15,792 research outputs found

    The 'what' and 'how' of learning in design, invited paper

    Get PDF
    Previous experiences hold a wealth of knowledge which we often take for granted and use unknowingly through our every day working lives. In design, those experiences can play a crucial role in the success or failure of a design project, having a great deal of influence on the quality, cost and development time of a product. But how can we empower computer based design systems to acquire this knowledge? How would we use such systems to support design? This paper outlines some of the work which has been carried out in applying and developing Machine Learning techniques to support the design activity; particularly in utilising previous designs and learning the design process

    Robust Deep Multi-Modal Sensor Fusion using Fusion Weight Regularization and Target Learning

    Full text link
    Sensor fusion has wide applications in many domains including health care and autonomous systems. While the advent of deep learning has enabled promising multi-modal fusion of high-level features and end-to-end sensor fusion solutions, existing deep learning based sensor fusion techniques including deep gating architectures are not always resilient, leading to the issue of fusion weight inconsistency. We propose deep multi-modal sensor fusion architectures with enhanced robustness particularly under the presence of sensor failures. At the core of our gating architectures are fusion weight regularization and fusion target learning operating on auxiliary unimodal sensing networks appended to the main fusion model. The proposed regularized gating architectures outperform the existing deep learning architectures with and without gating under both clean and corrupted sensory inputs resulted from sensor failures. The demonstrated improvements are particularly pronounced when one or more multiple sensory modalities are corrupted.Comment: 8 page

    Learning for design reuse

    Get PDF
    Over the past decade 'design assistance', i.e. where the computer is viewed as an Intelligent Design Assistant (IDA) [MacCallum-etal85], has emerged in knowledge based design support and has formed the basic research strategy for the CAD Centre, University of Strathclyde, since the mid-80s. Within this philosophy, an IDA would act as a colleague to a designer, providing guidance, learning from past design experiences, carrying out semi and fully automated tasks, explaining its reasoning and in essence complementing the designer's own natural skills, and thus leaving the ultimate decision making, control and responsibility with the designer

    Design reuse research : a computational perspective

    Get PDF
    This paper gives an overview of some computer based systems that focus on supporting engineering design reuse. Design reuse is considered here to reflect the utilisation of any knowledge gained from a design activity and not just past designs of artefacts. A design reuse process model, containing three main processes and six knowledge components, is used as a basis to identify the main areas of contribution from the systems. From this it can be concluded that while reuse libraries and design by reuse has received most attention, design for reuse, domain exploration and five of the other knowledge components lack research effort

    A formalism for coupled design learning activities

    Get PDF
    This paper presents a formalism to represent the inextricable link that exists between design and learning. It provides an approach to study and analyse the complex relationships that may exist between design and learning. It suggests that design and learning are linked at the knowledge level (epistemic link), in a temporal manner and in a purposeful manner through the design and learning goal

    BIM adoption and implementation for architectural practices

    Get PDF
    Severe issues about data acquisition and management arise during the design creation and development due to complexity, uncertainty and ambiguity. BIM (Building Information Modelling) is a tool for a team based lean design approach towards improved architectural practice across the supply chain. However, moving from a CAD (Computer Aided Design) approach to BIM (Building Information Modelling) represents a fundamental change for individual disciplines and the construction industry as a whole. Although BIM has been implemented by large practices, it is not widely used by SMEs (Small and Medium Sized Enterprises). Purpose: This paper aims to present a systematic approach for BIM implementation for Architectural SMEs at the organizational level Design/Methodology/Approach: The research is undertaken through a KTP (Knowledge transfer Partnership) project between the University of Salford and John McCall Architects (JMA) a SME based in Liverpool. The overall aim of the KTP is to develop lean design practice through BIM adoption. The BIM implementation approach uses a socio-technical view which does not only consider the implementation of technology but also considers the socio-cultural environment that provides the context for its implementation. The action research oriented qualitative and quantitative research is used for discovery, comparison, and experimentation as it provides �learning by doing�. Findings: The strategic approach to BIM adoption incorporated people, process and technology equally and led to capacity building through the improvements in process, technological infrastructure and upskilling of JMA staff to attain efficiency gains and competitive advantages. Originality/Value: This paper introduces a systematic approach for BIM adoption based on the action research philosophy and demonstrates a roadmap for BIM adoption at the operational level for SME companie

    BIMing the architectural curricula: integrating Building Information Modelling (BIM) in architectural education

    Get PDF
    Building Information Modelling (BIM) reflects the current heightened transformation within the Architectural, Engineering and Construction (AEC) Industry and the Facilities and Management (FM) sector, offering a host of benefits from increased efficiency, accuracy, speed, co-ordination, consistency, energy analysis, project cost reduction etc to various stake holders from owners to architects, engineers, contractors and other built environment professionals. Many countries around the world are responding to this paradigm shift including the United Kingdom (UK). The Cabinet office took the decision in 2011 to make the use of collaborative 3D BIM technology mandatory for all public sector construction contracts by 2016 (Cabinet Office, 2011). According to Smith and Tardif, despite certain myths and misconceptions surrounding BIM, its rate of implementation has been much faster in comparison to the availability of professionals skilled in use of BIM, thus creating a skill gap in the design and construction industry (Smith and Tardif, cited in Barison and Santos, 2010a). This article aims at bridging the gap between the graduate skill sets and the changing needs of the profession. The research methodology adopted consists of thoroughly reviewing the existing literature in this subject area coupled with carrying out a survey of accredited Schools of Architecture in the UK. The analysis of the survey questionnaire results shows the extent to which BIM is currently being taught and identifies the barriers where its implementation has either been slow or not yet started. The paper highlights the fact that there has been considerable delay in the successful integration of BIM in the Schools of Architecture in the UK, thus emphasising the need for expeditiously training and preparing students in the use of BIM making them ready to effectively perform in a BIM enabled work arena
    corecore