1,373 research outputs found

    Rational Spline with Interval and Point Tension

    Get PDF

    Quantitative analysis of the reconstruction performance of interpolants

    Get PDF
    The analysis presented provides a quantitative measure of the reconstruction or interpolation performance of linear, shift-invariant interpolants. The performance criterion is the mean square error of the difference between the sampled and reconstructed functions. The analysis is applicable to reconstruction algorithms used in image processing and to many types of splines used in numerical analysis and computer graphics. When formulated in the frequency domain, the mean square error clearly separates the contribution of the interpolation method from the contribution of the sampled data. The equations provide a rational basis for selecting an optimal interpolant; that is, one which minimizes the mean square error. The analysis has been applied to a selection of frequently used data splines and reconstruction algorithms: parametric cubic and quintic Hermite splines, exponential and nu splines (including the special case of the cubic spline), parametric cubic convolution, Keys' fourth-order cubic, and a cubic with a discontinuous first derivative. The emphasis in this paper is on the image-dependent case in which no a priori knowledge of the frequency spectrum of the sampled function is assumed

    Shape Designing of Engineering Images Using Rational Spline Interpolation

    Get PDF
    In modern days, engineers encounter a remarkable range of different engineering problems like study of structure, structure properties, and designing of different engineering images, for example, automotive images, aerospace industrial images, architectural designs, shipbuilding, and so forth. This paper purposes an interactive curve scheme for designing engineering images. The purposed scheme furnishes object designing not just in the area of engineering, but it is equally useful for other areas including image processing (IP), Computer Graphics (CG), Computer-Aided Engineering (CAE), Computer-Aided Manufacturing (CAM), and Computer-Aided Design (CAD). As a method, a piecewise rational cubic spline interpolant, with four shape parameters, has been purposed. The method provides effective results together with the effects of derivatives and shape parameters on the shape of the curves in a local and global manner. The spline method, due to its most generalized description, recovers various existing rational spline methods and serves as an alternative to various other methods including v-splines, gamma splines, weighted splines, and beta splines

    The Ups and Downs of the Environmental Kuznets Curve

    Get PDF
    By now the observation that some pollutants appear to increase and then decrease with economic development has become a widely accepted stylized fact. This paper argues that the fundamental insight of the empirical literature is merely that pollution does not necessarily increase with economic growth, and that the fundamental insight of the theoretical literature is that the observed inverse-U-shaped pollution-income relationship is neither necessary nor sufficient for Pareto-efficient environmental policies. Furthermore, the inverse-U-shaped path is not unique to environmental phenomenon, and may exist wherever a desirable good generates an undesirable side-effect. Finally, all of these points can be made without most of the econometric or theoretical mechanics that fill this literature.

    B-Spline based uncertainty quantification for stochastic analysis

    Get PDF
    The consideration of uncertainties has become inevitable in state-of-the-art science and technology. Research in the field of uncertainty quantification has gained much importance in the last decades. The main focus of scientists is the identification of uncertain sources, the determination and hierarchization of uncertainties, and the investigation of their influences on system responses. Polynomial chaos expansion, among others, is suitable for this purpose, and has asserted itself as a versatile and powerful tool in various applications. In the last years, its combination with any kind of dimension reduction methods has been intensively pursued, providing support for the processing of high-dimensional input variables up to now. Indeed, this is also referred to as the curse of dimensionality and its abolishment would be considered as a milestone in uncertainty quantification. At this point, the present thesis starts and investigates spline spaces, as a natural extension of polynomials, in the field of uncertainty quantification. The newly developed method 'spline chaos', aims to employ the more complex, but thereby more flexible, structure of splines to counter harder real-world applications where polynomial chaos fails. Ordinarily, the bases of polynomial chaos expansions are orthogonal polynomials, which are replaced by B-spline basis functions in this work. Convergence of the new method is proved and emphasized by numerical examples, which are extended to an accuracy analysis with multi-dimensional input. Moreover, by solving several stochastic differential equations, it is shown that the spline chaos is a generalization of multi-element Legendre chaos and superior to it. Finally, the spline chaos accounts for solving partial differential equations and results in a stochastic Galerkin isogeometric analysis that contributes to the efficient uncertainty quantification of elliptic partial differential equations. A general framework in combination with an a priori error estimation of the expected solution is provided

    A Digital Program for Calculating the Interaction Between Flexible Structures, Unsteady Aerodynamics and Active Controls

    Get PDF
    A computer program, ISAC, is described which calculates the stability and response of a flexible airplane equipped with active controls. The equations of motion relative to a fixed inertial coordinate system are formulated in terms of the airplane's rigid body motion and its unrestrained normal vibration modes. Unsteady aerodynamic forces are derived from a doublet lattice lifting surface theory. The theoretical basis for the program is briefly explained together with a description of input data and output results

    Algebraic grid generation using tensor product B-splines

    Get PDF
    Finite difference methods are more successful if the accompanying grid has lines which are smooth and nearly orthogonal. The development of an algorithm which produces such a grid when given the boundary description. Topological considerations in structuring the grid generation mapping are discussed. The concept of the degree of a mapping and how it can be used to determine what requirements are necessary if a mapping is to produce a suitable grid is examined. The grid generation algorithm uses a mapping composed of bicubic B-splines. Boundary coefficients are chosen so that the splines produce Schoenberg's variation diminishing spline approximation to the boundary. Interior coefficients are initially chosen to give a variation diminishing approximation to the transfinite bilinear interpolant of the function mapping the boundary of the unit square onto the boundary grid. The practicality of optimizing the grid by minimizing a functional involving the Jacobian of the grid generation mapping at each interior grid point and the dot product of vectors tangent to the grid lines is investigated. Grids generated by using the algorithm are presented

    The Rational Overhauser: an Interpolating Rational Cubic Curve.

    Get PDF
    A rational interpolating cubic curve which implicitly maintains first order geometric continuity in splines has been developed. The curve is formed by blending two rational quadratic curves. Since the blending method used was originally introduced by Overhauser, this curve is referred to as the Rational Overhauser (Rover) curve. The curve formulation utilizes four shape factors to provide control of the curve. A geometrical and analytical interpretation of these shape factors and their relationship to each other is discussed. Procedures for representing conic sections using the rational Overhauser curve are presented. Also included are techniques for mapping between the Rover curve and rational forms of the Hermite, Bezier, and B-Spline curves

    Natural Parameterization

    Get PDF
    The objective of this project has been to develop an approach for imitating physical objects with an underlying stochastic variation. The key assumption is that a set of “natural parameters” can be extracted by a new subdivision algorithm so they reflect what is called the object’s “geometric DNA”. A case study on one hundred wheat grain crosssections (Triticum aestivum) showed that it was possible to extract thirty-six such parameters and to reuse them for Monte Carlo simulation of “new” stochastic phantoms which possessthe same stochastic behavior as the “original” cross-sections
    corecore