390 research outputs found

    Bao: A Lightweight Static Partitioning Hypervisor for Modern Multi-Core Embedded Systems

    Get PDF

    Real-time systems on multicore platforms: managing hardware resources for predictable execution

    Full text link
    Shared hardware resources in commodity multicore processors are subject to contention from co-running threads. The resultant interference can lead to highly-variable performance for individual applications. This is particularly problematic for real-time applications, which require predictable timing guarantees. It also leads to a pessimistic estimate of the Worst Case Execution Time (WCET) for every real-time application. More CPU time needs to be reserved, thus less applications can enter the system. As the average execution time is usually far less than the WCET, a significant amount of reserved CPU resource would be wasted. Previous works have attempted partitioning the shared resources, amongst either CPUs or processes, to improve performance isolation. However, they have not proven to be both efficient and effective. In this thesis, we propose several mechanisms and frameworks that manage the shared caches and memory buses on multicore platforms. Firstly, we introduce a multicore real-time scheduling framework with the foreground/background scheduling model. Combining real-time load balancing with background scheduling, CPU utilization is greatly improved. Besides, a memory bus management mechanism is implemented on top of the background scheduling, making sure bus contention is under control while utilizing unused CPU cycles. Also, cache partitioning is thoroughly studied in this thesis, with a cache-aware load balancing algorithm and a dynamic cache partitioning framework proposed. Lastly, we describe a system architecture to integrate the above solutions all together. It tackles one of the toughest problems in OS innovation, legacy support, by converting existing OSes into libraries in a virtualized environment. Thus, within a single multicore platform, we benefit from the fine-grained resource control of a real-time OS and the richness of functionality of a general-purpose OS

    MCS-IOV : Real-time I/o virtualization for mixed-criticality systems

    Get PDF
    In mixed-criticality systems, timely handling of I/O is a key for the system being successfully implemented and functioning appropriately. The criticality levels of functions and sometimes the whole system are often dependent on the state of the I/O. An I/O system for a MCS must provide simultaneously isolation/separation, performance/efficiency and timing-predictability, as well as being able to manage I/O resource in an adaptive manner to facilitate efficient yet safe resource sharing among components of different criticality levels. Existing approaches cannot achieve all of these requirements simultaneously. This paper presents a MCS I/O management framework, termed MCS-IOV. MCS-IOV is based on hardware assisted virtualisation, which provides temporal and spatial isolation and prohibits fault propagation with small extra overhead in performance. MCS-IOV extends a real-time I/O virtualisation system, by supporting the concept of mixed criticalities and customised interfaces for schedulers, which offers good timing-preditability. MCS-IOV supports I/O driven criticality mode switch (the mode switch can be triggered by detection of unexpected I/O behaviors, e.g., a higher I/O utilization than expected) and timely I/O resource reconfiguration up on that. Finally, We evaluated and demonstrate MCS-IOV in different aspects

    Design and development of a mechanism for low-latency real time audio processing on Linux

    Get PDF
    This work is focused on developing a mechanism to support audio processing on Linux operating system using soft real-time techniques, primarily resource based scheduling with feedback (adaptive reservations)

    Adaptive Resource Management for Uncertain Execution Platforms

    Get PDF
    Embedded systems are becoming increasingly complex. At the same time, the components that make up the system grow more uncertain in their properties. For example, current developments in CPU design focuses on optimizing for average performance rather than better worst case performance. This, combined with presence of 3rd party software components with unknown properties, makes resource management using prior knowledge less and less feasible. This thesis presents results on how to model software components so that resource allocation decisions can be made on-line. Both the single and multiple resource case is considered as well as extending the models to include resource constraints based on hardware dynam- ics. Techniques for estimating component parameters on-line are presented. Also presented is an algorithm for computing an optimal allocation based on a set of convex utility functions. The algorithm is designed to be computationally efficient and to use simple mathematical expres- sions that are suitable for fixed point arithmetics. An implementation of the algorithm and results from experiments is presented, showing that an adaptive strategy using both estimation and optimization can outperform a static approach in cases where uncertainty is high

    Bounding memory interference delay in COTS-based multi-core systems

    Get PDF

    Analysis and implementation of the multiprocessor bandwidth inheritance protocol

    Get PDF
    The Multiprocessor Bandwidth Inheritance (M-BWI) protocol is an extension of the Bandwidth Inheritance (BWI) protocol for symmetric multiprocessor systems. Similar to Priority Inheritance, M-BWI lets a task that has locked a resource execute in the resource reservations of the blocked tasks, thus reducing their blocking time. The protocol is particularly suitable for open systems where different kinds of tasks dynamically arrive and leave, because it guarantees temporal isolation among independent subsets of tasks without requiring any information on their temporal parameters. Additionally, if the temporal parameters of the interacting tasks are known, it is possible to compute an upper bound to the interference suffered by a task due to other interacting tasks. Thus, it is possible to provide timing guarantees for a subset of interacting hard real-time tasks. Finally, the M-BWI protocol is neutral to the underlying scheduling policy: it can be implemented in global, clustered and semi-partitioned scheduling. After introducing the M-BWI protocol, in this paper we formally prove its isolation properties, and propose an algorithm to compute an upper bound to the interference suffered by a task. Then, we describe our implementation of the protocol for the LITMUS RT real-time testbed, and measure its overhead. Finally, we compare M-BWI against FMLP and OMLP, two other protocols for resource sharing in multiprocessor systems
    • …
    corecore