Sensor fusion has wide applications in many domains including health care and
autonomous systems. While the advent of deep learning has enabled promising
multi-modal fusion of high-level features and end-to-end sensor fusion
solutions, existing deep learning based sensor fusion techniques including deep
gating architectures are not always resilient, leading to the issue of fusion
weight inconsistency. We propose deep multi-modal sensor fusion architectures
with enhanced robustness particularly under the presence of sensor failures. At
the core of our gating architectures are fusion weight regularization and
fusion target learning operating on auxiliary unimodal sensing networks
appended to the main fusion model. The proposed regularized gating
architectures outperform the existing deep learning architectures with and
without gating under both clean and corrupted sensory inputs resulted from
sensor failures. The demonstrated improvements are particularly pronounced when
one or more multiple sensory modalities are corrupted.Comment: 8 page