirming the characteristic of synapse according to weight

through SPICE simulation. in Fig. 4.3
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Figure 4.1: FBFET synapse model for SPICE.

Figure 4.2: Comparison between SPICE model result and measured data
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Figure 4.3: Membrane voltage simulation by SPICE

59



4.2 SPICE simulation for VMM

Based on FBFET synapse device, we perform the VMM simulation by HSPICE. The

specific sampling methods which are used are disclosed in Table 4.4. The weighted

sum value is defined as the dot product of input and weight value which are generated

from 0 to 1 randomly. The input signal is rate coded with max 100 pulses. 19 steps

are used for assigning weight value by adjusting the capacitance of modeled synapse

each. As shown in Fig. 4.5 . the R2 value is 0.98.in Fig. 4.7 Which correlation loss

may come from a FBFET synapse model issue. When the current source is on by the

switch simultaneously, impulse affects to generate an overshoot.
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Samples 200 samples for each weighed sum value

(0-1,1-2,2-3,3-4,4-5,5-6,6-7)

Weighted Sum=
∑ InputV aluej

100 · wj

16

Input Values Rate coded 1V pulse (0-100),

max 100 pulses for 1 ms Each pulse has 1 µsec pulse width

Synapse Weight 16 steps capacitor value in modeled synapse

Csynapse = (1.0e− 6 + w × 1.0e− 7)F,w = 0 − 24

Figure 4.4: Environments of VMM simulation for HSPICE

Figure 4.5: Synapse array circuit for VMM simulation
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Figure 4.6: Correlation chart of membrane voltage and weighted sum value. 100%

correlation is ideal. But some loss from SPICE model.
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Figure 4.7: Transient membrane voltage output sample for 3 cases.
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Chapter 5

Conclusion

5.1 Review of Overall Work

In this dissertation, a synaptic device using FBFET was proposed. The possibility of

low power synaptic device was presented through the device design that enables the

high retention using FN-tunneling and low voltage operation characteristic of FBFET

. In addition, we confirmed the proposed operation scheme by electrical measurement

based on fabricated device characteristics. Finally, defined circuit model which cre-

ated by fitting with measured device data, VMM simulation was verified on HSPICE

simulation tool.
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5.2 Future work

As a simulation result, a low voltage feedback operation using a drain input signal

was possible. However, as a result of actual measurement, drain voltage bias of 2.5V

or more was required. This is due to the gap between the 1st Gate and the 2nd Gate,

as mentioned earlier. With the proposed fabrication process, the problem inevitably

arises because the overlay between two Gates cannot be perfect. In order to solve

this, it is necessary to introduce a self-align process. Additional self-aligned process

flow studies are needed. And we only verified VMM with high level simulation. Infer-

ence verification using MNIST is also necessary. It can give more confidence level for

synaptic device.
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초록

신경망 모방 시스템은 폰 노이만 구조의 계산 시스템이 가지는 약점인 복잡한

인식 문제를 해결과 에너지 소비의 효율성의 가능성으로 수년간 많은 분야에서 연

구되고 있고 일부는 상용화 단계에까지 이르렀다. 이 신경 모방 시스템은 시냅스

모방소자와뉴런회로로이루어지는데시냅스모방소자는신호전달과기억기능

을담당하고있다.

시냅스는전체신경모방시스템에서가장큰부분을차지한다.따라서시스템내대

부분의 전력 소비가 시냅스 부분에서 일어나게 되므로 저전력 구현이 필수적인 요

소다.이런이유로저전력소자에특화된소자인터널전계효과트랜지스터 (TFET),

네거티브커페시터전계효과트랜지스터 (NCFET),강유전계효과트랜지스터 (Fe-

FET)및피드백전계효과트랜지스터 (FBFET)등이연구되고있다.

이런 다양한 소자중에 현재의 상보형 금속-산화물-반도체 (CMOS) 공정을 그대로

사용할수있는피드백전계효과트랜지스터는뉴런회로와동시에제작이필요한
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신경망모방시스템에서대량생산가능성에있어서매우유리하다.

본 논문에서는 이 피드백 전계 효과 트랜지스터를 기반으로 하고 NAND 플래시

메모리 구조에서 사용하는 파울러 노르다임 터널링(Fowler-Nordheim tunneling)을

방식으로 차치 트랩 층에 시냅스 소자의 가중치를 기억하는 방식의 시냅스 장치를

제안하고있다.

해당 소자의 저전력 특성과 구동 방법을 테크놀로지 컴퓨터 지원 설계 (TCAD) 시

뮬레이션을사용하여유효성을확인하였고,서울대반도체공동연구소 (ISRC)의

CMOS공정을사용하여소자를제작하였고전기적특성측정을통해제안된방법을

확인및검증하였다.

주요어: 인공지능 신경망, 양성 전계효과 트렌지스터, 2중 게이트 구조의 싸이리스

터,저전력시냅스소자

학번: 2016-30204
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