4 research outputs found

    Shared path protection for distance adaptive elastic Optical Networks under dynamic traffic

    No full text
    Elastic Optical Networks (EONs), evolved as a scalable infrastructure to provide optical connectivity for large variety of bandwidth requests ranging from 1Gbps to 1Tbps. Thanks to the enabling technologies such as bandwidth variable transponders and flexible switches, bandwidth adaptive spectrum allocation became possible. EONs can carry large optical channels with higher spectrum efficiency with the recent changes in the standard fixed division of optical spectrum. In this study we propose a distance adaptive, dynamic shared path protection scheme for EONs. In conventional WDM networks, sharability used to be one of the prime objectives to maximize the backup resource efficiency. In EONs, spectrum resources can be shared partially between connections and different parts of the allocated spectrum may be shared by different connections at the same time. Not only the routing but also spectrum allocation of backup resources has a big impact on the sharability in EONs. Taking this into account, we developed a novel RSA (Routing and Spectrum Allocation) algorithm applying different strategies for primary and backup resources called Primary First-Fit Modified Backup Last-Fit (PF-MBL) aiming to reduce the fragmentation and to increase the sharability. As a result overall bandwidth blocking probability is significantly reduced in the network. Results show that PF-MBL can improve the performance in terms of bandwidth blocking probability by 24% up to 59% compared to the current outperforming algorithm when the bandwidth acceptance ratio of the system varies from 90% to 99.9% in different loads.QC 20131024</p

    エラスティック光ネットワークにおけるトラヒック収容性を向上させるための無瞬断デフラグメンテーション

    Get PDF
    In elastic optical networks (EONs), a major obstacle to using the spectrum resources efficiently is spectrum fragmentation. Much of the research activities in EONs focuses on finding defragmentation methods which remove the spectrum fragmentation. Among the defragmentation methods presented in the literature, hitless defragmentation has been introduced as an approach to limit the spectrum fragmentation in elastic optical networks without traffic disruption. It facilitates the accommodation of new request by creating large spectrum blocks, as it moves active lightpaths (retuning) to fill in gaps left in the spectrum by expired ones. Nevertheless, hitless defragmentation witnesses limitations for gradual retuning with the conventionally used first fit allocation. The first fit allocation stacks all lightpaths to the lower end of the spectrum. This leads to a large number of lightpaths that need to be retuned and are subject to interfere with each other\u27s retuning. This thesis presents two schemes, which are based on hitless defragmentation, to increase the admissible traffic in EONs. Firstly, a route partitioning scheme for hitless defragmentation in default EONs is presented. The proposed scheme uses route partitioning with the first-last fit allocation to increase the possibilities of lightpath retuning by avoiding the retuning interference among lightpaths. The first-last fit allocation is used to set a bipartition with one partition allocated with the first fit and the second with the last fit. Lightpaths that are allocated on different partitions cannot interfere with each other. Thus the route partitioning avoids the interferences among lightpaths when retuning. The route partitioning problem is defined as an optimization problem to minimize the total interferences. Secondly, this thesis presents a defragmentation scheme using path exchanging in 1+1 path protected EONs. For 1+1 path protection, conventional defragmentation approaches consider designated primary and backup paths. This exposes the spectrum to fragmentations induced by the primary lightpaths, which are not to be disturbed in order to achieve hitless defragmentation. The presented path exchanging scheme exchanges the path function of the 1+1 protection with the primary toggling to the backup state while the backup becomes the primary. This allows both lightpaths to be reallocated during the defragmentation process while they work as backup, offering hitless defragmentation. Considering path exchanging, a static spectrum reallocation optimization problem that minimizes the spectrum fragmentation while limiting the number of path exchanging and reallocation operations is defined. For each of the presented schemes, after the problem is defined as an optimization problem, it is then formulated as an integer linear programming problem (ILP). A decision version of each defined problem is proven NP-complete. A heuristic algorithm is then introduced for large networks, where the ILP used to represent the problem is not tractable. The simulation results show that the proposed schemes outperform the conventional ones and improve the total admissible traffic.電気通信大学201

    エラスティック光ネットワークにおけるトラヒック収容性を向上させるための無瞬断デフラグメンテーション

    Get PDF
    In elastic optical networks (EONs), a major obstacle to using the spectrum resources efficiently is spectrum fragmentation. Much of the research activities in EONs focuses on finding defragmentation methods which remove the spectrum fragmentation. Among the defragmentation methods presented in the literature, hitless defragmentation has been introduced as an approach to limit the spectrum fragmentation in elastic optical networks without traffic disruption. It facilitates the accommodation of new request by creating large spectrum blocks, as it moves active lightpaths (retuning) to fill in gaps left in the spectrum by expired ones. Nevertheless, hitless defragmentation witnesses limitations for gradual retuning with the conventionally used first fit allocation. The first fit allocation stacks all lightpaths to the lower end of the spectrum. This leads to a large number of lightpaths that need to be retuned and are subject to interfere with each other\u27s retuning. This thesis presents two schemes, which are based on hitless defragmentation, to increase the admissible traffic in EONs. Firstly, a route partitioning scheme for hitless defragmentation in default EONs is presented. The proposed scheme uses route partitioning with the first-last fit allocation to increase the possibilities of lightpath retuning by avoiding the retuning interference among lightpaths. The first-last fit allocation is used to set a bipartition with one partition allocated with the first fit and the second with the last fit. Lightpaths that are allocated on different partitions cannot interfere with each other. Thus the route partitioning avoids the interferences among lightpaths when retuning. The route partitioning problem is defined as an optimization problem to minimize the total interferences. Secondly, this thesis presents a defragmentation scheme using path exchanging in 1+1 path protected EONs. For 1+1 path protection, conventional defragmentation approaches consider designated primary and backup paths. This exposes the spectrum to fragmentations induced by the primary lightpaths, which are not to be disturbed in order to achieve hitless defragmentation. The presented path exchanging scheme exchanges the path function of the 1+1 protection with the primary toggling to the backup state while the backup becomes the primary. This allows both lightpaths to be reallocated during the defragmentation process while they work as backup, offering hitless defragmentation. Considering path exchanging, a static spectrum reallocation optimization problem that minimizes the spectrum fragmentation while limiting the number of path exchanging and reallocation operations is defined. For each of the presented schemes, after the problem is defined as an optimization problem, it is then formulated as an integer linear programming problem (ILP). A decision version of each defined problem is proven NP-complete. A heuristic algorithm is then introduced for large networks, where the ILP used to represent the problem is not tractable. The simulation results show that the proposed schemes outperform the conventional ones and improve the total admissible traffic.電気通信大学201
    corecore