General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA Contractor Report 177968

ALGEBRAIC GRID GENERATION USING
TENSOR PRODUCT B-SPLINES
algediaic geid generaitun osing teasor n86-11908 PhODSCT E-SELINES Ph.D. Thesis iokldeora old Vominich Lliv)
 CSCL 12A

Bonita V. Saunders

OLD DOMINION UNIVERSITY Norfolk, Virginia

Grant NGT 47-003-802
September 1985

Mns

National Aeronautics and Space Administration

ABSTRACT

ALGEBRAIC GRID GENERATION USING
 TENSOR PRODUCT B-SPLINES

Bonita Valerie Saunders
Old Dominion University, 1985 Director: Dr. Philip W. Smith

In general, finite difference methods are more successful if the accompanying grid has lines which are smooth and nearly orthogonal. This thesis discusses the development of an algorithm which produces such a grid when given the boundary description.

Topological considerations in structuring the grid generation mapping are discussed. In particular, this thesis examines the concept of the degree of a mapping and how it can be used to determine what requirements are necessary if a mapping is to produce a suitable grid.

The grid generation algorithm uses a mapping composed of bicubic B-splines. Boundary coefficients are chosen so that the splines produce Schoenberg's variation diminishing spline approximation to the boundary. Interior coefficients are initially chosen to give a variation diminishing approximation to the transfinite bilinear interpolant of the function mapping the boundary of the unit square onto
the boundary of the grid.
The practicality of optimizing the grid by minimizing a functional involving the dacobian of the grid generation mapping at each interior grid point and the dot product of vectors tangent to the grid lines is investigated.

Grids generated by using the algorithm are presented.

ACKNOWLEDGEMENTS

I would like to thank my dissertation director, Dr. Philip W. Smith, for his encotiragement, patience and assistance during all stages of the development of this dissertation. I also thank Dr. Robert Smith of NASA Langley Research Center for his guidance and instruction during my past three years at NASA. Dr. Smith offered invaluable suggestions and advice to me during my research. I would also like to thank others who helped in the reviewing of this thesis. The comments and suggestions of Dr. John Tweed, Dr. James Schwing and Or. John Swetits are greatly appreciated.

I must also express my gratitude to the entire Computer Science and Applications Branch in the Analysis and Computation Division at Langley Research Center. Everyone always willingly answered my questions or found others who could assist me.

Finally, my sincere thanks to Mrs. Harriet Sims whose patience and perseverance made the typing of this dissertaticn possible.

TABLE OF CONTENTS
Page
LIST OF FIGURES. iv
Chapter

1. INTRODUCTION 1
2. APPLICATIONS OF DEGREE THEORY. 6
2.1 Defining the Degree of a Mapping 7
2.2 Properties of the Degree. 8
2.3 A Topological Definition of the Degree 11
2.4 Applications to Grid Generation 19
2.5 Additional Topological Questions 22
3. AN ALGEBRAIC GRID GENERATION MAPPING 27
3.1 A First Order Example 27
3.2 B-splines 30
3.2.1 Defining B-splines 30
3.2.2 Properties of B-splines. 31
3.2.3 Spline Functions 34
3.2.4 Variation Diminishing Splines 36
3.2.5 Tensor Product B-splines 38
3.3 A Smoothing Functional. 40
3.3.1 Characteristics of the Functional. 42
3.3.2 Convergence of the Smoothing
Functional 46

Page

4. PROGRAM TENTEST.504.1 The Algorithm 50
4.2 Computing the Tensor Product B-splines. 51
4.3 Choosing the Initial Coefficients 53
4.4 Minimizing the Smoothing Functional 56
4.5 Distribution Functions. 60
5. RESULTS AND DISCUSSION 66
5.1 Convex Domains. 68
5.1.1 Trapezoid. 68
5.1.2 Quadrilateral with Unequal Sides 70
5.1.3 Triangle 74
5.1.4 Circle 74
5.2 Nonconvex Domains 77
5.2.1 Nonconvex Quadrilateral 77
5.2.2 Puzzle Pieces 81
5.3 Grids for Specific Objects. 85
5.3.1 Airfoil. 91
5.3.2 Spike-Nosed Body 95
5.3.3 Shuttle. 95
6. CONCLUSIONS. 102
APPENDIY. 106

LIST OF FIGURES

figure Page

1. Invariance of the degree when points connected by a continuous path avoiding $F(a C)$. 10
2. Mapping the unit square onto a nonconvex domain 24
3. Initial grid on nonconvex domain. 25
4. Optimized grid on nonconvex domain 26
5. Support of tensor product $B-s p l i n e ~ B_{i j}$. 41
6. Mapping from computational domain to physical domain 55
7. Trapezoid Grid. 57
8. Support for tensor product B-spline $B_{6,5}$. 59
9. Obtaining a concentration of grid points. 62
10. Concentrating grid points on trapezoid domain 64
11. Grids on trapezoid domain 69
12. Effect of weights, wj and wd. 71
13. Grids on quadrilateral with unequal sides 72
14. Concentrating grid points on quadrilateral. 73
15. Division of triangular boundary into four sections 75
16. Grids on triangular domain 76
17. Grids on circular domain. 78
18. Grids on circular domain after optimization. 79
FIGURE Page
19. Nonconvex quadrilateral. 80
20. Grids on nonconvex quadrilateral domain 82
21. Optimized grids on nonconvex quadrilateral domain 83
22. Enlarged corner of optimized grid. 84
23. Puzzle shaped domains. 86
24. Grids on first puzzle shaped domain. 87
25. Grids obtained after various iterations 88
26. Grids on second puzzle shaped domain 89
27. Exponential distributions on puzzle shaped grids 90
28. Domain around Kármán - Trefftz airfoil 92
29. Grids for Kármán - Trefftz airfoil 93
30. Optimized grids for Kármán - Trefftz airfoil 94
31. Grids for spike-nosea body 96
32. Optimized grids for spike-nosed body 97
33. Original grid for shuttle. 99
34. Optimized grid for shuttle 100
35. Gptimized grid concentrated near shuttle boundary. 101

1. INTRODUCTION

Grif generation is the numerical development of curvilinear coordinate systems. In recent years grid generation has been the key to solving partial differential equations on arbitrarily shaped regions by finite difference methods. Although much of the motivation for grid generation has come from fluid dynamics, the techniques apply to any area, such as electromagnetics and heat transfer, which involves the solving of partial differential equations on a physical domain.

Inherent in grid generation techniques is a mapping T from some canonical domain such as a square or rectangle in two dimensions, or cube in three dimensions, onto the physical domain on which the partial differential equations are to be solved. The image of a mesh on the canonical, or computational, domuin will be a grid on the physical domain. When the grid boundary coincides with the boundary of the physical domain, the system generated is called a boundary fitted coordinate system.

A boundary fitted coordinate system allows one to apply boundary conditions exactly, thus avoiding interpolation errors. However, such a system may make the equations to be solved more complex [Sm].

The distribution of the coordinate lines, or grid
lines, should be smooth, but concentrated in areas where a large gradient occurs in the physical solution. As stated by Thompson, Warsi and Mastin [TWM], "the grid points may be thought of as a finite set of observers of the physical solution, stationed to be most effective in covering all of the action on the field." Ideally, the grid should be adaptive, that is, coupled with the physical solution So that it automatically redistributes its grid lines to obtain the desired regions of concentration as the solution evolves. However, the interior lines should not cross the physical boundary and should be nearly orthogonal at the intersection points to avoid large truncation errors in the finite difference approximations.

Grid generation is based on the cbservation that finite difference computations are much easier to make on a uniform mesh over a canonical domain such as a square or cube than on a grid over an irregularly shaped region. Therefore, the partial differential equations to be solved must first be transformed so that the computational coordinates become the independent coordinates. The resulting equations may then be expressed as finite difference equations on the computational domain.

Grid generation techniques may be divided into two general types: partial differential equation methods and algebraic methods. P.d.e. methods include elliptic, hyperbolic and conformal mapping techniques. All of these methods involve the solving of partial differential equations to
obtain the grid coordinates. The simplest elliptic method for grid generation uses the Laplace equations

$$
\begin{aligned}
& \Delta^{2} \xi=\frac{\partial^{2} \xi}{\partial x^{2}}+\frac{\partial^{2} \xi}{\partial y^{2}}=0 \\
& \Delta^{2} \eta=\frac{\partial^{2} \eta}{\partial x^{2}}+\frac{\partial^{2} \eta}{\partial y^{2}}=0
\end{aligned}
$$

where E and n are the computational coordinates and x and y are the physical coordinates in two dimensions. The equations are first transformed sc that the independent and dependent variables are interchanged. Then the new equations are solved for x and y in terms of ξ and η. Some control over the grid cell spacing can be accomplished by introducing control functions $P(\xi, \eta), Q(\xi, \eta)$ and solving the Poisson equations [TWM, D. 39]

$$
\Delta^{2} \xi=P(\xi, \eta)
$$

$$
\Delta^{2} n=Q(5, n) .
$$

Solving the Laplace equations

$$
\begin{aligned}
& \Delta^{2} \xi=0 \\
& \Delta^{2} \eta=0
\end{aligned}
$$

with boundary conditions

$$
\begin{aligned}
E_{x} & =n_{y} \\
\xi_{y} & =-n_{x}
\end{aligned}
$$

produces a conformal transformation [TWM, p. 11]
Starius [St. D. 27] shows that solving an initial value problem satisfying

$$
\begin{aligned}
x_{\eta} & =-y_{\xi} F \\
y_{\eta} & =x_{\xi} F
\end{aligned}
$$

where F is chosen so that the system is hyperbolic produces a hyperholic grid generating system. Grids generated from elliptic equations are generally smooth regardless of the type of boundary, but slope discontinuities propagate through hyperbolically generated grids [St]. Generating a grid usifig conformal mapping techniques requires careful selection of the boundary data, making it difficult to structure the grid to obtain a high concentration of grid points in areas of large gradients in the physical solution. More grid points may have to be added in order to capture regions of rapid change such as shocks and boundary layers. Also in p.d.e. generated systems the Jacobian information needed for the transformation of the equations being solyed must be computed numerically.

In algebraic methods an explicit functional relation-
ship between the computational and physical domains is defined. Therefore, no p.d.e. need be solved to obtain the grid coordinates and the Jacobian matrix can be computed analytically. Such methods allow more precise controls of the grid structure making it easier to concentrate grid points in large gradient areas. However, algebralcally generated grids are more sensitive to point distributions on the boundary and, in genera!, may not be as smooth as those generated by elliptic technıques [Sm]. Slope discontinuities on the boundary may propagate into the field. Nevertheless, a variety of techniques have been used to produce acceptable smoothness in algebraically generated grids.

Tifs thesis discusses an algebralc grid generation technique for creating boundary fitted coordinate systems. This technique uses a mapping which is a sum of tensor product B-splines. Chapter 2 discusses degree theory, explaining how the degree of a maping can be used to determine what conditions must be met if an algebraic transformation is to produce a suitable grid. Chapter 3 presents the tensor product grid generation mapping and discusses the properties of B-splines to show their suitability for use in such a mapping. Chapter 3 also introduces a functional which can be used to change the coefficients in the mapping in order to enhance the smoothness and orthogo. nality in the generated grid.

Chapter 4 discusses the computer program TENTEST which uses the techniques p-asented in Chapter 3 to generate grids on arbitrarily shaped two-dimensional domains. Some of the grids created using TENTEST are illustrated and discussed in Chapter 5. Conclusions and suggestions for further study are presented in Chapter 6.

2. APPLICATIONS OF DEGREE THEORY

This chapter discusses degree thoery and shows how the degree of a mapping can be used to help determine what requirements are necessary if a transformation T is to produce a suitable grid.

Since the distribution of grid lines should be smooth with concentration in areas of large gradients in the physical solution, the image of T should cover the entire physical domain, that is, T should be onto. Also, the transformation should be one to one. In terms of the grid, this means that the grid lines should not overlap the physical boundary and should intersect only at points corresponding to intersection points on the mesh in the computation domain.

Requiring T to be one to one and onto is equivalent to saying that the system $T(s)=p$ must have one and only one solution in the computational domain for each point p in the physical domain. This provides the motivation for looking at the following general problem:

Pick an open set $D C R^{n}$, where R^{n} is euclidean n-space, and let C be an open bounded set such that $\bar{C} \in D$. If $F: D \subset R^{n} \rightarrow R^{n}$ is a continuous mapping and $y \in R^{n}$ is given, how many solutions of $F(x)=y$ exist in C ?

The difficulty in solving this problem lies in the fact that in general the solutions do not vary continuously
with F or y. This difficulty may be resolved by looking instead at the difference between the number of solutions for which the Jacobian of F is positive and the number of solutions for which the Jacobian of F is negative. Loosely, this is what is called the degree of F at y with respect to C .

2.1 Defining the Degree of a Mapping

A more precise definition of the degree of a mapping F takes on different forms depending on what restrictions are placed on F. What follows are essentially the definitions presented in references [S] and [0].
2.1-1 Definition. Let $C-D^{n}$ be an open bounded set and let $F: \bar{C} \subset R^{n} \rightarrow R^{n}$ be continuously differentiable on C. Pick $y \notin F(\partial C)$ and let $\Gamma=\{x \in C \mid F(x)=y\}$. If $F^{\prime}(x)$ is nonsingular for all $x \in \Gamma$ then one defines the degree of F^{\prime} at y with respact to C by $\operatorname{deg}(F, C, y)=x_{\varepsilon}^{\sum} \Gamma$ sign $\operatorname{det} F^{\prime}(x)$.

In [0], Ortega and Rheinboldt actually define the degree in terms of an integral and then show that it has the equivalent form given above.

On removing the restriction that det $F^{\prime}(x) \neq 0$ for
Xer the definition becomes

$$
\operatorname{deg}(F, C, y)=\lim _{k \rightarrow \infty} \operatorname{deg}\left(F, C, y_{k}\right)
$$

where $\lim _{k \rightarrow \infty} y_{k}=y$ and each element of $\left\{y_{k}\right\}$
satisfies $y_{k} \notin F(\partial C)$ and $\operatorname{det} F^{\prime}(x) \neq 0$ whenever $F(x)=y_{k}$.

Actually, one can make the stronger statement that for any such sequence $\left\{y_{k}\right\}$ there is a k_{0} such that $\operatorname{deg}(F, C, y)=\operatorname{deg}\left(F, C, y_{k}\right)$ for $k \geq k_{0}[0, p .159]$.

The Weierstrass approximation theorem makes it possible to extend the definition of the degree of a mapping to a continuous function.
2.1-2 Definition. Let $F: \bar{C} \subset R^{n} \rightarrow R^{n}$ be continuous on the bounded open set C. Define $\|F\| \overline{\bar{C}} \sup _{x \notin C}|F(x)|$ where $|\cdot|$ is the Euclidean norm. Then for $y \notin(a C)$ one defines the degree of F at y with respect to C by

$$
\operatorname{deg}(F, C, y)=\underset{j \rightarrow \infty}{\lim _{i m} \operatorname{deg}\left(F_{j}, C, y\right)}
$$

where $\left\{F_{j}\right\}$ is a sequence of maps which are continuously differentiable on an open set $D=\bar{C}$ and which satisfy $\lim _{j \rightarrow \infty}\left\|F_{j}-F\right\|_{c}=0$

2.2 Properties of the Degree

The principal properties of the degree are given below. Excellent proofs may be found in [S], [0] and [H].
2.2-1 Theorem. Let $F: \bar{C} \subset R^{n} \rightarrow R^{n} \rightarrow$ continuous on the open bounded set C and let $\Gamma=\{x \in C \mid F(x)=y\}$. For any $y \notin F(a C)$ there exists a quantity, deg(F,C,y), which has the properties listed below. It is:

1. Integer valued
2. Invariant under homotopy

If $W: \mathbb{C}_{x}[0,1] \in R^{n+1} \rightarrow R^{n}$ is continuous, then for any $z=R^{n}$ satisfying $W(x, t) \neq z$ whenever (x, t) $\quad a C x[0,1], \operatorname{deg}(W(\cdot, t), C, z)$ is constant
for all $t e[0,1]$.
3. Dependent only on boundary values

If $G: Z \in R^{n} \rightarrow R^{n}$ is continuous and $\left.G\right|_{a C}=\left.F\right|_{\partial C}$,
then $\operatorname{deg}(F, C, y)=\operatorname{deg}(G, C, y)$.
4. Invariant under translation

For any $z \in R^{n}$.
$\operatorname{deg}(F-z, C, y-z)=\operatorname{deg}(F, C, y)$.
5. Invariant for points which can be connected by a continuous path avoiding $\mathrm{F}(\mathrm{OC})$

See Figure 1.
6. Invariant unaer the excision from C of any closed set Q satisfying $Q n r=0$

In other words, if $\mathrm{O} \cap \mathrm{r}=0$, then $\operatorname{deg}(\mathrm{F}, \mathrm{C}, \mathrm{y})=$ $\operatorname{deg}(F, C-Q, y)$. In particular, if $Q=\bar{C}, \operatorname{deg}(F, C-Q, y)=0$.

This property will be called the Excision Property.
The Excision Property can be used to prove a very important result which is called the Kronecker Theorem in [0, p. 161].
2.2-2 Theorem (Kronecker). If $F: \bar{C} \in R^{n} \rightarrow R^{n}$ is continuous on the bounded open set $C, y \not d F(o C)$ and $\operatorname{deg}(F, C, y) \neq 0$, then the equation $F(x)=y$ has a solution in C.

Proof: Suppose F has no solutions in C. Let $Q=\bar{C}$. Since $y \mathbb{F}(Q)$, the Excision Property implies $\operatorname{deg}(\Gamma, C, y)=0$.
Q.E.D.

Figure l. Invariance of the degree when points connected by continuous path avoiding $F(a C)$.

2.3 A Topological Definition of the Degree

Dugundji [D] presents an alternate formulation for the degree of a mapping. He defines the degree of a mapping $f: S-S$ where S is the unit n-sphere in R^{n}, that is,

$$
S=\left\{x_{\varepsilon} R^{n}| | x \mid=1\right\}
$$

This degree can be shown to be equivalent to the analytically defined degree in the previous sections.

Before defining this degree, several terms must be discussed.
2.3-1 Definition. A set $E \subset R^{n}$ is called a linear variety if $x_{1}, x_{2} \varepsilon$ E implies $\lambda x_{1}+(1-\lambda) x_{2} \varepsilon E$ for all real λ.
2.3-2 Definition. A hyperplane in R^{n} is an ($n-1$) dimensional linear variety. If $n=1$ then a hyperplane will be a point. For $n=2$ it will be a line, and for $n=3$ it is a plane.
2.3-3 Definition. If $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ is a set of $n+1$ points in R^{n}, then the convex hull is called an n-simplex. It will be denoted by $0=\left(x_{0}, x_{1}, \ldots, x_{n}\right)$.

The points $x_{0}, x_{1}, \ldots, x_{n}$ are called the vertices of the n-simplex. If the vertices lie on a hyperplane in \mathbb{R}^{n}, then the n-simplex is said to be degenerate. Now if $\left(x_{i}^{l}, \ldots, x_{i}^{n}\right)$ are the coordinates of point x_{i}, then the volume of an n-simplex [F, p. 208] is given by

$$
\begin{aligned}
& \frac{1}{n!}\left|\operatorname{det}\left(x_{1}-x_{0}, x_{2}-x_{0}, \ldots, x_{n}-x_{0}\right)\right| \\
& =\frac{1}{n!} \left\lvert\, \operatorname{det}\left[\begin{array}{cccc}
& \\
x_{1}^{1}-x_{0}^{1} & x_{2}^{1}-x_{0}^{1} & \cdots & x_{n}^{1}-x_{0}^{1} \\
\cdot & \vdots & & \vdots \\
x_{1}^{n}-x_{0}^{n} & x_{2}^{n}-x_{0}^{n} & \cdots & x_{n}^{n}-x_{0}^{n}
\end{array}\right]\right.
\end{aligned}
$$

An n-simplex is degenerate if and only if $\operatorname{det}\left(x_{1}-x_{0}, x_{2}-x_{0}, \ldots, x_{n}-x_{0}\right)=0$.

The next three definitions will be used to explain the term "ordered n-simplex."
2.3-4 Definition. A binary relation Λ in a set A is a subset $\Lambda \subset A \times A$.
2.3-5 Definition. If Λ is a binary relation in a set A, then Λ is trichotomous if exactly one of the following is true for each $x, y \in A$:

$$
x \wedge y, \quad x=y, y \wedge x .
$$

2.3-6 Definition. Let Λ be a binary relation in a set A. Then Λ is a total order if it is transitive and trichotomous [G, D. 2].
2.3-7 Definition. An ordered n-simplex [D, P. 336] is an n-simplex together with a total ordering on its vertices.

Therefore, if the vertices $x_{0}, x_{1}, \ldots, x_{n}$ of an $n-s i m p l e x$ satisfy $x_{0}<x_{1}<\ldots<x_{n}$, then "<" totally orders the set
$\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$. Therefore, the $n-$ simplex $\delta=\left(x_{0}, x_{1}, \ldots, x_{n}\right)$
is an ordered n-simplex. Such a simplex will be denoted $[b]=\left[x_{0}, x_{1}, \ldots, x_{n}\right]$. The sign of the ordered simplex is the sign of $\operatorname{det}\left(x_{1}-x_{0}, x_{2}-x_{0}, \ldots, x_{n}-x_{0}\right)$.

Now suppose $x_{0}, x_{1}, \ldots, x_{n-1}$ is a set of n points on S having a diameter less than 1 so that the convex hull of the set does not contain the origin. Then the convex hull can be projected onto S by choosing the points on S lying on the directed rays which start at the origin and pass through the convex hull. The points on S form what will be called the spherical $(n-1)$ simplex $\delta=\left(x_{0}, \ldots, x_{n-1}\right)$. The spherical simplex δ is degenerate if and only if $x_{0}, x_{1}, \ldots, x_{n-1}$, lie on a hyperplane in R^{n} passing through the origin, that is, if and only if $\left(x_{0}, x_{1}, \ldots, x_{n-1}, 0\right)$ is a degenerate n-simplex in R^{n}. An ordered spherical ($n-1$) simplex is a spherical ($n-1$)-simplex with a total order on its vertices. The sign of an ordered spherical ($n-1$)-simplex $[8]=\left[x_{0}, \ldots, x_{n-1}\right]$ is defined to be the sign of the n-simplex $\left[x_{0}, \ldots, x_{n-1}, 0\right]$ in $R^{n}[0$, p. 337].

The next two definitions, which can be found in [D, p. 337], complete the terminology needed to define the Dugundji degree.

2.3-8 Definition. A triangulation Δ of S is a decomposition of S into a finite number of nonoverlapping, nondegenerate spherical (n-l)-simplexes such that each face of an (n-1)simplex 15 the common face of exactly two (n-l)-simplexes.

2.3.9 Definition. Suppose S and Σ are unit n-spheres in R^{n}. (Different symbols are used to make the concepts more clear.) Let Δ be a triangulation of S. A proper vertex map $\varphi: \Delta \rightarrow \Sigma$ is a map defined only on the vertices of the spherical ($n-1$)-simplexes in Δ and is such that whenever $x_{0}, x_{1}, \ldots, x_{n-1}$ are vertices of a simplex in Δ, the set $\left\{\varphi\left(x_{0}\right), \varphi\left(x_{1}\right), \ldots, \varphi\left(x_{r_{1}-1}\right)\right\} \subset \Sigma$ has diameter less than 1.

Under the proper vertex map $\varphi: \Delta \rightarrow \Sigma$ there will be a unique simplex $\varphi(\sigma)$ lying on ε corresponding to each simplex $\sigma \in \Delta$. There will be a unique ordered $\left(n_{i}-1\right)$-simplex $\varphi[\sigma]=\left[\varphi\left(x_{0}\right), \varphi\left(x_{1}\right), \ldots, \varphi\left(x_{n-1}\right)\right]$ on Σ corresponding to each ordered (n-l)-spherical simplex [σ] . The sign of [σ] may differ from that of $\varphi[\sigma]$, and the family of sets $\{\varphi(\sigma) \mid \sigma \varepsilon \Delta\}$ may not form a triangulation of Σ since it may contain overlapping simplexes and degenerate simplexes. However, the family does have the fundamental property presented in the following theorem which Dugundji proves [D, p. 237].
2.3-10 Theorem. Suppose Δ is a triangulation of S and $\varphi: \Delta \rightarrow \Sigma$ a proper vertex map. Let y be any point not on the boundary of any set $\varphi(\sigma)$. If $\rho(y, \Delta, \varphi)$ is the number of positive $\varphi[\sigma]$ containing y and $n(y, \Delta, \varphi)$ is the number of negative, then the number $D(y, \Delta, \varphi)=p(y, \Delta, \varphi)-n(y, \Delta, \varphi)$ is the same for all $y \in \Sigma$ not on the boundary of any $\varphi(\sigma)$.

Since $D(y, \Delta, \varphi)$ is independent of y it can be denoted $D(\Delta, \varphi)$.

Now if $F: S \rightarrow \Sigma$ is continuous then the compactness of S makes it possible to find a triangulation Δ of S such that the diameter of $F(\sigma)$ is less than l for each of Δ. Then if $\varphi_{f}: \Delta-\Sigma$ is the proper vertex map defined by $\varphi_{f}(x)=F(x)$ for each vertex x of Δ, Dugundji [D, D. 339] shows that the number $D\left(\Delta, \varphi_{F}\right)$, where φ_{F} is the proper vertex map associated with Δ, is independent of the triangulation of S. He calls the quantity $D\left(\Delta, \varphi_{F}\right)$ the degree of F. Since Δ and φ_{F} actually depend only on $F, D\left(\Delta, \varphi_{F}\right)$ can be denoted $D(F)$.

Like the analytically defined degree, this degree is invariant under homotopy [D, p. 239].
2.3-11 Theorem. If $F: S \rightarrow \Sigma$ is homotopic to $\vec{F}: S \rightarrow \Sigma$, then $D(F)=D(\tilde{F})$.

Now let V be the unit n-ball in R^{n}, that is, $V=\left\{x \in R^{n}| | x \mid \leq 1\right\}$. Dugundji's degree can be extended to a continuous map $H: V \rightarrow V$ provided $H l_{S}$ maps S into S. S is clearly the boundary of V. Dugundji calls such maps regular. The technique for determining the degree of H is analogous to what is done to obtain $D(F)$ for $F: S \rightarrow S$. V is triangulated into n-simplexes such that each lace not on S is the face of exactly two n-simplexes. Then a regular vertex map is defined on the triangulation. \quad is a regular vertex map of a triangulation Δ of V if maps each vertex on S to a point on S and $\mid I_{S}$ is a proper vertex map. To calculate
the degree of H, which will be denoted $D_{r e g}(H)$, one chooses the regular vertex map $\varphi_{H}: \Delta \rightarrow V$ defined by $\varphi_{H}(x)=H(x)$ for any vertex $x \in \Delta$. Then choosing $y \in V-S$ such that y is not on the boundary of any $\Phi_{H}(\sigma)$ one comnutes

$$
D_{r e g}(H)=\text { (number of positive } \varphi_{H}[\sigma] \text { containing } y \text {) }
$$

- (number of negative $\varphi_{H}[\sigma]$ containing y).
$D_{\text {reg }}(H)$ deperds only on H, and if H and H are nomotopic in such a way that the image of S remains on \subseteq throughout the entire deformation, then $D_{r e g}(H)=D_{r e g}(\tilde{H})$. Furthermore, Dugundji proves the following very useful result.
2.3-12 Theorem. Suppose $H: V \rightarrow V$ is a regular map. Let $F=\left.H\right|_{S}: S \rightarrow S$. Then $D(F)=D_{\text {reg }}(H)$.

This theorem provides the information needed to show that Dugundji's degree is equivalent to the analytically defined degree. The following !emma will be used in the proof.
2.3-13 Lemma. Suppose the following hypotheses are given:

1. $H: V \rightarrow V$ is a continuously differentiable regular map
2. $y \in V-S$ and $\Gamma=\{x \in V \mid H(x)=y\}$
3. $H^{\prime}(x)$ is nonsingular for all $x \in \Gamma$

Then there exists a triangulation Δ of V with associated regular vertex map φ_{H} such that whenever oes contains $x \in \Gamma$ and $\varphi_{H}[\sigma]$ is nondegenerate,

$$
\operatorname{sign} \varphi_{H}[\sigma]=\operatorname{sign} \operatorname{det} H^{\prime}(x) .
$$

Proof: For each xer choose a neighborhood N_{x} of x so that either sign det $H^{\prime}(D)>0$ for all points $p \in N_{x}$ or sign det $H^{\prime}(p)<0$ for all points $p e N_{x}$. Choose the neighborhoods small enough so that the family of sets $\left\{N_{x} \mid x \in r\right\}$ is disjoint. Then triangulate V so that each N_{x} contains a nondegenerate equilateral simplex σ_{x} in which x lies, that is, a nondegenerate simplex in which the distance between any two vertices is the same. Call this triangulation Δ. Now suppose $\sigma_{x} \varepsilon \Delta$ and $\sigma_{x}=\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ with the vertices labeled so that $\left[\sigma_{x}\right]=\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ is positive. Since $\varphi_{H}\left(x_{i}\right)=H\left(x_{i}\right), i=0, l, \ldots, n$, the sign of $\varphi_{H}\left[\sigma_{x}\right]$ $=\operatorname{sign} \operatorname{det}\left[H\left(x_{1}\right)-H\left(x_{0}\right), \ldots H\left(x_{n}\right)-H\left(x_{0}\right)\right]$.

However, $\left.H\left(x_{i}\right)-H\left(x_{0}\right)=H^{\prime}\left(x_{0}\right)\left(x_{i}-x_{0}\right)+0 i\left|x_{i}-x_{0}\right|\right)$ for $i=1, \ldots, n$. Therefore, the sign of $\varphi_{H}\left[\sigma_{x}\right]=\operatorname{sign}$ det $\left[H^{\prime}\left(x_{0}\right)\left(x_{1}-x_{0}\right)+o\left(\left|x_{1}-x_{0}\right|\right), \ldots, H^{\prime}\left(x_{0}\right)\left(x_{n}-x_{0}\right)+o\left(x_{n}-x_{0}\right)\right]$. Now if $\left|x_{i}-x_{0}\right|=\varepsilon$ for $i=0,1, \ldots, n$ then expanding the determinant above yields det $\left[H^{\prime}\left(x_{0}\right)\left(x_{1}-x_{0}, \ldots, x_{n}-x_{0}\right)\right]$ plus terms of order $o\left(\varepsilon^{n}\right)$. Therefore, $\operatorname{det}\left[H^{\prime}\left(x_{0}\right)\left(x_{1}-x_{0}, \ldots, x_{n}-x_{0}\right)\right]$, which has order $O\left(\varepsilon^{n}\right)$, is the dominant term, and the other terms can be neglected. Consequently, the sign of $\varphi_{H}\left[\sigma_{x}\right]=\operatorname{sign} \operatorname{det}\left[H^{\prime}\left(x_{0}\right)\left(x_{1}-x_{0}, \ldots, x_{n}-x_{0}\right)\right]$
$=\operatorname{sign}\left[\left(\operatorname{det} H^{\prime}\left(x_{0}\right)\right) \cdot\left(\operatorname{det}\left(x_{1}-x_{0}, \ldots, x_{n}-x_{0}\right)\right]\right.$
$=$ sign det $H^{\prime}\left(x_{0}\right)$ since $\left[\sigma_{x}\right]$ is positive. However,
since $x_{0} \in N_{x}$, sign $\operatorname{det} H^{\prime}\left(x_{0}\right)=$ sign $\operatorname{det} H^{\circ}(x)$.
Q.E.D.
2.3-14 Theorem. Suppose $H: V-V$ is a continuously differentiable regular map. Pick $y_{e} V-S$ and let $r=\left\{x_{e} V \mid H(x)=y\right\}$. Let $F=\left.H\right|_{S}: S \rightarrow S$. If $H^{\prime}(x)$ is nonsingular for all $x_{c} \Gamma$ then

$$
D(F)=\operatorname{deg}(H, V, y) .
$$

Proof: Since 2.3-12 says $D(F)=D_{\text {reg }}(H)$, it suffices to show that $D_{\text {reg }}(H)=\operatorname{deg}(H, V, y)$.

Choose a triangulation Δ of V as specified in 2.3-13 and let φ_{H} be the regular vertex map associated with Δ. Without loss of generality, one can assume that $\varphi_{H}(\sigma)$ is nondegenerate for all ocs because any degenerate $\varphi_{H}(\sigma)$ can be approximated by a nondegenerate simplex $\varphi(\sigma)$ where φ is defined on all vertices p in Δ so that $\left|\varphi(p)-\varphi_{H}(p)\right|<\varepsilon$ for a given e. According to Dugundji [D, D. 338], $D(\Delta, \varphi)=$ $D\left(\Delta, \varphi_{H}\right)=D(H)$ if ε is sufficiently small.

Furthermore, one can also assume that y does not lie on the boundary of ainy $\varphi_{H}(\sigma)$ for ocs since property number 5 of Section 2.2 implies deg(H,V,y) $=\operatorname{deg}(H, V, p)$ for all $\rho \in V-S$.

Therefore, it follows from 2.3-13 that $D_{\text {reg }}(H)=$
number of positive $\varphi_{H}(\sigma)$ containing y

- number of negative $\varphi_{H}(\sigma)$ containing y
$=\sum_{x \in \Gamma}^{\Sigma} \operatorname{sign} \operatorname{det} H^{\prime}(x)$.
Q.E.D.

The following corollary shows that the restriction that $H^{\prime}(x)$ be nonsingular for all $x \in r$ can be removed.
2.3-15 Corollary. Suppose $H: V-V$ is a continuously differentiable regular map. Pick yev-S and let $r=\{x \subset V \mid H(x)=y\}$. Let $F=\left.H\right|_{S}: S \rightarrow S$. Then $D(F)=\operatorname{deg}(H, V, y)$. Proof: By Ortega and Rheinboldt [0, D. 159], there exists a sequence $\left\{y_{k}\right.$ \} which converges to y and has the following properties:

1. Each $y_{k} d H(S)$
2. For each y_{k}, det $H^{\prime}(x) \neq 0$ for all x such that $H(x)=y_{k}$
3. For some $k_{0}, \operatorname{deg}(H, V, y)=\operatorname{deg}\left(H, V, y_{k}\right)$ for all $k \geq k_{0}$

So pick k^{*} so that $k^{*} \geq k_{0}$ and whenever $k \geq k^{*}, y_{k} \in!-S$. Then by 2.3-14 $D(F)=\operatorname{deg}\left(H, V, y_{k}{ }^{*}\right)=\operatorname{deg}(H, V, y)$.
Q.E.D.

It should be noted that this corollary still holas if H maps some of the interior points outside of V. The points outside of V can be projected onto S so that one obtains a mapping from V into V.

2.4 Applications to Grid Generation

The usefulness of degree theory in grid generation surfaces when one studies a grid generating transformation T. One might immediately note from the kronecker theorem that determining the degree at every point in the physical domain would show whether or not T were onto. Unfortunately, the degree is not always easy to conpute in practice.

One therefore looks instead at how the degree can be used to prove some things about those quantities, such as the Jacobian of T , which can be easily computed.

Recall that if $A C R^{n}, B C R^{n}$, tren A nomeomorphic to B means there is a continuous one to one, onto mapping from A to B whose inverse is also continuous. It is clear that i should be a homeomorphism from the computational domain onto the physical domain.

The following result shows that if T is a homeomorphism, its Jacobian does not change sign.

In all of the theorems which foilow $I_{n}=[0,1]^{n}$, $J T=$ Jacobian of $T, C^{0}=i n t e r i o r ~ o f ~ C, ~ C^{C}=$ complement of $C, \partial C=$ boundary of C and $\Omega \in R^{n}$ is homeomorphic to I_{n}.
2.4-1 Theorem. I: is a homeomorphism from I_{n} to Ω and T is continuously differentiable, then the Jacobian, JT, of T has une sign in I_{n}^{0}, i.e., either $J T(x) \geq 0$ for all $x \in I_{n}^{0}$ or $J T(x) \leq 0$ for all $x \in I_{n}^{0}$.

Proof: Suppose by way of contradiction that $J T\left(x_{0}\right)>0$ while $J T\left(x_{1}\right)<0$ for some $x_{0} \cdot x_{1} \in I_{n}^{0}$. Let $y_{c}=T\left(x_{0}\right)$ and $y_{1}=T\left(x_{1}\right)$. Define $p:[0,1] \rightarrow R^{n}$ by

$$
p(t)=T\left((1-t) x_{0}+t x_{1}\right)
$$

Then $p(0)=y_{0}, p(1)=y_{1}$, and $p(t) d i\left(a I_{n}\right)$ for $t_{e}[0,1]$. Hence, by property $5,1=\operatorname{deg}\left(T, I_{n}^{0}, y_{0}\right)=\operatorname{deg}\left(T, I_{n}^{0}, y_{1}\right)=-1$. Therefore, either $J T(x) \geq 0$ or $J T(x) \leq 0$ for all $x \in I_{n}^{0}$.
Q.E.D.

In an algebraic grid generation algorithm, the construction of T will be based on boundary information. The next theorem shows that requiring T to be a homemorphism from the boundary of the computational domain to the boundary of the physical domain will insure that the image of T covers all of the physical domain.
2.4-2 Theorem. If $T: I_{n} \rightarrow R^{n}$ is continuously differentiable and T maps $a I_{n}$ homeomorphically onto $a \Omega$, then $T\left(I_{n}\right) \supset \Omega$. Proof: Let S be the unit n-sphere in R^{n}. By Dugundji [D, p. 353], the Dugundji degree D of a map which is a nomeomorphism from S to S is +1 or -1 . But al_{n} and $\partial \mathrm{n}$ are homeomorinic to S. Therefore, from 2.3-15 it follows that for ally $y \in \Omega^{0}$, $\operatorname{deg}\left(T, i_{n}^{C}, y\right)= \pm 1$. Therefore, by the Kronecker Theorem (2.2-2) Ω lies in the image of T.
Q.E.D.

Smith atld Sritharan [SS] show that if an additional hypothesis is added, one can obtain a much stronger conclusion:
2.4-3 Theorem. If $T: I_{n}-R^{n}$ is continuously differentiable, T maps $a I_{n}$ nomeomorphically onto an and $J T(x) \neq 0$ for all $x \in I_{n}^{0}$, then T is a homeomorphism from I_{n} to Ω.

The next theorem shows that the Jacobian changes sign when the image of T overlaps the physical boundary. Theorem 2.4-3 and Theorem 2.4-4 show that it is important that T be constructed so that its Jacobian does not change sign.
2.4-4 Theorem. Suppose $T: I_{n} \rightarrow R^{n}$ has the following properties:

1. Tis continuously differentiable
2. T maps $\partial \mathrm{I}_{\mathrm{n}}$ homeomorphically onto an
3. $m\left(T\left(I_{n}\right)-\Omega\right)>0$

Then $J T$ has a sign change.
Proof: Let $C\left(I_{n}\right)=\left\{x \in I_{n} \mid J T(x)=0\right\}$ Sard's Theorem [0, p. 130] says that $m\left(T\left(C\left(I_{n}\right)\right)\right)=0$. Since $m\left(T\left(I_{n} ;-\Omega\right)>0\right.$, there exists $z * \varepsilon T\left(I_{n}\right)-\Omega$ such that $T(x)=z * i m p l i e s ~ J T(x) \neq 0$. Now, choose $w \in\left[T\left(I_{n}\right)\right]^{C}$. By property 5 , $\operatorname{deg}\left(T, I_{n}^{0}, Z^{*}\right)=\operatorname{deg}\left(T, I_{n}^{0}, W\right)=0$. Since $\operatorname{deg}\left(T, I_{n}^{0}, Z^{*}\right)=$ Σ sign $J T(x)$, the Jacobian values at all x satisfying $\left\{x \mid T(x)=z^{*}\right\}$
$T(x)=z^{*}$ must cancel each other.
Q.E.D.

2.5 Additional Topological Questions

Section 2.4 suggests other questions which should be asked. Can a continuously differentiable homeomorphism from I_{n} to $\partial \Omega$ always be extended to a continuously differentiable homeomorphism from I_{n} to Ω ? If not, under what conditions is such an extension possible? How can one guarantee that a mapping from I_{n} to R^{n} will be a diffeomorphism?

The answers to these questions will provide valuable information for creating an algebraic grid generation mapping. Although this paper does not answer all of these questions, partial answers were presented in the previous
section. Also, the following example shows that continuously differentiable boundary homeomorphisms cannot always be extended.
2.5-1 Example. Suppose $T: I_{2} \rightarrow R^{2}$ is continuously differentiable and maps the boundary of the square homeomorphically onto the boundary of the nonconyex region Ω shown in figure 2. Let p be the point indicated and $\Delta p=\binom{\Delta \xi}{-\Delta n}$ If $T_{1}(p)=\frac{\partial T}{\partial \xi}(p)$ and $T_{2}(p)=\frac{\partial T}{\partial \eta}(p)$ then
$T(p+\Delta p)=T(p)+T(p)(\Delta p)+o(|\Delta p|)$
$=T(p)+\Delta \xi T_{1}(p)-\Delta n T_{2}(p)+o(|\Delta p|)$
When $|\Delta P|$ is small, the terms of order o(| $\Delta P \mid)$ are negligible in size when compared to $\Delta \xi T_{1}(p)$ and $\Delta \eta T_{2}(p)$. Therefore, those terms may be neglected from the equation above. However, then it is clear that $T(p+\Delta p)$ must lie outside the boundary of Ω. Consequently, T cannot be a homeomorphism from I_{2} to Ω. This is illustrated in figures 3 and 4 which show the result of attempts to construct a tensur product spline transformation that maps the square onto Ω. In each case points overlap the boundary near the "V" shaped corner.

The first grid was obtained by choosing the B-spline coefficients so thac the transformation approximated a transfinite tilinear interpolation mapping. This is discussed in Chapter 4. The second grid was obtained by changing some of the coefficients in order to minimize a functional which is described in the next chapter.

Figure 3. Initial grid on nonconvex domain.

Figure 4. Optimized grid on nonconvex domain.

3. AN ALGEBRAIC GRID GENERATION MAPPING

In this chapter an algebraic grid generation technique which uses a transformation consisting of tensor product B-splines is discussed. In the first section, finite difference approximations to the transformed derivatives of a first order partial differential equation are examined. The effect of the size of the Jacobian on smoothness and orthogonality is discussed, and its influence on local truncation error is examined. The next section defines the particular transformation of interest in this paper and discusses the properties of the building blocks for this transformation: kth order B-splines. The final section discusses a functional which can be used to modify the transformation so that the grid lines are distributed more smoothly and are nearly orthogonal at points of intersection.

3.1 A First Order Example

If E and n are the computational coordinates, satisfying $0 \leq \xi \leq 1$ and $0 \leq n \leq 1$, and x and y are the physical coordinates, then the grid on the physical domain will consist of coordinate lines produced by a mapping

$$
T(\xi, n)=\binom{x(\xi, n)}{y(\xi, n)} .
$$

If $u_{t}=F\left(x, y, u, u_{x}, u_{y}\right)$ is a first order partial differential equation defined on the physical domain, then the chain rule yields $\left(u_{\xi} u_{\eta}\right)=\left(\begin{array}{ll}u_{x} & u_{y}\end{array}\right) \times J$ where $J=\left[\begin{array}{ll}x_{\xi} & x_{\eta} \\ y_{\xi} & y_{\eta}\end{array}\right]$, the Jacobian matrix for the transformation T. Hence

$$
\begin{aligned}
\left(u_{x} u_{y}\right) & =\left(\begin{array}{ll}
u_{\xi} & u_{\eta}
\end{array}\right) \times J^{-1} \\
& =\left(\begin{array}{ll}
u_{\xi} & u_{\eta}
\end{array}\right) \times\left[\begin{array}{cc}
y_{\eta} & -x_{\eta} \\
-y_{\xi} & x_{\xi}
\end{array}\right] / J T
\end{aligned}
$$

where $J T=|J|=x_{\xi} y_{n}-x_{n} y$. it is clear that the partial differential equation can be transformed once the elements of J are computed. These elements may be approximated by differences when explicit formulas are not available. The transformed expressions for u_{x} and u_{y} show immediately that the grid must be structured so that $J T \neq 0$ at all mesh points (ξ, n).
Once the partial differential equations are trans-
formed, difference approximations can be written for u_{ξ} and u_{n}. Large truncation errors in the approximations will affect the solution of the partial differential equations. One can obtain an expression for the truncation error at mesh point (ξ_{i}, n_{j}) by doing a Taylor series expansion at $\left(\varepsilon_{i}, \eta_{j}\right)$. If $u_{i j}=u\left(\varepsilon_{i}, \eta_{j}\right)$, then

$$
\begin{aligned}
& u_{i+i, j}=u_{i j}+u_{\xi \Delta \xi}+u_{\left.\xi \xi \frac{(\Delta E}{}\right)^{2}}^{2!}+u_{\xi \xi \xi} \frac{(\Delta \xi)^{3}}{3!}+H O T \\
& u_{i-1, j}=u_{i j}-u_{E \Delta \xi}+u_{\xi \xi} \frac{(\Delta \xi)^{2}}{2!}-u_{E \xi \xi} \frac{(\Delta E)^{3}}{3!}+H O T
\end{aligned}
$$

where HOT = higher order terms. Subtracting these two equations and solving for u_{g} yields

$$
u_{E}=\frac{u_{i+1, j}-u_{i-1, j}-u_{E E E} \frac{(\Delta \xi)^{2}}{6}}{2 \Delta \xi}+\text { HOT }
$$

Similarly,

$$
u_{n}=\frac{u_{i, j+1}-u_{i, j-1}-u_{n n n} \frac{(\Delta n)^{2}}{6}+\text { HOT }}{2 \Delta n}
$$

Therefore

$$
u_{x}=\frac{1}{J T}\left(y_{n} \delta_{\xi} u-y_{\xi} \delta_{\eta} u\right)-\frac{1}{\sigma J T}\left(y_{\eta} u_{\xi \xi \xi}(\Delta \xi)^{2}-y_{\xi} u_{\eta \eta \eta}\left(\Delta_{\eta}\right)^{2}\right)
$$

+...
where $\sigma_{\xi} u$ and $o_{n} u$ are the central difference approximations for u_{g} and u, respectively. The truncation error is

$$
\frac{-1}{\sigma J T}\left(y_{\eta} u_{\xi \xi \xi}\left(\Delta_{\xi}\right)^{2}-y_{\xi} u_{\eta \eta \eta}\left(\Delta_{\eta}\right)^{2}\right)+\ldots
$$

Now if $r=\binom{x}{y}$, then

$$
\begin{aligned}
J T & =x_{\xi} y_{n}-x_{n} y_{\xi} \\
& =\left(r_{\xi} x r_{n}\right) \cdot(0,0,1)^{\top} \\
& =\left|r_{\xi}\right|\left|r_{n}\right| \sin \theta
\end{aligned}
$$

where θ is the angle of intersection of the grid lir:s at (ξ, n). Again, the importance of $J T \neq 0$ is evident: but one can also see why the grid lines should be as orthogonal as possible. The expression for JT implies that the truncation error is inversely proportional to sin e. However, according to Thompson, Warsi and Mastin [TWM, p. 82] a departure from orthogonality of up to 45° is usually tolerable.

3.2 B-splines

The mapping T discussed in this paper has the form
where the $B_{i j}, 1=1 \ldots m ; j=1, \ldots, n$ are tensor products of B-splines and the coefficients $a_{i j}, \beta_{i j}, i=1, \ldots, m$; $j=1, \ldots, n$ are real numbers. In this section, the terms B-spline, spline function and tensor froduct B-spline are defined, and some of the important properties of these functions are discussed.

3.2-1 Defining 8-splines

The following definition is from A Practical Guide to Splines by Carl de Boor [de B, D. 108].
3.2-1-1 Definition. If $t=\left\{t_{i}\right\}$ is a nondecreasing sequence. then the 1 -th normalized B-spline of order k for knot sequence t is defined by
$B_{i, k, t}(x)=\left(t_{i+k}-t_{i}\right)\left[t_{i}, \ldots, t_{i+k}\right](\cdots-x)_{+}^{k-1}$ where xeR.
The sequence t may be finite, infinite or binfinite.
The expression $\left[t_{i}, \ldots, t_{i+k}\right](\cdot-x)_{+}^{k-1}$ denotes the k th divided difference of $(\cdot-x)_{+}^{k-1}$, or the leading coefficient of the polynomial of degree k which interpolates $(\cdot-x)_{+}^{k-l}$
at t_{1}, \ldots, t_{1+k}. The notetion $(\cdot-x)_{+}^{k-1}$ represents the truncated power function $(r-x)_{+}^{k-1}$ which is defined by

$$
(r-x)_{+}^{k-1}=\left\{\begin{array}{ll}
(\tau-x)^{k-1} & \text { for } \tau>x \\
0 & \text { for } \tau \leq x
\end{array} .\right.
$$

The \cdot indicates that the kth divided difference above should be evaluated by holding x fixed and considering $(t-x)_{+}^{k-1}$
ds a function of e only. Nevertheless, since $B_{1, k, t}(x)$
changes as one chooses different values for x, it is clearly a function of x.

The definition above differs slightly from the original definition given by Curry and Schoenberg. Their B-spline $M_{i, k, t}$ is related to $B_{i, k, t}$ by the equation

$$
M_{i, k, t}=\left[k /\left(t_{i+k}-t_{i}\right)\right] B_{i, k, t}[\text { de B, p. 109]. }
$$

3.2.2 Properties of B-splines

A kth order B-spline $B_{i, k, t}$ is a piecewise polynomial of degree $k-1$ with breakpoints at t_{i}, \ldots, t_{i+k}. On each interval $\left(t_{j}, t_{j+1}\right), B_{i, k, t}$ is a polynomial of degree $k-1$ or less. For convenience it will be assumed that $B_{i, k, t}$ is continuous from the right at breakpoints.

B-splines have many properties which make them convenient for applications involving computers. One important property is their small support. If $x \notin\left[t_{i}, t_{i+k}\right]$, then $(r-x)_{+}^{k-1}$ will be a polynomial of degree $k-1$ or less
on $\left[t_{1}, t_{i+k}\right]$. Hence $\left[t_{1}, \ldots, t_{i+k}\right](t-x)_{+}^{k-1}=0$. Therefore, $B_{i, k, t}(x)=0$ for $x \in\left[t_{i}, t_{i+k}\right]$.

This implies that the support of $B_{i, k, t}$ can lie in at most k intervals of the form $\left[t_{j}, t_{j+1}\right]$. Therefore, If $\left\{B_{i}\right\}$ represents the sequence of B-splines of order k for the knot sequence $t=\left\{t_{i}\right\}$, it follows that only the k B-splines $B_{j-k+1}, B_{j-k+2} \ldots, B_{j}$ can have support in any given interval $\left[t_{j}, t_{i+1}\right]$.

The next two results, which are proved in [de B, p. 110] and [de B, p. 130], respectively, show that B-splines form a partition of unity, i.e.. the sequence $\left\{B_{i}\right\}$ consists of nonnegative functions which sum up to 1.
3.2.2-1 Theorem. If $\left\{B_{i}\right\}$ is the sequence of B-splines 0 : order k for a nondecreasing sequence $t=\left\{t_{i}\right\}$, then

$$
\sum_{i}^{\sum} B_{i}(x)=\sum_{i=p-k+1}^{q-1} \quad e_{i}(x)=1
$$

for any $x e\left(t_{p}{ }_{q}\right)$ where p and q are such that $p-k+1$ and $q+k-1$ lie in the index set for t.
3.2.2-2 Theorem. If B_{1} is the th element of the sequence of B-splines of order k for a nondecreasing sequence $t=\left\{t_{i} \mid\right.$, then $B_{i}(x)>0$ for $t_{i}<x<t_{i+k}$.

One can think of the "B" in B-splines as representing the word "basis," for when the knot sequence t is chosen
appropriately, the k.th order B-spliner for t form dasis for the plecewise polynomial space $P_{k, 5, v} . P_{k, \xi, v}$ is the notation used by de Boor [de B, D. 100] to represent the space of plecewise polynomials of degree $k-1$ which have breakpoint sequence ε and which satisfy smoothness conditions specified by v. If $\xi=\left\{\xi_{1}\right\}_{1}^{m+1}$, then the nonnegative sequence $v=\left(v_{i}\right)_{2}^{m}$ gives the number of smoothness conditions at each $\varepsilon_{i}, 1=2, \ldots, m$. For example, if $v_{l}=3$ then any fep $p_{k, f, v}$ must have at least 3 smoothness conditions at E_{ℓ} that is, the function, its derivative and second derivative must be continuous at ξ_{ℓ}. The dimension of $P_{k, \xi, v}$ is $k m-\sum_{i=2}^{m}{ }_{i}$.

The following theorem of Curry and Schoenberg [de B,C] shows how the knot sequence t should be chosen so that the corresponding B-spline sequence forms a basis for $P_{k, 5, v}$.
3.2.2-3 Theorem (Curry and Schoenberg).

Let $E=\left\{\varepsilon_{1}\right\}_{1}^{m+1}$ be a strictly increasing sequence and $v=\left\{v_{1}\right\}_{2}^{m}$ be a nonnegative integer sequence such that $v_{i} \leq k$ for all i. Set $n=k+\sum_{i=2}^{m}\left(k-v_{i}\right)=k m-\sum_{i=2} v_{i}$ and let $t=\left(t_{1}\right)_{1}^{n+k}$ be a nondecreasing sequence such that
(i) $t_{1 \leq t_{2} \leq \cdots \leq t_{k \leq 1}}$ and $\xi_{m+1} \leq t_{n+1} \leq \cdots \leq t_{n+k}$
(ii) for $i=2, \ldots, m$, the number f_{i} occurs exactly $k-v_{i}$ times in t.

Then the sequence B_{1}, \ldots, B_{n} of $B-s p l i n e s$ of order k for the knot sequence t is a basis for $P_{k, \xi, v, ~ v i e w e d ~ a s ~}^{k}$ functions on $\left[t_{k}, t_{n+1}\right]$.

This theorem shows how the number of knots at a breakpoint translates into tre amount of smoothness there. Since the number ξ_{i} occurs exactly $k-v_{i}$ times in t and v_{i} represents the number of smoothness conditions at ξ_{i}, the number of smoothness conditions at ξ_{i} equals k minus the number of knots at ξ_{i}. Hence if $k=4$ and $\xi_{j}, 2 \leq j \leq m$, occurs exactly once in then the piecewise polynomials generated by B_{1}, \ldots, B_{n} will satisfy three smoothness conditions at ξ_{j}, i.e., the piecewise polynomials, their first derivative and their second derivative will be continuous at ξ_{j}.

3.2.3 Spline Functions

In early studies of splines, a spline function of order k was defined to be a piecewise polynomial of degree k-1 with $k-2$ continuous derivatives. However, in this paper the more general definition in [de B] is used.
3.2.3-1 Definition. If $t=\left\{t_{i}\right\}$ is a nondecreasing sequence, then a spline function of order k with knot sequence t is any linear combination of the B-splines of order k for
the knot sequence t. If one denotes the collection of all such functions by $s_{k, t}$ then

$$
S_{k, t}=1_{i}^{\sum} a_{i} B_{i, k, t}: \alpha_{i} \text { real for all if. }
$$

It is clear that when t has the form described in the Curry and Schoenberg theorem 3.2.2-3, $S_{k, t}=P_{k, ~}, v$ on $\left[t_{k}, t_{n+1}\right]$. The first derivative of a spline function $\sum_{i}^{\sum a} B_{i, k, t}$ can be found by using the differences between successive coefficients. The following result, proved in [ie B, D. 138], shows that the derivative of a spline function of order k will be a spline function of order $k-1$.
3.2.3-2 Theorem. Let $\sum_{i}^{x} x_{i} B_{i, k, t}$ be a k th order spline function constructed with E-splines $B_{i, k, t}$ corresponding to a nondecreasing sequence $t=\left\{t_{i}\right\}$. Then the first derivative of $\sum_{i} a_{i} B_{i, k, t}$ is given by

$$
\frac{d}{d x}\left({ }_{i}^{\Sigma} a_{i} B_{i, k, t}\right)=\sum_{i}^{\Sigma}(k-1) \frac{a_{i}-a_{i}-1}{t_{i+k-1}-t_{i}} B_{i, k-1, t}
$$

The value of a spline function $f=\sum_{j} a_{j} B_{j, k, t}$ at a point x satisfying $t_{i}<x<t_{i+1}$ is a convex combination of the k coefficients a_{i+1-k}, \ldots, a_{i}. For $i f t_{i}<x<t_{i+1}$, then $f(x)=\sum_{j} a_{j} B_{j, k, t}(x)=\sum_{j=i-k+1}^{i} \alpha_{j} B_{j, k, t}(x)$ with the $B_{j, k, t}$ satisfying $\sum_{j} B_{j, k, t}(x)=1$ and $B_{k}(x) \geq 0$ for all j.

B-spline coefficients model the functions that they represent. In other words, the coefficients are approximately equal to the yalue of the function at certain points. This is illustrated in the next section.

Carl de Boor [de B] proves the following result concerning the relationship between a spline function and its B-spline coefficients. The notation $\|f\|_{[a, b]}$ denotes $\max _{x_{\varepsilon}[a, b]}|f(x)|$.
3.2.3-3 Theorem. Let $\sum_{i} \alpha_{i} B_{i, k, t}$ be a kth order spline function constructed with B-splines $B_{i, k, t}$ corresponding to a nondecreasing sequence $t=\left\{t_{i}\right\}$. Then there exists a positive constant D_{k}, depending only on k, so that for all i,

$$
\left|\alpha_{i}\right| \leq D_{k}\left\|_{j} \alpha_{j} \beta_{j, k, t}\right\|_{\left[t_{i+1}, t_{i+k-1}\right]}
$$

3.2.4 Variation Diminishing Splines

Given an f known to lie in $P_{k, 5, v}$ one can write it in the form $f=\sum_{i=1}^{n} \alpha_{i} B_{i}$. The Curry and Schoenberg Theorem (3.2.2-3) shows how one obtains the B-spline basis and the following lemma suggests how one might obtain the coefficients. Its proof may be found in [de B, D. 116].
3.2.4-1 Lemma (de Boor and Fix). Let B_{i} be the sequence of B-splines of order k for a nondecreasing sequence $t=\left\{t_{i}\right\}$. Let λ_{i} be the linear functional defined for all f by $\lambda_{i} f=\sum_{r=0}^{k-1}(-)^{k-1-r_{i}(k-1-r)}\left(\tau_{i}\right) f(r)\left(\tau_{i}\right)$ where $\varphi(t)=\left(t_{i+1}-t\right) \ldots\left(t_{i+k^{-t}}\right) /(k-1)$! and τ_{i} is some arbitracy point in the open interval $\left(t_{i}, t_{i+k}\right)$. Then

$$
\lambda_{i} B_{j}=\sigma_{i j} \text { for all } j
$$

Hence, if $f=\sum_{i=1}^{n} a_{i} B_{i}$ it follows that $a_{k}, l \leq k \leq n$ may
be found by computing $\lambda_{k} f=\lambda_{k}\left(\sum_{i} a_{i} B_{i}\right)=a_{k}$. By explicitly writing out the expression for $\lambda_{k} f$ one can easily show [de B, p. 159] that $\alpha_{i}=f\left(\tau_{i}\right)+O(|t|)$ if τ_{i} is any point in $\left(t_{i}, t_{i+k}\right)$ and $|t|=\max _{i}\left\{t_{i+1}{ }^{-t_{i}}\right\}$. However, if $\tau_{i}=t_{i}^{*}, 1 \leq i \leq n$ where $t_{i}^{*}=\left(t_{i+1}+\ldots+t_{i+k-1}\right) /(k-1)$ then $a_{i}=f\left(t_{i}^{*}\right)+0\left(|t|^{2}\right)$. Choosing $\alpha_{i}=f\left(t_{i}\right)$ for $1 \leq i \leq n$ yields a shape preserving approximation called Schoenberg's variation diminishing spline approximation [de B, p. 159]. So if $t_{*}=\left\{t_{i}^{*}\right\} \prod_{l}^{n}$ the variation diminishing spline approximation to $f, v f$, is defined by

$$
v f=\sum_{i=1}^{n} f\left(t_{i}^{*}\right) B_{i} .
$$

This spline reproduces polynomials of degree one, i.e., if f is a straight line then $v f=f$. For any f the number of
times the spline approximation crosses a given line will be less than or equal to the number of times f crosses the line. From this it follows that if f is nonnegative, then $v f$ is nonnegative and if f is convex then $v f$ is convex. However, since v has these shape preserving properties, it is not a very high order approximation. In fact, if g is a function defined on $[a, b]$ and g has m continuous derivatives for some $m \geq 2$, then de Boor [de B, p. 161] states that $||g-v g||_{[a, b]} \mathbb{S}_{g, k}|t|^{2}$, where $c_{g, k}$ is a constant depending on the order of the spline function k and the function g. No matter how large mis, no exponent larger than 2 can be put in the inequality. De Boor shows that it is possibie to obtain other spline approximations which are more accurate, but variation diminishing splines are convenient for applications such as computer-aided design and grid generation where shape preservation is important.

3.2.5 Tensor Product B-splines

3.2.5-1 Definition. Let R be the set of real numbers. If V is a linear space of functions mapping some set X into R and W is a linear space of functions mapping some set Y into R, then for each $v \in V$ and wew the tensor product, vow of v and w is defined by

$$
\operatorname{vaw}(x, y)=v(x) w(y) \text { for }(x, y) \varepsilon X x y .
$$

Furthermore, the set of all finite linear combinations of the form vaw for some vev and wew is called the tensor
product, VAW of V with W.
A typical element u of vaw has the form
$u=\sum_{j=1}^{n} a_{j}\left(v_{j} \| w_{j}\right)$
where $a_{j} \in R, v_{j} \in V, w_{j} \in W$ for $j=1, \ldots, n$.
If V and W are the linear spaces of spline functions $S_{h, s}$ and $S_{k, t}$, respectively, then the elements of Vow are linear combinations of tensor product B-splines. A tensor product B-spline $B_{i j}$ is defined by $B_{i j}(x, y)=B_{i, h, s}(x) B_{j, k, t}(y)$ where $B_{i, h, s}$ is the i th B-spline of order h for the knot sequence $s=\left\{s_{i}\right\}$ and $B_{j, k, t}$ is the j th B-spline of order k for the knot sequence $t=\left\{t_{j}\right\}$. An element u of vow will be called a tensor product spline and will have the form
$u=\sum_{i}^{\Sigma} \sum_{i j} \alpha_{i j}$
where $a_{i j} \in R$ for all i, j. When $h=k=4$ may also be called a bicubic spline.

Many of the properties of tensor product B-splines follow trivially from B-spline properties. For example, the tensor product 8 -spline $B_{i j}$ will be positive on its support since both $B_{i, h, s}$ and $B_{j, k, t}$ are positive on their support. Furthermore, the support of $B_{i j}$ is small. Since $B_{i, h, s}(x)=0$ for $x d\left[s_{i}, s_{i+h}\right]$ and $B_{j, k, t}(y)=0$ for $y \notin\left[t_{j}, t_{j+k}\right]$ it is clear that $B_{i j}(x, y)=0$ if either $x \notin\left[s_{i}, s_{i+h}\right]$ or $y \&\left[t_{j}, t_{j+k}\right]$. Hence the support of $B_{i j}$ lies in the shaded
area shown in figure 5.
Tensor product B-splines also form a partition of unity. It follows from 3.2.2-1 that $\operatorname{Eij}_{i j}(x, y)=$
${\underset{i}{i}}_{\operatorname{IB}}(x) \underset{j}{\Sigma B}(y)=1$ for any $(x, y) \in\left(s_{p}, s_{q}\right) x\left(t_{r}, t_{m}\right)$ where p and q are such that $p-h+1$ and $q+h-1$ lie in the index set for sequence s and $r-k+1$ and $m+k-1$ lie in the index set for sequence t.

Partial derivatives of tensor product splines are easy to compute since they reduce to derivatives of spline functions.

$$
\begin{aligned}
\frac{\partial}{\partial x}\left(\sum \sum \sum_{i j} B_{i j}(x, y)\right) & =\frac{\partial}{\partial x} \sum_{i j}^{\sum \sum \alpha_{i j}} B_{i}(x) B_{j}(y) \\
& =\sum_{j}^{\sum B}(y) \frac{d}{d x}\left(\sum_{i} \alpha_{i j} B(x)\right) \\
\frac{\partial}{\partial y}\left(\sum_{i j} \alpha_{i j} B{ }_{i j}(x, y)\right) & =\frac{\partial}{\partial y} \sum_{i j}^{\sum \sum \alpha_{i j}} B_{i}(x) B_{j}(y) \\
& =\sum_{i}^{\sum B}(x) \frac{d}{d y}\left(\sum_{j} \alpha_{i j} B(y)\right)
\end{aligned}
$$

3.3 A Smoothing Functional

The mapping T described in this paper uses tensor product $\mathrm{B}-\mathrm{splines}$ to map the unit square onto a fhysical domain of arbitrary shape. This section shows that choosing the coefficients of the tensor product B-splines so that they minimize a certain functional can improve the quality of the physical grid produced by T. This functional is described and conditions under which it will

Figure 5 Support of tensor product B-spline $B_{i j}$.
have a minimum are examined.

3.3.1 Characteristics of the Functional

The coefficients of the mapping defined by

$$
T(\xi, n)=\left[\begin{array}{ll}
x(\xi, n) \\
y(\xi, n)
\end{array}\right]=\left[\begin{array}{ll}
\sum_{i=j} & \sum_{j=1}^{n} a_{i j} B_{i j}(\xi, n) \\
\sum_{i=1} & \sum_{j=1}^{n} B_{i j} B_{i j}(\xi, n)
\end{array}\right] \quad \begin{aligned}
& 0 \leq \xi \leq 1
\end{aligned}
$$

can be divided into two groups: boundary coefficients and interior coefficients. T uses the boundary coefficients, $\alpha_{i j}, \beta_{i j}, j=1, \ldots, m$ and $\alpha_{i m}, \beta_{i m}, i=1, \ldots, n$ to map the boundary of the square onto the boundary of the physical domain. Hence, the flexibility of their values is limited. The rest of the coefficients, the interior coefficients, can be moved around in order to change the characteristics of the physical grid. To produce orthogonality in the grid 'ines and maximize the smoothness of the distribution of grid lines one can choose the interior coefficients to minimize the functional

$$
F=\int_{I_{2}} w_{1}\left(\left(\frac{\partial J T}{\partial \xi}\right)^{2}+\left(\frac{\partial J T}{\partial n}\right)^{2}\right) d A+\int_{I_{2}} W_{2}(D 0 t)^{2} d A
$$

where

$$
\begin{aligned}
J T(\xi, n) & =\text { Jacobian of } T \text { at }(\xi, n) \\
& =\left|\begin{array}{lll}
\frac{\partial x}{\partial \xi} & (\xi, n) & \frac{\partial x}{\partial n}(\xi, n) \\
\frac{\partial y}{\partial \xi} & (\xi, n) & \frac{\partial y}{\partial n}(\xi, n)
\end{array}\right|
\end{aligned}
$$

$$
=\frac{\partial x}{\partial \xi}(5, n) \frac{\partial y}{\partial \eta}(5, n)-\frac{\partial y}{\partial \xi}(5, n) \frac{\partial x}{\partial n}(5, n) \text {. }
$$

$$
\operatorname{Dot}(\xi, n)=\frac{\partial T}{\partial \xi}(\xi, n) \cdot \frac{\partial T}{\partial n}(\xi, n)
$$

$$
=\left[\begin{array}{ll}
\frac{\partial x}{\partial \xi} & (\xi, n) \\
\frac{\partial y}{\partial \xi} & (\xi, n)
\end{array}\right] \cdot\left[\begin{array}{ll}
\frac{\partial x}{\partial n} & (\xi, n) \\
\frac{\partial y}{\partial n} & (\xi, n)
\end{array}\right]
$$

$$
=\frac{\partial x}{\partial \xi}(\xi, n) \frac{\partial x}{\partial \eta}(\xi, n)+\frac{\partial y}{\partial \xi}(\xi, n) \frac{\partial y}{\partial \eta}(\xi, n)
$$

and $w_{1}(\xi, n), w_{2}(\xi, n)=$ weight functions evaluated at (ξ, n). After the minimization of F is completed, where w_{l} is large the variation of the Jacobian values at nearby points will be small. Hence, w_{1} can be used to decrease skewness in a grid. Where w_{2} is large, Dot will be small causing the grid lines to approach orthogonality.

To avoid the tedious differentiation and integration of tensor prodioi $B-s p l i n e s, ~ t h e ~ f o l l o w i n g ~ d i s c r e t e ~ a p p r o x i-~$ motion to F can be implemented in computer algorithms:

$$
\begin{aligned}
G & =\sum_{i=1}^{D} \sum_{j=1}^{q} W_{1}\left(\frac{\left(J T_{i+1, j}-J T_{i j}\right)^{2}}{(\Delta \xi)^{2}}+\frac{\left(J T_{1, j+1}-J T_{i j}\right)^{2}}{(\Delta n)^{2}}\right) \Delta \xi \Delta n \\
& +\sum_{i=1}^{p} \sum_{j=1}^{q} W_{2}\left(\Delta o t_{i j}\right)^{2} \Delta \xi \Delta n
\end{aligned}
$$

where

$$
0=\xi_{1}<\xi_{2}<\ldots<\xi_{p}=1,
$$

$$
\begin{aligned}
& 0=n_{1}<n_{2}<\ldots<n_{q}=1, \\
& J T_{i j}=J T\left(E_{i} n_{j}\right), \operatorname{Dot}_{i j}=\operatorname{Dot}\left(E_{i} \cdot n_{j}\right), \\
& \Delta E=1 /(p-1), \Delta n=1 /(q-1) \text {, and }
\end{aligned}
$$

the parameters w_{1} and w_{2} are weight functions. Both f and G depend only on the coefficients of the tensor product B-splines which compose T.

Now

$$
\begin{aligned}
& \frac{\partial x}{\partial \xi}(\xi, n)=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} \frac{\partial}{\partial \xi}\left(B_{i j}(\xi, n)\right) \\
& \frac{\partial x}{\partial n}(\xi, n)=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} \frac{\partial}{\partial n}\left(B_{i j}(\xi, n)\right) \\
& \frac{\partial y}{\partial \xi}(\xi, n)=\sum_{i=1}^{m} \sum_{j=1}^{n} B_{i j} \frac{\partial}{\partial \xi}\left(B_{i j}(\xi, n)\right) \\
& \frac{\partial y}{\partial \eta}(\xi, n)=\sum_{i=1}^{m} \sum_{j=1}^{n} B_{i j} \frac{\partial}{\partial n}\left(B_{i j}(\xi, n)\right) .
\end{aligned}
$$

Thus, for E, n fixed, $J T(\xi, n)$ is a linear function in each coefficient $\alpha_{i j}, \beta_{i j}, i=1, \ldots, m, j=1, \ldots, n$ and $\operatorname{Dot}(\xi, n)$
is a quadratic polynomial in each coefficient. Since the terms involving $\operatorname{Dot}(\xi, n)$ and $J T(E, n)$ are squared in G. one can see that G is actually a quartic polynomial in each coefficient. This suggests an elementary iteration method for finding the minimum of G : the cyclic coordinate method [B, p. 271].

The cyclic coordinate method is a multidimensional search technique for minimizing a function of several variables without using derivatives. It searches for minimum along each coordinate direction. This method, when applied. to a differentiable function, converges to a point where the gradient is zero [B, p. 273]. It can be applied to G if one treats each coefficient $a_{i j}, \beta_{i j}, i=1, \ldots, m$, $\mathrm{j}=1, \ldots ., \mathrm{n}$ as a variable representing a particular coordinate direction. This technique is discussed further in the next chapter.

The importance of requiring that the Jacobian of T be of one sign was illustrated in Chapter 2. For this reason, if possible, the feasible region for the minimization problem is chosen to be a region where the Jacobian of T is nonnegative. Now since b-splines have small support, any given coefficient ars or Brs only affects the Jacobian of T at a small number of points on the unit square mesh. By solving the inequality $J T \geq 0$ for $\alpha_{r s}$ at each of these Doints one can determine on what interval ars must lie so that the Jacobian values at the points it affects are nonnegative. This inequality is easy to solve since JT is linear in ars. Repeating this procedure for each coefficient will, in most cases, produce a satisfactory approximation to the desired feasible region. However, since the boundary coefficients are fixed, there may sometimes be problems near the boundary. This is the case with the nonconvex
region examined in Section 2.5. The Jacobian will remain negative at one of its corner points even after the domain for the coefficients is restricted by using the procedure above. This is because the boundary points are fixed and not affected by the procedure. The Jacobian will also remain negative near this corner because of continuity.

3.3.2 Convergence of the jmoorning functional

Under what conditions will the discrete smoothing functional G converge to minimum value? is it important that G be restricted to a region where the Jacobian of T is nonnegative? What happens if one of the tensor product coefficients becomes large?

These are some of the questions which might be asked about G. The notation defined below will be used to discuss these problems:
(Ar)is a sequence in which each term represents a set of coefficients for the mapping $T: l_{2} \quad R^{2}$ defined by

$$
T(\xi, n)=\left[\begin{array}{lll}
\sum_{i=1}^{m} & n & \sum_{j=1} \\
\alpha_{i j} B_{i j}(\xi, n) \\
m & n & \\
\sum_{i=1}^{n} & \sum_{j=1} & a_{i j} B_{i j}(\xi, n)
\end{array}\right], 0 \leq \xi \leq!, 0 \leq n \leq 1
$$

Each A_{r} can be considered a discrete function defined by
$A_{r}(s, 1, j)=\left[\begin{array}{lll}a_{i j}, & \text { if } s=1 \\ \beta_{1 j}^{r} & \text { if } s=2\end{array}\right], 1=1, \ldots, m ; j=1, \ldots, n$.
T_{r} denotes the mapping obtained when the coefficients given by A_{r} are used for T.
$J T_{r}$ denotes the jacobian of T_{r}.
$\left|A_{r}\right|_{\text {max }}=\max _{s, i, j}\left|A_{r}(s, i, j)\right|$.
It follows that if the sequence $\left\{A_{r}\right\}$ of coefficients converges to a single point then the corresponding values of G also converge. Hence, it is important to determine conditions which guarantee the convergence of the coefficlient sequence. Well, since the elements of $\left\{A_{r}\right\}$ can be viewed as points in $R^{2 m n}$, the sequence converges if and only if it is a Cauchy sequence; however, a necessary condicion for the convergence of $\left\{A_{r}\right\}$ is that the sequence be bounded. The following theorem and corollary show how the Jacobian affects the boundedness of the sequence.
3.3.2-1 Theorem. Suppose for all $r T_{r}$ maps oI ${ }_{2}$ homeomorphically onto on. If $J T_{r}(5, n) \geq 0$ for all r and all points (ε, n) © I_{2}^{0}, then either $\left(A_{r}\right)$ is bounded or $J T_{r}\left(\xi_{0}, n_{0}\right)=0$ for some point $\left(\xi_{0}, n_{0}\right) \in 1_{2}^{0}$.

Proof: By way of contradiction, suppose $\left\{A_{r}\right\}$ is nut bounded and $J T_{r}(\xi, n)>0$ for all r and all points $(\xi, n) \in I_{2}^{0}$. For any integer N there exists an $A_{r_{N}} \in\left\{A_{r}\right\}$ such that $\left|A_{r_{N}}\right|_{\text {max }} \geqslant N$. But this implies that either $\alpha_{i j}{ }^{N_{j}} \mid>N$ or $\left|B{ }_{i j}{ }_{N}\right|>N$ for some i,j. Now since Ω is bounded there exists $M>0$ such that $|\vec{p}| \leq M$ for all $\vec{p}_{\mathrm{E}}^{\mathrm{R}}$. From 3.2.3-3 it follows that for large enough $N, \max _{0 \leq \xi \leq 1}\left|T_{r_{N}}(\xi, n)\right|>2 M$. $0 \leq n \leq 1$
Hence $T_{r_{N}}$ maps some point $\left(\varepsilon_{1}, \eta_{1}\right) \varepsilon 1_{2}^{0}$ outside on. Now since $J T_{r_{N}}>0$ on $I_{2}^{0}, m\left(T_{r_{N}}\left(I_{2}\right)-\Omega\right)>0$. But then 2.4 .4 says that $\mathrm{JT}_{\mathrm{r}_{\mathrm{N}}}$ has a sign change.
Q.E.D.

The corollary below follows immediately.
3.3.2-2 Corollary. Suppose for all $r T_{r}$ maps I_{2} homeomorphically onto an. If $J T_{r}(\xi, n)>0$ for all r and all points $(\varepsilon, n) \in I_{2}^{0}$, then $\left\{A_{r}\right\}$ is bounded.

One would like to show that the requirement $J T_{r}(\xi, n) \geq 0$
for all r and all points $(\xi, n) \in I_{2}^{0}$ is sufficient to guarantee the boundedness of $\left\{A_{r}\right\}$. As indicated in 3.3.2-1, it is clear that if the magnitude of a coefficient is large enough, then the mapping T_{r} associated with the coefficient will map some point in I_{2}^{0} outside an. However, it is no longer
clear that $m\left(T_{r}\left(I_{2}\right)-Q\right)>0$ since $J T_{r}(\varepsilon, \eta)$ may be 0 outside o Ω.
Thus 2.4.4 cannot be used to obtain the contradiction that $J T_{r}$ must have a sign change as was done in Theorem 3.3.2-1. Although the writer has been unable to devise an acceptable proof to date, further study may show that the inequality, $m\left(T_{r}\left(I_{2}\right)-\Omega\right)>0$, is actually true.

4. PROGRAM TENTEST

This chapter discusses the computer program TENTEST which algebraically generates grids using tensor product cubic B-splines. A listing of TENTEST is given in the appendix at the end of this paper.

The first section of this chapter presents the major steps involved in the computer algorithm. Sections 2 through 5 examine the important features of the program, briefly discussing the subroutines involved.

4.1 The Algorithm

Although TENTEST contains almost a thousand lines of code, it is based on the following eight step algorithm:
i. Input knot sequences $\left\{S_{i}\right\}$ and $\left\{t_{j}\right\}$ consisting
of values from $[0,1]$.
ii. Compute the tensor product cubic B-splines corresponding to the knot sequences.
iii. Choose initial coefficients to form a bicubic spline mapping from the square to a physical domain.
iv. Use the mapping to plot a grid on the physical domain.
v. If grid satisfactory, stop. If grid unsatisfactory, continue.
vi. Input weights for smoothing functional.
vii. Complete one iteration of minimization routine to obtain new coefficients.
viil. Go to step iv.
There also exists a batch version of TENTEST whicn allows the user to request several iterations of the minimization routine at a time. All the information needed to plot the initial and final grids is stored in files which can be interactively accessed after the execution of the program is completed.

The programs were run on a PRIME 750 computer. The PRIMOS operating system, coupled with a PLOT 10 graphics package, was used to interactively draw the grids on a Tektronics 4014 terminal. The PRIME 750 can communicate at a baud rate of up to 9600 thus making it satisfactory for interactive graphics.

4.2 Computing the Tensor Product B-splines

Since B-splines are determined by the knots with which they are associated, the first concern of the user is to choose appropriate knot sequences. The user must pick two equences $s=\left\{s_{i}\right\}$ and $t=\left\{t_{j}\right\}$, placing them in file TENSORDAT. The user actually picks only the "interior" knots for each sequence. In other words, he constructs two increasing sequences of numbers between 0 and l. After reading the numbers from file TENSORDAT, TENTEST places four 0's at the beginning of each sequence and four l's at the end of each sequence. By 3.2.2-3 (Curry and Schoenberg) and 3.2.3-1, the cubic B-splines associated with s and t
form bases for spline spaces $S_{4,5}$ and $S_{4, t}$. The functions in each of these spaces will have three continuity conditions at each interior knot. The products of the B-splines will form a basis for the tensor product of $S_{4, s}$ and $S_{4, t}$. The tensor product B-splines can be used to construct a transformation T on the square which maps the boundary of the square onto the boundary of a physical domain as described in Chapter 3. The user may obtain a better approximation to the boundary of the physical domain by increasing the number of interior knots in s and t or by redistributing the knots. This is discussed in more detail in Section 4.5.

On a given pxa mesh on the square with mesh points $\left(\xi_{u}, \eta_{v}\right), u=1, \ldots, p, v=1, \ldots, q$, the values of the tensor product B-splines which compose T are fixed. Since these tensor product $B-s p l i n e s$ are the products of B-splines $B_{i}, i=1, \ldots, m$ and $B_{j}, j=1, \ldots, n$ for some m and n, it is convenient to store the function values and first derivatives of these B-splines at each ξ_{u} and η_{v}. Subroutine COMSPLINE uses the de Boor routine BSPLVD [de B, p. 288] to compute these values. BSPLVD calculates the function value and derivatives of all the nonvanishing B-splines at a given point. COMSPLINE stores the function values and first derivatives in two arrays: XSPLINE and YSPLINE. Therefore, after a call to COMSPLINE is completed, XSPLINE will contain the function value and first derivative of each B -
spline in $\left\{B_{i}\right\}_{i=1} \mathbf{m}_{1}$ at $\varepsilon_{U}, U=1, \ldots, p$ and YSPLINE contains the function value and first derivative of each B-spline
 derivatives at a mesh point becomes a matter of calculating the sum of the products of the tensor product coefficients with the appropriate elements of XSPLINE and YSPLINE.

This computation is done in subroutine tenvalf.
The next section explains how the coefficients are chosen initially.

4.3 Choosing the Initial Coefficients

Many different methods can be used to choose the coefficients initially. Since B-Spline coefficients model the function they represent: one might simply choose the boundary coefficients to equal points along the boundary of the physical domain, and choose the interior coefficients to equal points known to lie in the interior of the physical domain. However, this creates the problem of deciding which interior points should be chosen as coefficients. Ideally, the original coefficients should produce a grid which is somewhat smooth so that only a few iterations are needed to obtain an acceptable degree of smoothness and orthogonality.

For this reason, the computer program described in this paper initially selects coefficients which produce an approximation to the transfinite bilinear interpolant of a mapping $V: I_{2} \rightarrow R^{2}$ satisfying $V: \partial I_{2} \rightarrow o n$. In reality
one need only define V on al_{2}. The user may provide parametric equations which map the boundary of the square onto the boundary of the physical domain, or simply input a set of boundary points for the physical domain. In the first instance V is defined by using the parametric equations. In the latter case V is obtained by linearly interpolating between successive boundary points. The parametric equations below map the four sides of the unit square onto the four sides of the trapezoid as shown in figure 6.

$$
\begin{aligned}
& v(\xi, 0)=g_{1}(\xi)=\binom{2 \xi+1}{0} \\
& v(1, n)=g_{2}(n)=\binom{3+n}{2 n} \\
& v(\xi, 1)=g_{3}(\xi)=\binom{4 \xi}{2} \\
& v(0, n)=g_{4}(n)=\binom{1-n}{2 n}
\end{aligned}
$$

The tra..sfinite bilinear interpolant U of V is defined by

$$
\begin{aligned}
U(\xi, n) & =(1-n) V(\xi, 0)+\eta V(\xi, 1) \\
& +\xi V(1, n)+(1-\xi) V(0, n) \\
& -(1-\xi)(1-n) V(0,0)-\xi(1-n) V(1,0) \\
& -(1-\xi) n V(0,1)-\xi \eta V(1,1) .
\end{aligned}
$$

U agrees with V on the boundary of the square and hence interpolates V at an infinite number of points. Transfinite interpolants are discussed by William J. Gordon and Charles A. Hall in [G].

The program selects initial coefficients which produce a variation diminishing spline approximation to U.

figure 6. Mapping from computational domain to physical domain.

Hence, if T is constructed from tensor products of B-splines $B_{i}=B_{i, 4, s} i=1, \ldots, m$ and $B_{j}=B_{j, 4, t}, j=1, \ldots, n$, which corres. pond to knot sequences $s=\left(s_{i}\right){ }_{i=1}^{m+4}$ and $t=\left\{t_{j}\right)_{j=1}^{n+4}$, respectively, then the initial coefficients of the tensor product splines are $\left\{\begin{array}{l}\alpha_{i} j_{j}\end{array}\right\}=U\left(s_{i}^{*}, t_{j}^{*}\right), i=1, \ldots, m ; j=1, \ldots, n$ where $s_{i}=\left(s_{i+1},+\ldots+s_{i+3}\right) / 3, i=1, \ldots, m$ and $t_{j}=\left(t_{j+1}+\ldots+t_{j+3}\right) / 3$, $j=1, \ldots, n$. Since variation diminishing splines yield exact approximations to linear polynomials. T will reproduce the boundary of any physical domain which can be divided into four line segments. Arbitrarily shaped boundaries can be approximated as accurately as desired by increasing the number of knots used to define the tensor product splines or by changing the placement of knots to increase the concentration in complex shaped areas of the boundary.

The initial tensor product coefficients are constructed in subroutines BOUNCOEF and INNERCOEF. Figure 7 shows a grid on a trapezoid domain constructed with a mapping \dagger having coefficients as described above. The grid is the image of T over an equally spaced mesh on the square.

4.4 Minimizing the Smoothing Functional

In TENTEST, the cyclic coordinate method is used to find the minimum of the smoothing functional G described in Section 3.3. As the name suggests, this method atternpts to find the minimum of a multivariable function by cyclicly searching in the direction of each coordinate axis. For

Figure 7. Trapezoid Grid

G, the coordinate directions are represented by the tensor product coefficients $\alpha_{i j}, \beta_{i j}, i=1, \ldots, m ; j=1, \ldots, n$.

The user must first decide what size mesh should be used to obtain a grid with acceptable smoothness and orthogonality. G is a function of $2 m n$ coefficients, however, since the boundary coefficients are fixed only $2(m-2)(n-2)$ coefficients are free. Therefore, in general, the mesh used for the minimization technique should contain at least 2(m-2)(n-2)points.

The user must also decide on the size of the weights w_{1}, w_{2} for G. One can choose constant weights for both JT and Dot, or choose a weight function for Dot which produces more orthogonality near the boundary of the grid than in the interior. Small constant weights of values between 1 and 10 can be used initialiy to determine how they affect the smoothness and orthogonality of the grid.

Changing coefficient $\alpha_{i j}$ (or $\varepsilon_{i j}$) changes the value of the mapping T only on the support of the tensor product B-spline $B_{i j}$. Therefore, in order to locate the minimuni of G in the direction represented by $\alpha_{i j}$ one need only consider the sum over those terms in G which contain the value of $J T$ or Dot at mesh points (ξ, n) lying on the support of $B_{i j}$. Subroutine CORANGE determines the range of summation associated with each tensor product coefficient for a given mesh on the square, and function GF computes the sum over the range indicated by CORANGE. Figure 8 shows the support of a tensor product b-spline associated with

Figure 8. Support for tensor Product 8-spline B6.5
knot sequences $s=\left(s_{1} \sum_{i=1}^{m+4}\right.$ and $t=\left\{t_{j}\right)_{j=1}^{n+4}$. The shaded section represents the support of tensor product b-spline 86,5. In order to minimize in the direction of coefficient $a_{6,5}$ it would be sufficient to look at the sum

$$
\begin{aligned}
G F & =\sum_{i=3}^{6} \sum_{j=3}^{7} W_{1}\left(J T_{i+1, j}-J T_{i j}\right)^{2} \frac{\Delta n}{\Delta \xi} \sum_{i=4}^{6} \sum_{j=2}^{7} W_{l}\left(J T_{i, j+1}-J T_{i j}\right)^{2} \frac{\Delta E}{\Delta n} \\
& +\sum_{i=4}^{6} \sum_{j=3}^{7} W_{2}\left(D 0 t_{i j}\right)^{2} \Delta \xi \Delta n .
\end{aligned}
$$

Like G, the partial sum, $G F$, will be a quartic polynomial in each coefficient.

All of this information is used by the minimization routine FFMIN. Each call to FFMIN produces one complete iteration of the cyclic coordinate method. For each coefficient, the routine first determines the interval on which the coefficient must lle if $J T$ is to be nonnegative at most of the mesh points affected by the coefficient. Then it calls eitner TESTMIND. TESTMINL, TESTMINR, or TESTMINB depending on whether the interval is biinfinite, has a left endpoint, a right endpoint, or two endpoints. The chosen subroutine finds the location of the minimum of $G F$ on the interval and changes the value of the appropriate coefficient accordingly.

4.5 Distribution Functions

If solutions of partial differential equations on a domain are to be accurate, the grid on the domain must
be concentrated in areas of rapld change such as boundary layers and shocks. In most cases concentration near the boundary of the comain can be easily accomplished through the use of distribution functions.
kearranging the points on the square mesh changes the distribution of grid points on the physical domain. A nonuniform distribution of points on the square mesh can be viewed as the image of functions $1_{1}: I_{1}-I_{1}$, and $Q_{2}: I_{1} \rightarrow i_{1}$ defined on E and n, respectively. The grid is then generated by the mapping T defined by

$$
\tilde{j}(\varepsilon, \eta)=T O_{\varphi}(\varepsilon, \eta)
$$

where $: I_{2}-I_{2}$ satisfies

$$
-(\varepsilon, n)=\left[\begin{array}{l}
(\varepsilon) \\
e_{2}(n)
\end{array}\right] .
$$

This is graphically lllustrated in figure 9. The grid on the physical domain is the image under i of an equally spaced mesh on the square.

In the current version of TENTEST, the user may request one of three distributions for ε and r_{1} : uniform, exponential, or arctangent. Selecilng the uniform option produces an equally spaced distribution. The distribution function is simply the identity function on l_{1}. If the exponential option is selected. TENTEST calls routine EXPONENTIAL which maps $\zeta \subset I_{1}$ into $\psi(\zeta)=\frac{e^{c \zeta}-1}{e^{c}-1}$

ORIEINAL PAGE IS
OF POOR QUALTTY

Figure 9. Obtaining a Concentration of Gridpoints
where c is a nonzero constant. If $c>0$, \downarrow concentrates the grid lines near the line corresponding to $5=0$. If $c<0.4$ concentrates the grid lines closer to the line corresponding to $5=1$. The grid in figure 10 a was produced with $\boldsymbol{p}_{1}(\xi)=\xi$ and $\rho_{2}(n)=\varnothing(n)$. The constant c is 4. In figure 10b, $p_{1}(\xi)=\phi(\xi)$ with $c=5$ and $m(n)=n$. The degree of concentraiion increases or decreases as $|c|$ is increased or decreased. In figure $10 c, \rho_{1}(\xi)=\phi(\xi)$ with $c=2$ and ${ }_{2}(n)=n$.

TENTEST calls ARCTANGENT when the user selects the arctangent distribution option. ARCTANGENT maps $\zeta_{\text {EI }}$ into

$$
r(\zeta)=\frac{\operatorname{arctangent}(2 c 5-c)}{\operatorname{arctangent}(c)}-\frac{\operatorname{arctangent}(-c)}{\operatorname{arctangent}(-c)}
$$

where c is a positive constant. This function concentrates grid lines near points corresponding to $\zeta=0$ and $\zeta=1$ simultaneously. This is shown in figure lod with $\varphi_{1}(\xi)=\xi$, $\varphi_{2}(n)=r(n)$ and $c=5$.

Future improvements to TENTEST might include the addition of more distribution functions and the creation of a routine which allows the user to create his own distribution function by interactively digitizing points on the unit square. The routine would then create a variation diminishing spline approximation to the points to form the distribution function.

Since the distribution functions described in this section are defined on I_{1}, they can also be used to

Figure 10a. Exponential distribution on n with $c=4$.

Figure 10d. Arctangent distribution on n with $c=5$.

Figure 10. Concentrating grid points on trapezoid domain.
redistribute the knots which define the tensor product B-splines that form T. This will permit the user to concentrate more knots in areas mapped to complex portions of the physical boundary so that T produces a better boundary approximation. Presently the user can choose to keep the original distribution on the knots or choose to redistribute the knots to obtain an exponential or arctangent distribution.

5. RESULTS AND DISCUSSION

This chapter examines some of the grids produced by TENTEST. Physical domains of various shapes are illustrated. Some of the grids are for actual objects, such as an airfoil or part of the space shuttle, but most are simply grids on domains of various shapes and sizes chosen to illustrate the range of the program.

The user's chief concern is the creation of an acceptable grid on a given physical domain in the shortest amount of time possible. Since the grid will be the image of a continuous mapping on the square, the best technique is to minimize the smoothing functional by using a grid generated from a coarse mesh. Then, once the new coefficients are obtained, the user can request that the grid be plotted using a much finer mesh. This technique is illustrated in the examples which follow. Most of the examples contain at least four grids: The image under T, with its initial coefficients, of coarse square mesh; the image of a finer mesh; the image of the coarse mesh after several iterations of the minimization procedure; and the image of a finer mesh after application of the minimization procedure. Any other grids shown are chosen to illustrate grid concentration or other points of interest. In all the examples shown, only constant weight functions were used in the smoothing functional.

The first four examples show grids on domains with common geometric shapes: a trapezoid, a quadrilateral with unequal, nonparallel sides, a triangle and a circle. Since the domains are simply connected and convex, only a few interior points are needed for the sequences s and t which determine the tensor product B-splines that compose T.

The next three examples show grids on domains which are not convex. The major concern with such grids is the overlapping of grid lines near the boundary.

The last examples deal with grids around concriste objects such as an airfoil or part of the space shuttle. The irregular boundaries of some of these grids make it necessary to use more knots to define T.

For convenience, the following notation is used in this chapter.
$N_{\xi}=$ number of B-splines B_{i} in the sequence corresponding to knot sequence s, or $4+$ number of interior knots in s.
$N_{n}=$ number of B-splines B_{j} in the sequence corresponding to knot sequence t, or $4+$ number of interior knots in t.
$w j=$ constant weight multiplied times the terms in the smoothing functional involving the Jacobian. JT , of T .
wd = constant weight multiplied times the terms in the smoothing functional containing Dot.
$N_{E} \times N_{n}$ will be the dimension of the tensor product spline space generated by $B_{i j}=B_{i} \times B_{j}, i=1, \ldots, N_{g}$; $j=1, \ldots N_{\xi} . \quad C p u=$ central processing unit $-m a i n ~ c o n t r o l$ section of a computer.

5.1 Convex Domains

The first three examples, which have linear boundaries, require only one interior knot for each of the knot sequences s and t. The simplicity of the domains also means that a very coarse grid can be used to minimize the smoothing functional. Four or five iterations produce good results. The circular grids in the fourth example require more interior knots.

5.1.1 Trapezoid

In this example $N_{\xi}=N_{\eta}=5$ and $w j=w d=1$. The first picture in figure 11 is the grid obtained using the initial coefficients in Section 4.3. It is the image under T of an equally spaced 5×5 mesh on the square. This is the grid on which the minimization procedure was applied. Note that the number of grid points is 25 , while the number of free coefficients is given by $2\left(N_{\xi}-2\right)\left(N_{\eta}-2\right)=18$. Figure 11 b is a finer grid constructed using the same coefficients. Figure llc shows how the initial 5×5 grid changes after five iterations of the minimization procedure. The new coefficients produce grid lines that appear to be nearly orthogonal at most grid points. The image under

Figure lla Original grid.

Figure llc optimized grid.

Figure llb $\begin{aligned} & \text { Original grid } \\ & \text { refined. }\end{aligned}$

Figure lld Optimized grid refined.

Figure 11 Grids on trapezoid domain.
the new T of a 20×20 mesh is given in figure lld. The amount of cpu time used in the optimization process was 1 minute and 25 seconds.

In figure 12 the weights $w j$ and $w d$ have been changed to show what effect they have in the minimization process. Figure 12a shows how the initial 5×5 grid is changed after only three iterations when $w j=0$ and $w d=1$. Orthogonality is more pronounced, but the grid spacing is no longer as smooth. In the refined grid in 12 b the spacing is very skewed near the top boundary. Figure 12 c shows the 5×5 grid after five iterations with $w j=1$ and $w d=0$. The spacing is smoother but the grid lines are not orthogonal. Figure l2d shows a finer grid.
5.1.2 Quadrilateral with Unequal Sides

Again, in this example $N_{\xi}=N_{\eta}=5$ which means sequences s and t each contain one interior knot. Also, $w j=w d=1$. The minimization procedure was applied on the 5×5 grid shown in figure l3a. Five iterations of the technique produced the grid in 13c. Figures 13 b and 13 d show refined versions of the grids in $13 a$ and $13 b$, respectively. The five iterations of the minimization procedure required 2 minutes and 16 seconds of cpu time. In figure 14 the optimized grids are concentrated near different parts of the boundary. In $14 a$ an exponential distribution with parameter $c=4$ has been put on n. Figure $14 b$ shows an exponential distribution on ξ and n with $c=4$ in each

ORIGINAL PAcE :S

OF POOR QUALITY

Figure 13a Original grid

Figure 136 Original grid

Figure l3d Optimized grid refined

Figure 13 Grids on quadrilateral with unequal sides.

Figure l4c Arctangent distribution on E

Figure 14d Arctangent distribution on n

Figure 14 Concentrating gridpoints on quadrilateral.
case. In figures 14 c and 14 d , an arctangent distribution with $c=5$ has been placed on E and n, respectively.

5.1.3 Triangle

In the previous examples, it was clear that each side of the unit square should be mapped to a side of the four-sided physical domain, but in the case of a triangle, which has three sides, this cannot be done. The boundary must be divided into four sections. The simplest thing to do is to divide one of the sides of the triangle into two parts so that two sides of the unit square are mapped onto one side of the triangle as shown in figure 15 . Figure 16a shows the initial 5×5 grid constructed with $N \xi=N_{n}=5$ and $w j=w d=1$. Figure 16 b shows a 20×20 grid constructed using the same coefficients. After five iterations of the minimization procedure, the initial 5×5 grid is transformed into figure 16 c . Figure 16 d shows a finer grid. Uptimization required 2 minutes and 22 seconds of cpu time.

5.1.4 Circle

Variation diminishing splines reproduce straight lines exactly, but the same cannot be said about their approximation of nonlinear curves. For such curves the accuracy of the approximation depends on the number of knots used to define the spline function. For this reason more knots are needed to obtain a satisfactory mapping of the unit square onto a circular physical domain. For the

Figure 15 Division of triangular boundary into four sections.

Figure 16a . Original grid

Figure 16 c Optimized grid

Figure 16b. Original grid

Figure $16 d$ Optimized grid refined

Figure 16 Grids on triangular domain.
grids shown in figure 17, $N_{\xi}=N_{n}=9$ and $w j=w d=1$. Hence, there are five interior knots in both sequence s and sequence t.

Note that $2\left(N_{\xi}-2\right)\left(N_{n}-2\right)=98$. Although this number indicates that a mesh of at least 98 points should be used for the minimization routine, the 8×8 grid shown in figure 17a seems to produce an acceptable grid. One reason for this might be that the initial grid in lia already appears to be quite smooth and orthogonal at most points. The major problems with orthogonality occur near the areas to which the corners of the square are mapped. These areas are indicated by the arrows in 17a. Figure 18a shows how the initial grid is changed after fifteen iterations of the minimization procedure. Figures 17 b and 18 b show finer grids. The fifteen iterations of the minimization procedure required 20 minutes and 14 seconds of cpu time.

5.2 Nonconvex Domains

The grids in this section show some of the difficulties in creating grids on domains which are not convex sets.

5.2.1 Nonconvex Quadrilateral

Figure 19 shows the shape of the domain. This example was first mentioned in Section 2.5. The boundary of the unit square is mapped onto the boundary of the domain as indicated in figure 2. Example 2.5-1 shows that Twill not map the square homeomorphically onto the domain even

Figure 17a original grid

Figure l7b Original grid refined

Figure 17 Grids on circular domain.

Figure 18a Optimized grid

Figure 18b Optimized grid refined

Figure 18 Grids on circular domain after optimization.

Figure 19 Nonconvex quadrilateral.
after the coefficients are changed. This fact is supported by the negative Jacobian present at one of the corners of the square. The negative sign suggests that points near that corner will be mapped outside of the physical domain. This is confirmed by the grids illustrated. In this example, $N \xi=N_{n}=5$ and $w j=w d=1$. The 5×5 initial grid shown in figure 20a was used for the minimization procedure. The enlarged picture in figure $20 b$ shows a finer grid. Figure 2la shows the result of four iterations of the minimization procedure. The nonnegative Jacobian requirement pulls the grid lines into the interior of the domain. However, figure 22 shows an enlarged version of the corner which indicates that part of the grid still overlaps the boundary. This means that the minimization routine was unable to restrict all of the coefficients to intervals where the Jacobian of T is nonnegative.

This is further indicated in figure 2lb which shows a finer version of the grid in figure 2la. The four iterations of the minimization procedure required 1 minute and 1 second of cpu time.
5.2.2 Puzzle Pieces

The next two domains, illustrated in figure 23, look like pieces from a puzzle. In each case $N \xi=19, N_{n}=5$, $w j=1$ and $w d=10$.

Grids on the first domain are shown in figures 24 and 25. The minimization procedure was performed on the

Figure 20a Original grid

Figure 20b Original grid refined

Figure 20. Grids on nonconvex quadrilateral domain.

Figure 2la Optimized grid

Figure 2lb Optimized grid refined

Figure 21 Optimized grids on nonconvex quadrilateral domain.

Figure 22 Enlarged corner of optimized grid.
22×8 grid in figure 24d. Figure $24 b$ shows a finer grid. Figure 24c shows the grid obtalned after forty iterations and figure 24 d shows a finer grid. The grids in flgure 25 show how the initial grid changes after two, five and fifteen iterations. The grid obtained after forty iterations is shown again for comparison. On this domain Tentest is able to pull all of the grid lines into the interior of the domain.

Grids on the second domain are shown in figure 26. The initial 22×8 grid is shown in figure $26 a$ and figure 26b shows a finer grid. After forty iterations, the initial grid is transformed into $26 c$ and a finer grid is shown in 26d. Figure 27a shows a grid on the first domain concentrated near the bottom boundary by using an exponential distribution on n with $c=4$. Figure $27 b$ shows a grid on the second domain concentrated near the top by using an exponential distribution on n with $c=-4$.

The forty iterations used for the first domain required 1 hour, 42 minutes and 23 seconds of cpu time, but the second domain required 2 hours, 4 minutes and 46 seconds for forty iterations.

5.3 Grids for Specific Objects

This section deals with grids about particular objects such as an airfoil. Tine boundaries often have peculiarities which make it difficult to obtain satisfactory grids. In many cases it may be difficult to maintain smoothness in

Figure 23 Puzzie shaped domalns.

ORIGINAL pace : 3 OF POOR QUALITY

Figure 24a Original grid

Figure 24b original grid

Figure 24c Optimized grid

Figure 24d $\begin{gathered}\text { Optimized grid } \\ \text { refined }\end{gathered}$

Figure 24 Grids on first puzzle shaped domain.

Figure 25a After two iterations

Figure 25c After fifteen iterations

Figure 25b After five iterations

Figure 25d After forty iterations

Figure 25 Grios obtained afier various lterations.

Figure 26a Original grid

Figure 26b Original grid refined

Figure 26c Optimized grid

Figure 26d optimized grid refined

Figure 26 Grids on second puzzle shaped domain.

Figure 27 Exponential distributions on puzzle shaped grids.

$$
c-2
$$

the grid while increasing orthogonality. Of ten the user must try to find an acceptable balance. He must also attempt to concentrate the grids in areas where rapid changes are likely to occur when partial differential equations are solved on the domain.

5.3.1 Airfoll

The grids in this example are for the Kármán Trefftz airfoil. The parameters $N_{\xi}=19, N_{n}=9, w j=1$ and $w d=.5$. Hence, there are 15 knots in the s sequence and 5 knots in the t sequence. Figure 28 shows how the domain can be viewed as having a boundary consisting of four parts. The minimization procedure was performed on the 21×12 grid in figure 29a. The grid lines appear to be orthogonal everywhere except near boundaries 1, 2 and 4. Note the sharp corners behind the airfoil. After one iteration the corners have been eliminated and the angles of the lines near the airfoil are not as acute. This is shown in figure 29b and in the finer grid in figure 30 a.

Solutions on a grid about an airfoil are usually more accurate if a higher concentration of points is placed near the airfoil boundary since this is the area most affected as air moves over the airfoil. Figure $30 b$ shows a 30×30 grid concentrated near the airfoil boundary by using an exponential distribution on n with constant $c=4$.

The minimization procedure required 6 minutes and 36 seconds of cDu time.

Figure 28 Domain around Kármán - Trefftz airfoil.

Figure 29a Original grid

Figure 29b Optimized grid
Figure 29 Grids for Kármán - Trefftz airfoll.

Figure 30a Optimized grid refined

Figure $30 b$ Optimized grid concentrated near airfoil boundary.

Figure 30 Optimized grids for Kármán . Trefftz airfoll.

5.3.2 Spike-Mosed Body

According to [Sm, p. 130], the spike-nosed configuration occurs frequently in supersonic flow. R. E. Smith states that supersonic flow about such bodies is unsteady, with separation occurring near the nose-shoulder region. Therefore, the grids must be concentrated in that area [Sm, p. 48]. The boundary data for the grids shown in this section can be found in [Sm, p. 60]. Rotating the bottom boundary around a horizontal axis of symmetry produces a clearer picture of the actual body. The ratio of the length of the nose to the height of the shoulder is 2.14 .

As in the previous example, $N_{\xi}=19, N_{n}=9, w j=1$ and $w d=0.5$. The 21×12 initial grid in figure 31 a was used for the minimization procedure. Two iterations produce a small amount of orthogonality near the bottom boundary as shown in figure 3lb. Additional iterations produce an undesirable wiggle in the grid lines near the shoulder. Figure 32 a shows a finer grid and figure 32 b shows a grid concentrated near the bottom boundary by using an exponential distribution on n with $c=4$.

The two iterations of the minimization procedure required 13 minutes and 1 second of cpu time.

5.3.3 Shuttle

The grids in this example are for a model of the space shuttle. The optimized grids are the result of ten iterations on the 32×12 grid shown in figure 33. Para-

Figure 3la Original grid

Figure 3lb Optimized grid

Figure 31 Grids for spike-nosed body.

Figure 32a Optimized grid refined

Figure 32b Optimized grid concentrated near boundary of spike-nose body.

Figure 32 Optimized grids for spike-nosed body.
meters $N_{\xi}=29, N_{n}=9, w j=w d=1$. Ten iterations of the minimization procedure produce a small amount of orthogonality near the boundary of the shuttle as shown in figure 34. Figure 35 shows an optimized 32×20 grid concentrated near the shuttle boundary using an exponential distribution on n with $c=4$. The ten iterations of the minimization procedure required 1 hour and 43 minutes of cpu time. The 32×12 grid in figure 33 is the largest grid on which the minimization procedure has been applied.

Figure 33 Original grid for shuttle.

Figure 34 Optimized grid for shuttle.

Figure 35 Optimized grid concentrated near shuttle boundary.

6. CONCLUSIONS

This paper has examined an effective algebraic method for creating boundary fitted coordinate systems. The method, which involves a mapping T composed of tensor product B-splines allows one to regulate grid characteristics by adjusting the coefficients of the splines. Modifying the coefficients so that they minimize a smoothing functional enhances the smoothness and orthogonality of the grids generated by T.

The method is implemented in the program TENTEST which gives the user control over the number and concentration of grid points. The user can also regulate the amount of smoothness and orthogonality in the grids by the selection of weight functions for the smoothing functional.

Suggestions for future revisions of TENTEST include the addition of more distr:bution functions to allow greater control over grid concentration. One might also investigate the possibility of adjusting the boundary coefficients during the optimization process so that the boundary points of the grid are affected by the minimization procedure.

Ultimately, the true test for a grid comes when it is actually used to solve partial differential equations.

Therefore, the next stage of research must include solving problems on several grids produced by TENTEST. Then it may be possible to change the program into an adaptive technique which rearranges the grid points in response to gradient iniormation from the evolving solution.

Once these things are accomplished, one may attempt to use the technique to generate grids on more complicated multiconnected domains. This may involve the study of techniques for grid patching.

Also, the Prime 750 computer is an excellent machine for graphics, but not very fast in solving problems involving a large amount of computations. Hence, the possibility of creating a version of TENTEST which operates efficiently on a vector computer such as the VPS 32 at NASA Langley Research Center should be investigated. This will permit the user to run much larger and more complicated problems.

Finally, once this grid generation technique has been thoroughly developed for two dimensional domains, a three dimensional technique can be attempted. T would berome a mapping from the unit cube to the desired physical domain, composed of the tensor product of 8 -splines in the three coordinate directions. As in the two dimensional case, characteristics of the grid would be changed by changing the coefficients of the tensor product B-splines.

BIBLIOGRAPHY

[B] Bazaraa, Mokhtar and Shetty, C. M. Nonlinear Programming: Theory and Algorithms. New York: John Wiley and Sons. 1979.
[de B] De Boor, Carl. A Practical Guide to Splines. New York: Springer-VerIag, 1978.
[C] Curry, it. B. and Schoenberg, I, J. "On Spline Distributions and Their Limits: The Polya Distribution Functions," Abstract 380t, Bulletin of the American Mathematical Society, Vol. 53, 1947, p. 109.
[0] Dugundji, James. Topology. Boston: Allyn and Bacon, Inc., 1968.
[F] Fleming, Wendell. Functions of Several Variables. New York: Springer-Verlag, 1977.
[G] Goldhaber, Jacob K, and Ehrlich, Gertrude. Algebra. London: The MacMillan Company, 1970.
[H] Heinz, Erhard. "An Elementary Analytic Theory of the Degree of Mapping in n-Dimensional Space." Journal of Mathematics and Mechanics, Vol. 8, No. 2, 1959, p. 231.
[0] Ortega, J. M. and Rheinboldt, W. C. Iterative Solution of Nonlinear Equations in Several Variables. New York: Academic Press, 1970.
[S] Schwartz, J. T. Nonlinear Functional Analysis. New York: Courant Institute of Mathematical Sciences, New York University, 1965.
[Sm] Smith, R. E. "Two-boundary Grid Generation for the Solution of the Three-dimensional Compressible Navier-Stokes Equations," NASA TM 83123, May 1981.
[St] Starius, G. "Constructing Orthogonal Curvilinear Meshes by Solving Initial Value Problems." Numerische Mathematik, Vol. 28, 1977, p. 25.
[SS] Smith, Philip W. and Sritharan. S. S. "On the Grid Generation Methods by Harmonic Mapping on Plane and Curved Surfaces." ICASE Report 84-12, 1984.
[TWM] Thompson, J. E., Warsi, 2. U. A. and Mastin, C. W. "Boundary-Fitted Coordinate Systems for Numerical Solution of Partial Differential Equations - A Review, " Journal of Computational Physics, Vol. 47, No. 1, July 1982, p. I.


```
00002: PROGRAM TENTEST
00003:C
00004:C
00005:C
00006:C
00007:C
00008:C
00009:C
00010:C
00011:C
00012:C
00013:C
00014:C
00015:C
00016:C
00017:C
00018:C
00019:C
00020:C
00021:C
00022:C
00023:C
00024:C
00025:C
00026:C
00027:C
00028:C
00029:C
00030:C
00031:C
00032:C
00033:C INNERCDEF
00034:C COMSPLINE
00035:C TENUALF
00036:C TENSORUAL
00037:C JACOB
00038:C COKANGE
00039:C GF
00040:C FFMIN
00040:C FFMIN
00041:C CRIT
00042:C TESTMINO
00043:C TESTMINR
00044:C TESTMINL
00045:C TESTMINB
00046:C CUBIC
00047:C EXTREMES
00048:C NORM
00049:C
00050:C
    TENTEST MAPS n SOUARE GRID (0,1)X(0,1) ONTO
A PHYSICAL DOMAIN OF ARBITRARY SHAPE THROUGH THE USE OF
TENSOR PRODUCT B-SPLINES. THE ORIGINAL KNOT SEQUENCES
MAY BE CHOSEN TO HANE AN EQUNLLY SPACED DISTRIBUTION,
EXPONENTIAL DISTRIBUTION, OR ARCTANGENT DISTRIBUTION.
SIMILAR CHOICES CAM BE MADE FOR THE OISTRIBUTION OF
GRIDPOINTS ON THE SQUARE.
    TENTEST CONSTRUCTS AN INITIAL GRID GENERATION MAFPING
CONSISTING OF A LINEAR COMBINATION OF TENSOR PRODUCT
B-SPLINES UITH THE COEFFICIENTS CHOSEN SO THAT THE MAPPING
YIELDS A UARIATION DIMINISHING SPLINE APPROXIMATION
TO THE TRANSFINITE BILINEAR INTERPOLANT OF A
FUNCTION HHICH MAPS THE ROUNDARY OF THE UNIT SQUARE
ONTO THE BOUNDARY OF THE PHYSICAL dOMAIN.
IF THE USER REQUESTS A NEW GRID, TENTEST REARRANGES
THE COEFFICIENTS IN AN ATTEMPT TO MINIMIZE A FUNCTIONAL
g involving the difference in the jacobian gf the grid
gENERATION MAPPING AT ADJACENT MESH POINTS ANd the dot
froduct of vectors tangent to the grid lines on the
PHYSICAL DOMAIN.
ROUTINES
EXPONENTIAL
ARCTANGENT
FIXKNOTS
gOUNCOEF
```



```
00102:C A,B
001038C
00104:C
001058C
00106:C
00107:C
00108:C
00109:C
00110:C
00111:C
00112:C
00113:C
00114:C
00115:C
00116:C
00117:C
00118:C
00119:C
00120:C
00121:C
00122:C
00123:C
```



```
00125:C
00126:C
00127:
00128:
00129:
00130:
00131:
00132
00133
00134
00135
00136:
00137:
00138:
00139:
00140:
00141
00142:
00143
00144
00145
00146
0 0 1 4 7
00148
00149
00150
0 0 1 5 1
00152: 222 FORMAT(16,16,I6)
```

00153:
00154: $00155:$ 001568 001578 00158: 00159: 00160: 00161: 00162 : 00163: 00164 : 00165: 00166: $00167:$ 00168:
00169: 00170: 00171 : 00172:
00173: 00174: 00175: 00176: 00177: 00178: 00179: 00180: 00181: 00182: 00193: 00184: 00185: 00186: 00187: 00188: 00189: 00190: 00191 : 00192: 00193: 00194: 00195: 00196: 00197: 00198: 00199: 00200: 00201 : 00202: 00203:

```
    P1=3.14159
    OPEM(12,FILE='TENBORADAT')
    OPEN(13,FILE='NEMDATA')
    OPEN(14,FILE='ORGRID')
    OPEN(16,FILE='ORI62')
    W1=0
    H2=0
    KOUNTE=0
    PRINT&,'INPUT NKNOTX,MKNOTY'
    READ(1,() MKNOTX,MKNOTY
    MSAVEX=HKNOTX
    NSNVEY=#KNOTY
    PRINT*,'UHAT 1S KX'
    READ(1,*) KX
    PRINT*,'WHAT IS KY'
    READ(1,*) KY
    READ(12,*) FNX,BNX,FNY,BNY
    READ(12,*) INX,INY
    READ(12,#) (INTX(I),I=1,INX)
    READ(12,%) (IMTY(1),1=1,INY)
    PRINT*,'DISTRIBUTION FOR X KNOTS'
    PRINT*,'1=EQUALLY SPACED,2=EXPONENTIAL,3=ARCTANGENT'
    READ(1,*) KODEX
    IF(KODEX-2) 5,10,15
    10 CALL EXPONENTIAL(INTX,INX,2.)
        GOTO 5
    15 CALL ARCTAMGENT(INTX,INX,5.)
    5 PRINT*,'DISTRIBUTION FOR Y KNOTS'
        PRINT*,'1=EQUALLY SPACED,2=EXPONENTIAL,3=ARCTANGENT'
        READ(1,*) KODEY
        IF(KODEY-2) 16,18,19
    18 CALL EXPONENTIAL(INTY,INY,2.)
        GO TO 16
    19 CALL ARCTANGENT(INTY,INY,5.)
    16 CONTINUE
        NX=INX+KX
        NY=INY+KY
        CALL FIXKNOTS(KX,KY,FNX,FNY,BNX,BNY,
        * INX,INY,INTX,INTY)
        CALL BOUNCOEF(KX,KY,NX,NY)
        CALL INMERCDEF(KX,KY,NX,NY)
        MRITE(16,早) ((ALPHA(1,J),J=1,NY),I=1,NX)
        URITE(16,$) ((BETA(I,J),J=1,NY),I=1,NX)
        DO 5O I=1,MKNOTX
        A(1)=FLOAT(I-1)/(NKNOTX-1)
        DO 2O J=1,NKNOTY
        B(J)=FLOAT(J-1)/(NKNOTY-1)
        IF(A(I).0E.1.0) A(I)=.99999
        IF(B(J).0E,1,0) B(J)=.99999
        20 CONTIMUE
    5 0 ~ C O N T I N U E ~
```

```
00204:
00205:
00206:
00207%
00208:
00209:
00210:
00211:
00212:
00213:
00214:
00215:
00216:
00217:
00218:
00219:
00220:
00221:
00222:
00223:
00224:
00225:
00226:
00227:
00228:
00229:
00230:
00231:
00232:
00233:
00234:
00235:
00236:
00237:
00238:
00239:
00240:
00241:
00242:
00243:
00244:
00245:
00246:
00247:
    NINT&,'DISTRIBUTION FOR COMPUTATIONAL X'
    PRINT%;'1=EOUNLLY SPACED; 2-EXPONENTIML,J=ANCTAMBENT'
    READ(1,%) KODEXX
    IF(KODEXX-2) 22,24,26
24 CALL EXPONENTIML(A,NKNOTX,2.)
    00TO }2
26 CNLL ANCTANGENT(A,MNNOTX,5,)
22 CONTIMUE
    PRINT:,'DISTRIBUTION FOR COMPUTATIOMAL Y'
    PRINT*,'1=EQUALLY SPACED,2=EXPONENTIAL,3=ARCTANGENT'
    READ(1;*) KODEYY
    IF(KODEYY-2) 30,32,34
32 CALL EXPONENTIAL(B,NKNOTY,2.)
    00TO 30
34 CALL ARCTANGENT(B,NKNOTY,5.)
30 CALL COMSPLIME
    CALL CORANGE(NKNOTX,NKNOTY)
    DO 70 I=1,NKNOTX
    DO 60 J=1,NKNOTY
    CALL TENUALF(ALPHA,LEFTX(I),LEFTY(J),KX,KY,I,J,
    # X(1, J),0,0)
    CALL TENUALF(GETA,LEFTX(I),LEFTY(J),KX,KY,I,J
    * ,Y(I,J),0,0)
6 0 ~ C O N T I N U E ~
70 CONTINUE
    PRINT*,'JACOBIAN YES(1) OR NO(0).
    READ(1,*) JCODE
    IF(JCODE,EO.1) GOTO }70
    PRINT*,'COMPUTE DERIUATIUES YES(1) OR NO(0)'
    READ(1,*) KCODE
    IF(KCODE.ED.0) GOTO BO
    PRINT*,'INPUT DERIVATIUES IESIREII FOR X,Y DIRECT'
    READ(1,*) JDX,JDY
    PRINT*,' X Y X COMF DERIU Y COMP DE
    DO 600 II=., NKNOTX
    DO 500 JJ=1,MKNOTY
    CALL TENUALF(ALPHA,LEFTX(II),LEFTY(JJ),KX,K:,II,JJ,
    * XD,JDX,JDY)
    CALL TENUALF(BETA,LEFTX(II),LEFTY(JJ),KX,KY,II,JJ,
    * YD,JDX,JDY)
    PRINT*,A(II),E(JJ),XD,YD
500 CONTINUE
600 CONTINUE
    GOTO }8
700 CALL JACOB(NX,NY,KX,KY,A,B)
80 CONTIMUE
    CALL EXTREMES(X,Y,TMAX,TMIN,NKNOTX,NKNOTY)
    CALL NORH(X,Y,TMAX,TMIN,NKNDTX,NKNOTY)
    pause
    NN=2
    NAME='PRODUCT GRID'
```

```
00253:
002568
002578
00258:
00259:
002608
00261:
00262:
00263:
00264:
00265:
00266:
00267:
00268:
00269:
00270:
00271:
00272:
00273:
00274:
00275:
00276:
00277:
00278:
00279:
00280:
00281:
00282:
00283:
00284:
00285:
00286:
00287
00288:
00289:
00290:
00291:
00292:
```

 MRITE(13,*) WMNE
    ```
    MRITE(13,*) WMNE
    URITE(13,$)NKNOTX,NKNOTY,NM,NM
    URITE(13,$)NKNOTX,NKNOTY,NM,NM
    MRITE(13, %) (X(1,1),I=1,MKNOTX)
    MRITE(13, %) (X(1,1),I=1,MKNOTX)
    UnITE(13,*) (Y(1,1),I=1,NKNOTY)
    UnITE(13,*) (Y(1,1),I=1,NKNOTY)
    URITE(13,%) (X(I,NKNOTY),I=1,NKNOTX)
    URITE(13,%) (X(I,NKNOTY),I=1,NKNOTX)
    URITE(13,$) (Y(I,NKNOTY),I=1,NKNOTX)
    URITE(13,$) (Y(I,NKNOTY),I=1,NKNOTX)
    WRITE(13,%) X(1,1),X(1,NKNOTY)
    WRITE(13,%) X(1,1),X(1,NKNOTY)
    WRITE(13,t) Y(1,1),Y(1,MKNOTY)
    WRITE(13,t) Y(1,1),Y(1,MKNOTY)
    WRITE(13,%) X(MKNOTX,1),X(NKNOTX,NKNOTY)
    WRITE(13,%) X(MKNOTX,1),X(NKNOTX,NKNOTY)
    WRITE(13,*) Y(NKNOTX,1),Y(NKNDTX,NKNOTY)
    WRITE(13,*) Y(NKNOTX,1),Y(NKNDTX,NKNOTY)
    CALL IMITT(960)
    CALL IMITT(960)
    CALL TWINDO(0,760,0,760)
    CALL TWINDO(0,760,0,760)
    CALL DWINDO(-.07,1,07,-.07,1,07)
    CALL DWINDO(-.07,1,07,-.07,1,07)
338 DD 200 I=1,MKNDTX
338 DD 200 I=1,MKNDTX
    CALL MOVEA(X(1,1),Y(1,1))
    CALL MOVEA(X(1,1),Y(1,1))
    DO 100 J=1,NKNOTY
    DO 100 J=1,NKNOTY
    CALL DRAMA(X(I,J),Y(I,J))
    CALL DRAMA(X(I,J),Y(I,J))
    100 CONTINUE
    100 CONTINUE
    200 CONTINUE
    200 CONTINUE
        DO 400 J=1,MKNOTY
        DO 400 J=1,MKNOTY
    CALL HOVEA(X(1, J),Y(1,j))
    CALL HOVEA(X(1, J),Y(1,j))
    DO 300 I=1,NKNOTX
    DO 300 I=1,NKNOTX
    CALL DRAWA(X(I,J),Y(I,J))
    CALL DRAWA(X(I,J),Y(I,J))
    300 CONTINUE
    300 CONTINUE
    400 CONTIMUE
    400 CONTIMUE
    URITE(14,*) HKNOTY,NKNOTX
    URITE(14,*) HKNOTY,NKNOTX
    URITE(14,早) ((X(1,J),I=1,NKNOTX),J=1,NKNOTY)
    URITE(14,早) ((X(1,J),I=1,NKNOTX),J=1,NKNOTY)
    URITE(14,#) ((Y(I,J),I=1,NKNOTX),J=1,NKNOTY)
    URITE(14,#) ((Y(I,J),I=1,NKNOTX),J=1,NKNOTY)
    CALL MOVABS (0,760)
    CALL MOVABS (0,760)
    CALL ANMODE
    CALL ANMODE
    PRINT*,'ITERATION',KDUNTE
    PRINT*,'ITERATION',KDUNTE
    PRINT*,' NX=',NX,' NY=',NY
    PRINT*,' NX=',NX,' NY=',NY
    IF(KOUNTE,EQ.O) GOTO 410
    IF(KOUNTE,EQ.O) GOTO 410
    PRINT*,'JACOBIAN WEIGHT=',WI
    PRINT*,'JACOBIAN WEIGHT=',WI
    PRINT*,'ORTHOG UEIGHT=';UZ
    PRINT*,'ORTHOG UEIGHT=';UZ
    PRINT*,'OPTIMIZED ON',NSAVEX,' BY',NSAVEY,' GRID'
    PRINT*,'OPTIMIZED ON',NSAVEX,' BY',NSAVEY,' GRID'
410 KOUNTE=KOUNTE+1
410 KOUNTE=KOUNTE+1
    PRINT:,'DO YOU UANT TO CHANGE THE GRID, YES OR NO(O)'
    PRINT:,'DO YOU UANT TO CHANGE THE GRID, YES OR NO(O)'
    READ(1,*) KODE
    READ(1,*) KODE
    IF(KODE,EQ,0) BOTO 339
    IF(KODE,EQ,0) BOTO 339
    PRINT*,'CURRENT MEIGHTS ARE',W1,W2
    PRINT*,'CURRENT MEIGHTS ARE',W1,W2
    PRINT*,'NEH UEIGHTS, YES(1) OR NO(O)'
    PRINT*,'NEH UEIGHTS, YES(1) OR NO(O)'
    READ(1,*) KW
    READ(1,*) KW
    IF(KW.EO,O) GOTO 401
    IF(KW.EO,O) GOTO 401
    PRINT&,'INPUT WEIOHTS FOR JACOB,ORTHOG'
    PRINT&,'INPUT WEIOHTS FOR JACOB,ORTHOG'
    READ(1,*) W1,W2
    READ(1,*) W1,W2
401 CONTIMUE
401 CONTIMUE
        NKNOTX=NSAUEX
        NKNOTX=NSAUEX
        NKNOTY=NSAUEY
        NKNOTY=NSAUEY
    CALL FFMIN(ERHAX)
    CALL FFMIN(ERHAX)
    PRINT*,'OUTPUT JACOBIAN,YES(1) OR NO(O)'
```

 PRINT*,'OUTPUT JACOBIAN,YES(1) OR NO(O)'
    ```

003068
003078
00308: 00309 :
\(00310:\)
00311:
00312:
00313 :
\(00314:\)
00315:
00316 :
00317:
00318:
003:9:
003z0:
00321:
0032'2:
0032 :
00324:
00325:
00326:
00327:
00328:
C0329:
00330:
00331 :
00332:
00333:
00334:
00335:
00336:
00337:
00338:
00339:
00340:
00341 :
00342:
00343:
00344:
00345:
00346:
00347:
00348:
00349:
00350:
00351 :
00352:
00353:
00354:
00355:
00356:
```

READ (1, $\%$) HKODE
IF (MKODE.ED.0) $00 T 0399$
CALL JACOB (NX, $\mathrm{NY}, \mathrm{KX}, \mathrm{KY}, \mathrm{A}, \mathrm{B}$)
399 CONTIME
PRINT*,'CHAMEE MLH OF BRIDPOINTS, YES(1) OR MO(O)'
READ (1, \%) KODE
IF(KODE.EQ.0) BOTO 501
PRINT*,'ENTER MUMBER OF GRIDPOINTS FOR \times DIRECTION,

- Y direction'

```

```

MKNOTX = NE MNDTX
MKNOTY=NEUNOTY
6070502
501 CONTIMUE
NEEMOTX=NKKOTX
NEUNOTY=MKNOTY
502 CONTINUE
CALL ERASE
DO 450 I=1, NEWNOTX
DO 425 J=i, NEUNOTY
AP(1) $=$ FLOAT (I-1)/(NEMNOTX-1)
BP(J) =FLOAT ($J-1$)/(NEWNOTY-1)
IF(AP(I), BE, 1.0) AP(I) $=.99999$
$\operatorname{IF}(B P(J), G E, 1,0) \quad B P(J)=.9999$
425 CONTIMUE
450 CONTINUE
PRIMT*,'DISTRIBUTION FOR COMPUTATIONAL X '
PRINT*,'1=EQUALLY SPACED,2=EXPONENTIAL,3=ARCTAN'
READ(1,*) KDDE3X
IF (KODE3X-2) 452,454,456
454 CALL EXPONENTIAL(AP, NEHNOTX,2.)
GOTO 452
456 CALL ARCTANGENT(AP,NEHNOTX,5.)
452 CONTIMUE
PRINT*,'DISTRIBUTION FOR COMPUTATIONAL Y '
READ (1, \%) KODE3Y
IF (KODE3Y-2) 458,460,462
460 CALL EXPONENTIAL (BP,NEUNOTY,2.)
GOTO 458
462 CALL ARCTANGENT(BP,NEUNOTY,5.)
458 CONTINUE
DO 480 I=1, NEWNOTX
DO 470 J=1,NEUNOTY
CALL TENSORUAL(ALPHA,NX,NY,KX,KY,AP(I),

- $\operatorname{BP}(J), X(1, J), 0,0)$
CALL TENSORUAL(BETA,NX,NY,KX,KY,AP(I),BP(J),
($Y(I, J), 0,0)$
470 CONTIMUE
480 CONTINUE
CALL EXTREME3 (X,Y, TMAX, TMIN, NEMMOTX, NEHMOTY)
CALL NORM (X, Y, TMAX, TMIN, NEUNOTX, NEUNOTY)

```
\begin{tabular}{|c|c|}
\hline 003578 & - \\
\hline 00757 & 007037 \\
\hline 00359 : & 379 cintimue \\
\hline 003608 & CML FIMITT(0,760) \\
\hline 003618 & PRINTB, 'KX 18 'okX \\
\hline 003628 & PRIMTt, \(\mathrm{KY} 18{ }^{\circ}\), KY \\
\hline 003638 & PRIMT*, 'DIETRIEUTIONE' \\
\hline 003648 &  \\
\hline 00345 : & PRIMT \({ }^{\prime} \mathrm{X}\) KNOT D18t. 18'。KODEX \\
\hline 003661 & PRINTH.'Y KNOT DI8T. 18', KODEY \\
\hline 00367: & PRIMTH, 'CONPUTATIONAL X 818T 18, „KODEXX \\
\hline 00368 & PRINTE, COMPUTATIONAL Y DIET Is' KODE YY \\
\hline 00369: & CLOSE (12) \\
\hline 003708 & close(13) \\
\hline 00371 : & Close (14) \\
\hline 00372 : & CALL TIMDAT (STRINB, MUMB) \\
\hline 00373 \% & URITE(1,222) TIME,TIME1,TIME2 \\
\hline 093748 & 8708 \\
\hline 00373 : & CND \\
\hline \multicolumn{2}{|l|}{00376:C} \\
\hline 00377:C & \\
\hline \(00378:\) & SUBROUTINE EXPONENTIAL (X,N,AC) \\
\hline 00379:C & \\
\hline 00380:C & THIS ROUTINE PRODUCES AN EXPONENTIAL DISTRIBUTION OF \\
\hline 00381:C & POINTE BY SUBSTITUTING AN ORIGINAL SET OF NUMBERS \\
\hline 00382:C & U LYINE BETUEEN 0 AND 1 INTO THE EXPONENTIAL \\
\hline 00383:C & FUNCTION (EXP (AtU)-1.)/(EXP (AC)-1) UHERE AC IS A \\
\hline 00384:C & PARAMETER MHOSE VALUE IS SUPPLIED BY THE USER. \\
\hline 00385:C & \\
\hline 00386:C & UARIARLES \\
\hline 00387: C & \\
\hline 00388:C & X...THIS AN ARRAY WHICH ON INPUT CONTAINS THE ORIEINAL \\
\hline 00389:C & SET OF MUMBERS AND ON OUTPUT CONTAINS THE EXPONENTIAL \\
\hline 00390:C & DI8TRIEUTION OF NUMEERS. \\
\hline \(00391: C\) & M...8IZE OF ARRAY \(X\) \\
\hline 00392:C & AC. \(P\) PARANETER IN EXPONENTIAL FUNCTION \\
\hline 00393:C & \\
\hline 003941 & REAL \(X(100)\) \\
\hline 00393: & D0 \(10 \mathrm{I}=1, \mathrm{~N}\) \\
\hline 00396: & \(\mathrm{U}=\mathrm{X}(1)\) \\
\hline 00397: & \(X(1)=(E X P(A C W U)-1) /.(E X P(A C)-1\). \\
\hline 00398: & IF (X(1).0E.1.0) \(X(1)=.99999\) \\
\hline 00399: & 10 CONTIME \\
\hline 00400 : & RETURN \\
\hline 00401: & END \\
\hline \multicolumn{2}{|l|}{00402:C} \\
\hline 00403:C & \\
\hline 00404:C & \\
\hline 00405 : & SUEROUTINE ARCTANESNT ( \(X, N, A C\) ) \\
\hline
\end{tabular}

004041 C
00407 IC
00408iC 00409 ic 004101 C 00411 1C 00412 : C 004131 C 004141 C 00413 IC 00416:C 00417:C 00418:C 00419:C 00420 IC \(00421: \mathrm{C}\) 00422: C 00423 : 00424: 00425: 00426 : 00427: 00428: 00429: 00430: 00431: 00432:C 00433:C 00434:C 00435: 00436: \(00437: C\) 00438:C 00439:C 00440:C \(00441: C\) 00442:C 00443:C 00444:C \(00443: C\) 00446:C 00447:C 00448:C 00449:C 00450:C 00451 : C 00432:C 00453 : C 00454:C 00453: C 00456:C

THIS ROUTINE PROBUCES AN ABCTANEENT DISTRIBUTION
OF points sy sumstitutime an onibimal get of munders
U LYIME DETHEEN O AND 1 INTO THE ARCTAMEENT FUNCTION
(ATAW(AC)-ATAN(-ATAN(-AC))/(ATAM(AC)-ATAN(-AC))
MHERE AC IS A PARAMETER MHOBE UALUE IS
SUPPLIED BY THE USER.
UARIADLES
X...tHIS AN ARRAY bHICH ON INPUT CONTAINS THE ORIGINAL SET OF MUMEERS AND ON OUTPUT CONTAINS THE ARCTANGENT DISTRIBUT
of munders.
N...size of array \(X\)

AC. . PARANETER IN ARCTANGENT FUNCTION

REAL \(X(100)\)
DO \(10 I=1, N\)
\(\mathrm{U}=\mathrm{X}(\mathrm{I})\)
\(X(I)=(A T A N(2\), *AC* \((U-A C)-A T A N(-A C))\)
* /(ATAN(AC)-ATAN(-AC))

IF(X(I), OE.1.0) X(I) \(=.99999\)
10 CONTINUE
RETURN
END

SUBROUTINE FIXKNOTS(KX,KY,FNX,FNY,BNX, ENY,INX,
* INY,INTX,INTY)
this routine places kX COPies of fnx at the BEOINNING OF THE INTERIOR \(X\) KNOT SEQUENCE, KY COPIES OF FNY AT THE BEEINNING OF THE interior y knot sequence, kX Copies of bnX at the END OF THE INTERIDR X KNDT SEDUENCE AND KY COPIES OF BNY AT THE END OF THE INTERIOR Y KNOT SEQUENCE.

INPUT

KX... QUANTITY OF NUMBERS TO BE ADDED TO THE FRONT and back of the interior \(x\) knot sequence. ORDER OF B-SPLINES IN X DIRECTIDN. KY... QUANTITY OF MUMEERS TC BE ADDED TO THE FRONT and back of the interior y knot sequence. order OF B-SPLINES IN Y DIRECTION.
fnX,fny... numbers to be placed at the front of the \(X\) and \(Y\) knot sequemces, respectively.
```

004571C
004cetc
004598C
00460:C
00461:C
004d21C
004638C
00464:C
00465IC
00466:C
00467:
004688C
00469:C
004708
00471:
004728
00473:
004748
00475:
00476:
00477:
00478:
00479:
00480:
00481:
00482:
00483:
004848
00485:
00486:
00487:
00488:
00489:
00490:
00491:
00492:
00493:
00494:C
00493:C
00496:C
00497:
00493:C
00499:C
00500:C
00501:C
00302:C
00503:C ALPHA(1,J),DETA(1,J) AND ALPMA(NX,J), BETA(NX,J)
00504:C FOR J=1 TO WY.
0050S:C COEFFICIENTS ARE CHOSEN SO THAT THERE IS A
00506:C UARIATION DIMINISHINS APPROXIMATION ALONS THE
00507IC mOUNDARY.

```
```

00500:C
00509:C INPUT
00510:C
00511:C
00512:C
00513:C
00514:C
00515:C
00516:C
00517:C
00518:C
00519:C
00520:C
00521:C
00522:C
00523:
00524:
00525:
00526:
00527:
00528:
00529:
00530:
00531:
00532:
00533:
00534:
00535:
00536:
00537:
00538:
00539:
00540:
00541:
00542:
00543:
00544:
00545:
00546:
00547:
00548:
00549:
00550:
00551:
00552:
00553:
00554:
00555:
00556:
00557:
00558: ALPHA(NX,J)=G2X(B)
KX,KY...ORDER OF SPLINE IN X DIRECTION, Y DIRECTION
Nx,MY...DIMENSION OF SPLINE IN X DIRECT, Y DIRECT.
BOTH COEFFICIENT SEOUENCES WILL HAVE DIMENSION
NX檕Y
OUTPUT
(IN COMHON)
BOUNDARY COEFFICIENTS PLACED IN ALPHA,BETA ARRAYS.
COMON/COEF/ALPMA(100,100),BETA(100,100)
COMMON/KMOTS/TX(100), TY(100)
DIMENSION TXSTAR(100),TYSTAR(100)
01X(T)=2.%T+1.
G1Y(T)=0.
G2X(T)=3.+T
G2Y(T)=2.\#T
63X(T)=4.䖝
G3Y(T)=2.
G4X(T)=1.-T
G4Y(T)=2.%T
PI=3.14159
00 100 I=1,NX
SUM=0.
10 50 J=1,KX-1
SUM=SUM+TX(I+J)
50 CONTINUE
TXSTAR(I)=SUM/(KX-1)
100 CONTIMUE
DO 200 J=1,NY
SUM=0.
10 150 K=1,KY-1
SUM=SUM\&TY(J+K)
150 CONTINLE
TYSTAR(J)=SUM/(KY-1)
200 CONTINUE
00 300 I =1.NX
A=TXSTAR(I)
ALPHA(1,1)=G1X(A)
BETA(I,1)=G1Y(A)
ALPHA(I,NY)=G3X(A)
BETA(I,NY)=G3Y(A)
300 CONTIMUE
10 400 J=1,NY
B=TYSTAR(J)

```
\(00559:\) 00360: 00561: 00562 : 00343: cos64: 00566:C 00566:C 00567:C 00568: 00569:C 00570:C 00571 : C \(00572: \mathrm{C}\) 00573:C 00574:C 005751C 00576:C 00377 : C 00578:C 00579:C 00580:C 00581 :C 00582:C 00583:C 00584:C 00585:C 00586:C 00587:C 00588:C 00589:C 00590:C 00591:C 00592:C 00593:C 00594:C 00595:C 00596:C 00597: 00598: 00599: 00600: 00601:
00602:
00603:
00604:
00605:
00606:
00607:
00608:
00609:

MEA(NX,J) \(=62 Y(1)\)
ALPMA(1, J) \(=64 X(1)\)
\(\operatorname{BETA}(1, J)=\) © \(Y\) (B)
400 COMTIME
NETLW
END

SUBROUTINE IMWERCOEF (KX,KY,NX,NY)
this routine conputes the immer coefficients FOR THO TENSOR PRODUCT R-SPLINES ( \(X, Y\) COMPONENTS)
SPECIFICALLY, IT COMPUTES ALPHA(I,J), BETA(I,J) FOR
1=2 TO NX-1, J=2 TO NY-1.
THE COEFFICIENTS ARE COMPUTED THROUGH THE USE OF TRAWSFIMITE BILINEAR INTERPOLATION. THE
interpolamts are eunluated at points so that the resultime coefficients produce a variatiom DIMIMISHING SPLINE APPROXIMATION TO THE TRANSFINITE BILIMEAR INTERPOLANT.

IMPUT
KX,KY...ORDER OF B-SPLINES IN X DIRECTION,Y DIRECTION NX,NY...DIMENSION OF SPLINE SPACE IN X DIRECT,Y DIRECT
both coefficient sequences uill have dimension NXZAY
TX,TY(IN COMHON)...KNOT SEQUENCE FOR X DIRECT,Y DIRECTION

OUTPUT(IN COMMON)
interior coefficients placed in alpha,beta arrays

COMMON/COEF/ALPHA(100,100), BETA(100,100)
COMMON/KNOTS/TX(100), TY(100)
DIMENSIOM TXSTAR(100), TYSTAR(100)
\(\theta 1 X(T)=2 . * T+1\).
G1Y(T) \(=0\).
\(G 2 X(T)=3 .+T\)
G2Y(T) \(=2\). *T
\(03 X(T)=4 . \% T\)
\(G 3 Y(T)=2\).
\(G 4 X(T)=1 .-T\).
\(G 4 Y(T)=2 . * T\)
\(F X(X, Y)=G 1 X(X) *(1,-Y)+G 3 X(X) \neq Y\)
* \(+62 X(Y) * X+(1,-X) * 04 X(Y)\)
```

00610:
00611:
00412:
00613:
00614:
00615:
00616:
00617:
00618:
00619:
00620:
00621:
00622:
00623:
00424:
00625:
00626:
00627:
00628:
00629:
00630:
00631:
00632:
00633:
00634:
00635:
00636:
00637:
00638:
00639:
00640:
00641:C
00642:C
00643:C
00644:
00645:C
00646:C
00647:C
00648:C
00649:C
00650:C
00651:C
00652:C
00653:C
00654:C
00655:C
00656:C
00657:C
00658:C
00659:C
00660:C

```

```

 #-63X(0)*(1.-X)*Y-62X(1.) &X%Y
 FY(X,Y)=G1Y(X)&(1,-Y)+03Y(X)*Y
 新 +62Y(Y)&X+(1,-X)$64Y(Y)
 * -G1Y(0)&(1,-X)*(1, -Y)-G2Y(0) #X&(1, -Y)
 #-63Y(0)*(1.-X)*Y-62Y(1.) %X*Y
 PI=3.14159
 DO 100 I=1,NX
 SuH=0.
 10 50 J=1,KX-1
 SUH=SUM+TX(I+J)
 50 CONTIMME
TXSTAR(I)=SUM/(KX-1)
100 CONTIMUE
DO 290 J=1,NY
SUH=0.
10 150 K=1,KY-1
SUH=5UM+TY(J+K)
150 CONTINUE
TYSTAR(J)=SUM/(KY-1)
200 CONTINUE
10 400 I=2,NX-1
10 300 J=2,NY-1
A=TXSTAR(I)
B=TYSTAR(J)
ALPHA(I,J)=FX(A,B)
BETA(I,J)=FY(A,B)
300 CONTIMUE
400 CONTIMUE
RETURN
END
SUBROUTINE COMSPLINE
THIS ROUTINE COMPUTES AND STORES THE FUNCTION UALUES AND FIRST DERIUATIVES OF ALL THE NONUANISHING B-SFLINES AT EACH POINT OF A SQUARE MESH.
IN AIIDITION, IT IUETERMINES THE KNOT INTERUAL ON HHICH EACH MESH COORIIINATE LIES.
INPUT
(IN COMMON)
A.B... ARRAYS CONTAINING COORIINATES FOR SQUARE MESH, FOINTS OF EVALUATION FOR E-SFLLINES.
NKNOTX, NKNOTY. . .NIJMEER OF ELEMENTS IN A,B.
KX,KY... ORDER OF B-SFLINES IN X IIIRECTION, Y DIRECTION.
TX,TY... X KNOT SEQUENCE FOR B-SPLINES,Y KNOT

```
```

00661:C
00662:C NX,NY...
00663:C
00664:C
00665:C
00666:C
00667:C
00668:C
00669:C
00670:C
00671:C
00672:C
00673:C
00674:C
00675:C
00676:C
00677:C
00678:C
00679:C
00680:C
00681:C
00682:C
00683:C
00684:C
00685:C
00686:C
00687:C
00688:C
00689:
00690:
00691:
00692:
00693:
00694:
00695:
0c696:
00697:C
00698:C
00699:C
00700:
00701:
00702:
00703:
00704:
00705:
00706:
00707:
00708:
00709:
00710:
00711:
SEQUENCE FOR B-SPLINES.
NX.NY... DIMENSION OF SPLINE SPACE IN X DIRECTION,
Y DIRECTION
OUTPUT
(IN CO\#\#оN)
XSPLIME,YSPLINE..THREE DIMENSIONAL ARRAYS CONTAINING
FUNCTIDN UALUES AND FIRST DERIVATIVES OF
B-SPLINES IN X DIRECTION, Y DIRECTION AT
EACH ELEMENT OF A,B. THE FIRST SUBSCRIPT
IDENTIFIES THE B-SPLINE, THE SECOND
SUBSCRIPT REPRESENTS THE POINT OF EUALUATION
AND THE THIRD SUBSCRIPT (1 OR 2) INDICATES
GHETHER THE UALUE REPRESENTS A FUNCTION
EUALUATION OR DERIUATIVE EUALUATION. HENCE
XSPLINE (3,2,1) UILL CONTAIN THE UALUE OF THE
B-SPLINE IN THE X DIRECTION, B(3), AT A(2).
LEFTX,LEFTY... ARRAYS IDENTIFYING KNOT INTERUALS ON
UHICH MESH COORDINATES LIE. LEFTX(3)=4 WOULI
MEAN THAT A(3) LIES BETWEEN TX(4) AND TX(4+1)
REQUIRED ROUTINES:
BSPLVD
BSPLUB
INTERU
COMHON/PARAM2/A(100),B(100),NX,NY,KX,KY,LEFTX(100)
-LEFTY(100)
COMMON/SPLINES/XSPLINE(50,100,2),YSPLINE (50,100,2)
COMMON/KNOTS/TX(100),TY(100)
COMMON/KNOT/MKNOTX,NKNOTY
REAL DBIATX (4,2),MORK(4,4)
IDERIU=2
JDERIV=2
INITIALIZATION
NUMX=NX+KX
NUMY=NY+KY
DO 3 I=1,NX
DO 2 J=1,NKNOTX
DO 1 KK=1,2
XSPLINE (I I S,KK) =0.
1 COMTIME
2 COMTIME
3 C0MTINE
B09 I=I.mT
DO }8\mathrm{ y=y MCMOTY
DO }7\mathrm{ KK=1.2

```
```

00712:
00713:
007141
00715:
00716:
00717:
00718:
00719:
00720:
00721:
00722:
00723:
20724:
00725:
00726:
00727:
00728:
00729:
00730:
00731:
00732:
00733:
00734:
00735:
00736:
00737:
00738:
00739:
00740:
00741:
00742:
00743:
00744:
00745:
00746:
00747:
00748:
00749
00750: 29 CONTINUE
00751: 293 CONTINUE
00752: RETURN
00753:
00754:C
00755:C
00756:C
00757:
00758:
00759:C
00760:C
00761:C
00762:C
SUBROUTINE TENUALF(ARR,LEFTX,LEFTY,KX,KY
* ,I,J,UALUE,IDERIV, JDERIU)
TENUALF COMPUTES PARTIAL DERIVATIUES FOR A TENSOR product spline function as indicated by the farameters IDERIV, JDERIV.

```

```

000148C
00015:C
00316:C
00317:C
00118:C
00819:C
00820:C
00821:C
00822:C
00023:C
00824:C
00825:C
00826:C
00827:C
00928:C
00829:C
00830:C
00831:C
00832:
00833:
00834:
00835:
00836:
00837:
00838:
00839:
00840:
00841:C
00842:C
00843:C
00844:
00845:C
00846:C
00847:C
00848:C
00849:C
00850:C
00851:C
00832:C
00853:C
00854:C
00855:C
00856:C
00857:C
00858:C
00859:C
00860:C
00861:C
00867:C
00863:C
00864:C
IMPUT
ARR... AMRAY OF COEFFICIENTS.
NX,NY...DIMENSION OF SPLINE SPACE IN X DIRECT., Y dIRECTION. ARRAY ARR HILL HAVE DIMENSION NXYNY.
$K X, K Y \ldots$...DRDER OF B-SPLINES IN X DIRECT,Y DIRECT
A,B... POINT OF EUALLUATION
(IN COMmоN)
TX,TY...KNOT SEQUENCE FOR X DIRECT, Y DIRECT.
OUTPUT
UALUE... UALUE OF TENSOR PRODUCT SPLINE AT (A, B)
COMMON/KNOTS/TX(100), TY(100)
DIMENSION BCOEF(100),ARR(100,100) CALL INTERU(TY,NY, B,LEFTY,MFLAG) UALUE=0.
DO $10 \mathrm{~J}=1, \mathrm{KY}$
$10 \operatorname{BCOEF}(J)=\operatorname{BUALUE}(T X, A R R(1, L E F T Y-K Y+J), N X, K X, A, J D X)$
VALUE=BUALUE (TY (LEFTY-KY+1), BCOEF ,KY, KY, B, JDY)
RETURN
END
SURROUTINE JACOB(NX,NY,KX,KY,A,B)
this routine computes the jacobian of a TENSOR PRODUCT B-SPLINE MAPPING.
INPUT
NX,NY... DIMENSION OF SPLINE IN X DIRECTION,Y DIRECTION
KX,KY... ORDER OF R-SPLINES IN X DIRECTION Y DIRECTION
A.B... ARRAYS CONTAINING EUALUATION POINTS
(IN COMMON)
ALPHA, BETA...COEFFICIENTS OF R-SPLINES NKNOTX, NKNOTY, NUMBER OF ELEMENTS IN arkays a, E
SUTPUT(TO TERMINAL)
A,B... arrays CONTAINING EUALUATION

```

00917:C
00918:C
00919:C
00920:C
00921:C
00922:C
00923:C
00924:C
00925:C
00926:C
00927:C
00928:C
00929:C
00930:C
00931:C
00932:C
00933:C
00934:C
00935:C
00936:C
00937:C
00938:
00939:
00940:
00941:
00942:
00943:
00944:
00945:
00946:
00947:
00948:
00949:
00950:
00951:
00952:
00953:
00954:
00955:
00956:
00957:
00958:
00959:
00960:
00961:
00962:
00963:
00964:
00965:
00966:
```

```
```

00916:C NX,NY... DIMENSION OF SPLINE SPACE IN X DIRECT.

```
```

00916:C NX,NY... DIMENSION OF SPLINE SPACE IN X DIRECT.

```
        , Y IIRECTION OR
```

 , Y IIRECTION OR
 TOTAL ND, OF S-SPLINES IN X DIRECTION,
 TOTAL ND, OF S-SPLINES IN X DIRECTION,
 Y DIRECTION
 Y DIRECTION
 KX,KY... ORDER OF B-SPLINES IN X DIRECTION,
 KX,KY... ORDER OF B-SPLINES IN X DIRECTION,
 Y DIRECTION
 Y DIRECTION
 LEFTX,LEFTY... ARRAYS IDENTIFYINO KNOT INTERUNLS
 LEFTX,LEFTY... ARRAYS IDENTIFYINO KNOT INTERUNLS
 ON WHICH SQUARE MESH COORDINATES
 ON WHICH SQUARE MESH COORDINATES
 LIE. (LEFTX(I)=J IMPLIES
 LIE. (LEFTX(I)=J IMPLIES
 TX(J)<\XiA(I)<゙TX(J+1)
 TX(J)<\XiA(I)<゙TX(J+1)
 OUTPUT
 OUTPUT
 IFIRST,JFIRST.. ARRAYS CONTAINING STARTING
 IFIRST,JFIRST.. ARRAYS CONTAINING STARTING
 POINTS FOR THE RANOES OF SUMMATION
 POINTS FOR THE RANOES OF SUMMATION
 CORRESPONDING TO EACH COEFFICIENT
 CORRESPONDING TO EACH COEFFICIENT
 ALPHA(I,J), BETA(I,J).
 ALPHA(I,J), BETA(I,J).
 ILAST,JLAST.. ARRAYS CONTAINING FINAL
 ILAST,JLAST.. ARRAYS CONTAINING FINAL
 PCINTS FOR THE RANGES OF SUMMATION
 PCINTS FOR THE RANGES OF SUMMATION
 CORRESPONIING TO EACH COEFFICIENT
 CORRESPONIING TO EACH COEFFICIENT
 ALPHA(I,J), BETA(I,J)
 ALPHA(I,J), BETA(I,J)
 COMMON/PARAM2/A(100), R(100),NX,NY,KX,KY,
 COMMON/PARAM2/A(100), R(100),NX,NY,KX,KY,
 * LEFTX(100), LEFTY(100)
 * LEFTX(100), LEFTY(100)
 COMMON/RANGE/IFIRST (100),ILAST(100), JFIKST(100),
 COMMON/RANGE/IFIRST (100),ILAST(100), JFIKST(100),
 * JLAST(100)
 * JLAST(100)
 00 50 I=1,NX
 00 50 I=1,NX
 IF(I.EG.1) THEN
 IF(I.EG.1) THEN
 II=1
 II=1
 ELSE
 ELSE
 I=IFIRST(I-1)
 I=IFIRST(I-1)
 ENDIF
 ENDIF
 10 IF(I.GE.LEFTX(II)-(KX-1),AND,I,LE.LEFTX(II))
 10 IF(I.GE.LEFTX(II)-(KX-1),AND,I,LE.LEFTX(II))
 * GOTO 20
 * GOTO 20
 II=II+1
 II=II+1
 GOTO 10
 GOTO 10
 20 IFIRST(I)=II
 20 IFIRST(I)=II
 30 II=II+1
 30 II=II+1
 IF(II.GT.NKNOTX) GOTO 40
 IF(II.GT.NKNOTX) GOTO 40
 IF(I.LT.LEFTX(II)-(KX-1)) GNTO 40
 IF(I.LT.LEFTX(II)-(KX-1)) GNTO 40
 GOTO 30
 GOTO 30
 40 ILAST (I) =II-1
 40 ILAST (I) =II-1
 5O CONTINUE
 5O CONTINUE
 DO 100 J=1,NY
 DO 100 J=1,NY
 IF(J.EQ.1) THEN
 IF(J.EQ.1) THEN
 JJ=1
 JJ=1
 ELSE
 ELSE
 JJ=JFIRST(J-1)
 JJ=JFIRST(J-1)
 ENDIF
 ENDIF
 60 IF(J.GE,LEFTY(JJ)-(KY-1),AND,J.LE.LEFTY(JJ))
 60 IF(J.GE,LEFTY(JJ)-(KY-1),AND,J.LE.LEFTY(JJ))
 * GOTO 70
    ```
    * GOTO 70
```

00967:
00968:
00969:
00970:
00971:
00972:
00973:
00974:
00975:
00976:
00977:
00978:C
00979: C
00980:C
00981:
00982 : C
00983:C
00984:C
00985:C
00986:C 00987:C 00988:C 00989:C 00990:C 00991:C 00992:C Cu993:C 00994:C 00995:C
00996:C 00997:C 00998:C 00999:C 01000:C 01001 : C 01002:C 01003:C 01004:C 01005:C 01006:C 01007:C 01008:C 01009:C 01010:C 01011:C 01012:C 01013:C 01014:C 01015:C 01016:C 01017:C

JJJJJ J 1
60TO 60
70 JFIRST(J) $=\mathrm{JJ}$
$80 \mathrm{JJ}=\mathrm{J} J+1$
IF(JJ.GT.NKNOTY) GOTO 90
IF(J.LT.LEFTY(JJ)-(KY-1)) GOTO 90
607080
90 HLAST (J) $=\mathrm{JJ}-1$
100 CONTIMUE
RETURN
END
.REAL FUNCTION GF(II,JJ)

FUNCTION GF COMPUTES THE SUM OF THE TERMS IN the shoothing functional g ouer the ranges indicatedi EY IFIRST(II), JFIRST(JJ) ANI ILAST(II), JLAST(JJ).

INPUT
II.JJ... INDICES FOR COEFFICIENT INUOLUED IN MINIMIZATION.
(IN COMMON)
nKNOTX,NKNOTY...DIMENSIONS FOR SQUARE MESH or number of elements in arrays a, f
a,B... arrays containing coorlinntes for SQUARE MESH
NX,NY... DIMENSION OF SPLINE SFACE IN X DIRECT. , Y DIRECTION OR total no. of b-splines in x dikection, Y DIRECTION
KX,KY... ORIER OF B-SPLINES IN X DIRECTION, Y DIRECTION
LEFTX,LEFTY... ARRAYS IDENTIFYING KNOT INTERUALS ON WHICH SQUARE MESH COORIINATES LIE. (LEFTX(I)=J IMPLIES $T X(J):=A(1)<T X(J+1)$

IFIRST,JFIRST.. ARRAYS CONTAINING STARTING POINTS FOR THE RANGES OF SUMMATION CORRESPONDING TO EACH COEFFICIENT ALPHA(I,J), BETA(I,J).
ILAST,JLAST.. ARRAYS CONTAINING FINAL points for the ranges of summation CORRESPONAING TO EACH COEFFICIENT ALPHA(I,J), BETA(I,J)
WEIGHTS FOR JACOBIAN, DOT PRODUCT

```
01018:C
    OUTPUT
01019:5
01020:C OF... PARTIAL SUM OF TERMS IN G OUER THE
01021:C
01022:C
01023:
01024:
01025:
01026:
01027:
01028:
01029:
01030:
01031:
01032:
01033:
01034:
01035:
01036:
01037:
01038:
01039:
01040:
01041:
01042:
01043:
01044:
01045:
01046:
01047:
01048:
01049:
01050:
01051:
01052:
01053:
01054:
01055:
01056:
01057:
01058:
01059: 100
01060: 200 CONTINUE
01061: SUM1=0.
01062: SUM2=0.
01063: [10 400 J=JF,Jl-1
01064: DU 300 I=IF,IL-1
01065:
01066:
01067:
01068:
    REAL AJ(30,30),DOT(30,30)
    COMMON/PARAN2/A(100),B(100),NX,NY,KX,KY,
    * LEFTX(100),LEFTY(150)
    COMMON/COEF/ALPHA(100,100), BETA(100,100)
    COMHON/KNOT/NKNOTX,NKNOTY
    COMMON/WEIGHTS/W1,W2
    COMMON/RANGE/IFIRST(100),ILAST(100),JFIRST(100),
    * JLAST(100)
        ::UMX=NKNOTX
    NUMY = NKNOTY
    DELX=1./(NUMX-1.)
    DELY=1./(NUMY-1.)
    SDELX=DELX*DELX
    SDELY=DELY*DELY
    SUM=0.0
    IF=IFIRST(II)
    JF=JFIRST(JJ)
    IL=ILAST(II)
    Jl=JLAST(JJ)
    IF(IF,GT,1) IF=IF-1
    IF(JF.GT.1) JF=JF-1
    IF(IL.LT.NUMX) IL=IL+1
    IF(JL.LT.NUMY) JL=JL+1
    DO 200 J=JF,J
    IO 100 ]=IF,IL
    CALL TENUALF(AL: AA,LEFTX(I),LEFTY(J),KX,KY,I,J,
    * FIX,1,0)
        CALL TENUALF(BETA,LEFTX(I),LEFTY(J),KX,KY,I,J,
    * F1Y,1,0)
        CALL TENUALF(ALPHA,LEFTX(I),LEFTY(J),KX,KY,I,J,
        * F2X,0,1)
        CALL TENUALF(BETA,LEFTX(I),LEFTY(J),KX,KY,I,J,
    * F2Y,0,1)
        AJ(I,J)=F1X*F2Y-F2X*FIY
        IOT(I,J)=F1X*F2X+F1Y*F2Y
        SUM=SUM+IOT:I,J)**2
        01059:
        continue
        IF(I.EQ.1.ANI.J.EQ.1) GOTO 300
        IF(I.EQ.1.ANI.J.EQ.NUMY-1) GOTO 300
        IF(I.EQ.NUMX-1,AND.J.EQ.1) GOTO 300
        SUMI=SUM1+(AJ(I,J)-AJ(I,J+1))**2
```


| $\begin{aligned} & 01120: C \\ & 01121: C \end{aligned}$ | IFIRST, JFIRST. . ARRAYS CONTAININO STARTINO |
| :---: | :---: |
| 01122:C | POINTS FOR THE RANGES OF SUMMATION |
| 01123:C | CORRESPONDING TO EACH COEFFICIENT |
| $011.24: \mathrm{C}$ | ALPMA (I, J), BETA (I, J). |
| 01125:C | ILAST, JLAST.. ARRAYS CONTAININS FIMAL |
| 01126:C | POINTS FOR THE RANBES OF SUMMATION |
| 01127:C | CORRESPONDINO TO EACH COEFFICIENT |
| 01128:C | ALPHA (I, J), BETA (I, J). |
| 01129:C | WI,H2... WEIGHTS FOR JACOBIAN, DOT PRODUCT |
| $01130: C$ | TO BE USED IN GF. |
| 01131:C | NKNOTX,NKNOTY...DIMENSIONS FOR SOUARE MESH |
| 01132:C | OR NUMBER OF ELEMENTS IN ARRAYS A,B. |
| 01133:C | |
| 01134:C | OUTPUT |
| 01135:C | |
| 0113S:C | ERMAX... MAXIMUH CHANGE IN THE COEFFICIENTS |
| 01137:C | AFTER A COMPLETE ITERATION. |
| 01138:C | (IN COMMON) |
| 01139:C | ALPHA, BETA... ARRAYS CONTAINING NEW COEFFICIENTS |
| 01140:C | FOR TENSDR PRDDUCT SPLINE MAPPING. |
| 01141:C | |
| 01142: | COMMON/COEF/ALPHA (100,100), BETA(100,100) |
| 01143: | COMMON/PARAM2/A (100), B (100), NX, NY, KX, KY, |
| 01144: | - LEFTX (100), LEFTY (100) |
| 01145: | COMMON/RANGE/IFIRST (100), ILAST (100), JFIRST(100), |
| 01146: | - JLAST (100) |
| 0:147: | COMMON/PARAM/FKOUNT |
| 01148: | CIMMON/WEIGHTS/W1, W2 |
| 01149: | COMMON/KNOT/NKNOTX, NKNOTY |
| 01150: | REAL LEND,LINT,AJ(2) |
| 01151: | INTEGER CTEST |
| 01152: | FKOUNT=0 |
| 01153: | ERMAX $=0$. |
| 01154: | 10 $5001=2, N X-1$ |
| 01155: | $00400 \mathrm{~J}=2, \mathrm{NY}-1$ |
| 01156: | IF $=1 F I R S T$ (I) |
| 01157: | $I L=I L A S T(1)$ |
| 01158: | JF =JFIRST(J) |
| 01159: | J=JLAST(J) |
| 0:160: | MKOUNT $=0$ |
| 01161: | 5 CONTIMUE |
| 01162: | HOLI=GF (1, J) |
| 01163: | MTES $=$ MKOUNT / 2t2 |
| 01164: | IF (MTEST.EQ.HKOUNT) THEN |
| 01165: | HOCO=ALPHA (I,J) |
| 01166: | ELSE |
| 01167: | HOCO=8ETA (I,J) |
| 01168: | ENDIF |
| 01169: | LENII $=10.0 E 8$ |
| 01170: | REND $=10.0 E 8$ |

01171 : 01172: 01173: 01174: 01175: 01176: 01177 : 01178: 01179: 01180: 01181: 01182: 01183: 01184: 01185: 01186: 01187: 01188: 01189: 01190: 01191: 01192: 01193:
01194: 01195: 01196: 01197: 01198: 01195: 01200: 01201: 01202: 01203: 01204: 01205: 01206: 01207:
01208:
01209:
01210:
01211:
01212:
01213:
01214:
01215:
01216:
01217:
01218:
01219
01220
01221:

KFLAB=0
IFLAB=0
DO 200 IIEIF,IL
DO 100 JJ=JF, JL
IF (MKOUNT/2*2.EQ.MKOUNT) THEN
ALPMA $(1, J)=0$.
ELSE
BETA! I, J)=0.
ENDIF
DO 1) $K=1,2$
CALL TENUALF(ALPHA,LEFTX(II),LEFTY(JJ),KX,KY,II,

- JJ,F1X,1,0)

CALL TENUALF(BETA,LEFTX(II),LEFTY(JJ),KX,KY,II,

- JJ,FiY,1,0)

CALLL TENUALF(ALPHA,LEFTX(II),LEFTY(JJ),KX,KY,11,

- JJ,F2X,O,1)

CALL TENUALF(BETA,LEFTX(II),LEFTY(JJ),KX,KY,II,

- JJ,F2Y,0,1)

AJ(K) =F $1 \times$ सF $2 Y-F 2 X * F!Y$
IF(MKOUNT/2*2.EQ.MKOUNT) THEN
ALPHA(I,J) $=1$.
ELSE
$\operatorname{BETA}(I, J)=1$.
ENDIF
10 CONTINUE
$D=A J(1)$
C=AJ(2)-[1
IF(C.GT.1.OE-7) THEN LINT $=-\mathrm{D} / \mathrm{C}$ IF (LINT.GT.LEND) THEN IF(LINT.LE.RENI) THEN

LEND=LINT
ELSE
1FLAG=-1
ENDIF
ENDIF
ELSE IF(C.LT.-1.OE-7) THEN
RINTE-D/C
IF(RINT.LT.REND) THEN
IF (RINT.GE.LEND) THEN
RENII=RINT
El.SE
IFLAG=-1
ENDIF

ENDIF

ELSE
KFLAG=KFLAG+1
ENDIF
continue
200 CONTIMUE
CTEST:(ILAST(I)-IFIRST(I)+1)*(JLAST(J)-JFIRST(J)+1)

01222:
01223:
01224:
01225:
01226:
01227:
01228:
01229:
01230:
01231:
01232:
01233:
01234:
01235:
01236:
01237:
01238:
01239:
01240:
01241:
01242:
01243:
01244:
01245:
01246:
01247:
01248:
01249:
01250:
01251:
01252:
01253:
01254:
01255:
01256:
01257:
01258:
01259:
01260:
01261 :
01262:C
01263:C 01264:C
01265:
01266:
01267:C
01268:C
01269:C
01270:C
01271 : C
$01272: C$

IF (KFLAG.EQ.CTEST, OR.IFLAG.EQ,-1) THEN IF(MKOUNT/2*2.EQ.MKOUNT) THEN ALPHA (1, J) $=$ (LEND+REND)/2.
ELSE
BETA $(I, J)=(L E N D+R E N D) / 2$.
ENDIF
ELSE IF(LEND.LT.-1.OE7.AND.RENI.GT.1.OE7) THEN
CENTER=0.0
CALL TESTMINO MKKOUNT,I,J)
ELSE IF(LEND.LT,-10.0E7) THEN
CENTER=0.0
CALL TESTMINR(MKOUNT,I,J,LEND,REND)
ELSE IF (REND.GT. 10.E7) THEN
CENTER=0.0
CALL TESTMINL (MKOUNT, I, J,LENI,REND)
ELSE
CENTER=(LENLI+RENI) $/ 2$. CALL TESTMINB(MKOUNT,I, J,LEND,RENII)
ENIIIF
S2=GF(I,J)
DIFF = HOLD-S2
IF (HOLIILT.S2) THEN
IF(MTEST.EQ.MKOUNT) THEN
ALPHA ($1, J$) $=H O C D$
ELSE
$\operatorname{EETA}(\mathrm{I}, \mathrm{J})=\mathrm{HOCO}$
ENDIF
S2=HOLD
DIFF=0.
ENDIF
IF(ARS(DIFF).GT.ERMAX) ERMAX=ABS(IIIFF)
F'RINT*, FUNCTION UALUE IS',S2
PRINT*,' COUNT IS', FKOUNT
KFLAG $=0$
MKOUNT=MKOUNT+1
IF (MKOUNT. NE.MKOUNT/2*2) GOTO 5
400 CONTINUE
500 CONTINUE
RETURN
ENLI

SURROUTINE CRITICENTER,C1,C2,CJ,C4,CS,NROOTS,R,MKOUNT,

* $1, \mathrm{~J})$

CRIT finis the coefficients of the ath degree
POLYNOMIAL REFRESENTING GF ANI COMPUTES ITS CRITICAL foints, i.e., it finis the foints for which the herivative OF THE POLYNOMIAL IS 0 .

01273:C 01274 : C 01275 : C 01276:C 01277:C 01278:C 01279 : C 01280:C 01281 : C 01282:C 01283:C 01284:C 01285: C 01286:C 01287:C 01288:C 01289:C 01290:C 01291:C 01292:C 01293: C 01294:C 01295:C 01296:C 01297:C 01298:C
01299: C 01300:C 01301:C 01302:C 01303:C 01304:C 01305:C 01306:C 01307:C 01308:C 01309:C 01310:C 01311:C 01312:C 01313:C 01314:C 01315:C 01316:C 01317:C 01318:C 01319: 01320: 01321: 01322: 01323:

INPUT
CENTER... number at center of interual to be CONSIDERED. IF INTERUAL IS INFINITE THEN CENTER ASSIGNED A UALUE OF 0 .
mKOUNT... WKOUNT EVEN MEANS THE COEFFICIENT INUDLUED IN MINIMIZATION IS IN THE ALPHA array. hkount odid means the coefficient IS IN THE BETA arRay.
I.J.. SUBSCRIPTS FOR COEFFICIENT INUOLVED in minimization
(IN COMMON)
ALPHA, BETA.. ARRAYS CONTAINING COEFFICIENTS OF TENSOR PRODUCT SPLINE MAPPING. arRays containing coordinates for SQUARE MESH.
DIMENSION OF SPLINE IN X DIRECTION , Y DIRECTION OR
TOTAL NO. OF B-SPLINES IN X IIRECTION, Y OIRECTION.
$K X, K Y \ldots$
LEFTX,LEFTY... ARRAYS IDENTIFYING KNOT INTERUALS IN WHICH SQUARE MESH COCRDINATES LIE. (LEFTX(I)=J IMPLIES $T X(J):=A(I)<T X(J+1))$

W1,W2... WEIGHTS FOR JACORIAN, IIOT PRODUCT TO BE USED IN GF.
NKNOTX,NKNOTY...DIMENSIONS FOR SQUARE MESH OR NUMBER OF ELEMENTS IN ARRAYS A,B. fKOUNT... PARAMETER CONTAINING NUMRER OF CALLS TO

XK... \quad ARRAY CONTAININ POINTS -2,-1,0,1,2 WHICY ARE USED AS TEST POINTS IN aETERMLi:ING THE COEFFICIENTS OF THE 4TH DEGREE POLYNOMIAL WHICH APPROXImates gf.

OUTPUT

$$
\begin{array}{ll}
\text { C1,C2,C3,C4,CS.. COEFFICIENTS OF } 4 \text { TH LIEGREE POLYNOMIAL. } \\
& \text { C1 IS THE COEFFICIENT OF THE } 4 \text { TH DEGREE TERK. } \\
\text { NROOTS... } & \text { NUMER OF CRITICAL POINTS } \\
\text { R... } & \text { ARRAY CONTAINING CRITICAL FOINTS }
\end{array}
$$

REAL R(3), BK(5)
COMMON/COEF/ALPHA(100,100), BETA(100,100)
COMMON/PARAM2/A(100), B(100), NX, NY,KX,KY,LEFTX(100)

* , LEFTY(100)

COMMON/KNOT/NKNOTX,NKNOTY

| 01324: | COMMON/WEIGHTS/H1,H2 COMMON/PARAM/FKOUNT | | | |
|---|---|---|---|---|
| 01325: | | |
| 01326: | COMMON/XKS/XK (5) | |
| 01327: | IF(MKOUNT/2*2.EQ.MKOUNT) THEN | |
| 01328: | DO 100 IK=1,5 | |
| 01329: | ALPHA $(1, J)=X K(I K)+C E N T E R$ | |
| 01330: | BK(IK) $=6 \mathrm{~F}(1, \mathrm{~J})$ | |
| 01331: | FKOUNT =FKOUNT +1 | |
| 01332: | 100 | CONTINUE |
| 01333: | ELSE | |
| 01334: | DO 200 IK=1,5 | |
| 01335: | $\operatorname{BETA}(1, J)=X K(I K)+C E N T E R$ | |
| 01336: | BK(IK) $=$ GF(1 , J $)$ | |
| 01337: | FKOUNT=FKOUNT +1 | |
| 01338: | 200 | CONTINUE |
| 01339: | | ENDIF |
| 01340: | | $\mathrm{D}=\mathrm{XK}$ (4) |
| 01341: | B1=8K(1) | |
| 01342: | B2=8K(2) | |
| 01343: | $\mathrm{B3}=\mathrm{BK}$ (3) | |
| 01344: | B4=BK(4) | |
| 01345: | B5=8K (5) | |
| 01346: | C5-83 | |
| 01347: | SUM $=-85+8 . *(84-82)+81$ | |
| 01348: | C4=1./(12.*D)*SUK | |
| 01349: | SUM $=-85+16 \cdot *(84+82)-30 \cdot * B 3-81$ | |
| 01350: | C3=1., (24.*II*D)*SUM | |
| 01351: | SUM=R5-2.*(ES-82)-R1 | |
| 01352: | | |
| 01353: | SUM $=85-4 . *(E 4+E 2)+6, * B 3+B 1$ | |
| 01354 : | C1=1./(24.*D**4)*SUM | |
| 01355: | IF (AES(C1).LT.1.0E-06) GOTO 300 | |
| 01356: | CALL CUBIC (4,*C1,3.*C2,2,*C3,C4,NFOOTS, F$)$ | |
| 01357: | RETURN | |
| 01358: | 300 | CONTINUE |
| 01359: | | NRIOOTS $=-1$ |
| 01360: | | RETURN |
| 01361: | | ENI | |
| 01362:C | | | |
| 01363:C | | | |
| 01364:C | | | |
| 0i365: | SUBROUTINE TESTMINO(MKOUNT, I,J) | |
| 01366:C | | | | |
| 01367:C | FOR a given coefficient alffa(i, J) or hetail, J) | |
| 01368:C | testmino finis ani tests the ceitical foints of | |
| 01369:C | THE 4TH IEGREE FOLYNOMIAL FEPREESENTING GF TO | |
| 01370:C | determine which foint yielis the smallest value for gf | |
| 01371: C | WHEN GF IS UIEWEI AS A FUNCTION OF THAT COEFFICIENT, | |
| 01372:C | the number chosen becomes the new value fof | |
| 01373:C | ALPHA(I,J) OR EETA(I,J) - | |
| 01374:C | | |

$01375: C$ 01376:C 01377:C $01378: \mathrm{C}$ 01379:C $01380: C$ $01381: C$ 01382 : C 01383:C 01384:C 01385:C 01386:C 01387:C 01388:C 01389:C 01390:C 01391:C 01392:C 01393:C 01394:C 01395:C 01396:C 01397:C 01398:C 01399:C 01400:C 01401:C 01402:C 01403:C 01404:C 01405:C 01406:C 01407:C 01408:C 01409:C 01410:C 01411:C $01412: C$ 01413:C $01414: C$ 01415: 01416: 01417: 01418: 01419 : 01420:
01421:
01422:
01423:
01424:
01425:

INPUT

```
    MKOUNT... MKOUNT EVEN MEANS THE COEFFICIENT
                                    INUOLVED IN MINIMIZATION IS IN THE ALPHA
                                    arRaY. MKDuNT ODD MEANS THE COEFFICIENT
                                    IS IN THE RETA ARRAY.
                                    SUBSCRIPTS FOR COEFFICIENT INUOLVED
                                    IN MINIMIZATION
    (IN COMMON)
    ALPHA,BETA.. ARRAYS CONTAINING COEFFICIENTS OF
        TENSOR PRODUCT SPLINE MAFPING.
    A,B... ARRAYS CONTAINING COORGINATES FOR
        SQUARE MESH.
    NX,NY... GIMENSION OF SPLINE IN X DIRECTION
        , y girection or
        TOTAL NO. OF B-SPLINES IN X OIRECTION,
        Y DIRECTION.
        ORDER OF B-SPLINES IN X DIRECTION,
        Y DIRECTION.
    LEFTX,LEFTY... ARRAYS IDENTIFYING KNOT INTERUALS
        IN WHICH SQUARE MESH COORDINATES
        LIE, (LEFTX(I)=J IMFLIES
        TX(J)<=A(I):TX(J+1))
    W1,W2... WEIGHTS FOR JACOBIAN, IIOT FROIUCT
        TO FE USEII IN GF.
    NKNOTX,NKNOTY,..DIMENSIONS FDR SQUARE MESH
        OR NUMBER DF ELEMENTS IN ARRAYS A,B.
    FKOUNT... F'ARAMETER CONTAINING NUMEER UF CALLS TO
        GF
    XK... ARRAY CONTAINING FOINTS -2,-1,0,1,2
        WhICH ARE uSED AS TEST PDINTS IN
        |ETERMINING THE COEFFICIENTS DF THE
        4TH DEGREE POLYNOMIAL WHICH APPROXI-
        MATES GF.
    OUTPUT
    ALPHA(I,J) OR BETA(I,J)..NEW UALUE FDR COEFFICIENT
        COMMON/COEF/ALPHA(100,100), PETA(100,100)
        COMMON/PARAMZ/A(100),F(100),NX,NY,KX,KY,LEFTX(100),
    * LEFTY(100)
        COMMON/KNOT/NKNOTX,NKNOTY
        COMMON/WEIGHTS/W1,W2
        COMMON/PARAM/FKOUNT
        COMMON/XKS/XK(5)
        REAL R(3)
        FM(R)=C1*R**4+C2*R*R*R+C3*R*R+C4*R+CJ
        DO 50 IK=1,5
        XK(IK)=FLOAT(IK)-3.
```

01426:
01427:
01428:
0!429:
01430:
01431:
01432:
01433:
01434:
01435:
01436:
01437:
01438:
01439:
01440:
01441 :
01442:
01443:
01444:
01445: 01446:C 01447:C 01448:C 01449: 01450:C 01451:C 01452:C 01453:C 01454:C 01455:C 01456:C 01457:C 01458:C 01459:C 01460:C
01461:C
01462:C
01463:C 01464:C 01465:C 01466:C 01467:C 01468:C 01469:C 01470:C 01471 : 01472:C 01473:C 01474:C 01475:C 01476:C

50 cantimue
CALL CRIT (O.C1,C2,C3,C4,C5,NROOTS,R,MKOUNT,I,J) IF (NROOTS. NE,-1) GOTO 55 RETURN
55 CONTINUE TMIN=10.0E10 10600 IR=1,NROOTS FMINN=FM(R(IR)) IF (FMINN.LT,TAIN) THEN
TMIN=FMINN
IMIN=IR
ENAIF
600 CONTINUE
IF (MKOUNT/2*2.EQ.MKOUNT)THEN
ALPHA(I,J)=R(IMIN)
ELSE
$\operatorname{RETA}(I, J)=R(I M I N)$
ENDIF
RETUEN
ENI

SURROUTINE TESTMINR(MKOUNT.I,J,LENI,RENI)
FOR A GIUEN COEFFICIENT ALPHA(I,J) OR RETA(I,J) TESTMINR FINIS ANI TESTS THE CRITICAL FOINTS OF THE ATH DEGREE FOLYNOMIAL fEFRESENTING GF TO IETERMINE WHICH FOINT YIELIS THE SMALLEST VALUE FOR GF WHEN GF IS UIEWED AS A FUNCTION OF THAT COEFFICIENT. the smallest value is comparen with the value at the RIGHY ENDPOINT OF THE INTERUAL (LENI,GENII)
to determine at what number the minimum value OF GF OCCURS. THE NUMEER CHOSEN BECOMES THE NEW Ualue for alpha(I,J) or $\operatorname{kETA}(I, J)$.

INPUT
mkount... mkdunt even means the coefficient involvedi in minimization is in the alfiha arkay. mkount odit means the coefficient
is in the eeta array.
I.J.. SURSCRIFTS FOR COEFFICIENT INUOLUEI
in minimization
LEND,RENI. LEFT ANI RIGHT ENIPOINTS FOR interual. Leni is a negative no. with very lafge magnitudie indicating that the left ENLIFOINT IS INFINITE.
(IN COMMON)
ALFHA,RETA.. ARRAYS CONTAINING COEFFICIENTS OF TENSOR PRODUCT SPLINE MAFPING.

01477:C 01478:C 01479:C 01480:C 01481:C 01482:C
01483:C
01484:C
01485:C
01486:C
01487:C
01488:C
01489:C 01490:C 01491:C 01492:C 01493:C
01494:C
01495:C
01496:C
01497:C
01498:C
01499:C
01500:C
01501:C
01502:C
01503:C
01504:C
01505:C
01506:
01507:
01508:
01509:
01510:
01511:
01512:
01513:
01514:
01515:
01516:
01517:
01518:
01519:
01520:
01521:
01522:
01523:
01524:
01525:
01526:
01527:

```
    A.B... ARRAYS CONTAINING COORDINATES FOR
    SQUARE MESH.
    NX,NY... DIMENSION OF SPLINE IN X IIRECTION
    ,Y BIRECTION OR
    TOTAL NO. OF B-SPLINES IN X DIRECTION,
    Y DJRECTION.
    KX,KY... ORDER OF B-SPLINES IN X DIRECTION,
        Y DIRECTION.
    LEFTX,LEFTY... ARRAYS IDENTIFYING KNOT INTERUALS
    IN WHICH SQUARE MESH COORDINATES
    LIE. {LEFTX(I)=J IMFLIES
    TX(J)<=A(I)<TX(J+1))
W1,W2... WEIGHTS FOR JACORIAN, DOT PRODUCT
    TO RE USED IN GF.
    NKNOTX,NKNOTY...UIMENSIONS FOR SQUARE MESH
    OR NUMBER OF ELEMENTS IN ARRAYS A.B.
    FKOUNT... PARAMETER CONTAINING NUMBER OF CALLS TO
        GF
    ARRAY CONTAININ POINTS -2,-1,0,1,2
    WHICH ARE USED AS TEST POINTS IN
    DETERMINING THE COEFFICIENTS OF THE
    4TH DEGREE POLYNOMIAL WHICH APFROXI-
    mates gF.
```

output
alpha(I,J) or beta(I,J).. NEW UALUE for coefficient
COMMON/COEF/ALPHA(100,1C0), BE-A(100,100)
COMMON/PARAM/FKOUNT
COMMDN/PARAM2/A(100), B(100),NX,NY,KX,KY
* , LEFTX(100), LEFTY(100)
COMMON/KNOT/NKNOTX, NKNOTY
COMMON/WEIGHTS/W1,W2
COMMON/XKS/XK(5)
REAL R(3),LEND
FM(R)=C1*R**4+C2*R*R*R+C3*R*R+C4*R+C5
$X K(1)=$ REND
DO 50 IK=2,5
XK(IK)=REND-FLOAT (IK) +1 .
50 continue
CALL CRITTO,C1,C2,C3,C4,C5,NROOTS,R,MKOUNT,I,J)
IF(NROOTS.NE,-1) GOTO 55
PRINT*,'WARNING $\# 1$ COEF IS 0^{\prime}
RETURN
55 CONTINUE
TMIN $=10 . E 10$
IR=0
10600 IROOT=1,NROOTS
IF(R(IROOT),LE.REND) THEN

```
01528:
01529:
01530:
01531:
01532:
01533:
01534:
01535:
01536:
01537:
01538:
01539:
01540:
01541:
01542:
01543:
01544:
01545:
01546:
01547:
01548: 700
01549:
01550:
01551
01552
01553
01554
01555:
01556:
01557:
01558:
01559
01560:
01561:C
01562:C
01563:C
01564:
01565:C
01566:C
01567:C
01568:C
01569:C
01570:C
01571:C
01572:C
01573:C TO IEETERMINE AT WHAT NUMEER THE MINIMUM VALUE
01574:C OF GF OCCURS. THE NJMEER CHOSEN BECOMES THE NEW
01575:C UALUE FOR ALFHA(I,J) OR EETA(I,J).
01576:C
01577:C INPUT
0:579:C
    IR=IR+1
    R(IR)=R(IROOT)
    ENOIF
600 CONTINUE
NROOTS=1R
IF(NROOTS.EQ.O) THEN
    IF(MKOUNT/2%2.EQ.MKOUNT) THEN
    ALPHA(I,J)=REND
    TMIN=FM(REND)
    ELSE
        BETA(I;J)=REND
        TMIN=FM(REND)
    ENDIF
    ELSE
        IO 700 IROOT=1,NROOTS
        FMINN=FM(R(IROOT))
        IF(FMINN.LT.TMIN) THEN
            TMIN=FMINN
            IMIN=IROOT
        ENDIF
        CONTINUE
        FMINN=FM(FENII)
        IF(FMINN,LT,TMIN) R(IMIN)=FENI
        IF(MKOUNT/2*2.EQ.MKOUNT) THEN
            ALPHA(I,J)=R(IMIN)
            TMIN=FM(F(IMIN))
        ELSE
            BETA(I,J)=R(IMIN)
            TMIN=FM(R(IMIN))
        ENIIJF
    EN[IIF
    RETURN
    ENI
    SU&ROUTINE TESTMINL(MKOOUNT,I,J,LEND,RENII)
    FOR A GIVEN COEFFICIENT ALFHA(I,J) OR EETA(I,J)
TESTMINL FINIS ANI TESTS THE CRITICAL FOINTS OF
THE 4TH DEGREE POLYNOMIAL REFRESENTING GF TO
IETERMINE WHICH POINT YIELIIS THE SMALLEST UALUE FOR GF
WHEN GF IS UIEWEI AS A FUNCTION DF THAT COEFFICIENT,
THE SMALLEST UALUE IS COMFAREII WITH THE VALUE AT THE
LEFT ENDPOINT OF THE INTERUAL (LEND,RENI)
```

| $\begin{aligned} & 01579: C \\ & 01580: C \end{aligned}$ | MKOUNT... | mKount even means the coefficient INUOLVED IN MINIMIZATION IS IN THE ALPHA |
| :---: | :---: | :---: |
| $01581: C$ | | ARRAY. MKOUNT ODS MEANS THE COEFFICIENT |
| 01582:C | | 15 IN THE BETA ARRAY. |
| 01583:C | I.J.. | SUBSCRIPTS FOR CDEFFICIENT INUOLUEII |
| 01584:C | | İ̀ MINIMIZATION |
| 01585:C | LEND,REND.. | LEFT AND RIGHY ENLIPOINTS FOR |
| 01586:C | | INTERUAL. REND IS A UERY LARGE NUMBER, |
| 01587:C | | INDICATING THAT THE RIGHT ENDPOINT IS |
| 01588:C | | INFINITE. |
| 01589:C | (IN COMMON) | |
| 01590:C | ALPHA, BETA.. | ARRAYS CONTAINING COEFFICIENTS OF |
| 01591: | | TENSOR PRONUCT SPLINE MAPPING. |
| 01592:C | A, B... | ARRAYS CONTAINING COORIINATES FOR |
| 01593:C | | SQUARE MESH. |
| 01594:C | NX,NY... | OIMENSION OF SPLINE IN X IIRECTION |
| 01595:C | | , Y DIRECTION OR |
| 01596: | | TOTAL NO, OF B-SPLINES IN X BIRECTION, |
| 01597: C | | Y DIRECTION. |
| 01598: C | $K X, K Y$, . | ORDER OF B-SPLINES IN X DIRECTION, |
| 01599:C | | Y IIRECTION. |
| 01600:C | LEFTX,LEFTY... | ARRAYS IDENTIFYING KNOT INTERUALS |
| 01601:C | | IN WHICH SQUARE MESH COORIINATES |
| 01602:C | | LIE. (LEFTX(I)=J IMPLIES |
| 01603:C | | $T X(J)<=A(I) \ll T X(J+1))$ |
| 01604:C | | |
| 01605:C | H1, W2... | WEIGHTS FOR JACOEIAN, IIOT PRODUCT |
| 01606:C | | TO EE USEII IN GF. |
| 01607:C | NKNOTX, NKNOTY.. | .. IIMENSIONS FOR SQUARE MESH |
| 01608:C | | OR NUMBER OF ELEMENTS IN ARKAYS A,B. |
| 01609:C | FKOUNT... | PARAMETER CONTAINING NUMEER OF CALLS TO |
| 01610:C | | GF |
| 01611:C | XK... | ARRAY CONTAININ FOINTS -2,-1,0,1,2 |
| 01612:C | | WHICH ARE USEI AS TEST POINTS IN |
| 01613:C | | DETERMINING THE COEFFICIENTS OF THE |
| 01614:C | | 4TH DEGREE POLYNOMIAL WHICH APPROXI- |
| 01615:C | | MATES GF. |
| 01616:C | | |
| 01617:C | OUTPUT | |
| 01618:C | | |
| 01619:C | ALPHA(I,J) OR E | BETA(I,J)., NEW UALU' FOR COEFFICIENT |
| 01620:C | | |
| 01621: | COMMON/COEF/A | ALPHA (100,100 , , BETA (100,100$)$ |
| 01622: | COMMON/PARAM/ | /FKOUNT |
| 01623: | COMMON/PARAM2 | 2/A(100), B (100), NX, NY, KX, KY |
| 01624: | - LEFTX(100), L | LEFTY(100) |
| 01625: | COMMON/KNOT/N | NKNOTX,NKNOTY |
| 01626: | COMMON/WEIGHT | TS/W1,H2 |
| 01627: | COMMON/XKS/XK | K(5) |
| 01628: | REAL R(3), LEN | |
| 01629: | FM(R) =C1*R** | 4+C2*R*R*R+C3*R*R+C4*R+C5 |

```
\begin{tabular}{|c|c|c|}
\hline 01630: & & XK(1)=LEND \\
\hline 01631: & & DO \(5015 \times 2,5\) \\
\hline 01632: & & XK (IK) =LEND+FLOAT (IK)-1. \\
\hline 01633: & 50 & continue \\
\hline 01634: & & CALL CRIT (O,C1, C2, C3, C4, CJ,NROOTS,R,MKOUNT, \\
\hline 01635 : & * & I,J) \\
\hline 01636: & & IF(NROOTS.NE,-1) GOTO 55 \\
\hline 01537: & & PRINT*,'WARNING \({ }^{\text {\% }} 1\) COEF 1500 \\
\hline 01638: & & RETURN \\
\hline 01639: & 55 & CONTINUE \\
\hline 01640: & & TMIN \(=10.0 \mathrm{E} 10\) \\
\hline 01641: & & \(\mathrm{IL}=0\) \\
\hline 01642: & & IO \(600 \mathrm{IR}=1, \mathrm{NROOTS}\) \\
\hline 01643: & & IF (R(IR).GE.LENI)THEN \\
\hline 01644: & & \(\mathrm{IL}=\mathrm{IL}+1\) \\
\hline 01645: & & \(\mathrm{R}(\mathrm{IL})=\mathrm{F}(\mathrm{IR})\) \\
\hline 01646: & & ENDIF \\
\hline 01647: & 600 & Continue \\
\hline 01648: & & NROOTS \(=1 \mathrm{~L}\) \\
\hline 01649: & & IF (NFOOTS.EQ.0) THEN \\
\hline 01650: & & IF (MKOUNT/2*2.EQ.MKOUNT) THEN \\
\hline 01651: & & ALPHA (I, J) = LEND \\
\hline 01652: & & TMIN \(=\) FM(LEND) \\
\hline 01653: & & ELSE \\
\hline 01654: & & EETA (I, J) = LENi \\
\hline 01655: & & TMIN \(=\) FM(LENII) \\
\hline 01656: & & ENDIF \\
\hline 01657: & & ELSE \\
\hline 01658: & & D0 \(700 \mathrm{IR}=1\), NR COOTS \\
\hline 01659: & & FMINN=FM(R(IR)) \\
\hline 01660: & & IF (FMINN.LT.TMIN) THEN \\
\hline 01661: & & TMIN=FMINN \\
\hline 01662: & & IMIN=IR \\
\hline 01663: & & ENIIF \\
\hline 01664: & 700 & CONTINUE \\
\hline 01665: & & FMINN=FM(LEND) \\
\hline 01666: & & IF (FMINN.LT.TMIN) R(IMIN) = LENS \\
\hline 01667: & & IF (MKDUNT/2*2.EQ.MKOUNT) THEN \\
\hline 01668: & & ALPHA (I, J) \(=\) R(IMIN) \\
\hline 01669: & & TMIN=FM(R(IMIN)) \\
\hline 01670: & & ELSE \\
\hline 01671: & & \(\operatorname{BETA}(1, J)=R(1 M I N)\) \\
\hline 01672: & & TMIN \(=\) FM(FS(MIN) ) \\
\hline 01673: & & ENDIF \\
\hline 01674: & & ENDIF \\
\hline 01675: & & RETURN \\
\hline 01676: & & ENI \\
\hline 01677:C & & \\
\hline 01678: C & & \\
\hline 01679:C & & \\
\hline 01680: & & SUBROUTINE TESTMINB(MKOUNT, I,J.LENI,RENII) \\
\hline
\end{tabular}
```

$01681: C$
01682:C
01683:C
01684:C
01685:C
01686:C
016871 C
01688:C
01639:C
01690:C
01691:C
01692:C
01693:C
01694:C
01695:C
01696:C
01697:C
01698:C
01699:C
01700:C
01701:C
01702:C
01703:C
01704:C
01705:C
01706:C
01707:C
01708:C
01709 : C
01710:C
01711:C
01712:C
01713:C
01714:C
01715:C
01716:C
01717:C
01718:C
01719:C
01720:C
01721:C
01722:C
01723:C
01724:C
01725:C
01726:C
01727:C
01728:C
01729:C 01730:C
01731:C

FOR a GIUEN CDEFFICIENT ALPHA(I,J) OR bETA(I,J) TESTMINE FINDS AND TESTS THE CRITICAL POINTS OF the 4Th degree polynomial representing gf to determine which point yields the smallest ualue for gf WHEN GF IS UIEWED AE A FUNCTION OF that COEFFICIENT. the smallest ualue is compared with the value at the enipaints of the interual (lendirend) to determine at hat mumber the minimum value dF GF OCCURS. THE NUMBER CHOSEN BECOMES THE NEW VALUE FOR ALPHA(I,J) OR BETA(I,J).

INPUT
mkount... mkount even means the coefficient involved in minimization is in the alpha array. hkount odd means the coefficient IS IN THE BETA ARRAY.
I.J.. SUBSCRIPTS FOR COEFFICIENT INUOLUEI in minimization
LEND,REND. LEFT AND RIGHT ENDPOINTS FOR INTERUAL
(IN COMMON)
alpha, beta.. arrays containing coefficients of TENSOR FRODUCT SPLINE MAFPING.
A,B... ARRAYS CONTAINING CDORIINATES FOR SQUARE MESH. dimension of spline in x direction , Y DIRECTION OR TOTAL NO, OF g-SPLINES IN X GIRECTION, Y DIRECTION.
KX,KY... ORDER OF B-SPLINES IN X DIRECTION, Y direction.
Leftx,lefty... arrays identifying knot interuals IN WHICH SQUARE MESH CODRDINATES
LIE. (LEFTX(I) $=\mathrm{J}$ IMPLIES
TX(J) < x A(I)< $T X(J+1)$)
W1,W2... WEIGHTS FOR JACOBIAN, DIOT PRODUCT
TO EE USED IN GF.
NKNOTX, NKNOTY. . .DIMENSIONS FOR SQUARE MESH OR NUMRER OF ELEMENTS IN ARRAYS A.B.
fKOUNT... parameter COntaining number of calls to GF
array containin points -2,-1,0,1,2 which are used as test points in determining the cocfficients of the 4TH DEGREE POLYNOMIAL WHICH APPROXIMATES GF.

017321 C

01733:C

 01734:C 01735:01736:
01737:
01738:
01739:
01740:
01741:
01742:
01743:
01744:
01745:
01746:
01747:
01748:
01749:
01750:
01751:
01752:
01753:
01754:
01755:
01756:
01757:
01758:
01759:
01760:
01761:
01762:
01763:
01764:
01765:
01766:
01767:
01768:
01769:
01770:
01771:
01772:
01773:
01774:
01775:
01776:
01777:
01778:
01779: 700
01780:
01781:

01782: IF(FMINNL.LT.FMINNR) THEN
ALPHA(I,J) OR BETA(I,J)..NEW UALUE FDG COEFFICIENT
COMMON/CDEF/ALPHA $(100,100)$, BETA $(100,100)$
COMMON/PARAM/FKOUNT
COMMON/PARAM2/A(100), B(100), NX,NY,KX,KY

* , LEFTX(100) ,LEFTY(100)

COMMON/KNOT/NKNOTX, NKNOTY
COMMON/WEIGHTS/W1,H2
COMMON/XKS/XK(5)
REAL R(3), LENII
$F M(R)=C 1 * R * * 4+C 2 * R * R * R+C 3 * R * R+C 4 * R+C S$
CENTER=(LEND+REND) $/ 2$ 。
XK(1) $=$ LENI - CENTER
XK(2) $=($ LEND-CENTER $) / 2$ 。
$X K(3)=0$.
$X K(4)=($ RENI $1-C E N T E R) / 2$.
$X K(5)=R E N I-C E N T E R$
CALL CRIT CCENTER,C1,C2,C3,C4,C5, NROOTS,R,MKOUNT,

- I, J)

IF (NROOTS. NE,-1) GOTO SS
RETURN
55 CONTINUE
TMIN $=10.0 E 10$
$1 \mathrm{~B}=0$
10 600 IR=1,NROOTS
IF (R(IR) +CENTER.GE.LEND.AND.R(IF) +CENTER.LE.RENII) THEN
[$B=[E+1$
$\mathrm{R}(\mathrm{IE})=\mathrm{F}(\mathrm{I} R)$
ENIIIF
continue
NROOTS $=1$ I
IF (NROOTS.EQ.0) THEN
IF (MKOUNT/2*2.EQ.MKOUNT) THEN -
ALPHA (I,J) $=$ CENTER
TMIN=FM(CENTER)
ELSE
$\operatorname{BETA}(1, J)=$ CENTER
TMIN=FM (CENTER)
ENIIf
ELSE
110700 I $R=1$, NROOTS
FMINN=FM(R(IR))
IF (FMINN.LT.TMIN)THEN
TMIN=FMINN
IMIN $=$ IR
ENDIF
continue
FMINNL=FM(LENI)
FMINNR=FM(RENII)
IF (FMINNL.LT.FMINNR) THEN

```
01783:
01784:
01785:
01786:
01787:
01788:
01789:
01790:
01791:
01792:
01793:
01794:
01795:
01796:
01797:
01798:
01799:C
01800:C
01801:C
01802:
01803:C
01804:C
01805:C
01806:C
01807:C
01808:C
01809:C
01810:C
01811:C
01812:C
01813:C
01814:C
01815:C
01816:C
01817:C
01818:C
01819:
01820:
01821:
01822:
01823:
01824:
01825:
01826:
01827:
01828:
01829:
01830:
01831:
01832:
01833:
IF(FHINML.LT.TMIN) THEN
R(IMIN)mLEND
TMIN=FM(LEND)
ENDIF
ELSE IF(FMINNR.LT.TMIN) THEN
R(IMIN)=REND
THIN=FM(REND)
ENDIF
IF(MKDUNT/2*2.EQ.MKOUNT) THEN
    ALPHA(I,J)=R(IMIN) +CENTER
ELSE
    BETA(I,J)=R(IMIN)+CENTER
ENDIF
ENDIF
RETURN
END
SUBROUTINE CUBIC(A3,A2,A1,AO,NROOTS,RR)
CUBIC COMPUTES THE ROOTS OF A CUBIC POLY-
NOMIAL USING FORMULAS FROM 'HANDBOOK OF
MATHEMATICAL TABLES AND FORMUL.AS' EY RICHARD
STEVENS EURINGTON,PH.DI., MCGRAW-HILL ,NEW YORK,
1962.
INPUT
    A3,A2,A1,AO.. COEFFICIENTS OF CUBIC FOLY-
                                    NOMIAL
OUTPUT
    NRODTS... NUMRER OF DIFFERENT REAL ROOTS
    RR... ARRAY CONTAINING REAL. ROOTS
REAL RR(3)
PI=3.1415
P=A2/A3
0=A1/A3
R=A0/A3
A=1./3.*(3.*0-P*P)
B=1./27.*(2.*P*P*P-9,*P*O+27.*R)
IF (ABS(B).LT.1.0E-06) THEN
SIONB=O.
ELSE
SIGNB=B/ABS(B)
ENDIF
BE=B*8/4.
AAA=AKA*N/27.
TEST=BB+MMA
```

| 01834: | IF (TEST.LT.0) TMEN |
| :---: | :---: |
| 01835: | NROOTS*3 |
| 01836: | PHI=ACOS(-SIGNB\#SQRT(BB/(-AAA))) |
| 01837: | SRT=SORT(-A/3.) |
| 01838: | RR(1) $=2 . * S R T * C O S(P H 1 / 3$. |
| 01839: | |
| 01840: | RR(3) $=2$. \#SRT*COS(PHI/3.+4.*P1/3.) |
| 01841: | ELSE IF(TEST.GT.0) THEN |
| 01842: | NROOTS = 1 |
| 01843: | S1 $=-.58 \mathrm{~B}+$ SQRT (TEST) |
| 01844: | S2=-.5*B-SORT (TEST) |
| 01845: | IF (AES(S1).LT.1.OE-06) THEN |
| 01846: | SIGNS1=0. |
| 01847: | ELSE |
| 01848: | SIGNS1 5 S1/./BS(S1) |
| 01849: | ENDIF |
| 01859: | IF (ABS(S2).LT.1.0E-06) THEN |
| 01851: | SIGNS2=0. |
| 01852: | ELSE |
| 01853: | SIGNS2=S2/ARS(S2) |
| 01854: | ENIIf |
| 01855: | |
| 01856: | * +SIGNS2*(AES(S2)**(1./3.)) |
| 01857: | EiSE |
| 01858: | NROOTS $=2$ |
| 01859: | RR(1) $=$-SIGNB*2.*SQRT(-A/3.) |
| 01860: | RR(2) =SIGNH*SOKT (-A/3.) |
| 01861: | ENI IF |
| 01862: | 1010 [10.3 |
| 01863: | $R R(1)=R R(1)-P / 3$. |
| 01864: | :O CONTINUE |
| 01865: | RETURN |
| 01866:
 01867:C
 01868:C | END |
| 01869:C | |
| 01870: | SUBROUTINE EXTREMES (X,Y,TMMX,TMIN,NR,NC) |
| 01871:C | |
| 01872:C | |
| 01873:C | extremes findis the maximum andi minimum ualues |
| 01874:C | among the elements or two two-dimensional arfiays. |
| 01875:C | |
| 01876:C | INPUT |
| 01877:C | |
| 01878:C | X...X COMPONENT |
| 01879:C | Y...Y COMFONENT |
| 01880:C | NR....IIIAENSION UF X ARRAY |
| 01881:C | NC...dIMENSION OF Y ARRAY |
| 01882:C | |
| 01883: C | OIJTPUT |
| 01884:C | |

```
01885:C
01886:C
01887:C
01888:
01889:
01890:
01891:
01892:
01893:
01894:
01895:
01896:
01897:
01898:
01899:
01900:
01901:C
01902:C
01903:C
01904:
01905:C
01906:C
01907:C
01908:C
01909:C
01910:C
01911:C
01912:C
01913:C
01914:C
01915:C
01916:C
01917:C
01918:C
01919:C
01920:C
01921:C
01922:C
01923:C
01924:C
01925:C
01926:
01927:
01928:
01929:
01930:
01931:
01932:
01933:
01934:
8OTTOM
```

| 1. Aeport No. NASA CR-177968 | 2. Government Accescon No. | | 3. Recipiont's Calotea No | |
| :---: | :---: | :---: | :---: | :---: |
| 4. Tithe and Subtith
 Algebraic Grid Generation Using Tensor Product B-Splines | | | 5. Report Date September 1985 | |
| | | | 6. Performing Orgenization Cot | |
| 7. Aushor(s)
 Bonita V. Saunders | | | -. Performing Orgenization Geport fio | |
| 9. Perfor ruing Organization Nafrue and Addiess
 Old Dominion University Norfolk, Virginia | | | 11. Contact or Grant Ne.$47-003-802$ | |
| 12. Sponsoring Agency Name and Adoress
 National Aeronautics and Space Administration Washington, DC 20546 | | | 13. Type of Repors and Perioc Cowed Contractor Report | |
| | | | 14. Sponsoring Agency Cook$505-31-83-02$ | |
| 15. Supplementa'y Notes
 This report is a dissertation submitted to Old Dominion University for partial fulfillment of the requirements for the Degree of Doctor :f Philosphy in Computational and Applied Mathematics.
 Langley Technical Monitor: R.E. Smith | | | | |
| 15. Abstract
 In general, finite difference methods are more successful if the accompanying grid has lines which are smooth and nearly orthogonal. This thesis discusses the development of an algorithm which produces such a grid when given the boundary description. Topological considerations in structuring the grid generation mapping are discussed. In particular, this thesis examines the concept of the degree of a mapping and how it can be used to determine what requirements are necessary if a mapping is to produce a suitable grid. The grid generation algorithm uses a mapping composed of bicubic B-splines. Boundary coefficients are chosen so that the splines produce Schisenberg's variation diminishing spline approximation to the boundary. Interior coefficients are initially chosen to give a variation diminishing approximation to the transfinite bilinear interpolant of the function mapping the boundary of the unit square onto the boundary of the grid. The practicality of optimizing the grid by minimizing a functional involving the Jacobian of the grid generation mapping at each interior grid point and the dot product of vectors tangent to the grid lines is investigated. Grids generated by using the algorithm are presented. | | | | |
| 17. Kry Words ISuggested by Author(a)i)
 grid generation, Computationa
 Dynamics, Optimization | al Fluid | 18. Distribution Statement
 Unclassified-Unlimited Subject Category 64 | | |
| 19. Smurity Clasul (bt itis iepoit) Unclassified | 20. Serutity Clasilf (ot inis pugel Unclassified | | 21. No. of Pages 152 | $\begin{gathered} 221: \ldots 4^{\circ} \\ \text { A08 } \end{gathered}$ |

