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ABSTRACT

ALGEBRAIC GRID GENERATION
USING

TENSOR PRODUCT B-SPLINES

Bonita Valerie Saunders
Old Dominion University, 1985
Director:	 Dr. Philip W. Smith

In general, finite difference methods are more success-

ful if the accompanying grid has lines which are smooth

and nearly orthogonal.	 This thesis discusses the develop-

ment of an algorithm which produces such a grid when given

the boundary description.

Topological considerations in structuring the grid

generation mapping are discussed. 	 In particular, this

thesis examines the concept of the degree of a mapping

and how it can be used to determine what requirements are

necessary if a mapping is to produce a suitable grid.

The grid generation algorithm uses a mapping composed

of bicubic B-splines. 	 Bounaary coefficients are chosen

so that the splines produce Schoenberg's variation diminish-

ing spline approximation to the boundary. 	 Interior coeffi-

cients are initially chosen to give a variation diminishing

approximation to the transfinite bilinear interpolant of

the function mapping the boundary of the unit square onto
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f the grid.

ticality of optimizing the grid by minimizing

nvolving the "'acobian of the grid generation

h interior grid point and the dot product

gent to the grid lines is investigated.

nerated by using the algorithm are presented.
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1.	 INTRODUCTION

Grid generation is the numerical development of curvi-

linear coordinate systems. In recent years grid generation

has been the key to solving partial differential equations

on arbitrarily shaped regions by finite difference methods.

Although much of the motivation for grid generation has

come from fluid dynamics, the techniques apply to any area,

such as electromagnetics and heat transfer, which involves

the solving of partial differential equations on a physical

domain.

Inherent in grid generation techniques is a mapping 	 t
i

T from some canonical domain such as a square or rectangle

in two dimensions, or cube in three dimensions, onto the

physical domain on which the partial differential equations 	
i	 s

are to be solved. The image of a mesh on the canonical, 	 f

or computational, domain will be a grid on the physical 	
^!!

domain. When the grid boundary coincides with the boundary	 i

of the physical domain, the system generated is called

a boundary fitted coordinate system.

A boundary fitted coordinate system allows one to

apply boundary conditions exactly, thus avoiding interpola-

tion errors. However, such a system may make the equations

to be solved more complex [Sm].

The distribution of the coordinate lines, or grid

1



2

lines, should be smooth, but concentrated in areas where a

large gradient occurs in the physical solution. 	 As stated

by Thompson, Warsi and Mastin 1TWMI, "the grid points may

be thought of as a finite set of observers of the physical

solution, stationed to be most effective in covering all	 -

of the action on the field."	 Ideally; the grid should

be adaptive, that is, coupled with the physical solution

so that it automatically redistributes 'its grid lines to

obtain the desired regions of concentration as the solution

evolves.	 However, the interior lines should not cross

the physical boundary and should be nearly orthogonal at

the intersection points to avoid large truncation errors

in the finite difference approximations.

Grid generation is based on the observation that

finite difference computations are much easier to make

on a uniform mesh over a canonical domain such as a square

or cube than on a grid over an irregularly shaped region.

Therefore, the partial differential equations to be solved

must first be transformed so that the computational coordi-

nates become the independent coordinates. 	 The resulting

equations may then be expressed as finite difference equa-

tions on the computational domain.

Grid generation techniques may be divided into two

general types:	 partial differential equation methods and

algebraic methods.	 P.d.e. methods include elliptic, hyper-

bolic and conformal mapping techniques. 	 All of these methods

involve the solving of partial differential equations to

1
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obtain the grid coordinates. The simplest elliptic method

for grid generation uses the Laplace equations

e' E a^ + 54
ex	 Y

e'n a ate+ a^ = 0
ax	 ay

where E and n are the computational coordinates and x and y

are the physical coordinates in two dimensions. The equations

are first transformed so that the independent and dependent

variables are interchanged. Then the new equations dre

solved for x and y in terms of E and n. Some control over

the grid cell spacing can be accom p lished by introducing

control functions P (E,n ) • Q(E•n) and solving the Poisson

equations [TWM. p. 391

e'E = P(E.n)

e'n = Q(E,n)•
Solving the Laplace equations

e' E	 0

e'n=0

with boundary conditions
Ex = n 

Ey= -nx

produces a conformal transformation [ TWM. p. 11]

Starius [ St. p. 211 shows that solving an initial value

problem satisfying

xn = -yEF

y n = xEF
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where F is chosen so that the system is hyperbolic produces

a hyperbolic grid generating system. Grids generated from

elliptic equations are generally smooth regardless of the

type of boundary, but slope discontinuities propagate through

hyperbolically generated grids [St].	 Generating a grid

using conformal mapping techniques requires careful selec-

tion of the boundary data, making it difficult to structure

the grid to obtain a high concentration of grid points

in areas or large gradients in the physical solution. 	 More

grid points may have to be added in order to capture regions

of rapid change such as shocks and boundary layers.	 Also

in p.d.e. generated systems the Jacobian information needed

for the transformation of the equations being solved must

be computed numerically.

In algebraic methods an explicit functional relation-

ship between the computational and physical domains is

defined.	 Therefore, no p.d.e. need be solved to obtain

the grid coordinates and the Jacobian matrix can be computed

analyticall y .	 Such methods allow more precise controls

of the grid structure making it easier to concentrate grid

points in large gradient areas.	 However, algebraically

generated grids are more sensitive to point distributions

on the boundary and, in general, may not be as smooth as

those generated by elliptic techniques [Sm]. 	 Slope discon-

tinuities on the boundary may propagate into the field.

Nevertheless, a variety of techniques have been used to

produce acceptable smoothness in algebraically generated grids.
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TI'Is thesis discusses an algebraic grid generation

technique for creating boundary fitted coordinate systems.

This technique uses a mapping which is a sum of tensor

product B-splines. Chapter 2 discusses degree theory,

explaining hcw the degree of a mapping can be used to deter-

mine what conditions must be met if an algebraic transfor,na-

tion is to produce a suitable grid. 	 Chapter 3 presents

the tensor product grid generation mapping and discusses

the properties of B-splines to show their suitability for

use in such a mapping.	 Chapter 3 also introduces a func-

tional which can be used to change the coefficients in

the mapping in order to enhance the smoothness and orthogo-

nality in the generated grid.

Chapter 4 discusses the computer program TENTEST

which uses the techniques p— sented in Chapter 3 to generate

grids on arbitrarily shaped two-dimensional domains.	 Some

of the grids created using TENTEST are illustrated and

discussed in Chapter 5.	 Conclusions and sug;estions for

further study are presented in Chapter 6.



2. APPLICATIONS OF DEGREE THEORY

This chapter discusses degree thoery and shows how

the degree of a mapping can be used to help determine what

requirements are necessary if a transformation T is to

produce a suitable grid.

Since the distribution of grid lines should be smooth

with concentration in areas of large gradients in the

physical solution, the image of T should cover the entire

physical domain, that is, T should be onto.	 Also, the trans-

formation should be one to one.	 In terms of the grid, this

means that the grid lines should not overlap the physical

boundary and should intersect only at points corresponding

a
to intersection points on the mesh in the computation domain.

Requiring T to be one to one and onto is equivalent

to saying that the system T(s)=p must have one and only one

solution in the computational domain for each point p in

the physical domain.	 This provides the motivation for

looking at the following general problem:

Pick an open set DcR n , where R n is euclidean n-space,

and let C be an open bounded set such that Cc D.	 If

F:D--Rn _ R n is a continuous mapping and yER n is given, how

many solutions of F(x)=y exist in C?

The difficulty in solving this problem lies in the

fact that in general the solutions do not vary continuously
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with F or y. This difficulty may be resolved by looking

instead at the difference between the number of solutions

for which the Jacobian of F is positive and the number of

solutions for which the Jacobian of F is negative. 	 Loosely,

this is what is called the degree of F at y with respect

to C.

2.1 Defining the Degree of a Mapping

A more precise definition of the degree of a mapping

F takes on different forms depending on what restrictions

are placed on F.	 What follows are essentially the defini-

tions presented in references [S] and [0].

2.1-1 Definition.	 Let C- 0n be an open bounded set and let

F:CcR n _ Rn be continuously differentiable on C.	 Pick

y4F(aC) and let r = {xECIF(x) = y}.	 If F'(x) is nonsingular

for all xcr then one defines the degree of F'at y with

respect to C by

deg(F,C,y) = xEr sign det F'(x).

In [0], Ortega and Rheinboldt actually define the

degree in terms of an integral and then show that it has	 I
k
t

the equivalent form given above.

On removing the restriction that det F'(x) ^ 0 for

xer the definition becomes

deg(F,C,y) = lim deg(F,C,yk)
k

where 
I'm 

y k = y and each element of (yk1
k _C0

satisfies y k J F(aC) and det F'(x) # 0 whenever F(x) = y k ,	 t
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Actually, one can make the stronger statement that

for any such sequence {y k } there is a k  such that

deg(F,C,y) = deg(F,C,y k ) for k>k o [0, p. 1591.

The Weierstrass approximation theorem makes it

possible to extend the definition of the degree of a mapping

to a continuous function.

2.1-2 Definition. 	 Let F:CcR n_ R  be continuous on the

bounded open set C.	 Define IIFII=
Sup 

I F(x)I where I-I

is the Euclidean norm.	 Then for y4F(aC) one defines the

degree of F at y with respect to C by

deg(F,C,y) = lim deg(Fj,C,y)
j—m

where U j I is a sequence of maps which are continuously

differentiable on an open set DEC and which satisfy

ji m
I I F j - F II c=o

2.2 Properties of the Degree

The principal properties cf the degree are given

below.	 Excellent proofs may be found in [S], [0] and [H].

2.2-1 Theorem.	 Let F:C c R n_ R  	 , continuous on the open

bounded set C and let r = {xcCIF(x)=yl. 	 For any yOF(aC)

there exists a quantity, deg(F,C,y), which has the properties

listed below.	 It is:

1. Integer valued

2. Invariant under homotopy

e
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If W:tx[0,1]c R
n+l. 

R  is continuous, then

for any zeR n satisfying W(x,t) 0 z whenever

(x,t)c aCx [0,1], deg(W(•,t),C,z) is constant

for all tc [0,1].

3. Dependent only on boundary values

If G:CcR n _ R  is continuous and 
G18C = F18C

then deg(F,C,y)=deg(G,C,y).

4. Invariant under translation

For any zeRn.

deg(F-z,C,y-z)=deg(F,C,y).

5. Invariant for points which can be connected by a

continuous path avoiding F(aC)

See Figure 1.

6. Invariant unaer the excision from C of any closed

set Q satisfying Qnr = 0

In other words, if Qnr=O, then deg(F,C,y)

deg(F,C-Q,y).	 In particular, if Q=C, deg(F,C- Q,y) =0.

This property will be called the Excision Property.

The Excision Property can be used to prove a very

important result which is called the Kronecker Theorem in

[0, P. 1611.

2.2-2 Theorem (Kronecker). 	 If F:Cr-R n_ R  is continuous on

the bounded open set C, yEF(aC) and deg(F,C,y) # 0, then

the equation F(x)=y has a solution in C.

1k.

)f:	 Suppose F has no solutions in C. 	 Let Q=t.	 Since

Q), the Excision Property implies deg(r,C,y)=0.

Q.E.D.
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2.3 A Topological Definition of the Degree

Dugundji [D] presents an alternate formulation for

the degree of a mapping. He defines the degree of a

mapping f:S-.S where S is the unit n-sphere in R n , that is,

S = {x ERn I Ix I = 1 }.

This degree can be shown to be equivalent to the analyti-

cally defined degree in the previous sections.

Before defining this degree, several terms nust be

discussed.

2.3-1 Definition.	 A set EcR n is called a linear variety

if x l ,x 2 eE implies ax l +(1-a ) x 2 EE for all real a.

2.3-2 Definition.	 A hyperplane in R 	 is an (n-1) dimen-

sional linear variety.	 If n=1 then a hyperplane will be a

point.	 For n=2 it will be a line, and for n=3 it is a plane.

2.3-3 Definition.	 If {xo,xl,...,xn) is a set of n+l points

in R n , then the convex hull is called an n-simplex. 	 It will

be denoted by a = (xo,xl,...,xn).

The points xo,xl,...,xh are called the vertices of the
n-simplex.	 If the vertices lie on a hyperplane in R n , then

the n-simplex is said to be degenerate. 	 Now if (xi,...,x in )

are the coordinates of point x i , then the volume of an

n-simplex [F, p. 2081 is given by
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1 ! Idet(xl- xo,x2-xo,...,xn-xo)l
n

1	 1	 1	 1	 1	 l
1 X I

-x o	X
I
-X I 	 ...	 xn_xo

n!

det	 •

n n	 n n	 n n

1 - o	 x 2 - o	 n- o

An n-simplex is degenerate if and only if

det(x l -x o ,x 2 -x o , ... ,xn-xo)=0.

The next three definitions will be used to explain

the term "ordered n-simplex."

2.3-4 Definition.	 A binary relation A in a set A is a

subset Ac.AxA.

2.3-5 Definition.	 If A is a binary relation in a set A,

then A is trichotomous if exactly one of the following is

true for each x,yEA:

xny, x=y, ynx.

2.3-6 De finition.	 Let A be a binary relation in a set A.

Then A is a total order if it is transitive and trichotomous

[G, p. 2).

2.3-7 Definition.	 An ordered n-simplex [D, p. 3361 is an

n-simplex together with a total ordering on its vertices.

Therefore, if the vertices xo,xl,...,xn of an n-simplex

satisfy x0<xl<...<xn, then "<" totally orders the set

{xo,xl,...,xn 1. Therefore, the n-simplex S= 
(x o' x l°- " ' Yn)

fj
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is an ordered n-simplex. Such a simplex will be denoted

[e] - [x o ,x l , ... ,x n ].	 The sign of the ordered simplex

is the sign of det(x l -x o ,x 2 -x o , ... Oxn-xo).

Now suppose x o ,x l , .... x
n-1	 is a set of n points on S

having a diameter less than 1 so that the convex hull of

the set does not contain the origin. Then the convex hull

can be projected onto S by choosing the points on S lying

on the directed rays which start at the origin and pass

through the convex hull. The points on S form what will be

called the spherical (n-1) - simplex b = (X 0 9  .. 'xn-1)'

The spherical simplex a is degenerate if and only if

xo,xl, .... x n-1 , lie on a hyperplane in R  passing through

the origin, that is, if and only if (xo,xl,...,xn-1,0) is a

degenerate n-simplex in R n . An ordered spherical (n-1) -

simplex is a spherical (n-1)-simplex with a total order

on its vertices. The sign of an ordered spherical

(n-1)-simplex [ g] = [x o , ... O x n-l ] is defined to be the sign

of the n-simplex [x o , ... ,x n-1 ,0] in R n [D, p. 3371.

The next two definitions, which can be found in

[D, p. 3371, complete the terminology needed to define the

Dugundji degree.

2.3-8 Definition. A triangulation a of S Js a decomposition

of S into a finite number of nonoverlapping, nondegenerate

spherical (n-1)-simplexes such that each face of an (n-1)-

simplex is the common face of exactly two (n-1)-simplexes.
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2.3-9 Definition.	 Suppose S and E are unit n-spheres in

R n . (Different symbols are used to make the concepts more

clear.) Let a be a triangulation of S. Arp oper vertex

map ip:a — E is a map defined only on the vertices of the

spherical (n-1)-simplexes in a and is such that whenever

xo,xI'...,xn-1 are vertices of a simplex in a, the set

{(P(x o ), `P(x l )'" " .
P(xrl-1)}cE has diameter less than 1.

Under the proper vertex map ip:a—E there will be a

unique simplex (P(a) lying on E corresponding to each simplex

aEa.	 There will be a unique ordered (n-1)-simplex

q'[a]=[(P(xo), 'P(xI),..., 
'
P(x n-1 )] on E corresponding to each

ordered (n-1)-spherical simplex [a]	 The sign of [a] may

differ from that of v[a], and the family of sets (cP (a)laca)

may not form a triangulation of E since it may contain

overlapping simplexes and degenerate simplexes.	 However,

the family does have the fundamental property presented in

the following theorem which Dugundji proves [D, p. 2371.

2.3-10 Theorem.	 Suppose a is a triangulation of S and

(p:a — E a proper vertex Inap.	 Let y be any point not on the

boundary of any set T (a).	 If p(y,a, (P) is the number of

positive (p[a] containing y and n(y,a,cp) is the number of

negative, then the number D(y,a,9)=p(y, a, q))-n(y,a,(p) is the

same for all ye E not on the boundary of any (p(a).

Since D(y,a,m) is independent of y it can be denoted

D(a,(p).

-	 L	 "

ti
,r

4 .
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Now if F:S — E is continuous then the compactness

of S makes it possible to find a triangulation a of S such

that the diameter of F(c) is less than 1 for each cca.

Then if 9 F :a— E is the proper vertex map defined by

4P
F (x) = F(x) for each vertex x of a, Dugundji [D, p. 3391

shows that the number D(a,V F ), where • F is the proper vertex

map associated with e, is independent of the triangulation

of S.	 He calls the quantity D(a 1
9 F ) the degree of F.

Since a and 
9F 

actually depend only on F, D(a,cP F ) can be

denoted D(F).

Like the analytically defined degree, this degree

is invariant under homotopy [D, P. 2391.

2.3-11 Theorem.	 If F:S — Eis homotopic to F:S—E, then

D(F) = D(F).

Now let V be the unit n-ball in R n , that is,

V = (x eR n j Ix <1).	 Dugundji' s degree can be extended to a

continuous map H:V —V provided HA S maps S into S.	 S is

clearly the boundary of V.	 Dugundji calls such maps regular.

The technique for determining the degree of H is analogous

to what is done to obtain D(F) for F:S — S.	 V Is triangulated

into n-simplexes such that each p ace net on S is the face

of exactly two n-simplexes.	 Then a regular vertex map is

defined on the triangulation. m is a regular vertex map

of a triangulation a of V if m maps each vertex on S to a

point on S and 4PIS is a proper vertex map. 	 To calculate
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the degree of H. which will be denoted D reg (H), one chooses

the regular vertex map cPH :A-V defined by (p H (x) = H(x) for

any vertex xen. Then choosing ycV —S such that y is not

on the boundary of any 90 0) one corn.nutes

D reg (H) _ (number of positive TH [o] containing y)

(number of negative q H [c] containing y).

0 reg (H) depends only on H, and if H and H are homotopic

in such a way that the image of S remains on S throughout

the entire deformation, then D reg (H) = D reg (H).	 Further-

more, Dugundji proves the following very useful result.

2.3-12 Theorem.	 Suppose H:V —V is a regular map.	 Let

F=H ( S :S --S.	 Then D(F) = D
reg (H).

This theorem provides the information needed to show

that Dugundji's degree is equivalent to the analytically

defined degree.	 The following lemma will be used in the

proof.

2.3-13 Lemma.	 Suppose the following hypotheses are given:

	

1.	 H:V— V is a continuously differentiable regular

map

	

2,	 ycV—S and r = {xcVlH(x)=y}

	

3.	 H'(x) is nonsingular for all xEr

Then there exists a triangulation n of V with associated

regular vertex map 9. such that whenever ocA contains xcr

and (P H [ a ] is nondegenerate,

sign w H [o] = sign det H•(x).
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Proof: For each xcr choose a neighborhood Nx of x so that

either sign det H'(p)>0 for all points pcN x or sign

det H'(p).0 for all points pcN x .	 Choose the neighborhoods

small enough so that the family of sets (N x lxcr) is dis-

joint.	 Then triangulate V so that each N  contains a non-

degenerate equilateral simplexa x
 in which x lies, that

is, a nondegenerate simplex in which the distance between

any two vertices is the same. 	 Call this triangulation e.

Now suppose a x ca and ax = (xo,x11 .... x n ) with the vertices

labeled so that [a x ] = [xo,xl,...,xnI is positive. 	 Since

9 H (x i ) = H(x i ), i = 0, 1,...,n, the sign of 9H 
[ax]

= sign det [H(x l ) - H(xo),...,H(xn) - H(xo)].

However, H(x i )-H(x o ) = H'(x o ) (x i - x o ) + o(Ix i - x o l) for

i=l,...,n.	 Therefore, the sign of `PH 
[ a x ] = sign det

[H'(xo)(xl-xo) + of Ix l -x o 1),..., H'(x o )(x n -x o ) + o(xn-xo)].

Now if 
Ix i - x o I = c for i=o,l,...,n then expanding the deter-

minant above yields det [H'(xo)(xl-xo,...,xn-xo)] plus terms

of order o(c n ).	 Therefore, det [H'(x0)(xl-xo,...,xn-xo)],

which has order 0(c n ), is the dominant term, and the other

terms can be neglected.	 Consequently, the sign of

• H [a x ] = sign det [H'(xo)(xl-xo, ... oxn-xo)]

sign [(det H'(xo))-(det (xl-xo,...,xn-xo)]

sign det H'(x o ) since [ax ] is positive.	 However,

since x o cN x , sign det H'(x o ) = sign det H'(x).

Q. E. Q.

t:

ILL-



2.3-14 Theorem.	 Suppose H:V —V is a c.ontinu

Liable regular map.
	 Pick y E V—S and let r = ( x E VIH(x) = y).

Let F=H +S :S -S.	 If H I (x) is nonsingular for all xcr then

D(F) = deg (H,V,y).

Proof:	 Since 2.3-12 says D(F) - Dreg (H), it suffices to

Show that D reg (H) = deg (H,V,y).

Choose a triangulation o of V as specified in 2.3-13

and let vH be the regular vertex map associated with a.

Without loss of generality, one can assume that 
4PH

(a) is

nondegenerate for all aeo because any degenerate VH (a) can

be approximated by a nondegenerate simplex T (a) where V is

defined on all vertices p in a so that 1T(p)- 'fH(P)1<c

fora given E.	 According to Dugundji [D, p. 3381, D(i,q)

D(e,
(PH

) = D(H) if E is sufficiently small.

Furthermore, one --an also assume that y does not lie

on the boundary of any TH (a) for cc,& since property number

5 of Section 2.2 implies deg(H,V,y) = deg(H,V,v) for all

pEV—S.
`i

Therefore, it follows from 2.3-13 that D eg (H)=	 i

number of positive VH (a) containing y

number of negative N (a) containing y

E sign det Hfx).
xEr

Q. E.D.

The following corollary shows that the restriction

that H'(x) be nonsingular for all xer can be removed.
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2.3-15 Corollary.	 Suppose H:V -V is a continuously

differentiable regular map. Pick ycV—S and let

r - (xa IH(x)=y ).	 Let F=H I S :S • S.	 Then D(F)-deg(H,V,y).

Proof: By Ortega and Rheinboldt [0, p. 1591, there exists

a sequence (ykl which converges to y and has the following

properties:

1. Each ykOH(S)

2. For each y k , det H'(x) a 0 for all x such that

H(x)=yk

3. For some k o , deg(H,V,y)=deg(H,V,y k ) for all

k>ko

So pick k* so that k*>k o and whenever k>k*, y k cl'—S.	 Thcn

by 2.3-14 D(F)=deg(H,V,yk*)=deg(H,V,y).

Q. E. D.

It should be noted that this corollary still holds

if H maps some of the interior points outside of V. 	 The

points outside of V can be projected onto S so that one

obtains a mapping from V into V.

2.4 Applications to Grid Generation

The usefulness of degree theory in grid generation

surfaces when one studies a grid generating transformation

T. One might immediately note from the Kronecker theorem

that determining the degree at every point in the physical

domain would show whether or not T were onto. 	 Unfortunately,

the degree is not always easy to compute in practice. 	 a,



,i

20

One therefore looks instead at how the degree can be used

to prove some things about those quantities, such as the

Jacobian of T, which can be easily computed.

Recall that if Ac.R n , Br-R n , t e en A homeomorphic to B

means there is a continuous one to one, onto mapping from

A to B whose inverse is also continuous. It is clear that

T should be a homeomorphism from the computational domain

onto the physical domain.

The following result shows that if T is a homeomor-

phism, its Jacobian does not change sign.

In all of the theorems which follow I n =[0,1] n , JT =

Jacobian of T, C o =interior of C, C c =complement of C,aC =

boundary of C and ncR n is homeomorphic to In.

2.4-1 Theorem.	 I,	 is a homeomorphism from I n to n and T

is continuously differentiable, then the Jacobian, JT, of T

has une sign in In, i.e., either JT(x)>0 for all xeln or

JT(x)<Ofor all xE10.

Proof:	 Suppose by way of contradiction that JT(x o )>0 while

JT(x l )<0 for some x o .x I cIn.	 Let y c =T(x o ) and yl=T(xl).

Define p : [0, 1 ] -- R 	 by

P(t) - T ( (1-t)x0+txI).

Then p(0)=y o , p(1)=y l , and p(t)dT(aI r ) for te[0,1].	 Hence,

by property 5, 1=deg(T,I o ,y o )=deg(T,I n ,y 1 ) = -1.	 There-

fore, either JT(x)>0 or JT(x)<0 for all xEI0.

Q. E. D.

YF
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In an algebraic grid generation algorithm, the con-

struction of T will be based on boundary information.

The next theorem shows that requiring T to be a homemor-

phism from the boundary of the computational domain to

the boundary of the physical domain will insure that the

image of T covers all of the physical domain.

2.4-2 Theorem.	 If T:I n
 -
-R n is continuously differentiable

and T maps al  homeomorphically onto an, then T(I n ) --) n .

Proof: Let S be the unit n-sphere in R n .	 By Dugundji

[D, P. 3531, the Dugundji degree D of a map which is a

homeomorphism from S to S is +1 or -1. But al  and an

are homeomorknic to S.	 Therefore, from 2.3-15 it follows

that for any yen o , deg(T,i c ,y) _ ± 1.	 Therefore, by the

Kronecker Theorem (2.2-2) n lies in the image of T.

Q.E.D.

Smith and Sritharan [SSJ show that if an additional

hypothesis is added, one can obtain a much stronger conclu-

Sion:

2.4-3 Theorem.	 If T:I n —R n is continuously differentiable,

T maps al  homeomorphically onto an and JT(x) J 0 for all

xeln, then T is a homeomorphism from I n to n.

The next theorem shows that the Jacobian changes sign

when the image of T overlaps the physical boundary. 	 Theorent

2.4-3 and Theorem 2.4-4 show that it is important that T be

constructed so that its Jacobian does not change sign.

J -
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2.4-4 Theorem.	 Suppose T:I n — R  has the following properties:

1. T is continuously differentiable

2. T maps al  homeomorphically onto an

3. m(T( In)—a)>0

Then JT has a sign change.

Proof:	 Let C(I n ) =(xEI n jJT(x) = 01;	 Sard's Theorem [0,

P. 1301 says that m(T(C(In)))=0.	 Since m(T(I n ,— n)>0, there

exists z*E T(I n )—n such that T(x) = z* implies JT(x) 9 0.

Now, choose wE[T(I n )] c .	 By property 5,

deg (T,I 0 ,z*) = deg (T,I^,w) = 0. 	 Since deg (T,I^,z*)

E sign JT(x), the Jacobian values at all x satisfying
(xlT(x)=z* )

T(x) = z* must cancel each other.

Q. E. D.

2.5 Additional Topological Questions

Section 2.4 suggests other questions which should

be asked.	 Can a continuously differentiable homeomorphism

from aI n to an always be extended to a continuously

differentiable homeomorphism from I n to n?	 If not, under

what conditions is such an extension possible? How can

one guarantee that a mapping from I n to R  will be a

diffeomorphism?

The answers to these questions will provide valuable

information for creating an algebraic grid generation

mapping.	 Although this paper does not answer all of these

questions, partial answers were presented in the previous

t

t	 1i

i

L ^'
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section. Also, the following example shows that contin-

uously differentiable boundary homeomorphisms cannot always

be extended.

2.5-1 Example.	 Suppose T:1 2 — R 2 is continuously differen-

tiable and maps the boundary of the square homeomorphically

onto the boundary of the nonconvex region n shown in figure

2. Let p be the point indicted and Ap = ^A^	 If
An

T l (p) = aT (p) and T 2 (p) = aT(p) then
6	 an

T (P+AP) = T(P) + T'(P)(AP) + o(jopl)

= T (P) + AET 1 (P) - An T 2 (P) + o(IAPH

When jApj is small, the terms of order o(IApl) are

negligible in size when compared to AET I (p) and AnT2(p)'

Therefore, those terms_ may be neglected from the equation

above.	 However, then it is clear that T(p+Ap; must lie

outside the boundary of n.	 Conse q uently, T cannot be a

homeomorphism from I 2 to n.	 This is illustrated in figures

3 and 4 which show the result of attempts to construct a

tensir product spline transformation that maps the square

onto n.	 In each case points overlap the boundary near

the "V" shaped corner.

The first grid was obtained by choosing the B-spline

coefficients so that L'he transformation approximated a

transfinite bilinear interpolation mapping. 	 This is dis-

cussed in Chapter 4.	 The second grid was obtained by chang-

ing some of the coefficients in order to minimize a func-
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3. AN ALGEBRAIC GRID GENERATION MAPPING

In this chapter an algebraic grid generation tech-

nique which uses a transformation consisting of tensor

product B-splines is discussed.	 In the first section,

finite difference approximations to the transformed deriva-

tives of a first order partial differential equation are

examined.	 The effect of the size of the Jacobian on smooth-

ness and orthogonality is discussed, and its influence

on local truncation error is examined.	 The next section

defines the particular transformation of interest in this

paper and discusses the properties of the building blocks

for this transformation:	 kth order B-splines.	 The final

section discusses a functional which can be used to modify

the transformation so that the grid lines are distributed

more smoothly and are nearly orthogonal at points of inter-

section.

3.1 A First Order Example

If E and n are the computational coordinates, satis-

fying O<E<l and O<n<l, and x and y are the physical coor-

dinates, then the grid on the physical domain will consist

of coordinate lines produced by a mapping

T (E,n) =	 x(E,n)

Y(E,n)

i

i	 i
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If u  = F(x,y,u,u x ,uy ) is a first order partial differen-

tial equation defined on the physical domain, then the

chain rule yields (u 9 u
n

) 	 (u
x 

u y ) x J where J = x E xI,	 the

YE Y

Jacobian matrix for the transformation T. Hence

(ux uY) = (uE un) x J-1

{ uE un ) X n -x n̂  JT y

r_y c x E

where JT = (J ( = xon - xnyE.	 It is clear that the partial

differential equation can be transformed once the elements

of J are computed. These elements may be approximated

by differences when explicit formulas are not available.

The transformed expressions for u x and u  show immediately

that the grid must be structured so that JT # 0 at all

mesh points (E,n).

Once the partial differential equations are trans-

formed, difference approximations can be written for uE

and u n . Large truncation errors in the approximations

will affect the solution of the partial differential equa-

tions. One can obtain an expression for the truncation

error at mesh point ( E i , n i ) by doing a Taylor series expan-

sion at ( E i ,n i ).	 If uiJ = u(E i ,n i ), then

u i+i,i - ui,j + u
E e E 

+ uEE (QE) 2 + u EEE ^.	 .3 + HOT

ui -i,j = uiJ - u
E eE + uEE
	 2 - uEEE ^3 + HOT
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where HOT = higher order terms. Subtracting these two

equations and solving for ug yields

u  s u i+1, - 
u
i-1, - u 	

(AC) 2 + HOT

AC

`j	 Similarly,

u n 	u i, +1 - u i, -1 - unnn (an)2 + HOT
an

Therefore

u  = 1 (Yn s g u -Yg a n u ) - 1(YnUCCOAE)2-ycunnn(an )2)
JT	 6JT

where 6 C u and e n u are the central difference approximations

for u  and u , respectively. The truncation error is

SJT (Yn uM (AC)2-yEunnn(an)2) + ...

Now if r = ( x ), then
Y

JT = x,yn - xnyC

_ (r E xr n ) • (0,0,1)T

_ IrE I Irn Isin e

where 4 is the angle of intersection of the grid lir:-s

at (E.n). Again, the importance of JT 0 0 is evident,

but one can also see why the grid lines should be as ortho-

gonal as possible. The expression for JT implies that

the truncation error is inversely proportional to sin e.

However, according to Thompson, Warsi and Mastin CTWM,

p. 821 a departure from orthogonality of up to 45 0 is

usually tolerable.
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3.2 B-splines

The mapping T discussed in this paper has the form

M n

f=1 J ul a i j o ij^^ , ^ )	0<_E<1

X 

rr rt) _
T(C.,^ _	 ly(E,^

m n

i=1 Jul^ijBij{E . n)	 0<n<1

where  the B ij , i=1,.6.m; j=1,...,n are tensor products

of B-splines and the coefficients a ij , sij,

j = 1,...,n are real numbers.	 In this section, the terms

B-spline, spline function and tensor product B-spline are

defined, and some of the important properties of these

functions are discussed.

3.2-1 Defining B-splines

The following definition is from A Practical	 Guide

to Splines by Carl de Boor (de B. p.	 1081.

3.2-1-1 Definition.	 If t = it i )is a nondecreasing sequence.

then the i-th normalized B-spline of order k for knot se-	 I

quence t is defined by

B	 )[t ,...,	 1i,k,t(x) :t	 t( !+k- i	 i	 ti+k1('-x)+
	 where xcR.

The sequence t may be finite, infinite or biinfinite.

The expression [ti,...,t i +k](• -x)+-1 denotes the kth

divided difference of (••x) + -I or the leading coefficient

of the polynomial of degree k which interpolates ( • - x)+ - I
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at t i	t,..., i+k . The notation (--x)+
- 1 

represents the trun-

cated power function (t -x) + -1 which is defined by

(!-x)+
1	 t-C-X)k-1for t>x .

0	 for t<x

The - indicates that the kth divided difference above should

be evaluated by holding x fixed and considering ( t -x)+-1
as a function of t only. Nevertheless, since Bi,k,t(x)
changes as one chooses different values for x, it is clearly

a function of x.

The definition above differs slightly from the original

definition given by Curry and Schoenberg. Their B-spline

M i,k,t is related to B i,k,t by the equation

M i,k.t - [k/(ti+k-ti)J B i,k,t [de B, P. 1091.

3.2.2 Properties of B-splines

A kth order B-spline B i,k,t is a piecewise polynomial

of degree k-1 with breakpoints at t i , ... .t i+k .	 On each

interval (t j ,t j+1 ) ' 
Bi,k,t is a polynomial of degree k-1

or less.	 For convenience it will be assumed that Bi,k,t

is continuous from the right at breakpoints.

B-splines have many properties which make them

convenient for applications involving computers. One impor-

tant property is their small support. 	 If xE[t i ,t
i+k 1 -

then ( t -x)+ -1
 will be a polynomial of degree k-1 or less
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on 
[ti'ti+k]• 

Hence Ct i .. • • •t i+k ] ( t-x? -1 . 0. Therefore,

B i,k,t (x) = 0 for xi Cti'ti+k]'

This implies that the support of B i,k,t can lie in

at most k intervals of the form [t ] ,t j+1 ]. Therefore,

if (B i ) represents the sequence of B-splines of order k

for the knot sequence t = (t i ), it follows that only the k

B-splines B
]-k+l' 

B
]-k+2 " . . 08] can have support in any

given interval Ct],t`+l].

The next two results. which are proved in Ede B.

P. 1101 and Ede 8, p. 1301, respectively, show that B-splines

form a partition of unity, i.e.. the sequence (Bil consists

of nonnegative functions which sum up to 1.

3.2.2-1 Theorem.	 If (Bi) is the sequence of B-splines or'

order k for a nondecreasing sequence t s (t i), then

X B i (x) - 
IEl	 Bi (x)	 1

i
i=p-k+l

for any xc(t pz q ) where p and q are such that p-k+l	 and

q+k-1	 lie	 in	 the index set for t.

3.2.2-2 Theorem. If B i is the ith element of the sequence

of B-splines of order k for a nondecreasing sequence

t = (ti }. then 8 (x)>0 for ti<x<ti+k'

One can think of the "8" in B-splines as representing

the word 'basis," for when the knot sequence t is chosen
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appropriately, the kth order B-spline! for t form a basis

for the piecewise polynomial space 
Pk,t, v. Pk,t,v is the

notation used by de Boor [de B. p. 1001 to represent the

space of piecewise polynomials of degree k-1 which have

breakpoint sequence t and which satisfy smoothness conditions

specified by v. If t = {ti}1+1' then the nonnegative

sequence v a {vi}2 
gives the number of smoothness conditions

at each ti , i n 2,...,m. For example, if v s = 3 then any

fcPk.C.v must have at least 3 smoothness conditions at

C 1, that is, the function, its derivative and second deriva-

tive must be continuous at C a . The dimension of Pk,C,v

is km-Z vi.
i=2

The following theorem of Curry and Schoenberg [de 8,C]

shows how the knot sequence t should be chosen so that

the corresponding B-spline sequence forms a basis for Pk.t.v.

3.2.2-3-Theorem (Curry and Schoenberg).

Let t 
= {ti}1

+1 
be a strictly increasing sequence and

V = 
{vi

}2 be a nonnegative integer sequence such that
V i ck for all i. Set n = k+j (k- V i ) = km -1 v i and let

i=2	 i=2

t 
= {ti}i

+k 
be a nondecreasing sequence such that

M t1_t2r ... <t k <t l and 
tm+l_`tn+l<...<tn+k

ima
__^.,_
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(ii) for i=2,...,m., the number C  occurs exactly

k- vi times in t.

Then the sequence 6 I , ... ,B n of B-splines of order k for

the knot sequence t is a basis for 
Pk.E.v, 

viewed as

functions on [tk,tn+1J'

This theorem shows how the number of knots at a break-

point translates into tr.e amount of smoothness there.

Since the number E i occurs exactly k- v i times in t and

vi represents the number of smoothness conditions at Ei,

the number of smoothness conditions at Ei equals k minus

the number of knots at Ei . Hence if k=4 and E
j
, 2<i<m,

occurs exactly once in t then the piecewise polynomials

generated by B I .... ,B n will satisfy three smoothness condi-

tions at Ei , i.e., the piecewise polynomials, their first

derivative and their second derivative will be continuous

at C..

3.2.3 Spline Functions

In early studies of splines, a spline function of

order k was defined to be a piecewise polynomial of degree

k-1 with k-2 continuous derivatives.	 However, in this

paper the more general definition in [de 67 is used.

3.2.3-1 Definition.	 If t = (t i } is a nondecreasing sequence,

then a spline function of order k with knot sequence t is

any linear combination of the B-splines of order k for
E
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the knot sequence t. if one denotes the collection of all

such functions by Sk,t then

Sk,t 
s 

tI ai Bi,k,t' ai real for all il.

It is clear that when t has the form described in the Curry

and Schoenberg theorem 3.2.2-3, Sk,t 2Pk 9 E 9 v on (tk'tn+ll.

The first derivative of a spline function i i Bi,k,t

can be found by using the differences between successive

coefficients. The following result, proved in [de B, p.

1381, shows that the derivative of a spline function of

order k will be a spline function of order k-1.

3.2.3-2 Theorem. Let i ii Bi,k,t 
be a kth order spline

function constructed with B-splines Bi,k,t corresponding

to a nondecreasing sequence t = it i ). Then the first deri-

vative of i 
10 Bi,k,t is given by

d(iai B i,k,t ) = i(k•1) ai -ai
-I	 Bi,k-1,t

dx	 ti+k-1-t1

The value of a spline function f = raj Bj,k,* at a

point x satisfying ti<x<ti+1 is a convex combination of

the k coefficients 
°ti +1-k••••'ai•	

For it ti<x<ti+l' then

f (x) = Jaj Bj,k,t (x) = J
=i-k +lad B

j,k,t (x) with the Bj,k,t

satisfying	 Bj,k, t (x)= 1 and 8 k 
(x)10 for all j.

E



8-spline coefficients model the functions that they

represent. In other words, the coefficients are

approximately equal to the value of the function at certai

Points. This is illustrated in the next section.

Carl de Boor [de 87 proves the following result con-

cerning the relationship between a spline function and

its B-spline coefficients.

max	 If (X) 1.
XC(a,b]

The notation 11fli[a,b] denotes

i
i

i- -

3.2.3-3 Theorem. Let 
;a.Bi,k,t 

be a kth order spline

function constructed with B-splines Bi,k,t corresponding

to a nondecreasing sequence t = it i }. Then there exists a

positive constant D k , depending only on k, so that for all

i,

(a• ( < D ( ( E a. O.1	 — k	 j	
^,k,t I[ti+l'ti+k-1]

3.2.4 Variation Diminishing Splines

Given an f known to lie in 
Pk,E,v 

one can write it

in the form f = n a i 8 i . The Curry and Schoenberg Theorem

i=1

(3.2.2-3) shows how one obtains the B-spline basis and

the following lemma suggests how one might obtain the

coefficients.	 Its proof may be found in [de B, p. 1161.
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3.2.4-1̂  lemma (de Boor and Fix). let B i be the sequence

of B-splines of order k for a nondecreasing sequence

t = {t i ). let "i be the linear  functiona1 defined for all

f by

	

	 f = k-1 (_) k-1-r 4(k-1-r)(ti)f(r)(ti) where

r=0

(ti+l-t) ... (ti+k-t) /(k-1)! and t i is some arbi-

trary point in the open interval (ti.ti+k). Then

X  Bi 
2 aid for all J.

Hence, if f = E	
ai B i it follows that ak , 1<k<n may

i=1

be found by computing a kf = ak( '* 
i 

B i ) = a k . By explicitly
i

writing out the expression for a k f one can easily show

[de B, P. 1591 that a i = f(t i ) + 0(Itl) if t i is any point

in 
(ti'ti+k) 

and Itl = mix tt i+l -t i ).	 However, if

t i = t i , 1 <_i^n where ti = (ti+l + " ' + t i+k-1 ) / ( k - 1 ) then

a i	 f Wl ) + 0(Itl 2 ). Choosing a i =f(t i ) for 1<i<n	 yields a

shape preserving approximation called Schoenberg's variation

diminishing spline approximation [de B, p. 1591. So if

t* _ { ti ) i the variation diminishing spline approximation

to f. of, , is defined by

of = n
f(ti) Bi.

i=i

This spline reproduces polynomials of degree one, i.e.,

if f is a straight line then of = f. For any f the number of

 IWO



times the spline approximation crosses a given lir

be less than or equal to the number of times f crosses zne

line. From this it follows that if f is nonnegative, then

of is nonnegative and if f is convex then of is convex. How-

ever, since v has these shape preserving properties, it is

not d very high order approximation.	 In fact, if g is a

function defined on [a,b] and g has m continuous derivatives

for some m>_2, then de Boor [de B. p. 1611 states that

11g-vg 11 [a,b] :g,k 1t 1
2 , where c g,k is a constant depending

on the order of the spline function k and the function g.

No matter how large m is, no exponent larger than 2 can be

put in the inequality. De Boor shows that it is possible to

obtain other spline approximations which are more accurate,

but variation diminishing splines are convenient for appli-

cations such as computer-aided design and grid generation

where shape preservation is important.

3.2.5 Tensor Product B-splines

3.2.5-1 Definition.	 Let R be the set of real numbers.	 If

V is a linear space of functions mapping some set X into R

and W is a linear space of functions mapping some set Y into

R, then for each veV and weW the tensor product, vow of v

and w is defined by

vow(x,y) = v(x)w(y) for (x,y)eXxY.

Furthermore, the set of all finite linear combinations of

the form vow for some veV and weW is called the tensor



rp oduct, V1W of V with W.

A typical element u of V9W has the form

U E	 (vi In

jal
i

where a j cR, v j cV, w j cW for j=l,...,n.

If V and W are the linear spaces of spline functions

Sh.s and Skit , respectively, then the elements of VeW are

linear combinations of tensor product B-splines. A tensor

product B-spline 8 i is defined by 8ij(x,y)=Bi,h,s(x)Bj,k,t(y)
where Bi,h,s is the ith B-spline of order h for the knot

sequence s = rs i } and Bj,k,t is the jth B-spline of order k

for the knot sequence t = it 	 An element u of VOW will

be called a tensor product spline and will have the form

E E
U -	 i j aij Bij

where a ij cR for all i,j. When h=k=4 u may also be called

a bicubic spline.

Many of the properties of tensor product B-splines

follow trivially from B-spline properties. For example,

the tensor product B-spline B ij will be positive on its

support since both B i,h,s and Bj,k,t are positive on their

support. Furthermore, the support of B ij is small. Since

B i,h,s (x) = 0 for xO[s i ,s i+h ] and Bj,k,t ( y ) = 0 for yt[tj,tj+kj

it is clear that 8 ij (x,y) = 0 if eitherxi[si,si+h] or

y![t j ,tj+k 1. Hence the support of 8 ij lies in the shaded
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area shown in figure 5.

Tensor, product B-splines also form a partition of

unity.	 It follows from 3.2.2-1 that EEB (x,y)ij i3

EB WEB (y) = 1 for any (x,y) c(s p ,s q )x(t r ,tm ) where p
i i	 j j

and q are such that p-h+l and q+h-1 lie in the index set

for sequence s and r-k+l and m+k-1 lie in the index set

for sequence t.

Partial derivatives of tensor product splines are

easy to compute since they reduce to derivatives of spline

functions.

a	 (EE a B	 (x,y))
Crx	 ij ij ij

a	 EE	 B (x)B (y)a
77 i ; ij i	 j

EB (Y) d ( E	 B (x))
j j	 dx i a i j i

a	 (E.a..B	 (x,y)Ty i J 1 J ij

a	 EE a	 B (x)B (y)
ij ij	 i	 j

TB (x) d (2:B (Y))
i i	 ay j ,ij j

3.3 A Smoothing Functional

The mapping T described in this paper uses tensor

product B-splines to map the unit square onto a physical

domain of arbitrary shape. This section shows that

choosing the coefficients of the tensor product B-splines

so that they minimize a certain functional can improve

the quality of the physical grid produced by T. This

functional is described and conditions under which it will

t
i^
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i

1

1

s i	 s i+l	 si+h

Figure 5 Support of tensor product B-spline Bij.
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ax (E,n) ax (E,n)'
aE	 an

PI (E,n) .ay (E,n)

ac	 an

JT(E,n) = Jacobian of T at (E,n)
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have a minimum are examined.

3.3.1 Characteristics of the Functional

The coefficients of the mapping defined by

M	 n

i= E 8(E,n)	 0<E<l
j 

j=l a ij ij

ly(E,n)
T (E,n)	 (E.n)

m	 n
E	

z 8 g ( E ,n)	 0<n<li=1 J21 i j i j
can be divided into two groups: boundary coefficients and

interior coefficients. T uses the boundary coefficients,

°1ij,sij, j=l,...,m and 
aim'aim' 

i=l,...,n to map the boun-

dary of the square onto the boundary of the physical domain.

Hence, the flexibility of their values is limited. 	 The

rest of the coefficients, the interior coefficients, can

be moved around in order to change the characteristics

of the physical grid. To produce orthogonality in the grid

'ines and maximize the smoothness of the distribution of

grid lines one can choose the interior coefficients to

minimize the functional

F	 1 w l
 (

aJT 2 
+(

aJT 
2)dA +	 1 w2(Oot)2dA

2	
laE ^	 l

en )	 2	 a

3	 where
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= ax (E,n) a	 (E.n)	 a	 (E.n) axV	 an

Dot (E. n) _ 6T (E•n)	 aT (C.n
aE	 an

ax (E. n)	 ax
at Fivin(E4nI

a (E. n)	 P C. n)
aE	 an

= ax (E. n) ax (C. n) + m (E. n) M (E.n)
eE	 8n	 8E	 an

and w l (E,n), w 2 (E,n) = weight functions evaluated at (E.O.

After the minimization of F is completed, where w l is large

the variation of the Jacobian values at nearby points will

be small. Hence, w l can be used to decrease skewness in

a grid. Where w 2 is large, Dot will be small causing the

grid lines to approach orthogonality.

To avoid the tedious differentiation and integration

of tensor product B-splines, the following discrete approxi-

mation to F can be implemented in computer algorithms:

p	 q

	

G = E	 E w 	 (JTi+I,•-JTi ) 2 + (JT
i, 

+I- JTi	
AEan1=1 j=I (

	 (aE)	 (an)

	

+ p	 q
E	 E w 2 ( Dot ij ) 2 &can
i=l j=1

where

0 = EI<E2 < ... 
<Ep = 1,
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111 01 2<..0 <nq • 1•

JT i j - JT (E in j ) , Dot i j = Dot (E i•n j) ,

of a 1/(p-1), an = 1/(q-1), and

the parameters w l and w2 are weight functions. Both F

and G depend only on the coefficients of the tensor product

B-splines which compose T.

Now

m	 n
ax (E, n) - E	 E	 a i j a	 ( B i j(E,n))9	 1 =1 j=1	 aE

m	 n

	

T
ax (E,n) = ial E	

aij an (Bij(E,n))

m	 n
a	 (E,n) - E	 E	 g.. a	 (B	 (E,n))
i	 i=1 j=1	 ij eE	 ii

m	 n
a (E,n)	 E	 E	

eij a
	 (Bij(E,n)).

0n	 ixl jsl	 8n

Thus, for E,n fixed, JT(E,n) is a linear function in each

coefficient a ij ,Bij , i=1 9 ... 9 m, j=1, ... ,n and pot (E ► n)

is a quadratic polynomial in each coefficient. Since the

terms involving Dot (E,n) and JT (E,n) are squared in G,

one can see that G is actually a quartic polynomial in

each coefficient. This suggests an elementary iteration

method for finding the minimum of G: the cyclic coordinate

method [B, p. 2711.

V =
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The cyclic coordinate method is a multidimensional

search technique for minimizing a function of several vari-

ables without using derivatives. It searches for a minimum

along each coordinate direction. This method, when applied

to a differentiable function, converges to a point where

the gradient is zero [8, p. 2731. It can be applied to

G if one treats each coefficient a ij ,O ij , i= 19...,m1

Jul....,n as a variable representing a particular coordinate

direction. This technique is discussed further in the

next chapter.

The importance of requiring that the Jacobian of T be

of one sign was illustrated in Chapter 2. For this reason,

if possible, the feasible region for the minimization

problem is chosen to be a region where the Jacobian of T is

nonnegative. Now since 8-splines have small support, any

given coefficient ars or Ors inly affects the Jacobian

of T at a small number of points on the unit square mesh.

By solving the inequality JT>0 for a rs at each of these

points one can determine on what interval ars must lie so

that the Jacobian values at the points it affects are non-

negative. This inequality is easy to solve since JT is

linear in ars . Repeating this procedure for each coefficient

will, in most cases, produce a satisfactory approximation

to the desired feasible region. However, since the boun-

dary coefficients are fixed, there may sometimes be problems

near the boundary. This is the case with the nonconvex
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region examined

negative at one

for the coeffic

above. This is

not affected by

remain negative

in Section 2.6. The Jacobian will remain

of its corner points even after the domain

ients is restricted by using the procedure

because the boundary points are fixed and

the procedure. The Jacobian will also

near this corner because of continuity.

3.3.2 Convergence of the ;,mooching Functional

Under what conditions will the discrete smoothing

functional G converge to a minimum value? Is it important

that G be restricted to a region where the Jacobian of T is

nonnegative? What happens if one of the tensor product

coefficients becomes large?

These are some of the questions which might be asked

about G. The notation defined below will be used to discuss

these problems:

(Adis a sequence in which each term represents a set

of coefficients for the mapping T:I 2 R 2 defined by

m	 n
i
=1 r
	 al i j B i j (C . n)

Jul

T (E+n1 _	 •0<E`_:, 0<n<1.

m	 n
i=1 E
	

aijBi j(E^n)

Each Ar can be considered a discrete function defined

by

"I
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of j . if s = 1

Ar(s.i.j)	 r if s r 2	
i=1,6..,m; j=190041n.

T r denotes the mapping obtained when the coefficients

given by Ar are used for T.

JT r denotes the Jacobian of Tr.

max
JAr^max ` s,i,jlAr(S ► i ► i)l.

It follows that if the sequence 
(Ad 

of coefficients

converges to a single point then the corresponding values

of G also converge.	 Hence,	 it	 is important to determine

conditions which guarantee the convergence of the coeffi-

cient sequence.	 Well,	 since the elements of	 (A r l can be
Ow

viewed as points	 in R 2mn ,	 the sequence converges	 if and

only	 if	 it	 is	 a	 Cauchy	 sequence; however,	 a necessary condi-

tion for the convergence of (A d is that the sequence be

bounded.	 The following theorem and corollary show how the

Jacobian affects the boundedness of the	 sequence.^^

3.3.2-11	 Theorem.	 Suppose for all r T r maps al  homeomor-

phically onto an.	 If JT r ( C,n)ZO for	 all	 r	 and	 all	 points

(C.n)	 g	 I2,	 then either	 (Art	 is	 bounded
or JTr

( Coln	 =	
0

for some point	 (E o ,n o )	 c	 1 0.
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	 n i C

Proof: By way of contradiction, suppose (Ad is not bounded

and JT r (E,q)>O for all r and all points (E,n) E 1 2 .	 For

any integer N there exists an Are (Ar) such that 
JA r N Amax >N,

But this implies that either arN >N or ls rN J>N for some

	

ij	 ij

i,j. Now since n is bounded there exists M>o such that

161<M for all pen.	 From3.2.3-3 it follows that for large

enough N, max	
JTr	

(C,n)^> 2M.
0<C<l	 N
0<n<1

Hence Tr maps some point (,n l ) E 12 out side an. Now
N

since JT r >0 on 12, m(T r (I )—a)>O.	 But then 2.4.4 says
N	 N

that JTr
N 

has a sign change.

Q.E.O.

The corollary below follows immediately.

3.3.2-2 Corollary. Suppose for all r T r maps I 2 homeomor-

phically onto an.	 If JT r (E,n)>O for all r and all points

(^,n) a 12, then (A r I is bounded.

One would like to show that the requirement JTr(^,n)>O

for all r and all points (C,n) a 1
0
2

	sufficient to guarantee

the boundedness of (Ar }.	 As indicated in 3.3.2-1, it is

clear that if the magnitude of a coefficient is large enough,

then the mapping T r associated with the coefficient will

map some point in 12 outside an. However, it is no longer

wow	 17:..,



clear that m(Tr(I2)•—G)"o since JT r (9,n) may be Q outside aa.

Thus 2.4.4 cannot be used to obtain the contradiction that

JT r must have a sign change as was done in Theorem 3.3.2-1.

Although the writer has been unable to devise an acceptable

proof to date, further study may show that the inequality,

m(Tr(I2)-a)>o, is actually true.
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4. PROGRAM TENTEST

This chapter discusses the computer program TENTEST

which algebraically generates grids using tensor product

cubic B-splines. A listing of TENTEST is given in the

appendix at the end of this paper.

The first section of this chapter presents the major

steps involved in the computer algorithm. Sections 2

through 5 examine the important features of the program,

briefly discussing the subroutines involved.

4.1 The Algorithm

Although TENTEST contains almost a thousand lines

of code, it is based on the following eight step algorithm:

i. Input knot sequences {s i } and {t j } consisting
of values from [0,1].

ii. Compute the tensor product cubic B-splines
corresponding to the knot sequences.

iii. Choose initial coefficients to form a bicubic
spline mapping from the square to a physical
domain.

iv. Use the mapping to plot a grid on the physical
domain.

v. If grid satisfactory, stop.	 If grid unsatisfac-
tory, continue.

vi. Input weights for smoothing functional.

vii. Complete one iteration of minimization routine
to obtain new coefficients.



viii. Go to step iv.

There also exists a batch version of TENTEST which

allows the user to request several iterations of the minimi-

zation routine at a time. All the information needed to

plot the initial and final grids is stored in files which

can be interactively accessed after the execution of the

program is completed.

The programs were run on a PRIME 750 computer. The

PRIMOS operating system, coupled with a PLOT 10 graphics

package, was used to interactively draw the grids on a

Tektronics 4014 terminal. The PRIME 750 can communicate

at a baud rate of up to 9600 thus making it satisfactory

for interactive graphics.

4.2 Computing the Tensor Product B-splines

Since B - splines are determined by the knots with

which they are associated, the first concern of the user

is to choose appropriate knot sequences. The user must

pick two -equences s=(s i ) and t=(t^), placing them in

file TENSORDAT. The user actually picks only the " interior"

knots for each sequence. In other words, he constructs

two increasing sequences of numbers between 0 and 1. After

reading the numbers from file TENSORDAT, TENTEST places

four 0's at the beginning of each sequence and four I's

at the end of each sequence. By 3.2.2-3 (Curry and Schoenberg)

and 3 . 2.3-1, the cubic B-splines associated with s and t
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form bases for spline spaces S 4,s and S4,t . The functions

in each of these spaces will have three continuity condi-

tions at each interior knot. The products of the B-splines

will form a basis for the tensor product of S 4,s and S4,t.

The tensor product B-splines can be used to construct

a transformation T on the square which maps the boundary

of the square onto the boundary of a physical domain

as described in Chapter 3. The user may obtain a better

approximation to the boundary of the physical domain by

increasing the number of interior knots in s and t or by

redistributing the knots. 	 This is discussed.in more detail

in Section 4.5.

On a given pxq mesh on the square with mesh points

( E u , n v ), u=l,...,p, v=l,...,q, the values of the tensor

product B-splines which compose T are fixed. Since these

tensor product B-splines are the products of B-splines

Bi,i=l,...,m and 8j,j=l,...,n for some m and n, it is con-

venient to store the function values and first derivatives

of these B-splines at each E  and n v . Subroutine COMSPLINE

uses the de Boor routine BSPLVD [de B, p. 2881 to compute

these values. BSPLVD calculates the function value and

derivatives of all the nonvanishing B-splines at a given

point. COMSPLINE stores the function values and first

derivatives in two arrays: XSPLINE and YSPLINE. Therefore,

after a call to COMSPLINE is completed, XSPLINE will con-

tain the function value and first derivative of each B-
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spline in { 81 } 1 1 at Cu, u=1,...,p and YSPLINE contains

the function value and first derivative of each B-spline

in {Bj}j=1 at nv,v=1,...,q.	 Computing T or its partial

derivatives at a mesh point becomes a matter of calculating

the sum of the products of the tensor product coefficients

with the appropriate elements of XSPLINE and YSPLINE.

This computation is done in subroutine TENVALF.

The next section explains how the coefficients are

chosen initially.

4.3 Choosing the Initial Coefficients

Many different methods can be used to'choose the

coefficients initially. Since B-spline coefficients model

the function they represent : one might simply choose the

boundary coefficients to equal points along the boundary

of the physical domain, and choose the interior coefficients

to equal points known to lie in the interior of the physical

domain. However, this creates the problem of deciding

which interior points should be chosen as coefficients.

Ideally, the original coefficients should produce a grid

which is somewhat smooth so that only a few iterations

are needed to obtain an acceptable degree of smoothness

and orthogonality.

For this reason, the computer program described in

this paper initially selects coefficients which produce

an approximation to the transfinite bilinear interpolant

of a mapping V:I 2 .» R2 satisfying V:81 2 — an.	 In reality

-	 _t^
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one need only define V on a1 2 . The user may provide para-

metric equations which map the boundary of the square onto

the boundary of the physical domain, or simply input a

set of boundary points for the physical domain. In the

first instance V is defined by using the parametric equa-

tions.	 In the latter case V is obtained by linearly inter-

polating between successive boundary points. The parametric

equations below map the four sides of the unit square onto

the four sides of the trapezoid as shown in figure 6.

V(E ,0) = WE) =(2E+I1
l 0 J/

	V(l,n) = 92(n) = f3+n1	 4

2n 1

V( Ell) = 9 3 (E) =
(2

E 
1

V(0, n) = 9 4 (n)	 1-nl

	

C 2 n /J	 +
E

The tra..sfinite bilinear interpolant U of V is defined

by

U( E, n) = (1- n)V( E,0) + rj V( E, I)

+ EV ( I , n) + (I- E)V(0, n)

(1-E)(1-n)V(0,0) - E(I-n)V(1,0)

(1-E)nV(0,1) - EnV(1,1).

U agrees with V on the boundary of the square and hence

interpolates V at an infinite number of points. 	 Transfinite

interpolants are discussed by William J. Gordon and Charles

A. Nall in [G].

The program selects initial coefficients which pro-

duce a variation diminishing spline approximation to U.
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I

Y t
E

Figure 6. Mapping from computational domain to physical

domain.

f'
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Hence, if T is constructed from tensor products of B-splines

81881,4,s, i=1, .... m and 81= 8j. 4,t.j=1,...,n, which corres-

pond to knot sequences s= {s i } i=1 and t= it J.1 , respec-

tively, then the initial coefficients of the tensor product

splines are 
)OJIJ I

= U(si,t^), i-1,...,m; j=1,...,n where

si=(si+1'+... +s i+3)/3, i=1,... , m and tj=(tj+l+... +tj +3)/3,

j=l,...,n.	 Since variation diminishing splines yield exact

approximations to linear polynomials, T will reproduce

the boundary of any physical domain which can be divided

into four line segments. Arbitrarily shaped boundaries

can be approximated as accurately as desired by increasing

the number of knots used to define the tensor product splines

or by changing the placement of knots to increase the concen-

tration in complex shaped areas of the boundary.

The initial tensor product coefficients are constructed

in subroutines BOUNCOEF and INNERCOEF. Figure 7 shows

a grid on a trapezoid domain constructed with a mapping T

having coefficients as described above. The grid is the

image of T over an equally spaced mesh on the square.

4.4 Minimizing the Smoothing Functional

In TENTEST, the cyclic coordinate method is used

to find the minimum of the smoothing functional G described

in Section 3.3. As the name suggests, this method attempts

to find the minimum of a multivariable function by cyclicly

searching in the direction of each coordinate axis. For
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Figure 7. Trapezoid Grid
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G, the coordinate directions are represented by the tensor

product coefficients a iJ , Si p i-1,.0. 9 m; J-1, ... on.

The user must first decide what size mesh should

be used to obtain a grid with acceptable smoothness and

orthogonality. G is a function of 2mn coefficients, however,

since the boundary coefficients are fixed only 2(m-2)(n-2)

coefficients are free. Therefore, in general, the mesh

used for the minimization technique should contain at least

2(m-2)(n-2)points.

The user must also decide on the size of the weights

w l ,w 2 for G. One can choose constant weights for both

JT and Dot, or choose a weight function for Dot which pro-

duces more orthogonality near the boundary of the grid

than in the interior.	 Small constant weights of values

between 1 and 10 can be used initially to determine how

they affect the smoothness and orthogonality of the grid.

Changing coefficient 
a,, 

(or e ij ) changes the value

of the mapping T only on the support of the tensor product

B-spline B id . Therefore, in order to locate the minimum

of G in the direction represented by 
aij 

one need only

consider the sum over those terms in G which contain the

value of JT or Dot at mesh points (E,n) lying on the support

of B id . Subroutine CORANGE determines the range of summa-

tion associated with each tensor product coefficient for

a given mesh on the square, and function GF computes the

sum over the range indicated by CORANGE. Figure 8 shows

the support of a tensor product B-spline associated with
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knot sequences s= is i ?i=i and t= ( t1 ?j;1. The shaded sec-

tion represents the support of tensor product B-spline

B6,5 . In order to minimize in the direction of coefficient

a6,5 
it would be sufficient to look at the sum

GF n 6 i wI(JTi +l,j-
JTij)2 E+1	 j wl(JTi,j+1-JTij)2

i=3 j=3	 1=4 j=2

+ E	 E w2(Dotij)2aEon.
i=4 j=3

Like G. the partial sum, GF, will be a quartic polynomial

in each coefficient.

All of this information is used by the minimization

routine FFMIN. Each call to FFMIN produces one complete

iteration of the cyclic coordinate method. For each coeffi-

cient, the routine first determines the interval on which

the coefficient must lie if JT is to be nonnegative at most of

the mesh points affected by the coefficient. Then it calls

either TESTMINO, TESTMINL, TESTMINR, or TESTMINB depending

on whether the interval is biinfinite, has a left endpoint,

a right endpoint, or two endpoints. The chosen subroutine

finds the location of the minimum of GF on the interval

and changes the value of the appropriate coefficient accor-

dingly.

4.5 Distribution Functions

If solutions of partial differential equations on

a domain are to be accurate, the grid on the domain must
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be concentrated in areas of rapid change such as boundary

layers and shocks. In most cases concentration near , the

boundary of the domain can be easily accomplished through

the use of distribution functions.

Rearranging the points on the square mesh changes

the distribution of grid points on the physical domain. A

nonuniform distribution of points on the square mesh can

be viewed as the image of functions 9l :I l - I 1 . and

92 :1 1 • 1 1 defined on E and n, respectively. The grid is

then generated by the mapping T defined by

T(E.n) = Tog(E.n)

where 9 :1 2 »I 2 satisfies

2(^

This is graphically illustrated in figure 9. The grid on

the physical domain is the image under T of an equally

spaced mesh on the square.	 z 

In the current version of TENTEST, the user may

request one of three distributions for E and ►,: uniform,

'	 exponential, or arctangent. Selecting the uniform option

produces an equally spaced distribution. The distribution

function is simply the identity function on 1 1 . If the

exponential option is selected. TENTEST calls routine

EXPONENTIAL which maps celinto *W = e 
cc_ 

1

e c -1

_, -
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where c is a nonzero constant. If c>O, + concentrates

the grid lines near the line corresponding to C=0. If

c<O,i concentrates the grid lines closer to the line

corresponding to cal. The grid in figure 10a was produced

with ♦ I (C) = C and 'P2 (n) = C O.  The constant c is 4. In

figure 10b, VI (C) = i(C) with c=5 and 92 (n) = n. The

degree of concentra,ion increases or decreases as Ic) is

increased or decreased. In figure 10c, 9 I (E) = 4(C) with

c=2 and 92 (n) = n.

TENTEST calls ARCTANGENT when the user selects the

arctangent distribution option. ARCTANGENT maps ^ E I I into

Y(c) = arctangent (2c c - c) - arctangent ( - c)
arctangent (c)	 arctangent - c

where c is a positive constant. This function concentrates

grid lines near points corresponding to c=0 and c=1 simul-

taneously.	 This is shown in figure  l 0d with ®I (C) = C,

9 (n) = Y( n) and c=5.

Future improvements to TENTEST might include the

addition of more distribution functions and the creation

of a routine which allows the user to create his own dis-

tribution function by interactively digitizing points on

the unit square. The routine would then create a variation

diminishing spline approximation to the points to form

the distribution function.

Since the distribution functions described in this

section are defined on I I , they can also be used to



Figure 10a. Exponential dis-
	

Figure 10b. Exponential
tribution on n
	

distribution
with c=4.	 on E with c=5.

Figure 10c. Exponential dis-
	

Figure 10d. Arctangent
tribution on
	

distribution
E with c= -2
	

on n with c=5.

Figure 10. Concentrating grid points on trapezoid domain.
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redistribute the knots which define the tensor product

8-splines that form T. This will permit the user to con-

centrate more knots in areas mapped to complex portions

of the physical boundary so that T produces a better boun-

dary approximation. Presently the user can choose to keep

the original distribution on the knots or choose to redis-

tribute the knots to obtain an exponential or arctangent

distribution.



5. RESULTS AND DISCUSSION

This chapter examines some of the grids produced by

TENTEST. Physical domains of various shapes are illustrated.

Some of the grids are for actual objects, such as an airfoil

or part of the space shuttle, but most are simply grids on

domains of various shapes and sizes chosen to illustrate

the range of the program.

The user's chief concern is the creation of an accept-

able grid on a given physical domain in the shortest amount

of time possible. Since the grid will be the image of a

continuous mapping on the square, the best technique is to

minimize the smoothing functional by using a grid generated

from a coarse mesh. Then, once the new coefficients are

obtained, the user can request that the grid be plotted

using a much finer mesh.	 This technique is illustrated in

the examples which follow. Most of the examples contain at

least four grids:	 The image under T, with its initial

coefficients, of a coarse square mesh; the image of a finer

mesh; the image of the coarse mesh after several iterations

of the minimization procedure; and the image of a finer mesh

after application of the minimization procedure. Any other

grids shown are chosen to illustrate grid concentration or

other points of interest.	 In all the examples shown, only

constant weight functions were used in the smoothing functional.

r
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The first four examples show grids on domains with

common geometric shapes: a trapezoid, a quadrilateral

with unequal, nonparallel sides, a triangle and a circle.

Since the domains are simply connected and convex, only a

few interior points are needed for the sequences s and t

which determine the tensor product B-splines that compose T.

The next three examples show grids on domains which

are not convex. The major concern with such grids is the

overlapping of grid lines near the boundary.

The last examples deal with grids around concr ,A e

objects such as an airfoil or part of the space shuttle.

The irregular boundaries of some of these grids make it 	
i

necessary to use more knots to define T.

For convenience, the following notation is used in

this chapter.

N E	number of B-splines B i in the sequence corres-

ponding to knot sequence s, or 4 + number of

interior knots in s.

Nn = number of B-splines B j in the sequence corres-

ponding to knot sequence t, or 4 + number of

interior knots in t.

wj = constant weight multiplied times the terms in

the smoothing functional involving the Jacobian,

JT, of T.

wd = constant weight multiplied times the terms in

the smoothing functional containing Dot.

- E	 _101 Volp-h-
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N E x Nn will be the dimension of the tensor product

spline space generated by B ij = B i x B j , i=i. ... ,NE;

j = 1, ... N E . cpu = central processing unit - main control

section of a computer.

5.1 Convex Domains

The first three examples, which have linear boundaries,

require only one interior knot for each of the knot sequences

s and t. The simplicity of the domains also means that

a very coarse grid can be used to minimize the smoothing

functional. Four or five iterations produce good results.

The circular grids in the fourth example require more

interior knots.

5.1.1 Trapezoid

In this example NE = Nn = 5 and wj = wd = 1. The

first picture in figure 11 is the grid obtained using the

initial coefficients in Section 4.3. 	 It is the image under

T of an equally spaced 5x5 mesh on the square. This is

the grid on which the minimization procedure was applied.

Note that the number of grid points is 25, while the number

of free coefficients is given by 2(N E -2)(Nn-2) = 18.

Figure llb is a finer grid constructed using the same

coefficients.	 Figure llc shows how the initial 5x5 grid

changes after five iterations of the minimization procedure.

The new coefficients produce grid lines that appear to

be nearly orthogonal at most grid points. The image under

-%I
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E

Figure Ile Original grid. Figure llb Original grid
refined.

Figure Ilt Optimized grid.
	

Figure lld Optimized grid
refined.

Grids on trapezoid domain.



the new T of a 20x20 mesh is given in figure lld. The

amount of cpu time used in the optimization process was

1 minute and 25 seconds.

In figure 12 the weights wj and wd have been change

to show what effect they have in the minimization process.

Figure 12a shows how the initial 5x5 grid is changed after

only three iterations when wj=0 and wd=1. Orthogonality

is more pronounced, but the grid spacing is no longer as

smooth.	 In the refined grid in 12b the spacing is very

skewed near the top boundary. Figure 12c shows the 5x5

grid after five iterations with wj=1 and wd=0. The spacing

is smoother but the grid lines are not orthogonal. Figure

12d shows a finer grid.

5.1.2 Quadrilateral with Unequal Sides

Again, in this example N E = N n = 5 which means

sequences s and t each contain one interior knot. Also,

wj=wd=1. The minimization procedure was applied on the

5x5 grid shown in figure 13a. 	 Five iterations of the

technique produced the grid in 13c.	 Figures 13b and 13d

show refined versions of the grids in 13a and 13b, respec-

tively. The five iterations of the minimization procedure

required 2 minutes and 16 seconds of cpu time. 	 In figure

14 the optimized grids are concentrated near different

parts of the boundary.	 In 14a an exponential distribution

with parameter c=4 has been put on n. Figure 14b shows

an exponential distribution on E and n with c=4 in each



Figure 12b wj=o, wd=1Figure 12a wj=o, wd=1

Figure 12c wj=1, wd=o Figur 12d wj=1, wd=o
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Figure 12 Effect of weights, wj and wd
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Figure 13a Original grid Figure 13b Original grid
refined

Figure 13c Optimized grid Figure 13d Optimized grid
refined

Figure 13 Grids on quadrilateral with unequal sides.



ORIGINAL= E;
OF POOR QUALITY

Figure 14a Exponential dis-
	

Figure 14b Exponential dis-
tribution of q
	

tribution on C
and n.

Figure 14c Arctangent dis-
tribution on C

Figure 14d Arctangent dis-
tribution on q

Figure 14 Concentrating gridpoints on quadrilateral.
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In figures 14c and 14d an arctancase. I	 q	 ent distributionq

with c•5 has been placed on C and n, respectively.

5.1.3 Triangle

In the previous examples, it was clear that each

side of the unit square should be mapped to a side of the

four-sided physical domain, but in the case of a triangle,

which has three sides, this cannot be done. The boundary

must be divided into four sections. The simplest thing

to do is to divide one of the sides of the triangle into

two parts so that two sides of the unit square are mapped

onto one side of the triangle as shown in figure 15. Figure

16a shows the initial 5x5 grid constructed with NE = Nn = 5

and w,j=wd =1. Figure 16b shows a 20x20 grid constructed

using the same coefficients. After five iterations of

the minimization procedure, the initial 5x5 grid is trans-

formed into figure 16c. Figure 16d ^hows a finer grid.

Optimization required 2 minutes and 22 seconds of cpu time.

5.1.4 Circle

Variation diminishing splines reproduce straight

lines exactly, but the same cannot be said about their

approximation of nonlinear curves. For such curves the

accuracy of the approximation depends on the number of

knots used to define the spline function. For this reason

more knots are needed to obtain a satisfactory mapping of

the unit square onto a circular physical domain. For the
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Figure 15 Division of triangular boundary Into four sections.

Aw
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Figure 16a Original grid
	

Figure 16b . Original grid
refined

t

Y t

A ^.

Figure 16c Optimized grid Figure 16d Optimized grid
refined

Figure 16 Grids on triangular domain.
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grids shown in figure 17, NC = Nn = 9 and wj=wd=1. Hence,

there are five interior knots in both sequence s and

sequence t.

Note that 2(N E -2)(Nn-2) = 98. Although this number

indicates that a mesh of at least 98 points should be used

for the minimization routine, the 8x8 grid shown in figure

17a seems to produce an acceptable grid. One reason for

this might be that the initial grid in 17a already appears

to be quite smooth and orthogonal at most points. The

major problems with orthogonality occur near the areas

to which the corners of the square are mapped. These areas

are indicated by the arrows °n 17a. Figure lea shows how

the initial grid is changed after fifteen iterations of

the minimization procedure. Figures 17b and 1$b show finer

grids. The fifteen iterations of the minimization procedure

required 20 minutes and 14 seconds of cpu time.

5.2 Nonconvex Domains

The grids in this section show some of the difficulties

in creating grids on domains which are not convex sets.

5.2.1 Nonconvex Quadrilateral

Figure 19 shows the shape of the domain. This example

was first mentioned in Section 2.5. The boundary of the

unit square is mapped onto the boundary of the domain as

indicated in figure 2. Example 2.5-1 shows that T will

not map the square homeomorphically onto the domain even
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Figure 17a Original grid

Figure 17b Original grid refined

Figure 17 Grids on circular domain.
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Figure 18a Optimized grid

f itr	 ,.
K ^

Figure 18b Optimized grid refined

'j	 Figure 18 Grids on circular domain after optimization.

n
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Figure 19 Nonconvex quadrilateral.
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after the coefficients are changed. This fact is supported

by the negative Jacobian present at one of the corners of

the square. The negative sign suggests that points near

that corner will be mapped outside of the physical domain.

This is confirmed by the grids illustrated. In this

example, NE = Nn = 5 and wjawd=1. The 5x5 initial grid

shown in figure 20a was used for the minimization procedure.

The enlarged picture in figure 20b shows a finer grid.

Figure 21a shows the result of four iterations of the

minimization procedure. The nonnegative Jacobian require-

ment pulls the grid lines into the interior of the domain.

However, figure 22 shows an enlarged version of the corner

which indicates that part of the grid still overlaps the

boundary. This means that the minimization routine was

unable to restrict all of the coefficients to intervals

where the Jacobian of T is nonnegative.

This is further indicated in figure 21b which shows

a finer version of the grid in figure 21a. The four itera-

tions of the minimization procedure required 1 minute and

1 second of cpu time.

5.2.2 Puzzle Pieces

The next two domains, illustrated in figure 23, look

like pieces from a puzzle.	 In each case Ng = 19, Nn = 5,

wj=1 and wd=10.

Grids on the first domain are shown in figures 24

and 25. The minimization procedure was performed on the

I

-.	 _t
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Figure 20a Original grid

Figure 20b Original grid refined

Figure 20. Grids on nonconvex quadrilateral domain.

a
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Figure 21a Optimized grid

Figure 21b Optimized grid refined

Figure 21 Optimized grids on nonconvex quadrilateral domain.

V 44
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Figure 22 Enlarged corner of optimized grid.
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22x8 grid in figure 24a. Figure 24b shows a finer grid.

Figure 24c shows the grid obtained after forty iterations

and figure 24d shows a finer grid. The grids in figure

25 show how the initial grid changes after two, five and

fifteen iterations. The grid obtained after forty itera-

tions is shown again for comparison. On this domain Tentest

is able to pull all of the grid lines into the interior

of the domain.

Grids on the second domain are shown in figure 26.

The initial 22x8 grid is shown in figure 26a and figure

26b shows a finer grid. After forty iterations, the initial

grid is transformed into 26c and a finer grid is shown in

26d. Figure 27a shows a grid on the first domain concen-

trated near the bottom boundary by using an exponential

distribution on n with c=4. Figure 27b shows a grid on

the second domain concentrated near the top by using an

exponential distribution on n with c=-4.

The forty iterations used for the first domain

required 1 hour, 42 minutes and 23 seconds of cpu time, but

the second domain required 2 hours, 4 minutes and 46 seconds

for forty iterations.

5.3 Grids for Specific Obiects

This section dials with grids about particular objects

-	 such as an airfoil. Tie boundaries often have peculiarities

which make it difficult to obtain satisfactory grids. In

many cases it may be difficult to maintain smoothness in



Figure 23 Puzzle shaped domains.
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Figure 24a Original grid Figure 24b Original grid
refined

J	 y"

Figure 24c Optimized grid Figure 24d Optimized grid
refined

Figure 24 Grids on first puzzle sha ped domain.
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Figure 25a After two
iterations

Figure 25b After five
iterations
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Figure 25c After fifteen
iterations

Figure 25d After forty
iterations

Figure 25 Grids obtained af;:er various iterations.
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Figure 26a Original grid Figure 26b Original grid
refined

Figure 26c Optimized grid Figure 26d Optimized grid
refined

Figure 26 Grids on second puzzle shaped domain.
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Figure 27 Exponential distributions on puzzle shaped grids.

c , a
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the grid while increasing orthogonality. Often the user

must try to find an acceptable balance. He must also attempt

to concentrate the grids in areas where rapid changes are

likely to occur when partial differential equations are

solved on the domain.

•	 5.3.1 Airfoil

The grids in this example are for the Karmen -

Trefftz airfoil. The parameters NE z 19, Nn = 9, wj=1 and

wd=.5. Hence, there are 15 knots in the s sequence and

5 knots in the t sequence. Figure 28 shows how the domain

can be viewed as having a boundary consisting of four parts.

The minimization procedure was performed on the 21x12 grid

in figure 29a. The grid lines appear to be orthogonal

everywhere except near boundaries 1, 2 and 4. Note the

sharp corners behind the airfoil. After one iteration the

corners have been eliminated and the angles of the lines

near the airfoil are not as acute. This is shown in

figure 29b and in the finer grid in figure 30a.

Solutions on a grid about an airfoil are usually more

accurate if a higher concentration of points is placed

near the airfoil boundary since this is the area most

affected as air moves over the airfoil. Figure 30b shows

a 30x30 grid concentrated near the airfoil boundary by

using an exponential distribution on q with constant c=4.

The minimization procedure required 6 minutes and

36 seconds of cpu time.
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Figure 28 Domain around Karmen - Trefftz airfoil.



Figure 29a Original grid

Figure 29b Optimized grid

Figure 29 Grids for Karmen - Trefftz airfoil.

93
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Figure 30a Optimized grid refined

Figure 30b Optimized grid concentrated near airfoil boundary.

Figure 30 Optimized grids for Karmen - Trefftz airfoil.
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5.3.2 Soike-Nosed Body

According to [Sm. p. 1301, the spike-nosed configura-

tion occurs frequently in supersonic flow. R. E. Smith

states that supersonic flow about such bodies is unsteady,

with separation occurring near the nose-shoulder region.

Therefore, the grids must be concentrated in that area

.	 [Sm, P. 481. The boundary data for the grids shown in

this section can be found in [Sm, P. 601. Rotating the

bottom boundary around a horizontal axis of symmetry produces

a clearer picture of the actual body. The ratio of the

length of the nose to the height of the shoulder is 2.14.

As in the previous example, N E = 19, Nn = 9, wj=1

and wd=0.5. The 21x12 initial grid in figure 31a was used

for the minimization procedure. Two iterations produce a

small amount of orthogonality near the bottom boundary as

shown in figure 31b. Additional iterations produce an

undesirable wiggle in the grid lines near the shoulder.

Figure 32a shows a finer grid and figure 32b shows a grid

concentrated near the bottom boundary by usin g an exponen-

tial distribution on n with c=4.

The two iterations of the minimization procedure

required 13 minutes and 1 second of cpu time.

5.3.3 Shuttle

The grids in this example are for a model of the

space shuttle. The optimized grids are the result of ten 	 I
Iterations on the 32x12 grid shown in figure 33. Para- 	 I _
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Figure 31b Optimized grid

Figure 31 Grids for spike-nosed body.
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Figure 32b Optimized grid concentrated near boundary of
spike-nose body.

Figure 32 Optimized grids for spike-nosed body.
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meters NC = 29. Nn = 9, wjxwd=1. Ton iterations of the

minimization procedure produce a small amount of orthogona-

lity near the boundary of the shuttle as shown in figure

34. Figure 35 shows an optimized 32x28 grid concentrated

near the shuttle boundary using an exponential distribution

on n with c=4. The ten iterations of the minimization

procedure required 1 hour and 43 minutes of cpu time. The

32x12 grid in figure 33 is the largest grid on which the

minimization procedure has been applied.
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Figure 33 Original grid for shuttle.
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Figure 34 Optimized grid for shuttle.



Figure 35 Optimized grid concentrated near shuttle boundary,



6. CONCLUSIONS

This paper has examined an effective algebraic

method for creating boundary fitted coordinate systems.

The method, which involves a mapping T composed of tensor 	 •

product 8-splines allows one to regulate grid characteris-

tics by adjusting the coefficients of the splines. Modifying

the coefficients so that they minimize a smoothing functional

enhances the smoothness and orthogonality of the grids

generated by T.

The method is implemented in the program TENTEST

which gives the user control over the number and concentra-

tion of grid points. The user can also regulate the amount

of smoothness and orthogonality in the grids by the selec-

tion of weight functions for the smoothing sunctional.

Suggestions for future revisions of TENTEST include

the addition of more distribution functions to allow greater

control over grid concentration. One might also investi-

gate the possibility of adjusting the boundary coefficients

during the optimization process so that the boundary points

of the grid are affected by the minimization procedure. 	 -

Ultimately, the true test for a grid comes when it

is actually used to solve partial differential equations.
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Therefore, the next stage of research must include solving

problems on several grids produced by TEHTEST. Then it

may be possible to change the program into an adaptive

technique which rearranges the grid points in response

to gradient in^ormation from the evolving solution.

Once these things are accomplished, one may attempt

to use the technique to generate grids on more complicated

multiconnected domains. This may involve the study of

techniques for grid patching.

Also, the Prime 750 computer is an excellent machine

for graphics, but not very fast in solving problems involv-

ing a large amount of computations. Hence, the possibility

of creating a version of TEHTEST which operates efficiently

on a vector computer such as the VPS 32 at NASA Langley

Research Center should be investigated. This will permit

the user to run much larger and more complicated problems.

Finally, once this grid generation technique has

been thoroughly developed for two dimensional domains, a

three dimensional technique can be attempted. T would

become a mapping from the unit cube to the desired physical

domain, composed of the tensor product of 8-splines in

the three coordinate directions. As in the two dimensional

case, characteristics of the grid would be changed by

changing the coefficients of the tensor product 8-splines.
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00001 C********#*#*****##*#*^t****^t*******#*#*^t********#*#****^t##*

	

00002:	 PROGRAM TENTEST
04003:C
04004:C

	

00005:C	 TENTEST MAPSA SQUARE GRID (091)X(091) ONTO
00006:C A PHYSICAL DOMAIN OF ARBITRARY SHAPE THROUGH THE USE OF
00007:C TENSOR PRODUCT B-SPLINES. THE ORIGINAL KNOT SEQUENCES
00008:C MAY BE CHOSEN TO HAVE AN EQUALLY SPACED DISTRIBUTION,
00009:C EXPONENTIAL DISTRIBUTION, OR ARCTANGENT DISTRIBUTION.
00010:C SIMILAR CHOICES CAN BE MADE FOR THE DISTRIBUTION OF
00011:C GRIDPOINTS ON THE SQUARE.

	

00012:C	 TENTEST CONSTRUCTS AN INITIAL GRID GENERATION MAPPING
00013:C CONSISTING OF A LINEAR COMBINATION OF TENSOR PRODUCT
00014:C B-SPLINES WITH THE COEFFICIENTS CHOSEN SO THAT THE MAPPING
00015:C YIELDS A VARIATION DIMINISHING SPLINE APPROXIMATION
00016:C TO THE TRANSFINITE BILINEAR INTERPOLANT OF A
00017:C FUNCTION WHICH MAPS THE BOUNDARY OF THE UNIT SQUARE
00018:C ONTO THE BOUNDARY OF THE PHYSICAL DOMAIN.

	

00019:C	 IF THE USER REQUESTS A NEW GRID, TENTEST REARRANGES
00020:C THE COEFFICIENTS IN AN ATTEMPT TO MINIMIZE A FUNCTIONAL
00021:C G INVOLVING THE DIFFERENCE IN THE JACOBIAN OF THE GRID
00022:C GENERATION MAPPING AT ADJACENT MESH POINTS AND THE DOT
00023:C PRODUCT OF VECTORS TANGENT TO THE GRID LINES ON THE
00024:C PHYSICAL DOMAIN.
00025:C
00026:C
00027:C ROUTINES
00028:C

	

00029:C	 EXPONENTIAL

	

00030:C	 ARCTANGENT

	

00031:C	 FIXKNOTS

	

00032:C	 BOUNCOEF

	

00033:C	 INNERCOEF

	

00034:C	 COMSPLINE

	

00035:C	 TENVALF

	

00036:C	 TENSORVAL

	

00037:C	 JACOB

	

00038:C	 CORANGE

	

00039:C	 OF

	

00040:C	 FFMIN
	00041:C	 CRIT

	

00042:C	 TESTMINO

	

00043:C	 TESTMINR

	

00044:C	 TESTMINL
	00045:C	 TESTMINB

	

00046:C	 CUBIC

	

00047:C	 EXTREMES

	

00048:C	 NORM
00049:C
00050:C
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00081tc	 THE FOLLOWING SU30UTINES ARE ALSO REQUIRED.
OOMtC THEY MAY BE FOUND IN •A PRACTICAL GUIDE TO SPLINES'
00053tC BY CARL DE BOORr SPRINGER-VERLABP 1978.
000842C
0omtC oLVB... COMPUTES THE VALUE OF ALL POSSIBLE
000862C	 NONZERO B-SPLINES OF A GIVEN ORDER AT
00057tC	 A GIVE* POINT.
00088tc
00059tC BLVD... COMPUTES THE VALUE AND DERIVATIVES
000AOtC	 OF ALL B-SPLINES (MACH DO NOT VANISH AT
00061:c	 A GIVEN POINT
OM21C
00063tC INTERV... DETERMINES THE KNOT INTERVAL ON WHICH A
00064tC	 GIVEN POINT LIES. ITS OUTPUT IS THE
00065tc	 SUBSCRIPT IDENTIFYING THE KNOT WHICH IS
00086tC	 IMMEDIATELY LEFT OF THE POINT.
00067tC
00068tC BVALUE... CALCULATES THE JDERIV-TH DERIVATIVE
00069 161C	 OF A SPLINE FUNCTION WHOSE COEFFICIENTS
00070tC	 ARE STORED IN ARRAY BCOEF. THE VALUE OF
00071tC	 JDERIV IS PROVIDED BY THE USER,
00072*C
000730C
00074*C
000750C	 TENTEST USES ROUTINES FROM A PLOT10 GRAPHICS
00076tC PACKAGE TO PLOT THE GRIDS.
00077tC
00078tC
00079tC VARIABLES
00080tc
00061 .0 NKNOTX,MKNOTY
00082SC	 AND
00063tC NEWNOTX PNEWOTY..DIMENSIONS FOR SQUARE MESH,
00084tC NX,NY...	 DIMENSION OF SPLINE SPACE IN X
00085:C	 DIRECTION,Y DIRECTION.
00086:C KX...	 QUANTITY OF NUMBERS TO BE ADDED TO THE FRONT
00087*C	 AND BACK OF THE INTERIOR X KNOT SEQUENCE,
00088 0C 	ORDER OF B-SPLINES IN X DIRECTION.
00089*C KY...	 QUANTITY OF NUMBERS TO BE ADDED TO THE FRONT
000"o:C	 AND BACK OF THE INTERIOR Y KNOT SEQUENCE,
00091 46C 	 ORDER OF B-SPLINES IN Y DIRECTION.
00092:C FNX P FNY...	 NUMBERS TO BE PLACED AT THE FRONT OF
00093tC	 THE X AND Y KNOT SEQUENCES, RESPECTIVELY.
00094SC BNX tDNY...	 NUMBERS TO BE PLACED AT THE BACK OF THE
00095:c	 X AND Y KNOT SEQUENCES,RESPECTIVELY.
00096ZC INX,INY...	 DIMENSIONS OF INTERIOR X AND Y KNOT SEQUENCES,
00097tC	 RESPECTIVELY.
000":C INTX.INTY..	 INTERIOR X KNOT SEQUENCE,INTERIOR Y KNOT SEQ.
00099*C TX,TY...	 X KNOT SEQUENCE, Y KNOT SEQUENCE.
00100tC ALPHA,BETA... ARRAYS CONTAINING COEFFICIENTS OF
00101 90C 	 TENSOR PRODUCT SPLINE MAPPING.
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00102tC MB
001031C AND
001042C AP ,BP...	 ARRAYS CONTAINING COORDINATES FOR
001052C	 SSE WON.
001060C LEFTX ,LEFTY... ARRAYS IDENTIFYING KNOT INTERVALS
001070C	 ON WNICH SQUARE MESH COORDINATES LIE.
001082C	 (LEFTX(I)=J IMPLIES TX(J)<=A(I)<TX(J+i))
001090C W1,W2...	 WEIGHTS FOR JACOBIANrDOT PRODUCT TO
001102C	 BE USED IN SMOOTHING FUNCTIONAL.
001110C X,Y...	 TWO-DIMENSIONAL ARRAYS CONTAINING COORDINATES
001122C	 OF GRID POINTS TO BE PLOTTED.
001130C KATE..,	 VARIABLE USED TO COUNT ITERATIONS OF
001142C	 MINIMIZATION PROCEDURE, OR
001150C	 NUMBER OF CALLS TO ROUTINE FFMIN.
00116:C
001172C
001182C	 AUTHOR: BONITA VALERIE SAUNDERS
001192C	 DATE:	 JULY 19SS
0012000
001210C
001222C
001232C
OOli42C****^***^t8*********B***B******#48***N4****#**********#*^**
001250C
001262C
001272	 COMMON/COEF/ALPHA(100,100),BETA(1009100)
00128:	 COMMON/KNOTS/TX(100),TY(100)
001292	 COMMON/PARAM/FKOUNT
001300	 COMMON/PARAM2/A(100),B(100),NX,NY,KX,KY
00131:	 # ,LEFTX(100)tLEFTY(100)
001320	 COMMON/KNOT/NKNOTX,NKNOTY
001332	 COMMON/WEIGHTS/W1,W2
001340	 COMMON/SPLINES/XSPLINE(50,100,2),YSPLINE(50,100,2)
00135:	 COMMON/RANGE/IFIRST(100),ILAST ( 100),JFIRST(100)
001360	 t ,JLAST(100)
001370	 REAL X(I00r100) ,BCOEF ( 100),INTX ( 100),INTY(100)
001380	 X ,Y(1001100)?AP(100),BP(100)
001390	 CHARACTER*10 NAME
001402	 INTEGER92 STRING(28)
001410	 INTEGER*2 NUMB,DATE(3)
001420	 INTEGER*2 TIME,TIMEI,TIME2
001432	 EQUIVALENCE (STRING(l),DATE)
001440	 EQUIVALENCE (STRING(4),TIME)
001450	 EQUIVALENCE (STRING(5),TIME1)
001460	 EQUIVALENCE ( STRING(7),TIME2)
001470	 NUM9=28
001480	 CALL TIMDAT ( STRING,NUMB)
00149:	 WRITE ( i,lll) DATE
001500 Ill FORMAT(3A2)
001510	 WRITE(1,222) : IMErTIMEI,TIME2
001520 222 FORMAT ( I6,I6•I6)
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001531 PI=3.14159
001541 OPEN(12#FIL€n'TENSQRDAT')
001531 OPEN(139FILE='NEVDATA')
40156! OPEN(14,FILE='ORBRID')
001571 OPEN(169FILE='OR182' )
001581 Wi=0
001591 W2=0
00160: KOUNTE=0
001611 PRINT*t'INPUT NKNOTX,NKNOTY'
001622 READ(ir*) NKNOTXONKNOTY
001631 NBAVEX4p(NOTX
001641 N8AVEY=NKNOTY
00165: PRINT*,'WHAT IS KX'
001661 READ(ir*) KX

00167: PRINT*,'WHAT IS KY'
00168: READ(lr*) KY
001691 READ(12r*) FNX,BNX,FNY,BNY

00170: READ(124) INX,INY
001711 READ(129*) (INTX(I)rI=i,INX)
00172, READ(12r*) (INTY(I),I=1,INY)

00173: PRINT#.'DISTRIBUTION FOR X KNOTS'
001745 PRINT*r'1=EQUALLY SPACED ,2=EXPONENTIAL,3=ARCTANGENT'
00175: READ(!,*) KODEX
00176: IF(KODEX-2) 5r10r15
001771 10 CALL EXPONENTIAL(INTX9,INX92.)
001781 GOTO 5
001791 15 CALL ARCTANGENT(INTX,INX,S.)
00180: 5 PRINT*.'DISTRIBUTION FOR Y KNOTS'
001811 PRINT*,'1=EQUALLY SPACED 92=EXPONENTIAL,3=ARCTANGENT'

001825 READ(lr*) KODEY
001831 IF(KODEY-2) 16,18,19
001841 18 CALL EXPONENTIAL(INTY,INY,2.)
00185: GO TO 16
00186: 19 CALL ARCTANGENT(INTY,INY,5.)
00187: 16 CONTINUE
00188: NX=INX+KX
00189: NY=INY+KY
00190: CALL FIXKNOTS(KX,KY,FNX,FNY,9NXi9NY,

00191: # INX,INY,INTXrINTY)
00192: CALL BOUNCOEF(KXrKYrNX,NY)
00193, CALL INNERCOEF(KX,KY,NX,NY)

00194: WRITE(16 ► *)	 ((ALPHA(IrJ)rJ=1rNY)rI=1rNX)
00195: WRITE(16,*)	 ((9ETA(IrJ),J=1rNY),I=1rNX)
00196: DO 50 I=i,NKNOTX
001975 A(I)=FLOAT(I-1)/(NKNOTX-1)
D0198: DO 20 J=I,NKNOTY
00199: B(J)=FLOAT(J-1)/(NKNOTY-1)
00200: IF(A(I).GE.1.0) A(I)=.99999
00201: IF(D(J).GE.190) B(J)=.99999
00202: 20 CONTINUE

00203: 50 CONTINUE

40
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00204t	 PRINT*,'DISTRIBUTION FOR COMPUTATIONAL X'
00205t	 PRINT*,'Isgt JALLY S #Mt 24XPtNNNtTIAL930ARCTANOENT'
00206t	 READ(l, #) KODEXX
00207!	 IF(KODEXX-2) 22,24,26
00209: 24 CALL EXP(NlENTIAL(A,NKNOTX,2.)
002092	 GOTO 22
00210: 26 CALL ARCTANOENT(AtNKNOTX,5.)
00211: 22 CONTINUE
002121	 PRINT*,'DISTRIBUTION FOR COMPUTATIONAL Y'
00213:	 PRINT*,'1sEQUALLY SPACEDr2=EXPONENTIALe3sARCTANOENT'
00214:	 READ(1,*) KODEYY
00215:	 IF(KODEYY-2) 30.3244
00216:	 32 CALL EXPONENTIAL(B,NKNOTY,2.)
00217t	 GOTO 30
002185 34 CALL ARCTANGENT(B,NKNOTY,5.)
00219: 30 CALL COMSPLINE
002205	 CALL CORANGE(NKNOTX,NKNOTY)
00221:	 DO 70 Isi,NKNOTX
00222:	 DO 60 Js1,NKNOT,Y
002230	 CALL TENVALF(ALPHA,LEFTX(I),LEFTY(J),KX,KY,I,J,
002245	 * X(I,J),0910)
00225:	 CALL TENVALF(BETA,LEFTX(I),LEFTY(J),KX,KY,I,J
00226:	 * ,Y(I,J),0,0)
00227: 60 CONTINUE
002285 70 CONTINUE
00229:	 PRINT*,'JACOBIAN YES(l) OR NOW'
00230:	 READ(1,*) JCODE
00231:	 IF(JCODE-EQ.1) GOTO 700
002325	 PRINT*,'COMPUTE DERIVATIVES YES(1) OR NOW'
002335	 READ(1,*) KCODE
002345	 IF(KCODE-EO.0) GOTO 80
00235:	 PRINT*,'INPUT DERIVATIVES DESIRED FOR X,Y DIRECT'
002365	 READ(1,*) JDX,JDY
00237:	 PRINT*,'	 X	 Y	 X COMP DERIV Y COMP DE
00238:	 DO 600 II=1,NKNOTX
00239:	 DO 500 JJsi,NKNOTY
002405	 CALL TENVALF(ALPHA,LEFTX(II),LEFTY(JJ),KX,K';,II,JJ,
00241:	 * XD,JDX,JDY)
00242:	 CALL TENVALF(BETA,LEFTX(II),LEFTY(JJ),KX,KY,II,JJ,
002431	 * YD,JDX,JDY)
00244:	 PRINT*,A(II),B(JJ),XD,YD
00245: 500 CONTINUE
00246: 600 CONTINUE
00247:	 OOTO 80
002485 700 CALL JACOB(NX,NY,KX,KY,A,B)
00249: 80 CONTINUE
00250:	 CALL EXTREMES(X,Y,TMAX,TMIN,NKNOTX,NKNOTY)
00251:	 CALL NORM(X,Y,TMAX,TMIN,NKNOTX,NKNOTY)
002525	 PAUSE
00253:	 NN82
00254:	 NAMEs'PRODUCT GRID'



00255t
00256t
00257:
00258:
002592
002602
00261:
002622
002631
00264:
002652
00266#1
002672
00268:
00269:
002702
00271t
002722
00273#1
0027411
002751
00276#1
00277:
002782
00279:
00280#1
00281:
00282:
00283:
00264:
00285:
00286:
00287:
00288:
00289:
00290:
00291:
00292#1
00293:
00294:
002951
002962
00297:
00298:
00299:
00300:
00301:
00302:
00303:
00304:
00305:

WRITE(139*) MM
WRITE(13 ►*)NKNOTX ►NKNOTYrNN ►NN
WRITE(13 ►*) (X(Irl)rlslrNKNOTX)
WAITE(139*) (Y(Irl) ► IsltWNOTY)
WAITE(134) (X(IPWNOTY) ► Is1rNKNOTX)
WRITE(13 ►*) (Y(I ►NKNOTY) ► Is1rNKNOTX)
WRITE(13r*) X(lrl)rX(1rNKNOTY)
WRITE(139*) Y(1 ► 1)rY(IPWNOTY)
WRITE(13r*) X(NKNOTX91)rX(NKNOTX ► NKNOTY)
WRITE(13 ►*) Y(NKNOTXri) ►Y(NKNOTX ►NKNOTY)
CALL INITT(960)
CALL TWINDO(0 ►76090060)
CALL DWINDO(- 907r1.07r-.07r1.07)

338 DO 200 Isl ►NKNOTX
CALL MiOVEA(X(Irl)rY(Irl))
DO 100 JoltNKNOTY
CALL DRAWA(X(IrJ) ► Y(IrJ))

100 CONTINUE
200 CONTINUE

DO 400 Js1rNKNOTY
CALL MOVEA(X(19J) ► Y(1 ► J))
DO 300 Isl ► NKNOTX
CALL DRAWA(X(IrJ) ► Y(I ► J))

300 CONTINUE
400 CONTINUE

WRITE(14 ► *) NKNOTY ► NKNOTX
WRITE(14 ► *) ((X(IrJ)rIs1rNKNOTX)rJs1 ► NKNOTY)
WRITE(149*) ((Y(I ► J) ► Isl ► NKNOTX) ► JxltNKNOTY)
CALL MOVABS(Or760)
CALL ANNODE
PRINT*r'ITERATION' ►KOUNTE
PRINT* ► ' NXs ' ► NXr'	 NYs'rNY
IF(KOUNTE.E0.0) GOTO 410
PRINT* ► 'JACOBIAN WEIGHTs',W1
PRINT*r'ORTHOG WEIGHT=';W2
PRINT* ► 'OPTIMIZED ON'rNSAVEXr' 	 BY'rNSAVEY ► '

410 KOUNTE=KOUNTE+l
PRINT*r'DO YOU WANT TO CHANGE THE ORIDr YES OR NOM'
READ(lr*) KODE
IF(KODE.E0.0) GOTO 339
PRINT*,'CURRENT WEIOHTS ARE' ► WlPW2
PRINT*.'NEW WEIGHTS ► YES(1) OR NOM'
READ(ir*) KW
IF(KW.EO.0) GOTO 401
PRINT* ► 'INPUT WEIGHTS FOR JACOB ► ORTH00'
READ(19*) W1 ► W2

401 CONTINUE
NKNOTXsNSAVEX
NKNOTY=NSAVEY
CALL FFMIN(ERMAX)
PRINT* ► 'OUTPUT JACOBIAN ► YES M OR NOM'

III

GRID'
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00306: READ(1A) JKOK
00307: IF(JKOLE.EO.0) GOTO 399
00308 t CALL JACODW AY M AY, A, D )
00309: 399 CONTINUE
003101 PRINTWOVAM NUM OF GRIDPOINTS, YESQ) OR NO(0)'
00311: READ(19*) KODiE
00312** IF(KODE.EO.0) GOTO Wl
003132 MINT* V ENTER NUMBER OF GRIDPOINTS FOR X DIRECTION,
003142 * Y DIRECTION'
00315t READ(ly*) NEWNOTX,NEWNOTY
00316: NKNOTX=MEWNOTX
003174 NKNOTY=NEWNOTY
003184 GOTO 502
00341.94 501 CONTINUE
0032'02 NEiNiOTX=NKNOTX
003212 NEWNOTY=NKNOTY
003:2** 502 CONTINUE
003231 : CALL ERASE
00324: DO 450 I=I,NEWNOTX
003252 DO 425 J=19NEWNOTY
00326: AP(I)=FLOAT(1-1)/(NEWNOTX-1)
00327', BP(J)=FLOAT(J-1)/(NEWNOTY-1)
00328: IF(AP(I).GE.190) AP(I)=.99999
00329: IF(BP(J).GE.1.0) BP(J)=.9999
00330: 425 CONTINUE
00331: 450 CONTINUE
003321 PRINT*,'DISTRIBUTION FOR COMPUTATIONAL X'
00333: PRINT*,'1=E0UALLY SPACED,2=EXPONENTIAL,3=ARCTAN'
00334: READ(1,*) KODE3X
003352 IF(KODE3X-2) 4529454,456
00336: 454 CALL EXPONENTIAL(AP,NEWNOTX,2.)
00337: GOTO 452
003381 436 CALL ARCTANGENT(AP,NEWNOTX,5.)
003392 452 CONTINUE
003402 PRINT*,'DISTRIBUTION FOR COMPUTATIONAL Y'
00341: READ(i,*) KODE3Y
00342: IF(KODE3Y-2) 458,460.462
00343: 460 CALL EXPOHENTIAL(8P,NEWNOTY,2.)
003441 GOTO 458
00345: 462 CALL ARCTANGENT(BP,NEWNOTY,5.)
00346: 458 CONTINUE
00347: DO 480 I=i,NEWNOTX
00348: DO 470 Jnl,NEWNOTY
003492 CALL TENSORVAL(ALPHA,NX,NY,KX,KY•!W (I),
003501 * BP(J),X(I,J)7000)
003312 CALL TENSORVAL(BETA,NX,NY,KX,KY,AP(I),BP(J),
00352: * Y(I,J),0,0)
00353: 470 CONTINUE
00354: 480 CONTINUE
003552 CALL EXTREME3(X,Y,TMAX,TMIN,NEWNOTX,NEWNOTY)
00356: CALL NORM(X,Y,TMAX,TMIN,NEWNOTX,NEWNOTY)
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00387:	 PAM
003898	 SOTO 338
003391 339 CONTINUE
00360:	 CALL FtNITT(09760)
00361:	 PRINTSP'KX IS 'PKX
00362:	 PRINTSr'KY IS '.KY
00363:	 PRINTS r'DISTRIBUTIONB'
00364:	 PRINTSP'i*EQUALLY SPACED,2*EXPONENTIAL•3 nARCTANGENT'
00365:	 PRINTW X KNOT DIST. IS'rKODEX
00366:	 PRINTSr'Y KNOT DIST. IS'rKODEY
00367:	 PRINTSp'COMPUTATIONAL X DIST I8,'•KO0EXX
00368:	 PRINT* 9 'COMPUTATIONAL Y DIST IS'pKODEYY

00369:	 CLOSE(12)
003701	 CLOSE(13)
00371:	 CLOSE(14)
00372:	 CALL TIMDAT(STRINOrMUMD)
00373:	 YRITE(1,222) TIMEPTIMEWIME2
00374:	 STOP'
00375:	 END

00376:C
00377:C
00378:	 SUBROUTINE EXPONENTIAL(X,N,AC)
00379:C
00380:C THIS ROUTINE PRODUCES AN EXPONENTIAL DISTRIBUTION OF
00381:C POINTS BY SUBSTITUTING AN ORIGINAL SET OF NUMBERS
00382:C U LYING BETWEEN 0 AND 1 INTO THE EXPONENTIAL
00383:C FUNCTION (EXP(ASU)-1.)/(-EXP(AC)-l) WHERE AC IS A
00384:C PARAMETER WHOSE VALUE IS SUPPLIED BY THE USER.
00383:C
00386:C VARIABLES
00387:C
00388:C	 X...THIS AN ARRAY WHICH ON INPUT CONTAINS THE ORIGINAL
00389 # C	 SET OF NUMBERS AND ON OUTPUT CONTAINS THE EXPONENTIAL
00390:C	 DISTRIBUTION OF NUMBERS.
00391:C	 N...SIZE OF ARRAY X
00392:C	 AC..PARAMETER IN EXPONENTIAL FUNCTION
00393:C
00394:	 REAL X(100)
00395:	 DO 10 Isl ►N
00396:	 UnX(I)
00397:	 X(I)*(EXP(ACSU)-1.)/(EXP(AC)—lo)

00398:	 IF (X(I).GE.1.0) X(I)=.99999
00399: 10 CONTINUE
00400:	 RETURN
00401:	 END
00402:C
00403:C
00404:C
004051	 SUBROUTINE ARCTANBENT(X.N,AC)
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0040610
00407tC THIS ROUTINE PROLES AN ARCTANOENT DISTRIBUTION
00408tC OF POINTS BY SUBSTITUTING AN ORIOINAL SET OF NUMBERS
004091C U LYING BETWEAN 0 AND 1 INTO THE ARCTANSENT FUNCTION
004101C ( ATAN(AC)-ATAN (-ATM(-K)) /(ATAN(AC)-ATAN(-AC))
00411tC WHME AC IS A PARAMETER WHOSE VALUE IS
00412tC SUPPLIED BY THE USER,
00413tC
00410C VARIABLES
00415tC
00416;C	 X...THIS AN ARRAY WHICH ON INPUT CONTAINS THE ORIGINAL SET
00417tC	 OF NUMBERS AND ON OUTPUT CONTAINS THE ARCTANGENT DISTRIBUT
00418tC	 OF NUMBERS.
004191C	 N...SIZE OF ARRAY X
00420tC	 AC..PARAMETER IN ARCTANGENT FUNCTION
00421;0
00422#C
004232	 REAL X(100)
00424:	 DO 10 I=1rN
00425;	 U=X(I)
004261	 X(I )=(ATAN(2.#AC#tU-AC)-ATAN(-AC))
00427:	 # /( ATAN(AC)-ATAN(-AC))
00428;	 IF(X(I).GE.1.0) X(I)=.99999
00429# 10 CONTINUE
00430;	 RETURN
00431;	 END
00432iC
00433#C
00434tC
004351	 SUBROUTINE FIXKNOTS(KXrKY,FNXtFNYtBNX,BNY,INXt
00436;	 #	 INY•INTXpINTY)
00437;C
00438tC	 THIS ROUTINE PLACES KX COPIES OF FNX AT THE
00439tC BEGINNING OF THE INTERIOR X KNOT SEQUENCE•
00440tC KY COPIES OF FNY AT THE BEGINNING OF THE
00441tC INTERIOR Y KNOT SEQUENCE, KX COPIES OF BNX AT THE
00442#C END OF THE INTERIOR X KNOT SEQUENCE AND KY COPIES
00443#C OF BNY AT THE ENO OF THE INTERIOR Y KNOT SEQUENCE,
00444;C
00445tC
004461C	 INPUT
00447;C
00448 t C
00449tC KX...	 QUANTITY OF NUMBERS TO BE ADDED TO THE FRONT
00450;C	 AND BACK OF THE INTERIOR X KNOT SEQUENCE,
00451;C	 ORDER OF $-SPLINES IN X DIRECTION.
00452#C KY..,	 QUANTITY OF NUMBERS TO BE ADDED TO THE FRONT
00453;C	 AND BACK OF THE INTERIOR Y KNOT SEQUENCE. ORDER
00454tC	 OF B-SPLINES IN Y DIRECTION.
00455;C FNX#FNY...	 NUMBERS TO BE PLACED AT THE FRONT OF
00456;C	 THE X AND Y KNOT SEQUENCES, RESPECTIVELY.



00457tC
00 5S:C
00459sc
004":C
00461tC
00462:C
004631C
00464SC
00465tc
00466tC
00467t
00468:C
004691C
00470:
00471:
004721
004731
00474:
004731
00476t
00477:
00478:
00479:
00480:
00481t
00482:
00483:
00484:
00485t
00486:
00487:
00488:
00489t
00490t
00491:
00492:
00493:
00494:C
00495:C
00496:C
00497:
00499tC
004":CC
00500tc
005011C
00502:C
005031C
00544:C
00505:C
00306:C
00507:C

.

.
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lassNY. t.	 NUMBERS TO RE PLACED AT THE BACK OF THE
X AND Y KNOT 8E41UENCESrRESPECTIVELYt

INX t INY...	 DIMENSIONS OF INTERIOR X AND Y KNOT SEGUENCESt
RESPECTIVELY.

INTXPINTY... INTERIOR X KNOT SEAUENCEtINTERIOR Y KNC'. Koo

OUTPUT( IN COMM)

TX tTY...	 X KNOT SEQUENCER Y KNOT SEOUENCE

COMMON/KNOTS/TX (100) t TY (100)
REAR. INTX ( 1) t INTY ( 1)
NXnINX+KX
NYsIMY+KY
DO 100 I nKX+1tNX
J•I-KX
TX(I)•INTX(J)

100 CONTINUE
DO 300 IsKY+1tNY
JuI-KY
TY(I)•TNTY(J)

200 CONTINUE
DO 5 I019KX
TX(I)sFNX
INDEX=I+NX
TX(INDEX)•1NX

5 CONTINUE
DO 6 In1tKY
TY(I)•FNY
INDEX•I+MY
TY(IMDEX)=ENY

6 CONTINUE
RETURN
END

SUBROUTINE lOtOCOEF(KX.KY,NX,NY)

THIS ROUTINE COMPUTES THE 8OlNNDARY COEFFICIENTS
FOR TWO TENSOR PRODUCT D-8PLINES (X.Y COMPONENTS).
SPECIFICALLY• IT COMPUTES ALPHA(Itl)92ETA(19I) AND
ALPNA(IrNY)tKTA(ItNY) FOR I*i TO NXi
ALPHA(itJ)t8ETA(1tJ) AND ALPHA(NXtJ)tDETA(NX•J)
FOR Ju l TO MY.
COEFFICIENTS ARE CHOSEN SO THAT THERE IS A
VARIATION DIMINISHINO APPROXIMATION ALONO THE
1OARY.

As



116

O:C
0050l:C INPUT
005'=10:0
00511:C KX#KY...ORDER OF SPLINE IN X DIRECTION, Y DIRECTION
00512ZC WAY..,91HENSION OF SPLINE IN X DIREC-Tr Y DIRECT.
00513:0
00514:C BOTH COEFFICIENT SEQUENCES WILL HAVE DIMENSION
00513:0 way
00516:C
00517:C
00518:C OUTPUT
00519:C
00520:C (IN COMMON)
00521:C BOWDARY COEFFICIENTS PLACED IN ALPHA,BETA ARRAYS,
00522:C
04323: CONNON/CLEF/ALPHA(100,100),BETA(100,100) °=
00524: COiMOH/KNOTS/TX(100),TY(100)
00525: DIMENSION TXSTAR(100),TYSTAR(100)
005262 B1X(T)=2.*T+1.
00527: 61Y(T)=O. -:
00328: 62X(T)=3.+T ='
00529: 62Y(T)=2.*T
00530: 63X(T)=4.*T
00531: 63Y(T)=2.
00532: 64X(T)=1.-T -.
00533: 64Y(T)=2.*T
00534: PI=3.14159
00533 , DO 100 I=1rNX
00536: SUM=O. -_
00537: DO 50 J=1,KX-1
00838: SUM=SUM+TX(I+J)
00539: 50	 CONTINUE
00540: TXSTAR(I)=SUM/(KX-1)':_
00541: 100	 CONTINUE
00542: DO 200 J=1,NY
00543 SUM=O.
00544: DO 150 K=19KY-1
005452 SUM=SUM+TY(J+K)
00546: 150	 CONTINUE
00547: TYSTAR(J)=SUM/(KY-1)
00548: 200	 CONTINUE
005492 DO 300 I=1rNX
00550: AsTXSTAR( U i
00551: ALPHA(I,1)=GiX(A) ?'
00352: BETA(I,1)=GiY(A)
00553: ALPHA(I,NY)=G3X(A)
00554: BETA(I,NY)=63Y(A)
00555: 300	 CONTINUE
00556: DO 400 J=1,NY
00557 B=TYSTAR(J)
00558: ALPHA(NX,J)=62X(B)

E	

.



117

04559:	 BETA(NX,J)=Y(B)
04560:	 ALPHA(I#J)=$4X(B)
00561:	 BETA(1rJ)%94Y(B)
005625 400 CONTINUE
04563:	 RETWN
i`m4:	 END
00565:C
00566:C
00567:C
00568:	 SUBROUTINE INNERCOEF(KX,KY,NX,NY)
00569:C
00570:C	 THIS ROUTINE COMPUTES THE INNER COEFFICIENTS
00571:C FOR TWO TENSOR PRODUCT B-SPLINES (X,Y COMPONENTS)
00572:C SPECIFICALLY, IT COMPUTES ALPHA(I,J),BETA(I,J) FOR
00573:0 I=2 TO NX-19 J=2 TO NY-1.
00574:C THE COEFFICIENTS ARE COMPUTED THROUGH THE USE OF
00575:C TRANSFINITE BILINEAR INTERPOLATION. THE
00576:C INTERPO.ANTS ARE EVALUATED AT POINTS SO THAT THE
00577 :C RESULTING COEFFICIENTS PRODUCE A VARIATION
00578:C DIMINISHING SPLINE APPROXIMATION TO THE
00579:C TRANS'FINITE BILINEAR INTERPOLANT.
00580:C
00561:C	 INPUT
00582:C
00583:L KX,KY...ORDER OF B-SPLINES IN X DIRECTION,Y DIRECTION
00584:C NX,NY...DIMENSION OF SPLINE SPACE IN X DIRECT,Y DIRECT
00585:C
00586:C BOTH COEFFICIENT SEQUENCES MILL HAVE DIMENSION
00587:C NX#NY
00568:C TX,TY(IN COMMON)...KNOT SEQUENCE FOR X DIRECT,Y
00589:C DIRECTION
00590:C
00591:C
0059:0	 OUTPUT(IN COMMON)
00593:0
00594:C INTERIM COEFFICIENTS PLACED IN ALPHA,BETA ARRAYS
00595:C
00596:C
00597:	 COrMN/COEF/ALPHA(100,100),BETA()00,100)
00598:	 COMMON/KNOTS/TX(100),TY(100)
00599:	 DIMENSION TXSTAR(100),TYSTAR(100)
00600:	 BIX(T)82. *T+1.
00601:	 GIY(T)=O.
00602:	 62X(T)=3.+T
00603:	 62Y(T)-2.*T
00604:	 03X(T)=4.*T
00605:	 83Y(T)-2.
00606:	 64X(T)=1.-T
00607:	 04Y(T)=2.*T
00608:	 FX(X,Y)=GIX(X)*(1.-Y)+03X(X)*Y
00609:	 * +02X(Y)*X+(1.-X) *64X(Y)
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00610:
00611:
00612:
00613:
00614:
00615:
00616:
00617:
00618:
00619:
00620:
00621:
00622:
00623:
00624:
00625:
00626:
00627:
00628:
00629:
00630:
00631
00632:
00633:
00634:
00635:
00636:
00637:
00638:
00639:
00640:
00641:C
00642:C
00643C
00644.
00645:C
00646:C
00647:C
00648:C
00649:C
00650:0
00651:C
00652:C
00653:C
00654:C
00655C
00656C
00657C
00658.0
00659C
00660.0

*-81X(0)X(I,-X)*(i.-Y)-02X(0)*X#(1.-Y)
S-=(0) *(1. -X) *Y-(32X (1.) *nY

FY(X,Y)s81Y(X)*(1.-Y)+O3Y(X)*Y
* +O2Y(Y)*X+(i.-X)*64Y(Y)
* -61Y(O)*(1.-X)*(1.-Y)-62Y(0)*X*(i.-Y)
*-03Y(0)*(1.-X)*Y-02Y(i.)*X*Y

PI=3.14159
DO 100 I=1,NX
SUM=0.
DO 50 J=i,KX-1
SUM=SUM+TX(I+J)

50 CONTINUE
TXSTAR(I)sSUM/(KX-1)

100 CONTINUE
DO M J=1,NY
SUM=O.
DO 150 K=1,KY-1
SUM=SUM+TY(J+K)

150 CONTINUE
TYSTAR(J)=SUM/(KY-1)

200 CONTINUE
DO 400 I=2,NX-1
DO 300 J=2,NY-1
A=TXSTAR(I)
B=TYSTAR(J)
ALPHA(I,J)=FX(A,B)
BETA(I,J)-FY(A,B)

300 CONTINUE
400 CONTINUE

RETURN
END

SUBROUTINE COMSPLINE

THIS ROUTINE COMPUTES AND STORES THE FUNCTION
VALUES AND FIRST DERIVATIVES OF ALL THE NON-
VANISHING B-SPLINES AT EACH POINT OF A SQUARE
MESH.

IN ADDITION, IT DETERMINES THE KNOT INTERVAL
ON WHICH EACH MESH COORDINATE LIES.

INPUT
(IN COMMON)
A,B...	 ARRAYS CONTAINING COORDINATES FOR SQUARE

MESH, POINTS OF EVALUATION FOR B-SPLINES.
NKNOTX,NKNOTY ... NUMBER % ELEMENTS IN A,B.
KX,KY...	 ORDER OF B-SPLINES IN X DIRECTION, Y

.DIRECTION.
TX,TY...	 X KNOT SEQUENCE FOR B-SPLINES,Y KNOT
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00661:C	 SEQUENCE FOR B-SPLINES.
00662:C	 "X.NY...	 DIMENSION OF SPLINE SPACE IN X DIRECTION.
00663:C	 Y DIRECTION
00664:C
00665: C OUTPUT
00666 :C (IN COON)
00667:C
00668:C	 XSPLINE,YSPLINE..THREE DIMENSIONAL ARRAYS CONTAINING
00669:C	 FUNCTION VALUES AND FIRST DERIVATIVES OF
00670:C	 B-SPLINES IN X DIRECTION, Y DIRECTION AT
00671:C	 EACH ELEMENT OF APB. THE FIRST SUBSCRIPT
006722C	 IDENTIFIES THE B-SPLINE, THE SECOND
00673:C	 SUBSCRIPT REPRESENTS THE POINT OF EVALUATION
00674:C	 AND THE THIRD SUBSCRIPT (1 OR 2) INDICATES
00673SC	 WHETHER THE VALUE REPRESENTS A FUNCTION
00676:C	 EVALUATION OR DERIVATIVE EVALUATION. HENCE
04677:C	 XSPLINE(392,1) WILL CONTAIN THE VALUE OF THE
00678:C	 B-SPLINE IN THE X DIRECTION, B(3) 9 AT A(2).
006792C
006802C	 LEFTX,LEFTY... ARRAYS IDENTIFYING KNOT INTERVALS ON
00681:C	 WHICH MESH COORDINATES LIE. LEFTX(3)=4 WOULD
006822C	 MEAN THAT A(3) LIES BETWEEN TX(4) AND TX(4t1)
006832C
006842C REQUIRED ROUTINES:
00685:C	 BSPLVD
00686:C	 BSPLVB
00687SC	 INTERV
006882C
006894,
00690:	 R rLEFTY(100)
00691:	 COMON/SPLINES/XSPLINE(50,10092),YSPLINE(509100,2)
00692:	 COMMON/KNOTS/TX(100),TY(100)
00693:	 COMMON/KNOT/NKNOTX,NKNOTY
006942	 REAL D9IATX(4,2),WORK(4,4)
00695:	 IDERIV=2
006962	 JDERIV=2
00697:C
00698:C INITIALIZATION
00699:C
007002	 NUMXsNX+KX
00701:	 NUMY=NY+KY
007022	 DO 3 I=1,NX
00703 	 DO 2 J-I,NKNOTX
00704:	 DO 1 KK=1.2
00705:	 XSPLI NE (I..U,KK)=G.
00706:	 1 COPR INK
00707:	 2 COUITIMUE
00708:	 3 CONTIMBUUr
00709:	 90 9 Igyowf
00710:	 DO 6 Jt=1Ri KwY
00711:	 DO 7 KK=1,2
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00712:	 YINE(I,J*KK)=a.
00713:	 7 CONTINUE
007141	 8 CONTINUE
00715:	 9 CONTINUE
0716:	 DO 25 I=1•NKNOTX
00717:	 CALL INTERV(TXtMJM)(,A(I),LEFTX(I),MFLAO)
00718:	 CALL BSPLVD(TX,KX,A(I),LEFTX(I)vWM,DBIATX,IDERIV)
00719:	 DO 252 JJ=1,2
00720:	 BO 251 II=1,KX
00721:	 IDuLEFTX(I)-KX+II
00722:	 IF(IB.LE.0) GOTO 251
00723:	 XSPLINE(IB,I•JJ)=DBIATX(II,JJ)
00724: 251 CONTINUE
00725: 252 CONTINUE
00726: 25 CONTINUE
00727:	 PRINT*,'DO ALL X SEO EQUAL ALL Y SEG YES(i) OR NO(0)'
00728:	 READ(1,*) KODE
00729:	 IF(KODE.EQ.0) SOTO 28
00730:	 DO 27 JJ=I,NKNOTY
00731:	 LEFTY(JJ)=LEFTX(JJ)
00732:	 DO 272 KK=1,2
00733:	 DO 271 II=1,NY
00734:	 YSPLINE(II,JJ,KK)=XSPLINE(II,JJ,KK)
00735: 271 CONTINUE
00736: 272 CONTINUE
00737: 27 CONTINUE
00738: GOTO 293
00739: 28 CONTINUE
00740:	 DO 29 J=1,NKNOTY
00741:	 CALL INTERV(TY,NUMY,B(J),LEFTY(J),MFLAS)
00742:	 CALL BSPLVD(TY,KY,B(J),LEFTY(J)rWORK,DSIATX,JDERIV)
00743:	 DO 292 JJ=1,2
00744:	 DO 291 II=1,KY
00745:	 JB=LEFTY(J)-KY+II
00746:	 IF(JB.LE.0) GOTO 291
00747:	 YSPLINE(JB,J,JJ)=DBIATX(II,JJ)
00748: 291 CONTINUE
00749: 292 CONTINUE
00750: 29 %ONTINUE
00751: 293 CONTINUE
00752:	 RETURN
00753:	 END
007546C
00755:C
00756:C
00757:	 SUBROUTINE TENVALF(ARR,LEFTX,LEFTY,KX,KY
00758:	 # ,I,J,VALUE,IDERIV,JDERIV)
00759:C
00760:C	 TENVALF COMPUTES PARTIAL DERIVATIVES FOR A TENSOR
00761:C PRODUCT SPLINE FUNCTION AS INDICATED BY THE PARAMETERS
00762:C IDERIV,JDERIV.
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00763tC
007":C INPUT
O0763:C
00766:C 	APR....	 ARRAY OF COEFFICIENTS FOR SPLINE
00767tC	 FUNCTION
00768:C	 I,J...	 INDICI£S FOR POINT OF EVALUATION
00769:C	 (A(I)#B(J))PWHERE A,B ARE ARRAYS
00"0:c	 WHICH CONTAIN COORDINA"ES OF A
007712C	 SQUARE MESH.
00772:C	 LEFTX..,	 VALUE INDICATING KNOT INTERVAL
00773:C	 ON WHICH AM LIES
00774:C	 LEFTY...	 VALUE INDICATING KNOT INTERVAL.	
00775:C	 ON WHICH B(J) LIES
00776:C	 KXrKY...	 ORDER OF B-SPLINES IN X-DIRECTION,
00777:C	 Y DIRECTION
00778:C	 IDERIV...	 ORDER OF DERIVATIVE DESIRED FOR X
00779:C	 DIRECTION
00780:C	 JDERIV...	 ORDER OF DERIVATIVE DESIRED FOR Y
00781:C	 DIRECTION
00782:C	 (IN COMMON)
00783:C	 XSPLIPErYSPLINE..ARRAYS CONTAINING FUNCTION
00784:C	 VALUES AND FIRST DERIVATIVES OF B-SPLINES IN
0078S:C	 X DIRECTION, Y DIRECTION AT EACH POINT
00786:C	 GIVEN IN ARRAYS A•B
00787:C
007882C OUTPUT
00789:C
007902C	 VALUE...	 VALUE OF TENSOR PRODUCT SPLINE
007912C	 OR DERIVATIVE
007922C
007932	 COMMON/SPLINES/XSPLINE(5O,IOOr2)•YSPLINE(50r100r2)
00794'.	 DIMENSION ARR(1009100)
007952	 VALUE=0.
00796:	 DO 13 JJ=1rKY
007972	 JB*LEFTY-KY+JJ
00798',	 IF(JB.LE.0) OOTO 13
007992	 DO 12 II=IPKX
00600:	 IB=LEFTX-KX+II
006012	 IF(IB.LE.0) GOTO 12
006022	 VIa.UE=VALUE+W(IB ► JB)*XSPLINE(IBrIrIDERIV+I)
00603:	 4 *YSPLINE(JB,J.JDERIV+1)
00604: 12 CONTINUE
00115t 13 CONTINUE
0080":	 RET(NtiV
008072	 END
00808 ',C
00809:C
008102	 SUBROUTINE TEPSORVAL(AMPNXrNYrKXrKYrArBrVALUE
00811:	 * rJDXrJDY)
00812:C THIS ROUTINE CALCULATES THE VALUE OF A TENSOR PRODUCT
00813:C SPLINE AT THE POINT (A,B).



00814:C
00815:C	 INPUT

0081820
00817:C ARR... MAY OF COEFFICIENTS•
00818:C NXrNY...DIMENSION OF SPLINE SPACE IN X DIRECT.,
00819:C	 Y DIRECTION. ARRAY ARR WILL HAVE
00820:C	 DIMENSION NXSNY.
008212C KXrKY...ORDER OF B-SPLINES IN X DIRECTrY DIRECT
00822:C APB... POINT OF EVALUATION
008230
00824:C (IN COMM)
00825C TX,TY...KNOT SEQUENCE FOR X DIRECT,
00826:C	 Y DIRECT,
00827:C
008282C
00829:C	 OUTPUT
00830:C
00831:C VALUE...VALUE OF TENSOR PRODUCT SPLINE AT (A,B)
00832:	 COMMON/KNOTS/TX(100),TY(100)
00833:	 DIMENSION BCOEF(100)VARR(1009100)
00834:	 CALL INTERV(TY,NY•B•LEFTYrMFLAG)
00635:	 VALUE=O.
00836:	 DO 10 J=irKY
00837:	 10 OCOEF(J)=DVALUE(TX•ARR(1,LEFTY-KY+J),NX,KX,A,JDX)
00838:	 VALUE=BVALUE(TY(LEFTY-KY+1),BCOEF,KYrKYvB ► JDY)
00839:	 RETURN
00840:	 END
00841:C
00842'C
00843:C
00844:	 SUBROUTINE JACOB(NX,NY,KX,KY,A,B)
008451C
00846:C THIS ROUTINE COMPUTES THE JACOBIAN OF A
00847:C TENSOR PRODUCT B-SPLINE MAPPING.
00848:C
00849:C	 INPUT
00850:0
00851:C	 NX,NY...	 DIMENSION OF SPLINE IN X
00852:C	 DIRECTION,Y DIRECTION
00853:C	 KX,KY...	 ORDER OF B-SPLINES IN X DIRECTION
00854C	 Y DIRECTION
00855C	 A,B...	 ARRAYS CONTAINING EVALUATION
00856:C	 POINTS
00857:C	 (IN COMMON)
00858:C	 ALPHA,BETA...COEFFICIENTS OF B-SPLINES
00859:C	 NKNOTX,NKNOTY.NUMBER OF ELEMENTS IN
00860:C	 ARRAYS A ► B
00861:C
00862:C	 OUTPUT(TO TERMINAL)
00863:C
00864:C	 A,B...	 ARRAYS CONTAINING EVALUATION
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00"5tc
40666 :C
00"71C
006681
00669t
00670:
00871:
00672:
00673:
00874:
00875:
00876:
00877:
00878:
00679:
00650:
00881:
00882:
00883:
00884:
00885:
00866:
00897:
00888:
00889:
00990:
00691:C
00892:C
00893:C
00894:
00895:C
00896.0
00897:C
00898:C
00899:C
00900:C
009011C
00902:C
00903C
00904: C
00905:c
00906:C
00907:C
00909:C
00909:C
00910.0
00911:C
00912:C
00913:C
00914:C
00915:C

POINTS
AJCO$IAN...	 JACOBIAN AT EACH POINT

COMMON/COEF/ALPHA(100,100),DETA(1009100)
COMMON/KNOT/NKNOTX,NKNOTY
REAL A(100),D(100)
PRIMP ,	X	 Y	 JACODIAN'
PRINTW '
DO 20 I=i,NKNOTX
DO 10 J=19NKNOTY
II=I
JJ=J
CALL TENSORVAL(ALPHA,NX,NY,KX,KY,A(II),B(JJ),

* XDFIRST,1,0)
CALL TENSORVAL(ALPHA,NX,NY,KX,KY,A(II),B(.I),

t YDFIRST,0,1)
CALL TENSORVAL(BETA,NX,NY,KX,KY,A(II),B(JJ),XDSEC,

* 1,0)
CALL TENSORVAL(BETA,NX,NY,KX,KY.A(II),B(JJ),YDSEC,

B O,1)
AJCOBIAN=XDFIRST*YDSEC-XDSEC*YDFIRST
PRINT*,A(II),B(JJ),AJCOBIAN

10 CONTINUE
20 CONTINUE

RETURN
END

SUBROUTINE CORANGE(NKNOTX,NKNOTY)

CORANGE DETERMINES THE RANGES OF SUMMATION
NEEDED TO MINIMIZE THE SMOOTHING FUNCTIONAL 0 IN
EACH COORDINATE DIRECTION.

SPECIFICALLY, FOR EACH COEFFICIENT ALPHA(I,J),
OR BETA(I,J), IT DETERMINES THE RANGE OF INDICES FOR
THE MESH POINTS LYING ON THE SUPPORT OF THE TENSOR
PRODUCT B-SPLINE HAVING SUBSCRIPTS I,J. IT PLACES
THE SMALLEST IN IFIRST(I) AND JFIRST(J) AND THE
LARGEST INDICES IN ILAST(I) AND JLAST(J), THESE VALUES
DETERMINE WHICH TERMS IN 0 SHOULD BE SUMMED WHEN
MINIMIZING THE SMOOTHINR FUHC'ION IN THE DIRECTION
REPRESENTED BY THE COEFFICIENT ALPHA(I,J) OR BETA(I,J).

INPUT

MKNOTX,NKNOTY ... DIMENSIONS FOR SQUARE MESH
OR NUMBER OF ELEMENTS IN ARRAYS APB

(IN COMMON)
A,B...	 ARRAYS CONTAINING COORDINATES FOR

SQUARE MESH
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00916:C	 NX,NY...	 DIMENSION OF SPLINE SPACE IN X DIRECT.
00917:C	 rY DIRECTION OR
00919:C	 TOTAL NO, OF B-SPLINES IN X DIRECTION.
00919:C	 Y DIRECTION
00920:C	 KXrKY...	 ORDER OF I-SPLINES IN X DIRECTIONr
00921:C	 Y DIRECTION
00922:C	 LEFTXrLEFTY... ARRAYS IDENTIFYING KNOT INTERVALS
00923:C	 ON WHICH SQUARE MESH COORDINATES

04924:C	 LIE. (LEFTX(I)=J IMPLIES
00925:C	 TX(J)<=A(I)<TX(J+1)
009265C
00927:C OUTPUT
00928:C
00929:C	 IFIRST,JFIRST.. ARRAYS CONTAINING STARTING
00930:C	 POINTS FOR THE RANGES OF SUMMATION
00931:C	 CORRESPONDING TO EACH COEFFICIENT
04932:C	 ALPHA(IrJ)rBETA(IrJ).
00933:C	 ILASTrJLAST.. ARRAYS CONTAINING FINAL
00934:C	 POINTS FOR THE RANGES OF SUMMATION
00935:C	 CORRESPONDING TO EACH COEFFICIENT
00936:C	 ALPHA(IrJ)rKTA(IrJ)
009375C
00938:	 COMMON/PARAM2/A(100),B(100),NX,NY,KX,KY,
00939:	 # LEFTX(100)rLEFTY(100)
00940:	 COMMON/RANGE/IFIRST(100),ILAST(100),JFIkST(100),
00941:	 # JLAST(100)
00942:	 DO 50 I=1,NX
00943:	 IF(I.EO.1) THEN
00944:	 II=1
00945:	 ELSE
00946:	 II=IFIRST(I-1)
00947:	 ENDIF
009485	 10 IF(I.GE.LEFTX(II)-(KX-1).AND.I.LE.LEFTX(II))
00949:	 # SOTO 20
00950:	 II=II+1
00951:	 SOTO 10
00952:	 20 IFIRST(I)=II
00953:	 30 II=II+1
00954:	 IF(II.GT.NKNOTX) SOTO 40
009555	 IF(I.LT.LEFTX(II)-(KX-1)) G"TO 40
00956:	 SOTO 30
00957:	 40 ILAST(I)=II-1
00958: 50 CINTINUE
00959:	 DO 100 J=1rNY
00960:	 IF(J.EO.1) THEN
00961:	 JJ=1
00962:	 ELSE
00963:	 JJnJFIRST(J-1)
00964:	 ENDIF
00965:	 60 IF(J ►GE.LEFTY(JJ)-(KY-I).AND.J.LE.LEFTY(JJ))
00966:	 # SOTO 70

124
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00967,	 JJ=JJtl
00968:	 GOTO 60

00969: 70 JFIRST(J)=JJ
00970 00 80 JJ=JJ+l
00971:	 IF(JJ.OT.NKNOTY) GOTO 90
00972,	 IF(J.LT.LEFTY(JJ)-(KY-1)) GOTO 90
00973:	 GOTO 80
00974: 90 JLAST(J)=JJ-1
009755 100 CONTINUE
00976:	 RETURN
00977:	 END

00978:C
00979:C
00980:C

00981:	 REAL FUNCTION GF(II,JJ)
00982:C
00983:C

00984 :C 	 FUNCTION OF COMPUTES THE SUM OF THE TERMS IN
00985:C THE SMOOTHING FUNCTIONAL G OVER THE RANGES INDICATED
00986:C BY IFIRST(II)vJFIRST(JJ) AND ILAST(II)v JLAST(JJ).
00987:C
00988:C INPUT
00989:C
00990:C	 II,JJ...	 INDICES FOR COEFFICIENT INVOLVED
00991:C	 IN MINIMIZATION.
00992:C	 (IN COMMON)

04993:C	 NKNOTX,NKNOTY...DIMENSIONS FOR SQUARE MESH
00994:C	 OR NUMBER OF ELEMENTS IN ARRAYS AvB
00995:C	 A P B...	 ARRAYS CONTAINING COORDINATES FOR

00996:C	 SQUARE MESH
00997:C	 NX,NY...	 DIMENSION OF SPLINE SPACE IN X DIRECT.
00998:C	 ,Y DIRECTION OR

00999:C	 TOTAL NO. OF B-SPLINES IN X DIRECTION,
O1000:C	 Y DIRECTION
01001:C	 KXFKY...	 ORDER OF B-SPLINES IN X DIRECTIONp

01002:C	 Y DIRECTION
01003:C	 LEFTXrLEFTY... ARRAYS IDENTIFYING KNOT INTERVALS

01004:C	 ON WHICH SQUARE MESH COORDINATES

01005:C	 LIE. (LEFTX(I)=J IMPLIES
01006:C	 TX(J)<:=A(I)<TX(J+1)
01007:C

01008:C	 IFIRST,JFIRST.. ARRAYS CONTAINING STARTING
01009:C	 POINTS FOR THE RANGES OF SUMMATION
O1010:C	 CORRESPONDING TO EACH COEFFICIENT

OI011:C	 ALPHA(IrJ)rBETA(IrJ).
01012:C	 ILAST,JLAST..	 ARRAYS CONTAINING FINAL
01013:C	 POINTS FOR THE RANGES OF SUMMATION

01014:C	 CORRESPONDING TO EACH COEFFICIENT
01015:C	 ALPHA(I,J)p9ETA(IrJ)
01016:C	 WItW2...	 WEIGHTS FOR JACOBIAN, DOT PRODUCT

01017:C

k-_
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01018 :C OUTPUT
01019 :^

01020 :C OF...	 PARTIAL SUM OF TERMS IN G	 OVER THE
01021 :C APPROPRIATE RANGE,
01022 :C

01023: REAL AJ(30,30),DOT(30,30)
01024: COMMON/PARAM2/A(100),B(100),NX,NY,KX,KY,
01025. * LEFTX(100),LEFTY(100)

01026: COMMON/COEF/ALPHA(100,100),BETA(100,100)
01027: COMMON/KNOT/NKNOTX,NKNOTY
01028: COMMON/WEIGHTS/W1,W2

01029: COMMON/RANGE/IFIRST (100),ILAST(100),JFIRST(100),
01030: * JLAST(100)
01031: NUMX=NKNOTX

01032: NUMY-NKNOTY
01033: DELX=1./(RUMX-1.)
01034: DELY=i./(NUMY -1.)

01035: SDELX=DELX*DELX
01036: SDELY=DELY*PELY
01037: SUM=0.0

01038: IF-IFIRST(II)
01039: JF=JFIRST(JJ)
01040: IL=ILAST(II)

01041: JL=JLAST(JJ)
01042: IF(IF.GT.1)	 IF=IF-1
01043: IF(JF.GT.1) JF-JF-1

01044: IF(IL.LT .NUMX)	 IL=IL+l
01045: IF(JL.LT .NUMY) JL=JL+1
01046: DO 200 J=JF,JL

01047: DO 100 I=IF,IL
01048: CALL TENVALF(AL:HA,LEFTX(I),LEFTY(J),KX,KY,I,J,
01049: * F1X,1,0)
01050: CALL TENVALF(BETA ,LEFTX(I),LEFTY(J),KX,KY,I,J,
01051: * F1Y,1 ► 0)
01052: CALL TENVALF(ALPHA,LEFTX(l),LEFTY(J),KX,KY,I,J,

01053: * F2X,0,1)
01054: CALL TENVALF(BETA ,LEFTX(I),LEFTY(J),KX,KY,I,J,
01055: * F2Y,0,1)

01056: AJ(I,J)=FIX*F2Y-F2X*F1Y
01057: DOT(I,J)=FIX*F2X+F1Y*F2Y
01058: SUM=SUM+DOT%I,J)**2

01059: 100 CONTINUE
01060: 200 CONTINUE
01061: SUM1=0.

OI062: SUMz=0.
01063: DO 400 J=JF,JL-1
01064: DU 300 I=IF,IL-1
01065: IF(I.E0.I.AND.J.EQ.1) 	 GOTO 300
01066: IF(I.EQ.I.AND.J.EQ.NUMY -1) GOTO 300
01067: IF(I.EQ.NUMX-1.AND.J.EQ.1) GOTO 300

01068: SUM1=SUM1+(AJ(I,J)-AJ(I,J+i))**2

I



ARRAYS CONTAINING COEFFICIENTS

TENSOR PRODUCT SPLINE MAPPING.
ARRAYS CONTAINING COORDINATES
SQUARE MESH.

DIMENSION OF SPLINE SPACE IN X
vY DIRECTION OR
TOTAL NO. OF B-SPLINES IN X DII

Y DIRECTION.
ORDER OF B-SPLINES IN X DIRECT
Y DIRECTION.

ARRAYS IDENTIFYING KNOT INTERV
ON WHICH SQUARE MESH COORDINATI
LIE. (LEFTX(I)=J IMPLIES

TX(J)<=A(IXTX(J+1))

INPUT

(IN COMMON)
ALPHA,BETA..

Ara...

NXrNY...

KX,KY...

LEFTX.LEFTY..,

FOR

DIRECT.

OF

01069:
01070:

01071:
01072:
01073:

01074:
01073:
01076:

01077:C
010781C
01079:C
01080:
01081:C
01082:C

01063:C
01064'C
01085C

01086:C
01087:C
01088:C

01089:C
01090:C
01091:C

01092:C
01093:C
01094:C

01095:C
01096:C
01097:C

01098:C
01099:C

01100:C

011011C
01102.0

01103:C

01104:C
01105:C
01106.0

01107C
01108C
01109C
01110:C

01111:C
01112:C

01113:C
01114:C
01115:C

01116:C
01117:C
01118:C

01119:C

SUM2=SUM24(AJ(I+ItJ)-AJ(19J))**2
300 CONTINUE

400 CONTINUE
SUM1=SUM1*DELX/DELY
SUM2=SUM2*DELY/DELX

OF•M1#(SUMI+SUM2)+W2*DELX*DELY*SUM
RETURN
END

SUBROUTINE FFMIN(ERMAX)

FFMIN SEARCHES FOR THE MINIMUM OF THE SMOOTHING

FUNCTIONAL G. EACH CALL TO FFMIN PRODUCES ONE

COMPLETE ITERATION OF THE CYCLIC COORDINATE METHOD,
A MULTIDIMENSIONAL SEARCH TECHNIQUE FOR MINIMIZING

A FUNCTION OF SEVERAL VARIABLES WITHOUT USI`!G
DERIVATIVES. THE ROUTINE SEARCHES FOR A MINIMUM
ALONG EACH COORDINATE DIRECTION.

IN FFMIN THE COORDINATE DIRECTIONS ARE REPRE-
SENTED BY THE TENSOR PRODUCT COEFFICIENTS .FOR EACH
COEFFICIENT THE ROUTINE FIRST DETERMINES THE'

INTERVAL ON WHICH THE COEFFICIENT MUST LIE IF THE
JACOBIAN OF THE TENSOR PRODUCT MAPPING IS TO BE
NONNEGATIVE AT ALL MESH POINTS AFFECTED BY THE

COEFFICIENT. IT THEN CALLS EITHER TESTMINO, TEST-
MINL, TESTMINR, OR TESTMINB DEPENDING ON WHETHER
THE INTERVAL IS BIINFINITEr HAS A LEFT ENDPOINTv

A RIGHT ENDPOINT. OR TWO ENDPOINTS. THE CHOSEN
SUBROUTINE FINDS THE LOCATION OF THE MINIMUM OF

OF ON THE INTERVAL AND CHANGES THE APPROPRIATE

COEFFICIENT ACCORDINGLY.
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01120:C

	

01121:C	 IFIRST,JFIRST.. ARRAYS CONTAINING STARTING

	

01122:C	 POINTS FOR THE RANGES OF SUMMATION

	

01123:C	 CORRESPONDING TO EACH COEFFICIENT

	

01124:C	 ALPHA(I ► J),BETA(I•J).

	

01125:C	 ILAST,JLAST..	 ARRAYS CONTAINING FINAL

	

01126:C	 POINTS FOR THE RANGES OF SUMMATION

	

01127:C	 CORRESPONDING TO EACH COEFFICIENT

	

01128:C	 ALPHA(I ► J) ► BETA(I,J).

	

01129:C	 Wi ►W2...	 WEIGHTS FOR JACOBIAN, DOT PRODUCT

	

01130:C	 TO BE USED IN OF.

	

01131:C	 NKNOTX,NKNOTY...DIMENSIONS FOR SQUARE MESH

	

01132:C	 OR NUMBER OF ELEMENTS IN ARRAYS A,B.

01133:C

01134:C OUTPUT
01135:0

	

01136:C	 ERMAX...	 MAXIMUM CHANGE IN THE COEFFICIENTS

	

01137:C	 AFTER A COMPLETE ITERATION.

	

01138!C	 (IN COMMON)

	

01139:C	 ALPHA,SETA..,	 ARRAYS CONTAINING NEW COEFFICIENTS

	

01140:C	 FOR TENSOR PRODUCT SPLINE MAPPING.
01141:C

	

01142:	 COMMON/COEF/ALPHA(100,100),BETA(100,100)

	

01143:	 COMMON/PARAM2/A(100),B(100)vNX ► NY,KX,KY,

	

01144:	 * LEFTX(100),LEFTY(100)

	

01145:	 COMMON/RANGE/IFIRST(100),ILAST(100),JFIRST(100),

	

01146:	 4 JLAST(100)

	

0:147:	 COMMON/PARAM/FKOUNT

	

01148:	 COMMON/WEIGHTS/W1 ► W2

	

01149:	 COMMON/KNOT/NKNOTX,NKNOTY

	

01150:	 REAL LEND ► LINT,AJ(2)

	

01151:	 INTEGER CTEST

	

01152:	 FKOUNT=0

	

01153:	 ERMAX=0.

	

01154:	 DO 500 I=29NX-1

	

01155:	 DO 400 J=2,NY-1

	

01156:	 IF=IFIRST(I)

	

01157:	 IL=ILAST(1)

	

01158:	 JF=JFIRST(J)

	

01159:	 JL=JLAST(J)

	

011160: 	 MKOUNT=0

	

01161:	 5 CONTINUE

	

01162:	 HOLD=GF(I,J)

	

01163:	 MTEST=MKOUNT/2*2

	

01164:	 IF(MTEST.EO.MKOUNT) THEN

	

03.165:	 HOCO=ALPHA(I,J)

	

01166:	 ELSE

	

01167:	 HOCO=BETA(I,J)

	

01168:	 ENDIF

	

01169:	 LEND=-10.0ES

	

01170:	 REND-10.0E8
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KFLAG=0
IFLAO•O

DO 200 IIsIFFIL
DO 100 JJ=JF,JL
IF(MKOUNT/2#2.EO.MKOUNT) THEN

ALPHA(I ► J)=0.
ELSE
HETA'I ► J)=0.
ENDIF
DO 11 K=1 ► 2
CALL TENVALF(ALPHA ►LEFTX(II),LEFTY(JJ),KX,KY ► II ►
JJ ►F1X ► 1 ► 0)
CALL TENVALF(BETA,LEFTX(II) ► LEFTY(JJ) ► KX,KY,II,
JJ,FIY ► 1 ► 0)
CALL TENVALF(ALPHA,LEFTX(II),LEFTY(JJ),KX,KY ► II ►
JJ ► F2X ► O ► 1)
CALL TENVALF(META,LEFTX(II),LEFTY(JJ)•KX,KY,II,

JJ ► F2Y ► O ► 1)
AJ(K)=F1X#F2Y-F2X#F1Y
IF(MKOUNT/2#2.EO.MKOUN7) THEN

ALPHA(I,J)=1.
ELSE
BETA(I,J)=1.

ENDIF
CONTINUE
D=AJ(1)

C=AJ(2)-D
IF(C.G7 .1.OE-7) THEN
LINT=-D/C

IF(LINT.GT .LEND)THEN
IF(LINT.LE.REND) THEN
LEND=LINT

ELSE
IFLAG=-1

ENDIF

ENDIF
ELSE IF(C.LT.-1.0E-7) THEN

RINT=-D/C

IF(RINT.LT.REND) THEN
IF(RINT.GE.LEND) THEN

REND=RINT

ELSE
IFLAG=-1

ENDIF
ENDIF

ELSE
KFLAG=KFLAG+1

ENDIF
CONTINUE
CONTINUE

C7ES7•(ILAST(I)-IFIRST(I)+1)#(JLAST(J)-JFIRST(J)+i)

01171:
01172:

01173:
01174:
01173:

01176:
01177:
01178:

01179:
01180:
01181:

01182:
0110 *0

	

01184:
	

#

01185:

	

01186:
	

#

01167:

	

01188:
	

#

01189:
01190:

01191:
01192:
01193:

01194:

	

01195:
	

10
01196.

01197:
01198:
01199:

01200:
01201:
01202:

01203:
01204:
01205:

01206:
01207:
01208:

01209:
01210:
01211:
01212:
01213:
01214:
01215'
01216:
01217:

01218:
01219: 100
01220: 200

01221:
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01222:	 IF(KFLAG.EQ.CrEST.OR.IFLAG.EQ.-i) THEN
012232	 IF(MKOUNT/2*2.EQ.MK0UNT) THEN

01224:	 ALPHA(I,J)=(LEND+REND)/2.

01225:	 ELSE
01226:	 9ETA(I,J) =(LEND+REND)/2.

01227:	 ENDIF	 {
0128:	 ELSE IF(LEND.LT.-1.OE7.AND.REND.GT .I,OE7) THEN
012291'	 CENTER=0.0

01230:	 CALL TESTMINO(MKOUNT,I,J)
01231:	 ELSE IF(LEND.LT.-10.0E7) THEN
01232:	 CENTER=0.0

01233:	 CALL TESTMINR(MKOUNT,I,J,LEND,REND) 	 ?
01234:	 ELSE IF(REND.GT.l0.E7) THEN
01235:	 CENTER=0.0

01236:	 CALL TESTMINL(MKOUNT,I,J,LEND,REND)
01237:	 ELSE
01238:	 CENTER=(LEND+REND)/2.

01239:	 CALL TESTMINB(MKOUNT,I,J,LEND,REND)
01240:	 ENDIF
01241:	 S2=GF(I,J)

01242:	 DIFF=HOLD-S2
01243:	 IF(HOLD.LT .S2) THEN
01244:	 IF(MTEST.EQ.MKOUNT) THEN

01245:	 ALPHA(I,J)=H000

01246:	 ELSE
01247:	 BETA(I,J)=H000 E.
01248:	 ENDIF
01249:	 S2=HOLD	 1.,
012502	 DIFF=O.

01251:	 ENDIF
01252:	 IF(ABS(DIFF).GT.ERMAX) ERMAX=ABS(DIFF)

01253:	 PRINT*,'FUNCTION VALUE I5',S2

01254:	 PRINT4,'COUNT IS',FKOUNT
01255:	 KFLAG=O
01256:	 MKOUNT=MKOUNT+l

01257:	 IF(MKOUNT.NE.MKOUNT/242) GOTO 5
01258 400 CONTINUE
01259 500 CONTINUE

0160:	 RETURN
01261:	 END

01262:0

01263:0
01264:C
01265:	 SUBROUTINE CRIT(CENTER,CI,CS,C3,C4 ► C5,NROOTS,R,MKOUNT,	 j

01266:	 4 I,J)
01267:C
01268:C	 CRIT FINDS THE COEFFICIENTS OF THE 47H DEGREE
01269:C POLYNOMIAL REPRESENTING GF AND COMPUTES ITS CRITICAL
01270:C POINTS, I.E., IT FINDS THE POINTS FOR WHICH THE DERIVATIVE
01271:C OF THE POLYNOMIAL.IS 0.

01272.0
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01273:C
01274:C
01275:C
01276:C
01277:C
01278:C
01279C
01280:C
01281:C
01282:C
01293:C
01284C
01285:C
01286:C
01287:C
01288:C
01289:C
01290:C
01291:C
01292:C
01293:C
01294:C
01295C
01296:C
01297:C
01298:C
01299:C
01300:C
01301:C
01302:C
01303:C
01304:C
01305:C
01306:C
01307:C
01308:C
01309:C
01310C
01311:C
01312:C
01313:C
01314:C
01315:C
01316:C
OT317:C
01318:C
01319:
01320:
01321:
01322:
01323:

INPUT

CENTER...	 NUMBER AT CENTER OF INTERVAL TO BE
CONSIDERED. IF INTERVAL IS INFINITE THEN
CENTER ASSIGNED A VALUE OF 0.

MKOUNT...	 MKOUNT EVEN MEANS THE COEFFICIENT
INVOLVED IN MINIMIZATION IS IN THE ALPHA
ARRAY. MKOUNT ODD MEANS THE COEFFICIENT
IS IN THE BETA ARRAY.

I,J..	 SUBSCRIPTS FOR COEFFICIENT INVOLVED
IN MINIMIZATION

(IN COMMON)
ALPHA,BETA..	 ARRAYS CONTAINING COEFFICIENTS OF

TENSOR PRODUCT SPLINE MAPPING,
A•8...	 ARRAYS CONTAINING COORDINATES FOR

SQUARE MESH.
NX,NY...	 DIMENSION OF SPLINE IN X DIRECTION

,Y DIRECTION OR
TOTAL NO. OF B —SPLINES IN X DIRECTION,
Y DIRECTION.

KX,KY...	 ORDER OF B—SPLINES IN X DIRECTION,
Y DIRECTION.

LEFTX,LEFTY... ARRAYS IDENTIFYING KNOT INTERVALS
IN WHICH SQUARE MESH COORDINATES
LIE. (LEFTX(I)=J IMPLIES
TX(JXxA(IXTX(J+1))

Wi,W2...	 WEIGHTS FOR JACOBIAN, DOT PRODUCT
TO BE USED IN OF.

NKNOTX,NKNOTY ... DIMENSIONS FOR SQUARE MESH
OR NUMBER OF ELEMENTS IN ARRAYS A,B,

FKOUNT..,	 PARAMETER CONTAINING NUMBER OF CALLS TO
OF

XK...	 ARRAY CONTAININ POINTS —2,-1,0,1,2
WHIC4 ARE USED AS TEST POINTS IN
DETERMi.-ING THE COEFFICIENTS OF THE 	 ^.
4TH DEGREE POLYNOMIAL WHICH APPROXI -
MATES OF.

OUTPUT

C1,C2,C3,C4,C5.. COEFFICIENTS OF 4TH DEGREE POLYNOMIAL.
Cl IS THE COEFFICIENT OF THE 4TH DEGREE TERM,

NROOTS...	 NUMBER OF CRITICAL POINTS
R...	 ARRAY CONTAINING CRITICAL POINTS

REAL R(3),BK(5)
COMMON/COEF/ALPHA(100,100),BETA(100,100)
COMMON/PARAM2/A(100),B(100),NX,NY,KX,KY,LEFTX(100)
9LEFTY(100)
COMMON/KNOT/NKNOTX,NKNOTY

s
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01324:
01325:

01326:
01327:
01328:

01329:
01330:
01331:
01332:
01333:
01334:
01335:
01336:
01337:

01338:
01339:
01340:

01341:
01342:
01343:
01344:
01345:

01346:
01347:
.01348:
01349:

01350:
01351:
01352:

01353:
01354:
01355:

01356:
01357:
01358:

()1359:
01360:
01361:

01362:C
01363:C
01364:C

013652
01366:C
01367:C

01368:C
01369:C
01370:C

01371:C
01372:C
01373:C

01374:C

COM14ON/WEIGHTS/W1,W2
COMMON/PARAM/FKOUNT

COMMON/XKS/XK(5)
IF(MKOUNT/2*2.EG.MKOUNT) THEN
DO 100 IK=1,5

ALPHA(I,J)-XK(IK)+CENTER
BK(IK)=GF(I,J)
FKOUNT-FKOUNT+1

100 CONTINUE
ELSE

DO 200 IK=1,5
BETA(I,J)=XK(IK)+CENTER
BK(IK)=GF(I,J)
FKOUNT-FKOUNT+1

200 CONTINUE
ENDIF
D=XK (4 )

B1=BK(1)
B2=BK(2)
B3=BK(3)
B4=BK(4)
B5=BK(5)
C5=B3

SUM=-B5+8.*(B4-BS)+B1
C4=1./(12.XD)*SUM
SUM=-B5+16.*(B4+B2)-30.*B3-B1
C3=1.:(24.*D*D)*SUM
SUM=B5-2.*(b4-P2)-B1
C2=1./(12.*D*D*D)*SUM

SUM=B5-4.*(B4+B2)+6.*B3+B1
C1=1./(24.*D**4)*SUM
IF (ABS(C1).LT.1.OE-06) GOTO 300

CALL CUBIC(4.*C1,3.*C2,2.*C3,C4,NROOTSPR)
RETURN

300 CONTINUE

NROOTS=-1
RETURN
END

SUBROUTINE TESTMINO(MKOUNT,I,J)

FOR A GIVEN COEFFICIENT ALPHA(I,J) OR BETA(I,J)

TESTMINO FINDS AND TESTS THE CRITICAL POINTS OF
THE 4TH DEGREE POLYNOMIAL REPRESENTING GF TO
DETERMINE WHICH POINT YIELDS THE SMALLEST VALUE FOR GF
WHEN GF IS VIEWED AS A FUNCTION OF THAT COEFFICIENT.
THE NUMBER CHOSEN BECOMES THE NEW VALUE FOR
ALPHA(I,J) OR BETA(I,J) .
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01375:C INPUT
01376:C

01377:C MKOUNT..,	 MKOUNT EVEN MEANS THE COEFFICIENT

01378:C INVOLVED IN MINIMIZATION IS IN THE ALPHA

01379:C ARRAY. MKOUNT ODD MEANS THE COEFFICIENT

01380:C IS IN THE BETA ARRAY.

01381:C I,J..	 SUBSCRIPTS FOR COEFFICIENT INVOLVED

01382:C IN MINIMIZATION

01383:C (IN COMMON)
01384:C ALPHA,BETA..	 ARRAYS CONTAINI14G COEFFICIENTS OF

01385:C TENSOR PRODUCT SPLINE MAPPING.

01386:C A,B...	 ARRAYS CONTAINING COORDINATES FOR

01387:C SQUARE MESH.
01388:C NX,NY...	 DIMENSION OF SPLINE IN X DIRECTION

01389:C ,Y DIRECTION OR
F	 q

01390:C TOTAL NO. OF B-SPLINES IN X DIRECTION, i
01391:C Y DIRECTION.

01392:C KX,KY...	 ORDER OF B-SPLINES IN X DIRECTION,

01393:C Y DIRECTION. {
01394:C LEFTX,LEFTY...	 ARRAYS IDENTIFYING KNOT INTERVALS

01395:C IN WHICH SQUARE MESH COORDINATES,;_

01396:C LIE.	 (LEFTX(I)=J IMPLIES

01397:C TX(J):=A(I):TX(J+1))

01398:C {
01399:C W1,W2...	 WEIGHTS FOR JACOPIAN, DOT PRODUCT

01400:C TO BE USED IN OF.

01401:C NKNOTX,NKNOTY ... DIMENSIONS FOR SQUARE MESH

01402:C OR NUMBER OF ELEMENTS IN ARRAYS APB.

01403:C FKOUNT...	 PARAMETER CONTAINING NUMBER OF CALLS TO

01404:C OF

01405:C XK...	 ARRAY CONTAINING POINTS

01406:C WHICH ARE USED AS TEST POINTS IN

01407:C DETERMINING THE COEFFICIENTS OF THE

01408:C 4TH DEGREE POLYNOMIAL WHICH APPROXI-

01409:C MATES OF.

01410:C
01411:C OUTPUT

01412:C

01413 . 0 ALPHA(I,J) OR BETA(I,J)..NEW VALUE FOR COEFFICIENT

01414:C
01415: COMMON/COEF/ALPHA(100,100),BETA(100,100)

01416: COMMON/PARAM2/A(100),B(100),NX,NY,KX„CY,LEFTX(100),

01417: * LEFTY(100)
01418: COMMON/KNOT/NKNOTX,NKNOTY

01419: COMMON/WEIGHTS/W1,W2

01420: COMMON/PARAM/FKOUNT
01421: COMMON/XKS/XK(5)

01422: REAL R(3)
01423: FM(R)=C1*R**4+C2*R*R*R+C3*R*R+C4*R+CS

01424: DO 50 IK=1,5

01425: XK(IK)=FLOAT(IK)-3.



01426: 50 CONTINUE
0147:	 CALL CRIT(O,C1,C2,C3,C4,C5,NROOTS,R,MKOUNT,I,J)

01428:	 IF(NROOTS.NE .-1) OOTO 55
Ot429:	 RETURN
01430: 55 CONTINUE

01431:	 TMIN=10.0E10
01432:	 00 600 IR=1,NROOTS
01433:	 FMINN=FM(R(IR))

01434:	 IF(FMINN.LT.TMIN) THEN
01435:	 TMIN=FMINN
01436:	 IMIN=IR

01437:	 ENDIF
01438: 600 CONTINUE
01439:	 IF(MKOUNT/2*2.EO.MKOUNT)THEN

01440:	 ALPHA(I,J)=R(IMIN)
01441:	 ELSE
01442:	 BETA(I,J)=R(IMIN)

01443:	 ENDIF
01444:	 RETURN

01445:	 END

01446:C
01447C
01448C

01449.	 SUBROUTINE TESTMINR(MKOUNT.I,J,LEND,REND)
01450:C
01451:C	 FOR A GIVEN COEFFICIENT ALPHA(I,J) OR BETA(I,J)

01452:C TESTMINR FINDS AND TESTS THE CRITICAL POINTS OF
01453:C THE 4TH DEGREE POLYNOMIAL REPRESENTING GF TO
01454:C DETERMINE WHICH POINT YIELDS THE SMALLEST VALUE FOR GF

01455:C WHEN OF IS VIEWED AS A FUNCTION OF THAT COEFFICIENT.
01456:C THE SMALLEST VALUE IS COMPARED WITH THE VALUE AT THE
01457:C RIGHT ENDPOINT OF THE INTERVAL (LENII,REND)

01458:C TO DETERMINE AT WHAT NUMBER THE MINIMUM VALUE
01459:C OF OF OCCURS. THE NUMBER CHOSEN BECOMES THE NEW
01460 :C VALUE FOR ALPHA(I,J) OR BETA(I,J)

01461.0
01462:C INPUT
01463:C

01464'C	 MKOUNT...	 MKOUNT EVEN MEANS THE COEFFICIENT
01465:C	 INVOLVED IN MINIMIZATION IS IN THE ALPHA
01466:C	 ARRAY. MKOUNT ODD MEANS THE COEFFICIENT

01467:C	 IS IN THE BETA ARRAY,
01468:C	 I,J..	 SUBSCRIPTS FOR COEFFICIENT INVOLVED
01469:C	 IN MINIMIZATION

02470:C	 LEND,REND..	 LEFT AND RIGHT ENDPOINTS FOR
01471:C	 INTERVAL. LEND IS A NEGATIVE NO. WITH VERY

01472:C	 LARGE MAGNITUDE INDICATING THAT THE LEFT

01473C	 ENDPOINT IS INFINITE.
01474:C	 (IN COMMON)
01475:C	 ALPHA,BETA..	 ARRAYS CONTAINING COEFFICIENTS OF

01476:C	 TENSOR PRODUCT SPLINE MAPPING.
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01477:C
01478:C

01479:C
01480:C
01481:C

01482:C
01483:C
01484:C

01485:C
01486:C
01487:C

01488:C
01489:C
01490:C

01491:C
01442:C
01493:C

01494:C
01495:C
01496:C

01497:C
01498:C
01499:C

01500:C
01501:C
01502:C

01503:C
01504:C

01505:C

01506:
01507:
01508:

01509:
01510:
01511:

01512:
01513:
01514:

01515,
01516:
01517:

01518:
0151°:

01520:

01521:
01522:
01523:

01524:
01525:
01526:

015276'

ALPHA(I,J) OR BETA(I,J)..NEW VALUE FOR COEFFICIENT

COMMON/COEF/ALPHA(100,1CO),BC-A(100,100)
COMMON/PARAM/FKOUNT
COMMON/PARAM2/A(100),B(100),NX,NY,KX,KY

,LEFTX(100),LEFTY(100)
COMMON/KNOT/NKNOTX,NKNOTY
COMMON/WEIGHTS/W17W2

COMMON/XKS/XK(5)
REAL R13),LEND
FM(R)=C1*R**4+C2*R*R*R+C3*R*R+C4*R+C5

XK(1)=REND
DO 50 IK=2,5
XK(IK)=REND-FLOAT(IK)+1.

50 CONTINUE
CALL CRIT(O,Ci,C2,C3,C4,C5,NROOTS,RrMKOUNT,I,J)

IF(NROOTS.NE .-1) GOTO 55

PRINT#,'WARNING 41 COEF IS 0'
RETURN

55 CONTINUE

TMIN=10.E10
IRsO
DO 600 IROOTsI,NROOTS

IF(R(IROOT).LE.REND) THEN

Are...	 ARRAYS CONTAINING COORDINATES FOR
SQUARE MESH.

NXrNY...	 DIMENSION OF SPLINE IN X DIRECTION
rY DIRECTION OR
TOTAL NO, OF B-SPLINES IN X DIRECTION,

Y DIRECTION.
KX,KY...	 ORDER OF B-SPLINES IN X DIRECTION,

Y DIRECTION.

LEFTX,LEFTY... ARRAYS IDENTIFYING KNOT INTERVALS
IN WHICH SQUARE MESH COORDINATES
LIE. (LEFTX(I)=J IMPLIES

TX(J)<=A(I)<:TX(J+1))

WirW2000	 WEIGHTS FOR JACOBIAN, DOT PRODUCT

TO BE USED IN OF.
NKNOTX,NKNOTY ... DIMENSIONS FOR SQUARE MESH

OR NUMBER OF ELEMENTS IN ARRAYS A,B.

FKOUNT..,	 PARAMETER CONTAINING NUMBER OF CALLS TO
OF

XK...	 ARRAY CONTAININ POINTS -2,-1,0,1,2

WHICH ARE USED AS TEST POINTS IN
DETERMINING THE COEFFICIENTS OF THE
4TH DEGREE POLYNOMIAL WHICH APPROXI-

MATES GF.

OUTPUT

f,
A

i

i

y6'
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01528:	 IR=IR+l

	

01529:	 R(IR)=R(IROOT)

	

01530:	 ENDIF
01531 600 CONTINUE

	

01532:	 NROOTS=IR

	

01533:	 IF(NROOTS.EQ.0) THEN

	

01534:	 IF(MKOUNT/2*2.EQ.MKOUNT) THEN

	

01535:	 ALPHA(I,J)=REND

	

01536:	 TMIN=FM(REND)

	

01537:	 ELSE

	

01538:	 BETA(I,J)=REND

	

01539:	 TMIN=FM(REND)

	

01540:	 ENDIF

	

01541:	 ELSE

	

01542:	 DO 700 IROOT=I,NROOTS

	

01543:	 FMINN=FM(R(IROOT))
	01544:	 IF(FMINN.LT .TMIN) THEN

	

01545:	 TMIN=FMINN

	

01546:	 IMIN=IROOT

	

01547:	 ENDIF

	

01548: 700	 CONTINUE

	

01549:	 FMINN=FM(REND)

	

01550:	 IF(FMINN.LT .TMIN) R(IMIN)=REND

	

01551:	 IF(MKOUNT!2*2.EQ.MKOUNT) THEN

	

01552:	 ALPHA(I,J)=R(IMIN)

	

01553:	 TMIN=FM(R(IMIN))

	

01554:	 ELSE

	

01555:	 BETA(I,J)=R(IMIN)

	

01556:	 TMIN=FM(R(IMIN))

	

01557:	 ENDIF

	

01558:	 ENDIF

	

01559:	 RETURN

	

01560:	 END
01561:C
01562:C

01563:C

	

01564:	 SUBROUTINE TESTMINL(MKOUNT,I,J,LEND,REND)
01565:C

	

01566:C	 FOR A GIVEN COEFFICIENT ALPHA(I,J) OR BETA(I,J)
01567:C TESTMINL FINDS AND TESTS THE CRITICAL POINTS OF
01568:C THE 4TH DEGREE POLYNOMIAL REPRESENTING GF TO

01569:C DETERMINE WHICH POINT YIELDS THE SMALLEST VALUE FOR GF
01570:C WHEN OF IS VIEWED AS A FUNCTION OF THAT COEFFICIENT.
01571:C THE SMALLEST VALUE IS COMPARED WITH THE VALUE AT THE

01572:C LEFT ENDPOINT OF THE INTERVAL (LEND,REND)
01573:C TO DETERMINE AT WHAT NUMBER THE MINIMUM VALUE
01574:C OF OF OCCURS. THE NUMBER CHOSEN BECOMES THE NEW

01575:C VALUE FOR ALPHA(I,J) OR BETA(I,J) .
01576:C

01577:C INPUT

01578:C

1R
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	01579:C	 MKOUNT..,	 MKOUNT EVEN MEANS THE COEFFICIENT

	

01580:C	 INVOLVED IN MINIMIZATION IS IN THE ALPHA

	

01581:C	 ARRAY, MKOUNT ODD MEANS THE COEFFICIENT

	

01582:C	 IS IN THE BETA ARRAY,

	

01583:C	 I,J..	 SUBSCRIPTS FOR COEFFICIENT INVOLVER

	

01584:C	 IN MINIMIZATION

	

01585:C	 LEND,REND.,	 LEFT AND RIGHT ENDPOINTS FOR

	

01586:C	 INTERVAL. REND IS A VERY LARGE NUMBER,

	

01587:C	 INDICATING THAT THE RIGHT ENDPOINT IS

	

01588:C	 INFINITE.

	

01589:C	 (IN COMMON)

	

01590:C	 ALPHA,BETA.,	 ARRAYS CONTAINING COEFFICIENTS OF

	

01591:C	 TENSOR PRODUCT SPLINE MAPPING.

	

01592:C	 A,B...	 ARRAYS CONTAINING COORDINATES FOR

	

01593:C	 SQUARE MESH.

	

01594:C	 NX,NY...	 DIMENSION OF SPLINE IN X DIRECTION

	

01595:C	 ,Y DIRECTION OR

	

01596:C	 TOTAL N0. OF B-SPLINES IN X DIRECTION,

	

01597:C	 Y DIRECTION.

	

01598:C	 KX,KY...	 ORDER OF B-SPLINES IN X DIRECTION,

	

01599:C	 Y DIRECTION.

	

01600:C	 LEFTX,LEFTY... ARRAYS IDENTIFYING KNOT INTERVALS

	

01601:C	 IN WHICH SQUARE MESH COORDINATES

	

01602:C	 LIE. (LEFTX(I)=J IMPLIES

	

01603:C	 TX(J)<`=A(I)CTX(J+1))

01604:C

	

01605:C	 W1,W2...	 WEIGHTS FOR JACOBIAN, DOT PRODUCT

	

01606:C	 TO BE USED IN OF.

	

01607:C	 NKNOTX,NKNOTY...DIMENSIONS FOR SQUARE MESH

	

01608:C	 OR NUMBER OF ELEMENTS IN ARRAYS A.B.

	

01609:C	 FKOUNT..,	 PARAMETER CONTAINING NUMBER OF CALLS TO

	

01610:C	 OF

	

01611:C	 XK...	 ARRAY CONTAININ POINTS -2,-1,0,1,2

	

01612:C	 WHICH ARE USED AS TEST POINTS IN

	

01613:C	 DETERMINING THE COEFFICIENTS OF THE

	

01614:C	 4TH DEGREE POLYNOMIAL WHICH APPROXI-

	

01615:C	 MATES GF.
01616:C

01617:C OUTPUT
01618:C

	

01619:C	 ALPHA(I,J) OR BETA(I,J)..NEW VALU- FOR COEFFICIENT

01620:C

	

01621:	 COMMON/COEF/ALPHA(IOOPIOO),BETA(1001100)

	

01622:	 COMMON/PARAM/FKOUNT

	

01623:	 COMMON/PARAM2/A(100),B(100),NX,NY,KX,KY

	

01624:	 # ,LEFTX(100),LEFTY(100)

	

01625:	 COMMON/KNOT/NKNOTX,NKNOTY

	

01626:	 COMMON/WEIGHTS/W142

	

01627:	 COMMON/XKS/XK(5)

	

01628:	 REAL R(3),LEND

	

01629:	 FM(R)=C1#R##4+C2*R#R*R+C3*R#R+C4#R+C5
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01630: XK(1) nLEND
01631: DO 50 IK=2,5

01632: XK(IK)=LEND+FLOAT(IK)-I#
01633: 50 CONTINUE
01634: CALL CRIT(O, C1,C2,C3,C4,C5tNROOTS,R,MKOUNT,

01635: 8 I ► J)
01636: IF(NROOTS.NE .-1) GOTO 55
01637: PRINT#,'WARNING #1 COEF IS 0'

01638: RETURN
01639: 55 CONTINUE
01640' TMIN-10.OE10

01641. IL=O
01642: DO 600 IR=I,NROOTS
01643: IF(R(IR).GE.LEND)THEN

01644: IL=IL+1
01645..
01646: ENDIF

01647' 600 CONTINUE
01648: NROOTS=IL
01649: IF(NROOTS.EQ.0) THEN

01650: IF(MKOUNT/2*2.EQ.MKOUNT) THEN
01651. ALPHA(I,J)=LEND
01652: TMIN=FM(LEND)

01653: ELSE
01654: BETA(I.J)=LEND
01655: TMIN=FM(LEND)

01656: ENDIF
01657: ELSE
01658: DO 700 IR=I,NROOTS

01659: FMINN=FM(R(IR))
01660: IF(FMINN.LT .TMIN)	 THEN
01661: TMIN=FMINN

01662: IMIN=IR
01663: ENDIF
01664: 700 CONTINUE

01665: FMINN=FM(LEND)
01666: IF(FMINN.LT .TMIN) R(IMIN)=LEND
01667: IF(MKOUNT/2*2.E0.MKOUNT) THEN

01668: ALPHA(I,J)=R(IMIN)
01669'. TMIN=FM(R(IMIN))
01670: ELSE

01671: BETA(I,J)=R(IMIN)
01672: TMIN=FM(R(IMIN))
01673: ENDIF
OT674: ENDIF
01675: RETURN
01676: END

01677.0
01678C
01679:C

01680; SUBROUTINE TESTMINB(MKOUNT,I,J,LEND,REND)
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01681:C
016822C FOR A GIVEN COEFFICIENT ALPHA(I,J) OR BETA(I,J)
01683 :C TESTMINB FINDS AND TESTS THE CRITICAL POINTS OF

01684 :C THE 4TH DEGREE POLYNOMIAL 	 REPRESENTING OF TO
01685:C DETERMINE WHICH POINT YIELDS THE SMALLEST VALUE FOR OF

01686tC WHEN OF IS VIEWED AE A FUNCTION OF THAT COEFFICIENT.
01687:C THE SMALLEST VALUE IS COMPARED WITH THE VALUE
01688:C AT THE ENDPOINTS OF THE INTERVAL	 (LEND ► REND)
01689:C TO DETERMINE AT WHAT NUMBER THE MINIMUM VALUE
016901C OF OF OCCURS. THE NUMBER CHOSEN BECOMES THE NEW
01691:C VALUE FOR ALPHA(I,J) OR BETA(I,J)	 .
01692:C
01693:C INPUT
01694 :C
01695:C MKOUNT... MKOUNT EVEN MEANS THE COEFFICIENT
01696:C INVOLVED IN MINIMIZATION IS IN THE ALPHA
01697:C ARRAY. MKOUNT ODD MEANS THE COEFFICIENT
01698:C IS IN THE BETA ARRAY,
01699:C I,J.. SUBSCRIPTS FOR COEFFICIENT INVOLVED
01700:C IN MINIMIZATION
01701:C LEND,REND.. LEFT AND RIGHT ENDPOINTS FOR
01702:C INTERVAL
01703:C (IN COMMON)
01704:C ALPHA ► BETA.. ARRAYS CONTAINING COEFFICIENTS OF
01705:C TENSOR PRODUCT SPLINE MAPPING.
01706 :C A,B... ARRAYS CONTAINING COORDINATES FOR
01707:C SQUARE MESH,
01708:C NX,NY... DIMENSION OF SPLINE IN X DIRECTION
01709:C ,Y DIRECTION OR
01710:C TOTAL NO, OF B-SPLINES IN X DIRECTION,
01711:C Y DIRECTION,
01712:C KX,KY... ORDER OF B-SPLINES IN X DIRECTION,

01713:C Y DIRECTION.
01714:C LEFTX,LEFTY... ARRAYS IDENTIFYING KNOT INTERVALS
01715:C IN WHICH SQUARE MESH COORDINATES
01716:C LIE.	 (LEFTX(I) =J IMPLIES
01717:C TX(J){=A(I)<TX(Jtl))
01718:C
017194C Wi,W2... WEIGHTS FOR JACOBIAN, DOT PRODUCT
01720:C TO BE USED IN OF.
01721:C NKNOTX,NKNOTY...DIMENSIONS FOR SQUARE MESH
01722:C OR NUMBER OF ELEMENTS IN ARRAYS A ► B,
01723:C FKOUNT... PARAMETER CONTAINING NUMBER OF CALLS TO
01724:C OF
02725 :C XK... ARRAY CONTAININ POINTS -2,-1,0,1,2
01726:C WHICH ARE USED AS TEST POINTS IN
01727:C DETERMINING THE COEFFICIENTS OF THE
01728:C 4TH DEGREE POLYNOMIAL WHICH APPROXI-
01729:C MATES GF.
01730:C
01731:C OUTPUT
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017321C
01733:C

01734:C
01735:
01736:

01737:
01738:
01739:

01740:
01741:
01742:

01743:
01744:
01745:

01746:
01747:
01748:
01749:
01750:
01751:

01752:
01753:
01754:

01755:
01756:
01757:

01758:
01759:
01760:

01761:
01762:
01763:

01764:
01765:
01766:

01767:
01768:
01769:
01770:
01771:
01772:

01773:
01774:
01775:

01776:
01777:
01778:

01779:
01780:
01781:

01782:

ALPHA(I,J) OR BETA(I,J)..NEW VALUE FOR

COMMON/COEF/ALPHA(100,100),BETA(1009
COMMON/PARAM/FKOUNT

COMMON/PARAM2/A(100),B(100)•NX,NY,KX
,LEFTX(100),LEFTY(100)
COMMON/KNOT/NKNOTX,NKNOTY

COMMON/WEIGHTS/W1,W2
COMMON/XKS/XK(5)
REAL R(3),LEND

FM(R)sCI*R**4+C2*R*R*R+C3*R*R+C4*R+C5
CENTER=(LEND+REND)/2.
XK(1)=LEND-CENTER

XK(2) =(LEND-CENTER)/2,
XK(3)=0.
XK(4)=(REND-CENTER)/2.

XK(5)=REND-CENTER
CALL CRIT(CENTER,CI,C2,C3,C4,C5,NROOTS,R,MPNOUNT,
Ili)

IF(NROOTS.NE .-1) GOTO 55
RETURN
CONTINUE

?MIN=I0.OE10
IB-0
DO 600 IR=1 ► NROOTS
IF(R(IR)+CENTER.GE.LEND.AND.R(IR)+CENTER.LE.REND)
IB=IB+1
R(IB)=R(IR)

ENDIF
CONTINUE
NROOTS-IB

IF(NROOTS.EQ.0) THEN
IF(MKOUNT/2*2.EQ.MK0UNT) THEN
ALPHA(I,J)=CENTER

THIN=FM(CENTER)
ELSE
BETA(I,J)=CENTER
TMIN=FM(CENTER)

ENDIF
ELSE

DO 700 IR=I,NROOTS
FMINN=FM(R(IR))
IF(FMINN.LT .TMIN)THEN

TMIN=FMINN
IMIN=IR
ENDIF

700	 CONTINUE
FMINNL=FM(LEND)
FMINNR-FM(REND)

IF(FhINNL.LT.FMINNR) THEN

*

55

600

THEN

f i
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01783:	 IF(FMINNL.LT.TMIN) THEN
01784:	 R(ININ)aLEND

01785:	 TMIN*FM(LEND)
01786:	 ENDIF

01787:	 ELSE IF(FMINNR.LT.TMIN) THEN

01788:	 R(IMIN) nREHD
01789:	 TMIN=FM(REND)
01790:	 ENDIF

`	 01791:	 IF(MKOUNT/2*2.EQ.MKOUNT) THEN
01792:	 ALPHA(I,J)•R(IMIN)+CENTER
01793:	 ELSE

01794:	 BETA(I,J)sR(IMIN)+CENTER
01795:	 ENDIF
01796:	 ENDIF

01797:	 RETURN
01798:	 END
01799:C

41800:C
01801:C
01802:	 SUBROUTINE CUBIC(A302 01,AO,NROOTS,RR)

01803:C
01804:C	 CUBIC COMPUTES THE ROOTS OF A CUBIC POLY-
01805:C NOMIAL USING FORMULAS FROM 'HANDBOOK OF

01806:C MATHEMATICAL TABLES AND FORMULAS' BY RICHARD
01807:C STEVENS BURINGTON,PH.D., MCGRAW-HILL NEW YORK,

01908:C 1962.

01809:C
01810:C INPUT
01811:C	 A39A29A1,A0..	 COEFFICIENTS OF CUBIC POLY-

01812:C	 NOMIAL
01813:C
01814: C OUTPUT

01815:C
01916:C	 NROOTS...	 NUMBER OF DIFFERENT REAL ROOTS

01817:C	 RR...	 ARRAY CONTAINING REAL ROOTS

01818:C
01819:	 REAL RR(3)
01820:	 PI•3.1415

01821:	 PsA2/A3

01822:	 QnA1/A3
01823:	 R*A0/A3

01824:	 A=1./3.*(3.8Q-P*P)
01825:	 B=1./27.8(2.8P*P*P-9.*P*0+27.8R)

01826:	 IF (ABS(9).LT.1.0E-06) THEN

01827!	 SIGN980.
01828:	 ELSE
01829:	 SIGNB=B/ABS(B)
01830 	 ENDIF
01831 	 BB=B*B/4.
01832:	 AAA=A*A*A/27..

01833:	 TEST=BB+AAA
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01834:	 IF(TEST.LT.0) THEN
01835:	 NR0OTSn3

01836:	 PHI=ACOS(-SIONB*SQRT(99/(-AAA)))
01837:	 SRT=SQRT(-A/3.)
01838:	 RR(1)=2.*SRT*COS(PHI/3.)

01839:	 RR(2)=2.*SRT*COS(PHI/3.+2.*PI/3.)
01840:	 RR(3)=2.#SRT*COS(PHI/3.+49*PI/3.)
01841:	 ELSE IF(TEST.OT.0) THEN

01642:	 NROOTSsl
01843:	 S1=-.5*9+SQRT(TEST)
01844:	 S2=-.5*9-SQRT(TEST)

01845:	 IF (ABS(SS).LT.l.0E-06) THEN
01846:	 SIGNSI =0.
01847:	 ELSE
01848:	 SIGNSI=S1/.,BS(S1)
01849:	 ENDIF
01650:	 IF (ABS(S2).LT.1.0E-06) THEN

01851:	 SIGN32a0.
01852:	 ELSE
01853 	 SIGNS2=S2/ABS(S2)

01854 	 ENDIF
01855:	 RR (l)=SIGNSI*(A9S(S1)**(l./3.))
01856:	 +SIGNS2*(ABS(S2)**(i./3.))

01857:	 ELSE
O1@58:	 NROOTS=2
01859:	 RR(I)=-SIGNS*2.*SORT(-A/3.)
01860:	 RR(2)=SIGNB*S0RT(-A/3.)
01861:	 END IF
01862:	 DO 10 I=10

01863:	 RR(I)=RR(I)-P/3.
01864:	 10 CONTINUE
01865:	 RETURN

01866:	 END
01867:C
01868:C

01869:C
01870:	 SUBROUTINE EXTREMES(X,Y,TMAX,TMIN,NR,NC)
01871:C

01872:C
01873:C EXTREMES FINDS THE MAXIMUM AND MINIMUM VALUES
01874:C AMONG THE ELEMENTS OF TWO TWO-DIMENSIONAL ARRAYS.

01875:C
01876:C	 INPUT
01877:C

01878:C	 X ... X COMPONENT
01879:C	 Y...Y COMPONENT

01880:C	 NR ... DIMENSION OF X ARRAY

01881:C	 NC ... DIMENSION OF Y ARRAY
01882:C

01883:C	 OUTPUT

01884:C
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01885:C TMAX,..MAXIMUM VALUE IN ARRAYS

0188d:C TMIN...MINIMUM VALUE IN ARRAYS

019971C
01888: REAL X(100,100),Y(1009100)

01889: TMAX•X(i,l)

01890: TMIN=X(1.1)
01891: DO 20 In 1,NR
01892: DO 10 Js1,NC

01893: IF(X(I,J).OT.TMAX) TMAX•X(I,J)
01894: IF(X(I,J).LT.TMIN) TMINsX(I,J)
01895: IF(Y(I,J).GT.TMAX) TMAX=Y(I,J)

01896: IF(Y(I,J).LT.TMIN) TMIN=Y(I,J)
01897: 10	 CONTINUE
01898: 20	 CONTINUE

01899: RETURN
01900: END
01901:C

01902:C
01903:C
01904: SUBROUTINE NORM(X,Y,TMAX,TMIN,NR,NC)

01905:C
01906:C THIS ROUTINE NORMALIZES THE VALUES OF TWO
01907:C TWO DIMENSIONAL ARRAYS SO THAT THEY LIE

01908:C BETWEEN 0 AND 1 INCLUSIVE.
01909:C

01910:C INPUT

01911:C
01912:C X ... X COMPONENT ARRAY ON INPUT AND
01913:C NORMALIZED X COMPONENT ARRAY ON OUTPUT

01914:C Y...Y COMPONENT ARRAY ON INPUT AND
01915:0 NORMALIZED Y COMPONENT ARRAY ON OUTPUT
01916:0 NR ... DIMENSION OF X ARRAY

01917:C NC+..DIMENSION OF Y ARRAY

01918:C TMAX...MAXIMUM VALUE IN ARRAYS

01919:C TMIN ... MINIMUM VALUE IN ARRAYS

01920:C

01921:C OUTPUT
01922:C

01923:C X ... NORMALIZED X ARRAY
01924:C Y ... NORMALIZED Y ARRAY

01925:C

01926: REAL X(100,100),Y(100,100)
01927: DO 20 I=:,NR
01928: DO 10 J=1,NC

01929: X(I ► J)=(X(I,J)-TMIN)/(TMAX-TMIN)
01930: Y(I,J)=(Y(I,J)-TMIN)/(TMAX-TMIN)
01931: 10	 CONTINUE

01932: 20	 CONTINUE
01933: RETURN
01934: END

BOTTOM

t



1. Report No. P. Gewmnwnt Accewon No. 3. Recipient's Cautop No

NASA CR-177968	 J
4. Titk and Subtitle 6. Repon pat#

September 1985
Algebraic Grid Generation Using Tensor Product 6. Mlwmirg organization C. de
B-Splines

7. Authors) 9. hrforming organisetron Repwt No.

Bonita V. Saunders

10. Work Unit No.
t9. "or raring organization Nara and Address

Old Dominion University 11. Contract w. nt N .	 1
NGT 47-0	 801

Norfolk, Virginia

13. Type of Repon and Perrot: Covv d

Contractor Report12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration tt. SponsoringSponsoring A9arney code
Washington, DC

505-31-83-02

15. Sup;ite?ranta, y Notes
This report is a dissertation submitted to Old Dominion University for partial
fulfillment of the requirements for the Degree 	 of Doctor .:f Philosphy in

Computational and Applied Mathematics. 	 I
Langley

T6. Abstract

In general, finite difference methods are more successful 	 if the accompanying
grid has lines which are smooth and nearly orthogonal. 	 This thesis discusses
the development of an algorithm which produces such a grid when given the
boundary description. 	 Topological	 considerations in structuring the grid
generation mapping are discussed.	 In particular, this thesis examines the
concept of the degree of a mapping and how it can be used to determine what
requirements are necessary *if a mapping is to produce a suitable grid. 	 The
grid generation algorithm uses a mapping composed of bicubic B-splines.
Boundary coefficients are chosen so that the splines produce Schienberg's
variation diminishing spline approximation to the boundary. 	 Interior
coefficients are initially chosen to give a variation diminishing

approximation to the transfinite bilinear interpolant of the function mapping
the boundary of the unit square onto the boundary of the grid.	 The
practicality of optimizing the grid by minimizing a functional 	 involving the
Jacobian of the grid generation mapping at each interior grid point and the

dot product of vectors tangent to the grid lines is investigated.	 Grids	 I
generated by using the algorithm are presented. 	 I

17. Ka• Woros (Suggs-.test by Author(a)I 12. Distribution Statement
grid generation, Computational Fluid Unclassified-Unlimited
Dynamics, Optimization Subject Category 64

19. purity Claud. lob this report) 20. Security Crasv if. lot this page) 21. No. of Pages 22	 r	 ^ '

Unclassified Unclassified 152 A08

For wrtby thr (rational ?ethnical Information Sorvice.Springfie ld. Virginia 22161

IN


	0016A02.pdf
	0016A03.pdf
	0016A04.pdf
	0016A05.pdf
	0016A06.pdf
	0016A07.pdf
	0016A08.pdf
	0016A09.pdf
	0016A10.pdf
	0016A11.pdf
	0016A12.pdf
	0016A13.pdf
	0016A14.pdf
	0016B01.pdf
	0016B02.pdf
	0016B03.pdf
	0016B04.pdf
	0016B05.pdf
	0016B06.pdf
	0016B07.pdf
	0016B08.pdf
	0016B09.pdf
	0016B10.pdf
	0016B11.pdf
	0016B12.pdf
	0016B13.pdf
	0016B14.pdf
	0016C01.pdf
	0016C02.pdf
	0016C03.pdf
	0016C04.pdf
	0016C05.pdf
	0016C06.pdf
	0016C07.pdf
	0016C08.pdf
	0016C09.pdf
	0016C10.pdf
	0016C11.pdf
	0016C12.pdf
	0016C13.pdf
	0016C14.pdf
	0016D01.pdf
	0016D02.pdf
	0016D03.pdf
	0016D04.pdf
	0016D05.pdf
	0016D06.pdf
	0016D07.pdf
	0016D08.pdf
	0016D09.pdf
	0016D10.pdf
	0016D11.pdf
	0016D12.pdf
	0016D13.pdf
	0016D14.pdf
	0016E01.pdf
	0016E02.pdf
	0016E03.pdf
	0016E04.pdf
	0016E05.pdf
	0016E06.pdf
	0016E07.pdf
	0016E08.pdf
	0016E09.pdf
	0016E10.pdf
	0016E11.pdf
	0016E12.pdf
	0016E13.pdf
	0016E14.pdf
	0016F01.pdf
	0016F02.pdf
	0016F03.pdf
	0016F04.pdf
	0016F05.pdf
	0016F06.pdf
	0016F07.pdf
	0016F08.pdf
	0016F09.pdf
	0016F10.pdf
	0016F11.pdf
	0016F12.pdf
	0016F13.pdf
	0016F14.pdf
	0016G01.pdf
	0016G02.pdf
	0016G03.pdf
	0016G04.pdf
	0016G05.pdf
	0016G06.pdf
	0016G07.pdf
	0016G08.pdf
	0016G09.pdf
	0016G10.pdf
	0016G11.pdf
	0016G12.pdf
	0016G13.pdf
	0016G14.pdf
	0017A02.pdf
	0017A03.pdf
	0017A04.pdf
	0017A05.pdf
	0017A06.pdf
	0017A07.pdf
	0017A08.pdf
	0017A09.pdf
	0017A10.pdf
	0017A11.pdf
	0017A12.pdf
	0017A13.pdf
	0017A14.pdf
	0017B01.pdf
	0017B02.pdf
	0017B03.pdf
	0017B04.pdf
	0017B05.pdf
	0017B06.pdf
	0017B07.pdf
	0017B08.pdf
	0017B09.pdf
	0017B10.pdf
	0017B11.pdf
	0017B12.pdf
	0017B13.pdf
	0017B14.pdf
	0017C01.pdf
	0017C02.pdf
	0017C03.pdf
	0017C04.pdf
	0017C05.pdf
	0017C06.pdf
	0017C07.pdf
	0017C08.pdf
	0017C09.pdf
	0017C10.pdf
	0017C11.pdf
	0017C12.pdf
	0017C13.pdf
	0017C14.pdf
	0017D01.pdf
	0017D02.pdf
	0017D03.pdf
	0017D04.pdf
	0017D05.pdf
	0017D06.pdf
	0017D07.pdf
	0017D08.pdf
	0017D09.pdf
	0017D10.pdf
	0017D11.pdf
	0017D12.pdf
	0017D13.pdf
	0017D14.pdf
	0017E01.pdf

