19,573 research outputs found

    Shape from specular reflections and optical flow

    Get PDF

    Effects of surface reflectance on local second order shape estimation in dynamic scenes

    Get PDF
    In dynamic scenes, relative motion between the object, the observer, and/or the environment projects as dynamic visual information onto the retina (optic flow) that facilitates 3D shape perception. When the object is diffusely reflective, e.g. a matte painted surface, this optic flow is directly linked to object shape, a property found at the foundations of most traditional shape-from-motion (SfM) schemes. When the object is specular, the corresponding specular flow is related to shape curvature, a regime change that challenges the visual system to determine concurrently both the shape and the distortions of the (sometimes unknown) environment reflected from its surface. While human observers are able to judge the global 3D shape of most specular objects, shape-from-specular-flow (SFSF) is not veridical. In fact, recent studies have also shown systematic biases in the perceived motion of such objects. Here we focus on the perception of local shape from specular flow and compare it to that of matte-textured rotating objects. Observers judged local surface shape by adjusting a rotation and scale invariant shape index probe. Compared to shape judgments of static objects we find that object motion decreases intra-observer variability in local shape estimation. Moreover, object motion introduces systematic changes in perceived shape between matte-textured and specular conditions. Taken together, this study provides a new insight toward the contribution of motion and surface material to local shape perception. © 2015 The Authors

    Specular motion and 3D shape estimation

    Get PDF
    Dynamic visual information facilitates three-dimensional shape recognition. It is still unclear, however, whether the motion information generated by moving specularities across a surface is congruent to that available from optic flow produced by a matte-textured shape. Whereas the latter is directly linked to the firstorder properties of the shape and its motion relative to the observer, the specular flow, the image flow generated by a specular object, is less sensitive to the object's motion and is tightly related to second-order properties of the shape. We therefore hypothesize that the perceived bumpiness (a perceptual attribute related to curvature magnitude) is more stable to changes in the type of motion in specular objects compared with their matte-textured counterparts. Results from two twointerval forced-choice experiments in which observers judged the perceived bumpiness of perturbed spherelike objects support this idea and provide an additional layer of evidence for the capacity of the visual system to exploit image information for shape inference. © 2017 The Authors

    Rapid inference of object rigidity and reflectance using optic flow

    Get PDF
    Rigidity and reflectance are key object properties, important in their own rights, and they are key properties that stratify motion reconstruction algorithms. However, the inference of rigidity and reflectance are both difficult without additional information about the object's shape, the environment, or lighting. For humans, relative motions of object and observer provides rich information about object shape, rigidity, and reflectivity. We show that it is possible to detect rigid object motion for both specular and diffuse reflective surfaces using only optic flow, and that flow can distinguish specular and diffuse motion for rigid objects. Unlike nonrigid objects, optic flow fields for rigid moving surfaces are constrained by a global transformation, which can be detected using an optic flow matching procedure across time. In addition, using a Procrustes analysis of structure from motion reconstructed 3D points, we show how to classify specular from diffuse surfaces. © 2009 Springer Berlin Heidelberg

    Cavlectometry: Towards Holistic Reconstruction of Large Mirror Objects

    Full text link
    We introduce a method based on the deflectometry principle for the reconstruction of specular objects exhibiting significant size and geometric complexity. A key feature of our approach is the deployment of an Automatic Virtual Environment (CAVE) as pattern generator. To unfold the full power of this extraordinary experimental setup, an optical encoding scheme is developed which accounts for the distinctive topology of the CAVE. Furthermore, we devise an algorithm for detecting the object of interest in raw deflectometric images. The segmented foreground is used for single-view reconstruction, the background for estimation of the camera pose, necessary for calibrating the sensor system. Experiments suggest a significant gain of coverage in single measurements compared to previous methods. To facilitate research on specular surface reconstruction, we will make our data set publicly available

    Beyond bathymetry: Mapping acoustic backscattering from the deep seafloor with Sea Beam

    Get PDF
    In its standard mode of operation, the multibeam echosounder Sea Beam produces high resolution bathymetric contour charts of the seafloor surveyed. However, additional information about the nature of the seafloor can be extracted from the structure of the echo signals received by the system. Such signals have been recorded digitally over a variety of seafloor environments for which independent observations from bottom photographs or sidescan sonars were available. An attempt is made to relate the statistical properties of the bottom‐backscattered sound field to the independently observed geologicalcharacteristics of the seafloor surveyed. Acoustic boundary mapping over flat areas is achieved by following trend changes in the acoustic data both along and across track. Such changes in the acoustics are found to correlate with changes in bottom type or roughness structure. The overall energy level of a partial angular‐dependence function of backscattering appears to depend strongly on bottom type, whereas the shape of the function does not. Clues to the roughness structure of the bottom are obtained by relating the shape of the probability density function of normal‐incidence echo envelopes to the degree of coherence in the backscattered acoustic field

    Towards dynamic camera calibration for constrained flexible mirror imaging

    Get PDF
    Flexible mirror imaging systems consisting of a perspective camera viewing a scene reflected in a flexible mirror can provide direct control over image field-of-view and resolution. However, calibration of such systems is difficult due to the vast range of possible mirror shapes and the flexible nature of the system. This paper proposes the fundamentals of a dynamic calibration approach for flexible mirror imaging systems by examining the constrained case of single dimensional flexing. The calibration process consists of an initial primary calibration stage followed by in-service dynamic calibration. Dynamic calibration uses a linear approximation to initialise a non-linear minimisation step, the result of which is the estimate of the mirror surface shape. The method is easier to implement than existing calibration methods for flexible mirror imagers, requiring only two images of a calibration grid for each dynamic calibration update. Experimental results with both simulated and real data are presented that demonstrate the capabilities of the proposed approach
    corecore