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In today's world of vast information availability users often confront large 

unorganized amounts of data with limited tools for managing them. Motion imagery 

datasets have become increasingly popular means for exposing and disseminating 

information. Commonly, moving objects are of primary interest in modeling such 

datasets. Users may require different levels of detail mainly for visualization and further 

processing purposes according to the application at hand. 

In this thesis we exploit the geometric attributes of objects for dataset 

summarization by using a series of image processing and neural network tools. In order 

to form data summaries we select representative time instances through the segmentation 

of an object's spatio-temporal trajectory lines. High movement variation instances are 

selected through a new hybrid self-organizing map (SOM) technique to describe a single 

spatio-temporal trajectory. Multiple objects move in diverse yet classifiable patterns. In 



order to group corresponding trajectories we utilize an abstraction mechanism that 

investigates a vague moving relevance between the data in space and time. Thus, we 

introduce the spatio-temporal neighborhood unit as a variable generalization surface. By 

altering the unit's dimensions, scaled generalization is accomplished. 

Common complications in tracking applications that include occlusion, noise, 

information gaps and unconnected segments of data sequences are addressed through the 

hybrid-SOM analysis. Nevertheless, entangled data sequences where no information on 

which data entry belongs to each corresponding trajectory are frequently evident. A 

multidimensional classification technique that combines geometric and backpropagation 

neural network implementation is used to distinguish between trajectory data. 

Further more, modeling and summarization of two-dimensional phenomena 

evolving in time brings forward the novel concept of spatio-temporal helixes as compact 

event representations. The phenomena models are comprised of SOM movement nodes 

(spines) and cardinality shape-change descriptors (prongs). 

While we focus on the analysis of MI datasets, the framework can be generalized 

to function with other types of spatio-temporal datasets. Multiple scale generalization is 

allowed in a dynamic significance-based scale rather than a constant one. The constructed 

summaries are not just a visualization product but they support further processing for 

metadata creation, indexing, and querying. Experimentation, comparisons and error 

estimations for each technique support the analyses discussed. 
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CHAPTER 1 

INTRODUCTION 

Information is often conveyed through collections of data that may form large and 

diverse types of datasets. Advances in sensor technology have resulted in easier 

collection of valuable multitemporal geospatial information. Reliable satellite, aerial and 

ground imagery are readily available on demand or periodically. Beyond imagery, the 

availability of inexpensive and compact positioning and capturing devices provides a 

plethora of datasets. People use datasets for complex analyses including decision-making 

processes. 

The need to sift through large datasets is evident for varying-level information 

analysis. Data may be represented at various scales of space and time. For example, finer 

detail is needed when the user is interested in the phases of the detailed construction of a 

building than in the generalized expansion of a city. 

Various types of datasets may need different methods for their compact 

representation. Examples include video (Zhang et al., 1997), audio (Christel et al., 1998), 

and standard maps (Brassel and Weibel, 1988). This thesis focuses on motion imagery 

datasets. Within the context of this thesis we use the term motion imagery (MI) to refer to 



high-resolution (spatial andlor temporal, aerial or ground-level) digital video and still 

image sequences, captured either by mobile sensors roaming a scene or by a network of 

fixed sensors, each monitoring a particular area. MI datasets are used extensively as a 

powerful communication medium primarily because of the rich content they hold. 

Frequently, MI sets as opposed to still images include additional information as they 

depict a near continuous data flow. 

The development of compact representation schemes proves beneficial for the 

search, retrieval, interchange, query, and visualization of the information included in 

datasets (Stefanidis et al. 2001). Compactness refers to the compressed or selective 

representation of the original to adequately communicate the included information, 

according to the user and application. Compact representation supports better browsing, 

dissemination, and further analysis of the corresponding datasets. More specifically for 

MI datasets: 

Regarding browsing, the vast collection of MI datasets on the web and in MI 

libraries makes the use of compact representations highly important, as they will 

reveal only the essential and significant parts of the original dataset. Some early 

efforts in video processing research are addressing creation of information- 

inclusive abstracts based on image content, image attributes, video structure, 

voice and text properties. More details on relevant current research are provided 

in the second chapter of this thesis. 

Dissemination of information is also important when the user desires to determine 

in a short time what took place in a scene, movie, broadcast, or MI in general 



(Smith and Kanade, 1995). In addition, shifting through information at a fine 

detail may make it more difficult to identify low frequency trends. For example, 

one might be concerned with traffic within an area throughout the day rather than 

the movement of every single car over an entire day. Coarse resolution datasets 

communicate better this type of information. Accordingly, for visualization 

purposes MI compact representations are used to portray the significant parts of a 

dataset through a concise yet expressive scheme. 

Construction of compact representations may support further analysis. Such 

analysis is essential in order to facilitate behavior-related queries or to examine 

and reveal possible associations between different datasets and the phenomena 

they describe (Stefanidis et al., 2001). Efficient analysis and modeling of 

phenomena captured in MI datasets supports comparison of behavioral patterns 

and detection of similarities. For example, a MI about weather changes 

throughout a year could be compared with urbanization tendencies or pollution 

changes. 

1.1 Summarization vs. Generalization of Datasets 

Compact representation of datasets is manifested through the use of generalization and 

summarization. In the context of this thesis these abstraction tools are defined as follows: 

Generalization is the process under which an input data of a specific type is transformed 

into a compact representation of the same type. On the other hand, summarization 

transforms a series of input data collections of various types into a new representation 

that combines information from the input datasets. 

3 



Frequently, generalization refers to the basic elements that are included in a 

summary, while the summary is the product combination of generalization and additional 

products. For example a map may include roads that are represented as lines and bullets 

that describe major cities. The map as a resulting combination of a series of supportive 

data descriptions is a summary of the area that represents. The line representations of the 

roads at various scales are a product of generalization. Usually the generalization 

products are smaller than the original dataset. The summaries are not necessarily smaller, 

but should communicate better a large amount of information compared to the original 

dataset components. 

1.2 Problem Statement 

The processing, analysis, and management of MI data present well-known challenges, 

mostly associated with the size and complexity of the space represented (Ardizzone and 

Hacid, 1999). These challenges are mostly related to large storage requirements, immense 

processing volumes for dataset analysis, as well as the highly diverse content and themes 

these datasets may include. 

MI datasets are comprised of frames that provide 2-dimentional views (x, y) at 

discrete time intervals. By piling individual frames on top of each other we form the 3-D 

spatio-temporal domain (S-T domain) with time ( t )  serving as the third axis. The 

movement of an object within the S-T domain is manifested as a set of classified points 

over time. Treating the S-T domain as a near-continuous representation of reality, the 

trajectory of an object defines a pathway within this 3-D domain, by sequentially 



connecting all positions depicting the same object over time. Within the context of this 

thesis this path is termed as a spatio-temporal trajectory (S-T trajectory). Work on spatio- 

temporal analysis is evident in Hagerstrand (1970) where the basis of time geography is 

defined. Geospatial lifeline formation towards spatio-temporal querying and analysis is 

also seen in Hornsby and Egenhofer (2002). 

Motivation is drawn from a family of MI datasets that originates from monitoring 

applications, where objects move and interact throughout a relatively stable background 

scene. Some of these applications include vehicles moving in an urban scene, fire 

spreading in a forest area, etc. Our argument is that crucial elements for MI 

summarization are the ones describing the behaviors of objects as they change their 

location and/or shape over time. Analysis of such datasets takes place in order to produce 

brief summaries of their content. 

For summarization purposes, substantial amounts of data and/or information 

included in MI datasets can be truncated or compressed, while other parts of this 

information may be defined as significant and should be identified and emphasized. S-T 

trajectories may be derived from a series of methods including tracking algorithms, GPS 

receivers or feature extraction analysis. The resulting data are termed as source data and 

are represented by sets of coordinates that may include, in addition to spatio-temporal 

location, size, or even color of the extracted objects. In addition, S-T trajectory datasets 

may include gaps, and often suffer from distortions caused by noise and various errors. 

The tackling of errors that may be included in the dataset is essential for its accurate 

representation and further analysis. 



1.3 Research Approach 

Towards the summarization of monitoring MI datasets we need to address some tasks 

that are related to the input data comprising the datasets. S-T trajectories contain 

implicitly substantial information for the behavior of the moving objects they represent in 

terms of movement and deformation. The presented approach allows the retrieval and 

analysis of this behavioral information. 

The formed S-T trajectories become the base generalization elements. We exploit 

the geometric properties of S-T trajectories describing the movement of objects, in order 

to extract important information towards their generalization. Individual trajectories are 

analyzed to identify critical points, denoting instances where the object's geometry 

changes (e.g., accelerates, or makes an abrupt turn, etc). 

The goal of this work is to support the generation of compact MI datasets that 

would serve as summaries of the original input. Towards this goal, the primary objective 

of this thesis is 

to provide the foundation of MI content summaries through generalization of 

spatio-temporal trajectories describing geometric change, namely movement and 

deformation. 

The primary objective is complemented by the need to support multi-scale 

generalization within this framework that forms the second objective, which is 



to support dynamic representation both in generalization volume and densification 

of information. 

By multi-scale generalization we indicate two kinds of dynamic information 

representation. First, dynamic representation refers to the fact that the sampling of the 

original dataset is based on those parts that convey significant information rather than a 

stable temporal increment. Significance is defined as the variation of movement andlor 

deformation of the shape of the moving objects included in the dataset. The second 

representation attribute refers to summary duration. According to user needs and 

application, more or less detail of the product summary can be realized. 

In addition, tackle possible data errors have to be tackled: 

Data without object correspondence 

Sometimes, there is no explicit information that relates each set of coordinates to 

the object that it belongs to. Thus, detection and separation of object S-T 

trajectories is required. When data coordinates are mapped as distant in the S-T 

domain their separation is evident. However, when the data form entangled 

trajectories their separation may not be trivial and thus a classification procedure 

has to differentiate them. 

Occlusion and noise 

Occlusion in tracking procedures or unavailability of data entries in some 

instances leads to gaps in the dataset. In addition, noise due to such reasons as 

tracking misclassification is also evident. Again the analysis of the S-T 



trajectories should tackle or integrate a solution for the minimization of such 

errors. 

Thus, additional objectives are: 

to detect and classify neighboring moving object trajectories where there is no 

information about the object they belong to. 

to handle common errors anticipated in tracking analyses, namely occlusion, 

noise, misclassification etc. 

These objectives refer to commonly anticipated problems inherent in moving 

object image tracking. In addition, summary data should be such that they can support 

further analysis like retrieving, querying and similarity matching between different 

datasets. For example a MI depicting flood occurrences in an area and another depicting 

land use may be compared to detect similarities and relations. 

1.4 Generalization of Linear Objects 

Generalization is a well-known cartographic process towards effective map construction 

that includes some interrelated tasks. According to the application, scale of the map, and 

quality of input data, these tasks are formed accordingly (Muller et al. 1995, McMaster 

and Comenetz 1996). More specifically: 



Simplification 

Simplification refers to the selection of a subset of representative elements of the 

same type and the exclusion of some others. In the context of this thesis this term 

will be referred as clustering. 

Taxonomy 

Under this task a series of cartographic elements of the same type are grouped 

together and are represented through a single cartographic element according to a 

similarity measure. This task in this thesis is referred as grouping. 

Visualization 

The set of graphic representation procedures to convey the map's elements is an 

essential part of the map formation. 

Deduction 

This is the logical deduction of information and we will refer to it as further 

processing. 

There is a series of well-known algorithms for generalization of linear 

cartographic elements. Most are based on a simplification procedure that selects a subset 

of points from the points that comprise the line. Some of the algorithms select points 

based on stable increment sampling and thus result in poor generalization without ample 

representation of the possible variance areas. On the other hand, the Douglas-Peucker 

(Douglas and Peucker, 1973) algorithm varyingly samples the line points according to the 

desirable representation precision. 



S-T trajectories are three-dimensional and as discussed before they may include 

errors. In addition source coordinates often accompany the S-T trajectories. Nevertheless, 

the above-mentioned algorithms do not handle 3-D data collections like S-T trajectories. 

In addition, the errors inherent in the data may significantly alter the resulting 

generalization. Since they are based on single point sampling, a single error might lead to 

poor representation. Finally, they do not readily tackle multi-dimensional, unclassified 

and source data that may include composite spatio-temporal coordinates. 

In order to address these additional complications we utilize the Self-organizing 

Map (SOM) algorithm. The SOM technique is a neural network that represents an input 

dataset of a given dimension into a fewer dimension dataset and thus is used to perform 

generalization of lines. The generalization produces a set of nodes that may not be part of 

the original data. The product output space is indicative of intrinsic statistical features 

contained in the input patterns. According to the selection of the number of nodes 

multiple generalization levels are achieved. Possible errors are often efficiently tackled 

through the inherent generalization properties of the technique that is based on groups of 

points rather than single points. On the other hand, according to experimental results, the 

geometry of the input space is not always represented sufficiently, especially when 

geometrically complex lines are anticipated. Furthermore, the algorithm variables, which 

influence considerably the solution, are not automatically selected. 

Therefore, a new SOM-based method is introduced to adequately approximate S- 

T trajectories called Spatio-Temporal Trajectory (SST) SOM. This approach offers the 

advantage of relative invariance with respect to the selection of the initial algorithm 



variables, and most importantly approximates better the geometry of complex S-T 

trajectories. 

Thus, the hypothesis is: 

"The SST-SOM technique approximates and classifies more accurately the S-T 

trajectories than the typical clustering and classification techniques." 

Overall, by hlfilling the stated hypothesis we will provide an approach to manage 

dynamic scene analysis at higher levels of abstraction, and to model and communicate 

concisely the movement behavior of moving objects. 

1.5 Scope of the Thesis 

The hlfillment of the objectives of this thesis lies under the assumption that the 

processed MI datasets display mobile objects with a relatively stable background. Such 

datasets can be produced by a fixed sensor monitoring a scene, or by moving aerial 

sensors, like unmanned aerial vehicles, or by sensors periodically revisiting a scene (e.g., 

satellites). Thus, it is assumed that classification or coarse tracking has identified in each 

frame (or in selected frames) the approximate outline of mobile objects. In addition, the 

availability of GPS receivers attached to vehicles is often anticipated in today's 

transportation tecbology. Therefore, some required a priori analysis is assumed to exist 

and some other tasks are beyond the scope of the thesis. Specifically, this thesis does not 

address: 

Tracking techniques and analysis in general, 

detailed visualization of the product summaries, 



design of a common metadata framework for summary creation and comparison, 

incorporation of the product summaries and defined data types in a database 

environment. 

These aspects are discussed only partially. In addition, we focus only on 

geometric properties of moving objects as opposed to semantic. There is substantial 

complementary work dealing with semantic properties of geographic data (e.g., Homsby, 

1999). Additional temporal increments of interest resulting from query and similarity 

analysis may be introduced and included in the formed summaries. Query support and 

similarity matching through formalized data descriptors is introduced and exploited in 

(Stefanidis et al., 2001). 

For a single moving object, the generalization of its S-T trajectory is 

accomplished through the use of self-organizing maps and their variation STT-SOM. 

Multiple moving objects introduce more challenges towards the grouping of the formed 

S-T trajectories. A spatio-temporal grouping technique is introduced, based on moving 

geometric surfaces. If needed, classification towards the distinction of possible entangled 

trajectories is tackled by using additional object attributes. Finally, phenomena 

generalization is accomplished again through self-organization theory. In figure 1.1 the 

shaded area displays the focus of the analyses addressed in the thesis. 

1.6 Major Results 

Along with the generalization objective a series of research challenges are tackled 

throughout this thesis. More specifically: 



For a single trajectory, generalization is accomplished using the SST-SOM 

technique. Compared to a standard SOM process, the STT-SOM approach offers the 

advantage of invariance to the selection of the initial number of nodes and the additional 

SOM attributes. Since many local SOMs take place, the initial attribute contribution 

remains localized where it performs more adequately. 

Figure 1.1 : Focus of presented framework. 

To proceed from a single trajectory into multiple ones, we register the already 

generalized trajectories by imposing sets of grouping rules. The grouping is performed in 



the generalized S-T trajectories and thus considerably fewer computations take place. The 

resulting generalization supports dynamic scaling to provide more or less detail in the 

product summary. Possible summary visualization schemes portray the potential 

information dissemination capabilities of this method. 

Classification of multiple trajectories when their ID is not known is an essential 

task when S-T trajectories are entangled throughout the S-T domain. A multiple step 

technique is introduced that combines neural networks, geometry and attribute 

management, in order to offer high confidence in data clustering. 

Finally, we investigate the summarization of two-dimensional phenomena 

evolving over time. The concept of S-T helix (Stefanidis et al., 2002a) is used as compact 

representation of spatio-temporal events. The helix model is comprised of SOM 

movement nodes (spines) and cardinality shape-change descriptors (prongs) that 

generalize the input dataset at varying scales. 

Throughout this thesis our focus is the generalization of S-T trajectories. The 

resulting schemes and supported summaries are not only the basis for a visualization 

product but may also support W h e r  processing. 

1.7 Intended Audience 

This thesis is intended for scientists and researchers dealing with spatio-temporal data 

structures, MI datasets and video processing. Related research interests are encountered 

in moving objects and spatio-temporal databases. The findings of the thesis may form a 

basis for the establishment of a behavioral analysis framework to accommodate querying 



and statistical reasoning. Image tracking, change detection, and data clustering disciplines 

can also benefit from this work. The anticipated research problems and approaches that 

are discussed throughout the thesis stand between data analysis and image processing 

communities. 

1.8 Organization of Thesis 

The topics that the thesis addresses flow according to single or multiple S-T trajectory 

analysis, with or without information about the objects they belong to, and with or 

without consideration of the outline changes of the objects they represent. 

More specifically the rest of this thesis is organized as follows: 

The second chapter presents a literature review of related work regarding video 

data, MI summaries, moving object manipulation and spatio-temporal data. 

The third chapter presents the theoretical basis of this work, where a single 

object's trajectory is analyzed and dynamically generalized according to self-organizing 

map (SOM) theory. A new hybrid approach for enhanced distribution of generalization 

nodes is proposed and compared to standard SOM. 

The fourth chapter copes with multiple object trajectories. When few objects are 

included in the dataset, registration of single trajectories is used to form the summary 

elements. However, when more objects are present, a grouping procedure using spatio- 

temporal surfaces is presented. 



The fifth chapter discusses classification and separation analysis between multi- 

dimensional trajectories, which do not include any information about the objects they 

represent. Geometric, neural network and transformation analysis is used towards the 

classification of such datasets. 

The sixth chapter deals with the summarization of phenomena that have a 

substantial spatial extent and change their outline through time. Combined self- 

organizing map and geometric considerations provide the framework to produce efficient 

summaries. 

In the seventh chapter we introduce the implementation of the issues addressed 

and analyzed in the previous chapters. Experimental results, comparisons, error metrics, 

and evaluation properties are also included. 

In the eighth chapter we present conclusions as well as discussions on future 

work. 



CHAPTER 2 

BACKGROUND 

2.1 Video Analysis 

The increased availability of MI datasets is bringing forward interesting research issues. 

Types of MI datasets that are used extensively in research are video data collections. 

Video data processing and analysis present well-known challenges. Problems inherent in 

MI and video dataset exploitation include the highly diverse content and themes they can 

include, the large space they require for storage, and consequently the immense 

processing time for their analysis. Accordingly, we are faced with the need for efficient 

methods to model video content and to support content-based queries. 

Current research in video databases includes database architecture, data modeling, 

segmentation and querying. The use of hierarchical data structures provides a higher level 

of abstraction and leads to computationally less expensive management. For video 

analysis Oomoto and Tanaka (1993) introduced object-oriented attributes to assist video 

database management. The objects included in the database share descriptive attributes 

that facilitate inheritance properties. Hacid et al. (2000) define relationships between 

contained semantics, where video frames and objects depicted in frames are manipulated 



at the same level. Content modeling of video data is discussed in Ardizzone and Hacid 

(1999), where an object layer is complemented by a schema layer that includes the 

attributes of objects, while queries are designed based on this framework. A hierarchical 

video object modeling is discussed in Zhong and Chang (1997), where extraction, 

indexing and classification of objects take place. In Chang et al. (1998) semantic visual 

templates are introduced to support video queries based on users' conceptual designs. 

Based on indexing schemes, the two most common techniques used in the video 

database community are segmentation and stratzfication. According to segmentation, a 

video dataset is segmented into its scenes or sub-scenes, and each temporal unit that 

includes the scene is annotated according to its content. On the other hand, in Aguierre- 

Smith and Davenport (1992) the stratification method for indexing video data is 

proposed, using each object or event of interest as independent throughout the video 

sequence. This technique is object-based, where an object is any significant element 

accompanied by its temporal duration and description. Densification of information is 

supported, and overlap of descriptions according to the content of the video dataset is 

evident. In Hacid et al. (2000) an enhanced stratification technique is introduced where a 

set of temporal segments is represented by one description. This technique resembles 

timeline descriptions. Video analysis at the object level is introduced in Hibino and 

Rundensteiner, (1995) where a visual query language and visualization results for data 

trend exploration are introduced. The relationships between events are fed into the 

queries using annotations. 



Segmentation of video datasets based on scene detection is an area of substantial 

research concentration. Histograms of frames or grayscale pixel differences are used. 

Pixel-based techniques may detect false scene changes due to the localization of the 

approach. Distribution of color often proves more efficient. In Taskiran and Delp (1998) 

a histogram-based technique is intr,oduced for scene change detection. Furthermore, 

Meng et al. (1995) detect scene changes not in the original video but in an MPEG- 

compressed video dataset. Segmentation of video objects (not scenes) is seen in Mao and 

Ma (1999). The segmentation method is based on motion in order to extract video 

objects. Spatial and temporal segmentation both take place using fuzzy c-means 

clustering techniques and the result is complemented by user semantic interaction. 

Vasconcelos and Lippman (1997) go fixther and characterize the content of video. From 

frame space they transfer to feature space, where shot segmentation and estimation of 

activity takes place. Finally, categorization according to content (violence, comedy, 

drama, etc.) is performed. 

Because of the diversity in themes, a predefined video database structure using 

pre-specified objects and attributes is very difficult to be defined. In this thesis, frames 

and objects are organized and related interchangeably at the same infornlation level, 

while a type of stratification technique for data representation is used to handle object 

movement. 

2.2 Spatio-Temporal Generalization and Video Summarization 

Generalization is a well-known cartographic process and substantial research has been 

conducted both in classic and modern cartography. Issues include line and region 



generalization in model or visualization space and using geometric, fractal and other 

processes (Jones and Abraham, 1986; Brassel and Weibel, 1988; McMaster and 

Comenetz 1996; Muller et al., 1995; Stell and Worboys, 1999; Nakos, 1997). 

In many cases the result of cartographic generalization of 2-d objects resembles 

pyramid resampling techniques used in image processing where the image pixel size 

varies in order to achieve adjustable scales. In the content of this work, generalization is 

analogous, yet the step of scale change is not stable but relies on significant information 

that is implied by the area and movement attributes of the moving phenomenon. This 

information and the quantification of its significance is captured by the algorithms 

described throughout the thesis. 

The development of concise representation schemes is essential for the search, 

retrieval, interchange, query, and visualization of information included in video datasets. 

Efforts towards this direction include attempts to summarize video by selecting discrete 

frames at regular temporal intervals (e.g., every n seconds). However, such an approach 

typically fails to capture and represent the actual content of the original video dataset. In 

common monitoring applications it is usual to expect long video segments where few 

objects move in front of a rather stable background. In geospatial applications such 

datasets may be produced for example by a sensor on an aerial platform flying over a 

scene. Alternatively, they may be synthesized by merging multitemporal raster datasets 

like satellite imagery to describe a phenomenon evolving over time (e.g., a flood). 

Common approaches to video analysis tend to emphasize shot detection and the 

selection of a few representative frames, thus failing to capture the semantic content of a 



video (Rui et al., 1998). Summaries can be exploited to support content-based video 

retrieval. The product summaries can have the fonn of posters, new videos, synthetic 

images, or a series of images. Summaries may take advantage of additional features 

inherent in most video datasets, like text or captioning or sound. For instance, the sound 

of an explosion is considered important in order to retrieve an action scene from a video 

dataset. 

Work relevant to the approach introduced in this thesis has been perfonned on the 

analysis of visual and speech properties to construct "skim" video synopses (Smith and 

Kanade, 1995). This "skim" video is constructed by merging segments of the original 

video. Significance is based on the number of objects present in a scene, the words 

accompanying the scene, the structure of the video scene, and possible text. In Pope et al. 

(1998) creation of mosaics for the stable background takes place while trajectories of 

moving objects are extracted. What defines the significance is the maximum number of 

moving objects, when the camera pans too much, or when image registration fails. 

Vasconcelos and Lippman (1998) create summaries based on the dominant 

motion exhibited in the spatio-temporal domain. The summary has the form of an image 

where the dominant object is stable and other objects are depicted as blurred versions that 

demonstrate the motion that took place. This result is not very descriptive in some 

situations. For example, in monitoring applications this representation would merely 

yield the full trajectories of the moving objects on the stable background. Lienhart 

(2000), uses a time-based approach to summarize home videos by using date and speech 

properties, yet neglecting content of videos. 



Summaries can be formulated by extracting keyframes fiom each scene shot 

(Yeung and Yeo, 1997; Uchihashi et al., 1999), or may consist of selected important 

scenes (Christel et al., 1998; Oh and Hua, 2000). In Yeung and Yeo (1997) video posters 

are proposed as alternatives to describe story content and to represent the original video. 

In Uchihashi et al. (1999) creation of pictorial video summaries according to defined 

importance is proposed. Keyfiames are selected and resized according to significance. 

Significance is defined using visual aids like titles, human figures and text to 

automatically caption summaries. However, interpretation of keyframe selection-type 

summaries may be difficult because there is no connection between still frames, and the 

resulting product since it is formed by snapshots and does not adequately describe the 

original video. In Christel et al. (1998) video skims are videos communicating the content 

of the represented video. Sometimes there are abrupt transitions between themeslparts of 

the skim summary. In Oh and Hua, (2000) the summary is based on interesting scenes 

depending on the purpose of the summary. The user chooses a few scenes, and according 

to hisher selection, important scenes like the ones selected are revealed. This technique 

resembles similarity matching and it is user-triggered. 

In Gong and Liu (2000) the creation of summaries is based on the content values 

of frames and not the shot boundaries. Content in this case is represented by color 

histograms. Acquisition of scenes with variable volume of change takes place, and the 

number of frames is selected accordingly to represent the final summary. Similarly, 

content summaries based on color differences is seen in Zhang et al. (1995, 1997). In 

Russell (2000) a library-like approach is introduced, where pre-selected actions match the 



input video, and pre-selected summary design patterns are also used to define the product 

summary. Summarization alternatives include the use of image templates, statistical 

features, and histogram-based retrieval and processing (Chang et al., 1998). Sawhney and 

Ayer (1996) investigate the dominant motion in order to distinguish between moving 

parts and stable parts of the video sequence and produce video mosaics. In Pfeiffer et al. 

(1996) movies are summarized mostly based on content using text selection of 

representative scenes. Significance is based on motion, which is estimated by the 

radiometric difference of frames, and from the "mood" of the scenes, which is estimated 

by color and audio properties. 

Summaries are sometimes large in size because each segment of the original 

video is represented. In addition, some representations are unconnected, making 

interpretation of video content blurry. Most of the techniques presented above select 

segments from the original video dataset, namely short videos and frames. As it will be 

demonstrated in this thesis, we provide the basis to construct new videos that form the 

summary of the original one, using the background as stable and portraying synthetic 

representations of the objects' movement behavior. Summaries, as exploited by most of 

the research community, are the final product of the various analyses, mostly satisfying 

visualization and dissemination purposes. In our case, summary dataset creation is an 

intermediate step towards similarity assessment and query support. Finally, our proposed 

summary creation supports generalization in multiple scales according to user and 

application needs. 



2.3 Spatio-Temporal 

Handling 

Trajectories and Spatio-temporal Data 

In the trajectory domain, Pfoser and Theodoridis (2000) and Theodoridis et al. (1999) 

provide a spatio-temporal synthetic dataset generator to simulate movement trajectories. 

In complementary work Pfoser et al. (2000) analyze index schemes for moving objects 

using tree structures. Bradshaw et al. (1997) describe a technique for real time trajectory 

acquisition. Kalman filters are used to describe the motion. Visual delays are described 

using prediction and they are recovered in order to provide smooth trajectories. Bremond 

and Medioni (1998) and Medioni et al. (1998) provide a system to extract and recognize 

moving objects and they use the formed trajectories towards image sequence 

understanding and scenario recognition. They classify the movement of objects using 

natural language verbs. Wong et al. (1999) use motion segmentation to extract moving 

objects and index them based on the trajectories of their center of gravity. Sahouria and 

Zakhor (1997) provide a framework for the formation of trajectories while queries by 

user-drawn trajectories are supported. 

Topological spatial relations support spatial analysis with focus on relations in a 

higher information level where fbrther processing is accommodated. Related work in 
I 

topology reasoning includes processes based on the 9-intersection model, modeling of 

gradual changes of topological relationships, combined models for direction and 

topology, and more (Egenhofer and Al-Taha, 1992; Bruns and Egenhofer, 1996). 

Papadias et al., (1995) introduce minimum bounding rectangles to relate objects and use 



R-trees to index their relations. Sorting data according to their spatial occupancy through 

tree structures is a promising data manipulation scheme (Samet, 1990; Sellis et al., 1987). 

In temporal logic Allen and Ferguson (1994) provide the framework of the 

defined temporal algebra and event-action representation. Keogh and Pazzani (1997) 

describe the comparison of time series not in a Euclidean-based distance but with the use 

of dynamic time warping (e.g., non-linear alignment), complemented by a piecewise 

linear representation of the data series. Agrawal et al., (1993) introduce discrete Fourier 

transforms of time-series and index them by using R-trees. Equal length of query and 

database is required for the similarity comparison to take place. Lee et al. (2000) also use 

minimum bounding rectangles to describe trends in multidimensional data. In Combi 

(2000) modeling of temporal multimedia data takes place. Frames of videos, temporal 

visual and textual data are all based on object-oriented video database architecture. 

Vazirgiannis and Wolfson (2001) query and index moving objects. Sistla et al. (1997) 

and Wolfson et al. (1999) use a hture temporal logic for modeling and querying moving 

objects. In Agrawal et al. (2000) indexing schemes are introduced in order to support 

queries of the type "find all points present in a given rectangle area at a given time." 

Work on indexing animated objects is reported in Kollios et al. (1999; 2001), 

while Tao and Papadias (2001) propose a framework for indexing and querying spatio- 

temporal data by constructing new tree structures. Chomicki and Revesz (1999) use 

moving vertices and geometric transformations to portray change in order to describe 

point and region change. Similarly, database indexing and querying of complex moving 



spatial objects is seen in Forlizzi et al. (2000). Retrieval of snapshots towards modeling 

of continuously moving objects is presented in Tossebro and Guting (2001). 

In this thesis we model spatial objects, such as points and regions, by dealing both 

the change that occurs in movement according to the image coordinate frame and the 

inner movement that alters the shape of the objects. The produced summaries support 

manipulation and similarity matching of both one-dimensional and multidimensional 

sequences of data. The analysis of the framework under which similarity assessment is 

achieved is not discussed in this thesis but it has been investigated in Stefanidis et al. 

(2001a, 2001b). 



CHAPTER 3 

SINGLE TRAJECTORY ANALYSIS 

In this chapter we present the basis of our proposed analysis towards MI summarization. 

We present our approach for the generalization of a spatio-temporal trajectory generated 

from a single moving object. 

3.1 Definition of Spatio-Temporal Domain and Spatio- 

Temporal Trajectories 

MI datasets anticipated in monitoring applications are comprised of frames that define a 

3-dimensional space where each frame is registered at the time (t) of its acquisition. The 

spatial dimensions (x,y) of this space coincide with the image coordinate systems of each 

individual frame. In that sense, individual frames pile up on top of each other to form the 

3-D spatio-temporal domain. A moving object in the S-T domain is depicted by a set of 

points moving over time. Thus, the trajectory of an object is defined by connecting all 

positions depicting the same object over time. The formed spatio-temporal trajectory 

begins at point (xio, $0, tio) and ends at point (xin, yin, tin), where (xio, 30) are the image 
. . 

coordinates of object i at the time tio when it first appears in the MI stream, and (XI,, y',) 



are the corresponding coordinates at the time t', when it moves outside the MI stream. 

(Figure 3.1). 

Figure 3.1 : Spatio-temporal domain and spatio-temporal trajectories of moving 

objects. 

The key assumption is that for a given MI dataset a classification or coarse 

tracking has identified in each fiame (or in select fiames) an approximate representation 

of mobile objects. This information may be corrupted by various types of errors like 

occlusions, noise, and misclassified pixels. A spatio-temporal trajectory is produced by 

sequentially linking all this information and includes inherently a portion of pertinent 

information for the behavior of a moving object over the corresponding time interval. 

However, some of this information is redundant and should be truncated for improved 

analysis, storage, and communication, while some of this information is significant and 

should be identified and emphasized. In order to capture the significant portion of this 

immense data flow, an efficient and accurate spatio-temporal generalization of these 

trajectories is required. The proposed approach proceeds by analyzing the spatio- 

temporal trajectories of moving objects. 



Instead of points, objects can be described by pixel patches, which depict the 

object's spatial extent in each frame. These patches can be represented by pointslpixels of 

the center of mass of the patch. E.g. for a video sequence of one framelsecond frame rate, 

the movement of two objects is monitored. The first object is equipped with a GPS 

receiver and the second object is tracked through any of the known tracking algorithms. 

The area of monitoring is captured by frames of (1000* 1000) pixels. In each second of 

the duration of the video dataset we acquire a GPS coordinate (x,y) pair describing the 

first object and an image patch describing the second one. GPS and image coordinate 

systems are linked while the center of mass of the patch is calculated and approximated 

by a pixel. The summation of all these pixels and their correspondence to the object they 

belong to, forms the S-T trajectory input dataset. These trajectories are the base units that 

the described analyses are based on. (Figure 3.2). 

kenter of 
mass 

Figure 3.2: Relation of image and trajectory space. 

The spatial coordinates ( x , ~ ) ~  of an object belonging to a trajectory at each 

temporal instance ti that a frame exists, correspond to the pixel coordinates of the digital 



frame. Therefore image and trajectory spatial coordinates are based on the same reference 

system. 

3.2 Generalization of a Single S-T Trajectory 

A spatio-temporal trajectory includes essential movement information that portrays the 

behavior of a moving object. Towards the generalization of the S-T trajectory we select 

representative points from the trajectory, which correspond to MI frames. The selection 

of representative frames is based on the segmentation of trajectory lines into break points 

termed "nodes". The nodes are distributed dynamically to capture the information content 

of regions within the above mentioned 3-D S-T domain. More nodes are assigned where 

the trajectory presents S-T breakpoints, and fewer nodes are assigned to segments where 

the spatio-temporal behavior of an object is smooth. Node placement is based on 

concepts of self organizing maps from neural network theory. 

Trajectories can be perceived as paths in the spatio-temporal (S-T) domain. 

Therefore, we have extended a methodology originally intended to perform road 

extraction from satellite imagery to capture and generalize spatio-temporal trajectories. 

The road extraction approach is based on the use of self-organizing maps (SOM) 

(Kohonen, 1982; Kohonen, 1997; Haykin, 1999) to extract road centerlines (Doucette et 

al., 1999; Doucette et al., 2001). The SOM technique not only links pixels into road 

centerlines, but also distributes nodes along the road to generalize the extracted 

centerline. 



Standard SOM algorithms tend to function well on linearized road segments in 

aerial imagery, as these segments are reasonably smooth lines. However, spatio-temporal 

trajectories tend to include abrupt variations (e.g. an object may change its velocity and 

orientation very often in a limited area). This makes the use of standard SOM techniques 

inadequate for spatio-temporal generalization. To overcome this problem we have 

developed a hybrid SOM-geometry method termed Spatio-Temporal Trajectory Self- 

Organizing Map (SST-SOM). Compared to a standard SOM process, our SST-SOM 

approach offers two important advantages, namely invariance to the selection of the 

initial number of nodes, and the ability to selectively densify or thin to better capture the 

complexity of content of the processed dataset. 

3.2.1 Selection of Frames Using a Self-organizing Map 

The self-organizing map (SOM) algorithm is a nonlinear and nonparametric regression 

solution to a class of vector quantization problems, which is used as the method for 

information abstraction. The SOM belongs to a class of artificial neural networks (ANN) 

characterized by unsupervised and competitive learning. The network space exists 

independent of the input space, and the objective of the SOM is to define a mapping from 

the input space of dimension m onto the network space of dimension d, where m L d. 

Its unsupervised character is perceived through the automation of the procedure 

without any a priori human interaction on the input dataset. The procedure is based on 

competition between the set of nodes, which attempt to best map the points of the input 

space. The goal of competitive learning is to reward the node that optimally satisfies a 

similarity measure between a given input point compared against all nodes. Essentially an 



iterative clustering technique, the SOM uses a shrinking neighborhood function over the 

cluster centers to determine the sequential adjustments that update the clusters positions. 

The outcome of this analysis serves two purposes. First a concise and inclusive 

representation of the input space is performed for visualization purposes. Next, dynamic 

generalization is achieved through the variation of the solution variables, which yield 

more or less detailed description of the input space. More nodes provide more detailed 

representation while fewer nodes yield a more concise description. 

To demonstrate, let p(X) describe a probability density function in 93; for the 

input vector, 

Each connection or synapse, between a component of X and any single node k 

located in network space has an associated weight. The components of each weight 

vector are defined in 93;, which has the same dimensionality of X, or, 

By initializing the contents of W in 93: for each node, the goal of competitive 

learning is to reward the node k that optimally satisfies a similarity measure between a 

given X compared against all Wk . Using the L2 (Euclidean) norm as the similarity metric, 

a winning node q is determined as, 



1 where K is the total number of nodes in %N . The appropriate weight vectors are updated 

sequentially for each input sample according to Kohonen's learning rule, 

wk (n + 1) = wk (n) + rl(r) . h, (t) ( ~ n )  - wk (n)) (3.4) 

Here, X(n) represents the n-th sample drawn from N total input space samples, 

Wk(n) are the node weights at the n-th iteration, and Wk(n+l) are the updated weights for 

the n-th iteration. A time variable t is measured in epochs, each of which represents a 

complete presentation of N input samples to the network. A learning rate function, 

defined as 0 < qft) < 1, dynamically controls the relative rate of weight updates. The 

neighborhood function hq(t) centered on the winning node, is defined as 0 < hq(t) I 1. The 

network nodes adapt to the local density fluctuations in p(X) through ordering and 

refinement phases, during which hq(t) + 0 as t + m. Multiple epochs (iterations) are 

typically required for asymptotic convergence of the algorithm. The basic SOM 

algorithm is summarized as follows (Figure 3.3), (Kohonen, 1982; Kohonen, 1997; 

Haykin, 1999): 

1. Initialize the synaptic weight vectors W(n =1) for K nodes. 

2. Randomly draw an unseen sample X(n) from the input space. 

3. Determine the winning node q using a similarity metric as in equation (3.3). 

4. Update W for winners using equation (3.4). 

5. Return to step 2, and iterate until stopping criteria (checked after each epoch) are 

satisfied. 



Figure 3.3: Initial, ordering and refinement phases. 

The input space in our case is the set of n point coordinates (x,y,,t) of the center of 

mass of the phenomenon as it evolves through time. According to the SOM algorithm a 

set of neurons-nodes m<n are used to represent the input space. The SOM generalization 

of a single S-T trajectory is illustrated in figure 3.4, in which a multi-node neural chain is 

used to abstract the movement fluctuations of a moving object that correspond to MI 

frames. 

Figure 3.4: Information abstraction in the S-T domain. 

Among the advantages of the SOM technique is that the product output space is 

indicative of intrinsic statistical features contained in the input patterns. In addition, 

according to the selection of the number of the nodes in the algorithm multiple resolution 



is achieved. On the other hand, according to experimental results, the geometry of the 

input space is not represented sufficiently, especially when complex geometric shapes are 

generalized. Furthennore, the algorithm is very sensitive to the variables that fluctuate 

immensely and could lead to poor or no solution. Some of these variables are the learning 

rate, the extension of the area that the winning node affects and the number of nodes that 

the generalization will include. This last parameter is the most important one because it 

defines the volume of generalization that the input space will be represented with and its 

selection is not automated. 

3.2.2 SST-SOM Enhancement 

In order to improve the use of SOM for spatio-temporal generalization, SOM nodes 

should be distributed in a manner that captures the geometric complexity of the 

trajectory. Complexity is defined in this context as the spatio-temporal variation of the 

moving object's behavior. In order to detect and quantify this variation the key metric for 

our analysis is the angle formed between three subsequent points in space (x, y, t). Each 

pair of points describes a 'state' of spatio-temporal behavior. The angle between two 

consecutive states is indicative of the local spatio-temporal variation. High deviations of 

these angles from 180" indicate extreme variations between subsequent states, and require 

more, densely distributed generalization nodes. In other words, the degree of the 

generalization is based on the value of the angle in the 3-dimensional space, and a node 

repositioning and densification process takes place using this angle information. The 

algorithm proceeds as follows: 



1. Perform a fast generalization of a trajectory dataset using a standard SOM. This 

produces a brief and imprecise map of the input space. The initial number of 

nodes used in this iteration can be arbitrarily selected. 

2. Calculate the angles $(i) between SOM nodes to identifj. locations where 

densification is needed. This is the case if 

The variable max-angle < 180deg can be user defined. 

3. Evaluate the number of additional nodes that are to be added to the selected 

locations. This number is computed according to equation (3.6): 

max_ angle - b(i) 
n(i) = + 2  

g 

where n(i) is the number of additional nodes in the i location, $(i) is the angle 

between the lines connecting the nodes (i-l,i,i+l), and g is a parameter that 

determines the generalization volume and can be user defined. (Figure 3.5). 

Figure 3.5: Rough generalization and 3D angle estimation. 



4) Perform new, localized SOM solutions, over short intervals, on the locations that 

are identified as candidates for densification in steps 2 & 3 above. (Figure 3.6). 

Figure 3.6: Localized SOM solutions. 

5) Perform thinning to remove nodes that do not contribute to the generalization, e.g. 

when the angle between states is close to 180 degrees. (Figure 3.7). 
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Figure 3.7: Densification and thinning. 

The proposed generalization technique bypasses the high precision variable 

estimation that is needed since a rough descriptor of the shape of the 3d line is only 

acquired. Then by focusing on the territories that need finher generalization SOM 

behaves in a stable fashion while it tries to represent a smaller and more concise region. 

In addition, the selection of the number of nodes that are considered able to describe the 

dataset is automatically selected. 



3.2.3 Scaled Generalization 

Compared to a standard SOM process, the SST-SOM approach offers the advantages of: 

invariance to the selection of the initial number of nodes, and the 

ability to selectively densify or thin to better capture the complexity of content of 

the processed dataset. 

For MI segmentation, storage, and retrieval applications, the most important 

aspect of the SST-SOM generalization approach is that it accommodates both dynamic 

densijkation and spatio-temporal representation. This densification is based on a 

dynamic, content-defined scale. In other words, more frames can be used, closer to each 

other to represent abrupt motions, compared to fewer fiames to represent smooth, regular 

movements. According to the selection of the variables in equation 3.6 more or less nodes 

can be used to describe the same trajectory based on the application at hand. As 

demonstrated in figure 3.8 the same trajectory is generalized by using different number of 

nodes. Apparently the temporal distance between the nodes does not remain constant. 

Figure 3.8: Densification of nodes generalizing the same trajectory. 
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3.2.4 Error Considerations 

This analysis proves powefil enough to overcome or restrict the effect of possible errors 

that occurred in the dataset formation. These errors based on the means of the trajectory 

acquisition, (GPS or tracking algorithms), include occlusion, noise and misclassification. 

Since the geometry of the trajectory has a certain continuity, some random errors and 

noise can be eliminated a priori. In addition two patches or pixels cannot describe the 

same trajectory in the same temporal instance. Thus, coordinates geometrically irrelevant 

fiom the rest of the dataset are discarded. (Figure 3.9). 

Duplicate coordinates I 
------ 1 Break of continuity 

Figure 3.9: A priori eliminated errors. 

The remaining of possible errors included in the datasets and are fed into the SST- 

SOM algorithm, are effectively handled under some limitations. SOM as an iterative and 

competitive algorithm is a process that generalizes the data and does not explicitly follow 

each and every one. Noise and misclassification alter the position of the spatial 



coordinates in a temporal instance. The final position of each neuron is determined 

through competition among all neurons for each coordinate pair and the learning rate and 

winning area determine the neuron movement rate. Therefore, a few errors cannot alter 

the final result considerably. Occlusion errors result in temporal instances where no 

information of the trajectory position exists. SOM bridges these information gaps through 

the connection of neighboring nodes. More details concerning error handling and 

limitations are demonstrated through the experiments presented in chapter 7. 

A possible visualization summary of a MI is a new shorter MI, which includes a 

base map-image representing the background of the monitored area. The behavior of 

objects between nodes is represented by rapidly evolving vectors (e.g. moving spots or 

trace lines). The choice of generalization resolution is a function of the application at 

hand and specific user needs. 

3.3 Summary 

In this chapter we presented a technique for the summarization and spatio-temporal 

scaling of a single trajectory. Using Kohonen's Self Organizing Map neural network we 

acquired a rough generalization of the spatio-temporal trajectories of moving objects, in 

the form of a few selected nodes along these trajectories. We introduced the SST-SOM 

technique, combining SOM with geometric analysis to properly densify these nodes, to 

better represent the spatio-temporal behavior of objects. Thus, we bypass problems 

inherently associated with parameter selection in SOM. The presented technique proves a 

powerful tool for the extraction of generalized information from complex trajectories, 

displaying high invariance to noise and information gaps in the video stream. 



CHAPTER 4 

GENERALIZATION AND GROUPING OF 

MULTIPLE TRAJECTORIES 

In chapter 3 we analyzed the generalization of a single trajectory. The consideration of 

multiple objects brings forward the need to select specific time instances for our MI 

summaries using nodes from multiple trajectories. One can easily understand that the set 

of spatio-temporal coordinates of the nodes describing the path of object i and those 

describing the path of another object j may be totally disjoint. In this chapter, we 

introduce techniques to accommodate registration of multiple trajectories by using spatio- 

temporal surfaces that group trajectories according to their spatial and temporal attributes. 

4.1 Registration of Multiple Trajectories 

According to the density and the dissimilarity of the S-T trajectories and the 

corresponding nodes, we can follow different strategies for merging a complex scene 

summary each portraying some disadvantages: 



An obvious solution is to use the nodes fi-om all S-T trajectories and reference all 

moving objects to every estimated node. This results in a relatively large 

summary, depending on the number and behavior of the objects. 

Another solution is to define nodes according to the most demanding moving 

object and project all other node sets to this dominant set. If the behaviors of 

scene objects are incompatible then the other objects are not efficiently 

represented. 

Furthermore, by using the SOM a "medium" estimation of node selection upon 

the whole set of moving objects is obtained. This gives a summary of the whole 

scene, which does not explicitly depict behavior information for single objects. 

On the other hand, it provides a technique to unravel mass behavioral attitudes in 

the scene. For instance if a police car enters the scene, the majority of the moving 

cars tend to slow down. 

To demonstrate the first solution we integrate and merge all the selected nodes 

from the set of trajectories that comprise a dataset of two moving objects. Co-registration 

checks in order to handle overcrowded node areas are introduced. 

We introduce the concept of temporal neighborhood as the temporal increment 

under which two or more nodes are considered neighbors. When grouping multiple 

trajectories, nodes separated by less than this minimum interval dt are merged and 

substituted by a single "complex" node which is the average of the initial nodes 

(averaging process). 



However, when multiple adjacent nodes are describing longer segments, the 

summary is approximated locally by a short near-MI segment. Otherwise, it includes 

distinct sparse instances. Combined, these sparse instances and brief MI segments 

produce a summary, where temporal resolution changes dynamically, to capture 

variations of spatio-temporal attributes, On the other hand, it proves inefficient when the 

number of objects included in the dataset rises. 

The co-registration of two trajectories is shown in figure 4.1. The nodes for these 

two trajectories are denoted by stars and triangles on the left-hand side. The structure of 

the corresponding summary is also shown in figure 4.1 with elongated segments 

indicating short videos and small squares and circles indicating sparse instances. 

video 

averaging 
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Figure 4.1 : Registration and representation of product summary. 

This procedure allows us to minimize the number of nodes and the complexity of 

the produced summary. It is based on the individual nodes of the S-T trajectories and it is 



suitable for the summarization of few trajectories. If more trajectories are analyzed the 

product summary will be relatively large. 

4.2 Multiple Spatio-Temporal Trajectory Grouping 

In normal monitoring environments, moving objects like cars tend to follow predefined 

spatial paths namely roads, highways etc. When more than one moving object associates 

with others, complex relations such as 'group', 'convoy' or 'expected behavior' that are 

often anticipated, are transposed into the spatio-temporal domain where they can be 

resolved efficiently. When a set of moving objects retains a series of selected attributes 

under a series of defined restraints over time then it forms a group. These restraints are 

both spatial and temporal and they can be represented by a spatio-temporal surface that 

traverses through time as shown in figure 4.2. All the objects included in the S-T surface 

over time remain in relative S-T distance and form a group of objects. This S-T surface is 

termed as S-T neighborhood unit. It is different fiom the temporal neighborhood concept 

since it includes spatial and additional attributes that are described below. 

6 

Figure 4.2: Definition of S-T group surface. 



Based on the definition of group, generalization of multiple sets of trajectories is 

performed according to the spatio-temporal relation that the sets of objects retain. The 

following considerations and attribute descriptions form the basis for the design of the S- 

T neighborhood unit: 

Spatial extent 

Two or more objects are considered as a group when they maintain some spatial 

proximity. This proximity is represented by a circle with a thresholded radius based 

on the generalization volume desired. Hence, a base 2-D surface in the x-y plane is 

defined as shown in figure 4.3. 

Spatial direction 

In cases where the objects are likely to follow a predefined path, like cars follow a 

road, then the above circle is elongated to the direction of the movement-path to form 

an ellipse. (Figure 4.3). When an object lies in the defined surface it is a candidate for 

being part of the current group. 

spatial direction 

Figure 4.3: Spatial extent and spatial direction measures. 



Temporal extent 

In the same fashion temporal extent is defined as the temporal duration'within which 

the objects must lie in order to be considered as a group just like the temporal 

neighborhood. This constraint provides the height of the S-T group surface. (Figure 

4.4). 
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Figure 4.4: Temporal extent. 

Relation of timelspace 

The spatial and temporal constraint need to be linked in a manner that would best 

describe the application at hand. Therefore, some basic relations are introduced as 

shown in the figure 4.5. If spatial proximity is the key attribute for the definition of 

the group then its weight is larger than that of the temporal attribute and the relation 

of space vs. time can be elongated. Other relations may include elliptic or even 

perpendicular to the x,y plane surfaces. (Figure 4.5). There is some work for the 

description of the spatio-temporal surfaces in (Partsinevelos et al., 2000) and in 

(Hornsby and Egenhofer, 2002). 



Figure 4.5 : Distribution of space vs. time. 

Uncertainty considerations 

Until now the geometry of the S-T group surface for a temporal instance is 

constructed. A dynamic shape reconstruction takes place in order to accommodate 

uncertainty measures throughout the spatio-temporal domain. E.g. when a crossroad 

is anticipated, vehicles tend to slow down. As a result the temporal dimension of the 

surface is enlarged to contain the delays while the spatial dimension is restricted to 

the applicable area. (Figure 4.6). Accordingly, in a high-speed highway the spatial 

surface is larger because high speed is anticipated. 

uncertaintv 

Figure 4.6: Change of S-T surface due to uncertainty. 



4.3 Application of Method 

The complexity of the definition of the S-T neighborhood unit is apparent. Thus, when 

there are no specific limitations that define the various thresholds we simplify the process 

by using simpler parameters. In monitoring applications where the same road network 

area is monitored it would be rather straightforward to define some initial parameters 

according to the specific properties of the area. The grouping process will take place 

according to the defined properties and the user needs. The algorithm constructed to 

perform the grouping is termed MUltiple Spatio-Temporal Trajectory grouping 

(MUSTT). A detailed example of the concepts discussed in this chapter is presented in 

the experiment section. A description of the process according to some design properties 

is discussed in the next section. We are interested mostly in road networks where vehicles 

move in rather expected spatial segments such us roads, parking lots driveways etc. The 

strategy that deals with objects moving in any possible placement in the area is slightly 

different. E.g. this would be the case of ships moving on the open sea where predefined 

roads do not usually exist. 

4.3.1 Grouping of Distinct Road Segments 

When the paths-roads include only single segments and not complex interrelated 

networks, grouping takes place independently to each segment. Meaning that every 

moving object traveling in each segment will be bound to this segment and won't traverse 

to any other. Thus, the segments define the spatial boundaries for the sets of trajectories 

included in the dataset. As shown in figure 4.7 the three segments have specific enter-exit 

points and are unrelated to each other. 



Figure 4.7: Unrelated road segments. 

As input in the MUSTT algorithm we use the classified trajectories of the objects 

comprising the MI dataset. The algorithm first separates all the roads by simple spatial 

differentiation. According to the trajectories' spatial extent, each one is assigned to the 

appropriate road segment. 

Next, the basic S-T neighborhood unit is defined by selecting the thresholds and 

particular properties for each road segment. This unit is imposed to each corresponding 

segment of the dataset. The algorithm initializes the grouping process in an iterative 

manner. Every point of each trajectory is examined whether it remains in the same spatio- 

temporal neighborhood of every other trajectory throughout the road segment. For this 



reason the x, y spatial and temporal distances of each pair of points are calculated and 

compared to the S-T neighborhood unit. After the first iteration the algorithm returns with 

series of trajectories that can be considered that they belong to the same group. 

Nevertheless, each of the trajectories may be included in more than one group. In 

order to overcome this redundancy we only accept as a successfully classified group the 

set with the largest number of included trajectories. Thus, the first iteration yields only a 

single group of trajectories. These exact trajectories are withdrawn from the dataset and 

the second iteration initiates which results in the second most populated group of 

trajectories. The iterative process concludes when no more groups can be defined and 

there are none ore single uncorrelated trajectories remaining on the dataset. 

We can now represent each group of trajectories with just one leading average 

trajectory that describes a general tendency of the group with uncertainty that is defined 

by the S-T neighborhood unit. The values accompanying the lead trajectory are the 

medium temporal and spatial starting and ending coordinates with their spatial and 

temporal range. E.g. the groups of trajectories and numeric descriptions of the trajectories 

shown in figure 4.8. 

The numeric descriptions mean that the first group includes objects 1, 3 and 5 that 

entered the road at 3:00pm +I-6 minutes and concluded their occupancy of the road 

segment at 3:45pm +I-3 minutes. The second group includes objects 2 and 4 which 

entered the scene at 4:00pm +I- 1 minute and exited at 4:30pm +/-I minute. The last 

object (#6) entered at 3:00pm but exited at 3:30pm and therefore it couldn't be included 

in the first or any other group. 



Figure 4.8: Groups of generalized trajectories. 

4.3.2 Grouping of Interconnected Road Segments 

Common situations include road segments that are connected in a way that objects fiom 

one segment can travel to the other, e.g. crossroads, etc. (Figure 4.9). 

In these cases we separate the roads in shorter segments so that all resulting 

segments are unrelated. The points where roads meet become break points that separate 

the new formed segments. Thus, we now follow the MUSTT algorithm steps considering 

each of the new segments as a stand-alone unrelated road. The objective of this operation 

is to form summaries that convey the traffic or moving tendencies more than merely 

grouping in all the possible moving directions that objects may follow. Experimental 

results included in chapter 7 portray this type of summarization. The previous section 

discussed the processing details. As soon as we acquire the formed groups we proceed in 

the representation scheme as it will be discussed in the next section. 



Figure 4.9: Interconnected road segments. 

4.4 Scaled Generalization 

The generalization procedure focuses only on the nodes of the SST-SOM analysis of each 

trajectory as discussed in chapter 3. This accelerates the MUS'IT algorithm and provides 

a more concise solution. Computations become condensed and the algorithm converges 

faster. 

By selecting the type of S-T grouping surface and its size, generalization is 

accomplished, as shown in figure 4.10. 
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Figure 4.10: Different generalization volumes. 

By altering the neighborhood thresholds we get more or less vague 

representations. Obviously, there is a tradeoff between generalization volume and 

precision of geometric representation. Using a larger S-T neighborhood unit, more 

generalization is accomplished, less numbers of leading trajectories are included and a 

more concise summary can be constructed. Using an infinite temporal neighborhood and 

defining the spatial extend to include just one road segment, we acquire a single leading 

trajectory. The final representation scheme of the summary is not discussed in depth in 

this thesis. A summary representation would include the number of trajectories included 

in each group, the medium starting and ending times in numeric form, and the S-T unit on 

the side. According to the number of included objects, a cartographic object will be 

accordingly large or small and the movement will be shown as a video of the 

cartographic object moving smoothly in a fast forward fashion between the nodes of 

interest. This movement in the case of interrelated road segments, yields a more 



complicated cartographic object distribution and movement. The following example 

portrays a possible representation format. (Figure 4.1 1). 

S-T neighborhood 
unit 

Figure 4.1 1 : Representation scheme. 

At a very come generalization scale equal to the monitoring time, the number of 

all objects that used a specific road segment and a medium time of starting-ending of the 

movement will be shown. According to the system-user needs one can define the group 

formation according to other techniques. One can group strictly according to each hour of 

monitoring or irrelevantly to the spatial extend. E.g. to show how many cars entered and 

exited a city, what were the traffic fluctuations between each hour in a scene etc. 

4.5 Summary 

In this chapter we tackled the problem of multiple trajectory summarization. Registration 

of multiple trajectories is accomplished by grouping the points or SOM nodes of the 

trajectories according to their spatio-temporal relation. This relation is quantified by 



introducing the spatio-temporal neighborhood unit. The approach varies slightly between 

distinct and related road segments while scaled generalization is accomplished by altering 

the S-T neighborhood unit's dimensions. 



CHAPTER 5 

TRAJECTORY CLASSIFICATION 

This chapter focuses on the classification of moving object trajectories included in a 

dataset comprised of patch data depicting object position over time. Such datasets are 

most commonly the product of tracking procedures. Usually, each object is identifiable 

and it remains associated with its corresponding data patches through a code record in the 

patch dataset. Problems arise when some objects interrelate in such a manner that we are 

unable to separate them or there is no information available to ensure their belonging to a 

class. Thus, data do not explicitly assure an identity since there are no formed trajectories 

in the dataset but merely pixel coordinates. This exact problem where we have no 

information about which data belongs to each of the object trajectories is investigated and 

tackled in the following sections. An attribute-aided technique is introduced, based on 

attribute space clustering and neural networks classification. 

5.1 Introduction 

We assume a set of common types of moving objects such us cars and that the number of 

those objects is relatively small. For a large numbers of objects computations become 



immense and some post processing including clustering on time and space is necessary. 

Also a relative closeness in the temporal start and end of the object's life is also assumed. 

If objects do not have any temporal or spatial similarity then their separation is trivial, as 

explained later in this chapter. 

5.2 Trajectory Dataset Description and Acquisition 

Let's consider a pair of trajectories. If the trajectories are distinct in space or time then 

the classification procedure could simply be to separate the points by geometric 

proximity analysis. On the other hand, if the trajectories are entangled like the ones 

shown in figure 5.1, classification of each point to its respective trajectory is not a trivial 

task. 

Figure 5.1 : Point trajectory dataset. 

Situations in which the separation is not obvious, occur when the franie rate is 

relatively small. As the step between two consecutive images of the same object becomes 

larger the connection due to proximity weakens. A large frame rate can also be 



problematic. Imagine a dataset describing two cars moving side-by-side and then 

separately. One wouldn't be able to confidently discern between the two cars. Pure 

geometric analysis that checks the neighboring distance of pairs of points proves 

inadequate in many cases: 

1) For the two segments of figure 5.2 one cannot be sure whether the trajectories 

follow the almost straight path or the curved one. 

. . . . . . . . . . 
Figure 5.2: Possible misclassification of trajectories. 

2) As demonstrated in figure 5.3 two points geometrically closer than two others do 

not guarantee that they belong to the same class. As seen in the figure, even 

though S1 distance is larger than S2 the S1 link is the valid one and connects the 

points of the same trajectory. 

Figure 5.3 : Misclassification of trajectories due to proximity. 



5.2.1 Dataset Formation 

For this classification problem we assume that the number of objects included in the 

dataset is known. It is relatively simple to infer how many objects are included in the MI 

dataset. If we randomly select a frame in a temporal instance then by simply counting the 

number of discrete objects in this frame we can infer the number of objects. Since some 

noise might be evident, more frames are selected and according to the stated assumptions 

and noise removal algorithms, we confidently infer the actual number of objects. In the 

same manner some additional object attributes are estimated while their acquisition 

precision provides the range of the attribute values as we describe in the remainder of the 

chapter. 

5.2.2 Dataset Attributes 

A tracking procedure would commonly yield a number of pixel patches that evolve 

through time. These patches have some attributes readily attached on them, namely size, 

shape and color. Sequential geometric neighbors are also evident since MI datasets in 

most cases presuppose a temporal rate that relates the object's spatial locations through 

time. All attributes associated with an object are not perfectly determined since occlusion 

noise and digital image capturing limitations exist. 

The input dataset has the form of (x, y, t, at,, atr, ...), where x, y ,t are the spatio- 

temporal coordinates of the trajectory and atl, at*,. . . are the attributes attached in the 

object's description. The key attributes that we use for our analysis are relatively easy to 

obtain from the dataset or the tracking procedure and include: 



3 spatio-temporal dimensions 

The known spatial (x,y) and temporal (t) dimensions of the center of mass of the 

object. 

Radiometric dimension 

Depending on whether the image is color or black and white this dimension can 

be 1-d 3-d or 4-d according to the color scheme used. Additional radiometric information 

is welcome to replace or add to the dimensions included. E.g. thermal imagery can be 

vital to discern vehicles, humans, etc. At this point we deal with grayscale patches and 

thus the values of thls attribute range between 0 and 255. 

Size andlor shape 

The number of pixels describing the object provides an estimation of its size. 

Shape schemes that classify the shape into predefined categories can be used to portray 

this attribute. Since we anticipate a small variety of objects that may be part of the scene 

it is fairly simple to provide a classification map for the shape of the objects. We do not 

deal with the shape at this point while we use the size as an additional attribute. 

As we understand not every single data belonging to the same trajectory will have 

the same size or the same exact color. Variation is anticipated since errors in tracking and 

image manipulation are evident. Hence, instead of a stable value, a range of values is 

assumed to accompany the points of each trajectory. 



5.3 Spatio-Temporal Attribute-Aided Classification 

The analysis introduced in this section focuses on the separation and differentiation of 

trajectories, based on both spatio-temporal and attribute coordinates. Having acquired the 

number of objects and their attributes, the input dataset is 5-dimensional. When one or 

more attributes are distinct then the'separation could be focused on the distinct attribute 

and the classification would be apparent. When there is some overlap between the 

attributes, given the spatio-temporal proximity of the trajectories, the same problems as 

the ones described in section 5.2 still exist. Sequential capturing would fail since there is 

no evidence whether each point belongs to one or the other trajectory since the attributes 

are similar. 

Spatio-temporal proximity is a key attribute that we take under consideration in 

order to discern between the different trajectories. When sets of points are geometrically 

distant then their separation confidence becomes large. In areas where data are 

geometrically close to each other then utilization of all the attributes takes place to add to 

the classification confidence. Again, reliance on the differentiation of attributes between 

consecutive points may lead to severe misclassification of large segments of the 

trajectories. 

The core of the presented procedure is the formation of groups of points that 

adhere to each trajectory instead of single point-to-point analysis. Thus, a more objective 

solution is evident since groups of points and their attribute means provide a more 

reliable basis for the classification procedure. The formed algorithm is called Attribute 

aided Clustering Classification of Entangled Trajectories (ACCENT). 



Experimentation included reduction of dimensionality, neural net transformations, 

and multi-dimensional clustering. These methods failed to discern between the 

trajectories since they mostly associate with point-to-point data processing and do not 

attack the problem in a generalized fashion, which yields a more secure result. 

5.3.1 Spatio-Temporal Group Formation 

Let's assume that we have a dataset that includes two trajectories as shown in figure 

(5.4a). The analysis begins by separating groups of points that are spatio-temporally 

distinct from any other group. This is accomplished by imposing a distance threshold to 

each pair of points. Points form groups as long as they are farther than the threshold 

distance from corresponding points of the same temporal instance. 

A temporal proximity is also required to describe the connection between the 

processed points. The groups of points are considered the base units over which the first 

step of classification takes place and they are termed 'branches', as shown in figure 5.4b. 

The red rectangles embrace distant point pairs, while the blue rectangles include the 

formed branches. There is strong confidence that the points included in each branch, 

belong to the same trajectory even though we don't yet know to which one. In this first 

step, there is no need for any additional attribute processing. 



b. 
Figure 5.4: a) Input dataset and b) branch formation. 

Now a set of branches including the spatio-temporal, color and size coordinates is 

available. Next, we estimate the mean of the color and size attributes and we map them in 

a Zdimensional space. (Figure 5 S). 

Figure 5.5: Average attribute mapping of branches. 



As demonstrated in the figure, the difference among attributes for each trajectory 

is mapped in the attribute space in a separable manner. This approach works when the 

varied attributes for each trajectory have different means. In other words, when there is 

none or some controlled overlap in the attribute values then the above-defined separation 

is evident. This overlap cannot be defined uniquely and depends on the placement and 

range of all data coordinates. In the experimental section in chapter 7 we show that even 

with severe overlap in the attributes we still can differentiate the branch identity. 

The branch mean attribute values carry with them single points that may 

individually be misclassified. To exhibit the advantage of this group branch processing 

lets assume that a point (i) that belongs to trajectory A has the following attributes: 

(x, y, t, c, s)=(lO, 10, 10, 124,24) 

where (c) is the color value and (s) is the size value. The average values of the varied 

attributes (c, s) of trajectory A are (115 +/-lo, 20+/-7), while for trajectory B they are 

(125+/-10, 25+/-7). As easily seen under some spatio-temporal proximity between 

trajectories A and B the coordinates of point i would classify it under trajectory B, even 

though it belongs to trajectory A.  On the other hand if point i belongs to a branch 

populated with many points, the average value of the attributes would logically fall near 

the A attribute center. (Figure 5.6). 
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Figure 5.6: Correct classification through branch analysis. 

We have to make sure that the number of points included in each branch not to be 

minimal so that a populated statistical average would be able to classify correctly 

possible outliers. 

5.3.2 Attribute Space Clustering 

The following task of the procedure is to divide the separable attribute data according to 

their positioning in the 2-dimensional attribute space. This task is accomplished by 

utilizing a simple SOM or k-means algorithm that takes into account not only the 

separability of the data but also the neighboring of each point to the others. The SOM 

algorithm is discussed in chapter 3. The result is shown in figure 5.7. Two nodes are used 

and aRer the iterative process they converge to the center of the two formed clusters each 

representing three attribute pairs. The branches are now classified and related to the 

trajectory they belong to. 
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Figure 5.7: Attribute clustering and branch classification. 

The remaining points, namely the ones near the intersections between the 

trajectories are still unclassified. Their classification is accomplished by utilizing a 

backpropagation neural network. 

5.3.3 Backpropagation Theory 

The backpropagation neural network (NN) (Haykin, 1999), is a widely used neural 

network that is applied to numerous diverse applications. Its basic concept is that given 

an input space it becomes connected with the output space through a series of synaptic 

neurons that form a series of hidden layers. 



A node or neuron is the basic computational unit of a NN. Its function is to 

receive an input signal and to provide an output through a function that resides in the 

node. This function is termed as activation function and can be linear, or non-linear such 

as sigmoidal including hyperbolic tangent and logistic. The input and output values are 

associated with weights (w) and biases (b) that are altered by the function. If more 

weights form the input of a neuron, then the function computes the weighted sum of the 

inputs. In figure 5.8 the input (xl, x2, x3) is fed to the node and the function f yields an 

output y according to the equation: 

Figure 5.8: A neuron-node produces the output y 

The ordering of the neurons forms layers that are termed hidden layers. In figure 

5.9 we discern 2 hidden layers each including k, 1, nodes. The input space is n- 

dimensional while the output includes m nodes. 
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Figure 5.9: Two hidden layer feedforward network. 

A feedforward network is a network that does not include loops or circles in its 

design. The hidden nodes must be under some sort of ordering according to the input and 

output space. This prerequisite must exist because we actually do not have any target 

values inside the hidden layers and therefore the network does not know where to 

converge. The error backpropagation travels reversely in the layers and gives an estimate 

of performance while inputs and weights under the functions of the nodes provide in- 

between target values for the hidden layers. 

In order to achieve convergence through the training phase a linear or non-linear 

function connects the various layers of nodes namely input, hidden and output. The input 

vector travels through the layers and assigns weights to all the connections. These 

weights according to the function yield results back and forth among the nodes and 

therefore adjustments are made so that the input will result in the output. 



The basic backpropagation algorithm is summarized as follows: 

Initialization: Give initial synaptic weight and bias values to the connections of 

the network assuming a uniform distribution. 

Forward pass: Computation of the function signals trough all layers towards the 

output. 

Backward pass: Compute the error and correct the synaptic weights of the neuron 

connections. 

Iteration: Return to step 2 and 3, and iterate until stopping criteria (checked after 

each epoch) are satisfied. 

During the forward pass the input vector activates the nodes and propagates its 

effect throughout the hidden layers towards the output space. At this point all connections 

have stable assigned weights. When compared to the output space an error is formulated 

which now travels backwards. The weights at this backward pass get changed according 

to the error and an error rule. By these means the network adjusts its values in a statistical 

manner and tries to adjust the input towards the output by diminishing the back- 

propagated error. The forward signals are termed function signals while the backward are 

termed error signals. 

5.3.4 Backpropagation Towards Trajectory Classification 

In our case the goal is to classify a multidimensional dataset into separable classes. The 

input space is five-dimensional as previously described. Figure (5.10). There is a need to 

train the network in order to learn the specific classification task. Therefore, a set of 

correct classified input-output relations is required. This training phase adjusts the values 



of weights and biases in the network and thus it is important to include as many correct 

training data as possible to accomplish the best possible performance. 

Our input space is formed by the already classified branch points of the 

trajectories, as described in the previous section. In many cases and according to the 

application at hand these already classified points comprise a large percentage of the 

original dataset and the performed classification is considered quite effective. The output 

space in the training phase consists of vectors of the form given in equation (5.2) for a 

three trajectory case: 

training - output = [l 0 0]v [0 1 0]v [0 0 11, 

where each vector corresponds to a different class. In other words the network is forced 

to learn and map the input space in a dimension space of size equal to the number of 

trajectories which in our case is small. After the training phase we feed input vectors into 

the network and the network produces a three by one ( 3 x 1 )  vector for each input 

according to the input coordinates and attributes of each input vector. Then according to 

the resemblance or value proximity of the output to one of the training vectors of 

equation (5.2) the network decides in which of the classes each input most likely belongs. 

Experiments show that a two hidden layer network comprised of five and three 

nodes accordingly is capable of performing an adequate classification as shown in figure 

5.10. A 5-dimensional input space results in a three possible output layer for a dataset 

comprised of three trajectories. 



Every input vector can be classified under one of the classes. Nevertheless, not all 

of the inputs are classified under equal confidence. The output values provide a measure 

of classification reliability. Therefore, by setting thresholds in the values of the output 

vectors, the sensitivity of classification is adjusted to include more or less points in each 

class. More included points results in larger possibility to include misclassified ones. E.g. 

the thresholds could be for each class of equation (5.2): 

Class1 : [valuelM.6 value2<0.3 value3<0.3], 

Class2: [value 1 <O.3 value2M.7 value3<0.3], 

Class3: [valuel<O. 1 value2<0.2 value3M.91, 

Class (1) will probably include more points but the possibility of misclassification 

rises, while class (3) would have minimal misclassifications yet few included points. 

Thus, some points will still remain unclassified. The trajectory classification outcome 

after this step for the trajectories of figure 5.7 is shown in figure 5.1 1. 
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Figure 5.1 1 : Backpropagation classification outcome. 

5.3.5 Trajectory Reconstruction 

The final classification step includes the separation of each classified point population 

into a different dataset, which most likely would be incomplete and would include some 

outliers or misclassified points. Most of the outliers can be easily removed according to 

simple proximity tests. In figure 5.12 the highlighted points portray the distant 

misclassified ones, which are eliminated fiom further processing. 



Figure 5.12: Outlier elimination. 

Next for each formed dataset imposition of the SOM algorithm takes place. 

Again, the analysis of the SOM properties and solutions was presented in chapter 3. A 

better representation of each trajectory is constructed and all the gaps are linked through 

the SOM algorithm. The SOM node chain is set upon the remaining unclassified points. 

If a few points portraying an abrupt change in orientation or speed are missing then the 

neighboring SOM nodes form connecting lines onto which additional unclassified points 

should lie. These lines are termed 'carriers' and operate as links of points. Since the 

points between a pair of nodes do not lie on the straight line of the carrier, we need to 

expand the inclusion space. It is like forming a cylinder around the carrier and testing 

whether the points lie inside this cylinder or not. For this reason, we estimate the 3- 



dimensional distances between the unclassified points and the carriers. In figure 5.13 at 

the left side, a SOM chain of 7 nodes initializes the procedure, while on the right side the 

resulting classification due to carrier inclusion is shown to reconstruct the partial 

trajectories . 

Figure 5.13: Carrier formation and further classification. 

The carriers like the branches are more independent and objective selectors of 

point data since they are not related merely to pairs of points, but they depend on a set of 

many more points. Since there is no angular information at this point between the nodes 

and points, we cannot utilize the SST-SOM neural net. 

5.4 Algorithm Summary 

The ACCENT algorithm steps are summarized as follows: 

1. Separation of branches according to spatio-temporal distance. 



2. Mapping of branches' average attributes. 

3. Clustering of attributes and classification using k-means. 

4. Backpropagation classification of remaining points. 

5. Separation of trajectories, misclassification corrections and SOM solution. 

6. Carrier formation and final point ~lassification. 

The experimental chapter 7 demonstrates several examples of the analysis 

discussed and provides examples of classification errors and misclassification 

percentages for various situations. 

5.5 Summary 

In this chapter we introduced an approach for the classification of multiple trajectories, 

which have uncertain identity as to which objects they belong to. The technique uses 

additional attributes inherent in the trajectories description to classify some parts of them 

where the confidence of classification is high. Backpropagation classification and 

geometric1SOM analysis further classifies the rest of the data with very reliable results. 



CHAPTER 6 

SUMMARIES OF 2-DIMENSIONAL PHENOMENA 

In chapters 3, 4 and 5 we introduced a framework for the summarization of spatio- 

temporal trajectories considering point datasets (or patches related to a point), where 

moving objects are reduced to a point representation, ignoring their spatial extent and the 

variations of their outlines. In this chapter we move beyond this simplification, extending 

the fiamework introduced in the previous chapters to accommodate the spatial extent of 

objects. This allows us to consider not only the movement but also the deformation of 

spatial objects, introducing a new more comprehensive spatio-temporal model. This is a 

key development to support the analysis of spatio-temporal phenomena that have certain 

spatial extent and change their position andlor extent over time. 

6.1 Introduction 

Phenomena that are tackled in this chapter include slowly moving (e.g. urbanization 

trends depicted in a series of monthly satellite images) or rapidly evolving (e.g. 

hurricanes depicted in hourly or daily datasets), and they take place over a fixed area (e.g. 

flooding) or may be constantly changing their location (e.g. a moving fire front). 



The movement of a region within the S-T space is manifested as a set of 

neighboring classified points moving over time. The trajectory of an object defines a 

pathway within the 3-D S-T space, by connecting all positions depicting the same region 

over time. (Figure 6.1). 

Figure 6.1 : Movement of a phenomenon in the spatio-temporal domain. 

By exploitation of the geometric properties of S-T trajectories of moving objects 

we extract important information for dynamic information generalization and creation of 

MI dataset summaries. We address two primary types of change inherent in the 

movement of a phenomenon. First, the object changes its location according to an 

external reference h e .  This kind of change can be represented by a trajectory 

describing the movement of the center of mass of the object as it evolves in time. The 

second type of movement refers to an internal reference M e  and it describes the 

changes of the shape of the object that occur through time. 

An efficient summarization h e w o r k  has to support the capability to handle 

multiple levels of generalization of MI datasets. This thesis introduces a generalization 

approach that accommodates multi-scale spatio-temporal representation. As discussed in 



chapter 3, the multi-scale analysis is based on dynamic scale selection. Considering the 

above, we again treat summaries both as products for visualization purposes and as 

intermediate datasets that are suitable for further qualitative and quantitative similarity 

analysis. 

6.2 Spatio-Temporal Helix 

We assume phenomena that change gradually between two consecutive MI frames and 

they spread relatively evenly in the (x,y) plane. At this point, no holes in the area 

depicting the phenomena and no possible splits of the area are examined. We consider a 

generalized form of representation that includes two types of change, external and 

internal: 

1. When a phenomenon changes geographic location in its entirety and has no 

evident stable base around which it spreads then the movement of the center of 

mass of its area is described by a spatio-temporal trajectory. This trajectory 

forms a component of change that outlines the average moving tendency of the 

region through time. 

2. Inner changes of the area describing the phenomenon are also significant and 

should be represented. Therefore, a change occumng in the area of the 

phenomenon between frames corresponding to t(i) and t(i+l) instances, relates to 

either expansion or shrinkage. This change relates to either specific spatial 

segments or to the entirety of the phenomenon. 



The representation we introduce is indicative of just the general shape 

deformation tendency of the area and it does not compensate for the actual shape of the 

phenomenon. Shape descriptions and indexes are seen in (Liu and Geiger, 1999) and are 

not tackled in this paper. In addition, the focus remains on geometric change of moving 

objects as opposed to semantic. . 

We make use of the concept of the spatio-temporal helix (STH) as a compact 

description of an object's spatio-temporal behavior (Stefanidis et al., 2002a; 2002b). It 

comprises a central spine and annotated prongs. We also include the initial instance of the 

phenomenon description. More specifically: 

The central spine models the spatio-temporal trajectory described by the center of 

the object as it moves over a temporal interval. 

The protruding prongs express expansion or collapse of the object's outline at a 

specific time instance. 

Figure 6.2: Spatio-temporal helix. 



A phenomenon can be described by a set of nodes corresponding to instances of 

change according to the defined components of the S-T helix. Equation (6.1). 

where n s ( l n )  are the nodes describing the spine of the phenomenon and np( l rn '  are the 

nodes describing its prongs. 

As a spatio-temporal trajectory, a spine comprises of a sequence of (x, y, t) 

coordinates. Its nodes correspond to breakpoints along this trajectory, namely points 

where the object altered its speed andlor orientation. (Figure 6.3). Accordingly, each node 

ns(') is modeled as: 

nsC) =(x, y, t q ,  qS)('), 

where: 

(x,y,t) are the spatio-temporal coordinates of the node, 

q, is a speed qualifier classifying the node as an acceleration (qa), deceleration (qd) 

one, and 

q, is a rotation qualljier that can be expressed as the azimuth of the movement. 

Each prong is a model of the local expansion or collapse of the outline at the 

specific time instance where t h s  event is detected, and is a horizontal arrow pointing 

away from or towards the spine. (Figure 6.2). It is modeled as: 

np@ = (t,r,al.a2)('l , 

where: 



t is the corresponding temporal instance (intersection of the prong and the spine), 

r is the magnitude of the outline modification, expressed as a percentage of the 

change between areas or medium distance between consecutive object outlines, with 

positive numbers expressing expansion (corresponding arrows pointing away jPom the 

spine) and negative numbers indicating collapse (arrows pointing towards the spine), 

al, a2 is the range of azimuth or cardinality where this modification occurs; with 

each azimuth measured as a left-handle angle from the North (y) axis. (Figure 6.3) 

Change in speed 

Change in orientation 

Localized change 

Overall change 

Figure 6.3: Schematic definition of spine and prong attributes. 

We can have more than one prong at the same instance, as it is possible for an 

object to be expanding in one direction while shrinking in another at the same time. 

While in general prongs correspond to small ranges over an outline, by properly 

assigning values to the azimuth parameters of a prong we can also model global 

expansion/collapse (a=360). 



Combined, spine and prongs comprise a concise signature of an object's spatio- 

temporal behavior. They express external (spine) and internal (prongs) processes and 

allow efficient spatio-temporal modeling and support complex analysis. In order to go 

further in the generalization and representation process we address each component with 

different analyses that yield dynamic scaled generalization in both (x,y) and t coordinates. 

6.3 Movement Capturing Towards S-T Helix Construction 

In this section we introduce the analysis, which leads to capturing the spine and prong 

properties. 

First, we estimate the areas of the phenomenon in each instance by using a simple 

outline edge detection algorithm. Then, we compute the center of mass for the areas in 

each frame. The center of mass in a 2-dimensional surface is given by adding the x and y 

coordinates and dividing them with the area of the phenomenon. In a classified image we 

simply compute the regions where the phenomenon resides and count the included pixels, 

equation (6.4). 

where x(,,~,) and y(,,,,) are the coordinates of the center of mass, X(i), y(i) are the 

coordinates of each pixel included in the region, and A is the area of the region 

describing the phenomenon. After detachmg the center of mass the spatio-temporal 

trajectory is formed. (Figure 6.4). 



Figure 6.4: Spatio-temporal trajectory of phenomenon. 

6.3.1 SOM Towards Spine Movement Capture 

Based on the theory of SOM and the SST-SOM algorithms discussed in chapter 3, the 

SOM solution provides a generalization of the movement of the region. SOM 

generalization of a single S-T trajectory is illustrated in figure 6.5, in which a multi-node 

neural chain is used to abstract the movement fluctuations of an object corresponding to 

the center of the region we model. 

Figure 6.5: SOM nodes describing a S-T trajectory. 



Next, translation of all frames according to a common center of mass takes place. 

The translation is performed by adding to all the pixels of M e  j the correction 

coordinates defined by the equations (6.5): 

where (x,Y)~ is the point where all j regions are referenced to. 

The algorithm is now ready to represent the perimeters of the regions in each 

temporal instance as will be described in the next section. 

6.3.2 Directional Change Analysis Towards Inner Movement Capture 

In accordance with the previous step, every solution node for M e  i is translated to the 

next M e  (i+l) by Ax, Ay. (Figure 6.6). Therefore, it is considered as a non-moving 

object and the solution proceeds by comparing pairs of subsequent areas. 

Figure 6.6: Translation of all k m e s  to form a non-moving object. 



In order to capture the relation between two instances of an objects' movement 

we use one of the known cardinality models (Egenhofer & Franzosa, 1991). Here the 

known cardinal directions (NSEW) and their subspaces are used to assist capture of 

change. A series of sub-areas are formed by imposing the cardinality reference frame on 

the center of mass of each area. Comparison of the formed sub-areas for each pair of 

h e s - a r e a s  takes place to provide a numeric or percentage change tendency. (Figure 

6.7). 

Figure 6.7: Comparison of sub-areas between consecutive h e s .  

A set of thresholds defines which percentage or volume of change should be 

included in the summary. As demonstrated in figure 6.7 changes in North and East are 

considered too small to be represented by the prongs. In some other application the 

threshold could be set so that the North and East changes would be included in the 

summary. Accordingly densification of the cardinality h e w o r k  yields a more detailed 

representation of change as seen in figure 6.8. 



Figure 6.8: Densification of cardinality reference system. 

Prongs are defined by comparing areas between two corresponding sub-areas or 

by measuring the medium distance between two consecutive sub-outlines as formed by 

the cardinality reference system. 

Furthermore, we define several types of additional outline descriptor nodes. These 

nodes depict attributes that may be of interest to the phenomenon mapping. Directional 

change captures the localized abrupt changes of the phenomenon's spatial occupancy 

through time. The non-abrupt non-localized changes of the area of the phenomenon are 

captured through simple geometric computations that set thresholds on the values of the 

area modifications through time. These types of change include: 

1. When there are gradual modifications that sum up to a significant change between 

t i )  to ti+n). (Figure 6.9). 
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Figure 6.9: Gradual changes towards significant change. 

2. When there is a transition between expansion and shrinkage of the area. In this 

case in order to avoid transitions of insignificant volume we set a P'% threshold 

to the changes that occurred since the previous transition. 

6.3.3 S-T Helix Framework Summary 

The above defined nodes complemented with the prong vectors form a concise data 

representation that resembles DNA chain sequences. The phases of the analysis are 

summarized as follows. (Figure 6.10). 

1. Compute center of mass. 

2. Perform SOM for the center of mass S-T trajectory. 



3. Translate and register the areas to a common (x,y) reference center. 

4. Perform directional change analysis for each M e .  

5. Compute the additional geometry nodes. 

Figure 6.10: Overview of helix modeling. 

6.3.4 Static Phenomena 

Up to now, we considered phenomena that change with respect to a base location. For 

phenomena such as floods in lakes, urbanization in an existing town, tumor growth etc. 

we do not consider external movement of the center of mass. Thus, we are not concerned 

with the first type of change discussed in the previous sections. Consequently, we need to 

compute the area of each M e  and then estimate the directional change and norm of the 

abrupt changes between each pair of consecutive m e s  complemented with the 

geometry considerations. It is noted that in this case the center of mass may not coincide 

with the center axis where the cardinality reference system is settled. The axis in this case 

is perpendicular to the center of mass of the phenomenon area as depicted on the first 

frame. 



6.4 The S-T Helix as a Generalization Tool 

The S-T helix supports scaled generalization of the resulting data by varying the 

attributes of the algorithms for each of the components discussed. Specifically, the SOM 

algorithm supports flexible representation precision by changing the initial number of 

nodes that are used to generalize the 3-d trajectories. More nodes are used in order to 

acquire a more precise representation of the movement of the phenomenon while fewer 

nodes are used when a more concise representation is required (figure 6.11, blue nodes). 

If the number of the nodes equals the number of frames-instances then we have a perfect 

match in the representation of the phenomenon movement. 

The prongs capture the local abnormalities according to the densification of the 

cardinality framework. In addition, the threshold of the change significance we set 

between the formed areas determines the generalization volume of the final product 

(arrow prongs). 

Finally, based on the thresholds for which overall change constitutes significance 

we obtain variable generalization of the phenomenon (figure 6.1 1, yellow nodes). For a 

more accurate and detailed description a small threshold percentage would be adequate. 

By using a minimal threshold percentage we get a near complete description of the shape 

changes of the phenomenon. 



Figure 6.1 1: Generalization in spine and prongs. 

In summary, the generalization parameters are listed below: 

1. Number of movement nodes, 

2. Percentage of global inner change, 

3. Percentage of local inner change. 

The result is similar to cartographic generalization. However, the step of the scale 

change according to our analysis is not stable but relies on the significance of information 

that is implied. This significance is defined by the area and movement attributes of the 

moving phenomenon and is captured by the algorithms defined above. 



6.5 Reconstruction of a S-T Instance 

In the definition of the S-T helix we included the initial instance of the phenomenon 

description. Thus, the S-T helix constitutes a model map of the described phenomenon. 

As we explained in the previous section, this map can either represent accurately the 

input space by using adequate generalization parameters, or represent the input space in 

an abstract manner and thus lower the computational volume for post processing. 

According to our model in order to reconstruct the phenomenon for a random 

temporal instance we rely on the neighbor spine and prong descriptions equation (6.8): 

The (x, y) coordinates are estimated through interpolation between the previous 

and next spine nodes where we have a full description of the movement of the 

phenomenon. The qualifiers for each instance t, are deduced by the qualifiers of the 

previous spine node according to equation.(6.9). 

where (x,, yl, tl) and (x2, y2, t2) are the coordinates of the previous and next spine nodes. 

The azimuths and norms of the prongs describe local temporal instances and thus 

they cannot be interpolated to provide a prong description for a random temporal 

instance. However, the prongs that describe overall changes (expansion or shrinkage) 



throughout the phenomenon can be interpolated to the temporal instance of interest and 

provide a metric of expansion or shrinkage r,. 

In order to acquire the history of a temporal increment At=(tl, t2) we consider the 

temporal instances of the starting and ending time complemented by the spine and prong 

nodes between these two instances as described by equation (6.10). 

Again according to generalization variables we may have more or less detail in 

the approximation of the position and shape tendencies of the phenomenon at hand. 

6.6 Summary 

In this chapter we defined a framework for the spatio-temporal analysis of motion 

imagery (MI) datasets depicting two-dimensional phenomena evolving in time. More 

specifically, we introduced the concept of a spatio-temporal helix as a concise 

representation of spatio-temporal events, modeling their path in space and the variations 

of their outline. We presented in some detail the automated algorithms developed to 

support the automated generation of spatio-temporal helixes and discussed their potential 

to support spatio-temporal analysis. 



CHAPTER 7 

EXPERIMENTS 

The approaches described in this thesis have been implemented in the MATLAB 

environment. Creation of synthetic datasets of moving objects upon digital images took 

place, in order to use them in the presented experiments. Also random behaviors of 

spatio-temporal trajectories were generated to describe objects moving with stable or 

variable velocity. 

7.1 Single Trajectory Summarization Through Classic SOM 

The original SOM algorithm is used to generalize single moving object trajectories as 

described in chapter 3. The following figures demonstrate the SOM generalization of two 

trajectories using different number of nodes. The method is bound to the sensitivity 

according to the number of nodes selected. 

As shown in figure 7.1 a high capture error is evident in the trajectory curves. The 

blue dots represent the input dataset, while the red nodes are the SOM generalization 

nodes. The input trajectory is formed fiom a 140 h e  sequence. 



Figure 7.1 : Generalization of a 140 kwne trajectory using a)15, b)25, c)35, d) 45 SOM 

nodes. 



Figure 7.2: Generalization of a 226 point trajectory using a)15, b)25, c)35, d) 45 SOM 

nodes. 



Again, as shown in figure (7.2) the trajectories are poorly represented by the SOM 

node sequence. In figures 7.lc,d and 7.2d over-parameterization urges the nodes to 

abruptly separate fiom the input dataset. 

7.2 SST-SOM Trajectory Generalization 

The parameters involved in this experimental section are mostly associated with the 

equation (7.1) introduced in chapter 3. 

angle - max- angle - node 
#of -nodes= + 2  

8 

By altering the variables (angle-max) and (g) we get different generalization 

results. Another variable that is used is the number of initial SOM nodes that forms the 

rough generalization representation upon which the rest of the process relies. 

In figure 7.3 we discern that the SST-SOM nodes describe the trajectory much 

better than the standard solution. The SOM algorithm (green nodes on figure 7.3 left) was 

unable to capture some areas of the original trajectory. On the other hand, the red nodes 

on figure (7.3) represent better the original dataset. The precision measurements vary 

according to the complexity of the trajectories. By using equation 7.2 for this example the 

SOM solution yielded a deviation of 89 pixels while the SST-SOM solution yielded a 9 

pixel deviation. 



Figure 7.3: SOM vs. SST-SOM generalization. 

Figure 7.4: SST-SOM generalization in 2-D and thinning result. 
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In figure 7.4% the original dataset is represented by blue dots, the SOM solution is 

represented by green nodes, while the SST-SOM solution is depicted by red nodes. In 

figure 7.4b the red nodes form the final generalization output after the thinning phase. 

Accordingly, in the remaining figures (7.5) we acquire the following generalization 

results by using the parameters listed in table (7.1). 

Table 7.1 : Generalization parameters for SST-SOM generalization procedure. 

Figure 

reference 

- 

a 

b 

c 

As demonstrated fiom the experiments the (angle-max) and (g) variables play the 

core role towards the generalization volume. The initial number of nodes is also an 

important variable, as it defines a general frame upon which further analysis is based. 

Initial nodes 

13 

25 

25 

25 

g 

8 

15 

10 

15 

angle-max 

195 

195 

190 

190 

Resulting 

nodes 

67 

59 

45 

40 

After 

thinning 

37 

34 

3 2 

24 



Figure 7.5: Different generalization solutions in a 419 point dataset. 
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Figure 7.6: SST-SOM phases for a 225 point dataset. 



In figure 7.6 the same dataset is generalized using 35 and 60 nodes. Note that the 

thinning procedure yields a 20 node chain in both cases. That means that the trajectory is 

smooth enough so two generalizations may initially give a different number of nodes, yet 

thinning will eventually capture the variances which in that case are limited. 

7.3 Errors and Noise 

In order to quantifj. the geometric similarity matching between trajectories we use a 

measure of the spatio-temporal distance d s ~  between two trajectories or solutions i and j. 

It is provided by the equation (7.2): 

where m is the number of SOM nodes along trajectory i, n is the number of SOM 

nodes along trajectory j and di is the 

generalization nodes in the ST domain. 

distance between the trajectory and the 

Figure 7.7: Node distances in the 3-D ST domain. 



We adopt this RMS type of error to demonstrate the precision of the SOM method 

and its behavior with respect to occlusion and noise. Each point in the dataset 

corresponds to an observation of the same object in different MI frames. These points 

may not be present in a continuous rate in the dataset since there might be some 

information gaps (e.g. the object was not visible or not extracted in every frame). In 

addition, misclassification and noise are anticipated in trajectory datasets as discussed in 

chapter 3. 

Occlusion error was simulated by randomly erasing point data from the trajectory 

dataset according to the percentage of occlusion. Noise was added by altering the point 

data in a random x and y position not exceeding the limits of the trajectory spatial 

coordinate boundaries. For the following figures we provide the RMS error and the 

medium distance between the nodes and the dataset as a precision measure. 

The input dataset without any occlusion or error is shown in figure (7.8) (blue 

dots) while the SOM solution is depicted in red nodes. The first number in the parenthesis 

accompanying the figure is the RMS error and the second is the medium distance from 

each node to the dataset. 



0% occlusion, 0% noise (3.7, 13.9) 

Figure 7.8: SOM solution to a non-erroneous dataset. 

a. 5% occlusion, (3.9, 15.5) b. 10% occlusion, (3.9, 14.9) 

Figure 7.9: SOM solution for: a) 5% occlusion, b) 10% occlusion. 



a. 20% occlusion, (3.9, 15.0) b. 30% occlusion, (3.9, 15.0) 

Figure 7.10: SOM solution for: a) 20% occlusion, b) 30% occlusion. 

a. 50% occlusion, (4.3, 18.2) b. 5% noise, (4.6 21 . l )  

Figure 7.1 1: SOM solution for: a) 50% occlusion, b) 5% noise. 



a. 10% noise, (4.3,8.6) b. 20% noise, (4.6,21.2) 

Figure 7.12: SOM solution for: a) 10% noise, b) 20% noise. 

a. 30% noise, (4.8,23.0) b. 50% noise, (6.2,38.1) 

Figure 7.13: SOM solution for: a) 30% noise, b) 50% noise. 
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a. 10% occlusion+lO% noise, (4.3, 18.5) b. 20%occlusion+20% noise, (4.5,20.3) 

Figure 7.14: SOM solution for: a) 10% occlusion and 10% noise, b) 20% occlusion and 
20% noise. 

30%occlusion +30%noise (5.6,3 1.5) 

Figure 7.15: SOM solution for 30% occlusion and 30% noise. 



The results are shown in the chart of figure (7.16). The bubble sizes correspond to 

the resulting error. 

Figure 7.1 6: Medium distance fiom nodes to input dataset according to errors. 

Usually, the errors are larger when occlusion and noise rise. But for small 

occlusion and noise percentages results of similar quality with the original dataset are 

revealed. In some cases a higher noise or occlusion percentage yields smaller errors. This 

is evident since the occluded data or the noisy ones are such that the generalization 

properties of SOM perform better to describe the original dataset. 

7.4 Multiple Trajectory Summarization and Generalization 

7.4.1 Unrelated Road Segments. 

Based on the described model in chapter 4, for the grouping of trajectories traveling in 

distinct road segments we have the following input dataset shown in figure 7.17. 



Figure 7.17: Unrelated road segment input dataset. 

The dataset is comprised of 30 trajectories moving in both directions in the three 

road segments shown in figure 7.17 left. For the following examples we use a spatio- 

temporal neighborhood unit of cubical shape. The spatial dimensions are given by the 

'sgroup' variable, while the temporal dimension (height) is given by the 'tgroup' 

variable. Different colors portray different resulting groups. For visualization or M e r  

processing each trajectory of the same color is represented by a single medium or leading 

trajectory. The black colored trajectories are the ones that couldn't be classified as part of 

any group. 



a b 

Figure 7.18: MUSTT using (tgroup, sgroup): a) (50,50) and b) (100,100). 

... .. . a b 

Figure 7.19: MUSTT using (tgroup, sgroup): a) (30,30) and b) (15,15). 



Figure 7.20: MUSTT using (tgroup, sgroup): a) (80,20) and b) (20,80). 

In table (7.2) sets of trajectories are grouped together to form the various classes 

according to the (tgroup, sgroup) S-T neighbor unit. 

Table 7.2: Grouping results for temporally close trajectories. 

In most cases the number of classes was 6 and this is what was anticipated since 

there are 3 road segments and two directions for each segment. In addition, the temporal 

distance between the trajectories was relatively small. In the case of (15, 15) unit 



definition the MUS'IT algorithm grouping was quite poor because of the restricted 

dimensions of the S-T neighborhood unit. 

For the next set of experiments the trajectories are now more separated in their 

temporal distribution. Grouping will accordingly provide more classes than the previous 

set of experiments. Nevertheless, if we select a larger (tgroup) variable the algorithm 

would be able to form fewer groups. 

.IM-.~M 

7.21 : Input dataset for temporally distant trajectories. 



a b 

Figure 7.22: MUST' using (tgroup, sgroup): a) (30,30) and b) (50,50). 



Figure 7.24: MUSTT using (tgroup, sgroup)=(l5O, 1 50). 

In table (7.3) the groups of trajectories are listed according to the grouping 
variables. 

Table 7.3 : Grouping results for temporally distant datasets. 

In figure (7.25) the SOM solutions for the leading trajectories of each group form 

the basic units where visualization is based. In the parenthesis accompanying each figure, 

the number of trajectories included in the group, the starting time, ending time and the 

range of the group are the variables that will provide additional information for the 

summary visualization. 
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Figure 7.25: SOM solutions for leading trajectories. 





The visualization part is not explicitly discussed in this thesis. However, a rough 

visualization product is shown in the following figures. The actual summary is a video 

showing a set of flying vectors according to the movements of the objects included. Each 

vector's size is estimated according to the number of objects it represents. In figure 

(7.25), snapshots of the summary video show the placement of the flying vectors. 

7.4.2 Related Road Segments 

As discussed in chapter 4 in the case of related road segments such as those seen in figure 

7.27, we divide the dataset into separate segments. (Figure 7.28). 

Figure 7.27: Input dataset for related road segments. 



0 50 100 150 200 250 

Figure 7.28: Separation of road segments. 

Again, we proceed with the MUSST algorithm procedure for distinct road 

segments. The number of separated segments is 65. The results are shown in the 

following figures. The (tgroup, sgroup) variables are set to 30 units. 

In table 7.4 the trajectories are grouped together to form the various classes 

according to the (tgroup, sgroup) S-T neighbor unit. 

I North 1 6-9 1 1,4,5 1 2,3 I 

1 West 1 2-4,7,14,16,21,22 1 8,9,11,12,17,20 1 1,6,13,15 1 18,19,23 1 
South 
East 

Table 7.4: Grouping results for related road segments. 

5-9 
1-7,13,14,20,21,23,25-28 

1-3 
8,9,11,12,15,24 

2,4 
16-18,29 

A 



North South 

East West 

Figure 7.29: MUST' trajectories in the separated directions. 

In table 7.5 the formed groups include leading trajectories, which provide the 

starting-ending time. In each record the first variable is the number of represented points, 

while the second and third provide the starting and ending time. 

Table 7.5: Statistics of formed groups. 

The snapshots of a potential video visualization are shown in figure 7.30. 



Figure 7.30: Snapshots of product summary. 



7.5 Trajectory Classification 

According to the theoretical aspects discussed in chapter 5 the following experiments 

show the capabilities and indicate the limits of the ACCENT algorithm analysis. 

7.5.1 Classification of Branches 

The input dataset are comprised of data points including coordinates of the form: (x, y, t, 

color, shape). In figure (7.31a) the trajectories are distant, while in (7.31b) they are 

entangled and thus make the task of classification more demanding. The different colors 

indicate the two trajectories for visualization purposes, yet the input dataset does not 

contain any explicit information of the identity, geometry or form of the trajectories. 

Figure 7.3 1 : Distant and entangled input points that form two trajectories. 



In the following experiments we use a pair of attribute percentages that 

accompany the datasets. The first percentage is the similarity of the color between the 

two trajectories, and the second percentage portrays the similarity between the sizes of 

objects as they are captured throughout the MI dataset. Since we control the test data, we 

know the range of the values of attributes for both color and size. In order to demonstrate 

the extent of the method's ability to classify, we use different percentages of similarity 

between the attributes. 

The output classification is then compared to the known classified trajectories and 

two percentages are used to evaluate the outcome. First, the percentage of wrongly 

classified points shows how many points of those that were actually classified are 

classified under the wrong class and fiom now on it will be referenced as PM. Second, 

the percentage of unclassified points simply shows how many points couldn't be 

classified under any class and this percentage will be referenced as PU. These 

percentages are utilized both after the back-propagation process and the SOM carrier 

analysis as discussed in chapter 5. 

In the case of distant trajectories including data of different attribute similarity 

percentages we easily separate the data since the branch selection includes the trajectories 

on their whole. Figure (7.32). 

The numbers accompanying the figures show the pair of attribute overlap 

percentages. The outcome as expected is identical for both cases. It is apparent that since 

the trajectories are distant the classification is mostly based on the geometric spatial 



separation and the result is flawless. Actually, a geometric proximity test would also 

result in a perfect classification. 

100,100 
Figure 7.32: Classification result for distant trajectories. 

In the case of the geometrically close trajectories the following figures portray 

each step of the process for the case of (0,O) attribute overlap. Figure (7.33) left shows 

the branch formation, while figure (7.33) right shows the k-means center and cluster 

formation on the attribute space. Mapping of the output space and backpropagation (BP) 

convergeness error are seen in figure (7.34) left. Finally, the resulting classification 

outcome is shown in figure (7.34) right. 

Again in this case the classification errors PU and PM was 0 because there was no 

overlap in the attributes. The numbers in the left side of the following figures represent 

the overlap percentage of the color and shape attributes, and the values on the right side , 

indicate the PM and PU classification errors. 



Figure 7.33: Branches and attribute clustering. 

Figure 7.34: BP output and performance, and after BP classification. 



Figure 7.35: Classification when one attribute overlaps. 



- 

25, 1 or 17,4 

Figure 7.36: Classification when both attributes overlap. 



In the cases of (80,80) overlap, BP classification failed to give any decent results. 

The final classification outcome results purely fiom the branch clustering step. Figure 

(7.37). The (MU, MS) pair is (32, 5). In the case of (100,100) overlap the branches were 

misclassified and the error was very high. 

Figure 7.37: Clustering of branches in the 80,80 overlap case. 

For two trajectories that travel in the same road and are temporally close the 

ACCENT algorithm is not so efficient, since it is difficult to discern the differences even 

for a human operator. The following figures demonstrate this extreme situation for the 

input dataset of figure (7.38). The formed branches are shown in figure (7.38) right. 

Figure 7.3 8: Input dataset of spatio-temporally close trajectories. 
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25,1% 

Figure 7.39: Classification of adjacent trajectories A. 



Figure 7.40: Classification of adjacent trajectories B. 



7.5.2 Errors and Comparisons 

After the branch selection and given that the points of the branches are successfully 

classified, there is a trade off between the percentages PM and PU. In general, if PU is 

large then there are not many points to be misclassified and thus PM remains lower. 

Accordingly, if PU is small then many of the remaining points get classified and PM can 

take larger values. 

Finally, for the situations where we had a large PM or PU, we use the steps of 

SOM imposing, carrier formation and point classification and we get the classification 

percentages included in the table (7.6) for each of the two trajectory sets of figures 7.3 1 

and 7.38. 

2030 

Table 7.6: Further classification. 

- 

60,60 

80,W 

In figure 7.41 we see some preprocessing through which some irrelevant data can 

be removed for further processing. 

Set1 
Trajectory 1 
PU, PM 
0,0.5 

1,o 

293 

Set1 
Trajectory 2 
PU, PM 
0,o 

6 0  

20,o 

Set 2 
Trajectory 1 
PU, PM 
4,3 

Set 2 
Trajectory 2 
PU, PM 
6 6  

No 
improvement 
No 
improvement 

No 
improvement 
No 
improvement 



Figure 7.41 : Removal of distant points. 

In figure 7.42, (first set of trajectories) and 7.43, (second set of trajectories) we 

present the SOM algorithm in some special situations where SOM is able or unable to 

correctly classifL the unclassified point data. 

In the classification products that emerged fiom the BP algorithm and after 

imposing a SOM generalization algorithm we compare the resulting representation errors 

as discussed in section 7.3 with those emerging fiom the SOM algorithm on the original 

fully classified dataset. Thus, we can infer how much actual deterioration we may have 

on the summary formation. The results are given in table (7.7). 



............. 

Original SOM 

Figure 7.42: SOM finther classification for fmt set of trajectories. 



Figure 7.43: SOM finther classification for second set of trajectories. 



Error RMS Error RMS Error RMS I set 1 I set 2 
Trajectory 1 Trajectory 2 Trajectory 1 

SOM original 2.9 2.9 4.6 
Tra'ecto 2 

Table 7.7: Errors between SOM nodes and trajectories. 

As it can be inferred the SOM errors in most cases do not deteriorate, since the 

generalization properties of SOM are able to bridge the occluded or misclassified data 

points through the connection of the nodes. 

To compare our method with a common clustering classification that might be 

utilized to classify the trajectories we used c-means algorithms for both the 5- 

Dimensional input space and the 2-Dimensional attribute space. In the 5-D space we got 

very poor results. The 2-D c-means results for the dataset of figure (7.31) were much 

better and are presented through the following figures. In this case we have only PM 

classification errors. 

In the (80, 80) and (100, 100) cases the misclassification is so large that we 

cannot discern any of the trajectories. Accordingly for the trajectory of figure 7.38 we get 

the following results shown in figure (7.45). 



Figure 7.44: Classification through attribute space clustering. 



Figure 7.45 : C-means classification for second dataset. 



Again, for (80,80) and (100,100) there is no outcome that would allow any kind 

of reasonable classification. All the results presented so far for the trajectory 

classification are grouped in table 7.8. 

As we can deduce fiom the results and figure 7.46, our analysis yields better 

results in most of the cases. Even after the BP analysis and before the further SOM 

implementation the results outperform other clustering techniques. When there is an 

overlap in the attributes between 40% and 60% the results are very satisfying. 

1 !kt 1 I AfterBP After SOM 
(1-PM) 
1 00 

100 

100 

98 

100 

After SOM 
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97 
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68 
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95 

93 

83 

75 

70 

Pure cmeans 
(1-PM) 

92 

Table 7.8: Trajectory classification results. 



Figure 7.46: Surfaces of accuracy for different classification steps, first trajectory pair: 

a)After c-means, b) After BP, c)After SOM, second trajectory pair: d)After c-means, 

e)After BP, f) After SOM. 



7.5.3 Three Trajectory Classification 

In the case we have more than two trajectories, computations rise exponentially. 

Nevertheless, the ACCENT algorithm is capable to provide sufficient results compared to 

other clustering techniques. For a three trajectory application, the input dataset, the 

branch formation and the attribute space clustering are shown in figure 7.47. 

Figure 7.47: Input dataset, branch formation and clustering. 

The result after the BP classification step is shown in figure 7.48. The attribute 

overlap between the three is (30,40) for any pair of trajectories. 



Figure 7.48: Resulted classification after the BP algorithm. 

7.6 Phenomena Summarization 

In figure 7.49 we present the description of the phenomenon evolving in the S-T domain 

and its corresponding spine slightly rotated and generalized by the SOM algorithm. This 

dataset forms the input space and is comprised of 70 h e s .  The cardinality 

segmentation for the phenomenon areas is shown in figure 7.50 as depicted in different 

temporal instances. 

Generalization variations are demonstrated in the next set of figures. According to 

the selected generalization variables we acquire more or less detailed representation of 

the input dataset in both the spine and prongs descriptors. The blue nodes represent the 

SOM nodes while the stars denote the overall percentage based inner change, namely 

expansion (green stars) or shrinkage (red stars). Accordingly, the prong vectors either 

characterize local expansion (green vectors) or shrinkage (red vectors). The numbers in 

the parenthesis accompanying the figures describe the number of SOM nodes, the degree 



of cardinal division (4, 8, 16, etc), the prong percentage of significance and the area 

change percentage of significance as described in chapter 6. 

15 nodes 

Figure 7.49:Input dataset and SOM generalization of the spine using variable number of 
nodes. 



Figure 7.50: Phenomenon cardinal segmentation in different temporal instances. 



Figure 7.5 1 : Generalization under different variables A. 



Figure 7.52: Generalization under different variables B. 



Figure 7.53: Generalization under different variables C. 
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Figure 7.54: Generalization under different variables D. 

As seen in figures 7.51, 7.52, 7.53, and 7.54 the prongs and overall change nodes 

in larger percentage thresholds define a subset of the prongs and nodes of a smaller 

percentage threshold. On the other hand, this relation is not evident in the SOM nodes 

where competitive learning forces the nodes to change their placement to better describe 

the 3-D trajectory. 



CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

8.1 Conclusions 

In this thesis we discussed the concept of summarization of motion imagery datasets 

based on the movement and deformation properties of objects included in the MI dataset. 

Data summaries are important for a number of reasons including compact dissemination 

of information, reduction of storage requirements, faster processing and browsing, and 

revealing of generalized tendencies. These advantages are particularly important for 

monitoring applications, where large datasets are produced, and most of the recorded 

trajectories follow typical patterns. 

Throughout the theoretic and experimental findings we demonstrated that our 

generalization and classification techniques outperformed classic SOM and clustering 

techniques. In section 7.2 we showed that hybrid-SOM accurately describes spatio- 

temporal trajectories than typical SOM. In addition, our attribute-aided clustering 

technique proved much better than clustering techniques like SOM or k-means (section 

7.5.2). Thus, we satisfied the formulated hypothesis. Additionally, there are several 

research issues addressed and tackled throughout this thesis. These contributions include: 



The presented generalization framework is not based on a stable increment, but it 

is relevant to the information importance of the movement. By information importance 

we mean the volume of spatio-temporal variation of attributes, namely velocity and 

direction. As soon as the scale primitives are set, multiple summary versions of the 

original dataset are evident by altering the generalization attributes. Thus, one can travel 

in the significance scale and retrieve a summary with more or less detail. While one might 

be interested in the brief movement of each car in a scene, another might need to examine 

the traffic tendencies of a whole hour, day, or month. 

Compared to a standard SOM process, our described hybrid-SOM trajectory 

analysis approach offers the advantages of invariance to the selection of the initial 

number of nodes and the additional SOM attributes. Since many local SOMs take place, 

the initial attribute contribution remains localized where it performs adequately. Self- 

organizing maps prove adequate in dealing with versatile environments including 

multiple dimensional data, corrupted and occluded data. 

In order to move from a single trajectory to multiple trajectory generalization, we 

considered registration and grouping of trajectories. Thus, we introduced the spatio- 

temporal neighborhood unit, which defines the space and time under which sets of 

trajectories could be grouped together. This grouping didn't take place in the whole 

trajectory dataset, but only in the trajectories' SOM nodes for time efficiency purposes. 

By altering the S-T neighborhood unit's dimensions, scaled generalization is again 

supported. 



Multi-dimensional classification of trajectories was another research task that was 

adequately tackled. Due to the elongated character of the data, other types of conventional 

clustering failed. Reduction of dimensionality competence suffered when the multiple 

attribute ranges included overlaps. Yet, the combined geometric and backpropagation 

network solution proved efficient in such classification applications. 

Finally we moved in the modeling and summarization of two-dimensional 

phenomena evolving over time. We introduced the concept of S-T helixes as compact 

representations of spatio-temporal events. The helix model comprised of SOM movement 

nodes (spines) and cardinality shape-change descriptors (prongs). 

The constructed summaries are not just a visualization product but they support 

further processing. While most of the research as seen in chapter 2, deals with the 

visualization part, our work spans in the realm of metadata structure formation. The 

constructed data can be stored in a database and can be queried. As seen in (Stefanidis et 

al., 2001) the formed data, support complex spatiotemporal analysis and are suitable for 

video queries. 

The various SOM nodes can be grouped separately in a lifeline type data 

sequence and they may describe metrics like topology, distance etc. Furthermore, for each 

specific attribute we can have a hierarchical arrangement of nodes to describe the various 

levels of generalization. This arrangement of nodes within individual lifelines is shown in 

figure 8.1. They represent several attributes of an object's spatiotemporal progression and 

they can be exploited to develop metrics to evaluate the similarity of multiple movements 

on their entirety, or considering specific attributes only. 
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Figure 8.1 : Lifeline representation of moving objects and attribute resolution. 

8.2 Future Work 

In figure 1.2 we introduced the focus of this thesis. The non-shaded areas outline a first 

indication on the research areas that complementary work would be beneficial. More 

specifically: 

While we focus on the analysis of video datasets, the framework can be 

generalized to function on additional types of spatiotemporal dataset. It is often desirable 

to compare data summaries from different scenes describing events that take place in 

different areas at different time instances. In order to handle such comparisons we have to 

be able to provide a similarity framework to accommodate temporal, spatial and attribute 

registration and comparison. 

In addition to the information that each spatio-temporal trajectory carries, more 

information is inherent in a dynamic scene. The constructed data are complemented by 



additional instances that include user-defined criteria or application feedback rules. 

Through querying or rule asserting in the original dataset our summary can be enriched to 

convey additional information. 

In the behavioral domain a lot of potential is evident since movement and 

interrelation of movements can be modeled to describe the behavior of objects. Expected 

behavior in this content is introduced in (Partsinevelos et al., 2000) where deviations from 

expected behaviors are identified. In addition, tracking and object extraction enhancement 

can take place by using spatio-temporal analysis parallel to the procedures discussed in 

this thesis. 

Visualization is an important product of the summary formation. Further research 

with experimentation can be conducted to provide a concise and user friendly GUI to 

accommodate the applications discussed in the thesis. In the phenomena summarization 

3-dimensional objects and their movement modeling is a potential research domain. Split 

incidents, multiple and complex surfaces should be included in the modeling and 

metadata formation processing in such a way that they could be adequately stored in a 

database. 
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