

CRTS 2014 : Proceedings of the 7th International Workshop
on Compositional Theory and Technology for Real-Time
Embedded Systems, Rome, Italy, December 2, 2014; In
conjunction with : The 35th International Conference on Real-
Time Systems (RTSS’14), December 3-5, 2014
Citation for published version (APA):
Bril, R. J., & Lee, J. (Eds.) (2014). CRTS 2014 : Proceedings of the 7th International Workshop on
Compositional Theory and Technology for Real-Time Embedded Systems, Rome, Italy, December 2, 2014; In
conjunction with : The 35th International Conference on Real-Time Systems (RTSS’14), December 3-5, 2014.
(Computer science reports; Vol. 1407). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2014

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://research.tue.nl/en/publications/b7018f40-50fe-455c-a4a0-ca93f6dba24a

Technische Universiteit Eindhoven
 Department of Mathematics and Computer Science

CRTS 2014 - Proceedings of the 7th International Workshop
on Compositional Theory and Technology for Real-Time Embedded Systems

Reinder J. Bril and Jinkyu Lee

14/07

ISSN 0926-4515

All rights reserved
editors: prof.dr. P.M.E. De Bra

 prof.dr.ir. J.J. van Wijk

Reports are available at:
http://library.tue.nl/catalog/TUEPublication.csp?Language=dut&Type=ComputerScienceReports&S
ort=Author&level=1 and
http://library.tue.nl/catalog/TUEPublication.csp?Language=dut&Type=ComputerScienceReports&S
ort=Year&Level=1

Computer Science Reports 14-07
Eindhoven, November 2014

CRTS 2014

Proceedings of the 7th International Workshop on
Compositional Theory and Technology for

Real-Time Embedded Systems

Rome, Italy
December 2, 2014

In conjunction with:
The 35th International Conference on Real-Time Systems (RTSS’14),

December 3-5, 2014

Edited by Reinder J. Bril and Jinkyu Lee

c© Copyright 2014 by the authors

ii

Foreword
Welcome to Rome and the 7th International Workshop on Compositional Theory and Technology for Real-Time Embedded
Systems (CRTS 2014). The CRTS workshops provide a forum for researchers and technologists to discuss the state-of-the-art,
present their work and contributions, and set future directions in compositional technology for real-time embedded systems.

CRTS 2014 is organized around presentations of papers (regular papers and invited extended abstracts) and a panel dis-
cussion focussed on the “state-of-the art and future directions” of CRTS. As usual, the presentations of regular papers address
typical topics of CRTS. The invited presentations, on the other hand, particularly aim at open problems (“future directions”)
and give an indication about the difficulty to solve these problems. These latter presentations may be controversial or thought
provoking, but also be an invitation to join in tackling hard problems. In addition, they are meant to serve the organizing
committee with respect to future directions for CRTS.

A total of 7 papers were selected for presentation at the workshop, 2 regular papers and 5 invited extended abstracts.
These proceedings are also published as a Computer Science Report from the Technical University of Eindhoven (CSR-1407)
available at http://library.tue.nl/catalog/CSRPublication.csp?Action=GetByYear.

This year, CRTS is organized in conjunction with the 5th Analytical Virtual Integration of Cyber-Physical Systems Workshop
(AVICPS 2014), which has close theoretical and practical scientific interests. Our joint program contains a keynote by Prof.
Dr. Dr. h.c. Manfred Broy from the Technisch Universität München.

We would like to thank the Organizational Committee listed below, for granting us the honor, privilege and opportunity
to be the co-chairs of CRTS 2014.

Insup Lee University of Pennsylvania, USA
Thomas Nolte Mälardalen University, Sweden
Insik Shin KAIST, Republic of Korea
Oleg Sokolsky University of Pennsylvania, USA

Moreover, we would like to thank the Technical Program Committee listed below, for their work in reviewing the regu-
lar papers and extended abstracts, and helping to make the workshop a success.

Benny Åkesson Czech Technical University in Prague, Czech Republic
Lúıs Almeida Universidade do Porto, Portugal
Björn Andersson Software Engineering Institute at Carnegie Mellon University, USA
Moris Behnam Mälardalen University, Sweden
Enrico Bini Scuola Superiore Sant’Anna, Italy
Arvind Easwaran Nanyang Technological University, Singapore
Martijn M.H.P. van den Heuvel Eindhoven University of Technology (TU/e), The Netherlands
Hyun-Wook Jin Konkuk University, Republic of Korea
Julio Luis Medina Pasaje Universidad de Cantabria, Spain
Jan Reineke Saarland University, Germany
Luca Santinelli ONERA, France
Mikael Sjödin Mälardalen University, Sweden
Linh Thi Xuan Phan University of Pennsylvania, USA
Lothar Thiele Swiss Federal Institute of Technology Zurich, Switzerland
Tullio Vardanega Università di Padova, Italy

Last but not least, special thanks go to the RTSS 2014 Workshop Chair, Program Chair and General Chair listed below, as
well as the AVICPS 2014 co-chairs, for their support and assistance in organizing this joint seminar.

Rodolfo Pellizzoni University of Waterloo, Canada (RTSS 2014 Workshops Chair)
Christopher D. Gill Washington University in St. Louis, USA (RTSS 2014 Program Chair)
Michael González Harbour Universidad de Cantabria, Spain (RTSS 2014 General Chair)
Sibin Mohan University of Illinois at Urbana-Champaign (AVICPS 2014 Co-chair)
Jean-Pierre Talpin INRIA, France (AVICPS 2014 Co-chair)

Jinkyu Lee and Reinder J. Bril
Co-chairs
7th International Workshop on Compositional Theory and Technology for Real-Time Embedded Systems (CRTS 2014)

iii

iv

Table of Contents

Regular papers
Supporting Fault-Tolerance in a Compositional Real-Time Scheduling Framework
Guy Martin Tchamgoue, Junho Seo, Jongsoo Hyun, Kyong Hoon Kim, and Yong-Kee Jun 1

Designing a Time-Predictable Memory Hierarchy for Single-Path Code
Bekim Cilku and Peter Puschner 9

Extended Abstracts
Five problems in compositionality of real-time systems
Björn Andersson 15

Compositional Mixed-Criticality Scheduling
Arvind Easwaran and Insik Shin 16

Challenges of Virtualization in Many-Core Real-Time Systems
Matthias Becker, Mohammad Ashjaei, Moris Behnam, and Thomas Nolte 17

Managing end-to-end resource reservations
Luis Almeida, Moris Behnam, and Paulo Pedreiras 18

Supporting Single-GPU Abstraction through Transparent Multi-GPU Execution for Real-Time Guarantees
Wookhyun Han, Hoon Sung Chwa, Hwidong Bae, Hyosu Kim and Insik Shin 19

v

iv

Supporting Fault-Tolerance in a Compositional Real-Time
Scheduling Framework

Guy Martin Tchamgoue1, Junho Seo1, Jongsoo Hyun2, Kyong Hoon Kim1, and
Yong-Kee Jun1

1Department of Informatics 2Avionics SW Team
Gyeongsang National University Korea Aerospace Industries, Ltd.

660–701, Jinju, South Korea Sacheon, South Korea
guymt@ymail.com, joy2net@gnu.ac.kr, ksjh0111@koreaaero.com,

{khkim,jun}@gnu.ac.kr

ABSTRACT
Component-based analysis allows a robust time and space
decomposition of a complex real-time system into compo-
nents, which are then recomposed and hierarchically sched-
uled under potentially different scheduling policies. This
mechanism is of great benefit to many critical systems as it
enables fault isolation. To provide fault-tolerant scheduling
in a compositional real-time scheduling framework, a few
works have recently emerged, but remain inefficient in pro-
viding fault isolation or in terms of resource utilization. In
this paper, we introduced a new interface model that takes
into account the fault requirements of a component, and a
fault-tolerant resource model that helps the component to
effectively respond to each of its child components in pres-
ence of a fault. Finally, we analyzed the schedulability of
the framework considering the Rate Monotonic scheduling
algorithm.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Real-time and embedded systems; C.4 [Performance of
Systems]: Fault tolerance; D.4 [Operating Systems]: Pro-
cess Management—Scheduling

General Terms
Theory, Reliability

Keywords
Compositional real-time scheduling, periodic resource model,
periodic task model, fault-tolerant scheduling

1. INTRODUCTION
The increasing size and complexity and the requirement

of high performance have led to the rapid adoption of the
component-based analysis in many cyber-physical systems.
A compositional real-time scheduling framework allows mul-
tiple components, that may have been individually devel-
oped and validated, to be hierarchically composed and sched-
uled altogether. In this kind of open computing environ-
ment, a component or partition receives computational re-
sources from its parent component and shares the resources
with its child components through its own local scheduler.
This robust space and time partitioning opens ways to achiev-

ing rigorous fault containment. Therefore, faults can trans-
parently be detected and handled by a fault management
policy at each level of the hierarchy: intra-component (or
task level), inter-component (or component level), and sys-
tem level .

In safety-critical real-time systems, such as avionics [1]
and automotive [2], where component-based analysis has be-
come a standard, two main conflicting challenges are to be
addressed: (1) providing an efficient resource sharing for
economical reasons, and (2) guaranteeing the reliability of
the system for validation and certification. Many composi-
tional real-time scheduling frameworks [3, 5, 15, 16, 17] have
already been proposed, but with a great focus on efficient re-
source abstraction and sharing, schedulability analysis, and
abstraction and runtime overheads. Thus, research on a
fault-tolerant compositional real-time scheduling framework
is yet to be done. Such a framework should provide an effi-
cient resource model for an effective resource sharing even in
presence of faults. Nevertheless, many error recovery strate-
gies such as redundancy [7, 11, 14], roll-back [6, 13, 19] and
roll-forward [12, 18] with check-pointing [4], have already
been devised for the long studied field of fault-tolerance in
real-time systems, but their direct application to a composi-
tional scheduling framework has not been thoroughly inves-
tigated.

Considering the periodic resource model [16], Hyun and
Kim [8] proposed a task level fault-tolerant framework and
later extended it with a component level fault containment
with backup partitions [9]. Although it offers task and com-
ponent level fault isolation, the approach remains inefficient
as the highest possible resource is always required to guaran-
tee the feasibility of the system even in the absence of faults.
Jin [10] extended the periodic resource model to support the
backup resource requirements, but does not provide a fine-
grained fault management as the system definitely switches
to a backup partition whenever a fault is detected inside the
associated primary partition.

In this paper, we propose a new compositional real-time
scheduling framework that uses the time redundancy tech-
nique to tolerate faults. Our framework introduces a new
interface model that takes into account the real-time fault
requirements of a component, and a resource model that
helps the component to effectively respond to each of its
child components in presence of a fault. When a fault is
detected inside a component, the new resource model guar-
antees to provide an extra resource to the faulty component

CRTS 2014 1 Rome, Italy

only until the fault is handled and thereafter, switches back
to a normal supply as the demand of the component has
also decreased. Contrarily to the previous approaches [8,
9, 10], the new model provides a more flexible and efficient
resource sharing in presence of faults. The schedulability
of the framework has been analyzed considering the Rate
Monotonic (RM) scheduling algorithm. However, our analy-
sis focuses only on errors that are caused by transient faults,
allowing each single task of the system to define its own error
recovery strategy.

The remainder of this paper is organized as follows. Sec-
tion 2 presents our system model with an overview of a com-
positional real-time scheduling framework, and describes the
problems addressed in the paper. Section 3 focuses on the
proposed framework itself and introduces the new interface
and resource models, and discusses the schedulability anal-
ysis with the RM algorithm. Section 4 provides details on
how to compute each parameter that makes up the fault-
tolerant interface model. Finally, the paper is concluded in
with Section 5.

2. BACKGROUND
This section presents our system model with an overview

of a compositional real-time scheduling framework (CRTS),
describes our fault model and finally defines the problems
handled in this paper.

2.1 System Model
In a compositional real-time scheduling framework [16,

17], components are organized in a tree-like hierarchy where
a upper-layer component allocates resources to its child com-
ponents, as shown in Figure 1. Thus, the basic scheduling
unit (i.e. component or partition) of the framework is de-
fined as C(W,R,A), where W is the workload, R the re-
source model supported by the upper-layer component, and
A the scheduling algorithm of the component.

In this paper, we assume that the workload W of each
component is composed of a set of periodic real-time tasks
running on a single processor platform. Each task τi is then
defined by its period, pi and its worst-case execution time,
ei. We also assume the deadline of each task τi to be equal
to its period pi.

A resource model R specifies the exact amount of resource
to be allocated by a parent component to its child com-
ponents. The periodic resource model Γ(Π,Θ) [16], as in
Figure 1, guarantees a resource supply of Θ at every period
of Π time units to a given component. In contrast to the
resource model, the interface model abstracts a component
together with its collective real-time requirement as a new
real-time task. The periodic interface model I(P,E) [16]
represents a component task I with execution time E and
period P .

As an example, Figure 1 depicts a two-layer composi-
tional real-time scheduling framework comprising three com-
ponents, C0, C1, and C2. The two tasks of component C1

which are scheduled with EDF (Earliest Deadline First) are
abstracted under the interface I1 as a periodic task with a
period of 10 and an execution time of 3 time units. Similarly,
component C2 which contains two tasks scheduled with RM

(Rate Monotonic) is seen by the upper layer component as
a single task represented by I2. Thus, component C0, which
is also summarized as interface I0, focuses on scheduling C1

and C2 as simple real-time tasks through their respective

Figure 1: An example of compositional real-time
scheduling framework

interfaces I1 and I2, therefore providing C1 and C2 with
resource models R1 and R2, respectively.

2.2 Fault Model
In this paper, we consider only errors that are caused by

transient faults. We assume that only the single task under
execution at the time of a fault occurrence is affected by the
fault. Whenever a fault is detected, the state of the affected
task is recovered by an appropriate error recovery strategy
such as redundancy, rollback, or roll-forward. Therefore, we
expect each task τi to define its own recovery strategy and
thus, maintains its own backup task referred to as βi. For
any task τi, the backup execution time, denoted by bi, is
assumed to be not greater than the normal execution time
ei (i.e. 0 ≤ bi ≤ ei). The backup execution is defined
according to the recovery strategy as follows:

• bi = ei: when the re-execution strategy is applied,

• 0 < bi < ei: for a forward recovery strategy such as an
exception handler

• bi = 0: when the fault is to be ignored.

A fault is assumed to be detected at the end of the execu-
tion of each task as this represents the worst-case scenario.
Once a fault is detected on a task τi, its backup task βi is
to be released and executed by the task’s deadline. Thus, a
task τi is supposed to finish at least by (pi − bi) in order to
make enough slack time for its backup task. However, due to
the nature of the resource model, the remaining slack time of
bi may still be insufficient to cover the backup task, in which
case we assume the recovery to start from the next period
of the task. With a periodic resource model Γ(Π,Θ) for ex-
ample, the system may become non schedulable because the

resource supply of
⌊

bi
Π

⌋
Θ cannot satisfy the backup require-

ment of bi time units for a faulty task τi. We also assume
a fault to occur only once in a time interval of TF units,
which represents the minimum distance between two con-
secutive faults in the system. When a fault is detected on a
task τi, the faulty component may require an extra compu-
tational resource to cover up the fault. However, due to the
periodicity of the resource supply and in order to preserve
the schedulabilty of other components in the framework, the

CRTS 2014 2 Rome, Italy

extra resource can only be claimed from the next resource
period. Thus, each component of the framework is assumed
to detect a task fault only at the end of each resource sup-
ply. Therefore, the component assumes the fault recovery
process to start from the resource period that comes right
after the one in which the fault was detected. It is impor-
tant to emphasize on the fact that the backup task does not
need to wait until the next resource period to be executed,
but as soon as it gets ready.

2.3 Problem Statement
In this paper, we present a fault-tolerant compositional

scheduling framework assuming the periodic real-time task
model. Considering a single fault model, we propose a task
level fault management scheme while handling the following
problems:

• Interface model: to model the workload W of a compo-
nent C(W,R,A) as a single periodic task with consid-
eration of the deadline and fault requirements of each
task. An upper-layer component can then use the in-
terface model to efficiently share its resource with its
child components.

• Resource model: to guarantee an optimal resource sup-
ply to each component in order to satisfy its deadline
and fault-tolerance requirements.

• Interface generation: to effectively determine each pa-
rameter that makes up the interface model for each
component of the framework.

• Schedulability analysis: to guarantee to each compo-
nent especially in the presence of faults, the minimum
resource supply that makes it schedulable.

We believe that such a fault-tolerant system will be useful
for example in the design of a modern avionics mission com-
puter that implements a strict time and space partitioning
based on the ARINC 653 standard [1]. In such a system
faults need to be handled and dealt with properly. A sin-
gle fault may, for example, cause an entire operational flight
program to behave incorrectly or to fail, eventually forcing
the mission computer itself to a cold or warm restart. A
warm restart of the system takes about 5 seconds, which
may then force ongoing missions such as target attack and
aerial reconnaissance to abortion [8].

3. FAULT-TOLERANT CRTS
This section describes a new fault-tolerant compositional

real-time scheduling framework. We present our new inter-
face and resource models. The schedulability analysis of the
framework is provided assuming the Rate Monotonic (RM)
scheduling algorithm.

3.1 Interface Model
Each component of the framework contains a Fault Man-

ager (FM) module which function is to detect and handle
faults inside the component. Although this paper consid-
ers only the RM algorithm, any other scheduler capable of
handling faults like EDF maybe used. A new periodic inter-
face model defined by I(P,E,B,M) is introduced to support
both the real-time and the fault requirements of each com-
ponent. In this interface definition, P , E, and B respectively

Figure 2: The proposed scheduling framework

represents the period, the execution time during the normal
mode, and the extra execution time to be supplied in case
of fault for backup. When a fault is detected on a task,
the component may require more than one resource supply
to recover from the fault. Therefore, the parameter M is
to materialize the total number of resource intervals which
are needed by the component to properly respond to faults.
Thus, when a fault signaled inside a component C(W,R,A),
the overall resource demand of the component, due to the
release of a backup task, increases by approximately M ×B
time units. In other words, when a fault is detected on a
task τi inside a component C(W,R,A), the component level
backup task Ib(P,B) will be released M times in order to
request enough resource to cover up the backup requirement
of the faulty task τi. We also normalized the definition of a
task τi to add a new parameter mi which as M , represents
the number of backup releases of the task. If a fault occurs
on a task τi(pi, ei, bi,mi), the additional backup job with bi
execution times is released for exactly mi times. With this
definition, the backup task βi of a task τi can be registered
to spread across multiple release periods.

An example of the new framework is shown in Figure 2,
where component C2 has two periodic tasks τ3(50, 4, 4, 1)
and τ4(25, 3, 2, 1) scheduled with a fault-tolerant RM algo-
rithm. The component exposes its interface I2(15, 4, 2, 2) to
its parent component C0 to claim a computational time of 4
units every 15 time units under normal execution. However,
if a fault is detected, C2 will require an additional 2 time
units to be supplied during the next 2 resource periods in
order to deal with the fault. In a similar way, component C1

presents its interface I1(10, 3, 2, 3) to C0, which then focuses
on scheduling the two components as two normal periodic
tasks.

3.2 Resource Model
This paper introduces a new fault-aware periodic resource

model which extends the existing periodic resource model [16]
to support faults in a compositional scheduling framework.
The fault-tolerant resource model Γ(Π,Θ,Δ) guarantees to
supply to each component a resource amount of Θ time units
whenever the component is running without any fault. How-
ever, when a fault is detected on a task τi, the resource
demand of the component increases by bi. To support the
fault recovery process, the component is supplied an addi-

CRTS 2014 3 Rome, Italy

Figure 3: An example of resource supply for Γ(5, 2, 1)
where M = 3

tional computational time of Δ. Thus, the fault-tolerant
resource model Γ(Π,Θ,Δ) supplies Θ time units during the
normal execution and increases the supply to Θ+Δ during
the recovery time. Contrarily to the previous fault-tolerant
model Γ(Π,Θp,Θb) [10] that provides Θp during the normal
execution and definitely switches to Θb when a fault is de-
tected, our resource model Γ(Π,Θ,Δ) switches back to the
normal execution mode when the fault is entirely recovered
and therefore, continues to supply only Θ time units. The
exact number of time the extra resource is supplied is just
taken from the interface of each component. Figure 3 shows
an example of resource supply model R = Γ(5, 2, 1) to a
component C(W,R,A) with the interface model I(5, 2, 1, 3).

For the schedulability purpose, it is important to accu-
rately evaluate the amount of resource supplied by a re-
source model to a component. The supply bound function
sbfΓ(t) of a resource model Γ calculates the minimum re-
source supply for any given time interval of length t. In a
normal execution mode, the supply bound function is simi-
lar that of the periodic resource model [16] and given by the
following equation:

sbfΓ(Π,Θ)(t) =

⎧⎨
⎩

t− (k + 1)(Π−Θ) if t ∈ [(k + 1)Π− 2Θ,
(k + 1)Π−Θ],

(k − 1)Θ otherwise,
(1)

where k = max(�(t− (Π−Θ))/Π�, 1).
However, during the recovery mode, the resource supply to
the faulty component increases by Δ time units. Thus,
the supply bound function for the recovery mode sbfRΓ (t)
is given by Equation (2).

sbf
R
Γ(Π,Θ,Δ)(t) = sbfΓ(Π,Θ+Δ)(t−Δ) (2)

Given a component C(W,R,A) represented by its interface
I(P,E,B,M) and a resource supply model R = Γ(Π,Θ,Δ),
if we assume that a fault is detected during the k-th resource
supply to C, then the supply bound function can be provided
by Equation (3).

sbfΓ(Π,Θ,Δ)(t, k) =

⎧⎨
⎩

sbfΓ(Π,Θ)(t) if t ≤ tN
sbfRΓ(Π,Θ,Δ)(t)− hs if tN < t ≤ tR
sbfΓ(Π,Θ)(t) + vs Otherwise

(3)

where tN = kΠ−Θ
tR = (M + k)Π−Θ
hs = sbfRΓ(Π,Θ,Δ)(tN)− sbfΓ(Π,Θ)(tN)

vs = sbfRΓ(Π,Θ,Δ)(tR)− sbfΓ(Π,Θ)(tR)− hs

Example 3.1. Let us consider a component C(W,R,A)
where W = {τ1(10, 1, 1, 1), τ2(15, 2, 2, 1)} and A = RM. Let

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 5 10 15 20 25 30

R
es

ou
rc

e
S

up
pl

y

Time

sbfΓ(5,3)(t)
sbfΓ(5,2)(t)

sbfΓ(5,2,1) (t,1)

sbfΓ(5,2,1) (t,2)
sbfΓ(5,2,1)(t,3)
sbfΓ(5,2,1) (t,4)

Figure 4: Supply bound function for Γ(5, 2, 1) with
M = 2

the interface of the component be given by I(5, 2, 1, 2) and
its resource supply modeled by R = Γ(5, 2, 1). Figure 4 com-
pares sbfΓ(Π,Θ,Δ)(t, k) for k = 1, 2, 3, and 4 with the worst-
case resource supply of Γ(5, 3) as considered by the previous
work [8, 10]. The new resource model provides a signifi-
cant gain in terms of resource for the framework. Figure 4
shows that the curves of our fault-tolerant resource model
are always between those of the normal and the worst-case
resource supply.

3.3 Schedulability Analysis
For the analysis of the schedulability, we focus only on the

Rate Monotonic (RM) algorithm which assigns higher priori-
ties to tasks with the shortest periods. Thus, without loss of
generality, we assume that tasks are sorted in each compo-
nent in an ascendant order of their periods, that is pi ≤ pi+1.
Also, when released, a backup task βi inherits the priority
of its faulty task τi. We define the resource demand of a
workload as the amount of resource requested by a compo-
nent to its parent component. The demand bound func-
tion dbfW (A, t) computes the maximum resource demand
required by the workload W when scheduled with the algo-
rithm A during a time interval t. Since we focus only on the
RM algorithm, we will omit the scheduling algorithm from
the future notations of the demand bound function.

For a component C(W,R, RM) under normal execution, the
demand bound function dbfW (t, i) of a task τi is given by
the following equation:

dbfW (t, i) = ei +
∑

τj∈hp(i)

⌈
t

pj

⌉
· ej (4)

where hp(i) represents the set of tasks with priority higher
than the one of τi. However, if a task τi is still recover-
ing from a fault, its demand bound function considering it
backup task βi is given by Equation (5).

dbf
R
W (t, i) = ei + bi +

∑
τj∈hp(i)

⌈
t

pj

⌉
· ej (5)

If the fault is detected on a task τj with higher priority than
another task τi, then the demand bound function dbfFW (t, i)

CRTS 2014 4 Rome, Italy

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
es

ou
rc

e
S

up
pl

y/
D

em
an

d

Time

dbfW (t,2)
dbfW(t,1)

sbfΓ(5,2)(t)

(a) Normal execution

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
es

ou
rc

e
S

up
pl

y/
D

em
an

d

Time

dbfW (R,t,2)
dbfW(F,t,2)
dbfW(R,t,1)

sbfΓ(5,2,1)(R,t)
sbfΓ(5,2)(t)

(b) Recovery execution

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R
es

ou
rc

e
S

up
pl

y/
D

em
an

d

Time

dbfW (t,2,k)
dbfW(t,1,k)

sbfΓ(5,2,1)(t,1)
sbfΓ(5,2,1)(t,2)
sbfΓ(5,2,1)(t,3)

(c) Fault analysis

Figure 5: Schedulability analysis of Example 3.2

of τi is provided by Equation (6). Among all tasks with
priority higher than that of τi, the demand bound function
of τi assumes the worst-case situation in which the faulty
task τj is the one with the maximum backup execution time.

dbf
F
W (t, i) = ei +

∑
τj∈hp(i)

⌈
t

pj

⌉
· ej

+ max
τj∈hp(i)

(
min

(⌈
t

pj

⌉
,mj

)
· bj

)
(6)

We can now determine for a task τi the demand bound func-
tion dbfW (t, i, k) assuming that a fault was detected on an-
other task τj with priority higher than that of τi during the
k-th resource supply to the component as in Equation (7).

dbfW (t, i, k) = ei +
∑

τj∈hp(i)

⌈
t

pj

⌉
· ej + max

τj∈hp(i)

(
min

(

max

(⌈
t− (k − 1)Π

pj

⌉
, 0

)
, mj

)
· bj

)
(7)

A component C(W,R, RM) is schedulable if the resource
demand of its workload W is guaranteed to be satisfied by
the resource model R = Γ(Π,Θ,Δ) during the normal exe-
cution mode and also in presence of a fault as summarized
in Theorem 1.

Theorem 1. A given component C(W,R,RM) where W =
{τi(pi, ei, bi,mi)|i = 1, . . . , n} and which interface is defined
as I(P,E,B,M), is schedulable with a resource model R =
Γ(Π,Θ,Δ) if and only if for all τi ∈ W , there exists ti ∈
[0, pi] such that the following three conditions are satisfied:

1. dbfW (ti, i) ≤ sbfΓ(Π,Θ)(ti)

2. dbfRW (ti, i) ≤ sbfRΓ(Π,Θ,Δ)(ti)

3. dbfW (ti, i, k) ≤ sbfΓ(Π,Θ,Δ)(ti, k),∀k = 1, . . . , (
⌈
pi
Π

⌉−
1)

Proof. The proof to the first condition of Theorem 1
follows from the work by Shin and Lee [16, Theorem 4.2].
A task τi completes its execution requirement at time ti ∈
[0, pi], if, and only if, all the execution requirements from all
the jobs of higher-priority tasks than τi and ei , the execu-
tion requirement of τi , are completed at time ti. The total of
such requirements is given by dbfW (ti, i), and they are com-
pleted at ti if, and only if, dbfW (ti, i) = sbfΓ(Π,Θ)(ti) and
dbfW (t′i, i) > sbfΓ(Π,Θ)(t

′
i) for 0 ≤ t′i < ti. It follows that

a necessary and sufficient condition for τi to meet its dead-
line is the existence of a ti ∈ [0, pi] such that dbfW (ti, i) =
sbfΓ(Π,Θ)(ti). The entire task set is schedulable if, and only
if, each of the tasks is schedulable, which implies that there
exists a ti ∈ [0, pi] such that dbfW (ti, i) = sbfΓ(Π,Θ)(ti) for
each task τi ∈ W .

Similarly, the proofs to the two other conditions can be
established by repeating the same reasoning with the appro-
priate demand and supply bound functions.

Example 3.2. Let us consider again our previous compo-
nent C(W,R,RM) where W = {τ1(10, 1, 1, 1), τ2(15, 2, 2, 1)}
and R = Γ(5, 2, 1). The interface of the component is given
by I(5, 2, 1, 2). Figure 5(a) which plots the demand bound
function as presented in Equation (4), shows that the com-
ponent is schedulable for the minimum resource supply of
R = Γ(5, 2). This satisfies the first condition of Theorem 1.

CRTS 2014 5 Rome, Italy

However, as seen in Figure 5(b), if the resource supply re-
mains R = Γ(5, 2) while a fault occurs on task τ1, task τ2 will
miss its deadlines due to the interference from the backup
task of τ1. Also, if the fault is instead detected on τ2, the
component will still be unschedulable with a resource supply
of R = Γ(5, 2). However, Figure 5(b) shows that the com-
ponent becomes schedulable if the resource supply becomes
R = Γ(5, 2, 1). Figure 5(c) plots the third condition of The-
orem 1 to analyze the impact of a faulty τ1 on task τ2. It
results that by supplying an extra 1 computation time unit
during exactly 2 resource period, the component is always
schedulable. Therefore, there is no need to always provide C
with a resource of R = Γ(5, 3). Moreover, Figure 5(c) shows
that if the fault is detected during the last resource supply
before the deadline of τ2 (i.e. [10−15]), the recovery process
will be handled only after the deadline.

4. INTERFACE GENERATION
A component expresses its resource demand to its parent

component through its interface which abstracts, without
revealing it, the internal real-time requirements of the com-
ponent. The interface of a component C(W,R,A) is defined
by I(P,E,B,M). When a fault is detected on a task τi
by the local fault manager, the backup task βi is released
to execute for bi time units. This release also triggers the
release of the component backup task as the component is
now seen as faulty by its parent component. As a result, the
faulty component is provided with an extra Δ time units.
The component remains in this faulty status for exactly M
resource periods. This section focuses on determining the in-
terface parameters that make each component schedulable
with a resource model Γ(Π,Θ,Δ).

In this paper, we assume that the period P of the inter-
face is decided by the system designer. However, there is
a tradeoff in choosing the right P for a given component
C(W,R,A) due to the scheduling overhead. A smaller P
increases the scheduling overhead in the upper-layer com-
ponent due to the increased number of context switching.
Inversely, a larger P makes it also difficult to find a feasible
interface model. Thus, we suggest to select P as the mini-
mum period among all tasks in W , or as a number dividing
the minimum period, or finally as a common divider to all
pi,∀τi ∈ W .

The parameter E can be easily determined assuming the
component is in its normal execution mode where backup
resource supply is not required as stated by the first con-
dition of Theorem 1. When a resource model Γ(Π,Θ,Δ) is
provided to a component with interface I(P,E,B,M), the
execution time E can be determined by Proposition 1.

Proposition 1. The schedulability of a given component
C(W,R, RM) abstracted by the interface I(P,E,B,M), where
W = {τi(pi, ei, bi, mi)|i = 1, . . . , n} and R = Γ(Π,Θ,Δ), is
guaranteed if

E =
P · UN

log
(

2k+2(1−UN)
k+2(1−UN)

) (8)

where k = max(integer i|(i+1)P−E < p∗, UN =
∑

τi∈W
ei
pi
,

and p∗ represents the smallest period in W ,

Proof. Let us consider a component C(W,R,RM), where
W = {τi(pi, ei, bi,mi)|i = 1, . . . , n} and its periodic inter-
face defined as I(P,E,B,M). Let us assume the component

in a normal non-faulty execution mode with a resource sup-
ply model R = Γ(Π,Θ,Δ). According to work by Shin and
Lee [16], the utilization bound of the component C under
normal execution mode is given by

UBW (RM) = UI · n
[(

2k + 2(1− UI)

k + 2(1− UI)

)1/n

− 1

]

with k defined by k = max(integer i | (i + 1)P − E < p∗)
and UI = E

P
.

In order to guarantee the schedulability of the component,
the interface normal execution time E is the minimum value
such that

UN =
∑

τi∈W

ei
pi

≤ UI · n
[(

2k + 2(1− UI)

k + 2(1− UI)

)1/n

− 1

]
(9)

When n becomes large, we have

n

[(
2k + 2(1− UI)

k + 2(1− UI)

)1/n

− 1

]
≈ log

(
2k + 2(1− UI)

k + 2(1− UI)

)
(10)

Therefore, from Equations 9 and 10, it follows that

UI ≥ UN

log
(

2k+2(1−UI)
k+2(1−UI)

)
Since UN ≤ UI , we have

log

(
2k + 2(1− UN)

k + 2(1− UN)

)
≤ log

(
2k + 2(1− UI)

k + 2(1− UI)

)
(11)

Equation (11) finally implies that

UI ≥ UN

log
(

2k+2(1−UN)
k+2(1−UN)

)
Therefore, the minimum value for E is given by

E =
P · UN

log
(

2k+2(1−UN)
k+2(1−UN)

)
However, since UN ≤ 1, it is easy to see that E ≤ P .

When a fault occurs on a task τi the resource utilization
of the component increases by bi/pi and consequently, the
resource supply to the component is also increased by Δ.
Thus, the total resource utilization UF of a component in
presence of a fault is given by the following equation:

UF =
∑

τi∈W

ei
pi

+ max
τk∈W

(
mkbk
pk

)
(12)

Since we assume only a single fault model, the value of the
interface backup execution time B can be obtained by ex-
tending the result of Proposition 1 as given in Proposition 2

Proposition 2. The schedulability of a given component
C(W,R,RM) abstracted by the interface I(P,E,B,M), where
W = {τi(pi, ei, bi,mi)|i = 1, . . . , n} and R = Γ(Π,Θ,Δ), is
guaranteed if

E +B =
P · UF

log
(

2k+2(1−UF)
k+2(1−UF)

) (13)

where k = max(integer i|(i + 1)P − (E + B) < p∗, and p∗
represents the smallest period in W ,

CRTS 2014 6 Rome, Italy

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100 120 140 160

R
es

ou
rc

e
S

up
pl

y/
D

em
an

d

Time

sbfΓ(10,3.14)(t)
dbfW (t,4)
dbfW (t,3)
dbfW (t,2)
dbfW(t,1)

(a) Normal execution

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100 120 140 160

R
es

ou
rc

e
S

up
pl

y/
D

em
an

d

Time

sbfΓ(10,3.14,1.36)(t)
sbfΓ(10,3.14)(t)
dbfW (R,t,4)
dbfW (R,t,3)
dbfW (R,t,2)
dbfW(R,t,1)

(b) Recovery execution

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100 120 140 160

R
es

ou
rc

e
S

up
pl

y/
D

em
an

d

Time

sbfΓ(10,3.14,1.36)(t)
sbfΓ(10,3.14,1.36)(t,2)

sbfΓ(10,3.14)(t)
dbfW (t,4,2)
dbfW (t,3,2)
dbfW (t,2,2)

dbfW(t,1)

(c) Fault analysis with k = 2

Figure 6: Schedulability analysis of Example 4.1

Proof. The proof to Proposition 2 directly follows from
that of Proposition 1.

Finally, we determine M to be the maximum number of
times the additional resource B is to be requested by the
faulty component from its upper-layer component in case of
fault. However, the value M should be decided to guarantee
that the length of the resource supply cannot violate the
deadline requirement of the faulty task, and that the total
additional resource supplied for backup is large enough to
cover the backup requirement of each task in case of fault.
These two conditions are then formalized into Equation (14).

M × P ≤ mi × pi,∀τi ∈ W
M ×B ≥ mi × bi,∀τi ∈ W

(14)

From Equation (14), it follows that

mibi
B

≤ M ≤ mipi
P

,∀τi ∈ W (15)

We can still preserve the schedulability of the component by
choosing M as the maximum value among the lower bound
values that satisfy Equation (15) as shown in Equation (16).

M = max
τi∈W

(⌈
mibi
B

⌉)
(16)

Once the interface I(P,E,B,M) of a component C(W,R,A)
is determined, the resource model R = Γ(Π,Θ,Δ) provided

by the upper-layer component to C can directly be derived
from the interface by setting Π = P , Θ = E, and Δ = B.

Example 4.1. Let us consider a component C(W,R,RM)
with its workload given by W = {τ1(20, 1, 1, 1), τ2(40, 4, 4, 1),
τ3(80, 3, 2, 1), τ4(160, 2, 0, 1)}. Let us also assume that TF is
equal to 160, the least common multiple of all task periods
in W . Now, let us set the period of the interface as P = 10.
By choosing k =

⌊
p∗
P

⌋
in Proposition 1, we can obtain that

E = 3.14. Similarly, we can obtain from Proposition 2 that
B = 1.36. Equation (16) then provides M = 3. The com-
ponent interface can then be given as I(10, 3.14, 1.36, 3) and
the resource model as R = Γ(10, 3.14, 1.36). Thus, when
a fault occurs in the component, an additional resource of
1.36 time units will be supplied to the components for 3
periods. Figure 6 shows the schedulability analysis of the
component. Figure 6(a) tells that the component is schedu-
lable under normal execution mode with the resource sup-
ply of Γ(10, 3.14). However, in case of a fault as seen in
Figure 6(b), the task τ2 will miss its deadline with the re-
source supply of Γ(10, 3.14), but the workload will preserve
its schedulability with the resource supply of Γ(10, 3.14, 1.36).
We assumed a case where a fault is detected on τ2 during the
second resource supply. As seen in Figure 6(c), the schedu-
lability of the workload is guaranteed by the resource model
Γ(10, 3.14, 1.36) which provided an extra 1.36 time units dur-
ing 3 more resource intervals to backup the faulty task τ2.

CRTS 2014 7 Rome, Italy

5. CONCLUSION
This paper presents a new fault-tolerant compositional

real-time scheduling framework. In the framework, each
component contains a fault manager module which is in
charge of detecting faults inside the component and recover-
ing the faulty task by launching an associated backup strat-
egy. The release of a backup task immediately increases the
resource demand of a component. Thus, we introduced a
fault-aware interface model to expose both the deadline and
the fault requirements of each component to each upper-
layer component. Furthermore, we provided a new fault-
tolerant resource model that guarantees a minimum resource
supply to a component in its normal execution mode, and
increases the resource supply when the resource demand of
the component increases due to a fault. Moreover, the re-
source also switches back to its minimum supply once the
component has entirely recovered from the fault. We ana-
lyzed the schedulability of the new framework considering
the Rate Monotonic scheduling algorithm and showed its
efficiency over existing models.

In this paper, we considered only the task level fault man-
agement. Our future interest will be on a component and
system levels fault management strategies. It will also be
interesting to extend the fault model to for example a mul-
tiple fault model, since the occurrence of faults can be bursty
or memoryless. Finally, we are planning to implement the
framework on a real hardware to support the design and
development of safety-critical avionics mission computers
based on the ARINC-653 standard.

6. ACKNOWLEDGMENTS
This work was supported by Basic Science Research Pro-

gram through the National Research Foundation of Korea
(NRF) funded by the Ministry of Science, ICT & Future
Planning (No. NRF-2012R1A1A1015096), and the BK21
Plus Program (Research Team for Software Platform on
Unmanned Aerial Vehicle, 21A20131600012) funded by the
Ministry of Education (MOE, Korea) and National Research
Foundation of Korea (NRF).

7. REFERENCES
[1] ARINC. Avionics application software standard interface:

Part 1 - required services (arinc specification 653-2).
Technical report, Aeronautical Radio, Incorporated, March
2006.

[2] M. Asberg, M. Behnam, F. Nemati, and T. Nolte. Towards
hierarchical scheduling in autosar. In Emerging
Technologies Factory Automation, ETFA 2009, pages 1–8,
Sept 2009.

[3] S. Chen, L. T. X. Phan, J. Lee, I. Lee, and O. Sokolsky.
Removing abstraction overhead in the composition of
hierarchical real-time systems. In Proceedings of the 2011
17th IEEE Real-Time and Embedded Technology and
Applications Symposium, RTAS ’11, pages 81–90. IEEE
Computer Society, 2011.

[4] A. Cunei and J. Vitek. A new approach to real-time
checkpointing. In Proceedings of the 2Nd International
Conference on Virtual Execution Environments, VEE ’06,
pages 68–77. ACM, 2006.

[5] A. Easwaran, I. Lee, O. Sokolsky, and S. Vestal. A
compositional scheduling framework for digital avionics
systems. In Proceedings of the 15th IEEE International
Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA’09), pages 371–380,
August 2009.

[6] P. Eles, V. Izosimov, P. Pop, and Z. Peng. Synthesis of
fault-tolerant embedded systems. In Proceedings of the
Conference on Design, Automation and Test in Europe,
DATE ’08, pages 1117–1122. ACM, 2008.

[7] M. A. Haque, H. Aydin, and D. Zhu. Real-time scheduling
under fault bursts with multiple recovery strategy. In
Proceedings of the 20th IEEE Real-Time and Embedded
Technology and Applications Symposium, RTAS ’14,
pages –. IEEE Computer Society, 2014.

[8] J. Hyun and K. H. Kim. Fault-tolerant scheduling in
hierarchical real-time scheduling framework. In Proceedings
of the 2012 IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications,
RTCSA ’12, pages 431–436. IEEE Computer Society, 2012.

[9] J. Hyun, S. Lim, Y. Park, K. S. Yoon, J. H. Park, B. M.
Hwang, and K. H. Kim. A fault-tolerant temporal
partitioning scheme for safety-critical mission computers. In
Proceedings of the 31st IEEE/AIAA Digital Avionics
Systems Conference, DASC’12, pages 6C3–1–6C3–8. IEEE
Computer Society, Oct 2012.

[10] H.-W. Jin. Fault-tolerant hierarchical real-time scheduling
with backup partitions on single processor. SIGBED Rev.,
10(4):25–28, Dec. 2013.

[11] F. Many and D. Doose. Scheduling analysis under fault
bursts. In Proceedings of the 2011 17th IEEE Real-Time
and Embedded Technology and Applications Symposium,
RTAS ’11, pages 113–122. IEEE Computer Society, 2011.

[12] V. Mikolasek and H. Kopetz. Roll-forward recovery with
state estimation. In Proceedings of the 14th IEEE
International Symposium on
Object/Component/Service-Oriented Real-Time Distributed
Computing, ISORC ’11, pages 179–186. IEEE Computer
Society, March 2011.

[13] D. Nikolov, U. Ingelsson, V. Singh, and E. Larsson.
Evaluation of level of confidence and optimization of
roll-back recovery with checkpointing for real-time systems.
Microelectronics Reliability, 54(5):1022–1049, 2014.

[14] R. M. Pathan and J. Jonsson. Exact fault-tolerant
feasibility analysis of fixed-priority real-time tasks. In
Proceedings of the 2010 IEEE 16th International
Conference on Embedded and Real-Time Computing
Systems and Applications, RTCSA ’10, pages 265–274.
IEEE Computer Society, 2010.

[15] L. T. X. Phan, M. Xu, J. Lee, I. Lee, and O. Sokolsky.
Overhead-aware compositional analysis of real-time
systems. In Proceedings of the 2013 IEEE 19th Real-Time
and Embedded Technology and Applications Symposium
(RTAS), RTAS ’13, pages 237–246. IEEE Computer
Society, 2013.

[16] I. Shin and I. Lee. Compositional real-time scheduling
framework with periodic model. ACM Transactions on
Embedded Computing Systems (TECS), 7(3):30:1–30:39,
April 2008.

[17] G. M. Tchamgoue, K. H. Kim, Y.-K. Jun, and W. Y. Lee.
Compositional real-time scheduling framework for periodic
reward-based task model. Journal of Systems and Software,
86(6):1712–1724, 2013.

[18] J. Xu and B. Randell. Roll-forward error recovery in
embedded real-time systems. In Proceedings of the
International Conference on Parallel and Distributed
Systems, pages 414–421. IEEE, June 1996.

[19] Y. Zhang and K. Chakrabarty. Fault recovery based on
checkpointing for hard real-time embedded systems. In
Proceedings of the 18th IEEE International Symposium on
Defect and Fault Tolerance in VLSI Systems, pages
320–327. IEEE, 2003.

CRTS 2014 8 Rome, Italy

Designing a Time-Predictable Memory Hierarchy
for Single-Path Code

Bekim Cilku
Institute of Computer Engineering
Vienna University of technology

A 1040 Wien, Austria
bekim@vmars.tuwien.ac.at

Peter Puschner
Institute of Computer Engineering
Vienna University of technology

A 1040 Wien, Austria
peter@vmars.tuwien.ac.at

ABSTRACT
Trustable Worst-Case Execution-Time (WCET) bounds are
a necessary component for the construction and verification
of hard real-time computer systems. Deriving such bounds
for contemporary hardware/software systems is a complex
task. The single-path conversion overcomes this difficulty
by transforming all unpredictable branch alternatives in the
code to a sequential code structure with a single execution
trace. However, the simpler code structure and analysis of
single-path code comes at the cost of a longer execution
time. In this paper we address the problem of the execu-
tion performance of single-path code. We propose a new
instuction-prefetch scheme and cache organization that uti-
lize the “knowledge of the future” properties of single-path
code to reduce the main memory access latency and the
number of cache misses, thus speeding up the execution of
single-path programs.

Keywords
hard real-time systems, time predictability, memory hierar-
chy, prefetching, cache memories

1. INTRODUCTION
Embedded real-time systems need safe and tight estima-

tions of the Worst Case Execution Time (WCET) of time-
critical tasks in order to guarantee that the deadlines im-
posed by the system requirements are meet. Missing a sin-
gle deadline in such a system can lead to catastrophic con-
sequences.

Unfortunately, the process of calculating theWCET bound
for contemporary computer systems is, in general, a complex
undertaking. On the one hand, the software is written to ex-
ecute fast – it is programmed to follow different execution
paths for different input data. Those different paths, in gen-
eral, have different timing, and analyzing them all can lead
to cases where the analysis cannot produce results of the de-
sired quality. On the other hand, the inclusion of hardware
features (cache, branch prediction, out-of-order execution,
and pipelines) extend the analysis with state dependencies
and mutual interferences; a high-quality WCET analysis has
to consider the interferences of all mentioned hardware fea-
tures to obtain tight timing analysis. The state-of-the-art
tools for WCET analysis are using a highly integrated ap-
proach by considering all interferences caused by hardware
state interdependencies [4]. Keeping track of all possible in-
terferences and also the hardware state history for the whole
code in an integrated analysis can lead to a state-space ex-

plosion and will make the analysis infeasible. An effective
approach that would allow the tool to decompose the timing
analysis into compositional components is still lacking [1].
One strategy to avoid the complexity of the WCET analy-

sis is the single-path conversion [12]. The single-path conver-
sion reduces the complexity of timing analysis by converting
all input-depended alternatives of the code into pieces of se-
quential code. This, in turn, eliminates control-flow induced
variations in execution time. The benefit of this conversion
are the predictable properties that are gained with the code
transformation. The new generated code has a single execu-
tion trace that forces the execution time to become constant.
To obtain information about the timing of the code it is suffi-
cient to run the code only once and to identify the stream of
the code execution which is repeated on any other iteration.
Large programs that have been converted into single-path

code can be decomposed into smaller segments where each
segment can be easily analyzed for its worst-case timing in
separation. This contrasts the analysis of traditional code,
where a decomposition into segments may lead to highly
pessimistic timing-analysis results, because important in-
formation about possible execution paths and information
about how these execution paths within one segment influ-
ence the feasible execution paths and timings in subsequent
segments gets lost at segment boundaries. In single-path
code, each code segment has a constant trace of execution
and the initial hardware states for each segment can be easily
calculated, because there are no different alternatives of the
incoming paths that can lead to a loss of information dur-
ing a (de)compositional analysis. However, the advantage of
generating compositional code that allows for a highly accu-
rate, low-complexity analysis comes at the cost of a longer
execution time of the code.
The long latency of memory accesses is one of the key per-

formance bottlenecks of contemporary computer systems.
While the inclusion of an instruction cache is a crucial first
step to bridge the speed gap between CPU and main mem-
ory, this is still not a complete solution – cache misses can
result in significant performance losses by stalling the CPU
until the needed instructions are brought into the cache.
For such a problem, prefetching has been shown to be

an effective solution. Prefetching can mask large memory
latencies by loading the instructions into the cache before
they are actually needed [15]. However, to take advantage
of this improvement, the prefetching commands have to be
issued at the right times – if they are issued too late memory
latencies are only partially masked, if they are issued too
early, there is the risk that the prefetched instruction will

CRTS 2014 9 Rome, Italy

evict other useful instructions from the cache.
Prefetching mechanisms also have to consider the accu-

racy, since speculative prefetching may pollute the cache.
Mainly the prefetching algorithms can be divided into two
categories: correlated and non-correlated prefetching. Cor-
related prefetching associates each cache miss with some pre-
defined target stored in a dedicated table [6, 16], while non-
correlated ones predict the next prefetch line according to
some simple predefined algorithms [11, 7, 14].

For all mentioned techniques, the ability to guess the next
reference is not fully accurate and prefetching can result
in cache pollution and unnecessary memory traffic. In this
paper we propose a new memory hierarchy for single-path
code that consists of a cache and a hardware prefetcher.
The proposed design is able to prefetch sequential and non-
sequential streams of instructions with full accuracy in the
value and time domain. This constitutes an effective instruc-
tion prefetching scheme that increases the execution perfor-
mace of single-path code and reduces both cache pollution
and useless memory traffic.

The rest of the paper is organized as follows. Section
2 gives a short description of predicated instruction and
presents some simple rules used to convert conventional code
to single-path code. The new proposed memory hierarchy
is presented in Section 3. Section 4 discusses related work.
Finally, we make concluding remarks and present the future
work in Section 5.

2. GENERATING SINGLE-PATH CODE
The goal of the single-path code-generation strategy is

to eliminate the complexity of multi-path code analysis, by
eliminating branch instructions from the control flow of the
code. Different paths of program execution are the result
of branch instructions which force the execution to follow
different sequences of instructions. Branch instructions can
be unconditional branches which always result in branching,
or conditional branches where the decision for the execution
direction depends on the evaluation of the branching condi-
tion.

The single-path conversion transforms conditional branches,
i.e., those branches whose outcome is influenced by program
inputs [12]. Before the actual single-path code conversion is
done, a data-flow analysis [3] is run to identify the input-
dependent instructions of the code. Branches which are not
influenced by the input values are not affected by the trans-
formation. After the data-flow analysis, the single-path con-
version rules are applied and the new single-path code is
generated. The only additional requirement for executing
single-path converted code is that the hardware must sup-
port the execution of predicated instructions.

2.1 Predicated execution
Predicated instructions are instructions whose semantics

are controlled by a predicate (or guard), where the predicate
can be implemented by a specific predicate flag or register
in the processor. Instructions whose predicate evaluate to
“true” at runtime are executed normally, while those which
evaluate to “false” are nullified to prevent that the processor
state gets modified.

Predicated execution is used to remove all branching oper-
ations by merging all blocks into a single one with straight-
line code [10]. For architectures that support predicated
(guarded) execution the compiler converts conditional branches

into (a) predicate-defining instructions and (b) sequences of
predicated instructions – the instructions along the alterna-
tive paths of each branch are converted into sequences of
predicated instructions with different predicates.

if(a) beq a,0,L1 pred_eq p,a
 x=x+1 add x,x,1 add x,x,1 (p)
else jump L2 add y,y,1 (not p)
 y=y+1 L1:
 add y,y,1

 L2:

Figure 1: if-conversion

Figure 1 shows an example of an if-then-else structure
translated in assembler code with and without predicated
instructions. In the first assembler code, depending on the
outcome of the branch instruction, only part of the code
will be executed, while in the second, single-path case all
instruction will be executed but the state of the processor
will be changed only for instructions with true predicated
value.

2.2 Single-Path Conversion Rules
In the following we describe a set of rules to convert reg-

ular code into a single-path code [13]. Table 1 shows the
single-path transformation rules for sequences, alternatives
and loops structures. In this table we assume that con-
ditions for alternatives and loops are simplified in boolean
variables. The precondition for statement execution is rep-
resented with σ, while in cases of recursion the δ counter is
used to generate unique variable name.
Simple Statement. If precondition for simple statement

S is always true then the statement will be executed in every
execution. Otherwise the execution of S will depend on the
value of the precondition σ, which becomes the execution
predicate. The same rule is used for statement sequences, by
applying the rule sequentially to each part of the sequence.
Conditional Statement. For input-dependent (ID(cond)

is true) branching structures, we serialize the S1 and S2

alternatives, where the precondition parameters of the al-
ternatives S1and S2 are formed by a conjunction of the old
precondition (σ) and the outcome of the branching condition
that is stored in guardδ. If branching is not dependent on
program inputs then the if-then-else structure is conserved
and the set of rules for single-path conversion are applied
individually to S1 and S2.

Loop. Input-data dependent loops are transformed in two
steps. First, the original loop is transformed into a for-loop
and the number of iterations N is assigned – the iteration
count N of the new loop is set to the maximum number
of iterations of the original loop code. The termination of
the new new loop is controlled by a new counter variable
(countδ) in order to force the loop to iterate always for the
constant number N . Further, a variable endδ is introduced.
This variable is used to enforce that the transformed loop
has the same semantics as the original one. The endδ-flag
stored in this variable is initialised to true and assumes the
value false as soon as the termination condition of the orig-
inal loop evaluates to true for the first time. The value of
endδ-flag can also be changed to false if a break is em-
bedded into the loop. Thus S is executed under the same
condition as in the original loop.

CRTS 2014 10 Rome, Italy

Table 1: Single-Path Transfromation Rules

Construct S Translated Construct SP� S �σδ

S if σ = T S

otherwise (σ) S

S1;S2 SP� S1 �σδ;
SP� S2 �σδ

if cond then S1 if ID(cond) guardδ := cond;
else S2 SP� S1 �〈σ ∧ guardδ〉〈δ + 1〉;

SP� S2 �〈σ ∧ ¬guardδ〉〈δ + 1〉
otherwise if cond then SP� S1 �σδ

else SP� S2 �σδ

while cond if ID(cond) endδ := false

max N times for countδ := 1 to N do begin

do S SP� if ¬cond then endδ := true �σ〈δ + 1〉;
SP� if ¬endδ then S �σ〈δ + 1〉

end

otherwise while cond do SP� S �σδ

3. MEMORY HIERARCHY FOR SINGLE-
PATH CODE

This section presents our novel architecture of the cache
memory and the prefetcher used for single-path code.

3.1 Architecture of the Cache Memory
Caches are small and fast memories that are used to im-

prove the performance between processors and main mem-
ories based on the principle of locality. The property of
locality can be observed from the aspects of temporal and
spatial behavior of the execution. Temporal locality means
that the code that is executed at the moment is likely to
be referenced again in the near future. This type of behav-
ior is expected from program loops in which both data and
instructions are reused. Spatial locality means that the in-
structions and data whose addresses are close by will tend
to be referenced in temporal proximity because the instruc-
tions are mostly executed sequentially and related data are
usually stored together [15].

As an application is executed over the time, the CPU
makes references to the memory by sending the addresses.
At each such step, the cache compares the address with tags
from the cache. References (instructions or data) that are
found in cache are called hits, while those that are not in
the cache are called misses. Usually the processor stalls in
case of cache misses until the instructions/data have been
fetched from main memory.

Figure 2 shows an overview of the cache memory aug-
mented with the single-path prefetcher. The cache has two
banks, each consisting of tag, data, and valid bit (V) en-
tries. Separation of the cache into two banks allows us to
overlap the process of fetching (by the CPU) with prefetch-
ing (by the prefetch unit) and also cost less than dual-port
cache of the same size. At any time, one of the banks is
used to send instructions to the CPU and the other one
to prefetch instructions from the main memory. Both, CPU
and prefetcher can issue requests to the cache memory. When-
ever a new value in program counter (PC) is generated the

PC

Next Line Prefetching

M
UX

Prefetch unit

State Machine

Cache

Tag TagData DataV V

Trigger line Destination line Count Type

to main memory

Bank 1 Bank 2

RPT

Figure 2: Prefetch-Cache architecture

value is sent to the cache and to the prefetcher. There are
three different cases of cache accesses when the CPU issues
an instruction request:

• No match within tag columns - the instruction is not in
the cache. The cache stalls the processor and forwards
the address request to the main memory;

• Tag match, V bit is zero - the instruction is not in the
cache but the prefetcher has already sent the request
for that cache line and the fetching is in progress. The
cache stalls the processor and waits for the ongoing
prefetching operation to be finished (V value to switch
from zero to one).

CRTS 2014 11 Rome, Italy

• Tag match, V bit is one - the instruction is already in
the cache (cache hit).

The V bit prevents the cache to replicate requests issued
to main memory if the same request has already been issued
by the prefetcher.

Instructions in the cache can be mapped to any loca-
tion (fully associative), to a dedicated set of cache lines
(set-associative) or to only one cache line location (direct-
mapped). For single-path code, direct mapped is the most
conventional cache solution. In single-path code, loop have
sequential bodies and if the loop size is cachesize < loopsize <
2 ∗ cachesize then a minimal number of instructions will be
evicted from the cache. To illustrate this, let us assume that
a cache has a size of four cache lines (1, 2, 3, 4) and the loop
has a size equal to six cache lines (a, b, c, d, e, f). In each
iteration the loop will be mapped in cache as: (a, e) → 1,
(b, f) → 2, (c) → 3, and (d) → 4. In each iteration lines
(c, d) are in the cache.

3.2 Prefetching Algorithm for Single-Path Code
The prefetching algorithm for single-path code consid-

ers two forms of prefetching: sequential and non-sequetial
prefetching. Sequential instruction streams are a trivial pat-
tern to predict since the address of the next prefetching is
an increment of the current address line. A simple next-line
prefetcher [14] is a suitable solution for such a pattern of
instructions.

In contrast, a non-sequential prefetcher needs input in-
formation to determine the target address to be prefetched.
Single-path code has a strong advantage in this part of the
prefetching, because the outcome of every branch target is
statically known. This target information can be given to
the prefetcher in form of instructions (software prefetching)
or it can be kept in a local memory (organized as a table) and
used by the prefetcher when it is needed (hardware prefetch-
ing). For the software solution, special prefetch instructions
are needed and the CPU hardware has to be modified.

In order to keep the development of the prefetcher inde-
pendent form the CPU and the compiler, and also to avoid
the overhead of executing fetch instructions in software, we
have decided to use a hardware solution for the single-path
prefetcher. Since the single-path code consists of serial seg-
ments and loops only, the subject of treatment from non-
sequential algorithm are only the branch instructions of the
loop back-edge. Loops larger than a cache size are easily
handled by the prefetching algorithm, where the loop body
is prefetched with the sequential algorithm while for the loop
header with non-sequential one. If loops fully fit into the
cache then they do not need to be prefetched on each itera-
tion. Thus these loops are identified and the prefetcher does
not generate any prefetching requests until the last iteration,
when the execution stream exits the loop.

The granularity of prefetching is defined as one cache line.
For larger amounts of prefetched instructions, the probabil-
ity of overshoting the end of sequence would increase, thus
resulting in cache pollution with useless prefetching. The
granularity also determines that the prefetching distance is
one cache line ahead.

3.3 Reference Prediction Table
The Reference Prediction Table (RPT) is the part of the

prefetcher that holds information about the instruction stream

(Figure 2). The RPT entries consist of trigger address, des-
tination address, count and type column. Trigger address is
the program counter address that triggers the non-sequential
algorithm of the prefetcher. Destination address is the tar-
get address that is prefetched. Since loops in single-path
code have a constant number of iterations the counter data
is used to inform the prefetcher for how many times the
target address should be prefetched. The type field indi-
cates which loops fit into the cache and which loops are
bigger than the cache. If the value of type is zero then the
prefetcher will not take any action since the loop is smaller
than cache and is completely in it. When the counter of
that loop reaches zero, the loop iterations are finished, and
the prefetcher triggers the prefetching of the next cache line.
A profiling process is needed to identify loops (loop header

and back-edge branch of the loop), the number of iterations
and the size of the loops in order to fill the RPT table.

3.4 Architecture of the Prefetcher
As shown in Figure 2 the prefetch hardware for single-

path code consist of the Reference Prediction Table (RPT),
the next-line prefetcher, and the prefetch controller (state
machine). The next-line prefetcher serves for prefetching
the sequential parts of the code, while the state machine in
association with the RPT is used for pefetching targets in
distance.
At run-time, when a new address is generated, its value

is passed to the RPT table and the next-line prefetcher. In
cases when the PC value matches an entry in the RPT table,
the prefetch controller reads the type bit and the counter
value to check if the loop is smaller/bigger than cache and
on each interation if the final iteration has been reached.
If there is no match with the RPT table entry, the next-
line prefetching will increment the address for one cache line
and issue that address to the cache. The RPT output has
precedence over next-line prefetching.

4. RELATED WORK
Designers have proposed several strategies to increase the

performance of cache-memory systems. Some of these ap-
proaches use software support to perform prefetching, while
others are strictly hardware-based. Software solutions need
explicit fetch instructions to be issued from the compiler to
do prefetching. In this section we discuss only related hard-
ware solutions.
The simplest form of prefetching comes passively from the

cache itself. When a cache miss occurs, besides the missed
instruction the cache fetches also instructions that belong
to the same line into the cache. An extention of the cache
line size implies a larger granularity – more instructions are
fetched on a cache miss. The disadvantages are that longer
cache line take longer to fill, generate useless memory traffic,
and also they contribute to cache pollution [5].
The ”one block look ahead” prefetching, later extended to

”next-N-line”, prefetches cache lines that are following the
one currently being fetched by the CPU [14]. The scheme
requires small additional hardware to compute the next se-
quential addresses. Unfortunately, ”next-n-line” is unlikely
to improve performance when execution proceeds through
non-sequential execution paths. In this case the prefetching
guess can be incorrect.
Tagged prefetching has a tag bit associated with each

cache line [7]. When a line is prefetched, its tag bit is set

CRTS 2014 12 Rome, Italy

to zero. If the line is used then the bit is set to one and the
next sequential line is immediately prefetched. The stream
buffer is a similar approach except that the buffer stands
between main memory and cache in order to avoid polluting
the cache with data that may never be needed.

The target prefetching scheme addresses the problem of
non sequential code [16]. This approach comprises a next-
line prediction table consisting of two entries (current line
address and target line address). When the program counter
changes the value, the prefetcher searches the prediction ta-
ble. If there is a match, then the target address is a candi-
date for prefetching.

The hybrid scheme that combines both next-line and tar-
get prefetching offers a cumulative accuracy for reducing
cache misses. However, this solution has limited effective-
ness since the predicted direction is defined from the previ-
ous execution. A similar approach is also used on ”wrong-
path” prefetching except that instead of target table this
approach prefetches immediately the target of conditional
branch after the branch instruction is recognized in in the
decode stage [11]. This solution can be effective only for
non-taken branches. The Markov prefetcher [6] prefetches
multiple reference predictions from the memory subsystem,
by observing the miss-reference stream as an Markov model.

Loop-based instruction prefetcing [2] is similar to our so-
lution, except that the loop headers are always prefetched
and the prefetching is issued at the end of the loop with no
prefetch distance. The cooperative approach [9] also con-
siders sequential and non-sequential prefetching by using a
software solution for non-sequential prefetch. A dual-mode
instruction prefetch scheme [8] is an alternative to improve
worst-case execution time by associating a thread to each in-
struction block that is part of WCET. Threads are generated
by the compiler and they are static during task execution.

5. CONCLUSION AND FUTURE WORK
To overcome the problem of long execution times of single-

path code, we have proposed a new memory hierarchy or-
ganization that attempts to reduce the memory access time
by bringing the instructions into the cache before they are
required.

The single-path prefetching algorithm combines a sequen-
tial and a non-sequential prefetching scheme with the full
accuracy in the predicted instruction stream based on the
predictable properties of the single-path code. Designed as a
hardware solution, the prefetcher does not produce an addi-
tional timing overhead for the instruction prefetching. Also,
our solution allows the prefetcher functionality to be inde-
pendent without interfering with any stage of CPU. The
dual-bank cache makes it possible to pipeline the CPU and
prefetcher accesses into the cache memory in order to fully
utilize the memory bandwidth. By using a prefetch granu-
larity of one cache line we eliminate the possibility for cache
pollution and useless memory traffic.

In our future work we plan to show the feasibility of the
memory hierarchy by implementing it in an FPGA platform
and also to extend the prefetcher for input-independent if-
else structures that are not converted to sequential code.

Acknowledgments
This work has been supported in part by the European Com-
munity’s Seventh Framework Programme [FP7] under grant

agreement 287702 (MultiPARTES) and the EU COST Ac-
tion IC1202: Timing Analysis on Code Level (TACLe).

6. REFERENCES
[1] P. Axer, R. Ernst, H. Falk, A. Girault, D. Grund,

N. Guan, B. Jonsson, P. Marwedel, J. Reineke,
C. Rochange, et al. Building timing predictable
embedded systems. ACM Transactions on Embedded
Computing Systems (TECS), 13(4):82, 2014.

[2] Y. Ding and W. Zhang. Loop-based instruction
prefetching to reduce the worst-case execution time.
Computers, IEEE Transactions on, 59(6):855–864,
2010.

[3] J. Gustafsson, B. Lisper, R. Kirner, and P. Puschner.
Code analysis for temporal predictability. Real-Time
Systems, 32(3):253–277, 2006.

[4] S. Hahn, J. Reineke, and R. Wilhelm. Towards
compositionality in execution time analysis-definition
and challenges. In 6th International Workshop on
Compositional Theory and Technology for Real-Time
Embedded Systems, 2013.

[5] J. L. Hennessy and D. A. Patterson. Computer
architecture: a quantitative approach. Elsevier, 2012.

[6] D. Joseph and D. Grunwald. Prefetching using markov
predictors. In ACM SIGARCH Computer Architecture
News, volume 25, pages 252–263. ACM, 1997.

[7] N. P. Jouppi. Improving direct-mapped cache
performance by the addition of a small
fully-associative cache and prefetch buffers. In
Computer Architecture, 1990. Proceedings., 17th
Annual International Symposium on, pages 364–373.
IEEE, 1990.

[8] M. Lee, S. L. Min, C. Y. Park, Y. H. Bae, H. Shin, and
C. S. Kim. A dual-mode instruction prefetch scheme
for improved worst case and average case program
execution times. In Real-Time Systems Symposium,
1993., Proceedings., pages 98–105. IEEE, 1993.

[9] C.-K. Luk and T. C. Mowry. Architectural and
compiler support for effective instruction prefetching:
a cooperative approach. ACM Transactions on
Computer Systems, (1):71–109, 2001.

[10] J. C. Park and M. Schlansker. On predicated
execution. Technical report, Technical Report
HPL-91-58, HP Labs, 1991.

[11] J. Pierce and T. Mudge. Wrong-path instruction
prefetching. In Microarchitecture, 1996. MICRO-29.
Proceedings of the 29th Annual IEEE/ACM
International Symposium on, pages 165–175. IEEE,
1996.

[12] P. Puschner and A. Burns. Writing temporally
predictable code. In Object-Oriented Real-Time
Dependable Systems, 2002.(WORDS 2002).
Proceedings of the Seventh International Workshop on,
pages 85–91. IEEE, 2002.

[13] P. Puschner, R. Kirner, B. Huber, and D. Prokesch.
Compiling for time predictability. In Computer Safety,
Reliability, and Security, pages 382–391. Springer,
2012.

[14] A. J. Smith. Sequential program prefetching in
memory hierarchies. Computer, 11(12):7–21, 1978.

[15] A. J. Smith. Cache memories. ACM Computing
Surveys (CSUR), 14(3):473–530, 1982.

CRTS 2014 13 Rome, Italy

[16] J. E. Smith and W.-C. Hsu. Prefetching in
supercomputer instruction caches. In Proceedings of
the 1992 ACM/IEEE conference on Supercomputing,
pages 588–597. IEEE Computer Society Press, 1992.

CRTS 2014 14 Rome, Italy

Five problems in compositionality of real-time systems

Björn Andersson
Carnegie Mellon University

ABSTRACT
This abstract presents five important problems in composi-
tionality of real-time systems.

Statement
The general problem of compositionality of real-time sys-
tems is to create a concept which describes resource con-
sumption of something so that this concept can be taken as
input to analysis. In this abstract, I present a list of five
problems of compositionality that I believe are important:

1. Create a provably good interface for constrained-deadline
sporadic tasks on a single processor. Many previously
proposed interfaces are based on bandwidth-like quan-
tities; this makes them unable to achieve provably
good performance as seen from this example: Con-
sider a system with a single processor and two compo-
nents. Component 1 comprises k tasks (τ1, τ2, . . . , τk)
characterized by Ti = ∞, Di = i, Ci = 1. Compo-
nent 2 comprises one tasks (τk+1) characterized by
Tk+1 = ∞, Dk+1 = k + 1, Ck+1 = 1. For each value
of k ≥ 1, if tasks were scheduled directly on the pro-
cessor using EDF then the taskset is schedulable. Us-
ing bandwidth-like interfaces, however, we obtain that
component 1 requires the bandwidth

∑k
i=1(1/i) and

component 2 requires the bandwidth (1/(k + 1)). If
such an interface would be used and if a schedulabil-
ity test would take these bandwidths as input then,
for k ≥ 2, the bandwidth required exceeds 100% and
hence the taskset would be deemed unschedulable. For
k → ∞, the required bandwidth (as stated by the in-
terfaces) would be infinite. Hence, there are tasksets
that are schedulable directly on the processor but if a
bandwidth-like interface is used, even an infinite speedup
of the processor is not enough to make the taskset
schedulable.

2. Create a concept that describes the memory accesses of
a task. This concept should describe the possible tim-
ing and the possible memory addresses and it should
be possible to take this as input to timing analysis that
is aware of contention for resources in the memory sys-
tem.

3. Create a concept that describes the aggregate resource
consumption of a complex interaction in a protocol.
This is particularly important for compositional anal-
ysis of real-time communication over shared communi-
cation medium of traffic that uses Transmission Con-

trol Protocol (TCP) because in such a setting, the ac-
knowledgement packets consume network bandwidth
but they are dependent on the data-carrying packets.
So it is desirable to create a concept that describes the
aggregate resource consumption of both data packets
and ack packets of a given flow. On a higher level,
this problem becomes important when using software
frameworks for distributed systems that rely on TCP.

4. Create a concept that describes aggregate resource con-
sumption of wireless traffic. On a wireless medium,
a transmitted packet can get corrupted by noise re-
quiring a retransmission. But then a concept that de-
scribes that aggregate resource consumption of wire-
less traffic of a given traffic flow needs to be a function
of noise parameters of the channel.

5. Create a concept that describes the aggregate resource
consumption of software in an autonomous car. Some
tasks in an autonomous car are just like other types
of embedded systems; they periodically read sensors,
perform computations, and actuate commands. This
is true for low-level control loops and some sensor fu-
sion tasks in autonomous cars. But an autonomous car
needs to perform other computations as well related
to higher-level cognition and responding to events and
planning future actions. And the resource consump-
tion of such tasks depends on the environment. (For
example, if you drive in a dense urban environment,
there are more events to deal with than if you drive
on a highway.) Hence, there is the need to find an
”eventfulness” metric of a physical world and describe
the resource consumption of the software as a function
of this metric.

There should be an analysis that takes the concept as
input and this analysis should have low pessimism and there
should be a metric that characterizes this low pessimism and
the concept should be capable of describing systems so that
the description requires few bits because this indicates good
information hiding.

Acknowledgments
This material is based upon work funded and supported by
the Department of Defense under Contract No. FA8721-05-
C-0003 with Carnegie Mellon University for the operation
of the Software Engineering Institute, a federally funded re-
search and development center. This material has been ap-
proved for public release and unlimited distribution. DM-
0001733

CRTS 2014 15 Rome, Italy

Compositional Mixed-Criticality Scheduling

Extended Abstract

Arvind Easwaran
Nanyang Technological University, Singapore

arvinde@ntu.edu.sg

Insik Shin
KAIST, Korea

insik.shin@cs.kaist.ac.kr

An increasingly important trend in embedded systems is
towards open computing environments, where multiple func-
tionalities are developed independently and integrated to-
gether on a single computing platform; this trend is evident
in industry-driven initiatives such as ARINC653 in avion-
ics and AUTOSAR in automotive. An important notion
behind this trend is the safe isolation of separate functional-
ities, or partitioning, to achieve fault containment and com-
positional validation/certification. This raises the challenge
of how to balance the conflicting requirements of partition-
ing for safety assurance and resource sharing for economical
benefits. The concept of mixed-criticality appears to be im-
portant in meeting those two seemingly conflicting goals.

In many safety-critical embedded systems, the correct be-
havior of some functionality (e.g., flight control) is more im-
portant (“critical”) to the overall safety of the system than
that of another (e.g., in-flight entertainment). In order to
certify such systems as being correct, they are conventionally
assessed under certain assumptions on the worst-case run-
time behavior. For example, the estimation of Worst-Case
Execution Times (WCETs) of code for highly critical func-
tionalities, typically involves very conservative assumptions
that are unlikely to occur in practice [3]. Such assumptions
make sure that the resources reserved for critical functional-
ities are always sufficient. Thus, the system can be designed
to be safe from a validation and certification perspective, but
the resources are in fact severely under-utilized in practice.

In order to close such a gap in resource utilization, Vestal [6]
proposed the mixed-criticality (MC) task model that com-
prises different WCET values. These different values are
determined at different levels of confidence (“criticality”),
based on the following principle. A reasonable low-confidence
WCET estimate, even if it is based on measurements, may
be sufficient for almost all possible execution scenarios in
practice. In the highly unlikely event that this estimate is
violated, as long as the scheduling mechanism can ensure
deadline satisfaction for highly critical applications, the re-
sulting system design may still be considered as safe.

To ensure deadline satisfaction of critical applications,
existing mixed-criticality studies make pessimistic assump-
tions when a single high-criticality task executes beyond its
expected (low-confidence) WCET. They assume that the
system will either immediately ignore all the low-criticality
tasks (e.g., [1, 4]) or degrade the service offered to them
(e.g., [2, 5]). They further assume that all the high-criticality
tasks in the system can thereafter request for additional re-
sources, up to their pessimistic (high-confidence) WCET es-
timates. Although these strategies ensure safe execution of

critical applications, they have a serious drawback as pointed
out in a recent article [2]. When a high-criticality task ex-
ceeds its expected WCET, the likelihood that all the other
high-criticality tasks in the system will also require more re-
sources is very low in practice. Therefore, to penalize all the
low-criticality tasks for this unlikely event seems unreason-
able.

Proposed Research.
We are currently exploring a new research direction using

component-based mixed-criticality system model to address
the above issues. Designer tunable component boundaries
can be used to isolate low-criticality tasks from unexpected
variations in high-criticality WCETs. Thus, it is possible
to allow low-criticality tasks in some components to con-
tinue their execution uninterrupted, even when some high-
criticality tasks in other components have exceeded their ex-
pected WCET. Some of the main challenges in this direction
of research are as follows: 1) How to enable the designer to
tune low-criticality isolation capabilities of a component, 2)
What does a mixed-criticality component interface look like,
3) How does a component indicate criticality change to the
rest of the system, 4) What impact does a criticality change
inside a component have on the rest of the system, and 5)
Can we maintain compositionality even when the impact of
criticality changes are not confined within components.

1. REFERENCES
[1] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, and

A. Marchetti-Spaccamela. The Preemptive
Uniprocessor Scheduling of Mixed-Criticality
Implicit-Deadline Sporadic Task Systems. In ECRTS,
2012.

[2] A. Burns and S. Baruah. Towards a More Practical
Model for Mixed-Criticality Systems. In Workshop on
Mixed-Criticality Systems (co-located with RTSS), 2013.

[3] A. Burns and B. Littlewood. Reasoning about the
reliability of multi-version, diverse real-time systems. In
RTSS, 2010.

[4] A. Easwaran. Demand-based Scheduling of
Mixed-Criticality Sporadic Tasks on One Processor. In
RTSS, 2013.

[5] P. Huang, G. Giannopoulou, N. Stoimenov, and
L. Thiele. Service adaptions for mixed-criticality
systems. In ASP-DAC, 2014.

[6] S. Vestal. Preemptive Scheduling of Multi-criticality
Systems with Varying Degrees of Execution Time
Assurance. In RTSS, 2007.

CRTS 2014 16 Rome, Italy

Challenges of Virtualization in Many-Core
Real-Time Systems

Matthias Becker, Mohammad Ashjaei, Moris Behnam, Thomas Nolte
MRTC / Mälardalen University, Västerås, Sweden

{matthias.becker, mohammad.ashjaei, moris.behnam, thomas.nolte}@mdh.se

ABSTRACT
Embedded real-time virtualization is used for single core and
multicore platforms to consolidate multiple systems within a
single chip. The number of cores on one processor is steadily
increasing, making many-core processors with tens to hun-
dreds of cores available in the near future. This gives rise to
a number of new challenges for real-time virtualization on
such systems. In this work we identify a number of those
challenges. We also describe initial ideas on how to tackle
them.

1. INTRODUCTION
Virtualization is a key component in todays industrial

systems [4]. Many-core processors with tens to hundreds
of cores, connected by a 2D-mesh based Network-on-Chip
(NoC) bring new challenges. The large number of simple
cores deliver enough resources to allocate whole cores to vir-
tual partitions. Therefore, the new challenge will be how to
divide the hardware topology in order to guarantee enough
resources, computational and memory bandwidth, for all the
guest systems. Hereby a guest system is abstracted by an
interface, hence can be seen as a component. Such compo-
nents describe newly developed parallel applications as well
as legacy applications designed for single-core systems.

2. PROBLEM DESCRIPTION
An important challenge is the interface definition needed

to abstract the resource requirement of guest systems. Given
those interfaces, system integration needs to find a suitable
composition of guest systems on the many-core. Runtime
mechanisms are needed to police the resource access depend-
ing on the parameters defined during system integration.

2.1 Challenges for the guest interface
Each guest system has to operate under certain constraints.

For many-cores, knowing the location of the cores relative
to each other is important. This information is needed in
order to perform schedulability analysis of the NoC commu-
nication [2]. On recent many-core processors (e.g. Tilera’s
Tile64 or Kalrays MPPA-256 processor [6, 3]) different NoCs
are provided for core to core communication and memory ac-
cess. Finding the right parameters and abstractions for the
interface is an important challenge. Moreover, we may have
dependencies among guests, hence guest communication ab-
straction is required. We propose to define those constraints
by an interface: Gn = {β,Nx, Ny,L}, where n is the index
of the system and β is the required bandwidth to offchip
memory. The parameters Nx and Ny specify the size and
shape of the guest system (i.e. Nx×Ny yields the number of
cores). The set L defines the individual communications to

other guests. Evaluating the minimal values for the interface
parameters is another important challenge.

2.2 Challenges for system integration
Since we consider real-time systems, we target static con-

stellations. At design time, a set of guest systems, G, needs
to be mapped to the many-core hardware. Since this step
is performed offline, sophisticated mapping techniques can
be applied. Challenges for the mapping are multidimen-
sional. A physical mapping to the cores needs to guarantee
the required network bandwidth and timeliness of the guest
communication. Communication latencies depend on the
physical location of the cores.

2.3 Challenges for runtime mechanisms
At runtime, allocation of resources specified by a guest

interface needs to be guaranteed. Computational resources
are statically assigned, thus they do not need to be mon-
itored. However access to the offchip memory is shared
among guests. Therefore, distribution of the memory band-
width during runtime is an important challenge. Lu et al.
proposed the (σ, ρ)-based flow regulation for NoC [5] which
itself is based on Network Calculus [1]. In order to regulate
the outgoing traffic flows on a NoC link, a packet shaper
is used to inject messages based on a given profile rather
than as fast as possible. This mechanism is successfully im-
plemented in the MPPA-256 processor [3]. We propose to
include a software-based packet shaper in the hypervisor.
Virtualization of the NoC for guest-to-guest communication
may affect the communication inside a third guest as they
use the same network. This raises another challenge which is
to investigate a proper mechanism to handle communication
on this network.

3. REFERENCES
[1] R. Cruz. A calculus for network delay. I. network

elements in isolation. IEEE Transactions on
Information Theory, 37(1):114–131, 1991.

[2] D. Dasari et. al. Noc contention analysis using a
branch-and-prune algorithm. ACM Trans. Embed.
Comput. Syst., 13:113:1–113:26, 2014.

[3] B. D. de Dinechin et. al. Time-critical computing on a
single-chip massively parallel processor. In DATE ’14,
pages 97:1–97:6, 2014.

[4] G. Heiser. The role of virtualization in embedded
systems. In IIES ’08, pages 11–16, 2008.

[5] Z. Lu et. al. Flow regulation for on-chip
communication. In DATE ’09, pages 578–581, 2009.

[6] Tilera. Tile64 processor. http://www.tilera.com/
products/processors, Retrieved Oct. 30, 2014.

CRTS 2014 17 Rome, Italy

Managing end-to-end resource reservations

Extended Abstract

Luis Almeida1,2

1IT - University of Porto
Porto, Portugal
lda@fe.up.pt

Moris Behnam2

2IDT - Mälardalen University
Västerȧs, Sweden

moris.behnam@mdh.se

Paulo Pedreiras3

3IT - University of Aveiro
Aveiro, Portugal
pbrp@ua.pt

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Network communications, Distributed
networks

Keywords
Computer networks, Resource reservations, Scalability, Adapt-
ability

1. CONTEXT
Currently, there is a strong push for real-time applications

distributed over large geographical areas, fuelled by inter-
active multimedia, remote interactions, cloud-based time-
sensitive services and many cyber-physical systems [3]. These
applications rely on many different resources, from the end
nodes where they execute, to the networks over which they
communicate. However, supporting global compositionality
in this realm, i.e., guaranteeing applications performance a
priori independently of load variations, is a significant chal-
lenge. It calls upon resource reservations across the system
that comply to performance metrics agreed at the time of ap-
plication deployment, what is normally called Service Level
Agreement (SLA). This requires well defined application re-
source requirements, from the computing end nodes, possi-
bly including multiple internal resources, to the network.

In spite of existing technical solutions for enforcing reser-
vations, from traffic shaping in networks to virtualization
in processors and reservations in static distributed systems
[2], such solutions typically fall short on at least two as-
pects, scalability and adaptability. The former is needed
to cope with large numbers of reservations to achieve the
desired segregation and isolation among many applications,
while the latter is needed to mitigate the effects of overpro-
visioning that micro-reservations can have in the efficiency
of the whole system. These two requirements apply partic-
ularly to the network, given its central position in support-
ing the applications referred above and, in general, emerg-
ing paradigms such as the Internet-of-Things. Nevertheless,
adaptability naturally extends from the network to the ends
nodes, for the sake of efficiency, too.

On the other hand, the scalable solutions that we have to-
day, e.g., deployed in current Internet, provide at best class-
based Quality-of-Service (QoS) support [1]. This grants pro-
tection against interference from traffic of lower QoS delay
tolerant classes but not within the same class, which is ag-
gravated when the number of similar applications grows, e.g.
VoIP calls.

Finally, supporting scalability and adaptability requires
agile resource management. If the former points to a dis-
tributed management architecture, the latter is better achieved
with a centralized one. This apparent conflict is typically
dealt with using clustering. Local reservations are managed
at the cluster level while end-to-end reservations require a
distributed cluster-level protocol. An example of such ap-
proach is the Stream Reservation Protocol (SRP) in Audio-
Video Bridges, but it is still class-oriented.

2. OPEN PROBLEMS
Therefore, given the considerations above, we herein for-

mulate what we consider to be open problems to achieve
the desired compositionality of distributed real-time appli-
cations in large open systems, in a resource efficient way.
Given a distributed real-time application that will execute
in N end nodes connected to a large network, how to:

• Formulate its resource requirements and interfaces?

• Express adaptivity in such requirements/ interfaces?

• Support scalable and adaptive network reservations?

• Analyze the requirements feasibility?

• Carry out global admission control and enforce the
needed reservations?

• Track and distribute slack?

3. ACKNOWLEDGMENTS
With support from the Portuguese Gov. through FCT

grants CodeStream (PTDC/EEI-TEL/3006/2012) and Serv-
CPS (PTDC/EEAAUT/122362/2010).

4. REFERENCES
[1] G. Bertrand, S. Lahoud, M. Molnar, and G. Texier.

Qos routing and management in backbone networks. In
Intell. QoS Tech. and Network Manag.t: Models for
Enhancing Comm., pages 138–159. IGI Global, 2010.

[2] N. Serreli, G. Lipari, and E. Bini. Deadline assignment
for component-based analysis of real-time transactions.
In CRTS 2009 Proceedings, December 2009.

[3] F. Xia, L. Ma, J. Dong, and Y. Sun. Network qos
management in cyber-physical systems. In ICESS 2008
Proceedings, pages 302–307. IEEE, July 2008.

CRTS 2014 18 Rome, Italy

Supporting Single-GPU Abstraction through Transparent
Multi-GPU Execution for Real-Time Guarantees∗

[Extended Abstract]

Wookhyun Han, Hoon Sung Chwa, Hwidong Bae, Hyosu Kim and Insik Shin
KAIST, South Korea

insik.shin@cs.kaist.ac.kr

Graphics Processing Units (GPUs) are high-performance
many-core processors capable of very high computation and
data throughput. Recently, multi-GPU platforms appear to
be a promising platform that allows two or more GPUs to
work in parallel to accelerate computation or to accommo-
date a demand exceeding a single GPU’s capacity. However,
little support is provided for GPGPU over multi-GPU. In
this paper, we consider supporting real-time applications in
multi-GPU systems.

Despite many benefits of GPGPU, it raises several chal-
lenges to apply GPGPU technology to real-time computing.
In the current GPGPU programming frameworks, applica-
tions (i) copy input data to the device memory from the
host memory, (ii) launch a piece of GPU-accelerated code,
called a kernel, on GPU to perform computation for out-
puts, and (iii) copy the device outputs to the host memory.
Due to the non-preemptive nature of copying data to/from
the device memory and launching kernels on GPU, it could
block other data copy and kernel launch requests by higher-
priority applications. To overcome such a non-preemptive
nature a couple of studies [1, 3] share the principle of mak-
ing non-preemptible regions smaller to allow higher-priority
application to experience shorter blocking times for kernel
launch [1] and for data transfer between host and device
memory [3].

Supporting real-time computing on multiple resources (i.e.,
multiprocessors) is generally much more complicated com-
pared with the single resource case. Liu and Layland [5]
attributed the cause of difficulty in global multi-resource
real-time scheduling to “the simple fact that a task can use
only one processor even when several processors are free
at the same time.” Such a task-level single-resource restric-
tion causes optimal preemptive uniprocessor scheduling al-
gorithms, RM and EDF, to become subject to a scheduling
anomaly, called Dhall’s effect [2]: some task sets may be un-
schedulable on multiple processors even though they have a
low utilization close to 1. This shows the importance of
relaxing the task-level single-resource restriction when pos-
sible.

Aiming at exploiting the massive parallelism of GPU ar-
chitecture, each single kernel is typically designed to spawn a
large number of threads that perform the same computation
over different data in parallel. The nature of such a thread
parallelism within a kernel enables the kernel to be decom-
posed into multiple sub-kernels, where each sub-kernel has a
smaller number of threads, and individual sub-kernels to ex-
ecute concurrently without interfering each other on differ-
ent GPUs [4]. However, such a feature is not yet supported
by the current prevailing GPGPU programming models and
runtime supports such as CUDA and OpenCL.

Proposed Research.
We are currently exploring the benefits and issues of re-

laxing the restriction of executing a single kernel only on a
single GPU in real-time multi-GPU systems. Composition
of multiple GPU resources provides more capacity to be uti-
lized by GPGPU applications, as well as more potential for
performance improvement through multi-GPU parallel exe-
cution of each application. The multi-GPU execution of a
single kernel can reduce GPU computation time leveraging
the concurrent use of multiple GPUs. However, it imposes
some overheads, including extra data transfer between host
and device memory. Thereby, multi-GPU execution might
not be beneficial to all GPGPU applications, but some de-
pending on their compute- or memory-intensive behavior.
This raises an issue of determining the multi-GPU mode of
individual applications, i.e., determining how many GPUs
each application uses. This entails a good strategy of mak-
ing decisions from the system’s perspective to optimize the
system schedulability.
In addition, designing a good scheduling algorithm is also

important. We aim to apply the virtual cluster-based schedul-
ing approach presented in [6] for scheduling GPGPU appli-
cations with the multi-GPU mode. Depending on the GPU
execution mode, each application is assigned to a GPU clus-
ter, applications in each cluster are scheduled among them-
selves, and clusters in turn are scheduled on a multi-GPU
system. There are a lot of new issues arise to adopt cluster-
based scheduling in multi-GPU systems. One of them is how
to define a cluster interface that takes multi-GPU execution
overhead into account.

1. ACKNOWLEDGMENTS
This work was supported in part by BSRP (NRF-2010-0006650,

NRF-2012R1A1A1014930), NCRC (2012-0000980), IITP (2011-
10041313, 14-824-09-013) and KIAT (M002300089) funded by the
Korea Government (MEST/MSIP/MOTIE).

2. REFERENCES
[1] C. Basaran and K.-D. Kang. Supporting preemptive task

executions and memory copies in gpgpus. In ECRTS, 2012.
[2] S. Dhall and C. Liu. On a real-time scheduling problem.

Operations Research, 26(1):127–140, 1978.
[3] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa,

and R. Rajkumar. Rgem: A responsive gpgpu execution model
for runtime engines. In RTSS, 2011.

[4] J. Kim, H. Kim, J. H. Lee, and J. Lee. Achieving a single
compute device image in opencl for multiple gpus. In PPoPP,
2011.

[5] C. Liu and J. Layland. Scheduling algorithms for
multi-programming in a hard-real-time environment. Journal
of the ACM, 20(1):46–61, 1973.

[6] I. Shin, A. Easwaran, and I. Lee. Hierarchical scheduling
framework for virtual clustering of multiprocessors. In ECRTS,
2008.

CRTS 2014 19 Rome, Italy

 Science Reports Department of Mathematics and Computer Science
 Technische Universiteit Eindhoven

If you want to receive reports, send an email to: wsinsan@tue.nl (we cannot guarantee the availability of the
requested reports).

In this series appeared (from 2012):

12/01 S. Cranen Model checking the FlexRay startup phase

12/02 U. Khadim and P.J.L. Cuijpers Appendix C / G of the paper: Repairing Time-Determinism in
 the Process Algebra for Hybrid Systems ACP

12/03 M.M.H.P. van den Heuvel, P.J.L. Cuijpers, Revised budget allocations for fixed-priority-scheduled periodic resources
 J.J. Lukkien and N.W. Fisher

12/04 Ammar Osaiweran, Tom Fransen, Experience Report on Designing and Developing Control Components
 Jan Friso Groote and Bart van Rijnsoever using Formal Methods

12/05 Sjoerd Cranen, Jeroen J.A. Keiren and A cure for stuttering parity games
 Tim A.C. Willemse

12/06 A.P. van der Meer CIF MSOS type system

12/07 Dirk Fahland and Robert Prüfer Data and Abstraction for Scenario-Based Modeling with Petri Nets

12/08 Luc Engelen and Anton Wijs Checking Property Preservation of Refining Transformations for
 Model-Driven Development

12/09 M.M.H.P. van den Heuvel, M. Behnam, Opaque analysis for resource-sharing components in hierarchical real-time systems
 R.J. Bril, J.J. Lukkien and T. Nolte - extended version –

12/10 Milosh Stolikj, Pieter J. L. Cuijpers and Efficient reprogramming of sensor networks using incremental updates
 Johan J. Lukkien and data compression

12/11 John Businge, Alexander Serebrenik and Survival of Eclipse Third-party Plug-ins
 Mark van den Brand

12/12 Jeroen J.A. Keiren and Modelling and verifying IEEE Std 11073-20601 session setup using mCRL2
 Martijn D. Klabbers

12/13 Ammar Osaiweran, Jan Friso Groote, Evaluating the Effect of Formal Techniques in Industry
 Mathijs Schuts, Jozef Hooman
 and Bart van Rijnsoever

12/14 Ammar Osaiweran, Mathijs Schuts, Incorporating Formal Techniques into Industrial Practice
 and Jozef Hooman

13/01 S. Cranen, M.W. Gazda, J.W. Wesselink Abstraction in Parameterised Boolean Equation Systems
 and T.A.C. Willemse

13/02 Neda Noroozi, Mohammad Reza Mousavi Decomposability in Formal Conformance Testing
 and Tim A.C. Willemse
13/03 D. Bera, K.M. van Hee and N. Sidorova Discrete Timed Petri nets

13/04 A. Kota Gopalakrishna, T. Ozcelebi, Relevance as a Metric for Evaluating Machine Learning Algorithms
 A. Liotta and J.J. Lukkien

13/05 T. Ozcelebi, A. Weffers-Albu and Proceedings of the 2012 Workshop on Ambient Intelligence Infrastructures
 J.J. Lukkien (WAmIi)

13/06 Lotfi ben Othmane, Pelin Angin, Extending the Agile Development Process to Develop Acceptably
 Harold Weffers and Bharat Bhargava Secure Software

13/07 R.H. Mak Resource-aware Life Cycle Models for Service-oriented Applications
 managed by a Component Framework

13/08 Mark van den Brand and Jan Friso Groote Software Engineering: Redundancy is Key

13/09 P.J.L. Cuijpers Prefix Orders as a General Model of Dynamics

mailto:wsinsan@tue.nl

14/01 Jan Friso Groote, Remco van der Hofstad On the Random Structure of Behavioural Transition Systems
 and Matthias Raffelsieper

14/02 Maurice H. ter Beek and Erik P. de Vink Using mCRL2 for the analysis of software product lines

14/03 Frank Peeters, Ion Barosan, Tao Yue A Modeling Environment Supporting the Co-evolution of
 and Alexander Serebrenik User Requirements and Design

14/04 Jan Friso Groote and Hans Zantema A probabilistic analysis of the Game of the Goose

14/05 Hrishikesh Salunkhe, Orlando Moreira Buffer Allocation for Real-Time Streaming on a
 and Kees van Berkel Multi-Processor without Back-Pressure

14/06 D. Bera, K.M. van Hee and Relationship between Simulink and Petri nets
 H. Nijmeijer

14/07 Reinder J. Bril and Jinkyu Lee CRTS 2014 - Proceedings of the 7th International Workshop
 on Compositional Theory and Technology for Real-Time Embedded Systems

	TITEL.PG14-07
	ISSN 0926-4515
	All rights reserved
	Computer Science Reports 14-07

	Blanco
	FinalProcCRTS2014
	Blanco
	PUBL.LS4csr 2012 tm

