
Università di Pisa
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There is a theory which states that if ever anyone discovers exactly what the

Universe is for and why it is here, it will instantly disappear and be replaced by

something even more bizarre and inexplicable.

There is another theory which states that this has already happened.

– D. Adams
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Chapter 1

Introduction

Audio on personal computers, and thus in the Linux kernel too, started with

simple hardware support 16 bit stereo, half-duplex pulse code modulation

(PCM) and it has grown to multi-channel mixed analog-digital I/O, high sam-

ple rate design of current sound cards. As hardware became more powerful,

supporting higher sample rate, higher sample width, digital I/O over S/PDIF

or AES/EBU1, more complex usage pattern became possible, growing from

relatively simple MIDI2 wavetables or MOD playback to digital multi-track

recording or to live set performance with software synthesizers driven by

real-time user MIDI input.

Computer Music is becoming the standard way to create, record and

produce or post post-produce music. Digital Audio Workstation DAW are

nowadays found in almost every new recording studio, from home recording

to professional ones, and digital audio is slowly becoming the standard way of

moving audio through the studio itself. Moreover, DJs and VJs are moving to

computer based setups, so that mixing consoles are reduced from the classic

two turntables or two CD players decks to a single laptop with the mixing

1Both S/PDIF and AES/EBU are two data link layers and a set of physical layer spec-
ifications for carrying digital audio signals between audio devices. S/PDIF (Sony/Philips
Digital Interconnect Format), is a minor modification of the AES/EBU (officially AES3,
developed by the Audio Engineering Society (AES) and the European Broadcasting Union
(EBU)) better suited for consumer electronics.

2MIDI (Musical Instrument Digital Interface is industry-standard protocol that en-
ables electronic musical instruments such as keyboard controllers, computers, and other
electronic equipment to communicate, control, and synchronize with each other.

1



CHAPTER 1. INTRODUCTION 2

software and the Mp3 collection controlled with a USB or OSC3 interface.

Evolution of the audio subsystem of modern operating systems has followed

this needs.

Meanwhile live music is leveraging software for real-time synthesis of

sound or for post-processing it with several effects, and spotting on stage

a MIDI keyboard attached to a common laptop is becoming the rule rather

than the exception. Unlike DAW or the DJ uses, when dealing with live mu-

sic there is an additional parameter to consider when setting up a computer

based system, and that is the latency between user input (i.e. key pressed

on keyboard, or the sound coming into the effect) and the produced output

(i.e. synthesized sound or effected sound).

This is the critical aspect in these situations. The musician wold like

to have as low latency as possible, but low latencies imposes on hardware,

operating system and on the software running on the computer strict real-

world timings, which the system has to catch up in order to produce sounds.

This work is focused on the operating system part, aiming at improving

total system reliability and correctness for low latency real-time audio on the

Linux kernel, leveraging the results reached by the real-time operating system

research, using Resource Reservations from the real-time system theory to

provide a certain Quality of Service (QoS) to solve practical problem of the

audio world.

This document is organized as follows: Chapter 2 on the following page

serves as an introduction to the state of sound subsystem in the Linux ker-

nel, to the Real Time theory and the current implementations of real-time

scheduling in the linux kernel. Chapter 3 on page 41 describes the patches

and the software written to support and implement QoS in linux audio pro-

grams. Chapter 4 on page 62 illustrates all the results of the experiments,

such as performance and overhead evaluation. Chapter 5 on page 90 then

sum up results, containing the conclusions of the work and possible future

extensions.

3OpenSound Control (OSC) is a content format for messaging among computers, sound
synthesizers, and other multimedia devices that are optimized for modern networking
technology.



Chapter 2

Background

2.1 The State of Linux Audio subsystem

Initial support for audio playback and capture in the Linux kernel was pro-

vided by the Open Sound System (OSS). OSS API was designed for the audio

cards with 16bit two-channel playbacks and captures, and the API followed

the standard POSIX via open(), close(), read() and write() system calls.

The main problem with OSS was that, while the file based API was really

easy to use for application developer, it didn’t support some features needed

for high-end audio applications, such as non-interleaved audio, or different

sample formats support and digital I/O, for which OSS provided a limited

support. While OSS is still supported in current kernels, it has been depre-

cated since the 2.6.0 release in favor of the ALSA subsystem.

2.1.1 Sound system core: ALSA

Nowadays the sound device drivers in Linux kernel are covered by the Ad-

vanced Linux Sound Architecture (ALSA) project [3], which provides both

audio and MIDI functionality. It supports a wide range of different sound

cards, from consumer ones to professional multichannel ones, including digi-

tal I/O or multiple sound cards setups.

Figure 2.1 on the following page describes the basic structure of ALSA

system and its dataflow. Unlike previous sound systems, such as OSS, ALSA-

3
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native applications are supposed to access the sound driver using the ALSA

user-space library (libasound), which provides the common API for appli-

cations. The library acts as uniforming layer above the hardware cards in

use and to abstract changes eventually made in the kernel API to maintain

compatibility with existing ALSA-native applications, as it absorbs changes

internally while keeping the external API consistent. An in-depth overview

of the ALSA API can be found in [6].

Audio Hardware

ALSA kernel API
OSS API

ALSA Library

ALSA Library API

Native ALSA

Application

Native ALSA

Application

OSS API

OSS App.OSS App.

OSS userspace

emulation.

LD_PRELOAD

OSS

Emulation

ALSA

Kernel Driver

Linux Kernel

PCM | Midi | Control | Seq

Figure 2.1: An overview of the ALSA architecture

2.1.2 OSS compatibility

The OSS API has been reimplemented to provide backward-compatibility to

legacy applications, both in-kernel and in an user space library. As found in

Figure 2.1, there are two routes for the OSS emulation. One is through the

kernel OSS-emulation modules, and the other is through the OSS-emulation

library. In the former route, an add-on kernel module communicates with
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the OSS applications. The module converts the commands and operates the

ALSA core functions. In the other route, the OSS applications run on the top

of ALSA library. The ALSA OSS-emulation library works as a wrapper to

convert the OSS API to the ALSA API. Since the OSS application accesses

the device files directly, the OSS-emulation wrapper needs to be preloaded the

OSS applications, so that it replaces the system calls to the sound devices

with its own wrapper functions. In this route, the OSS applications can

use all functions of ALSA, such as plugins and mmap access, described in

section 2.1.3.

2.1.3 Access modes

An application that needs to read/write sound data to/from the sound card

can use the ALSA library to open one or more of the PCM supported by the

device, and then use the other functions provided to read or write data to the

card. The PCM is full-duplex as long as the hardware supports. The ALSA

PCM has multiple layers in it. Each sound card may have several PCM

devices. Each PCM device has two streams (directions), playback and cap-

ture, and each PCM stream can have more than one PCM substreams. For

example, a hardware supporting multi-playback capability has multiple sub-

streams. At each opening of a PCM device, an empty substream is assigned

for use. The substream can be also specified explicitly at its opening.

Alternatively, an application can use Memory Mapping to transfer data

between user space and kernel space. Memory mapping (mmap) is the most ef-

ficient method to transfer data between user-space and kernel-space. It must

be supported by the hardware and by the ALSA driver, and the supported

size is restricted by them. With this access method the application can map

the DMA buffer of the driver in user-space, so that the transfer is done by

writing audio data to the buffer, avoiding an extra copy. In addition to data,

ALSA maps also status and control records, which contains respectively the

DMA (also called hardware pointer) and the application pointer, to allow the

application to read and write the current state of the writer, without extra

context switching between user and kernel mode. Additionally, the capture
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buffer is mapped as read-write, allowing the application to “mark” the buffer

position it has read to. Due to this requirement, capture and playback buffers

are divided to different devices.

2.1.4 Sound Servers

With ALSA drivers, and with OSS drivers as well, accessing the sound card is

an exclusive operation. That is, as many cards support only one PCM stream

for each playback and capture device, the driver accepts only one process,

resulting in only one application accessing audio playback while others are

blocked until the first quits. The approach chosen to solve that problem was

to introduce an intermediate, broker, server, called sound server. A sound

server gains access to the sound card, and than provides an inter-process

communicationIPC mechanism to allow application to play or capture audio

data.

All the mixing between the streams is done by the sound server itself, as

well as all the necessary processing like resampling or sample format conver-

sions. On Linux two major sound servers emerged as the de-facto standard

ones: the first is called Pulseaudio, the other is called JACK (Jack Audio

Connection Kit). Both of them use mmap access method (thus blocking

the sound card driver), but they diverge on main focus: while the former

is focused to enhance the desktop experience for the average user, provid-

ing per-application mixing levels, networking audio with auto discovery of

the sound server, power saving, and more, the latter is focused on real time

low-latency operation and on tight synchronization between clients, making

it suitable for pro audio applications as Digital Audio Workstations, live

mixing, music production and creation.
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2.2 JACK: Jack Audio Connection Kit

2.2.1 Audio application design problems

Basic constraints that affect audio application design come from the hardware

level. After the card initialization, in fact, the audio application must transfer

audio data to and from the device at a constant rate, in order to avoid buffer

underruns or overruns. This is referred in general as xruns in ALSA and

jack terminology, and denote a situation in which the program failed to write

(underruns) or read (overruns) data to/from the sound card buffer.

These constraints can be very tight in particular situations. In fact, while

normal playback of a recorded track such an MP3 file or an internet stream

can make heavy use of buffering to absorb eventual jitter while decoding the

stream itself, a software synthesizer driver by MIDI data from an external

keyboard can not, as the musician playing the instrument needs to receive

the computed sound within a short interval of time. This interval is typically

around the 3 milliseconds, and it may become unacceptable for live playing

when over 5 or 7 milliseconds, depending on the distance of the musician

itself from the loudspeakers.1

Applications need to work in respect of these real time constrains, as they

can’t do their processing neither much in advance, nor they can lag behind.

On modern preemptive operating systems applications contend for hardware

resources, mainly the CPU, and this contention, among other problems, can

lead to miss the real-time constraint in reading or writing audio data with

correct time. Moreover, audio applications need non-audio related additional

code for their operation, such as I/O handling code, graphical user interface

code or networking code. All this additional work can lead to miss the

deadline for audio related constraints.

One way to solve these problems is to have a high priority thread dedi-

cated to audio processing that handles all sound card I/O operations, thus

decoupling it from other work done within the application itself. Implement-

1As the speed of sound in air is about 343 meters per second, a distance of 5 meters
from the loudspeaker results in about 14.6 milliseconds of delay, resulting in approximately
3 ms every meter of distance.
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ing the audio thread needs very careful planning and design, as it is needed to

avoid all operations that can block in a non-deterministic way, such as I/O,

memory allocation, network access etc. When the audio thread needs to

communicate with other software modules, various non blocking techniques

are required, most of which relies on atomic operation and shared memory.

Another issue in audio application design is modularization. Modulariza-

tion is a key concept in software development, as it’s easier to handle com-

plex problem by dividing them first into smaller components used as building

blocks. A good example is the text processing tools in UNIX world: every

tool is simple, it makes one specific thing but in a very powerful way, and

various tools can be combined together to provide complex functionalities.

JACK, which is described in depth in 2.2.2, tries to shift modularization

to that extent in the audio world, by providing sample-accurate, low-latency,

IPC so that to permit application developers to focus on a particular task. A

system of various JACK-capable applications, called JACK clients, can then

solve the complex problem, providing a great degree of flexibility.

This, however, brings synchronization costs, as well as those costs from

the IPC mechanism plus, as described in 2.2.7 on page 14 it forces appli-

cation developers to design carefully their applications with respect to the

audio processing thread, as lock-free, thread-safe access methods to shared

structure are needed to pass data and messages between the main thread and

the realtime one.

2.2.2 JACK design

JACK[7] (Jack Audio Connection Kit) is a low-latency audio server, written

for POSIX conforming operating systems such as Linux, and its main focus

is to provide an IPC for audio data while maintaining sample synchroniza-

tion. It was started in 2001 by the Linux audio community as a way to make

application focus on their job without the need to worry about mixing, hard-

ware configuration and audio routing. Typically the paradigm used in audio

application was to make one application, often called DAW (digital audio work-

station), the master application and then have all other applications, such
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as effects, synthesizers, samplers, tuners, as plugins, i.e. as shared libraries

loaded in the main application process space and following a well specified

API to communicate with it. While this is certain possible also on POSIX

complaint operating systems, it was unfeasible for various problems, mainly

in respect of graphics libraries used to paint the graphical user interfaces.

On Unix, in fact, there are at least two major toolkit to write graphical

user interfaces, QT and GTK+; since imposing one of the two was considered

impractical, as it could led to fragmentation in the user base, a more general

approach was needed. As stated above, JACK uses multi-processing and

multi-thread approach to decouple all non-audio processing from the main,

real-time, audio dataflow. JACK clients are then normal system processes

which link to the jack client library. The main disadvantages of the multi

process approach are intrinsic in its design, coming from synchronization and

scheduling overhead (i.e. context switch). Thus every client has a real-time

thread that does computations of audio data while all the other functionali-

ties, as I/O, networking, user interface drawing, are done in separate threads.

Currently there are two main implementations of JACK. The first is the

legacy one, which runs on Linux, BSD and MAC OSX operating systems;

it was the first to be released and it was written in C99 and referred as

jack1. The second one, referred as jackdmp or jack2, is intended to replace

the former in the immediate future and it is a complete rewrite in the C++

language; it provides many optimizations in the graph handling and client

scheduling, as well as more supported operating systems (it adds support for

Windows and Solaris). This work has been focused on JACK version 2, as it

represents the future of the JACK development.

This that follows is a brief explanation of the design of the JACK archi-

tecture, more details can be found in [14, 13].

2.2.3 Ports

JACK client library takes care of the multi-threading part and of all commu-

nications from the client to the server and other clients. Instead of writing

and reading audio data directly from the sound card using ALSA API or
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Linux

Kernel

ALSA Drivers

Audio Hardware

Analog Audio I/O

Digital Audio I/O

ALSA Userspace Library (libasound)
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Figure 2.2: An overview of the JACK design
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OSS API, a JACK client registers with the server, using JACK own API, a

certain number of so called ports, and writes or reads audio data from them.

Ports size is fixed and dependent from the sample rate and buffer size, which

are configured on server startup. Each port is implemented as a buffer in

shared memory to be shared between clients and the server, creating a “one

writer, multiple reader” scenario, as only one client “owns” the port and

thus is allowed to write to it, while other clients can read from it. This avoid

the need of further synchronization on port, as the data flow model (further

explained in section 2.2.5) already provides the synchronization needed for

the reader to find data ready to be read on input ports. This scenario also

provides a zero-copy semantics on many common simple graph scenarios, and

minimal copying on complex one.

2.2.4 Audio Driver

All the synchronization is controlled by a JACK driver which interacts with

the hardware, waking the server at regular intervals determined by the buffer

size. On Linux, JACK uses mmap-based access with the ALSA driver, and

it adopts a double buffering technique: it duplicates the buffer size in two

periods, so while the hardware is doing playback on the first half of the buffer,

the server writes the seconds half. This fixes the total latency to the size of

the buffer, but the jack server can react to input in half of the latency. The

basic requirement for the system proper operating is that the server (and all

the graph) needs to do all the processing between two consecutive hardware

interrupts. This must take in account all the time needed for server/client

communications, synchronization, audio data transfer, actual processing of

audio data and scheduling latency.

2.2.5 Graph and data flow model

Since ports can be connected to other ports, and since hardware capture and

playback buffer are presented as ordinary client ports that do not differ from

other clients’ ports, a port-connections paradigm, which can be seen as a

directed graph, is obtained. In the graph, ports are nodes and connections
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are arcs. The data flow model used in the jack graph is an abstract and

general representation of how data flows in the system, and generate data

precedence between clients. In fact, a client cannot execute its processing

before data on its input ports is ready: thus a node in the dataflow graph

becomes runnable when all inputs port are available.

IN

B

A

C OUT

Figure 2.3: A simple client graph. Clients IN and OUT represent physical ports
as exposed by the jack driver. Clients A and B can be run in parallel as soon as
data is available on inputs, but client C must wait for both A and B to become
runnable.

Figure 2.3 contains a simple example of a jack client graph. Each client

then use an activation counter to count the number of input clients which

it depends on; this state is updated every time a connection is made or

removed, and it’s reset at the begin of every cycle. During normal server

cycle processing activation is transferred from client to client as they execute,

effectively synchronizing the client execution order on data dependencies. At

each cycle clients that depend on input driver ports and clients without any

dependency have to be activated first. Then, at the end of its processing,

the client decrements the activation counter of all its connected output, so

that the last finishing client resumes the following clients.

This synchronization mechanism is implemented using various technolo-

gies that depend on the operating system jack is compiled on. Currently on

Linux it is using FIFO objects on tmpfs - a shared memory mounted filesys-

tem which expands on usage - to avoid issuing disk writes for FIFO creation

or deletion. The server and client libraries keep those FIFO objects opened

upon connections and disconnections, and update the FIFO list2 that the

2The global status of FIFO opened and connections between them, actually represent
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client needs to write activations messages to upon graph changes.

2.2.6 Concurrent graph and shared objects manage-

ment

It appears obvious that, in a multi-process environment, a shared object

like the jack graph must be protected from multiple access by concurrent

processes. In classic lock-based programming this is usually done using

semaphores for mutual exclusion, so that operations appear as atomic. The

client graph needs to be locked each time a server updates operation access

it. When the real-time audio thread runs, it also accesses the client graph to

check the connection status and to get the list of the clients to signal upon

ending its processing. If the graph has been locked for an update operation,

the realtime thread can be blocked for a indefinite, non deterministic amount

of time, waiting for the lock to be released by a lower priority thread. This

problem is identified as priority inversion.

To avoid this situation, in jack1 implementation the RT threads never

block on graph access, but instead generate ”blank“ audio as output, and

skip the cycle, resulting in an interruption in the output audio stream. On

the contrary, in jack2 implementation the graph management has been re-

worked to use lock-free principles, removing all locks and allowing graph state

changes (adding or removal of clients, ports, connections) to be done with-

out interrupting the audio stream. This is achieved by serializing all update

operations through the server and by allowing only one specific server thread

to update the graph status. Two different graph states are used, the current

and the next states. The current state is what is seen by RT and non RT

threads during the cycle, and it’s never updated during the cycle itself, so

that no locking is needed by the client threads to access it. The next state

is what get updated, and it’s switched using the CAS instruction by the RT

audio server thread at the begin of the cycle. CAS (Compare And Swap) is

the basic operation for lock-free programming: it compares the content of

a memory address with an expected value and, if it successes, it replaces

the graph itself.
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the content with a new value. Despite this lock-free access method, non-RT

threads that want to update the next status are synchronized in a model

similar to the mutex-lock/mutex-unlock pair.

2.2.7 A brief overview of the JACK API

As stated before, JACK is composed by multiple parts: it’s an API for writ-

ing audio programs, an implementation of that API (actually two different

implementations, as stated above), and a sound server. The jack API is

structured to be pull-based, in contrast of the push-based mode enforced by

both ALSA and OSS APIs. The main difference between the two models,

while both of them have their strength and weakness, is that the pull based

approach is based on callbacks.

In JACK, in fact, a client registers its callbacks for every event it needs

to listen to, then the server calls 3 the right callback when an event occurs.

The JackProcessCallback callback is one of the few mandatory callbacks

the client has to register, and it’s the one in which the client performs its

calculation on input data and produces its output audio data. Apart from

the JackProcessCallback callback, which is called in the realtime audio

thread for obvious reasons, all other callbacks are called asynchronously in a

specialized non-realtime thread, to avoid notifications to interfere with audio

processing. Finally, all GUI or I/O related work is done in another thread

running with no special scheduling privilege.

The main API entrance point is the jack/jack.h file, which define almost

all the provided functions.

From the developer point of view the API masks all the thread-related

complexity. The developer needs only to use a non-blocking paradigm when

passing data back and forth to the realtime audio thread, of which he or she

needs to write only the body that actually does the audio work.

If it’s necessary to save data to disk or to the network, a special thread-

safe, non blocking ringbuffer API is provided within the jack API itself; the

3Actually, the server uses the IPC mechanism to notify the JACK client library, then
the callback is called by the library in the application process space.
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key attribute of a ringbuffer is that it can be safely accessed by two threads

simultaneously – one reading from the buffer and the other writing to it –

without using any synchronization or mutual exclusion primitives, and thus

the possibility that the realtime thread is blocked waiting the non-realtime

thread is avoided.

As can be seen in the example client (ref. 5.1 on page 92), the API is

based on registering callbacks, then waiting for the events. Some commonly

used jack API callbacks are:

• JackProcessCallback: called by the engine for the client to produce

audio data. The process event is periodic and the respective callback

is called once per server period;

• JackGraphOrderCallback: called by the engine when the graph has

been reordered (i.e. a connection/disconnection event as well as client

arrival or removal);

• JackXRunCallback: called by the engine when an overrun or an un-

derrun has been detected; xruns can be reported by the ALSA driver

or can be detected by the server if the graph has not been processed

entirely;

• JackBufferSizeCallback: called by the engine when a client recon-

figures the server for different buffer size (and thus latencies);

• JackPortRegistrationCallback: called by the engine when a port is

registered or unregistered;

• JackPortConnectCallback: called whenever a port is connected to or

disconnected from another port;

• JackClientRegistrationCallback: called upon registering or unreg-

istering of a client;

• JackShutdownCallback: called when the server shutdown to notify the

client that processing will stop ;
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A common pattern for jack client is thus4:

1 #include <j ack / jack . h>

2 int myprocess ( nframes ) {

3 i n bu f = j a c k p o r t g e t b u f f e r ("in" ) ;

4 out buf = j a c k p o r t g e t b u f f e r ("out" ) ;

5 // proces s

6 }

7

8 j a c k c l i e n t o p e n ( ) ;

9 j a c k p o r t r e g i s t e r ("in" ) ;

10 j a c k p o r t r e g i s t e r ("out" ) ;

11 j a c k s e t p r o c e s s c a l l b a c k ( myprocess )

12 // r e g i s t e r o ther c a l l b a c k s

13 j a c k c l i e n t a c t i v a t e ( ) ;

14

15 //wai t f o r shutdown event or k i l l s i g n a l

16 while ( t rue )

17 s l e e p ( 1 ) ;

Apart from functions and callbacks for core operations, the JACK API

provides utilities functions for various tasks, such as thread managing, non-

blocking ringbuffer operations, JACK transport control, MIDI event han-

dling, internal client loading/unloading, and, for JACK server, a control API

to control the server operations.

• jack/thread.h: Utilities functions for thread handling. Since JACK

is a multi-platform software, this series of functions masks all the op-

erating system dependent details while creating threads, in particular

for creating additional real-time threads a JACK client needs, as well

as querying priorities or destroying previously created threads.

• jack/intclient.h: Function for loading, unloading and querying in-

formation about internal clients. Internal clients are loaded by the

server as shared libraries in its process space, thus not requiring extra

4in a pseudo-code syntax, a complete client program is shown in 5.1 on page 92.
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context switch when the server schedules them, but a bug in an internal

client can possibly affect whole server operation.

• jack/transport.h: This header file defines all those functions needed

for controlling and querying the JACK transport and timebase. They

are used by clients for forward, rewind or looping during playback,

synchronizing with other applications. They are commonly used by

DAWs and sequencer to cooperate and to stay in sync with the playback

or recording.

• jack/ringbuffer.h: A set of library functions to make lock-free ring-

buffers available to JACK clients. As stated before, a ringbuffer is

needed when a client wants to record to disk the audio processed in

the realtime thread, to decouple I/O from the realtime processing, in

order to avoid nondeterministic blocking of the realtime thread. The

key attribute of the ringbuffer data structure here defined is that it can

be safely accessed by two threads simultaneously, one reading from the

buffer and the other writing to it, without the need of synchronization

or mutual exclusion primitives. However, this data structure is safe

only if a single reader and a single writer are using it concurrently.

• jack/midiport.h: Contains functions to work with midi event and to

write and read MIDI data. This functions normalize MIDI events, and

ensure the MIDI data represent a complete event upon read.

2.3 Theory of real-time systems

This section briefly introduces some of the main real-time scheduling theory

results and concepts used by components, as the Adaptive Quality of Service

Architecture (AQuoSA) framework described in section 2.4.3 on page 29.

2.3.1 Real-time Systems

A real-time system can be simply defined as a set of activities with timing

requirements, that is a computer system which correctness depends both on
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the correctness of the computation results as well as on the time at which

those results are produced and presented as system output; they have to

interact directly with the external environment, which directly imposes its

rigid requirements on the systems timing behavior. These requirements are

usually stated as constraints on response time or worst case computation time

(or even both) and it is this time-consciousness aspect of real-time systems

that distinguishes them from traditional computing systems and makes the

performance metrics significantly different, and often incompatible.

In traditional computations system, scheduling and resource management

algorithms aim at maximizing the throughput, the utilization and the fair-

ness, so that each application is guaranteed to progress and all the system

resources are exploited to their maximum capabilities. In a real-time sys-

tem those algorithms need to focus on the achievement of definitely different

objectives, such as the perfect predictability (for hard real-time systems) or

the percentage of missed deadlines minimization (for soft real-time systems).

A very important distinction is usually drawn between hard and soft real-

time systems. While the former completely fails its objective if the time

guaranteed behavior is not honored, even only one single time, the latter

can tolerate some guarantees miss to happen and it considers such events

only as temporary failures, so there is no need to abort or restart the whole

system. Such a difference comes from the fact that hard real-time systems

handle, typically, critical activities, as nuclear power plants or flight control

systems could be, which, in order to avoid total failure in the system itself,

need to respect their environmental-driven time constraints. Soft real-time

systems, on the contrary, can be considered instead non critical systems in

which, while it’s still required for them to finish in time, a deadline miss is

perceived by the user just as a reduced Quality of Service (QoS). From this

brief description can be evinced that audio applications, such as JACK, fall

in the soft-realtime category, that is a deadline miss can bring to a skipped

cycle and a click in the produced audio that, while the user can perceive as

a degradation of the sound quality, the system is designed to handle and to

recover from.

In order to ensure the meeting of all the deadlines by all the involved
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activities in all workload conditions for hard real-time systems, off-line feasi-

bility and schedulability analysis are performed with all the most pessimistic

assumptions adopted. That is, since no conflicts with other tasks are allowed

to happen, each task gets statically allocated all the resources it needs to

run to completion. Moreover a precise analysis of how tasks cooperate and

access to shared resources is done to avoid unpredictable blockage or priority

inversion situations. This to enforce the system to be robust in tolerat-

ing even peak load situations, although it can cause an enormous waste of

system resources: dealing with high-criticality hard real-time systems, high

predictability can be achieved at the price of low efficiency, increasing the

overall cost of the system.

While dealing with soft real-time systems, instead, approaches like those

used with hard realtime systems should be avoided, as they waste resources

and lower the total efficiency of the system itself. Furthermore in many

soft real-time scenarios the hard real-time approach is extremely difficult to

adopt, since many times, for example while dealing with a system like JACK,

in which user input can greatly change the computation times of synthesizers,

calculating the worst-case execution time (WCET) is unfeasible.

Generally, in contrast with hard real-time systems, soft-real time sys-

tems are implemented on top of general purpose operating systems5, such

as Linux, as to take advantage of existing libraries, tools and applications.

Main desirable features of a soft real-time system are, among others:

• maximize the utilization of system resources

• remove the need to have precise off-line information about tasks

• graceful degradation of performance in case of system overload

• provide isolation and guarantees to real time tasks from other real time

tasks

5A computer system where it is not possible to a-priori know how many applications
will be executed, what computation time and periodicity characteristics they will have
and the thing that matter at most is the QoS level provided to each of these application,
that can be soft real-time, hard real-time or even non real-time, is also often referred, in
real-time systems literature, as an Open System.
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• support coexistence of real-time and normal tasks

2.3.2 Real-time task model

In real-time theory each application is called a task (τi, the i-th task), and

each task is denoted by a stream of jobs Ji,j(j = 1, 2, . . . , n), each character-

ized by:

• an execution time ci,j

• an absolute arrival time ai,j

• an absolute finishing time fi,j

• an absolute deadline di,j

• a relative deadline6 Di,j = di,j − ai,j

Each task than has a Worst Case Execution Time (WCET) Ci = max{cij} and

a Minimum Inter-arrival Time (MIT) of consecutive jobs Ti = min{ai,j+1 −

ai,j} ∀j = 1, 2, . . . , n. A task is considered to be periodic if ai,j+1 = ai,j + Ti

for any job Ji,j . Finally, the task utilization can be defined as Ui =
Ci

Ti
.

For hard and soft realtime systems it’s obvious that, for each task τi,

fi,j ≤ di,j must hold for any job Ji,j , otherwise the deadline miss can bring

to system failure (in case of hard real-time systems), or degraded QoS (for

soft real-time systems).

2.3.3 Scheduling Algorithms

Real-time scheduling algorithms can be divided in two main categories, re-

spectively static (or off-line) and dynamic. In the former class all scheduling

decisions are performed at compile time based on prior knowledge of every

parameter describing the task set, resulting in the lowest run-time scheduling

overhead. In dynamic scheduling algorithms decisions are instead taken at

run-time, so the scheduler picks the task to run among the tasks ready to be

run, providing more flexibility but higher overhead.

6Sometimes referred to as minimum response time.
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Both classes can be further divided in preemptive and non-preemptive al-

gorithms: preemptive schedulers permit a higher priority that becomes ready

task to interrupt the running task, while using non-preemptive schedulers

tasks cannot be interrupted once they are scheduled.

Another further division in classifying is between static priority algo-

rithms and dynamic priority algorithms, with respect to how priorities are

assigned and if they are ever changed. The former algorithms keep prior-

ity unchanged during system evolution, while the latter change priorities as

required by the algorithm in use.

An example of an on-line, static scheduling algorithm is the Rate Mono-

tonic (RM) algorithm, in which each task τi is given a priority pi inversely

proportional to its period of activation: pi =
1
Ti
.

Another example can be the on-line dynamic scheduling algorithm called

Earliest Deadline First (EDF) in which at every instant t the task priority

is given as pi(t) = 1
di(t)

, which means that at every instant the task whose

deadline is more imminent has the maximum priority in the task set. Both

algorithms are described in depth in [9].

With the RM scheduler it has been proved that, in a task set τ with n

tasks, it is guaranteed to exist a feasible scheduling if [9]:

U =
n
∑

i=0

Ui =
n
∑

i=0

Ci

Ti

≤ n · (2
1

n − 1)

while, by means of EDF scheduler, if:

U =
n
∑

i=0

Ui =
n
∑

i=0

Ci

Ti

≤ 1

As thus can be seen the EDF scheduler, exploiting the dynamic reassign-

ment of priorities, can achieve a 100% of resource reservations, while RM,

using static priorities, can only guarantee 0,8284 with n = 2, and, in general:

lim
n→∞

n · (2
1

n − 1) = ln 2 ≈ 0.693147 . . .
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which limits the total utilization for which it’s guaranteed that a feasible

schedule exists using RM, tough a schedule with higher utilization factor can

still be found as the condition is only proved sufficient.

While this algorithms and results where developed and obtained thinking

mostly to hard real-time systems, they can be extended to soft real-time

systems with the aid of server based algorithms described in section 2.3.4.

2.3.4 Server based scheduling

Server based scheduling algorithms are based on the key concept of server,

which has two parameters:

• Qi (or C
s
i ), the budget or capacity

• Pi (or T
s
i ), the period

In this category of algorithms, servers are the scheduling entities, so they

have an assigned (dynamic or static) priority and are inserted in the system

ready queue. This queue can be handled with any scheduling algorithm, such

as RM or EDF. Each server serves a task or a group of tasks, each one hard

or soft as well as either period, sporadic or aperiodic. While a task belong-

ing to a server is executing, the server budget is decreased and periodically

recharged, so that its tasks are guaranteed that they will execute for Qi units

of time each Pi period, depending on which type of server scheduling is in

use.

There is a large variety of well known server algorithms in real-time liter-

ature, such as Polling Server (PS), Deferrable Server (DS), Sporadic Server

(SS), Constant Bandwidth Server (CBS), Total Bandwidth Server (TBS) and

others, and most of them can be used with, or slightly adapted to, both RM

and EDF scheduling.

One of the most used server, better described in section 2.3.5 on the next page,

is the Constant Bandwidth Server[1], which is a common choice in Resource

Reservation frameworks.
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2.3.5 Constant Bandwidth Server

The Constant Bandwidth Server [1] algorithm is one of the server based

algorithm that have been just introduced.

Each CBS server is characterized by the two classical parameters, Qi, the

maximum budget, and Pi, the period, and also with two additional ones:

• qi (or better qi(t)), the server budget at exactly the time instant t

• δi (or better δi(t)), the current server deadline at exactly the time

instant t

Server budget and period are often referred as bandwidth Bi =
Qi

Pi
.

The fundamental property of the CBS algorithm is that, defined the frac-

tion of processor time assigned to the i-th server as:

U s
i =

Qi

Pi

the total usage of tasks belonging to server Si is guaranteed not to be greater

than U s
i , independently from overload situations or misbehavior. The CBS

algorithm can be described with the following rules:

1. When a new server Si is created, its parameters are set so that qi = Qi

and δi = 0

2. rule A: if the server is idle and a new job Ji,j of the task τi (associated

with Si) arrives, the server checks if it can handle with the current

(qi, δi), evaluating the following expression:

qi < (δi − ai,j) · U
s
i

if true, nothing has to be done, else a new pair (qi, δi) is generated as:

qi = Qi

δi = δi + Pi
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3. rule B: when a job of a task belonging to Si executes for a ∆t time

units, the current budget is decreased as:

qi = qi −∆t

4. rule C: when the current budget of a server Si reaches 0 the server,

and thus all the associated tasks, are descheduled and a new pair (qi, δi)

is generated as:

qi = Qi

δi = δi + Pi

Should also be noted that:

• A server Si is said to be Active at instant t if it has pending jobs in its

internal queue, that is if exists a server job Ji,j such that ai,j < t < fi, j

• A server Si is Idle if it’s not active

• When a new job Ji,j of the task τi, associated with Si, arrives and

the server is active, it’s enqueued by the server in its internal queue

of pending jobs, which can be handled with arbitrary scheduling algo-

rithm.

• When a job finishes the first job in the internal pending queue is exe-

cuted with the remaining budget, according to the rules above.

• At the instant t the job Ji,j executing in server Si is assigned the last

generated deadline.

The basic idea behind the CBS algorithm is that when a new job arrives it

has a deadline assigned, which is calculated using the server bandwidth, and

then inserted in the EDF ready queue. In the moment the job tries to execute

more than the assigned server bandwidth, its deadline gets postponed, so that

its EDF priority is lowered and other tasks can preempt it.
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2.3.6 Resource Reservations

The CBS server algorithm thus works without requiring the WCET and the

MIT of the associated task to be known nor estimated in advance while,

moreover, a reliable prediction or the exact knowledge of these two parame-

ters can be used to set up the server parameters Qi and Pi with much more

ease, till obtaining the task behaves exactly as an hard real-time one.

One of the most interesting properties of the CBS algorithm is the Band-

width isolation property, that is it can be showed that if

n
∑

i=0

Bi ≤ U lub

where U lub depends on the global scheduler used and in particular, as said

U lub = 1

for the EDF scheduler, then each server Si is reserved a fraction Bi = Qi/Ti

of the CPU time regardless of the behavior of other servers tasks. That is,

the worst case schedule of a task is not affected by the temporal behavior of

the other tasks running in the system.

The CBS algorithm has been expanded to implement both hard and soft

reservations. In the former, when a server exhausts its budget, all its as-

sociated tasks are suspended up to the server deadline, then the budget is

refilled and the gain chances to be scheduled again. In the latter, tasks are

not suspended upon budget exhaustion, but the server deadline is postponed

so that the tasks priority decreases and it can be preempted, if some other

tasks with shorter deadline are in the ready queue.

There are some algorithm proposed to improve the sharing of the spare

bandwidth while using hard reservations. Some of them are GRUB, IRIS and

SHRUB. One of the most interesting of these, for this work, is the SHRUB

(SHared Reclamation of Unused Bandwidth) algorithm, which effectively dis-

tributes the spare bandwidth to servers using a policy based on weights.
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2.3.7 Reclaiming Mechanism: SHRUB

SHRUB is a reclaiming mechanism of the spare system bandwidth, i.e. not

associated with any server, based on GRUB[8, 11].

SHRUB is a variant of the GRUB algorithm, which in turn is based on the

CBS. In SHRUB each reservation is also assigned a positive weight ωi , and

execution time is reclaimed based on ωi (the reclaimed time is distributed

among active tasks proportionally to the reservation weights).

The main idea behind GRUB and SHRUB is that if Bact(t) is the sum of

the bandwidths of the reservations active at time t, a fraction (1Bact(t)) of the

CPU time is not used and can be re-distributed among needing reservations.

The re-distribution is performed by acting on the accounting rule used to

keep track of the time consumed by each task. In GRUB all the reclaimed

bandwidth is greedily assigned to the current executing reservation, and time

is accounted to each reservation at a rate that is proportional to the current

reserved bandwidth in the system. If Bact < 1 this is equivalent to temporar-

ily increasing the maximum budget of the currently executing reservation for

the current period. In the limit case of a fully utilized system, Bact = 1 and

the execution time is accounted as in the CBS algorithm. In the opposite

limit case of only one active reservation, time is accounted at a rate Bi (so,

a time Qi is accounted in a period Pi ).

SHRUB, instead, fairly distributes the unused bandwidth among all active

reservations, by using the weights. In the two limit cases (fully utilized system

and only one reservation), the accounting mechanism for GRUB and SHRUB

work in the same way. However, when there are many reservations in the

system and there is some spare bandwidth, SHRUB effectively distributes the

spare bandwidth to all needing reservations in proportion to their weights.

Unlike GRUB, SHRUB uses the weights to assign more spare bandwidth to

reservations with higher weights, implementing the equation:

Bi = B
′

i +
ωi

∑

j ωj

(

1−
∑

k

B
′

k

)

where B
′

i = min{Breq
i , Bmin

i }, Breq
i is the requested bandwidth, Bi is the
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resulting bandwidth after compression.

2.4 Real-time schedulers on Linux

2.4.1 POSIX real time extensions

As Linux is a POSIX-compliant operating system, it implements the POSIX

standards, and the scheduler is not an exception. In particular, it implements

the realtime scheduling classes that POSIX defines in IEEE Std 1003.1b-

1993. There are supported scheduling policies, such as the POSIX required

fixed priority (SCHED FIFO), Round-Robin (SCHED RR) and a typical desktop

system time-sharing policy (SCHED OTHER), made out of heuristics on tasks

being runnable or blocked, with the fixed priority policy (SCHED FIFO)

being the most important one if we are interested in trying to build a real-

time systems out of Linux. There are 140 priority levels where the range 0..99

is dedicated to so-called real-time tasks, i.e. the ones with SCHED FIFO or

SCHED RR policy, and available only to the user in the system with sufficient

capabilities (usually only the root user, or, those users and groups the root

user authorized to use them). A typical Linux task uses the SCHED OTHER

policy.

The Linux scheduler can described as follows:

• if one or more real-time task (SCHED RR or SCHED FIFO) is ready

for execution, then the one with the highest priority is run and can only

be preempted by another higher priority, SCHED FIFO task, otherwise

it runs undisturbed till completion.

• if SCHED RR is specified after a time quantum (typically 10 ms) the

next task with the same policy and priority (if any) is scheduled, so

that all SCHED RR tasks with the same priority are scheduled Round-

Robin.

• if no real-time task is ready for execution, SCHED OTHER tasks are

scheduled with a dynamic priority calculated according to the defined

set of heuristics.
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Linux, being a general purpose time sharing kernel, has no implementa-

tion of either EDF or RM, nor of any other algorithm from classic real-time

theory. This is felt by the majority of the community as not being an is-

sue, as rate monotonic, for example, can be implemented out of the priority

based SCHED FIFO scheduling class, without any need for modifications of

the kernel itself.

2.4.2 Linux-rt

The patch to the Linux kernel source code known as PREEMPT RT[12] is main-

tained by a small developer group with the aim of providing the kernel with

all the features and the capabilities of both a soft and hard real-time op-

erating system. The patch, basically, modifies a standard Linux kernel so

that it could nearly always be preempted, except few critical code regions,

and so it can extend the support for priority inheritance to in-kernel locking

primitives and move interrupt handling to schedulable threads. A complete

coverage of this patchset is out of the scope of this work, thus we give only

a brief explanation of the ideas behind its changes to the Linux kernel.

In this patch the interrupt handling7 has been redesigned to be fully-

preemptable, moving all interrupt handling to kernel threads, which are man-

aged by the system scheduler like every other task in the system. This allows

a very high priority real-time task to preempt even IRQ handlers, reducing

the overall latency.

To achieve full preemption, spinlocks and mutex inside the kernel have

been reworked so that the former ones become normal mutexes (thus pre-

emptable) and the latter ones rt-mutexes that implement the Priority In-

heritance Protocol, to protect all the new-preemptable kernel path from the

priority inversion issue.

The resulting patch is very well suited for soft-real time system, as it

minimizes the total latency for IRQ handling, which is critical when working

7In the main kernel tree, the interrupt handler is separated in two parts, the hard and
the soft one. The former is the “classical” interrupt handler that runs with interrupts
disabled, while the latter is the SoftIRQ, which can be preempted and it’s called by the
hard part to finish non critical work.
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with audio, even if it lacks forms of resource reservations. It is a common

choice among users in the Linux audio community: it is, in fact, the rec-

ommended kernel patch by the JACK developers and users, as well as other

developers from other project in the Linux audio community as a whole.

2.4.3 AQuoSA: Adaptive Quality of Service Architec-

ture

AQuoSA [2, 10] stands for Adaptive Quality of Service Architecture and

is a Free Software project developed at the Real-Time Systems Labora-

tory (RETIS Lab, Scuola Superiore SantAnna, in Pisa) aimed at provid-

ing Quality of Service management functionalities to a GNU/Linux system.

The project features a flexible, portable, lightweight and open architecture

for supporting soft real-time applications with facilities related to timing

guarantees and QoS, on the top of a general-purpose operating system as

GNU/Linux is.

The basis of the architecture is a patch to the Linux kernel that embeds

into it a generic scheduler extension mechanism. The core is a reservation

based process scheduler, realized within a set of kernel loadable modules,

exploiting the patch provided mechanism, and enforcing the timing behavior

according to the implemented soft real-time scheduling policies. A supervisor

performs admission control tests, so that adding a new application with its

timing guarantees does not affect the behavior of already admitted ones. The

AQuoSA frameworks is divided in various components:

• the Generic Scheduler Patch (GSP): a small patch to the kernel ex-

tending the Linux scheduler functionalities by intercepting scheduling

events and executing external code from a loadable kernel module;

• the Kernel Abstraction Layer (KAL): a set of C functions and macros

that abstract the additional functionality we require from the kernel

(e.g. time measuring, timers setting, task descriptor handling, etc.);

• the QoS Reservation component : two kernel module and two user-space

library communicating between each other through (two) Linux virtual
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device:

– the resource reservation loadable kernel module (rresmod) imple-

ments the EDF and the RR scheduling algorithms, making use of

both the GSP exported hooks and the KAL facilities;

– A set of compile-time options can be set up to enable the use of

different RR primitives and customize their semantics (e.g. soft

or hard reservations or SHRUB);

– the resource reservation supervisor loadable kernel module (qresmod)

grants no system overload to occur and enforces system adminis-

trator defined policies;

– the resource reservation library (qreslib) provides the API that

allow an application to use the resource reservation module sup-

plied facilities;

– the resource reservation supervisor library (qsuplib) provides the

API that allow an application to access the supervisor module

supplied facilities;

• the QoS Manager component : a kernel module and an application li-

brary:

– the QoS manager loadable kernel module (qmgrmod) providers

kernel-space implementation of prediction algorithms and feed-

back control;

– the QoS manager library (qmgrlib) provides an API that allows

an application to use QoS management functionalities and directly

implements the control loop, if the controller and predictor al-

gorithms have been compiled to be in user-space, or, otherwise,

redirects all requests to the QoS manager kernel module;

The core mechanism of the QoS Reservation component is implemented

in two Linux kernel loadable modules, rresmod and qresmod and the new

scheduling service are offered to applications through two user libraries (qres-

lib and qsuplib). Communication between the kernel modules and the user
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(the libraries) level happens through a Linux virtual device using the ioctl

family of system calls.

Resource Reservation module

The rresmod module is responsible for implementing both the scheduling

and the resource reservation algorithms, on top of the facilities provided by

the hooks of the GSP and the abstractions of the KAL. When the module

is loaded in the kernel the GSP hooks are set to their handlers and all the

reservation related data structures are initialized.

As for scheduling, the module internally implements an Earliest Deadline

First (EDF) queue, since the purpose is to implement, as RR algorithm, the

CBS or one of its variants, and affects the behavior of the reserved tasks by

simply manipulating the standard Linux kernel ready task queues (runqueues

or simply rq).

Tasks using the reservation mechanisms are forced to run according to

EDF and CBS order by assigning them a SCHED RR policy and a statically

real-time priority, while they are forbidden to run (hard reservations) by

temporarily removing them from the Linux ready queue.

QoS supervisor component

The QoS supervisor main job is to avoid that a single user, either maliciously

or due to programming errors, causes a system overload or even forces tasks

of other users to get reduced bandwidth assignments, as well as to enforce

maximum bandwidth policies defined by the system administrator for each

user and users group.

The main advantages of implementing the supervisor module and library

as a separate component is an user level task, provided it has the required

privileges, can be utilized to define the rules and the policies, as well as put

them in place via the functions of the supervisor user level library, which com-

municate with its kernel module through a device file and the ioctl system

call. As an example a classical UNIX daemon run by the system administra-

tor and reading the policies from a configuration file, living in the standard
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/etc directory, can be our reservation security manager.

Moreover, if the QoS Manager is also used, the bandwidth requests com-

ing from the task controllers can be accepted, delayed, reshaped or rejected

by the QoS Supervisor.

Resource reservation and QoS supervisor libraries

The resource reservation and the QoS supervisor libraries exports the func-

tionality of the resource reservation module and of the QoS supervisor module

to user level applications, defining a very simple but appropriate API. All

functions can be used by any regular Linux process or thread, provided, in

the case of qsuplib, the application has enough privileges.

The communication between the libraries and the kernel modules hap-

pens, as stated, throughout two virtual device, called qosres (major number

240) and qossup (major number 242), created by the kernel modules them-

selves and accessed with the powerful ioctl Linux system call, inside the

libraries implementation, described in section 2.4.3 on the following page.

QoS Manager component implementation

QoS Manager is responsible for providing the prediction and control tech-

niques usable in order to dynamically adjust a task assigned bandwidth and

the algorithm for their implementation can be compiled in both an user level

library or a kernel loadable module, although the application is always linked

to the QoS Manager library and only interacts with it.

The main difference between kernel and user level implementation is the

number of user-to-kernel space switch needed is only one in the former case

and two in the latter, and so the possibility to compile the control algorithms

directly at kernel level is given in order to reduce to the bare minimum the

overhead of the QoS management.

An application that wants to use the QoS Manager has to end each cycle

of its periodic work, that is each job, with a call to the library function

qmgr end cycle which, depending on the configured location for the required

sub-components, is redirected by the library implementation to either user
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level code or, as usual, to a ioctl system call invocation on a virtual device.

AQuoSA Application Programmable Interface

The QoS resource reservation library allows applications to take advantage

of the RR scheduling services available when the QoS resource reservation

kernel module module is loaded.

The main function it provides are:

qres init initializes the QoS resource reservation library;

qres cleanup cleanup resources associated to the QoS resource reservation

library

qres create server create a new server with specified parameters of bud-

gets and period and some flags

qres attach thread attach a thread (or a process) to an existing server

qres detach thread detach a thread (or a process) from a server. It may

destroy the server if that was the last one attached (also depending on

server parameters)

qres destroy server detach all threads (and processes) from a server and

destroy it

qres get params retrieve the scheduling parameters (budgets and period)

of a server

qres set params change the scheduling parameters (budgets and period) of

a server

qres get exec time retrieve running time information of a server.

2.5 Linux Control Groups

Control Groups (cgroups) provides a mechanism for aggregating/partition-

ing sets of tasks, and all their future children, into hierarchical groups with
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specialized behavior. A particular terminology applies to Linux control

groups:

cgroup associates a set of tasks with a set of parameters for one or more

subsystems.

subsystem is a module that makes use of the task grouping facilities pro-

vided by cgroups to treat groups of tasks in particular ways. A sub-

system is typically a resource controller that schedules a resource or

applies per-cgroup limits, but it may be anything that wants to act on

a group of processes, e.g. a virtualization subsystem.

hierarchy is a set of cgroups arranged in a tree, so that every task in the

system is exactly in one of the cgroups in the hierarchy, and a set of

subsystems; each subsystem has system-specific state attached to each

cgroup in the hierarchy. Each hierarchy has an instance of the cgroup

virtual filesystem associated with it.

At any one time there may be multiple active hierarchies of task cgroups.

Each hierarchy is a partition of all tasks in the system. User level code may

create and destroy cgroups by name in an instance of the cgroup virtual file

system, may specify and query to which cgroup a task is assigned, and may

list the task PIDs assigned to a cgroup. Those creations and assignments only

affect the hierarchy associated with that instance of the cgroup file system.

On their own, the only use for control groups is for simple job tracking.

The intention is that other subsystems hook into the generic cgroup sup-

port to provide new attributes for cgroups, such as accounting/limiting the

resources which processes in a cgroup can access.

There are multiple efforts to provide process aggregations in the Linux

kernel, mainly for resource tracking purposes. Such efforts include cpusets,

CKRM/ResGroups, UserBeanCounters, and virtual server namespaces. These

all require the basic notion of a grouping/partitioning of processes, with

newly forked processes ending in the same group (cgroup) as their parent

process.
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The kernel cgroup patch provides the minimum essential kernel mecha-

nisms required to efficiently implement such groups. It has minimal impact

on the system fast paths, and provides hooks for specific subsystems such as

cpusets to provide additional behavior as desired.

Multiple hierarchy support is provided to allow for situations where the

division of tasks into cgroups is distinctly different for different subsystems -

having parallel hierarchies allows each hierarchy to be a natural division of

tasks, without having to handle complex combinations of tasks that would

be present if several unrelated subsystems needed to be forced into the same

tree of cgroups.

In addition a new file system, of type cgroup, may be mounted to enable

browsing and modifying the cgroups presently known to the kernel. When

mounting a cgroup hierarchy, you may specify a comma-separated list of

subsystems to mount as the filesystem mount options. By default, mounting

the cgroup filesystem attempts to mount a hierarchy containing all registered

subsystems.

If an active hierarchy with exactly the same set of subsystems already

exists, it will be reused for the new mount. If no hierarchy matches exist,

and any of the requested subsystems are in use in an existing hierarchy, the

mount will fail. Otherwise, a new hierarchy is activated, associated with the

requested subsystems.

When a cgroup filesystem is unmounted, if there are any child cgroups

created below the top-level cgroup, that hierarchy will remain active even

though unmounted; if there are no child cgroups then the hierarchy will be

deactivated.

No new system calls are added for cgroups - all support for querying and

modifying cgroups is via this cgroup file system.

2.5.1 CPU Accounting Controller

The CPU accounting controller is used to group tasks using cgroups and

account the CPU usage of these groups of tasks.

The CPU accounting controller supports multi-hierarchy groups. An ac-
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counting group accumulates the CPU usage of all of its child groups and the

tasks directly present in its group. Accounting groups can be created by first

mounting the cgroup filesystem.

Upon mounting, the initial or the parent accounting group becomes visible

at the mounting point chosen, and this group initially includes all the tasks

in the system. A special file tasks lists the tasks in this cgroup. The file

cpuacct.usage gives the CPU time (in nanoseconds) obtained by this group

which is essentially the CPU time obtained by all the tasks in the system.

New accounting groups can be created under the parent root group.

The cpuacct.stat file lists a few statistics which further divide the CPU

time obtained by the cgroup into user and system times. Currently the

following statistics are supported:

user † time spent by tasks of the cgroup in user mode.

system † time spent by tasks of the cgroup in kernel mode.

cpuacct controller uses percpu counter interface to collect user and sys-

tem times. It is thus possible to read slightly outdated values for user and

system times due to the batch processing nature of percpu counter.

2.5.2 CPU Throttling in the Linux kernel

The current kernel code already embeds a rough mechanism, known as CPU

Throttling, that has been designed for the purpose of limiting the maximum

CPU time that may be consumed by individual activities on the system.

The mechanism used to be available on older kernel releases only for real-

time scheduling policies for stability purposes. Namely, it was designed so

as to prevent real-time tasks to starve the entire system forever, for example

as a result of a programming bug while developing real-time applications.

The original mechanism only allowed the overall time consumed by real-

time tasks (no matter what priority or exact policy they had) to overcome a

statically configured threshold, within a time-frame of one second. This used

to be specified in terms of the maximum amount of time (a.k.a., throttling

†user and system are in USER HZ units
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runtime, expressed in microseconds, which corresponds to the well-known

concept of budget, in the real-time literature), defaulting to 950 ms, available

to real-time tasks within each second (a.k.a., throttling period).

Only recently, core kernel developers recognized the usefulness of such

mechanism for purposes related to temporal isolation of tasks among each

other (as opposed to being used solely between the group of real-time tasks

and the one best-effort tasks). Therefore, a well-defined interface has been

defined in order to support throttling both at the task/thread level, and at

the task group level, by taking advantage of the cgroup virtual filesystem.

Thanks to this framework, the POSIX semantics of real-time task schedul-

ing in Linux has been recently modified, adding support for group scheduling,

following the general trend of adding container support to all the subsystems

of the kernel.

With such a framework, whenever a processor becomes available, the

scheduler selects the highest priority task in the system that belongs to any

group that has some execution budget available, then the execution time for

which each task is scheduled is subtracted from the budget of all the groups

it hierarchically belongs to. The budget assigned initially to a group is the

same on all the processors of the system, and is selected by the user.

The budget limitation is enforced hierarchically, in the sense that, for a

task to be scheduled, all the groups containing it, from its parent to the root

group, must have some budget left. In the case of a per-task-group throt-

tling configuration, a special file entry inside a task- group folder named

cpu rt runtime us allows for configuring the maximum budget consumable

by the entire sub-tree of tasks having that folder as ancestor. From the

real-time guarantees perspective, the throttling mechanism is well suited to

prevent real-time tasks from monopolizing the CPU due to unexpected over-

runs. This basically means that the time granularities the mechanism is

based on are quite long, in the order of 1s-10s, and that it is not foreseen to

have too many competing groups.

The current throttling mechanism has two major drawbacks:

1. from a real-time theoretical perspective, it works basically like the well-

known Deferrable Scheduler algorithm [15], in the literature of Real-
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Time scheduling (at least looking at what happens on a single-CPU

system): such scheme has been overcome by a number of other schemes

that perform much better;

2. the current implementation enforces temporal encapsulation on the ba-

sis of a common time granularity for all the tasks in the system, that

is one second; this makes it impossible to guarantee good performance

on service components that need to exhibit sub-second activation and

response times.

2.5.3 Hierarchical multiprocessor CPU reservations

As stated in 2.5.2 on page 36Linux support rt-throttling in the cgroup cpu

controller. Each cgroup thus has two files, cpu.rt period us (Pi) and

cpu.rt runtime us (Qi) which defines respectively the period and the max-

imum runtime of realtime tasks belonging to the group itself. This values

limits the maximum runtime for SCHED FIFO and SCHED RR tasks to

Qi units of time every Pi units. This, however, only limits the CPU time

consumed by tasks, it does not enforce its provisioning, nor it has a form of

admission control, that is the total sum of the utilizations Ui =
Qi

Pi
can be

greater than 1.

A patch to this throttling mechanism have been proposed[4] to use EDF to

schedule groups, thus enforcing and guaranteeing groups the assigned band-

width. With this patchset the hierarchical structure of the cgroup filesystem

is used to create a hierarchy of groups in which:

• Every group is a child, direct or indirect, of the root group.

• For each level of the hierarchy must hold that:

n
∑

i=0

BGi
+

m
∑

j=0

Bτj ≤ 1

where BGi
=

QGi

PGi

is the bandwidth of the i-th group and Bτj is the

assigned bandwidth for tasks belonging to groups of the upper level.
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Figure 2.4: A possible hierarchy of groups and tasks. Squares represent groups,
while circle represent tasks. Arrows show parent to child relations. For each hor-
izontal level the total bandwidth (sum of the bandwidths assigned to groups and
tasks) must be lesser or equal to the assigned bandwidth of the parent.

• For each group Gi with n children must be true that:

n
∑

j=0

BCj
+ BτG ≤ BG

where BτG is the bandwidth of its tasks, BCj
the bandwidth of the

j − th child group and BG its own bandwidth, that is the sum of the

bandwidths assigned to its children group and to its tasks must be

lesser than or equal to its assigned bandwidth.

Figure 3.1 on page 41 show a possible hierarchy. Note as individual tasks

within a group does not have the period/runtime pair each but they share a

common period and runtime setting.

While for admission control purposes the hierarchy is inspected as stated

above, when the scheduling decision has to be take all tasks and groups are

taken as they were on a single level. This creates a two level scheduler,

in which groups are scheduled using EDF while tasks inside the group are

scheduled using round robin.

For each scheduling group, thus, the scheduler exposes four files:



CHAPTER 2. BACKGROUND 40

cpu.rt period us the period (in microseconds) of the group

cpu.rt runtime us the runtime of the group

cpu.rt task period us the period for its associated tasks

cpu.rt task runtime us the runtime for its associated tasks

For example, to assign Q = 20ms and P = 100ms to a group of 3 tasks

(with PID respectively of 1000, 1001 and 1003) the following command can

be issued:

$ mount −t cgroups none / cgroup −o cpu

$ cd / cgroups

$ mkdir group0

$ echo 1000000 > group0/cpu . r t p e r i o d u s

$ echo 200000 > group0/cpu . r t run t ime us

$ echo 1000000 > group0/cpu . r t t a s k p e r i o d u s

$ echo 200000 > group0/cpu . r t t a s k run t ime u s

$ echo 1000 > group0/ ta sk s

$ echo 1001 > group0/ ta sk s

$ echo 1002 > group0/ ta sk s

With the support of this patchset (for the RT part) and of the libcgroup

library and tools, very complex scenarios can be defined, with per-user or

per-user-groups policies on realtime bandwidth, “normal” tasks CPU share,

network utilization, device access, memory consumption and more.
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Architecture Design

In this chapter the whole architecture design will be discussed, as well as all

the modifications done to the various software components and new software

and libraries that has been written during this work, in particular the modifi-

cations needed to the JACK server and client libraries to make them support

feedback scheduling using the AQuoSA API, but also all the new software,

such as the libgettid library, the dnl JACK client used to load the JACK

graph, the rt-app periodic application used as a disturb during simulations,

and finally a port of the AQuoSA userspace library qreslib to the Hierarchi-

cal Multiprocessor CPU reservations described in section 2.5.3 on page 38.

Figure 3.1: An overview of the designed architecture.

41
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As said, one of the main goal while extending the JACK server to support

resource reservations was to maintain both API and ABI compatibility. API,

which stands for Application Programming Interface and which is of the

interface provided by the library to applications that use it, was not extended,

reduced, modified in any way, nor any semantic change was made to any of

API-exported functions, resulting in complete API level compatibility with

previous and official versions.

API (and ABI) compatibility was mandatory to this work: an API or ABI

breakage would have meant that every single preexisting JACK client would

have had to be modified in order to support these eventual changes, thus

reducing the availability of this work for people using any standard Linux

distribution and increasing all the efforts while developing (and hopefully

distributing) this work. ABI, which stands for Application Binary Inter-

face, covers details such as data type, size and alignment, as well as calling

conventions, etc. Thus, in order to reduce chances of a possible API/ABI

breakage, particular care has been taken in order to avoid, when feasible, any

modification to exported data or functions.

All the modifications done to the JACK server and to the JACK client

library are compatible with existing clients, so that the AQuoSA enabled

JACK server and libraries can be used as a drop-in replacement for the

official package, provided that its requirement (AQuoSA, libgettid) are

installed in the system path.

3.1 libgettid

The problem arose from the need to convert POSIX threading pthread

thread identifiers (i.e. of type pthread t) to a Linux-specific thread iden-

tifier, which is a generalization of the POSIX process identifier. While the

Linux thread identifier (TID for short) is a system-wide unique tag which

unambiguously distinguishes the thread, the pthread library identifiers re-

turned by the pthread create() or pthread self() library functions are

only guaranteed to be unique within a process. Plus, thread identifiers should

be considered opaque: any attempt to use a thread ID other than in pthreads
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calls is non-portable and can lead to unspecified results.

The JACK thread API, in file jack/jack.h, is specified using pthreads

identifiers, i.e. every utility call that manipulates client threads takes a

pthread t pointer as the identifier for the thread to work on. As an example,

the following function:

1 int j a c k a c q u i r e r e a l t im e s c h e du l i n g ( pthread t thread ,

2 int p r i o r i t y ) ;

which changes the scheduling policy of the thread to match the current re-

altime scheduling policy the JACK server uses (if any), identifies the thread

using the pthread t identifier. Similarly, all the JACK server internals that

handle threads and threads scheduling use the same identifiers. This is pos-

sible since all the threading related work is done in the server or in the client

process space, as both client and server link the respective library.

The AQuoSA qreslib API, as said, uses instead the Linux TID when

referring to threads. This is necessary as the API has been designed to

handle threads in the system. As an example, the API definition of the

qres attach thread function:

1 qos rv q r e s a t t a ch th r e ad ( q r e s s i d t s e r v e r i d ,

2 p id t pid ,

3 t i d t t i d ) ;

which is used to attach a thread to an AQuoSA server, identifies the thread

to operate on by its PID and TID.

The problem was that there’s no common way to convert the Linux spe-

cific TID to the pthread library pthread t – and vice-versa –. The GNU libc

(glibc) stores the Linux TID inside the pthread t data, but, since pthread t

is to be considered opaque, nothing guarantees that it will be so in a different

version of the same library. The only way to get the Linux tid of a thread

is thus to call the gettid() Linux-specific glibc function inside the thread

code. Since threads can be created and used from inside JACK clients code

by using the JACK thread functions, and given the non-modifiability con-

straint for client code set at the beginning of this work, this API difference
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has been proven to be a problem.

Thus, to resolve this issue, a new, small, shared library has been written

during this work. This library, named libgettid, wraps pthread calls so that

it can intercept thread-related code in a way that is completely transparent

to the process that the new thread is creating; then in the wrapped code

it calls the gettid() system call and writes the TID in an internal private

structure that maps it with the pthread t. Then it exports a function to get

the TID using the pthread t as the key.

The wrapping is done using the dlsym() system call. The function

dlsym() takes a ”handle” of a dynamic library returned by dlopen() and

the null-terminated symbol name, returning the address where that symbol

is loaded into memory. glibc defines a special pseudo-handle, RTLD NEXT,

that searches the next occurrence of a function in the search order after the

current library. This allows to wrapper around a function in another shared

library, specifically the pthread library.

1

2 stat ic void

3 l i b g e t t i d i n i t (void )

4 {

5 i f ( ! r e a l p t h r e ad c r e a t e )

6 r e a l p t h r e ad c r e a t e = dlsym (RTLD NEXT,

7 "pthread_create" ) ;

8 }

9

10 stat ic void ∗

11 f a k e s t a r t r o u t i n e (void ∗ arg )

12 {

13 /∗ [ . . . ] ∗/

14 /∗ ge t the needed in format ion ∗/

15 t i d = s y s c a l l ( NR gett id ) ;

16 s e l f = p t h r e a d s e l f ( ) ;

17 /∗ s t o r e them fo r l a t e r acces s ∗/

18 pthread mutex lock(&data mtx ) ;

19 r e s = data add(&threads data , t id , s e l f ) ;
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20 pthread mutex unlock(&data mtx ) ;

21

22 /∗ now c a l l the thread o r i g i n a l body ∗/

23 r e t v a l = args−>r ou t in e ( args−>arg ) ;

24

25 /∗ f o l l ow i n g code i s c a l l e d when thread code

26 r e tu rns ∗/

27 pthread mutex lock(&data mtx ) ;

28 data remove(&threads data , s e l f ) ;

29 pthread mutex unlock(&data mtx ) ;

30 f r e e ( arg ) ;

31

32 return r e t v a l ;

33

34 }

35

36 int

37 pthr ead c r ea t e ( pthread t ∗ thread ,

38 const p th r e ad a t t r t ∗ att r ,

39 void ∗(∗ s t a r t r o u t i n e ) (void ∗ ) ,

40 void ∗ arg )

41 {

42 struct c r e a t e a r g s ∗ args =

43 c a l l o c (1 , s izeof ( struct c r e a t e a r g s ) ) ;

44

45 l i b g e t t i d i n i t ( ) ;

46

47 /∗ c a l l t he wrapping rout ine , pas s ing the

48 ∗ o r i g i n a l in a f i e l d o f the arg s t r u c t u r e ∗/

49 args−>r ou t in e = s t a r t r o u t i n e ;

50 args−>arg = arg ;

51 e r r o r = r e a l p t h r e ad c r e a t e ( thread ,

52 att r ,

53 f a k e s t a r t r o u t i n e ,

54 args ) ;
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55 return e r r o r ;

56 }

57

58 /∗ API func t i on ∗/

59 int p th r e ad g e t t i d ( pthread t thread , p i d t ∗ t i d )

60 {

61 t h r e ad i d t ∗ i n f o ;

62 i f ( threads data == NULL) {

63 return GETTID E NOTHREADS;

64 }

65 pthread mutex lock(&data mtx ) ;

66 i n f o = da ta f i nd ( threads data , thread ) ;

67 pthread mutex unlock(&data mtx ) ;

68 i f ( ! i n f o ) {

69 return GETTIDETHREADNOTFOUND;

70 }

71 ∗ t i d = in fo−>t i d ;

72 return 0 ;

73 }

For all this wrapping to work, the libgettid library should be loaded

before the pthread library. This can be achieved by modifying the program

build system to link the libgettid library, or, to avoid the need to patch

and recompile clients, by setting the LD PRELOAD environmental variable to

the path where the libgettid.so file is installed on the filesystem, so that

it gets loaded first even if the library was not linked during the compilation

process.

3.2 dnl

dnl is a simple JACK client written to stress the JACK graph with a fic-

titious load, as to easily test modifications even on very high CPU usage.

dnl takes in input from commandline a percent of the JACK loop it has to

compute for and the previous and next client it has to connects its ports to.
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During its process function it actively waits for that percent, translated in

µsec by inspecting the sample rate and buffer size of the server, then it copies

input port buffers to output port buffers, trying to simulate in this way a

client computing for the same time. The active wait is simulated with the

clock gettime() syscall, using the Linux CLOCK THREAD CPUTIME ID clock,

which is an high resolution, per-process timer from the CPU (usually im-

plemented using timers directly from the CPU itself1). This clock doesn’t

increment when the process is blocked, thus it’s actually used to count the

time spent by the process in the loop, and gives quite accurate timing for the

purpose. This client is thus great in simulating the load of a JACK client

like a filter with a almost constant execution time.

3.3 rt-app

rt-app is small test application, written as part of this work, that spawns N

periodic threads, and simply runs the threads for the specified time. Similar

to dnl, it makes heavy use of the CLOCK THREAD CPUTIME ID, continuously

checking it until the specified time have passed. Threads can be set to use

the various scheduling classes supported by POSIX, and, if compiled with,

by the AQuoSA framework, in which case it creates one server per thread.

During its execution it collects data (in memory, as not to block for I/O)

and, after the execution ended, it dumps them to file.

This simple app can be used for both testing the performances of sched-

ulers with respect to periodic applications or as a disturb application to

simulate a realtime load in the system.

3.4 JACK AQuoSA controller

JACK internal has been modified to support resource reservations as they are

supplied by the AQuoSA qreslib library. First, the build system was adapted

to link the qreslib shared library, as well as the libgettid and qmgrlib shared

1Usually, on i386 platform, using TSC.
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Table 3.1: Statistics for the patch written to the JACK server, server library and
client library to support AQuoSA and resource reservations.

New lines of code 919
Deleted lines of code 359
Files changed 25
New files 2

objects.

Approaches to legacy feedback like those discussed and proposed in [5]

could not be used or attempted, as the design of JACK imposes that only

a thread of the application (being it client or server) application should be

added to the reservation, thus making impossible to analyze JACK applica-

tions from the outside.

An alternative approach to the one implemented, described below, was to

make all AQuoSA-related code be in a JACK internal client. This works to

a certain extent while attaching and detaching clients to the AQuoSA server,

but completely fail when trying to do feedback, as the internal client API

does not provide any function or callback hook to synchronize with JACK

cycle begin or cycle end. Directly modifying the JACK internal was then the

chosen approach, with the aim of keeping changes as unobtrusive as possible,

as to keep maintenances costs low when porting to a new JACK version.

All the code can be completely excluded at compile time, as every change

is surrounded by #ifdef, so that the same codebase can be reduced to the

distributed one. Moreover, the AQuoSA support can be completely disabled

at run time, so that, when disabled, a single if statement is evaluated during

JACK realtime critical paths.

By leveraging the libgettid support and shared memory already sup-

ported by JACK, almost no new code is inserted in the JACK client library,

leaving clients almost untouched by these modifications.

Table 3.1 shows some statistics about the patch itself.
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3.4.1 AQuoSA server creation

When configured to run with AQuoSA reservation by passing the -A switch

to the jackd server commandline2, all the AQuoSA code has been embed-

ded in the JackAquosaController class. Reservation creation and deletion

are handled, respectively, in this object’s constructor and destructor. The

JackAquosaController itself is created in the JackServer::Open function,

right after the JackEngine::Open has successfully completed, but immedi-

ately before any driver creation, to be sure to catch the realtime threads the

driver needs.

All the code needed for feedback scheduling and statistic account is thus

self-contained in the class JackAquosaController. As stated above, when

AQuoSA support is not enabled with the commandline parameter, the only

change in execution with the respect to the distributed code is a statement

evaluation, done in the JackEngineControl::CycleBegin function:

1 void CycleBegin ( . . . ) {

2 #i f d e f AQUOSA

3 i f ( fAquosaContro l l e r ) {

4 fAquosaContro l l e r−>CycleBegin ( . . . )

5 . . .

6 }

7 #end i f

8 }

This code is the only code that “gets in the way”3 when the AQuoSA run-

time support is disabled, thus making possible to evaluate the performances

of the vanilla4JACK version.

The JackEngineControl::CycleBegin function is called once per cycle

in the realtime server thread. The JackAquosaController::CycleBegin

2All the commandline switch are also exported to the JACK2 new DBus control API,
if enabled at compile time, although not used during this work.

3Obviously there is more code for thread creation and deletion, where there is additional
code to attach and detach threads to the AQuoSA server, but we are referring to the code
that get executed at every server cycle.

4vanilla is often used to refer to an unmodified version of some software, that is the
code as it is distributed by the developers.
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then takes care of setting all parameters using the previous cycle collected

data, as the used budget and the others metrics, as it will be explained in

depth in subsection 3.4.4 on page 54.

The JackAquosaController accepts, as parameters to its constructor,

which are reflected to commandline switches, several options:

-A or --aquosa : enables the AQuoSA reservation within the JACK server

and clients. It’s disabled by default, and every other options presented

below does not have any effect the server if -A is not present.

-F or --fixed : disables the feedback mechanism and sets a fixed budget

-I <value> or --increment <value> : the percentage, calculated as incr =

100 + value to use as an increment with respect to values returned by

the predictor, or, if --fixed was specified, the percentage of the to-

tal AQuoSA available bandwidth to reserve for JACK server and its

clients. The relation 0 ≤ value ≤ 100 must be true, with 0 accepted

only with feedback enabled.

-D <value> : a multiplier to decouple the AQuoSA server period from the

jackd period length, that is, if greater than 1, the AQuoSA server is

created with a period which is D times the jackd period in µs. The

same multiplier is applied to the budget to adjust it to the period being

longer. The relation value ≥ 1 must be true.

Once the AQuoSA serve has been created, its server id is placed in shared

memory so that every processing can reference it to attach and detach threads

or to query parameters.

As said, all modifications are surrounded by #ifdef statements, and are

activated only if the -A parameter was present, so, from now on, it must

be noticed that every feature presented can be removed at compile time or

disabled at runtime reverting the original behaviour, even if not stated in the

following explanations.
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3.4.2 Attaching and detaching threads

The JackPosixThread class has been modified to support attaching threads

to server if AQuoSA support is compiled and enabled in the JACK server.

Again, all the modifications are surrounded by the #ifdef and activate only

when -A was specified. For threads directly created by the JACK server or

client5, a thread proxy has been defined so that it’s possible, in a similar way

of what happens in the libgettid code described in section 3.1 on page 42,

to execute code in the thread context in order to get the Linux TID for the

thread being created:

1 #ifde f AQUOSA

2 struct f a k e r o u t i n e a r g s {

3 void∗ (∗ r ou t in e ) ( void ∗ ) ;

4 void ∗ arg ;

5 int s i d ;

6 } ;

7

8 void ∗

9 JackPosixThread : : f a k e r ou t i n e (void ∗ arg )

10 {

11 struct f a k e r o u t i n e a r g s ∗ f a r g s =

12 ( struct f a k e r o u t i n e a r g s ∗) arg ;

13 void ∗ r e t v a l = NULL;

14 p id t t i d ;

15 p id t pid ;

16 i f ( ! f a r g s | | ! f a rg s−>r ou t in e ) {

17 j a c k e r r o r ("fake_routine called with NULL args" ) ;

18 e x i t ( 1 2 ) ;

19 }

20 t i d = s y s c a l l ( NR gett id ) ;

21 pid = getp id ( ) ;

22 q r e s a t t a ch th r e ad ( fa rg s−>s id , pid , t i d ) ;

5This class is shared by both the server and library code, so that for certain functions
it is difficult, if not impossible, to assert from which side the code was called, especially
those function that has declared as static.
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23 r e t v a l = fa rg s−>r ou t in e ( f a rg s−>arg ) ;

24 f r e e ( f a r g s ) ;

25 return r e t v a l ;

26 }

27 #endif

This method covers the majority of cases in which is needed to attach the

thread to the AQuoSA server. However there are cases in which it’s needed

to attach a preexisting thread to the AQuoSA server, as in the case with the

following two functions:

1 i n t j a c k a c qu i r e r e a l t im e s c h e du l i n g ( pthread t thread ,

2 i n t p r i o r i t y ) ;

3 i n t j a c k d r op r e a l t ime s c h edu l i n g ( pthread t thread ) ;

To solve the “pthread t to thread id” issue, every client that uses these

functions must be compiled against libgettid or must be started, using the

LD PRELOAD trick as described in section 3.1 on page 42. This way is then

possible to get the TID starting from the pthread t value:

1 int JackPosixThread : : AcquireRealTimeImp ( pthread t thread ,

2 int p r i o r i t y )

3 {

4 struct sched param rtparam ;

5 int r e s ;

6 memset(&rtparam , 0 , s izeof ( rtparam ) ) ;

7 rtparam . s c h e d p r i o r i t y = p r i o r i t y ;

8

9

10 #ifde f AQUOSA

11 int ∗ s i d = g e t s i d ( ) ;

12

13 i f ( s i d != NULL)

14 {

15 p id t t i d ;

16 p th r e ad g e t t i d ( thread , &t i d ) ;
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17 j a c k i n f o ("JackPosixThread::AcquireRealTimeImp"

18 " attaching %d to server %d" , t i d , ∗ s i d ) ;

19 q r e s a t t a ch th r e ad (∗ s id , ge tp id ( ) , t i d ) ;

20 return 0 ;

21 } else

22 #endif

23 i f ( ( r e s = pthread setschedparam ( thread ,

24 JACK SCHED POLICY,

25 &rtparam ) ) != 0) {

26 j a c k e r r o r ("Cannot use real-time scheduling (RR/%d)"

27 "(%d: %s)" , rtparam . s ch ed p r i o r i t y , res ,

28 s t r e r r o r ( r e s ) ) ;

29 return −1;

30 }

31 return 0 ;

32 }

The get sid() function simply gets the sid from shared memory, return-

ing a pointer to the address in which the AQuoSA server id is stored: if it is

equal to the NULL value it means that, even if AQuoSA support is compiled

in, it is disabled for this execution.

Detaching of a thread is done in a similar way, with the very same prob-

lematic for the jack drop real time scheduling function.

3.4.3 Resource usage accounting

A key aspect of using feedback scheduling is to keep track of the used budget

to compute the next, expected value. Instead of relying only on the qres-

lib qres get exec time library function, JACK client and server libraries

were modified to account for their used budget, using the system clock

CLOCK THREAD CPUTIME ID. At every JACK cycle, thus, for the server and

for each client, in their respective real time threads, this clock is queried

soon after waking up (that is, immediately after the read call on the FIFO

returns) and immediately before sleeping (call read on the FIFO again).
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The difference between the two values is the total CPU time taken from

that particular thread, which, when summing values from all other threads

(included the server thread, and thus all the work eventually done by the

JackAquosaController), gives the total usage statistic, which is used both

as the next value to fill in the predictor queue and for graphing usage (as

described in section 4.2 on page 67).

3.4.4 CycleBegin and Feedback

As stated in section 3.4.1 on page 49, all the feedback handling mechanisms,

such as instructing the predictor, setting budget, changing period if needed

and accounting the budget used, are done inside the function CycleBegin of

the JackAquosaController object.

This function comprises:

• getting the used budget of the previous cycle by calling the

qres get exec time() function, which accounts for all the used CPU

time of all threads attached to the specified server.

• adding the value to the predictor†

• getting the next estimated usage from the predictor†

• if the predicted budget or the JACK period (or both) have been changed

from the last cycle, for example as the effect of the feedback for the

former or as effect of a buffer size change for the latter, then it sets the

new server parameters†

Every time it is needed to change AQuoSA server parameters, being the

budget or the period length, a number or checks is performed, in order to

avoid unnecessary calls to qreslib functions6. Being P the requested AQuoSA

†These actions are performed only if feedback mechanism is enabled, and skipped if
JACK is run with AQuoSA support but with fixed budget, i.e. the -F switch is specified,
with the exception of that, if the period changed, new parameters are computed and set
even for the fixed budget case.

6Remember, as noted in section 3.4.1 on page 49, that the CycleBegin function is
called in the jackd realtime server thread.
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server period, Q the requested budget, f the fragment multiplier, M and m

respectively the maximum and minimum settable budgets, I the increment

as passed to -I on commandline:

• if (P ∗ f) < 1333, then f = f + 1

• let P = P ∗ f

• if fixed , then let M = M
100

∗ I

• let m = (P/100) ∗ 5

• if fixed, let Q = M , else if not –fixed:

– let Q = Q ∗ 100+I
100

– if Q > M , then let Q = M

– if Q < m, then let Q = m

• if Q or P changed (one or both), call qres set params with new values.

These checks are always performed when setting server parameters, even

when adding a new client or reacting to an xrun.

3.4.5 New Client and XRun events handling

When a new client marks itself as ready to process audio data with the server

using the jack activate library function, the predicted value as returned

from the predictor cannot be accurate anymore. That is because the predictor

is obviously incapable to know the future and to know in advance how much

computation time the client will take.

To overcome this situation, upon a new client activation the predictor

queue is flushed and discarded, and the budget is bumped by a fixed per-

centage, which is 10% of the actual budget if this is to the minimum possible

or 20% otherwise.

Due to the queue flushing, we have the side effect that the budget is

kept for a small interval fixed to this new value, during immediately suc-

cessive periods, while the queue is being reconstructed. This heuristics has
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proved to be sufficient to handle new client arrivals, as can also be seen in

chapter 4 on page 62, in which the experimental results are presented and

discussed.

The same strategy is used when the JACK server experiments an xrun

event: the budget is artificially bumped up to reconstruct the predictor queue

in order to adapt to eventual changes that led to the xrun event.

3.5 Porting qreslib to cgroup-enabled kernels

As part of this work the AQuoSA qreslib library has been modified to

use Linux cgroup (as described in section 2.5 on page 33) to set scheduling

parameters: the main reason for this port was to make possible for the mod-

ified JACK described in 3.4 on page 47 to run on new kernels that supports

control groups, in particular the patchset to the Linux kernel described in

section 2.5.3 on page 38.

Primary aim of this job was then to leave the qreslib API intact in order

to maintain API compatibility in order to make JACK run on top of it.

This port depends on libcgroup, a library and a set of tools aimed to

work with cgroups, and it makes uses of functions exported by that library

when creating, deleting, and attaching / detaching of threads and processes.

3.5.1 Mapping AQuoSA servers on cgroup

As explained in section 2.5.3 on page 38, the kernel interface for the rt-edfthrottling

patches exports for each cgroup 4 virtual files, the period and runtime of the

group itself and the period and runtime of the task belonging to the group,

then groups are scheduled using EDF, while tasks inside the group are sched-

uled using a Round-Robin like algorithm.

This scheme maps to the AQuoSA API quite well. In particular, a root

group (which must called aquosa) has to be prepared by the system ad-

ministrator. This way is possible to set a maximum bandwidth utilization

for all the AQuoSA servers, if its required for some reason (either technical

or commercial) to limit the system usage of real-time tasks. Moreover, the
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system administrator has to setup both the cpu controller and the cpuacct

controller, create the “aquosa” root group in it and assigning it a correct

owner and group so that users part of the chosen group can manipulate the

subsystem (making it possible to reserve bandwidth for their tasks). Since

the bandwidth is reserver for real-time tasks, those users still need permission

for using SCHED RR or SCHED FIFO scheduling classes.

libcgroup can be used to ease this tasks, as it provide a init-time service

which mounts the cgroup filesystem and create all the needed cgroups hier-

archy as defined in the file /etc/cgconfig.conf. A sample cgconfig.conf

file can be:

1 group / {

2 cpu {

3 cpu . r t p e r i o d u s = 1000000;

4 cpu . r t run t ime us = 950000;

5 cpu . r t t a s k p e r i o d u s = 1000000;

6 cpu . r t t a s k run t ime u s = 50000;

7 }

8 cpuacct { }

9 }

10

11 group aquosa {

12 perm {

13 task {

14 uid = root ;

15 gid = rea l t ime ;

16 }

17 admin {

18 uid = root ;

19 gid = rea l t ime ;

20 }

21 }

22 cpu {

23 cpu . r t p e r i o d u s = 1000000;

24 cpu . r t run t ime us = 900000;
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25 cpu . r t t a s k p e r i o d u s = 1000000;

26 cpu . r t t a s k run t ime u s = 0 ;

27 }

28 cpuacct { }

29 }

30

31 mount {

32 cpu = / cgroups /cpu ;

33 cpuacct = / cgroups / cpuacct ;

34 }

As can be seen, a file like this reserve the 5% of the total bandwidth

(which, in turn, is the 95% of the system bandwidth) to the root group (in

which, by default, start all tasks) and leaves the 90% to the aquosa controller.

It also instructs libcgroup to mount the cpu and cpuacct controllers. With

this files users of the realtime group can manipulate aquosa groups.

Figure 3.2: Mapping of AQuoSA servers to cgroups

Once the cgroup hierarchy is setup, when a tasks call the qres create server

function a new cgroup is created under the aquosa root, and successive

qres attach thread calls (targeting the returned server id) move threads

to that group.

This way servers (which are mapped on groups) are scheduled with the

EDF scheduler, while tasks inside a server are scheduled using RR. Figure 3.2
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shows how cgroups are configured to support AQuoSA servers. Note that

no tasks are allowed to belong directly to the aquosa cgroup, in fact its

cpu.rt task runtime us is set to 0.

3.5.2 Cgroup interface performance

During this porting, however, libcgroup has been found to be unusable for

actually implementing feedback scheduling on top of it, and this only for a

matter of performance.

Creation and deletion of servers, as well as attaching and detaching of

threads, in fact, are not performance critical operations, as a client that need

resource reservations usually calls this functions when it starts and when it

stops. Clearly new threads can be created or removed on demand, but usually

there is no need for high performance in this regard. Feedback scheduling, on

the contrary, forces the application to read and adjust its values periodically,

and this period can be very short, near to the millisecond range.

Early benchmarks showed that using libcgroup to adjust scheduling pa-

rameters took approx. 400 µs for writing and 300 µs for reading. In a cycle

of ”read accounting value”, ”write new parameters” this would lead to ap-

prox. 700 µs just for the feedback handling, leaving less than 30% of period

for computations. This long times are due to the fact that libcgroup, being

aimed for system administration tasks, does a lot of sanity checks prior to

write or read values. This is surely desirable for normal operations, but when

performance are critical a compromise can be found.

qreslib timings

ioctl cgroup

Min Max Avg. σ Min Max Avg. σ
set 0.3383 1.4730 0.3611 0.1099 1.7622 1.8560 1.7831 0.0131
get 0.1817 0.4528 0.1882 0.0323 0.9548 1.0260 0.9619 0.0097
time 0.2188 0.4227 0.2258 0.0284 0.5484 0.6151 0.5548 0.0075

Table 3.2: qreslib timings on the three more common functions.

Figure 3.3 on the next page report the same timing in a graph.
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Figure 3.3: qreslib timings on the three more common functions.

Thus, too solve this issue when the qreslib opens or creates a cgroup to

represent a scheduling server, caches all the file descriptors into the library,

so that successive call to the same cgroup (i.e. using the same server id from

an API point of view) reuses the open descriptors without the need to have

a cycle like open/read/close. This could lead to potential problems if the

cgroup is removed from the system between successive calls.

Table 3.2 on the preceding page show time taken by the three most used

function of the API when adjusting the feedback, for each of the two imple-

mentations. Results of this quick benchmarks show clearly how the ioctl-

based implementation in the AQuoSA rresmod kernel module is faster com-

pared to the cgroup pseudo-filesystem, which is thus better suited for con-

tinuously adapting the scheduling parameters.

Another disadvantage of the cgroup-based interface is that scheduler pa-

rameters have to be set in a particular order, that is if both period and

runtime have to be change at once care has to be taken on the order of
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which the four parameters are set in the respective four files on the virtual

file system. For example, if shrinking both period and budget, the budget

has to be shrieked first, as doing the contrary may temporary increase the

requested bandwidth, possibly making the change to fail by the means of the

admission control. This has multiple cases in which the order matters, and

it’s the replicated in the kernel itself, as when the kernel react to changed pa-

rameters in cgroup files then it has to follow the correct order again, leading

to having twice the same code, once in userspace and once in kernel space.



Chapter 4

Experimental results

The real-time performance of the proposed modified JACK server has been

evaluated by extensive experimental results, which are presented in this chap-

ter. First, a few results about the real-time performance of the adopted

real-time schedulers and kernels are presented, as compared to the behavior

of the vanilla kernel, for the sake of completeness. These results have been

gathered on sample scenarios built by using a synthetic real-time application

developed solely for this purpose. Then, results gathered from running the

modified version of JACK so as to take advantage of the real-time scheduling

of the underlying OS kernel are presented and discussed in detail.

4.1 Test platform

For experiments and tests a quite common consumer PC configuration was

used, with the Gentoo GNU/Linux distribution installed as OS with the

following technical characteristic.

• Processor type and feature:

62
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vendor id : GenuineIntel

cpu family : 6

model : 23

model name : Intel(R) Core(TM)2 Duo CPU E8400 @ 3.00GHz

stepping : 6

cpu MHz : 2997.000

cache size : 6144 KB

• Sound Cards:

Multimedia audio controller : VIA Technologies Inc. ICE1712

[Envy24] PCI Multi-Channel I/O

Controller (rev 02)

Subsystem : TERRATEC Electronic GmbH

EWX 24/96

Latency† : 64

Kernel driver in use : ICE1712

Kernel modules : snd-ice1712

Audio device : Intel Corporation 82801I (ICH9

Family) HD Audio Controller (rev

02)

Subsystem : ASUSTeK Computer Inc. Device

829f

Latency† : 0

Kernel driver in use : HDA Intel

Kernel modules : snd-hda-intel

• Main Memory:

MemTotal : 2058944 kB

SwapTotal : 2097144 kB

†This is the PCI bus latency, an integer between 0 (immediate release of the bus by
the device) and 248 (the device is allowed to own the bus for the maximum amount of
time, depending on the PCI bus clock). The higher this number is the more bandwidth
the device has, but limits concurrent accesses to the bus by other devices.
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• Kernel versions:

– Linux 2.6.29-aquosa #5 PREEMPT x86 64 GNU/Linux

– Linux 2.6.33 rc3-edfthrottling #1 PREEMP x86 64 GNU/Linux

– Linux 2.6.31.12-rt20 #3 PREEMPT RT x86 64 GNU/Linux

• AQuoSA framework and kernel patches versions:

Generic Scheduler Patch version : 3.2

qreslib version : 1.3.0-cvs

EDF throttling version : 2.6.33-git-20100221

qreslib-cgroup version : 0.0.1-bzr-64

• System libraries and software:

– GCC C compiler:

Target : x86 64-pc-linux-gnu

Thread model : posix

gcc version : 4.4.2 (Gentoo 4.4.2 p1.0)

– GNU C Library: 2.11

– JACK and clients:

JACK audio connection kit : 1.9.5-svn-3881

4.2 Measures and metrics

JACK version 2 (1.9.x) integrates a powerful profiler that records various tim-

ings to help understanding the behavior of the server and connected clients.

This profiler, enabled by a compile time switch, allocates memory for

all its metrics on server startup, then starts filling up the in-memory data

structure, avoiding saving timings to file while the server operates: as the

profiling is done in the realtime server thread, blocking on I/O would affect

negatively performances, poisoning the collected data. All the saving is thus

done upon server shutdown. When the available memory for profiling is

exhausted, the server restarts writing from the beginning, using the available

space as a circular buffer.
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Various metrics are profiled by the distributed version of JACK. More-

over, some other metrics were added to the profiler as they are interesting

for this work:

audio driver timing allows to track, for each server cycle, the audio driver

timings, that is the duration between consecutive interrupts. The cor-

responding plot is supposed, for normal operations, to be a regular

curve, as flat as possible; theoretically the best situation is achieved

by a flat horizontal line, meaning that every server cycle duration has

been equal to the computer latency from the buffer size and sample

rate using the formula:

latency =
frames per period

samplerate
∗ 106 (µs)

When the server period is regular, measured without any clients active,

then the server asynchronous mode can be used safely (remembering

that it adds an additional buffer latency for the sake of reliability).

On the contrary, a non regular interrupt timing forces the synchronous

mode to be chosen, as the server could lack time to finish its execu-

tion if duration between two consecutive interrupts is too short. Fig-

ure 4.1 on the next page displays an example graph from this timing.

One thing that should be noted in Figure4.1 is that spikes are always

present in pairs: this is normal because the server, using double buffer,

tries to re-sync shortening or enlarging a cycle if the previous one was

longer or shorter than what it should be.

JACK CPU time tracks the usage, in percent, of the JACK period used to

do DSP computation. Its computed by the server at every cycle using

the collected timings. It offers no more information, as it is basically

depending from the client end timing.

driver end date displays the driver1 relative end time, that is the time

from the cycle start, for each server cycle, at which the driver finished

1With driver, as discussed in section 2.2.2 on page 8, we refer to the JACK code that
interfaces with the ALSA driver, exporting physical input/output ports to jack clients.
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Figure 4.1: Audio driver timing with the server configured to run with a sample
rate of 48000 Hz and buffer size set to 256 frames per period, resulting in a latency
of 5333 µs. The server is running with no clients attached. The measured period
is quite stable, diverging very little from the theoretical value.

to write audio data and started to sleep till the next driver interrupts.

For each cycle this quantity should obviously be lower than the actual

audio period for that cycle, as otherwise this would mean that an xrun

happened (the server was not able to write data before the ALSA driver

needed it). The corresponding plot is interesting while evaluating the

difference of the two server operational modes: when the server is run-

ning in asynchronous mode, in fact, the driver does not wait the graph

end, but returns immediately after the write step, resulting in a very

different curve from those generated by a synchronous mode run.

clients end date takes, for each active client, all its end times (relative

to the period start). The generated curve provides an overview of

the DSP usage of each client, as well as the audio period timing used
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as a reference. Here, as with the driver end date timings, the server

is working correctly if the last client end time is less than the audio

period.

client scheduling latency measures the difference between client activa-

tion, that is the time when a client has been signalled to start by pre-

vious clients, and the actual wake-up time. When the client real-time

audio thread becomes runnable, the global scheduling latency depends

on the processor to be available and on the actual OS’s scheduling la-

tency. These values thus depend on various external factors, such as

the topology of the JACK graph, the scheduler in use and the number

of processors the PC has.

clients duration measures the difference between client end date and client

actual wake up time, resulting in the actual duration of the client at

each cycle. This values includes interferences due to other processes

possibly scheduled by the OS while the client was executing.

AQuoSA budget was added as part of this work, and it takes three timing

measures regarding the AQuoSA CBS server associated with the JACK

server instance running. The three metrics are the budget set at the

beginning of the period, the predicted value that the feedback mech-

anism computed to be set, and, at the end of the cycle, the actually

used budget. If this last measure is larger than the budget that was

set it means an xrun has occurred.

Sometimes the above introduces timings measures are shown using a cu-

mulative distribution function, or CDF for short, which completely describes

the probability distribution of the quantity plotted. Taking period duration

ρ as an example, its CDF is given by:

x 7→ Fρ(x) = P (ρ ≤ x)

where the right side represent the probability that the variable ρ takes is

lower than or equal to x. The CDF can be defined in terms of the probability
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density function fρ(·):

Fρ(x) =

∫ x

−∞

fρ(t)dt

Plot of a cumulative distribution often has an S-like shape, where the graph

of the ideal distribution of measured periods would be a step-like curve,

meaning that the probability of a point to be both greater than or lower

than the ideal value would be zero.

4.3 Basic timings

Some experiments were done by running the JACK server alone to measure

audio driver interrupt timing under different server parameters, scheduling

policies and sound hardware. The purpose of these tests is to compare asyn-

chronous and synchronous modes of operation, to compare different Linux

kernel versions that have been tested and, finally, to compare the two hard-

ware sound cards used during this work (to see if a consumer, built-in audio

card can offer similar performance to a, despite being quite old, pro-sumer

card such as the ICE1712 card is). In all these tests the feedback mech-

anism implemented inside JACK as part of this work was disabled, and a

bandwidth of 94% was reserved for JACK operations, to limit disturb factors

during these tests.

4.3.1 Jack Async vs Sync Mode

These tests aim to show the basic timing of the audio driver interrupt, to

see, with no other realtime processes nor clients running, how regular the

interrupts are - and thus the JACK server period. Another purpose of such

tests is to see how stable is the period when using the asynchronous mode

for the JACK server.

As noted in section 4.2 on page 65 while describing the audio driver tim-

ing, the spikes come in couples. On Figure4.2 this simple test is run on the

ICE1712 card using a sample rate of 96000 Hz, both in synchronous and

asynchronous mode of operation for the JACK server. Figure4.2 shows a
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Figure 4.2: Audio driver timings, sync and async mode at 96000 samples per
period with a latency of 10666 µs on ICE1712 card using the AQuoSA scheduler
with a 95% fixed bandwidth.

latency of 10.7 ms, while Figure4.3 shows a very low latency of 1.3 ms. To

be remarked the fact that asynchronous mode adds an extra buffer latency

to the server, so when using that mode actual latencies are, respectively, 21.3

ms and 2.6 ms, the same as if the buffer size is doubled when in sync mode.

Figure 4.4 on page 71 and Figure 4.5 on page 72 represent the very same

experiment run with a sample rate of 48000 Hz instead. Lower sample rate

means, as to leave the output latency fixed, larger buffer sizes; thus, to be

consistent with experiments at 96 kHz, buffer sizes were changed accordingly.

These simple experiments show that, while the period is quite regular in

both operational modes, the sync mode is the one that has more regularity.

This was expected, as the server operations are more strict and tightened to

the audio driver interrupts. It should be noted, again, that this operational

mode is also the one that provides better performance with respect to latency,

while degrading the reliability of the server itself, as it tolerates less disturb

and could possibly generate more ALSA xruns. That said, from now on, all

other tests are run in sync mode, since using Resource Reservations re-adds

the lost of robustness.
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Figure 4.3: Audio driver timings, sync and async mode at 96000 samples per
period with a latency of 1333 µs on ICE1712 card using the AQuoSA scheduler
with a 95% fixed bandwidth.

From these experiments it can also be seen that the differences between

the two audio cards are minimal with respect to the interrupt timing, mean-

ing that both cards perform the same from the JACK point of view. Since

that, in following experiments the ICE1712 card has been preferred, as it sup-

ports more frequencies (11025Hz, 22050Hz, 44100Hz, 48000Hz and 96000Hz)

and more buffer sizes (from 64 up to 2048 samples) thus ranging from 0.7 ms

latency with 64 frames as buffer size at 96kHz sample rate to 185.8 ms with

2048 frames at 11,025 kHz. While the latter is definitely uninteresting for

this work, the former is the corner case, as a latency under the millisecond

can be very challenging for the system to support, while it ensures the best

responsiveness the system can offer with the hardware in use.

It should be noted, however, that as latency increases reliability does as

well, and with 0.7 it ms is very likely that xruns will show more often than

at larger latencies, so it should be used in situations where some losses on

the generated output could be tolerated.
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Figure 4.4: Audio driver timings, sync and async mode at 48000 samples per
period with latency = 10666µs on ICE1712 card using the AQuoSA scheduler with
fixed budget.

4.3.2 Kernel and scheduling timing

With this experiment we want to show how JACK behaves with the two

main used schedulers and with the PREEMPT-RT Linux kernel patches. In

this experiment the jackd server is still run without any client attached to

it, as very basic timing measures are being evaluated.

Within this experiment this only client was setup to be directly connected

to system ports which abstract ALSA physical audio card outputs. Fig-

ures 4.6 on page 73 through 4.9 on page 76 show some measurements taken

during this experiment. The jackd server was configured to run with a buffer

size of 128 samples per period, with a sample rate of 96 kHz, using the

ICE1712-based audio card as in section 4.3.1 on page 68: these parameters

force a minimum latency of 1333 µs introduced by the JACK system itself.

Figure 4.6 on page 73 shows the period length, in µs, measured for audio

cycle 32159 to 43958 of the run, for the 3 different schedulers we wanted

to explore. The figure was zoomed-in to have better understanding of the

behavior of the three schedulers. Timings are still quite precise with all of
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Figure 4.5: Audio driver timings, sync and async mode at 48000 samples per
period with latency = 1333µs on Intel HDA card using the AQuoSA scheduler with
fixed budget.

Min Max Average Std. Dev
Linux 1243 1423 1333.268 2.421
Linux-rt 1308 1357 1332.431 1.583
AQuoSA 1279 1389 1333.268 2.704

Table 4.1: Audio driver timings of JACK running with 1333 µs latency at 96
kHz.

them, shown in table 4.1, and shows that all three kernels can be used to

work at the selected latency.

The PREEMPT RT patchset is the one that gives better results in this

test, followed by the AQuoSA scheduler and plain Linux. Should be noted as

AQuoSA, while having closer minimum and maximum with respect to plain

Linux, has a bigger standard deviation: this is what can be observed in Fig-

ure 4.6 on the following page, and in section 4.3.1 on page 68 experiments,

that is the AQuoSA scheduler makes the JACK period jump frequently in

close interval of the mean (which is equal in all of the tests to the expected

latency). This is not a problem for JACK to act correctly, and it is probably

due to the CBS server itself.
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Figure 4.6: Audio driver timings of JACK running with 1333 µs latency at 96
kHz, using SCHED FIFO, linux-rt SCHED FIFO and AQuoSA.

Figure 4.7 on the following page shows the cumulative distribution func-

tion of the all measured period data as an alternate view.

Figure 4.8 on page 75 and Figure 4.9 on page 76 shows the driver end

time, for each audio cycle, of the same experiment, while Table 4.2 on the next page

shows the driver end timing statistics. In these graphs and tables can be seen

the very same behavior found while looking at period timings. Again, the

linux-rt scheduler is the one which has better results, with faster response

and lower jitter, while AQuoSA sits in the middle, even if it has the single

worst response time. “Normal” Linux scheduler perform well in average and

minimum response time, but periodically reports spikes up to 40-44 µs, which

are in line with the results seen so far.
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Figure 4.7: JACK audio driver timing CDF with different schedulers.

Min Max Average Std. Dev
Linux 4.0 47.0 7.418 1.384
linux-rt 4.0 33.0 7.233 0.757
AQuoSA 6.0 55.0 9.529 1.528

Table 4.2: Driver end of JACK running with 1333 µs latency at 96 kHz with
Linux, linux-rt and AQuoSA schedulers.

4.4 JACK and other real-time applications

For this experiment jackd and two dnl clients were setup to run. Each

dnl client, as described in section 3.2, has two input ports and two output

ports, and in its process callback it simply busy-wait for the amount of time

it is configured to and then copies audio data from input to output. The

JACK clients and server operations are perturbed with two rt-app threads,

as described in section 3.3.

The first dnl client is started a t = 15s, while the second dnl client starts

at t = 30s. The two rt-app threads are started at the same time of the two

dnl clients, and they both stop after 35s (that is at t = 45s and t = 60s
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Figure 4.8: JACK audio driver end time with different schedulers with 1333 µs
latency at 96 kHz.

respectively), while both dnl clients are being shutdown together at t = 60s.

The total time length of the experiment is 90s. Both dnl clients are set up

to consume 10% of the audio cycle time, so, as the latency is set to 1333 µs

with 128 buffer size and 96 kHz sample rate, as in previous experiments, they

both are configured to run for approx 133 µs at each cycle2. rt-app threads

have a period of 10 ms and a computation time of 3 ms.

This scenario has been repeated four times, and in each run the scheduling

class (or the priority, as explained in depth below) of rt-app processes and

JACK clients/server was changed . The aim of this experiment is, in fact,

to test how well the JACK server can operate with other tasks (represented

by the two rt-app threads) running real-time in the system. This is the field

in which the CBS scheduler can bring big improvements, much more than

in the basic timing experiments presented in sections 4.3.2 and 4.3.1, as the

resources asked by the JACK server as reserved for it and its clients.

2Remember that JACK calls the clients process callback once per audio cycle.
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Figure 4.9: JACK audio driver end time with different schedulers with 1333 µs
latency at 96 kHz.

During these tests, when jackd was using AQuoSA reservations, the feed-

back mechanism was enabled, so as to limit to the safe minimum the band-

width requested by the JACK server and clients, and to make possible to

reserve bandwidth for the rt-app tasks as well.

Four runs where done, using the following combination of schedulers:

JACK rt-app tasks JACK prio. rt-app tasks prio.

1 SCHED FIFO SCHED FIFO 10 10

2 AQuoSA SCHED FIFO — 10

3 AQuoSA AQuoSA — —

4 SCHED FIFO SCHED FIFO 11 10

The fourth run was using SCHED FIFO for both JACK and rt-app, but

priorities, in contrast with the first run in which all processes have the same

priorities, were manually assigned as a rate monotonic scheduler would have

assigned them.

Figure 4.10 on the following page shows the driver end timing of the four
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Figure 4.12: rt-app disturb threads with different scheduler.
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runs. It can be clearly seen that in the case of both system running in

SCHED FIFO without using rate monotonic the JACK server is greatly pe-

nalized, as it cannot preempt long running rt-app tasks, thus leading to a

non-working system with end time of 3000 µs and more.

Figure4.11 shows the cumulative distribution of the period timing for the

four runs, zoomed in to see the behavior near 1333 µs.

Finally Figure4.12 shows the rt-app threads slack and real duration aver-

ages for all the four runs. In this graph can be seen how in the equal priorities

SCHED FIFO run, while the JACK server was not able to complete its work,

the rt-app tasks have precise timings, as they manage to get enough CPU

time to complete their work.

This experiment thus shows how having resource reservations helps in

getting more than an application to run in respect of its deadlines, without

requiring the user to have knowledge on how to set priorities in order to

get expected results. The budgets for JACK and rt-app are, in fact, auto

discovered by applications themselves, the don’t require the user to set them

explicitly.

4.5 Complex scenarios

In this section, different scenarios are going to be discussed in which multiple

clients were started with the JACK server, to show how the server behaves

using AQuoSA and high cycle usage (up to the 75% of the total available time

per cycle), that is to try to push the usage to a corner-case limit. AQuoSA

scheduler was configured to run with SHRUB enabled and disabled, and

finally an other experiment had an instance of rt-app running.

4.5.1 AQuoSA with or without SHRUB enabled

SHRUB, as described in section 2.3.6, is a mechanism that extends the CBS

server found in AQuoSA to reassign the spare time in the system to those

active servers. In particular, it has been found very useful with the JACK

server: one of the major problems with feedback scheduling applied to the
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Figure 4.13: AQuoSA budget trend with 10 clients. To be noticed the low bound
under which “set budget” (red line) remains fixed, while otherwise it is an over-
booking of the “predicted” one (blue line).

JACK architecture is that if the CBS server exhausts the budget for JACK’s

tasks, then, being an hard reservation, it delays it till the recharge, causing

a long and audible audio xrun.

A mechanism like SHRUB, thus, alleviates the problem that otherwise

can be only resolved by overbooking the budget. Even strict overbooking

is not enough, as a new client can completely change the total duration

and thus the needed budget for JACK to complete its work meeting the

deadline constraint. The spare time thus can be used to handle this particular

situations, avoiding unnecessary overbooking.

In this experiment the AQuoSA framework is compared with and without

SHRUB being enabled. A total of 10 dnl clients where setup to start at

regular intervals, resulting in a staircase like utilization pattern up to the 75%

of the cycle time. Each client is connected to the previous one, in a chain from

the input ALSA ports abstracted by the JACK server, to the output ports.

The resulting graph is then serialized and every client unblocks the next one,
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Figure 4.14: AQuoSA budget trend with 10 clients and SHRUB enabled.

respecting the data-flow model discussed in section 2.2.5 on page 11.

Figure4.13 shows the set and used budgets for AQuoSA without SHRUB,

while Figure4.14 show the same metrics (described in section 4.2 on page 64).

Figure4.15 is still the same scenario with SHRUB active, but using a reserva-

tion which has the period and the budget doubled with respect to the JACK

period and utilizations. Finally, Figure4.16, 4.17 and 4.18 show the driver

end time and period plots for the same situation as above.

Both solutions can handle this configuration of clients, but the timings

for the SHRUB enabled tests are much more regular. It should be noted,

in the budget graphs, with and without SHRUB, the heuristic implemented

to handle the “new client” situation. Since the predictor cannot known in

advance how much CPU time a new client will take to complete, it simply

bumps the budget up of a certain configurable percent of the so-far used

budget. This is causing the spikes on each “step” of the staircase. This is

much more evident when SHRUB is disabled.
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Figure 4.15: AQuoSA budgets trend, using the double of JACK period as AQu-
oSA period (thus resulting in budgets being doubled as well. This mechanism of
fragments is automatically enabled if the period is below 1333 µs.

4.5.2 Multi-application environments

This experiment is configured as the one described in section 4.5.1 on page 79,

with the difference of an added background rt-app that perturbw the JACK

operations. This replicates the tests done in section 4.4 on page 74, but us-

ing a loaded JACK server with 10 clients connected for a total utilization of

75%. The rt-app thread are using a very long period and low computation

time, in order permit to have its bandwidth reservation while asking for the

∼83% of the total bandwidth for the JACK itself. The rt-app thread is thus

configured to use the 0.05% (a period of 10ms and a computation time of 500

µs) of the total available system bandwidth, and runs for all the experiment

time.

For the AQuoSA-enabled JACK this is of no problem, and the experiment

“ends smooth” resulting in no xrun reported by the JACK ALSA driver. For

the SCHED FIFO test, on the contrary, we can clearly see how it starts
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Figure 4.16: Clients end time with AQuoSA scheduler and 10 clients. To be
noted that when a client takes longer to complete, this is reflected in successive
clients (that start later) and then on the audio period length. Clients are numbered
from bottom to top, so Client0 (connected to the inputs) is the on the bottom, and
Client9 (connected to outputs) is the topmost one.

having a jitter of the total rt-app thread’s computation time (which is equal

to 500 µs), then completely misbehaving with more than 7 clients.
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Figure 4.17: Clients end time with AQuoSA scheduler, 10 clients and SHRUB
enabled.
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Figure 4.18: Clients end time with AQuoSA/SHRUB and 10 clients, using the
AQuoSA period doubled with respect to JACK period length.
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Figure 4.19: JACK perturbed driver end and period with 10 clients, with 2 rt-
app tasks running in background using AQuoSA with SHRUB for both JACK and
rt-app.
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Figure 4.20: JACK perturbed driver end and period with 10 clients, with 2 rt-app
tasks running in background using SCHED FIFO for both JACK and rt-app.
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Min Max Average Std. Dev Drv.End Min Drv.End Max
AQuoSA 650.0 683.0 666.645 0.626 6.0 552.0
linux-rt 629.0 711.0 666.263 1.747 6.0 602.0
Linux 621.0 1369.0 666.652 2.696 5.0 663.0

Table 4.3: Period and driver end measures with 667µs latency and 10 clients

4.6 Very low latencies
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Figure 4.21: JACK running with AQuoSA and SHRUB with a buffer of 64 frames
per periods at 96 kHz, resulting in a latency of 667 µs. The AQuoSA server period
is set to 2001 µs, that is three times the JACK period.

This last test was performed to explore a loaded scenario with very low

latencies. The JACK latency is at the minimum reachable with the hard-

ware used, setting 64 periods per buffer at 96 kHz sample rate, resulting

in 667 µs total latency introduced by the JACK server. 10 client are con-

nected to the JACK server in a similar scenario of the one described in

section 4.5 on page 79, but the total utilization is lowered to as none of the

kernel and schedulers were able to reach 75% utilization under this condition.
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Figure 4.22: JACK running with SCHED FIFO with a buffer of 64 frame per
periods at 96 kHz, resulting in a latency of 667 µs.

Both linux-rt and AQuoSA managed to avoid any xrun, while on Linux

SCHED FIFO some were reported. Table 4.3 on the preceding page shows

the period and driver end time statistics about all three runs, while the graphs

represented in Figure 4.21 on the previous page, 4.22 and 4.23 on the following page

show the clients end date and audio driver trend.
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Figure 4.23: JACK running with SCHED FIFO on linux-rt kernel with a buffer
of 64 frame per periods at 96 kHz, resulting in a latency of 667 µs.



Chapter 5

Conclusions and Future Work

In this work JACK has been modified to leverage the Resource Reservations

provided by the AQuoSA framework. Library and utilities where also devel-

oped to test its behaviour on standard linux kernel using POSIX realtime

extensions, on linux-rt patchset and on the AQuoSA real-time scheduler.

Various approaches to were evaluated and considered, from a theoretical

point of view and from a practical point of view in implementing them. The

final chosen approach was to directly modify JACK server and client libraries

to provide support for feedback scheduling and resource reservations: this

allowed the JACK clients to run unmodified with the patched server and

libraries. The libgettid library was written to solve some issue raised by

differences on how threads are identified in the Linux kernel and in the POSIX

thread library . Finally a jack client application and a real-time periodic

application were written to load the system to evaluate performances of tested

schedulers.

Various comparisons were done between various mode of operation (syn-

chronous and asynchronous), various hardware (HDA and ICE1712), various

kernel (“vanilla” linux, AQuoSA and linux-rt), and finally with multiple

clients with or without other realtime loads.

In these tests the AQuoSA scheduler and, in general, the whole resource

reservation mechanism has proved to make JACK capable of very low laten-

cies even with low latencies and to be capable, as well as to make JACK
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coexists with other real time loads. Since linux-rt has better and more stable

timings, could be of interest to have a EDF/CBS implementation within this

patchset, as this setup may probably be the best of the two world.

Another modification that is interesting for future works is to make one

reservation per client, instead of having a single reservation for all jack client

and server threads. This can possibly open the scenario of completely remove

the FIFO-based machinery in favour of inter-process semaphores and access

protocols such as the Bandwidth Inheritance Protocol. Moreover, having one

reservation per client could allow to explore the recent SCHED DEADLINE

patchset, which adds a new scheduling class that use EDF to schedule pro-

cesses.



Code listings

5.1 A simple JACK client

1 #include <j ack / jack . h>

2 #include <s i g n a l . h>

3 #include <s t d i o . h>

4 #include <s t r i n g . h>

5

6 j a c k p o r t t ∗ in , ∗out ;

7 j a c k c l i e n t t ∗ c l i e n t ;

8 int end ;

9

10 /∗ the audio proces s f unc t i on : t h i s s imply cop i e s input data

11 to output b u f f e r . The s i z e o f b u f f e r s can change between

12 c a l l s , and i t ’ s passed as the nframes parameter .

13 ∗/

14 int proce s s ( j a ck n f r ames t nframes , void ∗ arg )

15 {

16 j a c k d e f au l t aud i o s amp l e t ∗ in bu f , ∗ out buf ;

17 /∗ ge t inpu t and output b u f f e r s ∗/

18 i n bu f = j a c k p o r t g e t b u f f e r ( in , nframes ) ;

19 out buf = j a c k p o r t g e t b u f f e r ( out , nframes ) ;

20 memcpy ( in buf , out buf , nframes ∗ s izeof (

21 j a c k d e f au l t aud i o s amp l e t ) ) ;

22 return 0 ;

23 }

24
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25 void shutdown ( j a c k s t a t u s t code , const char∗ reason , void ∗ arg )

26 {

27 p r i n t f ("Server closing, exiting..." ) ;

28 end = 1 ;

29 }

30 void terminate ( int s i g )

31 {

32 p r i n t f ("Signal received , exiting ... \n" ) ;

33 /∗ d e a c t i v a t e the c l i e n t , un r e g i s t e r po r t s and c l o s e ∗/

34 j a c k d e a c t i v a t e ( c l i e n t ) ;

35 j a c k p o r t u n r e g i s t e r ( c l i e n t , in ) ;

36 j a c k p o r t u n r e g i s t e r ( c l i e n t , out ) ;

37 j a c k c l i e n t c l o s e ( c l i e n t ) ;

38 end = 1 ;

39 }

40

41 int main ( int argc , char∗∗ argv )

42 {

43 /∗ r e g i s t e r the c l i e n t wi th the JACK ser v e r : i f i t ’ s not

44 running , i t w i l l be au t o s t a r t e d ∗/

45 j a c k s t a t u s t s t a tu s ;

46 const char ∗ server name = NULL;

47 char ∗ c l i ent name = "simple_client" ;

48 c l i e n t = j a c k c l i e n t o p e n ( c l i ent name , JackNullOption ,

49 &status , server name ) ;

50 /∗ s e t the audio proce s s ing c a l l b a c k . I t w i l l run in

51 i t s own rea l t ime thread ∗/

52 j a c k s e t p r o c e s s c a l l b a c k ( c l i e n t , process , NULL) ;

53 in = j a c k p o r t r e g i s t e r ( c l i e n t , "in" ,

54 JACK DEFAULT AUDIO TYPE,

55 JackPortIsInput , 0 ) ;

56 out = j a c k p o r t r e g i s t e r ( c l i e n t , "out" ,

57 JACK DEFAULT AUDIO TYPE,

58 JackPortIsOutput , 0 ) ;

59 i f ( ( in == NULL) | | ( out == NULL) )
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60 /∗ handle error , as no more por t s are a v a i l a b l e ∗/

61 {}

62

63 /∗ i n s t a l l t he s e r v e r shutdown c a l l b a c k ∗/

64 j a ck on in fo shutdown ( c l i e n t , shutdown , 0 ) ;

65

66 /∗ i n s t a l l s i g n a l hand l e r s ∗/

67 s i g n a l (SIGQUIT, terminate ) ;

68 s i g n a l (SIGTERM, terminate ) ;

69 s i g n a l (SIGINT , terminate ) ;

70

71 /∗ t e l l t he s e r v e r we are ready to proces s data ∗/

72 j a c k a c t i v a t e ( c l i e n t ) ;

73

74 /∗ l oop u n t i l shutdown () i s c a l l e d by the s e r v e r or a

75 s i g n a l i s r e c e i v ed ∗/

76 end = 0 ;

77 while ( end == 0 ) ;

78 s l e e p ( 1 ) ;

79 return 0 ;

80 }
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