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Abstract 
 
This paper presents a formalism to represent the inextricable link that exists between design and 
learning.  It provides an approach to study and analyse the complex relationships that may exist 
between design and learning.  It suggests that design and learning are linked at the knowledge level 
(epistemic link), in a temporal manner and in a purposeful manner through the design and learning 
goals. 
 
1 Introduction 
 
That design is inextricably linked with learning has been posited by several 
researchers in Machine Learning in Design (MLinD). Persidis and Duffy [1] 
succinctly state the relationship between design and learning: ‘Design as a problem 
solving activity is inextricably linked with learning.’   
 
Chabot and Brown [2] state that “There should be no argument about the fact that 
designers learn while designing.”  While this fact may be accepted in the MLinD 
research community, to-date there is a lack of knowledge as to the nature and manner 
in which this inextricable link exists between design and learning.  The purpose of 
this paper is to propose a formalism that represents the inextricable link between 
design and learning and evaluate the proposed formalism using several design 
activities and the related learning activities.  It is envisaged that the proposed 
formalism could lead to a better insight into the coupled design/learning activities.  
This, in turn can contribute towards the building of an Intelligent Design Assistant 
(IDA) that “adapts to the knowledge requirements of the designer, carries out learning 
when requested, presents automatically generated knowledge, continually maintains 
(i.e. updates and evolves) its knowledge source, provide explanations about learned 
knowledge and provide suggestions, which may help guide the designer when 
exploring a design domain or solving a particular design problem” [3].  A clear 
understanding of the coupled activities expressed formally can thus ensure in an 
integrated and structured manner how design and learning functionalities can be 
incorporated into design support systems or an IDA. 
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Learning and designing can be described at different levels of abstraction.  Thus in 
Section 2, it is necessary to show that the activities of learning and design can be 
described at the knowledge level.  In Section 3, a design activity is defined formally 
to show that associated with each design activity is the knowledge change that results 
from the activity.  Section 4 describes briefly the five basic elements of a learning 
activity that was first presented in Sim and Duffy [4].   Having characterised what the 
basic elements of a design activity and learning activity are the aim of Section 5 is to 
present a formalism to show the nature and manner in which design and learning 
activities can be coupled together. The discussion in Section 6 shows how the 
formalism proposed complements the dimensions proposed by Reich [5].   

2 Knowledge level as the basis for the formalism 

Systems (both natural and artificial) of any reasonable degree of complexity can be 
designed or explained at any number of different description levels [Simon [6], 
Newell [7], Alberts [8], DasGupta [9]).  In fact, multiple description levels constitute 
a general (indeed, defining) characteristic of all complex systems.  Recognising that 
complex systems can be described by functionally autonomous levels and yet 
organised hierarchically, DasGupta [9] extends the notion of description levels to the 
cognitive system - the mind-brain complex.  For the cognitive systems, these widely 
accepted levels are: 

• The knowledge level - wherein, cognition is described or explained in terms of 
goals, actions, knowledge and intended rational behaviour.  

• The symbol level - in which cognitive processes are described or explained in 
terms of symbols (and symbol structures), memory (in which symbols are held), 
operations (on symbols), and interpretations (of the operations). 

• The biological level - wherein cognition is described or explained in terms of 
biological structures or structures that are abstractions of biological systems (e.g. 
neural systems). 

The knowledge level is based on Newell’s Knowledge Level Hypothesis which states 
that: 

“There exists a distinct computer system level lying immediately above the 
symbol level, which is characterised by knowledge as the medium and the 
principle of rationality as the law of behaviour.” 

Dietterich [10] has shown that learning can be described at the knowledge and symbol 
level while Kocabas [11] has extended the description to include the device level1.  
DasGupta develops his computational theory of scientific creativity by showing that 
knowledge on concepts of micro-programming described at the knowledge level led 
Wilkes  [12, 13] to the creative invention of micro-programming.  The development 
of micro-programming led to an entirely new form or architecture known as the 
controller unit, a component in the computer responsible for activating its internal 
operations as it executes a program.  It is therefore reasonable to hypothesise that both 
design activities and learning activities being cognitive activities can be described and 

                                                 
1 In device-level learning, the methods and outcomes of learning can only be described in reference to 
a particular device e.g. connectionist system, neural networks. 
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operationalised at the knowledge level. Thus it can said that both design and learning 
activities are linked at the epistemic level (i.e. at the knowledge level). 

3 Defining elements of Generic Design Activity 

A cognitive system at the knowledge level can be referred to as an agent [9].  The 
main entities with which an agent is concerned with are goals, actions and knowledge 
(which include facts, beliefs, rules, laws, theories, and values). 

The principle of rationality, the law of behaviour at the Knowledge Level, says that 
actions are selected to attain the agent’s goals.       

The identification and classification of design activities have been argued to be based 
on their contribution towards an increase in the knowledge of the design or the 
associated process [14].  Here in this paper a design activity is defined as an action or 
cognitive process taken by a design agent to achieve a knowledge increment in the 
state of the design and/or its associated design process in order to achieve some 
design goal. 

Given the above definition of design activity, the basic elements of a design activity 
may consist of: 

• Existing design knowledge as Input knowledge, Ik. 
• Design activity, Da 
• Output knowledge, Ok 
• Design goal, Dg. 

 
The basic elements of designing may be related as shown in Figure 1. 
 
 

   Da 

   Gd 

     Ik  Ok 

 

 

 

 

 

 

Figure 1 Elements of generic design activity 

The design activity is initiated by a design goal Gd and the appropriate design  
knowledge Ik as inputs.  The knowledge input may be the current state of the design, 
the resources in terms of people and knowledge (i.e. domain knowledge, heuristics, 
methods or techniques), tools, constraints and external requirements (e.g. regulations).  
The goal(s) of a design activity Gd determine the type of design activity to be 
performed by the design agent.  The output knowledge Ok from the design activity 
stems from the application of appropriate input knowledge to enable the design to 
progress towards the design goal and hence towards the ultimate goal, the design 
solution.  
 
4 The elements of learning activity 
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Sim and Duffy [4] present a foundation for learning in design using five key elements:  

• Existing knowledge as Input knowledge, Ik. 
• Knowledge transformers, Kt 
• Output knowledge, Ok 
• Learning goal or reason, Gl 
• Learning trigger, Tl 

These basic elements of learning are related as shown in Figure 2. 

In this figure, the input knowledge is transformed into new output knowledge that can 
then feed back into the learning activity as input knowledge for yet new knowledge.  
This output knowledge may in itself also trigger or act as a reason or goal for a 
learning activity.  

The Knowledge Learnt or Output Knowledge 
The types of design knowledge to be learnt is dependent on the activity of the design 

process, the types of input knowledge, the goal of the learning process and when does 
learning take place.  The review of MLinD systems by Sim and Duffy [4] indicates 
that there are numerous types of design knowledge that can be learned from past 
designs and from the design process itself.  The discussion in Section 6 would 
therefore exemplify the type of knowledge that can be learnt. 

Gl

Ik Kt Ok

Tl  
Figure 2:  Elements of learning 

The Learning Goal 
The learning goal directs the learning process.  The learning goal may be novelty 
driven, excellence driven or failure avoidance driven.  The learning goal influences 
what parts of the existing knowledge are relevant, what knowledge is to be acquired, 
in what form, and how the learned knowledge is to be evaluated. 

Knowledge Transformers 
Sim and Duffy identify seven pairs of knowledge transformers that characterised the 
learning process in most MLinD systems.  They are as follows: 

• Group Rationalisation (or Clustering)/Decomposition (Ungroup)  
• Similarity comparison/Dissimilarity comparison 
• Association/Disassociation 
• Derivations (Reformulation)/Randomisation 
• Generalisation/Specialisation 
• Abstraction/Detailing 
• Explanation/Discovery 
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They also classify the learning triggers that activate the learning process into three 
main categories: in-situ, provisional and retrospective2. 

5 The interaction between learning and design activity. 

The learning triggers provide the basis for three ways in which learning and design 
activities can be coupled.  In retrospective learning, the learning activity occurs after 
certain type of design activities so that knowledge learnt can serve as input 
knowledge for future design problems.  In-situ learning occurs when knowledge is 
learnt while designing is in progress.  In provisional learning, the learning activity 
precedes the design activity in anticipation of the knowledge required as input into the 
design activity.  The purpose of this Section is to show that learning and design 
interact in a temporal manner through temporal links and also in a purposeful manner 
through teleological links in the learning and design goals.  

5.1 Retrospective learning or post design learning 

In retrospective learning or post design learning, learning is triggered after the 
completion of certain design activities so that the knowledge learnt is current and 
most up-to-date and therefore of great utility value for future designs. Past design 
cases especially successful ones are good knowledge sources for retrospective 
learning.  The knowledge learnt is stored in memory3.  The purpose of learning in 
hindsight is to learn design patterns that led to the successful designs, relationships in 
design parameters, to understand and predict underlying trends in classes or types of 
designs and to extrapolate design attributes of future designs. Figure 3 shows the 
manner in which design and learning interact in retrospective learning. 

  
Learning Activity 

 

 
  

Memory 
 

 

 

 

  Idk 

Design Activity 

   Da     Ik 
 Odk 

  Gd 

  Kt  

 Gl 

 
 Olk 

 Tl 

Figure 3 Retrospective Learning 

The output knowledge from the design activity becomes input knowledge to the 
learning activity.  The output knowledge of the learning activity is dependent on the 
goal of the learning activity.  The knowledge transformer used in the learning activity 
is dependent on the nature of the input knowledge and the learning goal (See Sim and 
Duffy). 

                                                 
2 In-situ triggers are activated when there is a need to acquire new knowledge while the design is under 
focus of attention. Provisional triggers are activated when there is a foreseen event that is envisaged to 
require additional knowledge. Retrospective triggers are activated after an event.  That is, learning is 
triggered by the need to learn from successful design(s)/failed design(s) and/or processes in hindsight. 
3 Space limitation does not permit discussion on the nature of memory which in this paper is taken to 
denote dynamic memory which is updated by the design activity or learning activity. 
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Retrospective learning is only effective when the output knowledge from the design 
process is definite and final.  Therefore only knowledge output from certain design 
activities such as synthesis, quantitative model analysis/quantitative evaluation of 
final designs, optimisation can be considered for retrospective learning.   

5.2 In-situ Learning 

Design Activity      
  Gd 

 
 
 
 

 
Learning Activity 

       

Design Activity

   Da     Ik  Odk 

 

 

 

 

 

 

 

Figure 4: In-situ Learning 

In in-situ learning, the design activity and the learning activity occur collaterally.  
That is while the design activity is in progress, the learning activity can take place.  
For example, while decision making is in progress to select the best design(s), 
learning of the arguments for or against the designs and final decision taken can be 
learned in-situ. 

5.3 Provisional Learning 
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Figure 5: Provisional Learning  

In provisional learning, the learning takes place in anticipation of the knowledge 
required for a downstream design activity.  It is triggered by certain design activities.  
For example, the design goal of searching the design solution space would trigger 
provisionally the learning of heuristics that may be applied to reduce the complexity 
of search.  The learning goal is thus directed to achieving the anticipated design goal. 
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5.4 Teleological Link through design and learning goals 

Both design and learning are considered here as purposeful activities.  Each has a 
specific goal to achieve.  But design and learning are inextricably linked in that the 
learning goal is subservient to the design goal.  For example, the design goal of 
preliminary synthesis activity is to reduce the complexity of the conceptual design 
space and the goal of learning from past design(s) compositional and taxonomic 
knowledge of design concepts will expedite the synthesis design activity.  The goal of 
a constraining activity is to reduce the complexity of the design parameter(s) space.  
The goal of learning knowledge on design constraints by detecting failed constraints 
or anticipating crucial constraints during design is to streamline the design process. 

6 Discussion 
 
The formalism presented here provides an approach by which learning and design 
activities can be analysed and studied.  By applying the formalism to the analysis of 
generic design activities and learning activities, relationships between the elements of 
these activities can be made explicit (See Table 1 for a sample of ananalysis).  This 
formalism is proposed as an complementary to Reich’s dimensions as it not only 
addresses the issues raised by Reich but suggests in a structured and integrated 
manner the nature of the relationships that exist in the set of dimensions (See Table 
2). 
 

Reich’s dimension (RD) Sim & Duffy’s formalism 
• Who is learning? • Design agent 
• Why does the learner want to learn?  • Learning is driven by design goal Gd 

and/or learning goal Gl. 
• When does the learner learn? • Retrospective/in-situ/provisional triggers 

Tlt and/or learning goal Gl. 
• What is the learner doing? • Certain design activity Da 
• What is learned? • Output knowledge from learning activity 

Ok 
• How does the learner learn? • Knowledge transformer Kt 
• What are consequences of learning? • Acquired knowledge to achieving the 

design goal Gd in terms of time, cost or 
quality. 

• What resources are needed to carry 
out the learning activity? 

• Not addressed 

    
Table 2: Comparison between Reich’s dimension and Sim & Duffy’s formalism
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 design/learning activities.  

Design 
activity Da 

Output Design 
Knowledge Odk/Idk 

Design Goal 
Gd 

Learning Goal  
Gl 

Learning 
TriggerTl 

Kt O   lk MLinD
System 

Generating 
Concepts 

• F → B → S Mapping • Generate as many 
feasible solutions as 
possible. 

• New concept(s) • In-situ/ 
Retrospective 

• Association • New F → B → S 
Mapping 

• NODES [15] 

Optimising • Starting points, 
constraints and best 
technique(s) used in past 
optimisation(s) 

• Optimal design 
solution satisfying 
requirements/constra
ints. 

• Reduce design 
solution search 
space and 
computational time 

• Retrospective • Group rationalisation • Starting points,  
• Constraint 

incorporation to 
reduce search 
space. 

• Evaluation criteria 

• Schwabacher  
et.al. [16] 

Synthesising • Knowledge of product 
configurations.  

 
 
 
 
• Knowledge of 

relationships of design 
properties. 

 
• Knowledge of integrating 

physical building 
blocks/chunks. 

• Optimal 
layout/assembly of 
parts/subsystems 
into whole. 

 
 
 
 
 
 
• Totality in the design 

of product. 

• Improve quality of 
new design(s) 
through flexible 
spatial viewpoint. 

 
 
• Expedite 

preliminary design 
• Customised design 

perspective(s). 

• Retrospective/ 
 
 
 
• In-situ 
 
• Retrospective 
 
• In-situ 

• Topological/ 
   geometric 

generalisation 
 
• Topological/ 
   geometric abstraction 
• Numerical 

association. 
• Generalisation of 

similar designs.  
 

• New generalised 
knowledge of 
layouts 

 
• Hierarchical levels 

abstraction. 

• SPIDA [17] 
 
 
 
• SPIDA 
 
• NODES  
 
• PERSPECT 
[3] 

Evaluating 
Performance 

• Design configurations 
satisfying given design 
function(s) and  
performance criteria. 

• Compare novel 
concept with 
existing design. 

• Identify 
performance trends 
for 
novel/innovative 
design. 

• Retrospective • Group Rationalisation • Clusters of design 
solutions mapped 
to performance 
evaluation space. 

• Murdoch & 
Ball [18] 

 

Table 1: Analysis of design and learning activities using the proposed formalism.  
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