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Abstract

The neuromorphic system has been widely used and commercialized in many
fields in recent years due to its potential for complex problem solving and low en-
ergy consumption. The basic elements of this neuromorphic system are synapse and
neuron circuit, in which synapse research is focused on emerging electronic devices
such as resistive change memory (RRAM), phase-change memory (PCRAM), magne-
toresistive random-access memory (MRAM), and FET-based devices.

Synapse is responsible for the memory function of the neuromorphic system, that
is, the current sum quantization with the specific weight value. and the neuron is re-
sponsible for integrating signals that have passed through the synapse and transmitting
information to the next synapse. Since the synapse element is the largest portion of
the whole system, It consumes most of the power of the entire system. So low power
implementation is essential for the synapse device. In order to reduce power consump-
tion, it is necessary to lower the off-current leakage and operate on low voltage. To
overcome the limitation of MOSFETS in terms of Ion/Iogr ratio, small sub-threshold
swing and power consumption, various devices such as a tunneling field-effect tran-
sistor (TFET), negative capacitor field-effect transistor (NCFET), ferroelectric field-

effect transistor (FeFET), and feedback field-effect transistor (FBFET) have been stud-



ied.

Another important factor in synapse devices is the cost aspect. The deep learning

technology that made Alpha-go exist is also an expensive system. As we can see from

the coexistence of supercomputers and personal computers in the past, the develop-

ment of low-cost chips that can be used by individuals, in the end, is inevitable. Be-

cause a CMOS compatible process must be possible since the neuron circuit is needed

to fabricate at the same time, which helps to ensure mass productivity. FET-based

devices are CMOS process compatible, which is suitable for the mass production en-

vironment.

A positive FBFET (Feedback Field Effect Transistor) device has a very low sub-

threshold current, SS (subthreshold swing) performance, and Ion/Iogr ratio at the low

operating voltage. We are proposing the synaptic device with a positive FBFET with a

storage layer.

From the simulation study, the operation method is studied for the weight modu-

lation of the synaptic device and electrical measurement confirms accumulated charge

change by program and erase condition each. These results for the synaptic transistor

in this dissertation can be one of the candidates in low power neuromorphic systems.
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Chapter 1

Introduction

1.1 Limitation of von Neumann Architecture computing

The conventional computing system has reached the level of solving almost all prob-
lems in nature based on CMOS logic and memory using von Neumann architecture. [1]
The result was successful in sending humans to the moon and recreating the Big Bang.
The evolution of semiconductors supported it by enabling faster computing through
the development of device technology. But von Neumann also recognized the process-
ing speed bottleneck, which is from existing of data transferring between the memory
system and CPU. The system performance is is determined by the speed of transferring
between CPU and storage through BUS. [2, 3, 4] Fig. 1.1

To solve these problems, parallel computing, in-memory computing, and neuro-
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Figure 1.1: Basic structure of a classical von Neumann architecture.

morphic computing have been proposed. [6, 7, 8] Parallel computing achieved perfor-
mance improvement. However, It also has a limitation to improve speed by Amdahl’s
law. Fig. 1.2 Currently, in-memory computing and neuromorphic computing are being
studied. Especially, neuromorphic computing become a hot topic because it is inspired
by the biological system and estimated to improve power consumption and perfor-

mance.
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Figure 1.2: Amdahl’s law and strong scaling.

1.2 Biological Synapse

The biological nervous system consists of neurons and synapses. synapse is responsi-
ble for receiving and transmitting signals between neurons. This is called neurotrans-
mission. The signal transmitted through the synapse is integrated through the neuron,
and the neuron sends the signal to the connected post-synapse. These connections are
continuously connected and form a neural network. [5] Fig. 1.3

The essential role of the synapse is to determine the frequency and pattern of the
signal when sending the received signal to the next neuron. One synapse amplifies

the signal, and another synapse attenuates the signal. The characteristic value of each

e g ke

S |
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Figure 1.3: Series of neurons and synapses

synapse is called synaptic weight. With this combination of synapses and neurons,
humans can recognize and remember the information. From this mechanism, synapse
has to remember a certain weight value. This behavior is similar to a memory device.
And neuron is corresponding to logic circuit.

Biological synapse transmits signals in a chemical way. The electrical signal trans-
mitted to the axon terminal releases a neurotransmitter and transmits information to
the dendritic spine of the next neuron by the receptor. This synapse is classified as an
inhibitory synapse that reduces the membrane potential of the synapse and the excita-
tory synapse that amplifies information. Each synapse changes their strength through
the learning mechanism by changing the receptor structure. This connected system is

explained by the neural network model.

&) i



1.3 Spiking Neural Network (SNN)

The neural network system was created as a digital model by utilizing the existing
semiconductor system. The digital system, called the artificial neural network (ANN)
system, has been well known in computing systems of von Neumann architecture
through Deep-learning algorithms such as a fully connected network (FCN), convo-
lutional neural network (CNN), recurrent neural network (RNN) and so on. [9, 10, 11,
12, 13] This digital system contributed to solving the problem of natural language pro-
cessing and pattern recognition. This system calculates the weighted sum of the input
data with each synapse’s weight value. This weighted sum calculation is vector dot
production. So we called it vector-matrix multiplication (VMM). This operation can
greatly increase the calculation speed by using parallel computing. Therefore, a paral-
lel processor such as a GPU is often used to calculate the ANN model. Matrix multipli-
cation required a large number of parallel devices. This system requires many synapses
and circuits. Therefore, big computing power is mandatory. Then, power consumption
and cost problems are inevitable. To solve this fundamental problem, a hardware-based
analog neural network model was studied. [14, 15, 16, 17, 18, 19, 20, 21, 22, 23] Fig.
1.4 Existing GPU-based digital architecture is classified into a synapse device and
neuron circuit similar to the biological neural network system. The VMM operation

is performed in the logic part based on stored weight value in memory. This memory
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Figure 1.4: Neural network system for digital and analog model [24]

part architecture is replaced by the memorable device in SNN which called synapse
device. The synaptic device has a role which is information connector and memory of
synaptic weight. And the neuron circuit takes the place of analog CMOS circuit. As
a synapse device candidate, all kinds of the memory devices are being studied from
existing non-volatile memory to emerging devices.

Existing devices are NAND-Flash RAM, NOR-Flash RAM, SRAM, DRAM, and
emerging devices are Resistive-switiching RAM (RRAM), Ferro-electric FET (Fe-
FET), phase-change RAM (PCRAM), and magnetic RAM (MRAM) is being studied.

[25, 26, 27, 28, 29, 30, 31] Fig. 1.5 Each device has a pros and cons as is.
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Figure 1.5: Various synaptic Devices (a) Resistive Switching RAM (RRAM) [26] (b)
Dual gate silicon FET [27] (c) Poly-silicon based synapse [28] (d) Ferroelectric FET

[29]

1.4 Requirements of synaptic device

As described in the previous paragraph, the neuromorphic system must have both

synapse part and neuron part. We can make each part separately. But it’s not efficiency

in terms of cost. The neuron circuit is same as general CMOS circuit that follows a

standard semiconductor process. But if additional special process for synapse device,

there should be performance degradation, product variation, and cost overhead issues.

This is one of most important requirements for synapse mass production. In addition,
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Figure 1.6: Synaptic device requirements

a low current operation is necessary because the synapse device occupies most of the
entire neural network system.[32]

In addition, weight modulation which is a synapse-specific function is required
to convert the pre-synaptic signal to a specific size and frequency signal according to
each weight size. High-level current quantization property and low current variability
can improve system accuracy. These are whole memory related characteristic. That is
function of program (PGM) and erase (ERS). And high retention property is also re-
quired because energy consumption is quite big in PGM and ERS. An on line learning
function is also required.

Most of all, low current characteristic is the important factor. Even ANN has shown

great achievement in many ways. Super computing power is mandatory. [33] Fig. 1.6



1.5 Advantage of Feedback Field-effect transistor (FBFET)

FBFETs are representative devices that can meet the requirements of synaptic devices
which are mentioned in previous chapter. FBFETSs has attracted attention as a future
low-power device with its ultimate sub-threshold characteristic, high on/off ratio, low
leakage , and low voltage operation. There are many types of FBFEETSs such as a dual
gated thyristor, gated diode, Z>-FET, and Z>-FET. [34, 35, 36, 37] These devices are
already used widely for the various fields in the semiconductor business.

FBFETSs are operating with very low on current Iy because off current Iz can
be suppressed. [38, 39, 40, 41] and FBFETSs can be fabricated with the standard CMOS
mass production method. These two advantages are the most attractive point. That is,
FBFETs can be fabricated with neuron circuits with low operating voltage. If we can
add function of memory in FBFETS, there must be a change to use synaptic device in

powerful ways.



1.6 Outline of the Dissertation

The purpose of this dissertation is to propose the novel synaptic device using FBFETs
with the storage layer, and the main targets are presentations of the structure of FBFET
synapse, the operation method as synaptic device, PGM-ERS conditions with inhibi-
tion cases in array scheme, fabrication method, and array structure with this device.
Based on the previous discussion, The remainder of this dissertation is organized as
follows. Chapter 2 introduces the basic operation physics of FBFETs and method as
the synaptic device and covers verifying operation by TCAD simulation. In chapter
3, the process flow for the fabrication is described and measurement data of the fab-
ricated device with basic feedback operation, program erase operation, and hysteresis
reduction method will be proposed. and further will be discussed about the temperature
compensation method which is one of the weakest points in FBFETs. FBFETs have
a high sensitivity to temperature because it has basically diode operation. In chapter
5, a device model developed by the current equation from measured data will be dis-
cussed for SPICE simulation for VMM. Chapter 5 concludes this dissertation with a

summary.
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Chapter 2

Positive Feedback FET with storage layer

Fig.2.1 is a device structure. The designed FBFET is a n**-p*-n*-p**-doped double
gates structure. The barrier height of the 1st channel region is adjusted by p-type im-
plantation dose. The well depth of the 2nd channel region can be self-aligned im-
plantation after 1st Gate patterning. A self-aligned implantation can define a precise
junction position. The storage layer(O/N/O) is deposited after 2nd channel implanta-
tion. Only one mask is added compared to a conventional CMOS process. The 1st Gate
controls the potential barrier of the electron. The 2nd Gate is used for a program and
erase operation. The depth of well on the 2nd channel is controlled by the amount of
trapped electron or trapped hole charge in the storage layer which consists of Silicon
Oxide/Silicon Nitride/Silicon Oxide (ONO) structure between the 2nd Gate and the

n+ doped channel. The specific parameters which are used for the simulation are dis-

11



closed in Table Fig.2.1. We use a reasonable value that can match the feature size of

the device which is used as a reference.

Parameter Silicon Value
Gate oxide thickness 0.009um
Tunnel oxide thickness 0.003um
Silicon Nitride thickness 0.007um
Body thickness 0.1pum
Gate length (1, 2) 0.4pum

Body! (p)/Body2 (n) doping concentration 2 x 10'¥¢m™

Source (n)/drain (p) doping concentration 1 X 10%tem3

Table 2.1: Parameters of dual gate charge storable FBFET synapse for TCAD simula-

tion.

12
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Figure 2.1: Schematic illustration (a) 2D scheme with doping profile (b) 3D illustration
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2.1 Normal operation Principle of FBFET

The 1st Gate controls the electron’s potential barrier height, and 2nd Gate adjusts the
potential well depth for charge integration. When the n+ doped source is grounded and
a positive voltage is applied to the 2nd Gate, any charge can not move through channel
by each potential barrier. Once the positive voltage is biased to the 1st Gate and drain,
electrons are injected from the source and accumulate in the n-type potential well
under 2nd Gate. These electrons lower the potential barrier height of the valence band
on the drain side. This barrier lowering allows the hole in the drain to be injected into
the p-doped body under the 1st Gate. In the same way, the accumulated holes lower
the potential barrier of the band at the source side for electron injection. As a result,
the feedback loop can be formed, which makes the potential barrier height be very low
and then the electron and hole currents increase dramatically at some point. The drain
current is not changed by changing 1st Gate voltage level because the FBFET acts like
a forward-biased p-n diode after the energy band is almost flat and the feedback loop
is formed. Fig.2.2

But this mechanism which is triggering by 1st Gate voltage control has a serious
problem. Because FBFET can not be turned off status by 1st Gate voltage control only.
This device stays on-state once it turned on. The only way is to set the drain voltage to

0V to go off-state. From the viewpoint of the synapse device, when the 1st Gate input

14
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Figure 2.2: Band diagram of FBFET by 1st Gate input signal. @ As 1st Gate voltage
increases, potential barrier of body1 for electron is lowered. @ Electron from source
moves to body2 through potential barrier in bodyl. @& Electron is accumulated in
body?2. It raises the energy band level. @ Potential barrier is lowering by accumulated

electrons in body2. Then holes can move body1. Positive feedback occurs by this flow.

signal disappears, the drain bias voltage must also be synchronized to OV. This method
is not suitable for asynchronous SNN systems. Therefore, we need to find a way to

control the device with one input signal.

15



2.2 Operation Mechanism by Drain Input Pulse

The method using 1st Gate bias voltage can control feedback more intuitively. As men-
tioned earlier, you cannot create an asynchronous SNN system in this way. Therefore,
in order to use it as a synaptic device, it is necessary to control the device by adjusting
the drain bias voltage. When a positive drain bias is applied to 1st Gate while main-
taining an appropriate bias voltage, the hole barrier between the body?2 region and the
drain is lowered, and the hole over the barrier is accumulated in body1, thereby low-
ering the conduction band energy of electrons. When the injected hole has a sufficient
lifetime to accumulate in body1, it continuously lowers an electron barrier height in
the body1 region, which is a condition that can make feedback. Fig.2.3

Weight modulation is required for use as a synapse device. When the amount of
charge is adjusted in the O/N/O storage layer under 2nd Gate, an electric field is created
according to the amount of trapped charge, and this electric field changes the channel
potential. Eventually, the energy of the valence band can be controlled by changing the
potential applied to the channel. When the electron is trapped, the band energy can be
linearly raised. Since the body2 well depth becomes shallow, the device can quickly

reach the feedback state. Fig.2.4 2.5

16
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Figure 2.3: Band diagram of FBFET by drain input signal. @ Hole moves to body1
through barrier of 2nd channel. Accumulated holes make potential barrier lower on
bodyl. @ Electron from source moves to body2 over potential barrier in bodyl. &
Electron is accumulated in body2. It raises the band energy. @ Potential barrier is

lowering by accumulated electrons in body2. Positive feedback occurs by this flow
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2.3 Weight Modulation Mechanism

In ANN, the weighted sum is defined as vector-matrix multiplication. The weight value
of the post neuron is the sum product of the input value and weight of each node. In a
typical SNN, the input signal is defined by the same spike frequency, and the weight
value of each synapse is defined by the device’s threshold voltage (Vrgr). When Vg
is large, less current flows, and when Vrp is small, a large current flows and the
amount of charge accumulated in the input capacitor of the Integrate-and-Fire neuron
circuit becomes the weighted sum. FBFET synapse can be used current modulation
by controlling device’s turn-on/turn-off time. As soon as the device turns on at the
same input pulse, the number of charges accumulated in the membrane capacitor is
the maximum. Even if FBFET synapse is off with input signal spike, no charge is not
accumulated in membrane capacitor.the relationship between off-state time and the
amount of accumulated charge is linear relation. Fig.2.6

Fig. 2.7 Shows the weighted sum modulation of the FBFET synapse. When the
pulse width is 400 psec, if the time when the synapse is off is set to torr, the amount
of charge accumulated in the membrane capacitor is calculated as follows.

dvmem

2.1

1= Cmem
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Eventually, the change in membrane voltage is inversely proportional to torr.
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2.4 TCAD Simulation Result for Weighted Sum

Fig. 2.9 is a transient simulation result for the behavior of the FBFET synapse ac-
cording to the amount of electron trapped in the nitride storage layer. Device torp
decreases as the amount of trapped electrons increases. This is device Vrp is corre-
sponding to turn-on time. As a result, when the drain voltage is 0.8V, it shows that it
can be modulated in the sub-pA current. It can be seen that the amount of accumu-
lation charge accumulated in the membrane capacitor of the neuron is proportional to
the trapped charge. At a charge density of 1.0 x 10!7 to 7.0 xS 10'7, the operation
window is around 79% and has a relatively large modulation window. In some cases,
it is possible to enlarge the operation window using a larger trap.

It is physically possible to trap electrons close to 1.0 x 10, So, it is possible to
secure the operation window using high trapped electrons, but the amount of trapped
electrons is limited in accumulation charge modulation. As Fig. Fig. 2.11 shows, the
accumulation charge is saturated when the trapped electron density goes above 1.0 x
10'®. The reason for this is shown in Fig. 2.12. The band energy changes linearly up
to about 1.0 x 10'8, but if it is larger than that, the well depth is not sufficient, so that
the time for electrons to accumulate cannot be secured. To solve this, basically, there
is a method of lowering the band energy height by increasing the doping concentration

of the body?2 part, and by trapping holes in the storage layer, the band energy can be
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2.5 TCAD Simulation Result for Program and Erase

In order to control the weight of the FBFET synapse, the program operation is needed
to control the number of electron traps in the nitride layer through FN tunneling. Con-
versely, when a negative weight is required, an electron trap can be removed or a hole
can be injected through an erase operation. Fig. 2.13 is the result of the program oper-
ation simulation. The parameters used in the simulation are in Table. 2.2 The trapped
electron are increases as the program pulse are given. Conversely, Trapped electrons
are reduced through the erase operation. This is the same as the operation method
of NAND device under mass production, and Incremental Step Pulse Programming
(ISPP) and Incremental Step Pulse Erasing (ISPE) can be used for accuracy and effi-
ciency of the program and erase. The erase efficiency is relatively low. Fig. 2.14 This
can be solved by applying a higher erase voltage, but there is a limit to hole injec-
tion. Basically, the body?2 area is an environment with many donors through n-channel
doping, and the hole is extremely small. Because of this, it is considered that the erase
efficiency is low. To solve this, it can be solved by applying a positive drain bias during
erase and supplying a hole through the drain. Fig.2.15 As a result of the simulation, it
was confirmed that the erase efficiency increased about 100 times when 5 V drain bias

was applied.
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Table 2.2: Condition of program and erase operation
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2.6 Array structure and Inhibition scheme

In order to use it as a synaptic device, the structure and operation method of the array
must be clear. In Fig. 2.16 Through the peripheral circuit, the pre-synaptic input signal
shares the drain input node of the synapse, and 2nd Gate used as the word line for the
program and erase is connected horizontally. The source terminal is connected in the
horizontal direction and connected to the post-synaptic output signal and sent to the
neuron circuit. Fig.2.17 is a 3D array schematic. As shown in the figure, a large penalty
is expected to control gatel for each device. Therefore, gatel should be connected in
common to reduce device variation due to floating. In the case of Z2-FET, gatel is
intrinsic, but device variation may occur in this case. At the same time, it is possible
to implement a more accurate junction profile through the self align doping method of
the body1 region.

The inhibition method is very important for the program and erase operations in
an array structure. A specific device is needed to control to project the correct weight.
In this part, the result of ANN weight should be the same as possible, so the neural
network test through inference is the same. Fig.2.18 Indicates the case of the program
on the target synapse Spg. At this time, the program voltage is applied to gate2 and the
program voltage is also applied to S1o connected in the horizontal direction. In this

state, both synapse Spo and S1¢ are programmed. At this time, if the same voltage as
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Figure 2.16: Synaptic array schematic

the program voltage is applied to the drain voltage, it has the same potential as the
voltage applied to gate2. In this case, as can be seen from the band diagram, the slope
of the band becomes smooth in SO1. Therefore, the program is inhibited. Fig. 2.18 (c)
shows that electron trapped charge increases only in the case of Sy which is the target
synapse as a result of the simulation.

Similarly, Fig.2.19 Indicates the erase case. When the erase voltage is applied to
the drain, in the same way, it can be confirmed that the erase is inhibited in the case of

S10, which must be inhibited.

gl
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X PIL : Pre-synaptic Input Line
POL: Post-synaptic Output Line

Figure 2.17: 3D array schematic in bird-eye view
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Chapter 3

Fabrication and Measurement

In this chapter, process flow of FBFET synapse is explained with the schematic chart
and final output device picture. Next, the electrical characteristics of fabricated devices

are discussed.

36



3.1 Fabrication process of FBFET synapse

Actual process experiments are performed for precisely designed features. Each step
was matched to the target value using a monitoring sample and confirmed using an
optical microscope and an elipso-meter. Fig. 3.1 shows the fabrication process of the
proposed FBFET synapse. The entire process was done with CMOS compatible pro-
cess and only one mask was added for dual-gate structure. Active was defined by
patterning on a silicon-on-insulator (SOI) wafer, and implantation was performed with
BF?* atadose of 1 x 10 em™2.1x 10 em~2 doping is the concentration of body1
doping, and the channel doping value of NMOSFET is expected to have a threshold
voltage close to OcF. 1st Gate oxide was subjected to dry oxidation 950°C with a 10
nm target. After 1st Gate oxide formation, n* doped polysilicon 10004 was deposited
to form 1st Gate and 1st Gate was defined through patterning. Body2 was subjected to
n-type Ast doping at a dose of 2 x 10" ¢m 2. The corresponding concentration was
determined through simulation and a relatively high doping concentration was used
to ensure sufficient well depth. Buffer oxide was removed by HF wet etching and dry
oxidation was performed at 800°C for 30 sec for 3 nm tunneling oxide. After that,
8 nm of Si3N4 as a storage layer was deposited using LPCVD, and then 10 nm of
blocking oxide was deposited using MTO. Finally, for the formation of 2nd Gate, It

was completed through patterning after deposition of n+ doped poly 1000
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A. 3 x 10" ¢m™2 high doping of As™ source and BF?* drain was performed by
ion implantation. Finally, a contact was formed through a back-end-of-line (BEOL)
process. Fig. 3.1 Shows the entire process flow as a 3D process simulation process. 3D
simulation was performed before the process to improve process accuracy. You can
check the pad of each source / drain / 1st Gate / 2nd Gate with shows SEM image. Fig.
3.3 The show s TEM image of the fabricated double gate FBFET synapse transistor. It

can be confirmed that the profile is correct compared to the target.
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3.2 Measurement result

Fig. 3.4 shows the measurement result of drain current vs. 1st Gate voltage curves
according to the 2nd Gate voltage. As mentioned in introduction part, FBFET has a
extreme steep switching characteristic with low leakage current. The leakage current
is around 1.0 x 10~'31A. and on current is around 1.0 x 10~7yA. 6 ordered On/Off
ratio is measured with a sub-threshold slope (SS) of less than 0.55 mV/dec. One of
biggest issue in semiconductor device is a limitation to reduce threshold voltage. This
device can have close to 0 V threshold voltage based this measurement data.

To verify V7 modulation by 2nd body potential barrier difference, varies 2nd Gate
applied voltage from 1V to 3V. This DC measurement result can be confirmed this

fabricated device is working in the low voltage operation environment.
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Fig. 3.6 shows the measurement scheme of PGM transient. 1st read measurement
performs and 12 V 100usec pulse was applied for each PGM. To remove hysteresis
effect on this measurement, 500usec delay is placed after PGM operation. Based on
measurement, over 500usec delay time is needed to avoid hysteresis distortion.

Fig. 3.7 is the overlapped transient measurement data by synchronizing input pulse
time. Initial delay time is largest in the data. But Device on-time delay is reducing by
number of PGM pulse. That is, o value is decreasing by increasing trapped electron
amount on the storage layer. At the same time, delay time difference is also decreasing
as torr close to 0 sec. This is predicted from simulation due to small barrier height
between body1 and body?2.

Low voltage operation is a strong point for FBFETs device. But we use 2.7 V
drain input signal. Then This device has pA level operation current. This is a reason
from the variation on fabrication. Around 2504 space is measured by TEM image in
Fig. 3.3. This space make floating region on read operation environment. Then, It acts
as a resistance component. To achieve the feedback loop, over 2.5 V drain voltage is
required for this fabricated device.

For the program operation, electrons are moving from body?2 region to silicon ni-
tride trap layer by FN-tunneling. Low PGM efficiency can be estimated because body2

region is floating. But even all contact is grounded except for the 2nd Gate, program
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operation is working well. This is because relative high n+ doped is applied on body?2.

So we can regard that there is enough electron for program in body?2 area.
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Fig. 3.8 shows the transient measurement result of ERS operation. 15 V and 1 msec
pulse was applied for each PGM relatively high bias voltage than program operation.
torr value is increasing by each ERS pulse. topr is larger than nominal reference
torr. It means that holes are accumulated in storage layer in Fig. 3.9

To secure erase performance, 1 V drain voltage is applied. Low erase efficiency
is estimated due to lack of hole on body2, which is n+ doped. So erase efficiency has
secured by supplying holes from drain side.

Trapped electron on storage layer can not easily erased. So It can move to body2
by applying high erase voltage -15 V. Then It is difficult to see threshold rolling effect
on this situation. It means that delicate erase operation may not be possible.

Non-linear characteristic is observed with several PGM pulse in Fig. 3.10. It is also
shown same result as simulation. To avoid the accumulated charge saturation, doping
concentration amount adjusting is needed. and still accumulation charge amount is
not linear by number of pulse. This problem can be solved by Incremental Step Pulse

Program (ISPP) method.
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3.3 Hysteresis Reduction

The hysteresis of FBFETs is well known as one of biggest problem. [42] When FBFETs
device is on, carrier is occupied on channel region. Even device is turned off, those
carriers still remained. It can change potential barrier height until whole carriers are
disappeared as each carrier life-time. So threshold voltage V7 is also affected, usually
Vr is decreased.

This hysteresis characteristic may be used in applications such as short term mem-
ory. However, where FBFETSs are used as synapse devices, this hysteresis creates a
big problem. Because the pre-synaptic signal is unpredictable, in some cases, a lot of
current can flow as expected.

To avoid this problem, It is needed to set the default delay time of the input signal
to be greater than the hysteresis time. It is necessary to measure the hysteresis of this

synapse device. Fig. 3.11

= 1msec | |-delay~{]| 2.7V
>’ 100 usec

Time

Figure 3.11: hysteresis measurement scheme
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First, input read signal of 100usec pulse width is applied for an equilibrium state
with a delay of 1 msec. After that, test input signal is applied according to the delay
time split.

Red and green line is the reference output curve. The black line is the data when
the delay time is 100usec. As can be seen from the figure, it can be seen that the device
is turned on about 1usec earlier. It can be confirmed that there is hysteresis with the
carrier remaining in the channel. On the other hand, if a delay of 500usec is given, the
result similar to the reference data is displayed.

This result concludes that the pre-synaptic signal must have a delay of about
500usec to guarantee system accuracy. Basically, it must be an additional burden to
the latency problem, which is known as a weakness of SNN. To solve this problem,
the following input signal profile is proposed.

The problem is the carriers remaining in the channel. If the carrier is removed at
the beginning of the pre-synaptic signal, on-time variation can be removed. So, adding
-1 V of 1usec to the front of the input signal of the synapse will remove the remaining

holes toward the drain. Fig. 3.13
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Fig. 3.14 is a comparison of data using a modified input signal and existing hys-

teresis. You can see that the on time shift that actually existed has disappeared.
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3.4 Temperature Compensation method

Another FBFET synapse problem is that the current change with temperature is large.
Basically, in the proposed FBFET synapse, diode current flows when the device is
turned on. Diode current is greatly influenced by temperature. The carrier accumula-
tion rate and the carrier life time are complicatedly affected to device characteristic.
Fig. 3.15 Shows that the properties of the synaptic device greatly change according
to the same input signal as the temperature changes. It can be seen that not only the
on-current is greatly changed, but also the time at which feedback occurs, that is, the
on time delay is shifted by 0.1 msec as 100 K degree changes.

To solve this problem, 1st Gate can be used. Basically, 1st Gate can reduce the
variation of device by applying a specific voltage bias in the normal case. This is
because, if the bodyl area is floating, the charge barrier height can be changed in
some cases. This 1st Gate bias can eventually shift the global threshold voltage of the
devices. When a minus voltage is applied to the 1st Gate, the electron barrier increases,
so the threshold voltage becomes large. Using this effect, a temperature compensation
method is proposed. Fig. 3.16

Fig. 3.16 is a chart showing the amount of accumulation charge according to tem-
perature and 1st Gate bias voltage. As the temperature increases, the amount of accu-

mulation charge increases as the bias voltage of the 1st Gate decreases. Assuming that
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Figure 3.15: FBFET synapse characteristics by temperature.

the amount designed through the initial inference was 300 K, in the situation of 310

K, the 1st Gate voltage can be lowered as shown in the figure to ensure accuracy.
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Chapter 4

Modeling and High level simulation

In order to perform high level simulation using fabricated FBFET synapse, it is nec-
essary to develop a model based on measurement data. Although simulation can be
performed using Python or MATLAB, high level SPICE simulation was performed to

check more realistic system characteristics.

4.1 Compact modeling for SPICE

To implement FBFET synapse with SPICE, conventional N-type MOSFET (NMOS),
capacitor, and current source with switch were used. As shown in the Fig. 4.1 , when
the V prqin input comes in, the potential of Cpoqy1 increases, and when the potential
reaches a certain threshold voltage value, the SW1 switch turns on and the calculated

diode current flows.

56



The threshold voltage of the FBFET synapse, that is, the amount of trapped charge,
is determined by the size of the capacitor. As the capacitor size decreases, the threshold
voltage also decreases, corresponding to a program phenomenon in which charge is
trapped.

This is a comparison of the model and actual measurement data. Fig. 4.2 This
model is the result of confirming the characteristic of synapse according to weight

through SPICE simulation. in Fig. 4.3
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4.2 SPICE simulation for VMM

Based on FBFET synapse device, we perform the VMM simulation by HSPICE. The
specific sampling methods which are used are disclosed in Table 4.4. The weighted
sum value is defined as the dot product of input and weight value which are generated
from O to 1 randomly. The input signal is rate coded with max 100 pulses. 19 steps
are used for assigning weight value by adjusting the capacitance of modeled synapse
each. As shown in Fig. 4.5 . the R? value is 0.98.in Fig. 4.7 Which correlation loss
may come from a FBFET synapse model issue. When the current source is on by the

switch simultaneously, impulse affects to generate an overshoot.
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Samples 200 samples for each weighed sum value
(0-1,1-2,2-3,3-4,4-5,5-6,6-7)

. InputValue; i
Weighted Sums=y" [mrutValue;  w;

Input Values Rate coded 1V pulse (0-100),

max 100 pulses for 1 ms Each pulse has 1 usec pulse width

Synapse Weight | 16 steps capacitor value in modeled synapse

Csynapse = (1.0e — 6 +w x 1.0e — 7)F,w = 0 — 2*

Figure 4.4: Environments of VMM simulation for HSPICE
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Figure 4.5: Synapse array circuit for VMM simulation
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Chapter 5

Conclusion

5.1 Review of Overall Work

In this dissertation, a synaptic device using FBFET was proposed. The possibility of
low power synaptic device was presented through the device design that enables the
high retention using FN-tunneling and low voltage operation characteristic of FBFET
. In addition, we confirmed the proposed operation scheme by electrical measurement
based on fabricated device characteristics. Finally, defined circuit model which cre-
ated by fitting with measured device data, VMM simulation was verified on HSPICE

simulation tool.
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5.2 Future work

As a simulation result, a low voltage feedback operation using a drain input signal
was possible. However, as a result of actual measurement, drain voltage bias of 2.5V
or more was required. This is due to the gap between the 1st Gate and the 2nd Gate,
as mentioned earlier. With the proposed fabrication process, the problem inevitably
arises because the overlay between two Gates cannot be perfect. In order to solve
this, it is necessary to introduce a self-align process. Additional self-aligned process
flow studies are needed. And we only verified VMM with high level simulation. Infer-
ence verification using MNIST is also necessary. It can give more confidence level for

synaptic device.
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