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Abstract

Biometric signals compression with time- and subject-adaptive
dictionary for wearable devices

by Valentina Vadori

Wearable devices are a leading category in the Internet of Things. Their ability
to seamlessly and noninvasively gather a great variety of physiological signals can
be employed within health monitoring or personal training and entertainment ap-
plications. The major issues in wearable technology are the resource constraints.
Dedicated data compression techniques can significantly contribute to extend the
devices’ battery lifetime by allowing energy-efficient storage and transmission. In
this work, I am concerned with the design of a lossy compression technique for the
real-time processing of biomedical signals. The proposed approach exploits the un-
supervised learning algorithm of the time-adaptive self-organizing map (TASOM)
to create a subject-adaptive codebook applied to the vector quantization of a sig-
nal. The codebook is obtained and then dynamically refined in an online fashion,
without requiring any prior information on the signal itself. Quantitative results
show that high compression ratios (up to 70) and excellent reconstruction perfor-
mance (RMSE of about 7%) are achievable.

I dispositivi indossabili sono una delle principali categorie nell’Internet of Things. La

loro abilità nell’acquisire una grande varietà di segnali fisiologici in modo continuativo e

non invasivo può essere impiegata in applicazioni per il monitoraggio delle condizioni di

salute o l’allenamento e l’intrattenimento personale. Le problematiche più rilevanti nella

tecnologia indossabile riguardano la limitatezza di risorse. Tecniche dedicate di compres-

sione possono significativamente contribuire ad estendere la durata della batteria dei dis-

positivi permettendo memorizzazione e trasmissione energeticamente efficienti. Questa

tesi è dedicata al design di una tecnica di compressione con perdite per il processamento

in real-time di segnali biomedicali. L’approccio proposto adotta l’algoritmo senza su-

pervisione della time-adaptive self-organizing map (TASOM) per creare un dizionario

soggetto-adattativo applicato alla quantizzazione vettoriale del segnale. Il dizionario è

ottenuto e successivamente raffinato dinamicamente in modo online, senza che siano nec-

essarie informazioni a priori sul segnale. I risultati quantitativi mostrano che è possibile

ottenere elevati rapporti di compressione (fino a 70) ed eccellenti performance in fase di

ricostruzione (RMSE di circa il 7%).
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Chapter 1

Introduction

1.1 The Internet of Things

Nowadays, according to the Internet World Stats [1], more than 3 billions people

around the world have access to the Internet and their number is continuing to

grow. From their personal computer, smartphone or tablet, typical online users

can browse the Web, send and receive emails, access and upload multimedia con-

tents, make VoIP calls, and edit profiles in social networks. It is predictable that,

within the next decade, the Internet will take a big leap forward, by enabling

an evolutionary as well as revolutionary class of applications and services based

on the widespread diffusion of spatially distributed devices with embedded iden-

tification, sensing, actuation and wireless communication capabilities. In such a

perspective, physical objects such as vehicles, gas and electric meters, appliances,

industrial equipment, and consumer electronics will become smart objects and will

bring into being pervasive, context-aware computing systems that collect informa-

tion from the background and act accordingly, using the Internet infrastructure for

data transfer and analytics. For the first time it will be possible to let things co-

operate with other things and more traditional networked digital machines, paving

the way to an optimized interaction with the environment around us. This is the

future as envisioned by the Internet of Things (IoT) paradigm [2] (in some cases

also referred to as Machine to Machine, or M2M, communication), fueled by the

recent advances in Micro-Electro-Mechanical Systems (MEMS), digital electronics,

wireless communications, energy harvesting, and hardware costs.

Unquestionably, the main strength of the IoT idea is the high impact it will

have on several aspects of everyday-life of potential beneficiaries. From the point

of view of a private user, the IoT introduction will translate into, e.g., domotics,

assisted living, and e-health. For business users, the most apparent consequences

will be visible in automation and industrial manufacturing, logistics, business and

process management, and intelligent transportation of people and goods. Many

challenging questions lie ahead and both technological and social knots have to

1



Chapter 1 Introduction 2

be untied before this can turn into reality [3]. Central issues are making a full

interoperability of heterogeneous interconnected devices possible and providing such

devices with an always higher degree of smartness that support their adaptation

and autonomous behavior, while meeting scalability requirements and guaranteeing

privacy and security. The things composing the IoT will be characterized by low

resources in terms of computation and energy capacity, therefore special attention

has to be paid to resource efficiency as well.

By inspecting some recent articles, we can sketch the following shared view

about the IoT progress. A major role in the identification and real-time tracking

of smart objects and in the mapping of the real world into the virtual one will be

played by Radio-Frequency IDentification (RFID) systems [4], which are composed

of one or more reader(s) and several RFID tags with unique ID. Tags, consisting of

small microchips attached to an antenna, are applied to objects (even persons or

animals) and queried by the readers, that generate an appropriate signal for trigger-

ing the transmission of IDs from tags in the surrounding area. The standardization

of the RFID technology and its coupling with sensor networks technologies, these

latter considered a pillar of the IoT, will allow to have unambiguously recogniz-

able tags and sensors inherently integrated into the environment. In order to fully

exploit the advantages brought by Internet connectivity, such as contents sharing

and location-independent access to data, scalable addressing policies and commu-

nication protocols that cope with the devices’ diversity must be devised. Although

rules that manage the relationship between RFID tags’ IDs and IPv6 addresses

have been already proposed and there’s no lack for wireless communication pro-

tocols (think of ZigBee, Bluetooth, and Wi-Fi), the fragmentation characterizing

the existing procedures may hamper objects interoperability and can slow down

the conception of a coherent reference model for the IoT. Further investigations

also need to be done for traffic characterization and data management, both fun-

damental to network providers to plan the expansion of their platforms and the

support of Quality of Service (QoS), to assure authentication and data integrity

against unauthorized accesses and malicious attacks, and to endow objects with

self-organization tools that anticipate user needs and tune decisions and actions

to different situations. At any mentioned design level, technicians and engineerss

have to pay special attention to energy-optimization. New, compact energy storage

sources coupled with energy transmission and harvesting methods, as well as ex-

tremely low-power circuitry and energy-efficient architectures and protocol suites,

will be key factors for the roll out of autonomous wireless smart systems.

In order to promote IoT as a publicly acknowledged and implemented paradigm,

the proposed solutions should not be derived from scratch and independently of each

other but rather pursuing a holistic approach that aims at unifying the existing and

upcoming efforts and technologies into an ubiquitously applicable framework. Open

and flexible interfaces and appropriate bridges could then leverage the differences

between devices and services and let them collaborate in a globally integrated
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system, where many subsystems (‘INTRAnets’) of Things are joined together in a

true ‘INTERnet’ of Things [5].

1.2 Wearable devices

Wearable devices are a leading category in the IoT, whose development and mar-

ket penetration have experienced an astonishing growth since late 2000. They can

be broadly defined as miniature embedded computing systems equipped with a

range of sensors, processing and communication modules1 and having the distinc-

tive property to be worn by people. Besides handheld devices, wearables extend

the IoT paradigm to a human-centric sensing scenario where sensors are not only

integrated into the environment but we, as humans, carry ourselves the sensing

devices and actively participate in the sensing phase. As emphasized by Srivastava

et al. in [6], human involvement makes it feasible to get even more information dur-

ing the study of processes in complex personal, social and urban spaces than that

available using traditional Wireless Sensor Networks (WSNs) or static smart things.

By taking advantage of people who already live, work and travel in these spaces,

human-centric sensing can overcome gaps in spatio-temporal coverage and inability

to adapt to dynamic and cluttered areas. Measurement traces from accelerometers,

gyroscopes, magnetometers, thermometers, cameras, and GPS trackers, which can

now be found in many consumer-grade smartphones or wearable devices, can be

used to obtain a geo-stamped time series of one’s mobility pattern and transporta-

tion mode, supplemented by a detailed description of local conditions. Such streams

of data might be recorded through lifelogging mobile apps, which enable the user

to derive personal statistics and to publish meaningful events and memories in so-

cial networks; they can be submitted to web-services that manage the real-time

monitoring of issues of interest; they can be collected from specialized campaigns

for computing community statistics or mapping physical and social phenomena.

Compared with their handheld counterpart, wearable devices such as wrist-

bands, smart watches, chest straps, skin patches and clip-on devices claim er-

gonomicity, dimension reduction (at least in the majority of the cases), and better

fine-grain collection capabilities, given their closer proximity to the human body

and the purpose-specific design of shapes, sensors and processing tools [7]. Accord-

ing to forecasts, the wearable business will power from 20 billion in 2015 to almost

70 billion in 2025 [8], involving healthcare, security, entertainment, industrial, and

tactical applications (see Figure 1.1). In particular, the healthcare sector (merging

fitness, wellness and medical) is expected to dominate, playing on the aforemen-

tioned wearable features, which become extremely valuable when a uninterrupted,

non invasive, personalized service that tracks activity and physiological signals is

1Typically, wearables have low-power wireless communication interfaces such as Bluetooth
Smart (also referred to as BlueTooth Low Energy, or BTLE), low-power Wi-Fi or ZigBee (based
on IEEE 802.15.4 standard).
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Figure 1.1: Wearable technology application chart.

needed. Affordable fitness/wellness wristbands and smart watches like Fitbit or

Jawbone are already diffused. Through the joint activation of accelerometers and

optical sensors, they track metrics such as distance walked or run, activity intensity,

heart and respiration rate. Bluetooth connections are then usually established to

sync the device with web sites or companion applications that process the acquired

data and permit to get hints for a healthier lifestyle, including better training or

better sleep.

Wearable devices can have a positive impact on the fitness world, both for am-

ateurs and professional athletes, and they can even more deeply affect the medical

domain. The adoption of non-expensive and lightweight wearables with low-power

communication interfaces and with sensors able to accurately gather biomedical sig-

nals and parameters (e.g, electrocardiogram (ECG), photoplethysmogram (PPG),

electromyogram (EMG), blood oxygen saturation (SO2), blood pressure, body tem-

perature) together with movement measures (for, e.g., fall and posture detection)

can spur a radical transformation of the healthcare system, letting it pass from

a hospital-centered to a person-centered paradigm where continuous monitoring of

individuals is possible even without hospitalization. In such a vision, wearables will

remotely and unobtrusively track the health status of ill and elderly people in their

house, thus preserving their daily habits and minimizing the need for caregivers.

The integration of wearables into Wireless Body Sensor Networks (WBSNs), that

may include implantable or environmental sensors, will allow sending the recorded

vital signs and contextual information to nearby aggregation points (such as PDAs

or smartphones) that can, in turn, make a selective forwarding to back-end medi-

cal servers or physicians. A closed loop setting will also enable the latter ones to

communicate reminders and feedbacks to patients. The advantages of the resulting
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tele-medicine or, better, mobile health (m-health) infrastructure are multifold and

will be quantifiable in terms of improved prevention, early diagnosis, care’s cus-

tomization and quality, increased patient autonomy and mobility and last, but not

least, reduced healthcare costs. Many concrete examples of the m-health potential

are illustrated in [9]. To name a few, life-threatening situations can be far more

likely detected in time, chronic conditions (e.g., those associated with cognitive dis-

orders like Alzheimer’s or Parkinson’s) can be optimally maintained, physical reha-

bilitations and recovery periods after acute events (such as myocardial infarction)

or surgical procedures can be supervised after shorter hospital stays, adherence to

treatment guidelines and effects of drug therapies can be verified, all of this in real-

time and avoiding unnecessary interventions by the medical stuff. Moreover, if we

let the person-centered paradigm extend over clinics and hospitals, wearables can

contribute to simplify the bulky and typically wired monitoring systems in there

and to monitor ambulatory in-patients around the clock, helping doctors to spot

early signs of deterioration.

1.3 Motivation and contribution

In order to reap the full benefits of wearables-based systems, especially those suited

to healthcare applications, and to seamlessly integrate them into the IoT scenario,

many technical hurdles still remain to be addressed. One of the paramount issues,

concerning the whole IoT scenario but especially smart wearable objects, is energy

optimization. The wearable nature necessitates a vanishingly small size and weight

and, as a result, these devices have limited hardware resources and power bud-

get. Research efforts are thus indispensable to supply them with energy-efficient

processing tools and communication protocols that optimally manage their limited

battery life and constrained memory, while guaranteeing all the requirements on

reliable and timely message delivery [7].

This thesis is focused on the lightweight compression of biomedical signals for

reducing memory and transmission costs of wearables in finegrained monitoring

applications, such those related to the healthcare sector. Although a great num-

ber of compression techniques have appeared in the literature, the search for new

methods continues, with the aim of achieving greater compression ratios (CR) with

low-power processing tools, while preserving the clinical information content in the

reconstructed signal. I propose a novel lossy compression scheme based on Artifi-

cial Neural Networks (ANNs) (specifically, the neural network called Time-Adaptive

Self-Organizing Map - TASOM), motif extraction, and Vector Quantization (VQ).

The reference scenario consists of a wearable device recording a biomedical signal

with a certain degree of periodicity (such as ECG and PPG) from a subject and

wirelessly transmitting it to an aggregation point. The acquired signal is decom-

posed into segments corresponding to a signal pseudo-period. A preliminary train-

ing phase uses the incoming segments to let the TASOM learn the actual subject’s
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signal distribution. The synaptic weights of the TASOM’s neurons become progres-

sively and adaptively tuned to approximate such distribution, without any prior

knowledge upon it. At the end of the preliminary training phase, the subject-based

codebook of segments is defined as the one formed by the neurons’ synaptic weights,

thus representing the codebook’s codewords. Each new unseen segment is coded

through a VQ approach which selects the best matching codeword through a fast

codebook search algorithm and transmits its index to the receiving node, which has

a copy of the codebook at the transmitter available. Each new segment is also used

to further train the TASOM in an online fashion so as to maintain a representative

codebook at all times.

The contents of this thesis are organized as follows. In the next Chapter 2, I

illustrate the literary work related to the new compression method. In Chapter

3 I provide a review of the basic concepts of motif extraction and VQ, detailing

how motif extraction has been applied to biomedical signals and reporting the

fast codebook search algorithm I used for finding the best matching codeword

during the quantization process. In Chapter 4 I sum up the fundamental notions

about ANNs and then, in Chapter 5, I elucidate the Self-Organizing Map (SOM)

learning algorithm and its time-adaptive version (i.e., the TASOM), underlying the

advantages of the latter with respect to the basic SOM. In Chapter 6 I describe the

whole compression framework and in Chapter 7, I present a quantitative analysis

of compression and fidelity performance, showing the improvements with respect

to more traditional approaches. Finally, in Chapter 8 I draw the conclusions.



Chapter 2

Related work

In this thesis, I consider signal compression as a means to boost the battery life of

wearables in real-time monitoring applications. By remove data redundancy, com-

pression actually makes it possible to limit the amount of information to store and

transmit, entailing substantial energy savings and lighter traffic toward aggregation

points and Internet servers.

In the last decades, quite a few lossy and lossless compression algorithms for

ECG signals, probably the most important for the diagnosis of heart malfunc-

tions, have been proposed in the literature. They are classifiable into three main

categories: Direct Methods, Transformation Methods and Parameter Extraction

Methods.

Direct methods, among which we have the Lightweight Temporal Compression

(LTC) [10], the Amplitude Zone Time Epoch Coding (AZTEC) [11], and the Co-

ordinate Reduction Time Encoding System (CORTES) [12], operate in the time

domain and utilize prediction or interpolation algorithms to reduce redundancy

in an input signal by examining a successive number of neighboring samples. In

particular, AZTEC exploits the Zero-Order Interpolator (ZOI) to convert the ECG

samples into a sequence of plateaus and slopes. CORTES uses AZTEC for the low

frequency regions of the ECG signal, while it simply discards one sample out of

two consecutive samples in high frequency regions. LTC substitutes the ECG time

series with a sequence of segments delimited by two original samples and defined

according to a predetermined error threshold.

Though such algorithms generally have a low complexity, the reconstruction qual-

ity for a given compression often result to be worse than that of transformation

methods, due to the piecewise character of the approximations [13].

Transformation methods perform a linear orthogonal transformation, such as

Fast Fourier Transform (FFT) [14], Discrete Cosine Transform (DCT) [15], and

Discrete Wavelet Transform (DWT) [16], of the input signal and select a number

of transform coefficients to represent the original samples. The amount of com-

pression depends on the number of coefficients that are selected, the representation

accuracy depends on how many and which coefficients are retained. The schemes

7
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belonging to this class can provide high CR with limited distortion. However, their

computational complexity is typically too high for wearable devices [17].

Parameter extraction methods use ANNs [18], VQ [19], and pattern recognition

techniques [20]. Unlike direct and transformation methods, where compression is

basically achieved through the blind selection of a subset of samples or coefficients,

the rationale behind parameter extraction methods is to process the temporal series

to obtain some kind of knowledge (e.g., input data probability distribution, signal

features, hidden topological structures) and use it to efficiently shape the signal

representation. This is a field with limited investigation up to now that has re-

cently aroused great interest from the research community as it seems that optimal

trading between CR and reconstruction quality can be obtained while maintain-

ing the computational complexity low. Moreover, even when mainly conceived for

compression, many parameter extraction methods automatically provide the basis

for the classification of patterns within the signals of interest [21]. In fact, those

based on VQ and pattern recognition rely on the identification of recurrent patterns

(or motifs), used to split the signals into suitable segments. These segments are

either processed to extract a small group of describing parameters or considered as

they are, i.e., as a sequence of samples. A training set is built up from a sufficiently

high number of segments (represented by the corresponding parameters or samples)

and used to define (through traditional codebook design algorithms or ANNs) a

set of prototypes (codewords) modeling the input data space (i.e., constituting a

codebook). Once the prototypes are found, new segments are associated through

a matching criterion (usually based on a distance metric) to one of the prototype,

as prescribed by a VQ approach. The so organized framework not only allows

to achieve compression (due to the storing/transmission of the prototype index in

place of the original segment) but also to classify the segments of the signal. Indeed,

if each prototype is interpreted as the representative of a distinct class (category)

of patterns from the input data, the matching criterion assigns each segment to

the class it belongs to. The frequency of use of a certain prototype can then reveal

important information on the occurrence of a class of patterns, thus leading to a

statistical characterization of the input data space and to the detection of anomalies

(e.g., heart disorders and arrhythmias).

Besides ECGs, recent advances in wearable sensor technology have made it

possible to collect and analyze other biomedical signals such as PPG, respiratory

(RESP) and arterial blood pressure (ABP) traces. The PPG signal, for example, is

acquired through inexpensive and rugged optical sensors that need low maintenance

and low power and it provides rich information related to the cardio-pulmonary sys-

tem. The aforementioned methods for ECG compression are potentially adaptable

to other kinds of traces. Nevertheless, except for a very few works like [22] (where

the Fourier analysis of PPGs intended for motion artifact reduction leads also to

compression), no algorithm has been specifically proposed so far for the compression

of biomedical signals other than ECGs.
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The lossy compression method described in this thesis is a parameter extraction

method. As already outlined in Section 1.3, I exploit a pattern recognition approach

entailing a motif extraction procedure to divide a quasi-periodic biomedical signal

into segments (or, equivalently, vectors) corresponding to a signal pseudo-period

and I construct a subject-adaptive codebook for the VQ of such segments. The

TASOM provides the means to define and update the codebook in an online fashion,

following the changes in the input data distribution as time goes by. In the reminder

of this section I report some parameter extraction methods, putting my work into

perspective with respect to the scientific literature.

In [20] a direct waveform Mean-Shape Vector Quantization (MSVQ), which is a

special case of multi-step VQ, is proposed for single-lead ECG compression. Based

on the observation that many short-length segments mainly differing in their mean

values can be found in a typical ECG, the authors segment the ECG into vectors,

subtract from each vector its mean value, and apply scalar quantization and vector

quantization to the extracted means and zero-mean vectors respectively. An en-

tropy encoder is applied to means and vector codes to further increase compression

without degrading the quality of the reconstructed signals. Differently from my

approach, the segmentation procedure is carried out by fixing the vector length to

a predetermined value. This choice avoids the computational burden of pattern

recognition, but it does not take full advantage of the redundancy among adjacent

heartbeats, which are highly correlated. Moreover, the codebook is constructed by

using the Linde-Buzo-Gray (LBG) algorithm [23], which does not allow to efficiently

adapt the codewords as time passes.

In [19] Sun et al. propose another VQ scheme for ECG compression, using the

Gain-Shape Vector Quantization (GSVQ) approach, which can reduce the number

of codewords compared to standard VQ for comparable performance. The ECG is

segmented, according to the heartbeat duration, into vectors made up of samples

between two consecutive signal peaks. Each extracted vector is normalized to a

fixed length and unit norm. More precisely, the transformation in [24] is used to

obtain vectors with the same length. Each vector is then divided by its gain (i.e.,

norm) to obtain the so called shape vector, hence the name GSVQ. A codebook

for the normalized vectors (shape vectors) is generated using the LBG algorithm.

After vector quantized, each normalized vector is assigned the index of the near-

est codeword in the codebook and the residual vector is calculated. The nearest

codeword is first stretched to the original heartbeat length and multiplied by the

gain of the original heartbeat segment. Afterward, the residual vector is computed

by subtracting the adapted codeword from the original heartbeat segment and en-

coded using the AREA algorithm, an adaptive sampling scheme for one dimensional

signals. The original length of each heartbeat, the gain, the index of the nearest

codeword and the encoded stream of the residual signal are sent to the decoder.

Upon reconstruction, the decoder retrieves the codeword from its local copy of the

codebook, performs denormalization using the gain and the length, and adds the
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residual signal. The compression framework proposed in this thesis resembles [19]

in the way the signal segments are defined (i.e., as sequences of samples between

successive signal peaks) and in the adoption of the GSVQ approach. Indeed, as for

ECG segmentation, the procedure using peaks as fiducial points is the most used in

parameter extraction methods for ECG compression (and I extend its application

to other biomedical signals). Alongside this, GSVQ claims simplicity and efficacy,

letting the codebook capture the structure of the source data and allowing to rep-

resent variations in amplitude and length through a few parameters. As it will be

detailed in Chapter 6, I mix the approach of [20] and [19] by coupling a GSVQ-like

technique with mean-extraction for the normalization of the signals’ segments.

Correlation among heartbeats is also exploited in [25] and [26] through a VQ

approach. Similarly to my scheme, [25] performs the length normalization of an

ECG segment through a multirate approach procedure that interpolates and then

downsamples the ECG vectors to obtain the desired dimension. It is not clear, how-

ever, which kind of interpolation is used. In my work, I chose the lightweight linear

interpolation. [26] distinguishes itself from the previous schemes because it defines

a codebook of ECG vectors adaptable in real-time. The codebook is implemented

in a one dimensional array with overlapped and linearly shifted codewords that

are continuously updated and possibly kicked out according to their frequency of

utilization. In particular, an input vector that does not find a matching codeword

is added to the codebook, triggering the expulsion of the codeword with the least

number of matches. Despite this, the authors do not explain either how the ECG

segmentation is carried out or how they cope with ECG segments with different

lengths.

A scheme not only conceived for ECGs can be found in [27], where the authors,

similarly to what I do in this thesis, target the lightweight compression of biomedical

signals exhibiting quasi-periodicity for constrained devices. They do not use a VQ

approach but exploit ANNs and pattern recognition to perform dimensionality

reduction and compactly represent the information in the original signals segments

through shorter sequences. More specifically, a peak detection method is used to

identify the location of peaks and then subdivide the signals into vectors constituted

by samples between them. Vectors are normalized to a fixed length m and fed to an

ANN called AutoEncoder (AE). This AE is a feed-forward network (see Chapter 4)

made by three layers of neurons. The first and last layers are called input and output

layers, respectively, and have the same number of neurons, m, whereas the layer

in between is called hidden layer and has a smaller number of neurons, h � m.

The network parameters, i.e., the network’s synaptic weights (representing the

weighted connections between neurons), are adjusted through a training phase that

uses an unsupervised learning algorithm called backpropagation (an abbreviation

for backward propagation of errors). For each training input vector x, the desired

network output y is set equal to x, since the AE is desired to behave as an identity

function, and the actual output is computed according to the current synaptic
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weights. As the training proceeds, backpropagation modifies the synaptic weights

to minimize the distance between the actual and desired outputs, according to the

gradient descent method. When the training phase stops, the synaptic weights

are established and for each vector given as input to the AE a specific sequence of

values associated with the neurons in the hidden layer are determined as a function

of the vector itself and the synaptic weights between the input and the hidden

layer. This sequence of values (of length h � m) corresponds to the compressed

representation of the present vector and is sent to the decompressor along with the

original vector length. The decompressor at the receiver uses the values of the h

inner neurons and the synaptic weights between the hidden and the output layer

to obtain the reconstructed vector of dimension m, which is finally resized to the

original segment length. Quantitative results assess the effectiveness of AEs in the

compression of biomedical signals, both in terms of CR, reconstruction error and

computational complexity. However, the scheme is based on a training phase that

must be carried out offline and is thus not suitable for patient-centered applications

featuring previously unseen signal statistics.

Another type of ANN called Input-Delay Neural Network (IDNN) is used in [28]

for a piecewise ECG compression approach. IDNN is a multi-layer feed-forward

network (see Chapter 4) where the inputs to the neurons of the hidden and output

layers can consist of the outputs of the input layer not only during the current

time step, but during some number of previous time steps as well. The approach

proposed in [28] uses an IDNN with 4 neurons in the input layer, i.e., the neurons

inputs to the other layers (hidden and output) at time step n may depend on the

signal samples at time step n, n− 1, n− 2, n− 3. This feature permits to capture

the dynamic characteristics of the signals and is shown to be advantageous for the

compression of ECG segments of fixed length. However, a different IDNN is used for

each ECG segment of duration 10 seconds and this implies the need for a dedicated

training phase for each segment, which requires an exceeding power consumption

in a wearables-based scenario.

In view of the above, I conclude that several solutions proposed in the litera-

ture for compression rely on offline learning approaches, i.e., the codebooks or the

parameters of a neural network are obtained from datasets and are then used in

an online fashion, but cannot be changed if the signal statistics requires so. The

TASOM makes it possible to represent non-stationary environments, changing the

network parameters according to the changes of input data. These features can be

exploited to design a subject-specific codebook that does not require any prior infor-

mation on the biomedical signal to quantize and that can be dynamically updated

as the input data distribution varies over time, as it happens, for example, if the

tracked subject is walking and starts running or a sudden anomaly arises in bodily

functions. Interestingly, the TASOM also provides built-in noise-filtering functions

that can help remove artifacts without the support of preprocessing filters. These

are the main reasons that led me to apply the TASOM to the lossy compression
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of biomedical signals, together with the crucial factor that the TASOM learning

algorithm makes it possible to outperform other compression methods in terms of

energy efficiency.



Chapter 3

Motif extraction

and vector quantization

Motif extraction, VQ, and the TASOM are the key tools used to implement the

proposed compression method. In the following, I outline the basic concepts of

motif extraction and VQ and I describe the rationale behind the choice of these

techniques for the lossy compression of biomedical signals.

3.1 Motif extraction

3.1.1 Basic concepts

In computer science, data mining, also known as Knowledge Discovery in Databases

(KDD), is the interdisciplinary scientific field concerned with the automatic or

semi-automatic extraction of useful patterns from large data sets (or databases)

for summarization, visualization, better analysis or prediction purposes. In the

last decades, the problem of efficiently locating previously known patterns in a

database has received much attention and may now largely be regarded as solved.

A problem that needs further investigation and that is more interesting from a

knowledge discovery viewpoint, is the detection of previously unknown, frequently

occurring patterns. Such patterns can be referred to as primitive shapes, recurrent

patterns or motifs. I refer to this last definition, attributed to Keogh et al. [29],

that borrowed the term from computational biology, where a sequence motif is a

recurring DNA pattern that is presumed to have a biological significance.

The fundamentals of motif extraction can be summed up as follows [29]:

1. Given a time series xxx = [x1, x2, . . . , xr]
T , xk ∈ R, k = 1, 2, . . . , r, a subse-

quence xxxp with length m of xxx is defined as:

xxxp = [xp, xp+1, . . . , xp+m−1]
T , 1 ≤ p ≤ r −m+ 1 . (3.1)

13
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2. Given a distance metric D(·) and a predetermined threshold ε ∈ R+, a sub-

sequence xxxp2 is said to be a matching subsequence of xxxp1 if

D(xxxp1 ,xxxp2) ≤ ε . (3.2)

If condition (3.2) is satisfied, then there exists a match between xxxp2 and xxxp1 .

3. Given a subsequence xxxp1 and a matching subsequence xxxp2 , xxxp2 is a trivial

match to xxxp1 if either p1 ≡ p2 or there does not exist a subsequence xxxp3 such

that D(xxxp1 ,xxxp3) > ε, and either p1 < p3 < p2 or p2 < p3 < p1.

4. The most significant motif in xxx (called 111-Motif) is the subsequence, denoted

by CCC1, that has the highest count of non-trivial matches. The Kth most sig-

nificant motif in xxx (calledKKK-Motif) is the subsequence, denoted asCCCK , that

has the highest count of non-trivial matches and satisfies D(CCCK ,CCCi) > 2ε,

for all 1 ≤ i < K, where CCCi is the i-Motif. This last requirement forces the

set of subsequences non trivially matched to a given motif to be mutually

exclusive.

5. In the above scenario, motif extraction can be defined as the procedure

that aims at locating a given K-Motif in the time series, and the set of all the

subsequences that match it.

3.1.2 Motif extraction in biomedical signals

The compression framework proposed in this thesis targets biomedical signals ac-

quired by a wearable device. A biomedical signal is any signal generated from the

human body’s activity (e.g., heart activity, brain activity or lungs activity) that

can be continually measured and monitored. It can be of chemical, electrical, me-

chanical, magnetic nature and is typically collected as voltages or currents through

specific transducers. Due to the intrinsically cyclic behavior of heart and breathing

activity, many biomedical signals such as the ECG, PPG, RESP and ABP signal,

are oscillatory in nature, though not exactly periodic in a strict mathematical sense:

by looking at the time evolution of these signals, one can observe a concatenation of

sequences with similar morphology (i.e., with similar length, shape and amplitude)

that, however, never identically reproduce themselves. Such biomedical signals ex-

hibit the quasi-periodicity property (or, equivalently, are quasi-periodic signals). A

continuous quasi-periodic signal x(t) can be formally defined as a signal that

satisfies the condition

x(t) = x(t+ T + ∆T ) + ∆x, ∆x,∆T ∈ R, t, T ∈ R+ ∪ {0} , (3.3)

where T is the fundamental period and ∆T and ∆x are random variables represent-

ing, respectively, time and amplitude variations and in general, but non necessarily,
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satisfying |∆T | � T and |∆x| � max(x(t))−min(x(t)).1 Analogously, in the dis-

crete time domain, a quasi-periodic signal x(n) satisfies:

x(n) = x(n+ T + ∆T ) + ∆x, ∆x ∈ R, ∆T ∈ Z, n, T ∈ N . (3.4)

I only take into consideration (discrete) quasi-periodic biomedical signals, whose

quasi-periodicity (and thus correlation among subsequent cycles) is leveraged to

reach high CRs through the joint exploitation of motif extraction and vector quan-

tization.

With respect to motif extraction, I define as motif a subsequence of the quasi-

periodic biomedical signal made up of consecutive samples in a pseudo-period (i.e.,

in the time interval T + ∆T ), without discriminating between K-Motifs, as they

are defined in Sub-section 3.1.1. In a quasi-periodic signal there is no need for

a learning phase that discovers the most recurrent patterns (or motifs) because

the quasi-periodicity allows by itself to state that there is a unique recurrent pat-

tern, that it coincides with any subsequence associated with a pseudo-period of

length T+∆T and that all the consecutive, non-overlapping subsequences of length

T + ∆T can be considered to be matching subsequences. As a consequence, the

motif extraction phase in this thesis simply consists in segmenting the considered

biomedical signal in subsequences of length T + ∆T . The randomness of variable

∆T , which can be thought of to be a major issue, does not need to be analytically

characterized to correctly perform the segmentation. Indeed, as it will be made

clearer by the following examples, the presence of peaks in the signals makes peak

detection the only true requirement for a proper segmentation, and peak detection

is a problem already deeply investigated in the literature that can be solved through

well established algorithms.

3.1.3 Quasi-periodic biomedical signals: examples

ECG. The heart is a specialised muscle that pumps blood throughout the body

through the blood vessels (arteries, veins and capillaries) of the circulatory system,

supplying oxygen and nutrients to the tissues and removing carbon dioxide and

other metabolic wastes. The structure of a human heart comprises four chambers,

as shown in Figure 3.1: two upper chambers (the right and the left atrium) and

two lower ones (the right and the left ventricle). The heart activity follows a cyclic

pattern, during which the cardiac cycle repeats itself with every heartbeat. The

normal rhythmical heartbeat, called sinus rhythm, is established by the sinoatrial

node, the heart’s natural pacemaker in the upper part of the right atrium. Here

an electrical signal is created that travels through the heart, causing it to contract

and begin the cardiac cycle. During this cycle, de-oxygenated blood transported

by veins passes from the right atrium to the right ventricle and then thorugh the

1max(x(t)) and min(x(t)) stand for the maximum and minimum values assumed by the signal
amplitude, respectively.



Chapter 3 Motif extraction and vector quantization 16

lungs where carbon dioxide is released and oxygen is absorbed. At the same time,

the blood that has been oxygenated in the previous cycle enters the left atrium,

passes through the left ventricle and is pumped through the aorta and arteries to

the rest of the body. The frequency of heartbeats is measured by the heart rate,

generally expressed as beats per minute (bpm). The normal resting adult human

heart rate ranges from 60 to 100 bpm.

The ECG records the heart’s electrical activity for the diagnosis of heart mal-

functions using electrodes placed on the body’s surface. As shown in Figure 3.2,

in a typical ECG lead of a healthy person each cardiac cycle is represented by the

succession of five waves, namely P-, Q-, R-, S-, T-wave, among which the QRS

complex (which captures the ventricular depolarization leading to ventricular con-

traction) forms a special group. The duration, amplitude, and morphology of these

waves, especially those of the QRS complex, are useful in diagnosing cardiovascular

diseases. In particular, the most high frequency component, called R peak, is used

to keep track of the heart rate and thus to assess heart rhythm regularity.

Given the heart rhythmicity (see Figure 3.3), the ECG can be classified as a

quasi-periodic biomedical signal. When the compression method proposed in this

thesis is to be applied to ECG traces, I segment them into subsequences made

up of consecutive samples between successive R peaks. Therefore a subsequence

between two R peaks represents the motif of an ECG. I do not segment the ECG

trace according to the natural partition induced by the cardiac cycles because such

approach would introduce the hurdle of locating the correct extremes of each cycle,

whereas R peaks are clearly defined and a variety of algorithms, whose accuracy

have been extensively tested, are available in the literature to perform peak de-

tection. In particular, the Pan-Tompkins real-time QRS-detection algorithm [30],

which uses a processing sequence made by bandpass filtering, differentiation, squar-

ing and moving window integration, remains, until today, a very robust method

to locate the R peaks. Notwithstanding this, I preferred the fast QRS-detection

algorithm proposed in [31], which is especially targeted for battery-driven devices

due to its lightweight character.

PPG. Photoplethysmography is a simple and low-cost optical technique used to

detect blood volume changes in the microvascular bed of tissue. The pulse oxime-

ter is a non-invasive device commonly used to record a PPG signal, from which

heart rate, blood pressure and also RESP signals can be computed. It detects vol-

ume changes caused by the heart pounding by illuminating the skin with the light

from a light-emitting diode (LED) and then measuring the amount of light either

transmitted or reflected to a photodiode. By varying the wavelenght of the light

emitted by the LED, pulse oximeters can also measure blood oxygen saturation.

As shown in Figure 3.4, a typical PPG signal is a quasi-periodic biomedical signal

that comprises a pulsatile (AC) physiological waveform attributed to cardiac syn-

chronous changes in the blood volume with each heartbeat and a slowly varying
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Figure 3.1: Structure of the hu-
man heart. Figure 3.2: Schematic diagram of

normal sinus rhythm for a human
heart as seen on ECG.
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Figure 3.3: Typical ECG trace.
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Figure 3.4: Typical PPG trace.

(DC) baseline with various lower frequency components attributed to factors such

as respiration and thermoregulation.

Others. Arterial blood pressure signals and respiratory signals are other exam-

ples of quasi-periodic biomedical signals. ABP signals can be measured through a

sphygmomanometer. It is composed of an inflatable cuff (usually wrapped around

the arm) to collapse and then release an artery in a controlled manner and a mer-

cury or mechanical manometer to measure the pressure. The RESP signals can

be obtained from ECGs, PPGs, their joint exploitation or by using respiratory

belts that contain a piezo-electric device responding linearly to changes in length.

RESP traces are thus recorded by measuring the changes in thoracic or abdominal

circumference during respiration.

Analogously to ECGs, for PPGs, ABP and RESP signals the motif is defined as

the subsequence between two successive peaks and the motif extraction procedure
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consists in segmenting the original trace into such subsequences. Peak detection

has been carried out through a suitable adaptation of the QRS-detection algorithm

reported in [31] and used here for ECGs.

3.2 Vector Quantization

3.2.1 Basic concepts

Vector quantization is a classical quantization technique originally conceived for

lossy data compression but also applicable to clustering, pattern recognition and

density estimation. The theory of VQ2, whose exposition can be found in the mile-

stone by Gersho and Gray [32], is an immediate generalization of scalar quantization

of a single random variable to quantization of a block (vector) of random variables.

Its motivation lies on the fundamental result of Shannon’s rate-distortion theory,

which states that better performance (i.e., lower distortion for a given rate or lower

rate for a given distortion) can always be achieved by coding vectors instead of

scalars, even if the data source is memoryless or the data compression system is

allowed to have memory, i.e., the action of the encoder at each time is permitted

to depend on past encoder inputs or outputs.

Let xxx = [x1, x2, . . . , xm]T , xk ∈ R, k = 1, 2, . . . ,m be an m dimensional ran-

dom vector with probability density function (pdf) fxxx(·). A vector quantizer is

described by:

• A set of decision regions Ij ⊆ Rm, j = 1, 2, . . . , L, such that Ij ∩ Ih = ∅,
j, h = 1, 2, . . . , L, j 6= h, and ∪Ij = Rm. This means that the decision regions

are a partition of the m dimensional real space.

• A finite set of reproduction vectors (codewords) C = {yyyj}Lj=1, where yyyj ∈ Rm,

j = 1, 2, . . . , L. This set is called codebook or dictionary. Each codeword yyyj is

assigned a binary index, which may correspond to the binary representation

of j. In this way only dlog2 Le bits are required to represent each binary

index.

• A quantization rule q(·):

q(xxx) = yyyj if xxx ∈ Ij . (3.5)

This means that the jth decision region Ij is associated with the jth codeword

yyyj and that each vector xxx belonging to Ij is mapped by (3.5) onto yyyj.

A compression system based on VQ involves an encoder and a decoder. At the

encoder, the output samples from the data source (e.g., samples from a waveform,

2Note that I use the shorthand notation ‘VQ’ to indicate both vector quantization and vector
quantizer.
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pixels from an image) are grouped into blocks (vectors) and each of them is given

as input to the VQ. The VQ maps each vector xxx to the codeword yyyj∗ according

to (3.5). The binary index associated with yyyj∗ is then transmitted to the decoder.

Because the decoder has exactly the same codebook stored at the encoder, it can

retrieve the codeword given its binary index merely through a table lookup. The

amount of compression is described in terms of the rate, which is measured in bits

per sample. For a codebook of size L and m dimensional input vectors, the number

of bits per sample would be R = dlog2 Le
m

. The quality of reconstruction is measured

by the average distortion between the quantizer input xxx and the quantizer output

yyyj∗ . A common distortion measure between a vector xxx and a codeword yyyj is the

squared Euclidean distance:

d(xxx,yyyj) = ‖xxx− yyyj‖2 =
m∑
k=1

(xk − yjk)2 . (3.6)

The quality is measured accordingly by the mean squared error (MSE) or by the

root mean squared error (RMSE):

MSE = E[d(xxx,yyyj)] =
L∑
j=1

∫
Ij

‖aaa− yyyj‖2fxxx(aaa)daaa (3.7)

RMSE =
√
E[d(xxx,yyyj)] =

√√√√ L∑
j=1

∫
Ij

‖aaa− yyyj‖2fxxx(aaa)daaa . (3.8)

The design of an optimal VQ consists in finding the codebook and the partition

of Rm that minimize the average distortion. It can be proved that an optimal

quantizer must satisfy the following conditions:

1. Nearest Neighbor Condition (NNC). Given the set of codewords C, the

optimal partition of Rm is the one returning the minimum distortion:

Ij = {xxx : d(xxx,yyyj) ≤ d(xxx,yyyh), h 6= j} . (3.9)

This condition implies that the quantization rule (3.5) can be equivalently

defined as q(xxx) = argminyyyj d(xxx,yyyj), i.e., the selected yyyj is the nearest codeword

to the input vector xxx.

2. Centroid Condition (CC). Given the partition Ij, j = 1, 2, . . . , L, the

codewords of the codebook are the centroids of the decision regions. If the pdf

of the source output vector (quantizer input vector) is known, this condition
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implies that yyyj must satisfy:

yyyj =

∫
Ij

aaafxxx(aaa)daaa∫
Ij

fxxx(aaa)daaa
. (3.10)

Linde, Buzo and Gray, inspired by the k-means method for data clustering, provided

an iterative algorithm (the LBG algorithm) to generate a vector quantizer that

satisfies the above conditions. It essentially defines an initial codebook and proceeds

by repeatedly computing the decision regions (according to NNC) and improving

the codewords (according to CC) until the average distortion falls below a given

threshold. It can be formulated for the cases of known or unknown source statistics.

In this last case, a large set of input vectors, called training set, must be used to

build up the quantizer.

3.2.2 Vector quantization for biomedical signals

In this thesis I adopt a VQ approach for the lossy compression of quasi-periodic

biomedical signals. In order to segment the signals into suitable vectors, I used the

motif extraction approach described in Section 3.1. The codebook design has been

carried out through the TASOM. I were actually interested in defining an adaptive

codebook that could be updated in an online fashion if the signal statistics requires

so. The LBG algorithm does not natively support such requirements since it is

conceived for time-invariant codebooks. On the contrary, the time-adaptive self-

organizing map, as the name itself suggests, is able to construct a codebook that

dynamically adapts itself to the incoming input vectors, thus maintaining a well

representative set of prototypes of the input data space at all times.

Since my reference scenario is a wearables-based healthcare application, the pro-

posed compression framework aims at being as energy-efficient as possible. When

dealing with VQ, a problem that may arise is related to the search of the nearest

codeword during the quantization process, i.e., the codeword yyyj∗ ∈ C such that

yyyj∗ = argminyyyj d(xxx,yyyj). Indeed, the number of operations and comparisons per-

formed in such phase can considerably affect the overall performance in terms of

computational complexity and, in turn, power consumption. In order to speed up

the search and thus save energy, I adopt the fast codebook search algorithm devised

by Wu and Lin [33]. The principle is to bypass those codewords which satisfy a

kick-out condition without the actual computation of the distortions between the

bypassed codewords and the input vector, as explained in the next sub-section.

The nearest codeword found by this approach is identical to the one found by the

full search, although the processing burden is much lower. The authors proved that

the algorithm results to be better than other fast codebook search algorithms, both

in terms of time and memory requirements.
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3.2.3 Fast codebook search algorithm by an efficient

kick-out condition

Let xxx ∈ Rm be the input vector to the VQ and let C = {yyyj}Lj=1, yyyj ∈ Rm,

j = 1, 2, . . . , L, be the codebook (at a given time). Let the distortion measure

d(xxx,yyyj) between an input vector xxx and a codeword yyyj be defined according to (3.6).

The goal of the nearest codeword search process, embodying the quantization rule

(3.5), is to find the codeword yyyj∗ ∈ C such that:

yyyj∗ = argminyyyj d(xxx,yyyj) . (3.11)

Without loss of generality, assume that a part of the codebook has been inspected,

and the so far smallest distortion is

dmin = min{d(xxx,yyyj) | yyyj has been inspected} . (3.12)

Also, let the so far nearest codeword yyymin ∈ {yyyj | yyyj has been inspected} be such

that

dmin = d(xxx,yyymin) . (3.13)

Given a codeword yyyj not yet inspected, we must determine whether d(xxx,yyyj) < dmin .

In general, the aim of a fast codebook search algorithm is to find a sufficient

condition, the so-called kick-out condition, which, if satisfied, guarantees that

d(xxx,yyyj) ≥ dmin , and hence, rules out the possibility that codeword yyyj can replace

the so far nearest codeword yyymin. The computation of d(xxx,yyyj) is therefore bypassed

if the sufficient condition is satisfied. Wu and Lin observed that d(xxx,yyyj) can be

rewritten as:

d(xxx,yyyj) = ‖xxx‖2 + ‖yyyj‖2 − 2
m∑
k=1

xkyjk . (3.14)

A codeword yyyj minimizes (3.14) if and only if it minimizes

d1(xxx,yyyj) = d(xxx,yyyj)− ‖xxx‖2 = ‖yyyj‖2 − 2
m∑
k=1

xkyjk , (3.15)

because the term ‖xxx‖2 does not depend on yyyj. It follows that the problem of

minimizing (3.15) is equivalent to that of minimizing (3.14) (it gives the same

solution yyymin) and that we are allowed to only consider the first one. Let the so far

smallest d1-distortion be defined as:

d1min = d1(xxx,yyymin) = min{d1(xxx,yyyj) | yyyj has been inspected} . (3.16)
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Note that

d1(xxx,yyyj) ≥ ‖yyyj‖2 − 2‖xxx‖‖yyyj‖ = ‖yyyj‖(‖yyyj‖ − 2‖xxx‖) (3.17)

is always true, due to the Cauchy-Schwarz inequality. As a result, if a codeword yyyj
satisfies

‖yyyj‖(‖yyyj‖ − 2‖xxx‖) ≥ d1min , (3.18)

then d1(xxx,yyyj) ≥ d1min is guaranteed, and hence, yyyj should be kicked out because

it cannot be closer to xxx than yyymin is. For the input vector xxx, the computation of

‖yyyj‖(‖yyyj‖ − 2‖xxx‖) is quite simple, because the determination of {‖yyyj‖}Lj=1 can be

done in advance.

The complete algorithm by Wu and Lin is given in the following.

Algorithm 1 (Fast codebook search algorithm by an efficient

kick-out condition).

1. Initialization. Evaluate ‖yyyj‖ =
√∑m

k=1 y
2
jk for every codeword in the code-

book C = {yyyj}Lj=1. Sort C so that ‖yyy1‖ ≤ ‖yyy2‖ ≤ . . . ≤ ‖yyyL‖.

2. Read an input vector xxx which is not encoded yet.

3. Evaluate 2‖xxx‖.

4. Choose a yyy
(guess)
min ∈ C and let

yyymin = yyy
(guess)
min , (3.19)

d1min = d1(xxx,yyymin) = d1(xxx,yyy
(guess)
min ) , (3.20)

R =
{
yyyj ∈ C | yyyj 6= yyy

(guess)
min

}
. (3.21)

5. a) If R = ∅, go to 6.

b) Pick a yyyj from R.

c) If

‖yyyj‖(‖yyyj‖ − 2‖xxx‖) ≥ d1min , (3.22)

then

i. if ‖yyyj‖ ≥ ‖xxx‖, then delete from R all yyyh such that h ≥ j and go to

5a);

ii. else delete from R all yyyh such that h ≤ j and go to 5a).

d) Evaluate d1(xxx,yyyj); delete yyyj from R; if d1(xxx,yyyj) ≥ d1min , then go to 5a).
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e) Update the so far minimum distortion and the so far nearest codeword

(d1min = d1(xxx,yyyj), yyymin = yyyj) and go to 5a).

6. Return yyymin as the codeword minimizing (3.15) and hence (3.14).

7. Go to 2.

In step 1, I use the quicksort algorithm to sort the codewords in C. Indeed, the

quicksort algorithm is an efficient sorting algorithm commonly adopted in the sci-

entific community [34]. Mathematical analysis of quicksort shows that, on average,

the algorithm takes O(L logL) comparisons to sort L items. In the worst case, it

makes O(L2) comparisons, though this behavior is rare. When some optimizations

are taken into account during implementation (e.g., using insertion sort on small

arrays and choosing the pivot as the median of an array) it can be about two or

three times faster than its main competitors, mergesort and heapsort. In step 4

and 5b) I randomly choose a codeword in C and R, respectively. Note that the

timesaving is obtained through the check done in step 5c), which allows to skip

step 5e) and the time consuming step 5d) if condition (3.22) is satisfied. Note also

that in steps 5c-i) and 5c-ii) not only yyyj is kicked out but also all the codewords

yyyh ∈ R such that:

‖yyyh‖(‖yyyh‖ − 2‖xxx‖) ≥ ‖yyyj‖(‖yyyj‖ − 2‖xxx‖) ≥ d1min . (3.23)

To see why (3.23) is true, just note that the function c(t) = t(t− 2‖xxx‖) of variable

t is a parabola with its absolute minimum at t = ‖xxx‖. Moreover, note that the

problem of finding the codeword yyyj minimizing the Euclidean distance for a given

input vector xxx is equivalent to the problem of finding the codeword yyyj minimizing

the squared Euclidean distance (3.6). It follows that in my work, where I consider

the Euclidean distance (see Chapter 6), I am allowed to utilize the fast codebook

search algorithm just described.



Chapter 4

An overview of

artificial neural networks

4.1 What is an artificial neural network?

Artificial neural networks, also known as artificial neural nets, or ANNs for short,

represent one of the most promising computational tools in the artificial intelligence

research area. ANNs can be defined as massively parallel distributed processors

made up of a number of interlinked simple processing units, referred to as neurons,

that are able to store experiential knowledge from the surrounding environment

through a learning (or training) process and make the acquired knowledge available

for use [35]. The procedure used to perform the learning process is called a learning

algorithm and its function consists in tuning the interneuron connection strengths,

known as synaptic weights, in an orderly fashion, according to the data given as

input to the network. As a result, the acquired knowledge is encapsulated in the

synaptic weights and can be exploited to fulfill a particular assignment of interest.

Successful learning can result in ANNs that perform tasks such as predicting an

output value, classifying an object, approximating a function, recognizing a pattern

in multifactorial data, and completing a known pattern. Many works based on the

manifold abilities of ANNs can be found in the literature. For example, in [36]

the authors exploit ANNs to appropriately classify remotely sensed data; in [37]

the capability to uniformly approximate continuous functions on compact metric

spaces is proved for simple neural networks satisfying a few necessary conditions;

in [38] the cooperation of two ANNs is used for human face recognition and in [39]

a novel approach is proposed for speech recognition.

Work on ANNs have been motivated right from its inception by the recognition

that biological neural networks, in particular the human brain, compute in an en-

tirely different way from the conventional digital computer. The brain is a highly

complex, nonlinear and massively parallel information-processing system. It has

the capability to organize its structural constituents, the neurons, so as to perform

24
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certain computations (e.g., pattern recognition, perception, and motor control)

many times faster than the fastest digital computer in existence today. Consider,

for example, human vision. The brain routinely accomplishes perceptual recog-

nition tasks (e.g., recognizing a familiar face embedded in an unfamiliar scene) in

approximatively 100−200 ms, whereas tasks of much lesser complexity take a great

deal longer on a powerful computer. While in a silicon chip events happen in the

nanosecond range, neural events happen in the millisecond range. However, the

brain makes up for the relatively slow rate of operation by having a truly staggering

number of neurons with massive interconnections between them. It is estimated

that there are approximatively 10 billion neurons in the human cortex1, and 60

trillion connections. The key feature of the brain, which makes it an enourmously

efficient structure, is represented by its plasticity [40, 41], i.e., the ability to adapt

the neural connections (i.e., create new connections and modify the existing ones)

to the surrounding environment and then supply the information needed to interact

with it. The ANN, which is usually implemented by using electronic components

or simulated in software on a digital computer, is an adaptive machine designed

to model the way in which the brain works. Its computing power derives from its

parallel distributed structure and its ability to learn and therefore generalize, i.e.,

produce reasonable outputs for inputs not encountered during training. These in-

formation processing capabilities makes it possible for neural networks to find good

solutions to complex problems. Nevertheless, in practice, neural networks cannot

provide the solution by working individually but need to be integrated into a con-

sistent system engineering approach. Specifically, a complex problem of interest

is decomposed into a number of relatively simple tasks, and neural networks are

assigned a subset of the tasks that matches their inherent abilities.

4.2 Model of an artificial neuron

The fundamental information-processing unit of an ANN is the neuron, whose

model is directly inspired by its biological counterpart. In order to let the reader

appreciate the analogy, I will briefly describe the structure and functioning of a

biological neuron first. The model of an artificial neuron will follow.

Neurons are the core components of the brain and spinal cord of the central

nervous system (CNS), and of the ganglia of the peripheral nervous system (PNS).

They are electrically excitable cells that process and transmit information through

electrochemical signals. A typical neuron consists of a cell body (or soma), den-

drites, and an axon, as illustrated in Figure 4.1. The soma is usually compact;

the axon and dendrites are filaments that extrude from it. Dendrites typically

1The cerebral cortex is the brain’s outer layer of neural tissue in humans and other mam-
mals. It plays a fundamental role in memory, attention, perception, thought, language, and
consciousness.
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Figure 4.1: Structure of two typical neurons.

branch profusely, getting thinner with each branching, and extending their far-

thest branches a few hundred micrometers from the soma. The axon leaves the

soma at a swelling called the axon hillock and can extend for greater distances, as

far as 1 m in humans. The soma may give rise to numerous dendrites, but never

to more than one axon. The process of communication between two neurons (the

presynaptic neuron and the postsynaptic neuron), is called neurotransmission or

synaptic transmission [42]. Typically, it involves the propagation of an electro-

chemical signal from the axon of the presynaptic neuron to the dendrites of the

postsynaptic neuron. Like all animal cells, the cell body of every neuron is enclosed

by a plasma membrane which include ion channels that permit electrically charged

ions to flow across the membrane and ion pumps that actively transport ions from

one side of the membrane to the other. The interactions between ion channels and

ion pumps produce a voltage difference across the membrane, called the membrane

potential. In resting state a neuron’s membrane potential (resting potential) is

around −70 mV. When the membrane potential of the presynaptic neuron changes

significantly and goes beyond the threshold potential (which is around –55 mV),

an all-or-none electrochemical impulse called an action potential (or spike) is trig-

gered. The action potential travels rapidly along the cell’s axon and activates the

release of neurotransmitters, which bind to the receptors of the postsynaptic neuron

and, as a result, affect its membrane potential. The region where action potentials

are transmitted and received, encompassing the axon termination of the presynap-

tic neuron, an extremely small gap across which the neurotransmitters travel, and

the adjacent membrane of the postsynaptic neuron, is called synapse. The postsy-

naptic neuron may receive inputs from many presynaptic neurons, both excitatory

and inhibitory. Excitatory inputs bring the neuron’s membrane potential closer to

threshold, while inhibitory inputs bring the neuron’s membrane potential farther

from threshold. The excitatory and inhibitory influences are summed, and if the

net effect is inhibitory, the neuron will be less likely to ‘fire’ (i.e., generate an action

potential), and if the net effect is excitatory, the neuron will be more likely to fire.

In any case, the neurons who do not reach the threshold will not fire, while those
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Figure 4.2: Model of an artificial neuron.

that do must fire. This is the reason why the action potential is an ‘all-or-none’

event.

Let us now focus on ANNs. The model of an artificial neuron is reported in

Figure 4.2. Three basic elements of the neuron model can be identified:

• A set of synapses, or connecting links, each of which is characterized by a

weight or strength of its own. Specifically, a signal xk at the input of synapse

k connected to neuron j is multiplied by the synaptic weightwjk. The synaptic

weight of an artificial neuron may lie in a range that includes negative as well

as positive values.

• An adder (or linear combiner) for summing the input signals, weighted by

the respective synaptic weights of the neuron.

• An activation function (or squashing function) that limits the permissible

amplitude range of the output signal to some finite value.

The neural model in Figure 4.2 also includes an externally applied bias2, denoted

by bj. The bias bj has the effect of increasing or lowering the net input of the

activation function, depending on whether it is positive or negative, respectively.

In mathematical terms, the neuron j depicted in Figure 4.2 is described by the

pair of equations:

uj =
m∑
k=1

wjkxk (4.1)

and

yj = φ(uj + bj) , (4.2)

2The presence of the bias is not mandatory in neural models. It has been shown here for the
sake of completeness.
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where x1, x2, . . . , xm are the input signals; wj1, wj2, . . . , wjm are the respective

synaptic weights of neuron j; uj (not shown in Figure 4.2) is the linear combiner

output due to the input signals; bj is the bias; φ(·) is the activation function; yj
is the output signal of the neuron. The quantity vj = uj + bj is referred to as the

induced local field, or activation potential, of neuron j. Correspondingly, (4.2) may

be reformulated as yj = φ(vj).

There exist two basic types of activation functions:

• The threshold function (or Heaviside function), given by:

φ(v) =

{
1, if v ≥ 0

0, if v < 0 .
(4.3)

In neural computation, a neuron which uses the threshold function is referred

to as the McCulloch–Pitts model, in recognition of the pioneering work done

by McCulloch, a neuroscientist, and Pitts, a logician, who developed the first

conceptual model of an artificial neural network in 1943 [43]. In this model,

the output yj of a neuron takes on the value of 1 if the induced local field vj of

that neuron is nonnegative, and 0 otherwise. This statement describes the all-

or-none property of the McCulloch–Pitts model, which has been formulated

in accordance to the ‘all-or-none’ behavior of the action potential in biological

neurotransmission.

• The sigmoid function, whose graph is ‘S’-shaped and which is by far the

most common form of activation function used in the construction of neural

networks. An example of the sigmoid function is the logistic function, defined

by

φ(v) =
1

1 + e−av
, (4.4)

where a is the slope parameter. In the limit, as the slope parameter approaches

infinity, the sigmoid function becomes simply a threshold function. While a

threshold function assumes the value of 0 or 1, a sigmoid function assumes a

continuous range of values from 0 to 1. Note also that the sigmoid function

is differentiable, whereas the threshold function is not.

4.3 Network architectures

The manner in which the neurons are structured, i.e., the network architecture,

is intimately linked with the learning algorithm used to train the network. We

may therefore speak of learning algorithms used in the design of neural networks

as being structured. Three fundamentally different classes of network architectures

are identified:
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Figure 4.3: Feed-forward network with a single layer of neurons.

• Single-Layer Feed-forward Networks. In a layered neural network, the

neurons are organized in the form of layers. In the simplest form of a layered

network, we have an input layer of source nodes that projects directly onto

an output layer of neurons, but not vice versa. This network is strictly of a

feed-forward type and is illustrated in Figure 4.3 for the case of four nodes in

both the input and output layers. It is called a single-layer network, because

there is only one output layer of computation nodes, i.e., neurons. The input

layer of source nodes is not taken into account because no computation is

performed there.

The Rosenblatt’s Perceptron (1958) [44] was the first algorithmically described

neural network. It is a single-layer feed-forward network able to classify pat-

terns that are linearly separable (i.e., lie on the opposite side of a hyperplane).

• Multi-layer Feed-forward Networks. The second class of a feed-forward

neural network distinguishes itself by the presence of one or more hidden

layers, whose computation nodes are correspondingly called hidden neurons

or hidden units; the term ‘hidden’ refers to the fact that this part of the neural

network is not directly seen from either the input or output of the network.

The function of hidden neurons is to intervene between the external input and

the network output in some useful manner. By adding one or more hidden

layers, the network is enabled to extract higher-order statistics from its input.

In a rather loose sense, the network acquires a global perspective despite its

local connectivity, due to the extra set of synaptic connections and the extra

dimension of neural interactions [41].

The neurons in each layer of the network have as their inputs the output
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Figure 4.4: Multi-layer feed-forward network with one hidden layer and one
output layer.

signals of the preceding layer only. The set of output signals of the neurons in

the final layer of the network constitutes the overall response of the network

to the input signals supplied by the source nodes in the input (first) layer.

The architectural graph in Figure 4.4 illustrates the layout of a multi-layer

feed-forward neural network for the case of a single hidden layer.

Multi-layer feed-forward networks use a variety of learning techniques, the

most popular being Backpropagation [45].

• Recurrent Networks. A recurrent neural network distinguishes itself from

a feed-forward neural network in that it has at least one feedback loop. For

example, a recurrent network may consist of a single layer of neurons with each

neuron feeding its output signal back to the inputs of all the other neurons.

Standard algorithms to train recurrent networks are Backpropagation through

time (BPTT) and Real-Time Recurrent Learning (RTRL) [46].

4.4 The learning process

A major task for a neural network is to learn a model of the world (or environment)

in which it is embedded, and to maintain the model sufficiently consistent with

the real world so as to achieve the specified goals of the application of interest.

Knowledge3 of the world consists of two kinds of information:

3A generic definition of knowledge is provided in [47]: ‘Knowledge refers to stored information
or models used by a person or machine to interpret, predict, and appropriately respond to the
outside world’.
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1. The known world state, represented by facts about what is and what has been

known; this form of knowledge is referred to as prior information.

2. Observations (measurements) of the world, obtained by means of sensors

designed to probe the environment, in which the neural network is supposed

to operate. Ordinarily, these observations are inherently noisy, being subject

to errors due to sensor noise and system imperfections.

It is the second kind of information that shall be used during the learning process.

Indeed, the observations of the world provide the examples used to train the neural

network. Such examples can be labeled or unlabeled. In labeled examples, each

example representing an input signal is paired with a corresponding desired response

(i.e., target output). On the other hand, unlabeled examples consist of different

realizations of the input signal all by itself. In any event, a set of examples, labeled

or otherwise, is referred to as the training set.

The learning process aims at acquiring the knowledge about the environment

as it is embodied by the training set and at providing a representation of such

knowledge by opportunely modifying the values taken on by the free parameters

(i.e., synaptic weights and biases) of the network. The knowledge representation

holds the key to the network performance. Since it heavily depends on the specific

architecture and learning process, the choice of these latter two constitute the very

design of the ANN.

In a broad sense, we may categorize the learning processes through which neural

networks function into two classes:

• Supervised learning (or learning with a teacher). Supervised learning

uses a training set of labeled examples and enables the ANN to learn com-

plicated input-output mappings. The learning process adjusts the network

parameters under the combined influence of the examples and the error sig-

nal, which is defined as the difference between the desired response and the

actual response of the network. This adjustment is carried out iteratively

in a step-by-step fashion with the aim of minimizing the error signal in ac-

cordance with an appropriate statistical criterion. The training continues

until the network reaches a steady state where there are no further significant

changes in the synaptic weights. When this condition is reached, the network

should be able to generalize when applied to signals not seen during training.

Supervised learning can be employed for pattern classification tasks, where

the requirement is to assign an input signal representing a physical object

or event to one of several prespecified categories. In this case, the desired

response is the category to which the corresponding input belongs.

• Unsupervised learning (or learning without a teacher). Unsupervised

learning uses a training set of unlabeled examples and allows the discovery

of significant patterns or features of the input data. In some cases, provision
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is made for a task-independent measure of the quality of representation that

the network is required to learn, and the free parameters of the network

are optimized with respect to that measure. For a specific task-independent

measure, once the network has become tuned to the statistical regularities

of the input data, it develops the ability to form internal representations for

encoding features of the input data.

In this work, I used the TASOM, an ANN based on unsupervised learning. In

order to fully clarify how its implementation (and that of the SOM, from which

the TASOM derives) can be accomplished, I dedicate the following section to the

principles of unsupervised learning. Then, in Chapter 5, I proceed with the pre-

sentation of the SOM and TASOM architectures and of the corresponding learning

algorithms.

4.5 Unsupervised learning

The goal of unsupervised learning, also called self-organized learning, is to fit a

model to a set of unlabeled input data in such a way that the underlying structure

of the data is well represented. It is based on four principles [35]:

Principle 1. Self-amplification

The first principle of self-organization states that:

Modifications in the synaptic weights of a neuron tend to self-amplify

in accordance with Hebb’s postulate of learning, which is made possible

by synaptic plasticity.

Hebb’s postulate of learning is the oldest and most famous of all learning rules and

has been originally defined for a neurobiological context; it is named in honor of

the neuropsychologist Hebb. Hebb’s book The Organization of Behavior (1949)

asserts the following (p. 62):

When an axon of cell A is near enough to excite a cell B and repeatedly

or persistently takes part in firing it, some growth process or metabolic

changes take place in one or both cells such that A’s efficiency as one

of the cells firing B is increased.

Thus, if we define as the presynaptic signal the signal carried by the presynaptic

neuron (cell A) and as the postsynaptic signal the signal carried by the postsynaptic

neuron (cell B), we can say that the first principle of self-organization specify a

feedback mechanism, by means of which a strong synapse leads to the coincidence of

presynaptic and postsynaptic signals. In turn, the synapse is increased in strength

by such a coincidence. According to [48, 49], these requirements can be rephrased

as a two-part rule:
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1. If two neurons on either side of a synapse are activated simultaneously (i.e.,

synchronously), then the strength of that synapse is selectively increased.

2. If two neurons on either side of a synapse are activated asynchronolusly, then

that synapse is selectively weakened or eliminated.

Such a synapse is called a Hebbian synapse, although the original Hebbian rule did

not contain part 2. A more sophisticated definition can be found in [50], where a

Hebbian synapse is described as a synapse that uses a time-dependent, highly local,

and strongly interactive mechanism to increase synaptic efficiency as a function

of the correlation between the presynaptic and postsynaptic activities. Hence, the

following four key mechanisms characterize Hebbian learning and, as a consequence,

the self-amplification principle of self-organization:

1. Time-dependent mechanism. This mechanism refers to the fact that the

modifications in a Hebbian synapse depend on the exact time of occurrence

of the presynaptic and postsynaptic signals.

2. Local mechanism. By its very nature, a synapse is the transmission site where

information-bearing signals (representing ongoing activity in the presynaptic

and postsynaptic units) are in spatiotemporal contiguity. This locally avail-

able information is used by a Hebbian synapse to produce a local synaptic

modification that is input specific.

3. Interactive mechanism. The occurrence of a change in a Hebbian synapse

depends on signals on both sides of the synapse. That is, the Hebbian form of

learning depends on ‘true interaction’ between presynaptic and postsynaptic

signals in the sense that we cannot make a prediction from either one of these

two activities by itself.

4. Conjunctional or correlational mechanism. One interpretation of Hebb’s pos-

tulate of learning is that the condition for a change in synaptic efficiency is

the conjunction of presynaptic and postsynaptic signals. Thus, according to

this interpretation, the cooccurrence of presynaptic and postsynaptic signals

(within a short interval of time) is sufficient to produce the synaptic modi-

fication. It is for this reason that a Hebbian synapse is sometimes referred

to as a conjunctional synapse. For another interpretation of Hebb’s postu-

late of learning, we may think of the interactive mechanism characterizing a

Hebbian synapse in statistical terms. In particular, the correlation over time

between presynaptic and postsynaptic signals is viewed as being responsible

for a synaptic change. Accordingly, a Hebbian synapse is also referred to as

a correlational synapse. Correlation is indeed the basis of learning [51].

To formulate the Hebbian learning in mathematical terms, consider a synaptic

weight wjk of neuron j with presynaptic and postsynaptic signals denoted by xk
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and yj, respectively. The adjustment applied to the synaptic weight wjk at time-

step n is expressed in the general form as

∆wjk(n) = wjk(n+ 1)− wjk(n) = f(yj(n), xk(n)) , (4.5)

where f(·) is a function of both postsynaptic and presynaptic signals. The formula

(4.5) admits many forms, all of which qualify as Hebbian. The simplest form of

Hebbian learning is described by

∆wjk(n) = ηyj(n)xk(n) , (4.6)

where η is a positive constant that determines the rate of learning and is referred to

as the learning-rate. Equation (4.6) clearly emphasizes the correlational nature of a

Hebbian synapse. From this representation, we see that the repeated application of

the input signal (presynaptic activity) xj leads to an increase in yk and, therefore,

exponential growth that finally drives the synaptic connection into saturation. At

that point, no new information will be stored in the synapse, and selectivity is lost.

Some mechanism is therefore needed to stabilize the self-organized behavior of the

neuron, which is taken care of by the second principle.

Principle 2. Competition

This second principle of self-organization states the following:

The limitation of available resources, in one form or another, leads to

competition among the synapses of a single neuron or an assembly of

neurons, with the result that the most vigorously growing (i.e., fittest)

synapses or neurons, respectively, are selected at the expense of the

others.

This second principle is made possible by synaptic plasticity (i.e., adjustability of

a synaptic weight) and allows the network to stabilize. For a given single neuron,

for example, there must be competition among its synapses for limited resources

(e.g., energy) in such a way that the increase in strength of some synapses in the

neuron is compensated for by a decrease in strength in others. Accordingly, only

the ‘successful’ synapses can grow in strength, while the less successful synapses

tend to weaken and may eventually disappear altogether. One way to introduce

competition among the synapses of a neuron is to incorporate some form of normal-

ization in the learning rule for the adaptation of the synaptic weights. For example,

a modification of the Hebbian learning rule, called Oja’s rule [52], recasts (4.6) in

the new form

wjk(n+ 1) =
wjk(n) + ηyj(n)xk(n)√∑m
k=1(wjk(n) + ηyj(n)xk(n))2

, (4.7)
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where the summation in the denominator extends over the complete set of synapses

(with cardinality m) associated with the neuron j. Assuming that the parameter η

is small and that the neuron j acts as a linear combiner (i.e., the postsynaptic signal

yj(n) is given at any time-step n by the sum of its presynaptic signals xk(n), k =

1, . . . ,m, weighted by the corresponding synaptic weights wjk(n)), it can be proved

that (4.7) is equivalent to [35]

wjk(n+ 1) = wjk(n) + ηyj(n)(xk(n)− yj(n)wjk(n)) , (4.8)

where the term yj(n)xk(n) represents the usual Hebbian adaptation and therefore

accounts for the self-amplification effect dictated by Principle 1 of self-organization.

The negative term −yj(n)wjk(n) is responsible for stabilization in accordance with

Principle 2. It is related to a forgetting, or leakage term, that is frequently used

in learning rules, but with the difference that it becomes more pronounced with a

stronger postsynaptic signal yj(n).

At the network level, a competitive process may prevail by proceeding as fol-

lows [53]:

• To begin with, the neurons in the network are all the same, except for some

randomly distributed synaptic weights; hence, the neurons respond differently

to a given set of input patterns.

• A specific limit is imposed on the ‘strength’ (e.g., the sum of synaptic weights)

of each neuron in the network.

• The neurons compete with each other in accordance with a prescribed rule

for the right to respond to a given subset of inputs; consequently, only one

output neuron, or one neuron per group, is active at a time. The neuron that

wins the competition is called a winner-takes-all neuron (or simply winning)

neuron.

Through this competitive-learning process, the individual neurons of the network

assume the role of feature detectors for different classes of input patterns. Whereas

in Hebbian learning several output neurons of a neural network may be active

simultaneously, in competitive learning only a single output neuron, or one output

neuron per group, is active at any one time. It is this characteristic of competitive

learning that makes it highly suited to discovering statistically salient features

which could be used to classify a set of input patterns.

Principle 3. Cooperation

This third principle of self-organization states the following:

Modifications in synaptic weights at the neural level and in neurons at

the network level tend to cooperate with each other.
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The cooperation may arise because of synaptic plasticity or because of simultane-

ous stimulation of presynaptic neurons brought on by the existence of the right

conditions in the external environment. Consider first the case of a single neuron:

a single synapse on its own cannot efficiently produce favorable events. Rather,

there has to be cooperation among the neuron’s synapses, making it possible to

carry coincident signals strong enough to activate that neuron. At the network

level, cooperation may take place through lateral interaction among a group of

excited neurons. In particular, a firing neuron tends to excite the neurons in its

immediate neighborhood more so than those farther away from it. Over the course

of time, we typically find that a cooperative system evolves through a sequence of

small changes from one configuration to another, until an equilibrium condition is

established. It is also important to note that in a self-organizing system that in-

volves both competition and cooperation, competition always precedes cooperation.

Principle 3. Structural Information

The fourth, and last, principle of self-organization states the following:

The underlying order and structure that exist in an input signal rep-

resent redundant information, which is acquired by a self-organizing

system in the form of knowledge.

Structural information contained in the input data is therefore a prerequisite to

self-organized learning. It is also noteworthy that whereas self-amplification, com-

petition, and cooperation are processes that are carried out within a neuron or a

neural network, structural information, or redundancy, is an inherent characteristic

of the input signal. Consider, for example, a voice or video signal. When such a sig-

nal is sampled at a high rate, the resulting sampled signal is correspondingly found

to exhibit a higher degree of correlation between adjacent samples. The meaning

of this high correlation is that, on average, the signal does not change rapidly from

one sample to the next, which, in turn, means that the signal contains structured, or

redundant, information. In other words, correlation is synonymous with structure

and redundancy. To appreciate the importance of structure, suppose that all the

redundant information contained in a signal is completely removed. What is then

left is a completely non-redundant signal that is unpredictable and may therefore

be indistinguishable from noise. Given this kind of an input, no self-organizing or

unsupervised-learning system can function.



Chapter 5

The self-organizing maps:

SOM and TASOM

The self-organizing map (SOM) is a kind of ANN based on unsupervised learning

which was invented by the Finnish professor Teuvo Kohonen in the 1980. It has

the characteristic property of providing a structured representation of the input

data distribution by the neurons’ synaptic weights as prototypes [54]. Typically

the self-organizing map has a single-layer feed-forward architecture (see Section

4.3) where neurons are placed at the nodes of a lattice that is usually one or two di-

mensional. Higher dimensional maps are also possible but not as common. During

the unsupervised learning process the neurons become selectively tuned to vari-

ous input patterns by competing among themselves. The synaptic weights of the

neurons that win the competitions are modified according to an adaptation rule

that tends to order the neurons with respect to each other, developing a significant

coordinate system for different input features over the lattice. A SOM therefore

creates a topographic map of the input data space, in which the spatial locations

or coordinates of the neurons in the lattice correspond to a particular domain or

intrinsic statistical feature of the input data, without any prior knowledge on the

input distribution - hence, the name self-organizing map.

The definition of a SOM as a neural model is justified by the fact that in higher

animals different sensory inputs, such as tactile, visual, and acoustic, are mapped

onto different areas of the cerebral cortex in a topologically ordered manner [55].

Thus the learning results achieved with a SOM seem very natural, at least indicating

that the adaptive processes at work in the map may be similar to those encountered

in the brain.

5.1 The SOM algorithm

The map formation is carried out through the learning process, whose original

version was developed by Kohonen during a long series of computer experiments

37



Chapter 5 The self-organizing maps: SOM and TASOM 38

Figure 5.1: Example of a two dimensional lattice of neurons, shown for a three
dimensional input and a four-by-four dimensional lattice.

whose background is expounded in [56]. Let m denote the dimension of the input

data space X . Assume a training set made by a sequence of unlabeled examples

{xxx(n)}Nn=0 selected at random from X , where n is the (discrete) time coordinate.

In the following, I refer to the unlabeled examples as the training input patterns

(or training input vectors). Each input pattern is of the form

xxx = [x1, x2, . . . , xm]T ∈ Rm . (5.1)

Consider a one dimensional lattice formed by an array of neurons or a two

dimensional lattice of neurons whose arrangement can be hexagonal, rectangular,

etc. Let A indicate the lattice. Each neuron is connected to all the source nodes in

the input layer and so to each component of the input vector, as shown in Figure

5.1. This network represents a feed-forward structure with a single computational

layer consisting of neurons arranged in rows and columns. A one dimensional lattice

is a special case of the configuration depicted in Figure 5.1: in this special case,

the computational layer simply consists of a single column or row of neurons. The

links (synapses) between the input vector and the neurons are weighted, such that

the jth neuron is associated with a synaptic-weight vector with length m and

denoted as

wwwj = [wj1, wj2, . . . , wjm]T ∈ Rm, j = 1, 2, . . . , L , (5.2)

where L is the total number fo neurons in the network. The learning process occurs

over many iterations, from n = 0 to n = N , where N (coinciding with the training

set dimension) should be large enough to ensure that the self organization develops

properly. Such process leads to a spatially organized map essentially through three

phases:
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1. Competition. For each input pattern, the neurons in the network compute

their respective values of a discriminant function. This discriminant function

provides the basis for competition among the neurons. The particular neuron

with the minimum value of the discriminant function is declared winner of

the competition.

2. Cooperation. The winning neuron determines the spatial location of a topo-

logical neighborhood of excited neurons, thereby providing the basis for co-

operation among such neighboring neurons.

3. Synaptic Adaptation. This last mechanism enables the excited neurons to

reduce the value of their discriminant functions in relation to the input pat-

tern through suitable adjustments applied to their synaptic weights. The

adjustments made are such that the response of the winning neuron to the

subsequent application of a similar input pattern is enhanced.

The first two phases are in accordance with two of the four principles of self-

organization described in Section 4.5. Synaptic adaptation embodies the principle

of self-amplification by using a modified form of Hebbian learning. As explained in

Section 4.5, the presence of redundancy in the input data, though not mentioned

explicitly in describing the SOM algorithm, is essential for learning, since it pro-

vides knowledge about the underlying structure of the input patterns. Detailed

descriptions of the processes of competition, cooperation, and synaptic adaptation

are presented in what follows.

5.1.1 Competition

At each iteration a training input pattern from {xxx(n)}Nn=0 is presented to the net-

work and the neurons compete among themselves to be selected as the winning

neuron (also called the best matching neuron). To determine which neuron is going

to be selected, the input vector is compared with the synaptic-weight vectors of

the neurons. Only the neuron whose synaptic-weight vector most closely matches

the current input vector according to a given distance measure (that I chose equal

to the Euclidean distance, as it is in typical applications) dominates. If we use the

index i(xxx) to identify the neuron that best matches the input vector xxx(n), we may

then determine i(xxx) by applying the following condition, which sums up the essence

of the competition process among the neurons:

i(xxx) = argminj ‖xxx(n)−wwwj(n)‖ , j = 1, 2, . . . , L . (5.3)

5.1.2 Cooperation

The winning neuron locates the center of a topological neighborhood of cooperating

neurons. Indeed, a crucial requirement for the formation of ordered maps is that
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the neurons involved in the learning are not affected independently of each other,

but as topologically related subsets, on each of which a similar kind of correction

is imposed. In biophysically inspired neural network models, correlated learning

by spatially neighboring neurons can be implemented using various kinds of lateral

feedback connection and other lateral interactions. In the SOM algorithm, lateral

interaction is directly enforced by defining the neighborhood function hji, which

introduces a topological neighborhood centered on the winning neuron i(xxx) and

encompassing a set of excited (cooperating) neurons, a typical one of which is

denoted by j. The neighborhood function should decay smoothly with lateral

distance, according to the neurobiological evidence that a firing neuron tends to

excite the neurons in its immediate neighborhood more than those farther away

from it. If dji is the lateral distance between i(xxx) and neuron j, then hji has to

be symmetric about the maximum point defined by dji = 0 and its amplitude

has to decrease monotonically with increasing lateral distance dji, decaying to zero

for dji → ∞. A good choice of hji is the Gaussian function, which is translation

invariant:

hji = exp

(
−
d2ji
2σ2

)
, (5.4)

where the parameter σ is the width of the topological neighborhood (referred to

as neighborhood width) that measures the degree to which excited neurons in the

vicinity of the winning neuron participate in the learning process.

Another requirement that hji has to satisfy is to be shrinking with time, which

can be achieved by making σ decrease with time. Actually, it turned out to be ad-

vantageous for the map to stabilize to let the radius of the topological neighborhood

be very wide in the beginning and shrink monotonically as time goes by. The ex-

planation for this is that a wide initial topological neighborhood, corresponding to

a coarse spatial resolution in the learning process, first induces a rough global order

in the synaptic-weight vectors’ values, after which narrowing improves the spatial

resolution of the map without destroying the acquired global order. A popular

choice for the time dependence of σ is the exponential decay described by

σ(n) = σ0 exp

(
− n
τ1

)
, n = 0, 1, . . . (5.5)

where σ0 is the value of σ at the initialization of the SOM algorithm and τ1 is a

time constant to be chosen by the designer.

Correspondingly hji takes the time-varying form

hji(n) = exp

(
−

d2ji
2σ2(n)

)
, n = 0, 1, . . . (5.6)

with σ(n) defined in (5.5).
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5.1.3 Synaptic Adaptation

The last phase requires the synaptic-weight vector of the excited neurons to change

in relation to the input vector xxx(n). In Hebb’s postulate of learning, a synaptic

weight is increased with a simultaneous occurrence of presynaptic and postsynaptic

activities. For the type of unsupervised learning being considered here, however,

the Hebbian hypothesis in its basic form is unsatisfactory, since changes in con-

nectivities occur in one direction only, finally driving all the synaptic weights into

saturation, as seen in Sub-section 4.5. To overcome this problem, Kohonen modified

the Hebbian assumption by including a forgetting term that leads to the following

adaptation rule for the synaptic-weight vector wwwj(n) of neuron j at time n:

wwwj(n+ 1) = wwwj(n) + η(n)hji(n)(xxx(n)−wwwj(n)) . (5.7)

(5.7) has the effect of moving the synaptic-weight vector wwwi(xxx) of the winning neu-

ron i(xxx) (and to a lesser extent the synaptic-weight vectors of the neurons in its

topological neighborhood) toward the input vector xxx to more closely resemble the

data for the class the input vector is a member of. The algorithm therefore leads

to a topological ordering of the feature map in the input space in the sense that

neurons that are adjacent in the lattice will tend to have similar synaptic-weight

vectors. According to the principles of stochastic approximation, the learning-rate

η(n) should start at some initial value η0 and then decrease gradually with increas-

ing time n. This requirement can be satisfied by the following expression:

η(n) = η0 exp

(
− n
τ2

)
, n = 0, 1, . . . (5.8)

where τ2 is another time constant.

The adaptive process of the synaptic weights in the network, computed in ac-

cordance with Equation (5.7), may be decomposed into two phases: an ordering

phase, followed by a convergence phase. These two phases of the adaptive process

are described next:

1. Ordering phase. It is during this first phase that the topological ordering

of the weight vectors takes place. The ordering phase may take as many

as 1000 iterations of the SOM algorithm, and possibly even more. Careful

consideration must therefore be given to the choice of the learning-rate and

neighborhood function. The learning-rate η(n) should be initialized to a value

close to 0.1; thereafter it should decrease gradually, but remain above 0.01

(i.e., it should never be allowed to get to zero). The neighborhood function

hji(n) should initially include almost all neurons in the network centered on

the winning neuron and then slowly reduce to a small value of only a couple

of neighboring neurons around the winning neuron or to the winning neuron

by itself. Suitable values for the parameters in Equations (5.5) and (5.8), are
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thus the following:

τ1 =
1000

log σ0

η0 = 0.1 (5.9)

τ2 = 1000,

where σ0, assuming the use of a two dimensional lattice of neurons, should

be set equal to the ‘radius’ of the lattice.

2. Convergence phase. This second phase of the adaptive process is needed

to fine-tune the feature map and therefore provide an accurate statistical

quantification of the input space. Moreover, the number of iterations needed

for convergence strongly depends on the dimensionality of the input space.

As a general rule, the number of iterations constituting the convergence phase

must be at least 500 times the number of neurons in the network. For good

statistical accuracy, the learning-rate η(n) should be maintained during the

convergence phase at a small value, on the order of 0.01. The neighborhood

function hji(n) should only contain the nearest neighbors of a winning neuron,

which may eventually reduce to one or zero neighboring neurons.

5.2 Summary of the SOM algorithm

There are three basic steps involved in the application of the algorithm after initial-

ization: sampling, similarity matching, and synaptic weights update. The algorithm

steps can be described as follows:

Algorithm 2 (SOM).

1. Initialization. Set n = 0 and for each neuron j in the lattice A pick small

random values for the initial synaptic-weight vectors wwwj(0).

2. Sampling. Let n be a generic time step. Consider a training input pattern

xxx(n).

3. Similarity matching. Find the best matching (winning) neuron i(xxx) at

time step n, i.e., the neuron that best represents xxx(n), by using the minimum-

distance criterion:

i(xxx) = argminj ‖xxx(n)−wwwj(n)‖, j = 1, 2, . . . , L , (5.10)

where ‖aaa−bbb‖ is the norm of the vector aaa−bbb and thus is equal to the Euclidean

distance between aaa and bbb.
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4. Synaptic weights update. Adjust the synaptic-weight vectors of all neu-

rons j ∈ A by using the update rule:

wwwj(n)← wwwj(n) + η(n)hji(n)(xxx(n)−wwwj(n)) , (5.11)

where η(n) is the learning-rate parameter at iteration n and hji(n) is the

neighborhood function centered on i(xxx) at iteration n.

5. Iteration. Set n ← n + 1 and continue with step 2 if n < N + 1, stop

otherwise.

5.3 Properties of the SOM

Starting from an initial state of disorder, the SOM algorithm gradually leads to a

topological representation of the input data space in the sense that adjacent neurons

in the lattice will tend to have similar synaptic-weight vectors and will correspond

to a particular class or feature of the input data. The final statistical accuracy

of the mapping depends on the number of iterations. As indicated in Sub-section

5.1.3, a rule of thumb to guarantee the convergence to an accurate map is that the

number of iterations must be at least N = 1000 + 500L where L is the number

of neurons [54]. Once the algorithm has terminated, a nonlinear transformation

ΦΦΦ : X → A called a feature map can be defined. Given an input vector xxx, ΦΦΦ(xxx)

corresponds to the best matching neuronwwwi(xxx) in the final map, where the index i(xxx)

is found according to the similarity matching step (5.10). The SOM capabilities lie

in ΦΦΦ(·)’s properties:

1. ΦΦΦ(·) provides a projection from the continuous high dimensional data space

X onto the low dimensional discrete neural space A, thus it provides dimen-

sionality reduction.

2. ΦΦΦ(·) provides a good approximation to the input data space X . Actually, the

SOM represents the continuous space X by finding a finite set of prototypes

wwwj ∈ A whose synaptic-weight vectors can be considered as representative of

all the input vectors xxx such that ΦΦΦ(xxx) = wwwj. In this perspective, the SOM

algorithm is a vector quantization algorithm.

3. ΦΦΦ(·) is topologically ordered in the sense that the spatial location of a neuron in

the lattice corresponds to a particular domain or feature of input patterns. In

other words, similar input patterns are clustered together and represented by

a specific neuron in the latticeA. Therefore, ΦΦΦ may be displayed as an elastic

net with the topology of a one or two dimensional lattice (as prescribed byA)

where nodes have synaptic-weight vectors’ components as coordinates in the

input space X and neighboring nodes are connected by lines, as illustrated in

Figure 5.2.
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Figure 5.2: Illustration of the learning process of a self-organizing map. The
blue blob is the distribution of the training input data, and the small white
disc is the current training input vector drawn from that distribution. At first
(left) the SOM neurons are arbitrarily positioned in the input data space. The
neuron (highlighted in yellow) which is nearest to the training input vector is
selected. It is moved towards the training input vector, as (to a lesser extent)
are its neighbors on the lattice. Once the process has ended, the lattice is
topologically ordered and tends to approximate the data distribution (right).

The SOM algorithm has been successfully used in applications such as image and

speech VQ, speech recognition, texture segmentation, cloud classification, robotics

and industrial control, and local dynamic analysis. My work has been especially

inspired by property 2. In fact, I apply the SOM approach to design a subject-

adaptive codebook for the VQ of biomedical signals. The self-organization process is

exploited to adaptively tune the synaptic-weight vectors of the neurons in the lattice

according to the subject’s signal distribution. The synaptic-weight vectors are

then exploited as codewords to quantize the signal’s segments. However, the basic

SOM algorithm cannot deal with non-stationary input distributions and changing

environments. As it was explained earlier, the learning-rate and the neighborhood

width of the SOM are at their highest values at the beginning of training and

decrease with time, so as to allow the feature map stabilization. At the final step,

the learning-rate usually have a very small value, and so does the neighborhood

function. Therefore the SOM algorithm cannot respond with adequate speed to

a varied environment embodying incoming samples. In order to appropriately

learn new incoming samples that may have different statistical characteristics with

respect to the previous ones, adaptive learning parameters must be employed in the

SOM algorithm and the feature map must be let vary accordingly. This is the reason

why I consider the time-adaptive version of the SOM, namely, the time-adaptive

self-organizing map (TASOM), to implement my lossy compression technique for

biomedical signals.

5.4 The TASOM algorithm

The time-adaptive self-organizing map has been introduced in [57] as an extended

version of the basic self-organizing map. It uses adaptive learning-rates and neigh-

borhood widths, whose values change according to the changes of the environment

and the behavior of input data as time goes on. It has been shown that the TASOM
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works well both with stationary and non-stationary environments, preserving the

SOM properties. Examples of applications are adaptive shape representation and

adaptive segmentation, adaptive pattern classification, adaptive principal compo-

nent analysis, and automatic multilevel thresholding.

The TASOM structure does not differ from that of the SOM. However, every

neuron j, j = 1, 2, . . . , L, in the latticeA has its own learning-rate ηj and neighbor-

hood width σj, so as to allow for a continuous (potentially unlimited) training of the

synaptic-weight vectors. This feature enables the TASOM to be more flexible and

better approximate the input data space distribution as it evolves, adapting the

synaptic-weight vectors to the more recent input data if they substantially differ

from the previous one.

For a squared lattice with L = M2 neurons and input vectors with dimension

m the TASOM algorithm is specified as:

Algorithm 3 (TASOM).

1. Initialization. Set n = 0 and for each neuron j in the lattice A do the

following:

• Pick small random values for the initial synaptic-weight vectors wwwj(0).

• Set the initial learning-rate ηj(0) to a value close to one.

• Set the initial neighborhood width σj(0) so that the neighborhood func-

tion includes all the neurons in the map.

• Define the set NHj as the set of the immediate neighbors of neuron j.

Let α, αs, β, βs be constant parameters used to adapt the learning-rate and

the neighborhood width updating behavior. Initialize them to small values

in (0, 1). Define a scaling vector sss(0) = [s1(0), s2(0), . . . , sm(0)]T and initial-

ize its elements to small positive values. Define the variable (scaling value)

sv(0) = ‖sss(0)‖. sv(n) approximates the diameter of the input distribution to

help the TASOM to remain scaling invariant. Initialize two further param-

eters Ek(0), E2k(0) with some small positive random values. These, will be

used to update sss.

2. Sampling. Now, let n be a generic time step. Consider an input pattern

xxx(n) = [x1(n), . . . , xm(n)]T from the input data space.

3. Similarity matching. Find the winning neuron i(xxx) at time step n using

Eq. (5.3).

4. Scaling vector update. For k = 1, . . . ,m do

E2k(n)← E2k(n) + αs(x
2
k(n)− E2k(n)) , (5.12)

Ek(n)← Ek(n) + βs(xk(n)− Ek(n)) , (5.13)
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sk(n)←
√

max((E2k(n)− Ek(n)2), 0) (5.14)

and adjust sv(n) as sv(n)← ‖sss(n)‖.

5. Neighborhood width update. Adjust the neighborhood width of the

winning neuron i(xxx) as

σi(n)← σi(n) + β

[
g

(
1

sg|NHi|
∑
j∈NHi

‖wwwi(n)−wwwj(n)‖s
)
− σi(n)

]
, (5.15)

where | · | returns the cardinality of a set. g(z) is used to normalize the

weight distances and I assume g(z) = (
√

2M − 1)(z/(z + 1)). sg is a user set

parameter and the scaled norm is defined as ‖ · ‖s = ‖ · ‖/sv(n).

6. Learning-rate update. Adjust the learning-rate ηj(n) of every neuron

j ∈ A as:

ηj(n)← ηj(n) + α

[
f

(
1

sf
‖xxx(n)−wwwj(n)‖s

)
− ηj(n)

]
. (5.16)

f(z) is used to normalize the distance between the synaptic-weight and input

vectors. Here, I use f(z) = z/(z + 1). sf is a user set parameter.

7. Synaptic weights update. Adjust the synaptic-weight vectors of all neu-

rons j ∈ A through the following rule

wwwj(n)← wwwj(n) + ηj(n)hji(n)(xxx(n)−wwwj(n)) , (5.17)

where index i stands for the winning neuron and Eq. (5.6) is used as the

neighborhood function.

8. Iteration. Set n← n+ 1 and continue with step 2.

By taking a closer look at the updating rules (5.16) and (5.15), we can better

understand why the TASOM is able to adapt to non-stationary environments. By

replacing the discrete time variable with its continuous counterpart, and assuming

that ∆t is a very small positive value, the learning-rate update of (5.16) may be

written as:

dηj(t)

dt
= −αηj(t) + αf(‖xxx(t)−wwwj(t)‖f ) , (5.18)

where ‖xxx(t) − wwwj(t)‖f = ‖xxx(t) − wwwj(t)‖s/sf . If we assume that the changes of

‖xxx(t)−wwwj(t)‖f with time are much smaller than that of the learning-rate ηj(t), we

can solve the above non-homogeneous first-order differential equation as:

ηj(t) = ηj(0)e−αt + (1− e−αt)f(‖xxx(t)−wwwj(t)‖f ) , (5.19)



Chapter 5 The self-organizing maps: SOM and TASOM 47

where ηj(0) is the initial learning-rate of neuron j. The first term on the right-hand

side (RHS) of (5.19) decreases exponentially to zero as time goes to infinity, as

in the basic SOM. As for the second term on the RHS, function ‖xxx(t) − wwwj(t)‖f
resembles a normalized error for neuron j. As time goes to infinity, the second

term of (5.19) dominates. For a stationary environment the normalized errors are

reduced with every training step. Thus, the learning-rates reduce to zero as training

evolves. This, in fact, leads to the stabilization of the weights of the neurons. For

a non-stationary environment the stabilized weights of the neurons may fail to

represent the input space. At this time, the normalized errors of the corresponding

neurons increase, causing the relevant learning-rates to increase. Consequently, the

network weights are forced to learn the new input data faster than before. As the

training continues, the weights approximate the current state of the input space

with better accuracy. The normalized errors of the neurons thus decrease, resulting

in the reduction of the learning-rates and in the stabilization of the weights. For

the neighborhood width update in (5.15), a similar procedure leads to the following

solution:

σi(t) = σi(0)e−βt + (1− e−βt)g(|NHi|−1
∑
j∈NHi

‖wwwi(t)−wwwj(t)‖g), (5.20)

where ‖wwwi(t) −wwwj(t)‖g = ‖wwwi(t) −wwwj(t)‖s/sg and σi(0) is the initial value of the

neighborhood width for the winning neuron i. An analysis similar to the one made

for (5.19) can be carried out for (5.20). This neighborhood width update tries

to maintain the topological ordering of the network in spite of the changes in its

weight vectors and it helps prevent underutilization of neurons. It can be also ver-

ified that the parameter sf in (5.16) controls the tradeoff between generalization

and memorization, while the parameter sg in (5.15) controls the compactness and

topological ordering of the TASOM. The lowest sf (i.e., the highest the influence

of the normalized error of neuron j, ‖xxx(t) −wwwj(t)‖f , on the update), the highest

the speed at which the TASOM forgets the previous information and better ap-

proximates the most recent data. When sg is low (i.e., when the influence of the

‘cumulative distance’
∑

j∈NHi
‖wwwi(t)−wwwj(t)‖g between neuron i and its neighbor-

ing neurons on the update is high), the synaptic-weight vectors remain close to each

other and clustered around the center of the input distribution. As sg increases,

the synaptic-weight vectors become more spread out, and better approximate the

input distribution.
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Time- and subject-adaptive

dictionary for wearable devices

In this chapter, the quasi-periodic nature of many biomedical signals is leveraged

through motif extraction and VQ to develop a lossy compression technique with

subject-adaptive codebook. It was detailed in Chapter 3 that I identify as motifs the

sequences of samples between consecutive peaks (which I call segments for brevity)

and I use them to build a codebook that stores typical segments, updating it in an

online fashion. I utilize the TASOM unsupervised learning algorithm to construct

and manage the codebook, exploiting its key ability to adapt to non-steady envi-

ronments, as the input data space could be, due to rhythm or morphology changes.

The main building blocks of the proposed technique are reported in Figure 6.1. The

biomedical signal is first preprocessed through a passband filter, a peak detector

and a frame extractor to remove artifacts and identify the segments. Thus, the ex-

tracted segments are given as inputs to the normalization module, which outputs

their length, offset and gain. The normalized segment feeds the codebook manager,

which uses it to update the codebook, and the pattern matching module, which

returns the best matching codeword from the codebook and outputs its index. The

segment’s length, offset, gain and codeword index are then sent to the receiver in

place of the original samples. The decompressor at the receiver, in turn, uses them

to decompress the signal and reconstruct the original segment. A detailed descrip-

tion of these blocks follows.

Filtering. A third-order passband Butterworth filter is adopted to remove high

frequency noise and baseline wander. For ECG, I set the passband to be [8, 20] Hz.

It must be stressed that filtering is done to only allow efficient peak detection.

Quantization is performed on the original signal, not on the filtered one.

Peak detection. The peak detection algorithm exposed in [31] is employed to

locate the signal peaks. This algorithm is fast and simple and results to be suitable

48
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Figure 6.1: Scheme of the lossy compression framework with time- and
subject-adaptive dictionary.

for battery-driven wearable devices. Moreover, it is self-tuning and, although orig-

inally conceived for ECGs, it can be easily modified to effectively work with other

types of quasi-periodic biomedical signals.

Frame extractor. The signal is subdivided into segments made up of sam-

ples between subsequent peaks. These segments are inputted to the normalization

block. Let xxx′(n) = [x′1(n), x′2(n), . . . , x′rxxx(n)(n)]T be the segment provided by the

frame extractor at discrete time n, where rxxx(n) is the segment’s length (the number

of samples). Since the segments may have different lengths, due to the not perfect

periodicity, linear interpolation resizes the current segment xxx′(n) to a fixed length

m. I refer to the resized segment as xxx(n).

Normalization. Mixing the approaches of [20] and [19], each segment xxx(n) is

normalized by applying the following transformation to each segment’s sample:

xk(n) =
xk(n)− exxx(n)

gxxx(n)
, k = 1, 2, . . . ,m (6.1)

where exxx(n) = (
∑m

k=1 xk(n))/m and gxxx(n) =
√

(
∑m

k=1 xk(n)2)/m.

Codebook manager. This is the key block of my compression framework. I

tune the TASOM paradigm to a communication scenario consisting of a trans-

mitting wearable device and a receiver, such as a PDA or smartphone. At any

time instant n, two codebooks are present at the transmitter: the current codebook

(Cc(n)), which is used to compress the signal, and the updated codebook (Cu(n)),

which undergoes updating at each time instant through the TASOM algorithm and

is maintained to track statistical changes in the input’s signal distribution. More

specifically, I consider a TASOM whose lattice has a two dimensional structure of

L = M2 neurons. Each neuron j in the lattice, j = 1, 2, . . . , L, is associated with
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a synaptic-weight vector wwwj with m components, see Equation (5.2). When the

compression scheme is activated for the first time, a sufficient number N of seg-

ments are given as input to the TASOM to perform a preliminary training phase

through Algorithm 3. Such training allows the map to learn the subject signal’s

distribution. This may be accomplished the first time the subject wears the device

and, as I will quantify in the next Chapter 7, requires less than an hour for excellent

accuracy. After this, a first subject-specific codebook is available. It can be used

for compression and can also be updated at runtime as more data is acquired.

Let assume that time is reset when the preliminary training ends and let be n = 0

at such point. Both Cc(0) = {cccc1(0), , . . . , ccccL(0)} and Cu(0) = {cccu1(0), , . . . , cccuL(0)}
are defined as the codebooks whose codewords ccc∗∗(0) are equal to the synaptic-

weight vectors of the TASOM. At time n = 0, it holds: ccccj(0) = cccuj (0) = wwwj(0),

j = 1, , . . . , L. It is also assumed that the decompressor at the receiver is synchro-

nized with the compressor, i.e., it owns a copy of Cc(0). From time 0 onwards, for

any new segment xxx(n), n = 1, 2, . . . the following procedure is followed:

Algorithm 4 (Time- and subject-adaptive dictionary

for wearable devices).

1. Map xxx(n) onto the index of the best matching codeword in Cc(n), i.e., map

xxx(n) onto the index ixxx(n) such that

ixxx(n) = argminj ‖xxx(n)− ccccj(n)‖ , j = 1, . . . , L . (6.2)

Let d(n) = ‖xxx(n) − cccci(n)‖ be the Euclidean distance between the current

segment and the associated codeword, where we use index i as a shorthand

notation for ixxx(n).

2. Usexxx(n) as the new input for Algorithm 3 and obtain the new synaptic-weight

vectors wwwj(n), j = 1, . . . , L.

3. Update Cu(n) by using the weights obtained in step 2, i.e., setting

cccuj (n)← wwwj(n), j = 1, . . . , L . (6.3)

4. Let ε > 0 be a tuning parameter. If d(n)/‖xxx(n)‖ > ε, then update Cc(n) by

replacing it with Cu(n), i.e., Cc(n) ← Cu(n) and re-map xxx(n) onto the index

of the best matching codeword in the new codebook Cc(n), i.e., map xxx(n)

onto the index ixxx(n) obtained through (6.2) using the new codebook Cc(n).

5. Send to the receiver the segment’s original length rxxx(n), its offset exxx(n),

gain gxxx(n), and the codeword index ixxx(n). If the current codebook has been
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changed in step 4, then also send Cu(n).

Step 1 performs the VQ of segment xxx(n) by using the current codebook. Step

2 and 3 make it possible to always maintain an updated approximation of the in-

put distribution at the transmitter through the updated codebook. Step 4 checks

the validity of the approximation provided by the current codebook (the currently

used codebook, which is also known at the receiver). The tunable parameter ε

controls the signal reconstruction fidelity at the decompressor: if d(n)/‖xxx(n)‖ ≤ ε,

codeword ccccixxx(n)(n) is assumed to be a suitable representation of the current seg-

ment, otherwise Cc(n) is replaced by the updated codebook Cu(n) and the encoding

mapping is re-executed. Step 5 governs the interaction of the transmitter with the

receiver: the four values representing the encoded segment (original lenght, offset,

gain, and codeword index) are sent to the latter, together with the current code-

book, provided that the current codebook at the transmitter was no longer valid

and has been replaced by the updated codebook.

Note that the higher ε, the higher the error tolerance and the lower the number

of updates of the current codebook, which is correspondingly deemed well repre-

sentative most of the time. On the contrary, a small ε entails frequent codebook

updates: this, besides regulating the actual representation error, also determines

the maximum achievable compression efficiency. This is further discussed in the

next Chapter 7. Moreover, note that every time a best matching codeword is to

be found (Equation (6.2)), I adopt the fast codebook search algorithm 1 to avoid

useless comparisons, as discussed in Sub-Sections 3.2.2 and 3.2.3.

At the receiver, the nth segment is reconstructed by picking the codeword with

index ixxx(n) from the local codebook, performing renormalization of such codeword

with respect to offset exxx(n) and gain gxxx(n) and stretching the codeword according

to the actual segment length rxxx(n).



Chapter 7

Results

7.1 Databases and performance metrics

The MIT-BIH Arrhythmia Database, the MIT-BIH Normal Sinus Rhythm Database,

and the MIMIC II Database, all found at the Physionet website [58], are used to

test the proposed compression algorithm and compare it against other known com-

pression methods from the state-of-the-art. The MIT-BIH Arrhythmia Database

was the first generally available set of standard test material for the evaluation of

arrhythmia detectors, and it has been used for that purpose as well as for research

into cardiac dynamics and validation of compression or QRS detection algorithms

in many sites and literary works worldwide since 1980. It contains 48 half-hour

traces of ambulatory ECG signals collected from both inpatients and outpatients

and digitized at 360 samples per second with 11-bit resolution. The MIT-BIH

Normal Sinus Rhythm Database includes 18 long-term ECG recordings of subjects

found to have had no significant arrhythmias. The recordings are digitized at 128

samples per second with 12-bit resolution. I do not draw extensively from this

database and exploit it essentially for the grater length of its traces for a few as-

sessments. The MIMIC II Database claims a greater variety of physiological signals

other than ECG, among which there are PPG, ABP and RESP signals. They are

recorded at 125 samples per second with variable resolutions.

For the numerical results in this thesis, I consider two types of biomedical sig-

nals, namely the ECG and the PPG, since electrocardiography and photoplethys-

mography are the two primary technologies available in wearable devices, both

specialistic and commercial. The inspection of ECG and PPG wafeforms repre-

sents a fundamental screening tool to assess the health status of an individual.

Moreover, a number of vital parameters (e.g., heart rate, respiration rate, blood

pressure) can be extracted from them to provide a more complete clinical picture.

I take into account the following performance metrics:

• Learning and adaptation time. I estimate the learning time of the pro-

posed compression scheme, which corresponds to the time needed to build up

52
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Cycles
per add.

Cycles
per mult.

Cycles
per div.

Cycles
per comp.

Energy per cycle

1 1 14 1 32.82 pJ

Table 7.1: Cortex M4 processor features.

an accurate codebook for a specific subject when no prior maps are available.

In addition, I estimate the adaptation time needed to retune the codebook

as the input signal statistics undergoes abrupt changes.

• Compression Ratio (CR). It is defined as the ratio between the total

number of bits composing the original signal and the total number of bits

required to transmit its compressed version. In particular, the total number

of bits required to transmit the compressed signal has been determined as:

#bits = [4(#segments) + Lm(#codebook TX)]× res , (7.1)

where ‘4’ counts for the number of values transmitted for each segment,

namely, the original segment length, its offset, gain and codeword index,

L is the lattice (codebook) dimension, m is the length of each synaptic-

weight vector (codeword), #codebook TX is the number of times that the

current codebook is sent to the receiver, and res is the resolution (number

of bits) for a single signal sample. The codeword size m has been fixed to

150 for the ECG signals and to 80 for PPG traces. As for L, I consider

L ∈ {4, 9, 16, 25, 36, 49, 64, 81, 100, 121}.

• Reconstruction fidelity. It has been assessed by computing the root mean

squared error (RMSE) between the original and the compressed signal and

normalizing it with respect to the average segment’s peak-to-peak amplitude.

Letting s = [s1, s2, . . . , sr]
T be the original signal, ŝ = [ŝ1, ŝ2, . . . , ŝr]

T the

reconstructed version after compression, and r its length, the RMSE is given

by:

RMSE =
100

p2p

√∑r
i=1(si − ŝi)2

r
, (7.2)

where p2p is the average segment’s peak-to-peak amplitude.

• Energy consumption for compression. It has been computed for all the

considered compression algorithms by evaluating the number of operations

performed by the micro-controller unit (MCU), i.e., the number of additions,

multiplications, divisions and comparisons. These have been subsequently

converted into the corresponding number of MCU cycles and, in turn, into

the energy consumption in Joule/bit for a Cortex M4 processor. Its features

are reported in table 7.1 and can be retrieved from [59, 60].
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• Total energy consumption. It has been computed as the sum of the en-

ergy consumption for compression and that drained for transmission, i.e., the

energy required to transmit the compressed signal and the current codebook

updates. The transmission energy is evaluated taking a common Bluetooth

low-energy transceiver, namely, the Texas Instruments CC2541, as a refer-

ence. Technical data can be found in [61].

7.2 Run-time analysis of the TASOM learning

features during training

In this section I show results applying the TASOM learning algorithm to real ECG

signals, with the aim of discussing some of its significant features during training,

especially its generalization and adaptation abilities. Differently from the scheme

presented in Chapter 6, I consider a single dictionary, composed at each time instant

of the set of synaptic-weight vectors associated with the neurons in the TASOM

lattice, of sizeL = M2. I train the network according to Algorithm 3, by setting α =

αs = β = βs = 0.5, sg = 100, σj(0) =
√

2 ×M , j = 1, 2, . . . , L, and ηj(0) = 0.99,

j = 1, 2, . . . , L, and I inspect at run-time the quality of the reconstruction (i.e., the

RMSE) achieved by the evolving dictionary. More precisely, for each considered

trace, the segments are extracted and orderly given as input to the TASOM, which

is trained accordingly. At periodic time intervals, the current dictionary is used to

compress and decompress the remaining portion of the time series. Thus, given that

at time instant n an inspection is performed and that the nth segment has already

been used to train the network, the dictionary at time n (referred to as current

dictionary or current codebook - not to be confused with the current codebook

defined in Chapter 6) is used to compress and decompress all the future segments

from the (n + 1)th onwards. The RMSE is then determined only considering such

segments.

Figures 7.1 and 7.2 have been obtained by training a TASOM with L = 9

neurons with the ECG trace 16786m from the MIT-BIH Normal Sinus Rhythm

Database, which consists of of 9508 segments. In Figure 7.1, I show the evolution

of the RMSE as a function of the training time for different values of the parameter

sf , which controls the tradeoff between generalization and memorization abilities

of the map. It can be seen that the RMSE tends to decrease in any case as time

goes on (despite the inevitable fluctuations due to the fact that the network is

being trained). This is not surprising since the model provided by the TASOM to

represent the input data space distribution should become more and more accurate

as the number of segments used for training (and thus for shaping the model)

increases. However, for lower values of sf (in particular, sf = 0.1 and sf = 1),

the RMSE is higher and far more unstable. Moreover, after a reduction at the

very beginning of training, the RMSE does not seem to decrease anymore until
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Figure 7.1: ECG signal: RMSE vs learning time for various sf . Trace 16786m
from the MIT-BIH Normal Sinus Rhythm Database. L = 9.
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Figure 7.2: ECG signal: RMSE vs learning time for various codebook sizes.
Trace 16786m from the MIT-BIH Normal Sinus Rhythm Database. sf = 10.

the 90th minute is reached, differently from the cases where higher values of sf are

set. In fact, when sf is low, the TASOM modifies the synaptic-weight vectors of

the winning neuron and of its topological neighbors by a large amount to better

approximate the current segment. As a result, it quickly forgets the information

acquired previously and it models with high precision recently seen data, implying

a loss in terms of generalization ability. This determines a high and oscillating

RMSE for the not yet seen segments or, at least, for the future segments that are

sufficiently distant in time. For higher values of sf , the synaptic-weight vectors are
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Figure 7.3: ECG signal: RMSE vs learning time for different subjects from
the MIT-BIH Arrhythmia Database. L = 9; sf = 10.

updated by a smaller amount. Accordingly, the knowledge about the input data

space that is captured by the TASOM spans over a longer time window and can be

more effectively exploited to encode future information.

In Figure 7.2, I plot the evolution of the RMSE as a function of the learning

time for sf = 10 and different values of L, which corresponds to the dictionary

size. As expected, the RMSE is higher for smaller L. This is due to the fact that

a higher number of codewords can better cover the input data space, providing a

higher accuracy. Moreover, for small lattices (in particular, for L = 4 and L = 9),

the RMSE oscillates more. This can be justified by noting that when the number of

neurons is small, a given neuron will be the best matching one for a grater number

of segments in the training sequence, whereas these same segments will be mapped

onto different, although similar, neurons when the lattice size increases. In the first

case, the synaptic-weight vector associated with a neuron (and to the neurons in its

topological neighborhood) will undergo more frequent and (especially) dissimilar

updates and, as a result, its values will take longer to stabilize. This implies that

when the learning-rate is sufficiently high, i.e., when the TASOM heavily learns

from the environment (we can deduce from the figure that this phase lasts until

about the 90th minute of training), the ability of the current dictionary to model

future segments can be instantaneously degraded and shortly after enhanced (or

viceversa), causing the RMSE to go up and down. In the latter case, a given neuron

will represent a smaller subspace of the input data space. As a result, the input

segments that trigger the modification of its synaptic-weight vector will be closer

to each other and will imply analogous adjustments, guaranteeing a more stable

behavior of the RMSE.
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Figure 7.3 has been obtained by training a TASOM with L = 9 neurons with

5 ECG traces from the MIT-BIH Arrhythmia Database, setting sf = 10. Since

the traces provided by the MIT-BIH Arrhythmia Database are only 30 minutes

long and I wanted to inspect the TASOM’s generalization capabilities on a wider

time span, I extended them to 180 minutes by randomly sampling segments with

replacement from the original trace. By doing so, I assumed that the input data

distribution is stationary, i.e., its statistics does not change over time. As it can be

seen in the figure, less than 50 minutes (i.e., on average, 4285 segments) of training

suffice to let RMSE stabilize to ‘steady-state’ values lower than 7% in any case.

This is considered acceptable given that in this graph a new dictionary is set up

without having any prior knowledge and we could see this as the dictionary learning

time for a new subject. Based on these observations, I conclude that, when the

input distribution is stationary:

1. the TASOM learning algorithm with sf set to 10 is able to develop a well

representative model of the input data space in a relatively short time (or,

equivalently, with a relatively small training set);

2. the synaptic-weight vectors (and thus the codewords) and their ability to

approximate the input segments are not affected by drastic changes after a

suitable model has been developed. Thus, the TASOM stabilizes, converging

to a steady-state that effectively captures the input distribution.

Such features are particularly appealing for the VQ-based compression framework

that I propose in this work. In particular:

1. a limited amount of segments can be exploited to let the TASOM learn the

subject’s segments distribution at the transmitter and define a codebook

that is sent to the receiver and used at the transmitter to encode the future

segments with low RMSE;

2. this codebook does not need to be updated, or (as we shall see below)

only requires updating whenever the signal statistics undergoes considerable

changes. This implies a moderate protocol overhead.

The last point is confirmed by figure 7.3, where it is shown that the TASOM

builds effective dictionaries in the presence of stationary distributions. Thus, as

long as the subject’s segments distribution remains the same, a fixed dictionary

modeled on a limited set of past segments can be used to adequately encode the

present and future segments. As it will be proven by the following results, the

TASOM learning algorithm can also deal with non-stationary distributions, which

are the ones that may be highly likely encountered in real life monitoring scenarios.

In this case, the dictionary needs updating. Since maintaining a single (updated)

codebook would have entailed a huge amount of codebook’s updates sent to the

receiver and, as a consequence, a significant degradation of energy efficiency, in
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Figure 7.4: ECG signal: RMSE vs learning time for a simulated non-
stationary distribution obtained by concatenating two different traces (101m

and 113m from the MIT-BIH Arrhythmia Database). L = 9; sf = 10.

the proposed compression framework I distinguish the current from the updated

codebook, as detailed in Chapter 6. The current codebook, known at the receiver

side, is used to quantize the subject’s signal as long as it is well representative.

When the error threshold ε is exceeded, the current codebook is replaced by the

updated codebook, whose training always proceeds in an online fashion, following

the changes in the input distribution. Upon replacement, the current codebook is

sent to the receiver.

In Figure 7.4, I show the RMSE as a function of the learning time for a simulated

non-stationary distribution obtained by concatenating two different traces from the

MIT-BIH Arrhythmia Database, namely 101m and 113m. The second trace has

been extended as indicated previously by randomly sampling with replacement

from its segments. At the beginning, when the segments of trace 101m are given

as input to the TASOM, i.e., the shift to the new subject has not yet taken place,

the RMSE has only been computed for the future segments belonging to trace

101m. It can be observed that as the input data distribution drastically changes

the RMSE undergoes a sudden increase. Nevertheless, since the signals are of

the same nature, the RMSE remains below 6% (which is definitely small) and

starts decreasing immediately after. The TASOM learning algorithm modifies the

synaptic-weight vectors according to the new ECG segments, re-shaping the model

to the new subject’s segments distribution. Within 10 minutes (i.e., with fewer than

800 training segments), the RMSE falls below 4%, approaching the ‘steady-state’

performance for the new subject (RMSE = 3.5%). This ability of the TASOM

to adapt to a changing environment motivates me to choose this neural network

for the VQ approach proposed in this thesis. If the subject’s signal distribution
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changes, due to the subject’s activities or due to physiological causes, it is extremely

important to dynamically adjust the set of codewords to the evolving statistics, and

the TASOM satisfies such requirement.

7.3 Performance analysis of the time- and

subject-adaptive compression method -

the choice of sf and L

In this section, I present a set of results obtained by running the proposed compres-

sion method on the trace 113m from the MIT-BIH Arrhythmia Database. This set

aims at justifying the choices of two main parameters, namely, sf (generalization

parameter) and L (lattice/dictionaries size). The fine tuning of these parameters is

particularly important for the results presented in Section 7.4, where the proposed

algorithm is compared with other common compression approaches. I consider

a single trace for simplicity. Analogous considerations could have been done by

taking into account a grater number of traces.

The TASOM preliminary training phase (see Chapter 6) was executed by giving

as input to the TASOM N = L × 500 + 1000 segments, picked at random (with

replacement) from the first three minutes of the 113m record. In all the experiments

I set α = αs = β = βs = 0.5, sg = 100, σj(0) =
√

2 ×M , j = 1, 2, . . . , L, and

ηj(0) = 0.99, j = 1, 2, . . . , L. The evaluations are carried out by considering the

effects of compression on the last 27 minutes of the ECG record, i.e., the section

that does not contribute to the preliminary training phase.

Unless otherwise stated, the curves in the graphs have been derived by letting

the parameter ε vary. Recall that ε controls the signal reconstruction fidelity at the

decompressor: if the distance between the current segment and the corresponding

codeword in the current codebook exceeds ε times the norm of the segment (i.e.,

if d(n)/‖x(n)‖ > ε), then the reconstruction fidelity is considered unsatisfactory,

the current codebook undergoes updating and the new matching codeword is de-

termined. As ε increases, the number of updates decreases and the CR increases

accordingly.

In Figure 7.5, I plot the RMSE against the compression ratio for a TASOM

lattice made by L = 9 neurons. Each curve is associated with a different value

of the parameter sf . It can be noticed that when the CR is low (and the number

of updates is correspondingly high), smaller values of sf perform better in terms

of RMSE. Indeed, when sf is small, the TASOM privileges the most recent input

segments, heavily modifying the synaptic-weight vectors (winning and neighbor-

hood) to pull them towards such segments. This implies that, for a given number

of current codebook’s updates, the relative error upon reconstruction is lower than

that achieved by the TASOM when sf is higher, because the evolving codewords

are less closer to the individual ECG segments in the latter case. As the parameter
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Figure 7.5: ECG signal: RMSE vs CR for various sf . Trace 113m from the
MIT-BIH Arrhythmia Database. L = 9.

ε increases, the number of updates decreases and the CR increases correspondingly.

Higher values of sf become better in this situation because the TASOM can better

generalize from the segments in the preliminary training set, constructing an ini-

tial current codebook that is already well representative of the subject’s segments

distribution and which can be used to successfully encode unseen segments. On

the contrary, with sf = 0.1 or sf = 1, the current codebook set at the end of

the preliminary training especially models the last segments used and tends to be

inaccurate when the error threshold is high enough to severely limit the number

of updates. Nevertheless, too much generalization is not appropriate (sf = 100

is worse than sf = 10). Since this work aims at providing high CRs, I consider

sf = 10 as the best choice (as it provides the lowest RMSE at high CRs) and I

select this value in all the experiments from now on.

Figure 7.6 shows the RMSE as a function of the codebook size for ε = 2, i.e., for

the value of ε that for trace 113m from the MIT-BIH Arrhythmia Database leads

to the highest CR for each codebook size. As expected, a codebook with a higher

number of codewords provides a lower RMSE, since the ECG distribution is more

accurately represented. However, increasing L beyond, say, 25 does not provide a

significant improvement. When low computational complexity is crucial, as it is in

wearables, the codebook size must be carefully pondered, since a higher size implies

a higher complexity, mainly due to the higher number of comparisons the TASOM

algorithm executes to find the best matching codeword for an ECG segment (they

increase with L), and a lower CR, since a greater amount of information must be

sent to the receiver when the current codebook undergoes an update. In view of

this, despite of the fact that a higher RMSE is associated with L = 4 and L = 9,

I judge these values to be valid sizes of the TASOM and the codebooks. As it
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Figure 7.6: ECG signal: RMSE vs codebook size. Trace 113m from the MIT-
BIH Arrhythmia Database.
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Figure 7.7: ECG signal: RMSE vs CR for various codebook size. Trace 113m
from the MIT-BIH Arrhythmia Database.

will be illustrated in the following section, thanks to the generalization and run-

time adaptation abilities of the TASOM, such small dictionaries outperform the

performance of other common compression methods when high CR and low energy

expenditure are fundamental requirements.

In order to clarify which is the order of loss in terms of CR and energy con-

sumption for higher size of the codebooks, I also plotted Figures 7.7 and 7.8. In

Figure 7.7, I show a comparison between the performance achieved by different
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Figure 7.8: ECG signal: RMSE vs energy consumption for compression for
various codebook size. Trace 113m from the MIT-BIH Arrhythmia Database.

codebook sizes (L = 4, 9, 16, 25, 36). For lower CR, the codebook with L = 36 ob-

tains the best reconstruction quality. However, the highest possible CR when using

such codebook is nearly 50. Smaller codebooks allow going beyond this value. In

particular, the codebook with L = 4 codewords is able to reach a CR of 82, while

retaining the RMSE below 4.5% and the codebook with only L = 9 codewords is

able to reach a CR of 75, while retaining the RMSE below 3.5%, which is a very

satisfactory value. In Figure 7.8, I illustrate the RMSE against the energy spent

during compression for varying codebook sizes. Note that the number of opera-

tions performed at the compressor is essentially the same for varying ε, since ε only

affects the decision of updating the current codebook while the TASOM segment-

driven training cycle follows an identical procedure for each new segment. This

means that the energy consumption is practically the same for a given value of L

and varying ε, and explains why the curves are vertical. Moreover, note that the

ratio between the energy consumption associated with two codebook sizes is close

to the ratio between the sizes. In fact, the main difference between the TASOM

segment-driven training cycle of two different lattice sizes lies in the computational

complexity of the best matching step 6.2 of Algorithm 4, which requires a number of

operations proportional to L. The figure emphasizes that bigger codebooks entail

higher energy expenditures. As anticipated, in the following I will only consider

L = 4 and L = 9.

In Figure 7.9, I plot the average number of current codebook updates per

quarter-hour as a function of the CR (L = 9). Notably, for CR > 30 less than

three updates are performed every 15 minutes, with a corresponding RMSE lower

than 3.5%. This underlines that after the preliminary training phase, performed
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Figure 7.9: ECG signal: Updates per quarter-hour vs CR. Trace 113m from
the MIT-BIH Arrhythmia Database. L = 9.
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Figure 7.10: ECG signal: Quantized and original trace (113m from the MIT-
BIH Arrhythmia Database). L = 9.

during the first three minutes of the ECG record, the TASOM algorithm has al-

ready learned an adequate representation of the subject’s ECG distribution, provid-

ing excellent reconstruction fidelity for essentially all the following ECG segments.

Analogous evolutions of the number of updates were found for the majority of the

traces used for the numerical results in the following section. In particular, for

the highest CR, exactly 0.5 updates are executed per quarter-hour. Note that this

means that for the highest CRs, the only codebook update is that performed at

the end of the preliminary training phase, when the transmitter sends the initial
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codebook to the receiver. Since the reconstruction error at high CRs is maintained

low (see the following section), this proves, once again, that the TASOM algorithm

efficiently learns from the environment, whatever distribution is presented to it.

In Figure 7.10, I provide a comparison between the original and the compressed

ECG signal to provide a visual insight into the quality of reconstruction. For this

plot I set L = 9 and ε = 2, obtaining and RMSE equal to 3.25%. The compressed

signal almost perfectly resembles the uncompressed one. Moreover, the TASOM-

based technique provides a noise-filtering function. In fact, while the original signal

presents some superimposed random noise due to artifacts, the compressed version

has a smoother face.
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7.4 Performance analysis of the time- and

subject-adaptive compression method -

MIT-BIH Arrhythmia Database

and MIMIC II Database

In this section, I evaluate the compression technique proposed in this thesis against

the following selected compression algorithms from the literature: two transfor-

mation methods, based on Discrete Wavelet Transform (DWT) and Discrete Co-

sine Transform (DCT) respectively, and a direct method, namely the Lightweight

Temporal Compression (LTC). In particular, for DWT and DCT, I consider two

implementations. In the first one (labeled DWT and DCT), the compressor checks

how many and which transform coefficients are to be retained for maximum CR

while meeting the requirement on a maximum error tolerance, given as an input

parameter. The second implementation (labeled DWT-LW and DCT-LW) takes

into account a threshold on the amount of signal energy that is captured by the

selected coefficients, irrespective of the reconstruction error at the decompressor.

Each of the following graphs has been obtained by varying the free parameter of

each compression scheme. Thus, each point of a curve related to a given method

corresponds to a specific choice of its free parameter. I recall that this corresponds

to a specific error threshold for both LTC and my time- and subject-adaptive com-

pression method (labeled TASOM).

I averaged the performance metrics over the following traces from the MIT-BIH

Arrhythmia Database: {101; 112; 115; 117; 118; 201; 209; 212; 213; 219; 228;

231; 232}m. For each considered ECG record, the TASOM preliminary training

phase was executed by feeding the TASOM with N = L × 500 + 1000 segments,

picked at random from the first three minutes of the record, where L = M2 is the

lattice (codebook) size. In all the experiments I set α = αs = β = βs = 0.5, sf = 10,

sg = 100, σj(0) =
√

(2)×M , j = 1, 2, . . . , L, and ηj(0) = 0.99, j = 1, 2, . . . , L. The

performance evaluation was carried out by considering the effects of compression

on the last 27 minutes of each considered ECG record, i.e., the record section that

does not contribute to the preliminary training phase.

In Figure 7.11, I show the tradeoff between RMSE and CR. From this plot,

we observe that LTC is the best algorithm for CRs up to 32, after which it is

significantly outperformed by TASOM, which reaches a maximum CR of 74 for

L = 4 and 67 for L = 9. TASOM is able to maintain the RMSE always lower than

7.5%, without being affected by the diverging behavior exhibited by the majority

of the other schemes, whose RMSE for CR beyond 32 is at least 30% higher. These

features are desirable in my reference scenario. Considering that a high CR can

enhance the memory utilization of a wearable device and unload the transmissions

to the aggregation point, the proposed time- and subject-adaptive compression

method turns out to be very promising, making it possible to efficiently manage
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Figure 7.11: ECG signal: RMSE vs CR for different compression algorithms.

the available resources without degrading the quality of reconstruction. When

smaller CRs are allowed, adaptive algorithms may be valuable options, since for

each value of CR the scheme providing the smallest RMSE can be dynamically

selected - for instance, one may switch between LTC and TASOM as a function of

the required CR. Note that the TASOM curves have been obtained by setting the

lattice (dictionaries) size equal to L = 4 or L = 9. When going from 4 to 9 neurons

(codewords), the RMSE decreases from about 7.5% to 6.5% with a leap of almost

10 points in CR. Actually, a bigger dictionary can better represent the input data

space, but implies the need of sending a greater amount of data to the receiver when

the current codebook is updated. Increasing the number of codewords beyond 9

does provide an advantage in terms of representation accuracy (although limited),

but it entails a decrease in CR and an increase in the energy expenditure that make

it less competitive with other algorithms.

In Figures 7.12 and 7.13, I look at the energy consumption performance. In

Figure 7.12, I plot the RMSE as a function of the energy consumption associated

with the compression operations. DCT and DWT are the most energy demanding

algorithms as the compressor in these cases has to perform several inverse trans-

forms to check that the compressed signal meets the prescribed error tolerance.

On the other hand, DCT-LW and DWT-LW are less energy hungry but are ‘best

effort’ in the sense that the compressor has no knowledge about their actual er-

ror performance, but can only control the amount of compression. LTC is the

least energy demanding algorithm. TASOM results to be between the group made

by DCT-LW, DWT-LW, LTC and that of DCT and DWT. The dominant con-

tribution to the energy consumption, however, is due to the preprocessing blocks

(bandpass filtering and peak detection). To gauge the impact of preprocessing,

in Figure 7.12 I also plot the compression energy for the sole encoder block, after
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Figure 7.12: ECG signal: RMSE vs energy consumption for compression for
different compression algorithms.

preprocessing (labeled TASOM-NoPre). In this case, the cost associated with the

proposed compression scheme is comparable with that of LTC and lower than that

of the other algorithms. In particular, it is slightly lower for L = 4. Note that in

many cases the considered preprocessing procedures are to be executed anyway to

remove measurement artifacts and extract relevant biometric features (such as the

heart rate, which is measured by almost all the wearable devices for the healthcare

sector). The proposed compression method can thus leverage the processing tools

already implemented in a wearable device, only requiring the implementation of

the encoder block.

Figure 7.13 shows the RMSE against the total energy drained for compression

and subsequent transmission of the compressed signal. I consider only the energy-

threshold based DWT-LW and DCT-LW, and not their error-threshold based coun-

terpart, since these are less energy-efficient. As for the TASOM, I do not take into

account the preprocessing operations since, as stated previously, in many cases

they must be executed anyway. Moreover, the results do not differ much from

those presented when preprocessing is considered. We can see that TASOM is

able to guarantee the minimum RMSE (of about 7.5%, as it can be also seen in

the previous graphs) for the minimum achievable total energy consumption. This

demonstrates that the proposed scheme can substantially contribute to extend the

wearables’ lifetime.

Figure 7.14 shows the RMSE against CR for the PPG trace 600039m from the

MIMIC II database. For PPG signals, the proposed compression method considers

as a single segment the concatenation of two (normalized) sequences of samples

between successive peaks. This allows achieving higher CRs without affecting the

quality of reconstruction. These results confirm those in Figure 7.11 and the same
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Figure 7.14: PPG signal: RMSE vs CR for different compression algorithms.

conclusions were also obtained for the other metrics. Note, however, that for PPG

the maximum compression efficiency is about 35 and this depends on the lower

signal’s sampling rate (125 against 360 samples per second of the ECG traces from

the MIT-BIH Arrhythmia Database).



Chapter 8

Conclusions

In this thesis, I have presented an original lossy compression approach for wear-

able devices. The proposed technique exploits a dictionary-based design philoso-

phy, where the dictionary is learned and adapted at runtime to best represent the

physiological signals of the subject that wears the device. This is attained using

time-adaptive self-organizing maps, which are recent neural network architectures

featuring continuous learning and adaptation capabilities. The algorithm is shown

to outperform popular compression approaches from the literature, doubling the

maximum achievable compression efficiency of previous schemes belonging to the

same class. This allows for a major reduction in the memory size required by con-

tinuous monitoring applications (up to 35- and 70-fold for PPG and ECG signals,

respectively), which entails a decrease of almost two orders of magnitude in the

total energy consumption of the wearable devices. The use of learning maps makes

it possible to achieve fast tuning to new subjects or to changes in the statistical fea-

tures of their signals, while preserving the morphology of the considered biomedical

time series across all subjects and signal types.
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