815 research outputs found

    Image Recognition Systems with Permutative Coding

    Get PDF
    A feature extractor and neural classifier for image recognition system are proposed. They are based on the permutative coding technique which continues our investigations on neural networks. It permits us to obtain sufficiently general description of the image to be recognized. Different types of images were used to test the proposed image recognition system. It was tested on the handwritten digit recognition problem, the face recognition problem and the shape of microobjects recognition problem. The results of testing are very promising. The error rate for the MNIST database is 0.44% and for the ORL database is 0.1%

    Detection and Generalization of Spatio-temporal Trajectories for Motion Imagery

    Get PDF
    In today\u27s world of vast information availability users often confront large unorganized amounts of data with limited tools for managing them. Motion imagery datasets have become increasingly popular means for exposing and disseminating information. Commonly, moving objects are of primary interest in modeling such datasets. Users may require different levels of detail mainly for visualization and further processing purposes according to the application at hand. In this thesis we exploit the geometric attributes of objects for dataset summarization by using a series of image processing and neural network tools. In order to form data summaries we select representative time instances through the segmentation of an object\u27s spatio-temporal trajectory lines. High movement variation instances are selected through a new hybrid self-organizing map (SOM) technique to describe a single spatio-temporal trajectory. Multiple objects move in diverse yet classifiable patterns. In order to group corresponding trajectories we utilize an abstraction mechanism that investigates a vague moving relevance between the data in space and time. Thus, we introduce the spatio-temporal neighborhood unit as a variable generalization surface. By altering the unit\u27s dimensions, scaled generalization is accomplished. Common complications in tracking applications that include occlusion, noise, information gaps and unconnected segments of data sequences are addressed through the hybrid-SOM analysis. Nevertheless, entangled data sequences where no information on which data entry belongs to each corresponding trajectory are frequently evident. A multidimensional classification technique that combines geometric and backpropagation neural network implementation is used to distinguish between trajectory data. Further more, modeling and summarization of two-dimensional phenomena evolving in time brings forward the novel concept of spatio-temporal helixes as compact event representations. The phenomena models are comprised of SOM movement nodes (spines) and cardinality shape-change descriptors (prongs). While we focus on the analysis of MI datasets, the framework can be generalized to function with other types of spatio-temporal datasets. Multiple scale generalization is allowed in a dynamic significance-based scale rather than a constant one. The constructed summaries are not just a visualization product but they support further processing for metadata creation, indexing, and querying. Experimentation, comparisons and error estimations for each technique support the analyses discussed

    Biometric signals compression with time- and subject-adaptive dictionary for wearable devices

    Get PDF
    This thesis work is dedicated to the design of a lightweight compression technique for the real-time processing of biomedical signals in wearable devices. The proposed approach exploits the unsupervised learning algorithm of the time-adaptive self-organizing map (TASOM) to create a subject-adaptive codebook applied to the vector quantization of a signal. The codebook is obtained and then dynamically refined in an online fashion, without requiring any prior information on the signal itsel
    • …
    corecore