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ABSTRACT

ALGEBRAIC GRID GENERATION
USING
TENSOR PRODUCT B-SPLINES

Bonita Valerie Saunders
0ld Dominion University, 1985
Director: Dr. Philip W. Smith

In general, finite difference methods are more success-

ful if the accompanying grid has lines which are smooth
and nearly orthogonal. This thesis discusses the develop-
ment of an algorithm which produces such a grid when given
the boundary description.

Topological considerations in structuring the grid
generation mapping are discussed. In particular, this
thesis examines the concept of the degree of a mapping
and how it can be used to determine what requirements are
necessary if a mapping is to produce a suitable grid.

The grid generation algorithm uses a mapping composed
of bicubic B-splines. Bounaary coefricients are chosen
so that the splines produce Schoenberg's variation diminish-
ing spline approximation to the boundary. Interior coeffi-
cients are initially chosen to give a variation diminishing
approximation to the transfinite bilinear interpolant of

the function mapping the boundary of the unit square onto
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the boundary of the grid.

The practicality of optimizing the grid by minimizing
a functional involving the Jacobian of the grid generation
mapping at each interior grid point and the dot product
of vectors tangent to the grid lines is investigated.

Grids generated by using the algorithm are presented.
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1. INTRODUCTION

Grid generation is the numerical development of curvi-
linear coordinate systems. In recent years grid generation
has been the key to solving partial differential equations
on arbitrarily shaped regions by finite difference methods.
Although much of the motivation for grid generation has
come from fluid dynamics, the techniques apply to any area,
such as electromagnetics and heat transfer, which involves
the solving of partial differential equations on a physical
domain.

Inherent in grid generation techniques is a mapping
T from some canonical domain such as a square or rectangle
in two dimensions, or cube in three dimensions, onto the
physical domain on which the partial differential equations
are to be solved. The image of a mesh on the canonical,
or computational, dom.in will be a grid on the physical
domain. When the grid boundary coincides with the boundary
of the physical domain, the system generated is called
a boundary fitted coordinate system.

A boundary fitted coordinate system allows one to
apply boundary conditions exactly, thus avoiding interpola-
tion errors. Hcwever, such a system may make the equations
to be solved more complex [Sm].

The distribution of the coordinate lines, or grid




lines, should be smooth, but concentrated in areas where a
large gradient occurs in the physical solution. As stated
by Thompson, Warsi and Mastin [TWM]), "the grid points may
be thought of as a finite set of observers of the physical
solution, stationed to be most effective in covering all ;
of the action on the field." Ideally, the grid should é
be adaptive, that is, coupled with the pnhysical solution - ;
so that it automatically redistributes its grid lines to

obtain the desired regions of concentration as the solution

evolves. However, the interior lines shouid not cross é
the physical boundary and should be nearly orthogonal at
the intersection points to avoid large truncation errors
in the finite difference approximations.

Grid generation is based on the cbservation that
finite difference computations are much easier to make
on a uniform mesh over a canonical domain such as a square
or cube than on a grid over an irregularly shaped region.
Therefore, the partial differential equations to be solved
must first be transformed so that the computational coordi- s
nates become the independent coordinates. The resulting
equations may then be expressed as finite difference equa-
tions on the computational domain.

Grid generation techniques may be divided into two
general types: partial differential equation methods and
algebraic methods. P.d.e. methods include elliptic, hyper-
bolic and conformal mapping techniques. All of these methods

involve the solving of partial differential equations to '

R P—



obtain the grid ccordinates. The simplest elliptic method

for grid generation uses the Laplace equations

Alc.al-...ol = 0

ox 375

A*n = 8%n + 8%n = 0
W oy

where ¢ and n are the computational coordinates and x and y
are the physical coordinates in two dimensions. The equations
are first transformed sc that the independent and dependent
variables are interchanged. Then the new equations dre

solved for x and y in terms of ¢ and . Some control over

the grid cell spacing can be accomplished by introducing
control functions P(g,n), Q(g,n) and solving the Poisson

equations [TWM, p. 39]

a*g = P{g,n)

A*n = Q(Can)-
Solving the Laplace equations

A*t = 0 i
A*n =2 0

with boundary conditions

t

€ = ny
€y = -ny
produces a conformal transformation [TWM, p. 11]
Starius [St, p. 27] shows that solving an initial value
problem satisfying
Xn = -ygf
Yn = xgf



4
where F is chosen so that the system is hyperbolic produces
a hyperbolic grid generating system. Grids generated from
elliptic equations are generally smooth regardless of the
type of boundary, but slope discontinuities propagate through
hyperbolically generated grids [St]. Generating a grid
using conformal mapping techniques requires careful selec-
tion of the boundary data, making it difficult to structure
the grid to obtein a high concentration of grid points
in areas ot large gradients in the physical solution. More
grid points may have to be added in order to capture regions
of rapid change such as shocks and boundary layers. Also
in p.d.e. generated systems the Jacobian information needed
for the transformation of the equations being solved must
be computed numerically.

In algebraic methods an explicit functional relation-
ship between the computational and physical domains is
defined. Therefore, no p.d.e. need be solved to obtain
the grid coordinates and the Jacobian matrix can be computed
analytically. Such methods allow more precise controls
of the grid structure making it easier to concentrate grid
points in large gradient areas. However, algebraically
generated grids are more sensitive to point distributions
on the boundary and, in general, may not be as smooth as
those generated by elliptic techniques [Sm]. Slope discon-
tinuities on the boundary may propagate into the field.

Nevertheless, a variety of techniques have been used to

produce acceptable smcothness in algebraically generated grids.

o
T



Ttis thesis discusses an algebraic grid generation
technique for creating boundary fitted coordinate systems.
This technique uses a mapping which is a sum of tensor
product B-splines. Chapter 2 discusses degree theory,
explaining hcw the degree of a mapping can be used to deter-
mine what conditions must be met if an algebraic transforma-
tion is to produce a suitable grid. Chapter 3 presents
the tensor product grid generation mapping and discusses
the properties of B-splines tc show their suitability for
use in such a mapping. Chapter 3 also introduces a func-
tional which can be used to change the coefficients in
the mapping in order to enhance the smoothness and orthogo-
nality in the generated grid.

Chapter 4 discusses the computer program TENTEST
which uses the techniques p-~sented in Chapter 3 to generate
grids on grbitrarily shaped two-dimensional domains. Some
of the grids created using TENTEST are illustrated and
discussed in Chapter 5. <Conclusions and sugsestions for

further study are presented in Chapter 6.
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2. APPLICATiONS OF DEGREE THEORY

This chapter discusses degree thoery and shows how
the degree of a mapping can be used to help determine what
requirements are necessary if a transformation T is to
produce a suitable grid.

Since the distribution of grid lines should be smooth
with concentration in areas of large gradients in the
physical solution, the image of T should cover the entire
physical domain, that is, T should be onto. Also, the trans-
formation should be one to one. In terms of the grid, this
means that the grid lines should not overlap the physical
boundary and should intersect only at points corresponding
to intersection points on the mesh in the computation domain.

Requiring T to be none to one and onto is equivalent
to saying that the system T(s)=p must have one and only one
solution in the computational domain for each point p in
the physical domain. This provides the motivation for
looking at the following general problem:

Pick an open set DcR”, where R" is euclidean n-space,
and let C be an open bounded set such that CeD. If
F:DecR™ = R" is a continuous mapping and yeRn is given, how
many solutions of F(x)=y exist in C?

The difficulty in solving this problem lies in the

fact that in general the solutions do not vary continuously

o R e uemb e s e e e
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with F or y. This difficulty may be resolved by looking
instead at the difference between the number of solutions
for which the Jacobian of F is positive and the number of
solutions for which the Jacobian of F is negative. Loosely,
this is what is called the degree of F at y with respect

to C.

2.1 Defining the Degree of a Mapping

A more precise definition of the degree of a mapping
F takes on different forms depending on what restrictions
are placed on F. What follows are essentially the defini-

tions presented in references [S] and [0].

2.1-1 Definition. Let C~R" be an open bounded set and let

F:CcR™ - R™ be continuously differentiable on C. Pick
ydF(aC) and let r = {xeC|F(x) = y}. If F’(x) is nonsingular
for all xer then one defines the degree of F’at y with
respect to C by

deg(F,C,y) = «Ip sign det F'(x). f

In [0], Ortega and Rheinboldt actually define the
degree in terms of an integral and then show that it has
the equivalent form given above.

On removing the restriction that det F'(x) # 0 for
xel the definition becomes

deg(F,C,y) = lim deg(F,C,y,)

K=o

where lim Y =Y and each element of {y,}

-

N A Wb

o i

satisfies y ¢ F(aC) and det F'(x) # O whenever F(x) = Y-

-
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Actually, one can make the stronger statement that

for any such sequence {y} there is a k0 such that
deg(F,C,y) = deg(F,C,y,) for kxk [0, p. 159].

The Weierstrass approximation theorem makes it
possible to extend the definition of the degree of a mapping

to a continuous function.

n

2.1-2 Definition. Let F:CeR"~ R" be continuous on the

bounded open set C. Define 'IFIIE izg | F(x)| where |+

is the Euclidean norm. Then for y¢F(aC) one defines the §
degree of F at y with respect to C by
deg(F,C,y) = lim deg(F,.C,y)

J-OQ

where {Fj} 1s a sequence of maps which are continuously

differentiable on an open set D>C and which satisfy

L e S i

l'im ” FJ-F ||c=0

J*D

2.2 Properties of the Degree

S e,

The principal properties ¢f the degree are given

below. Excellent proofs may be found in [S], [0] and [H].

2.2-1 Theorem. Let F:CcR"=R" *~ continuous on the open

bounded set C and letr = {xeC|F(x)=y}. For any ydF(aC)
there exists a quantity, deg(F,C,y), which has the properties
listed below. It is:

1. Integer valued

2. Invariant under homotopy

p R b e 5
&)



1f W:8x[0,13eR™ !~ R" is continuous, then
for any zeR" satisfying W(x,t) # z whenever
(x,t)e aCx [0,1], deg(W(-,t),C,z) is constant
for all te [0,1].

3. Dependent only on boundary values

Eeph LN . )
If G:feR" ~R" is continuous and Gl . = F|,.,
then deg(F,C,y)=deg(G,C,y).

4, Invariant under translation

For any z:R".
deg(F-z,C,y-z)=deg(F,C,y).

5. Invariant for points which can be connected by a

continuous path avoiding F(aC)

See Figure 1.

6. Invariant unger the excision from C of any closed

set Q satisfying Qnr = @

In other words, if Qnr=@, then deg(F,C,y) =
deg(F,C-Q,y). In particular, if Q=C, deg(F,C-Q,y)=0.
This property will be called the Excision Property.
The Excision Property can be used to prove a very
important result which is called the Kronecker Theorem in
[0, p. 1611].

2.2-2 Theorem (Kronecker). If F:CcR™= R" is continuous on

the bounded open set C, y¢F(aC) and deg(F,C,y) # 0, then
the equation F(x)=y has a solution in C.
Proof: Suppose F has no solutions in C. Let Q=C. Since
ydF(Q), the Excision Property implies deg(l,C,y)=0.

Q.E.D.




ST TR e

et R S SO L

F(aC)
¢ F(C)

deg(F,C.yo) s deg(F.C..Yl)

Figure 1. Invariance of the degree when points connected
by a continuous path avoiding F(aC).

10

A B SR 11 T



11

2.3 A Topological Definition of the Degree

Dugundji [D] presents an alternate formulaticn for
the degree of a mapping. He defines the degree of a
mapping f:5S~S where S is the unit n-sphere in R", that is,

S = {xeR"| |x| = 1M
This degree can be shown to be equivalent to the analyti-
cally defined degree in the previous sections.

Before defining this degree, several terms nust be

discussed.

2.3-1 Definition. A set EcR" is called a linear variety

if xl'x2‘E implies xxl+(l-x)x2eE for all real a.

2.3-2 Definition. A hyperplane in R" is an (n-1) dimen-

sional linear variety. If n=]1 then a hyperplane will be a

point. For n=2 it will be a line, and for n=3 it is a plane.

2.3-3 Definition. If {xo.xl,...,xn} is a set of n+l points

in R", then the convex hull is called an n-simplex. It will

be denoted by & = (xo,xl,...,x ).

n
The points XgsX]seeesXy are called the vertices of the

n-simplex. If the vertices lie on a hyperplane in R", then
the n-simplex is said to be degenerate. Now if (x%,...,x?)

are the coordinates of point X then the volume of an

n-simplex [F, p. 208] is given by




MMW‘

12

%! det(xl-xo,xz-xo,...,xn-xo)

_ 1 .1 11 ... 1 1

= %! xl-xo x2-xo xn-xo
det . O .

n .n n .n n .n

X1=Xg X=Xy **t Xp7X4

S —

An n-simplex is degenerate if and only if

det(xl-xo,xz-x yee ey X

o -x_)=0.

n "o
The next three definitions will be used to explain

the term "ordered n-simplex."

2.3-4 Definition. A binary relation A in a set A is a

subset Ac AxA.

2.3-5 Definition. If A is a binary relation in a set A,

then A is trichotomous if exactly one of the following is
true for each x,yeA:

XAy, X=y, YAX.

2.3-6 Definition. Let A be a binary relation in a set A.

Then A is a total order if it is transitive and trichotomous

(G, p. 2].

2.3-7 Definition. An ordered n-simplex [D, p. 336] is an

n-simplex together with a total ordering on its vertices.

Therefore, if the vertices Xgs X seeesX of an n-simplex

n

satisfy x <X <o <Xp, then "<" totally orders the set

0 n

{xg,%1,.ooox L Therefore, the n-simplex 6= (Xgy Xqsenns?

n n)
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is an ordered n-simplex. Such a simplex will be denoted
[a] = [xo,xl....,xn]. The sign of the ordered simplex

is the sign of det(xl-xo.xz-xo,....xn-xo).

Now suppose Xgr X seeosXp 1 is a set of n points on S
having a diameter less than 1 so that the convex hull of
the set does not contain the origin. Then the convex hull
can be projected onto S by choosing the points on S lying
on the directed rays which start at the origin and pass

through the convex hull. The points on S form what will be

called the spherical (n-1) - simplex & = (xo.....xn_l).

The spherical simplex & is degenerate if and only if
XosXpseeesXp > lie on a hyperplane in R" paésing through
the origin, that is, if and only if (xo,xl,...,xn_l,O) is a

degenerate n-simplex in R". An ordered spherical (n-1) -

. s s on
~

simplex is a spherical {n-1)-simplex with a total order

on its vertices. The sign of an ordered spherical

(n-1)-simplex [6] = [x,,...,x, ] is defined to be the sign |

of the n-simplex [xo,...,xn_l,OJ in R" (D, p. 3371]. v
The next two definitions, which can be found in

[D, p. 337], complete the terminology needed to define the

Dugundji degree.

2.3-8 Definition. A triangulation a of S is a decomposition

of S into a finite number of nonoverlapping, nondegenerate
spherical (n-1)-simplexes such that each face of an (n-1)-

simplex 1s the common face of exactly two (n-1l)-simplexes.

- - o T "
' T AT 5 s s 0o
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2.3-9 Definition. Suppose S and £ are unit n-spheres in

R,

(Different symbols are used to make the concepts more

clear.) Let A be a triangulation of S. A proper vertex

map ¢:A -~z is a map defined only on the vertices of the
spherical (n-1)-simplexes in A and is such that whenever

XgrX]»--+2Xn_ ] are vertices of a simplex in a4, the set
fo(x ) e(x;),....0(x, _|)}lez has diameter less than I.

Under the proper vertex map e¢:A-I there will be a
unique simplex ¢(c) lying on I corresponding to each simplex
cgeA. There will be a unique ordered (n-1)-simplex

@[o]=[¢(xo), dxl),..., dxn_l)] on £ corresponding to each

ordered (n-1)-spherical simplex [o] . The sign of [o] may
differ from that of elo], and the family of sets {o (o)]|oea}
may not form a triangulation of I since it may contain
overlapping simplexes and degenerate simplexes. However,
the family does have the fundamental property presented in

the following theorem which Dugundji proves [D, p. 237].

2.3-10 Theorem. Suppose A is a triangulation of S and

9:4 -Ia proper vertex map. Let y be any point not on the
boundary of any set ¢(o). If p(y,as,9) is the number of
positive ¢l o] containing y and n(y,a,e) is the number of
negative, then the number D(y,a,¢)=p(y, 8, ¢)-n(y,a,9) is the
same for all yez not on the boundary of any ¢fo).

Since D(y, A, ¢) is independent of y it can be denoted

D(a,9).

)
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Now if F:S- ¢t is continuous then the compactness
of S makes it possible to find a triangulation a of S such
that the diameter of F(o) is less than | for each oea.

Then if 98- is the proper vertex map defined by
vF(x) = F(x) for each vertex x of A, Dugundji [D, p. 339]
shows that the number D(A,oF). where L2 is the proper vertex

map associated with A, is independent of the triangulation

of S. He calls the quentity D(A,vF) the degree of F.
Since A and L actually depend only on F, D(A’°F) can be

denoted D(F).
Like the analytically defined degree, this degree

is invariant under homotopy [D, p. 239].

2.3-11 Theorem. If F:S ~-c:is homotopic to F:S=Z, then
D(F) = D(F).

Now let V be the unit n-ball in R", that is,
V = {xcRnl Ix|<l}. Dugundji's degree can be extended to a
continuous map H:V -V provided HlS maps S into S. S is
clearly the boundary of V. Dugundji calls such maps regular.
The technique for determining the degree of H is analogous
to what is done to obtain D(F) for F:S-S. V is triangulated
into n-simplexes such that each 1ace nct on S is the face

of exactly two n-simplexes. Then a regular vertex map is

defined on the triangulation. ¢ is a regular vertex map
of a triangulation a of V if ¢ maps each vertex on S to a

point on S and vls is a proper vertex map. To calculate
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the degree of H, which will be denoted Dre (H), one chooses

g
the regular vertex map qﬁA*V defined by °H(x) = H(x) for
any vertex xeA. Then choosing yeV-S such that y is not
on the boundary of any ¢4(o) one comnutes

Dreg(H) = (number of positive ¢H[ol containing y)

- (number of negative oH[o] containing y).

Dreg(H) deperds only on H, and if H and Q are homotopic
in such a way that the image of S remains on S throughout
the entire deformation, then Dreg(H) = Dreg(H)' Further-
more, Dugundji proves the following very useful result.

2.3-12 Theorem. Suppose H:V-V is a regular map. Let

F:HIS:S -S. Then D(F) = Dreg(H)'

This theorem provides the information needed to show i
that Dugundji's degree is egquivalent to the analytically
defined degree. The following 'emma will be used in the

proof.

2.3-13 Lemma. Suppose the following hypotheses are given:

l. H:V-V is a continuously differenrtiable regular
map
2. yeV=S and r = {xeV|H(x)=y}
3. H’(x) is nonsingular for all xerl
Then there exists a triangulation 4 of V with associated
reqular vertex map oy such that whenever ogeA contains Xxerl
and vH[OJ is nondegenerate,

sign ¢H[o] = sign det H"(x).

F-ollk %
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Proof: For each xer choose a neighborhood Nx of x so that
either sign det H’(p)>0 for all points chx or sign

det H’(p)<0 for all points chx. Choose the neighborhoods
small enough so that the family of sets {lexer} is dis-
joint. Then triangulate V so that each Nx contains a non-
degenerate equilateral simplexox in which x lies, that

is, a nondegenerate simplex in which the distance between
any two vertices is the same. Call this trianguiation a.

Now suppose o,ed and o = (xo'xl""’xn) with the vertices

X
labeled so that [ax] = [xo.xl,...,xn] is positive. Since

vH(xi) = H(x;), 1 =0, 1,...,n, the sign of oy [ox]

= sign det [H(xl) - H(xo),...,H(xn) - H(xo)].

However, H(xi)-H(x ) = H'(x

5 o) (xi-xo) + o\Ixi-xo|) for

i=l,...,n. Therefore, the sign of o [ox) = sign det

[H (xo)(xl-xo) + o(lxl-xol),...,H (xo)(xn-xo) + o(xn-xo)].

Now if lxi-xo[

minant above yields det [H (xo)(xl-xo,...,xn-xo
n )

of order o(e'). Therefore, det [H (xo)(xl-xo,...,xn-xo)],

which has order 0(e"), is the dominant term, and the other

terms can be neglected. Consequently, the sign of
sign det [H’(xo)(xl-xo,....xn-xo)]

sign [(det H’(xo))'(det (xl-xo,...,x

sign det H’(xo) since {ox] is positive. However,

QH[OX]

n-xo)]

since x eN , sign det H’(xo) = sign det H'(x).

Q.E.D.

= ¢ for i=o0,1,...,n then expanding the deter-

)] plus terms
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2.3-14 Theorem. Suppose H:V -V is a continuously differen-

tiable regular map. Pick yeV-S and letr = {xeV|H(x) = y}.
Let F=H|c:S -S. If H'(x) is nonsingular for all xer then

D(F) = deg (Hova)-
Proof: Since 2.3-12 says D(F) = Dreg(H)' it suffices to

show that Dreg(H) = deg (H,V,y).

Choose a triangulation a of V as specified in 2.3-13
and let o4 be the regular vertex map associated with a.
Without loss of generality, one can assume that ¢H(o) is
nondegenerate for all ocea because any degenerate QH(O) can
be approximated by a nondegenerate simplex ¢(o) where ¢ is
defined on all vertices p in a so that |¢(p)-¢H(p)|<e
for a given e¢. According to Dugundji [D, p. 338], D(a,¢) =
D(A,¢H) = D(H) if e is sufficiently cmall.

Furthermore, one ~an also assume that y does not lie
on the boundary of any QH(O) for cea since property number
5 of Section 2.2 implies deg(H,V,y) = deg(H,V,p) for all
peV-S.

Therefore, it follows from 2.3-13 that Dreg(H) z
number of positive ’H(°) containing y

- number of negative °H(°) containing y

= I sign det fo).
Xel

Q.E.D.
The following corollary shows that the restriction

that H'(x) be nonsingular for all xer can be removed.

— M‘M
g

i T

R
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2.3-15 Corollary. Suppose H:V -V is a continuously

differentiable regular map. Pick yeV=S and let
P = {xeV|H(x)=y}., Let r=H|S:s~s. Then D(F)=deg(H,V,y).
Proof: By Ortega and Rheinboldt [0, p. 159], there exists
a4 sequence (yk} which converges to y and has the following
properties:

1. Each yde(S)

2. For each y,» det H'(x) # 0 for all x such that

H(X)=yk
3. For soime ko' deg(H,V,y)=deg(H,v,yk) for all
kgko
So pick k* so that k*_:;k0 and whenever k>k*, ykev—s. Then

by 2.3-14 D(F)=deg{H,V,y *)=deg(H,V,y).
Q.E.D. '
It should be noted that this corollary still holds
if H maps some of the interior points outside of V. The
points outside of V can be projected onto S 50 that one

obtains a mapping from V into V.

2.4 Applications to Grid Generation

The usefulness of degree theory in grid generation
surfaces when one studies a grid generating transformation

T. One might immediately note from the Kronecker theorem

H
E}
3

that determining the degree at every point in the physical
domain would show whether or not T were onto. Unfortunately,

the degree is not always easy to compute in practice.
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One therefore looks instead at how the degree can be used

to prove some things about those quantities, such as the
Jacobian of T, which can be easily computed.

Recall that if AcR", Ber"

, ttren A homeomorphic to B
means there iIs a ccontinuous one to one, onto mapping from
A to B whose inverse 1s also continuous. It is clear that
7 should be a homeomorphism from the computational domain
onto the physical domain.

The following result shows that if T is a8 homeomor-
phism, its Jacobian does not change sign.

In all of the theorems which foilow In=[0,l]n, JT =
Jacobian of T, C°=interior of C, C‘=complement of C,aC =

boundary of C and acR" is homeomorphic to In'

2.4-1 Theorem. I: 7 is a homeomorphism from In to n and T

1s continuously differentiable, then the Jacobian, JT, of T
has oune sign in Ig, 1.e., either JT(x)>0 for all XEIg or

JT(x)<0 for all xell.

R
Proof: Suppose by way of contradiction that JT(xO)>0 while
JT(x1)<O for some XO'XIEIg' Let yC=T(xo) and y1=T(xl).
Define p:[0,1]~ rRM by
p(t) = T ( (I-t)x +tx;).
Then p(0)=y , p(l)=y,, and p(t)dT{al ) for te[0,1]. Hence,
by property 5, 1=deg(T,Ig,yo)zdeg(T,Ig,yl) = -1. There-
fore, either JT(x)>0 or JT(x)50 for all Xelg.
Q.E.D.
\
N
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In an algebraic grid generation algorithm, the con-
struction of T will be based on boundary information.
The next theorem shows that requiring T to be a homemor-
phism from the boundary of the computational domain to
the boundary of the physical domain will insure that the

image of T covers all of the physical domain.

2.4-2 Theorem. If T:In-R" is continuously differentiable

and T maps aIn homeomorphically onto ag, then T(In):>g .

Proof: Let S be the unit n-sphere in R, By Dugundji

[D, p. 353], the Dugundji degree D of a map which is a
homeomorphism from S to S is +1 or -1. But aIn and an
are homeomorphic to S. Therefore, from 2.3-15 it follows
that for any yeﬂo, deg(T,Iﬁ,y) = ¢+ 1. Therefore, by the
Kronecker Theorewm (2.2-2) q lies in the image of T.
Q.E.D.

Smith and Sritharan [SS] show that if an additicnal

hypothesis is added, one can obtain a much stronger conclu-

sion:

2.4-3 Theorem. If T:In -R" is continuously differentiable,

T maps aIn homeomorphically onto an and JT(x) # 0 for all

o

x:]n

., then T is a homeomorphism from !n to .

The next theorem shows that the Jacobian changes sign

when the image of T overlaps the physical boundary. Theorem

2.4-3 and Theorem 2.4-4 show that it is important that T be

constructed so that its Jacobian does not change sign.

4
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2.4-4 Theorem. Suppose T:In~*Rn has the following properties:

1. T is continuously differentiable
2. T maps aIn homeomorphically onto an
3. m(T(In)—n)>O

Then JT has a sign change.

Proof: Let C(I.) ={xel |JT(x) = 0} Sard's Theorem [0,

p. 130] says that m(T(C(I_)))=0. Since m(T(I n)>0, there

n
exists z*e T(In)-n such that T(x) = z* implies JT(x) # O.

\
n’"

Now, choose we[T(In)]C. By property 5,

deg (T,Ig,z*) = deg (T,12,w) = 0. Since deg (T,Ig,z*) -

3 n’

Z sign JT(x), the Jacobian values at all x satisfying
{(x]T(x)j=z*}

T(x) = z* must cancel each other.

Q.E.D.

2.5 Additicnal Topological Questions

Section 2.4 suggests other questions which should
be asked. Can a continuously differentiable homeomorphism
from aIn to an always be extended to a continuously
differentiable homeomorphism from In ton? If not, under
what conditions is such an extension possible? How can
one guarantee that a mapping from I to R™ will be a
diffeomorphism?

The answers to these questions will provide valuable
information for creating an algebraic grid generation
mapping. Although this paper does not answer all of these

questions, partial answers were presented in tne previous

.
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section. Also, the following example shows that contin-
uously differentiable boundary homeomorphisms cannot always

be extended.

2.5-1 Example. Suppose T:12~ R2 is continuously differen-

tiable and maps the boundaryv of the square homeomorphically
onto the boundary of the nonconvex region 0 shown in figure
2. Let p be the point indicated and ap = (AE). If

n

-4
Ty(p) = y and T,(p) = aT(p) then

i =
T(p+ap) = T(p) + T (p){ap) + ol |ap|)
= T(p) + agTy(p) - anTy(p) + o(]ap])

When |ap| is small, the terms of order o(|ap|) are
negligible in size when compared to Ang(p) and AnTZ(D)~
Therefore, those terms may be neglected from the equation
above. However, then it is clear that T(p+ap} must lie
outside the boundary of @. Consequently, T cannot be a
homeomorphism from 12 to Q. This 1s illustrated in figures
3 and 4 which show the result of attempts to construct a
tensur product spline transformation that maps the square
onto Q. In each case points overlap the boundary near
the "V" shaped corner.

The first grid was obtained by choosing the B-spline
coefficients so that the transformation approximated a
transfinite bilinear interpolation mapping. This is dis-
cussed in Chapter 4. The second grid was obtained by chang-

ing some of the coefficients in order to minimize a func-

tional which is described in the next chapter,
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Figure 3. Initial grid on nonconvex domain.
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3. AN ALGEBRAIC GRID GENERATION MAPPING

In this chapter an algebraic grid generation tech-
nique which uses a transformation consisting of tensor
product B-splines is discussed. In the first section,
finite difference approximations to the transformed deriva-

tives of a first order partial differential equation are

examined. The effect of the size of the Jacobian on smooth-

ness and orthogonality is discussed, and its influence

on local truncation error is examined. The next section
defines the particular transformation of interest in this
paper and discusses the properties of the building blocks
for th{s transformation: kth order B-splines. The final
section discusses a functional which can be used to modify
the transformation so that the grid lines are distributed
more smoothly and are nearly orthogonal at points of inter-

section.

3.1 A First Order Example

If € and n are the computational coordinates, satis-
fying 0<g<l and O<n<l, and x and y are the physical coor-
dinates, then the grid on the physical domair will consist

of coordinate lines produced by a mapping

T(E,n) = (X( €, n))
.V(E. ﬂ)

-1

2 e
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If U = F(x.y.u.ux.uy) is a first order partial differen-
tial equation defined on the physical domain, then the

chain rule yields (uE un) = ("x uy) x J where J = [x; x:], the
Ye y

Jacobian mitrix for the transformation T, Hence

(u (ug upy) x 3!

{ug up) X [Yn "‘n] T
~Yg Xg

where JT = |J| = xgyn - xnyg. It is clear that the partial

x Yy)

differential equation can be transformed once the elements
of J are computed. These elements may be approximated
by differences when explicit formulas are not available.

The transformed expressions for Uy and u_ show immediately

that the grid must be structured so thatyJT # 0 at all
mesh points (g,n).

Once the partial differential equations are trans-
formed, difference approximations can be written for Ug
and u,. Large truncation errors in the approximations
will affect the solution of the partial differential equa-
tions. One can obtain an expression for the truncation

error at mesh point (ci,nj) by doing a Taylor series expan-

sion at (ci.nj). If "ij = u(ci.nj), then

2 3
ui+i,j = uij + Ugdg + Ugg (gs) + Ugge (as) + HOT

Ui1,5 = Yig - Yesg * Vg LQ§12 - Ugegeg Le$l3 + HOT
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where HOT = higher order terms. Subtracting these two

equations and solving for ug ylelds

2
U, = u -u -u (A€)€ + HOT
3 i+l, i-1, €EE
“JTFZE ]
Similarly,
2
U= u - u -u (an)® + HOT
n i,j+l i,j-1 nnn S
2 An
Therefore

2 2
u, = }T (ynbgu-ygbpu) - (Ynueee (ag) “=Yeunnn(an)®)

1

6J7

+ LI N ]

where S U and 8,u are the central difference approximations

for ug and u , respectively. The truncation error is

2 2
ééT (Ynuggg(8g) " =YeUqnalan)®) + ...
Now if r = (;), then
JT = chn - X ¥g
T
= (rcxrn) « (0,0,1)

z Ircl Irnlsin e

where 6 1is the angle of intersection of the grid lir-s

at (g,n). Again, the importance of JT # 0 is eviden:,

but one can also see why the grid lines should be as ortho-
gonal as possible. The expression for JT implies that

the truncation error is inversely proportional to sin e.
However, according to Thompson, Warsi and Mastin [TWM,

p. 82] a departure from orthogonality of up to 45°% is

usually tolerable.
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3.2 B-splines

|

The mapping T discussed in this paper has the form

——— ———

m 0
f-n ?.1“:3’;3“-") 0sE<1
(& n)],
T( & ") = [y( [ ﬂ)] . )
f:l ?.151j3;3(€.n) 0<n<l

where the Bij' i=l,...m; j=l,...,n are tensor products
of B-splines and the coefficients “iJ' “ij' i=l,...,.m;

j=l,...,n are real numbers. In this section, the terms
B-spline, spline function and tensor product B-spline are
defined, and some of the important properties of these

functions are discussed.

3.2-1 Defining B-splines

The following definition is from A Practical Guide

to Splines by Carl de Boor [de B, p. 108]. E

3.2-1-]1 Definition. If t = (ti }is a nondecreasing sequence,

then the f{-th normalized B-spline of order k for knot se-
quence t is defined by
k<!
Bi’k’t(X) = (tt+k‘ti)[ti,aoo'ti+k]("x)+ Vhere XtR.

The sequence t may be finfte, infinite or biinfinite.

The expression {ti....,thk](--x)f'l denotes the kth

divided difference of ( -x)':'l or the leading coefficient

of the polynomial of degree k which interpolates (--x)':'l




N

k-1

at tt""'tl+k' The notation (e-x represents the trun-

cated power function (f-x)':'l which is defined by
k-1
(e-x)f'l '{("x) for t>x
0 for t<x
The -« indicates that the kth divided difference above should
be evaluated by holding x fixed and considering (r-x)f'l

as a function of t only. Nevertheless, since Bl K t\‘x)
changes as one chooses different values for x, it is clearly

a function of x.

Ty

The definition above differs slightly from the original
definition given by Curry and Schoenberg. Their B-spline

M ¢ is related to B, |

K,t by the equation

My kg ® [K/(t,-t)] By [de B, p. 109].

3.2.2 Properties of B-splines

A kth order B-spline Bi K.t is a8 piecewise polynomial

of degree k-1 with breakpoints at ti""'ti+k‘ On each

interval (tj'tj+l)' Bi,k.t is a polynomjal of degree k-1

or less. For convenience it will be assumed that 8i K.t

is continuous from the right at breakpoints.
B-splines have many properties which make them
convenjent for applications involving computers. One jmpor-

tant property is their small support. If xt[ti.ti+kl.

then (f-X)E-l will be a polynomial of degree k-1 or less
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on [tvt1+k]' Hence [tx""'tl+k] (‘-x)t'l = 0. Therefore,

Bi.k't (X) s 0 fOf‘ x‘ [ti.ti‘.'k].

This implies that the support of Bl.k.t can lie §n

JPCTIRLTR L R TR 0P 1Y sl SR

at most k intervals of the form [tj'tj+1]' Therefore,

Al Ty

if (81) represents the sequence of B-splines of order k

for the knot sequence t = {ti" it follows that only the k

B-splines aj-k+l' Bj-k+2""'aj can have support in any
given interval [tj,t:+1].

The next two results, which are proved in [de B,

p. 110] and [de B8, p. 130], respectively, show that B-splines

form a partition of unity, i.e., the sequence (B} consists

of nonnegative functions which sum up to 1.

3.2.2-1 Theorem., If {Bl} is the sequence of B-splines o’

order k for a nondecreasing sequence t = {tih then

q-1
I By(x) =7y By(x) =1
f=p-kel

for any xc(tpxq) where p and q are such that p-k+1 and
q+k-1 lie in the index set for t.

3.2.2-2 Theorem, If Bj is the ith element of the sequence

of B-splines of order k for a nondecreasing sequence

t s {ti}' then Bi(x)>0 for t1<x<ti+k'

One can think of the "B" in B-splines as representing

the word “basis," for when the knot sequence t {s chosen
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appropriately, the kth order B-spliner for t form a basis

for the plecewise polynomial space P, . .. P is the

K,E»v
notation used by de Boor [de B, p. 100] to represent the
space of piecewise polynomials of degree k-1 which have
breakpoint sequence £ and which satisfy smoothness conditions

specified by v. If € = (:l)?*l. then the nonnegative

sequence v = ‘”i}g gives the number of smoothness conditions

at each €, 1 = 2,...,Mm. For example, if v, = 3 then any

f‘PK.C.V must have at least 3 smoothness conditions at

€, that is, the function, its derivative and second deriva-

tive must be continuous at €,. The dimension of P,

is km-T vy
{=2

The following theorem of Curry and Schoenberg [de B,C]

shows how the knot sequence t should be chosen so that

the corresponding B-spline sequence forms a basis for Pk

»

&V

3.2.2-3 Theorem (Curry and Schoenberg).

Let ¢ = (;i)?*l be a strictly increasing sequence and
v = (vi)g be a nonnegative integer sequence such that

vi<k for all f. Sset n s k+? (kev() = km-2 . and let

Iz i=2

ts (ti}?*k be a nondecreasing sequence such that

(1) tyctoc . <tysk) nd Cpypstpy oo stagk
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(ii) for i=2,...,m, the number {, occurs exactly

k-vi times in t.

Then the sequence Sl,....B of B-splines of order k for

n

the knot sequence t is a basis for Pk £,v viewed as
functions on [tk’tn+1]'

This theorem shows how the number of knots at a break-
point translates into the amount of smoothness there.

Since the number Ei occurs exactly k- vy times in t and

Vi represents the number of smoothness conditions at €

the number of smoothness conditions at Ei equals k minus

the number of knots at Ei. Hence if k=4 and cj, ijfm,

occurs exactly once in t then the piecewise polynomials

generated by Bl,....B will satisfy three smoothness condi-

n
tions at Ej. i.e., the piecewise polynomials, their first
derivative and their second derivative will be continuous
at ..

%

3.2.3 Spline Functions

In early studies of splines, a spline function of
order k was defined to be a piecewise polynomial of degree
k-1 with k-2 continuous derivatives. However, in this

paper the more general definition in [de B] is used.

3.2.3-1 Definition. If t = {ti} is a nondecreasing sequence,

then a spline function of order k with knot sequence t is

any linear combination of the B-splines of order k for

gy e e

T
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the knot sequence t. If one denotes the collection of all

such functions by Sk t then

It is clear that when t has the form described in the Curry

and Schoenberg theorem 3.2.2-3, Sk t=P on [tk.t

K, E, v neld-

The first derivative of a spline function f“i Bi k.t

can be found by using the differences between successive
coefficients. The following result, proved in [de B, p.
138], shows that the derivative of a spline function of

order k will be a spline function of order k-1.

3.2.3-2 Theorem. Let I3 B, ¢ be a kth order spline

function constructed with B-splines Bi K.t corresponding

to a nondecreasing sequence t = {ti}' Then the first deri-

: z . .
vative of i % Bi,k,t is given by
z oz
ey By ) = i0k-1) o5-0 1 By kent
dx tivk-1"Y
The value of a spline function f = gaj Bj Ky at a

point x satisfying ti<x<ti+x is a convex combination of

the k coefficients o, | [ ,...,¢5. For if t,<x<t, then

i i i i+l®

= 2z = , i .
f(x) Jaj Bj,k,t(x) T laJ Bj.k.t(x) with the BJ,k,t

satisfying f Bj,k,t(x)’ 1 and Bk(x)gp for all j.




36

B-spline coefficients mcdel the functions that they
represent. In other words, the coefficients are
approximately equal to the value of the function at certain
points. This is illustrated in the next section.

Car! de Boor [de B] proves the following result con-
cerning the relationship between a spline function and
its B-spline coefficients. The notation "f“[a,b] denotes

max [f(x) |.
xela,b]

be a kth order spline

3.2.3-3 Theorem. Let Za B,
ii i,k,t

function constructed with B-splines Bi K.t corresponding

to a nondecreasing sequence t = {ti}‘ Then there exists a

positive constant Dk' depending only on k, so that for all

i,

.| <D Ia. B,
'°1| Al k”JnJ BJ.kat”[ti+l’ti+k-l]

3.2.4 Variation Diminishing Splines

Given an f known to lie in Pk one can write it

&,V

in the form f = g °iBi' The Curry and Schoenberg Theorem
i=1

(3.2.2-3) shows how one obtains the B-spline basis and

the following lemma suggests how one might obtain the

coefficients. 1Its proof may be found in [de B, p. 116].
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3.2.4-1 Lemma (de Boor and Fix). Let B, be the sequence

of B-splines of order k for a nondecreasing sequence

t = {ti}' Let A be the linear functional defined for all

foy af = 51 (o) kelor glk=1-r) (e 36T (2)) where
r=0

¢(t) = (ti+,-t) cee (ti+k't) /(k-1)! and t, is some arbi-
trary point in the open interval (ti'ti+k)' Then

A. B. =

i 8 % j for all j.

Hence, if f = a;, B, it follows that a , l<k<n may

n
z 1 i
i=l

be found by computing xkf s xk(xa
ii

writing out the expression for Akf one can easily show

Bi) = a. By explicitly

[de B, p. 159] that a, = f(x;) + o(]t]) if t, is any point

max .

T o= t;. 1<i<n where t; = (ti+l + ... 4 ti+k-l) / (k-1) then
a; = F(t1) + 0(]t]®). Choosing e =F(t;) for lgicr yields a

shape preserving approximation called Schoenberg's variation

diminishing spline approximation [de B, p. 159]. So if

tx s {ty} T the variation diminishing spline approximation
to f, vf, is defined by

vf = " f(t}) B,.
i=z]
This spline reproduces polynomials of degree one, i.e.,

if f is a straight line then vf = f., For any f the number of
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times the spline 2pproximation crosses a given line will

be less than or equal to the number of times f crosses the
line. From this it follows that if f is nonnegative, then
vf is nonnegative and if f is convex then vf is convex. How-
ever, since v has these shape preserving properties, it is
not « very high order approximation., In fact, if g is a
function defined on [a,b] and g has m continuous derivatives
for some m22, then de Boor [de B, p. 161] states that

2 . .
||g-vg||[a.b]§pg,k|t| , where g,k IS 2 constant depending

on the order of the spline function k and the function g.

e ——

No matter how large m is, no exponent larger than 2 can be
put in the inequality. De Boor shows that it is possibie to
obtain other spline approximations which are more accurate,
but variation diminishing splines are convenient for appli-
cations such as computer-aided design and grid generation "

where shape preservation is important.

3.2.5 Tensor Product B-splines

3.2.5-1 Definition. Let R be the set of real numbers. If

V is a linear space of functions mapping some set X into R
and W is a linear space of functions mapping some set Y into

R, then for each veV and weW the tensor product, vew of v

and w is defined by
vaw(x,y) = v(x)w(y) for (x,y)eXxY.
Furthermore, the set of all finite linear combinations of

the form vaw for some veV and weW is called the tensor
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product, VBW of V with W.
A typical element u of VBW has the form

U= 2 nj(vjle)
isl

where ach, v.eV, NJcH for j=1,...,n.

J
If V and W are the linear spaces of spline functions

Sh S and Sk t° respectively, then the elements of VBW are

linear combinations of tensor product B-splines. A tensor

product B-spline B, is defined by Bij(xs¥)=By  o(x)By  ¢(¥)

where Bi h is the ith B-spline of order h for the knot

s S

sequence s = {si} and Bj K t is the jth B-spline of order k
for the knot sequence t = {tj}. An element u of VBW will

be called a tensor product spline and will have the form

- I I
U= § oy ey By

where uijeR for all i,j. When h=k=4 u may also be called

a bicubic spline.
Many of the properties of tensor product B-splines
follow trivially from B-spline properties. For example,

the tensor product B-spline Bi will be positive on its

J
support since both Bi h s and Bj K.t are positive on their

support. Furthermore, the support of Bi is small. Since

i
Bi,h.s(x’ = 0 for xels;,s; ] and Bj.k,t(Y) =0 for y‘[tj'tj+k]
it is clear that Bij(x,y) = 0 if Eitherx‘[si'si+h] or

ytﬁj.tj+k]. Hence the support of Bij lies in the shaded
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area shown in figure §5.
Tensor product B-splines also form a partition of

unity. It follows from 3.2.2-1 that B (x,y) =
1j 13

fBi(x)fej(y) = 1 for any (x,y) c(sp.sq)x(tr,tm) where p

and q are such that p-h+l and q+h-1 lie in the index set
for sequence s and r-k+l and m+k-1 lie in the index set
for sequence t.

Partial derivatives of tensor product splines are

easy to compute since they reduce to derivatives of spline

functions.
3 (zzeB (x,9)) = 8 o B (x)B (y)
X ij i ij Ox ij ij i J
= 1B (y) d_(Z, B (x))
i dx i ij i

8 (z _ B (x,y)) 8 Iz B (x)B (y)
By ij 1§ i] By ijij 1 j

= 8 (x) d (3, B (y))
i dy %

3.3 A Smoothing Functional

The mapping T described in this paper uses tensor
product B-splines to map the unit square onto a physical
domain of arbitrary shape. This section shows that
choosing the coefficients of the tensor product B-splines
so that they minimize a certain functional can improve
the quality of the physical grid produced by T. This

functional is described and conditions under which it will
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Figure 5 Support of tensor product B-spline Bij.




have a minimum are examined.

3.3.1 Characteristics of the Functional

The coefficients of the mapping defined by
o ]
z L o .B (g,n) N<gcl
i=j J=1%1§°14' %" ==

m
z
i=

X(E-n) .
T(Caﬂ) = Y(Eoﬂ)

can be divided into two groups: boundary coeF?icients and

n
1 §=18ij81j(c'n) O:ﬂﬁl

interior coefficients., T uses the boundary coefficients,

“ij’sij' j=1,...,m and SimBim i=l,...,n to map the boun-

dary of the square onto the boundary of the physical domain.

Hence, the flexibility of their values is limited. The
rest of the coefficients, the interior coefficients, can

be moved around in order to change the characteristics

of the physical grid. To produce orthogonality in the grid
‘ines and maximize the smoothness of the distribution of
grid lines one can choose the interior coefficients to

minimize the functional
F =/I L0 aJT 2 +faJT 2 dA + ]I wz(Dot)sz
2 []3 n 2

JT(g,n) = Jacobian of T at (g,n)

where

=|ax (g.n) gﬁr(t.n)
13 on

8y (g,n) ay (g,n)
.13 n

42
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s 0 E. ) » - s [} ]
1& (§.n) 1% (€,n) - 23y (€.n) %% (§.n)

Dot (gn) = &T (€n) « a7 (g 1)
.13 an
= :0_5(;»";)— ra_X(E'nTr
(.13 n

oy (&,n) oy (&.n)
€ ] on

d

=z B8X (Eoﬂ) ﬁ (E'ﬂ) + ﬂ (Et"l) gx (E’n)
ag an .14 an

and wl(c,n), wz(c.n) = weight functions evaluated at (¢,n).
After the minimization of F is completed, where W) is large

the variation of the Jacobian values at nearby points will

be small. Hence, W, can be used to decrease skewness in
a grid. Where Wy is large, Dot will be small causing the

grid lines to approach orthogonality.
To avoid the tedious differentiation and integration
of tensor product B-splines, the following discrete approxi-

mation to F can be implemented in computer algorithms:

P q 2 2
ST §=71(“’Ti+1.3"‘"1j) * T g 9T g) )AEAn
(AE)Z (An)z
"L w,(0ot, )2 ac
w 0 AEAn
i=1 j=1 ¢ 1

where
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0= nl<n2<...<nq = 1,
Y l/(p'l’v aAn = l/(Q'l)o and

the parameters W and W, are weight functions. Both F
and G depend only on the coefficients of the tensor product

B-splines which compose T.

Now
m n
0 (E,n) =L T o 8 (Bij(c.n))
3T i=l §=1 13 3%
m n
0 (E,n) =2 ¢ 8 (B..(g,n))
L A S R
m n
;1 (§,n) =2 = 8,. 08 (B (gn))
3 i=l j=1 1 ag N
m n
%l (€n) =2 'z 8,,08 (B;,(€.n)).
n i=l j=l J an J

Thus, for &,n fixed, JT(€,n) is a linear function in each

coefficient °1j'8ij’ i=!,...,m, j=l,...,n and Dot (g,n)

fs a quadratic polynomial in each coefficient. Since the
terms involving Dot (€,n) and JT (E,n) are squared in G,
one can see that G is actually a quartic polynomial in
each coefficient. This suggests an elementary jteration

method for finding the minimum of G: the cyclic coordinate

method [B, p. 271].

Rl

W
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The cyclic coordinate method is a multidimensional
search technique for minimizing a function of several vari-
ables without using derivatives. It searches for a minimum
along each coordinate direction. This method, when applied
to a differentiable function, converges to a point where
the gradient is zero [B, p. 273]. It can be applied to

G {f one treats each coefficient “ij"ij’ f=l,...,m,

j=l,...,n as & variable representing a particular coordinate
direction. This technique is discussed further in the
next chapter.

The importance of requiring that the chobian of T be
of one sign was illustrated in Chapter 2. For this reason,
if possible, the feasible region for the minimization
problem is chosen to be & region where the Jacobian of T is
nonnegative. Now since B-splines have small support, any
given coefficient a.g Or 'rs only affects the Jacobian
of T at a small number of points on the unit square mesh.

By solving the inequality J7>0 for o« _ at each of these

rs

points one can determine on what interval o must lie so

rs
that the Jacobian values at the points it affects are non-
negative. This inequality is easy to solve since JT is

linear in LI Repeating this procedure for each coefficient

will, in most cases, produce a satisfactory approximation
to the desired feasible region. However, since the boun-
dary coefficients are fixed, there may sometimes be problems

near the boundary. This is the case with the nonconvex
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region examined in Section 2.5. The Jacobian will remain

negative at one of its corner points even after the domain
for the coefficients is restricted by using the procedure

above. This is because the boundary points are fixed and

not affected by the procedure. The Jacobian will also

remain negative near this corner because of continuity.

3.3.2 Convergence of the Lmoothing Functional

Under what conditions will the discrete smoothing
functional G converge to a minimum value? [s it important
that G be restricted to a region where the Jacobian of T is
nonnegative? What happens if one of the tensor product
coefficients becomes large?

These are some of the questions which might be asked
about G. The notation defined below will be used to discuss
these problems:

(Ar)is a sequence in which each term represents a set

of coefficients for the mapping T:Iz R2 defined by

m n
§=l ?.IGIJBU(C'")
T(gyn) = , 082!, Ogngl.
m n
;’-.l jz.l aj4815(€n)
L.

by
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f"' —
.','j. ifsael

r ) l'lp.oa.ﬂ; ll.o.nuno
Ar(s'ioj) s B” lf S s 2 J

L -
Tr denotes the mapping obtained when the coefficients
given by Ar are used for T,
JTr denotes the Jacobian of Tr'

1Ar Imax :??.jikr(s"'j)l'

It follows that if the sequence (Ar}of coefficients

converges to & single point then the corresponding values
of G also converge. Hence, it is important to determine
conditions which guarantee the convergence of the coeffi-
cient sequence. Well, since the elements of {Ar} can be

viewed as points in RZM

, the sequence converges if and
only {f it is a Cauchy sequence; however, a necessary condi-
tion for the convergence of {Ar} is that the sequence be
bounded. The following theorem and corollary show how the

Jacobian affects the boundedness of the sequence.

3.3.2-1 Theorem. Suppose for all r Tr maps olz homeomor-

phically onto aa. If Jrr(;,n)zo for all r and all points
{€.,n) ¢ lg. then either {Ar} is bounded or JTr(:o.no) = 0

for some point (co.no) ¢ Ig.
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Proof: By way of contradiction, suppose (Ar} is not bounded
and JTr(;,q)>0 for all r and all points (g,n) ¢ 12. For

any integer N there exists an Ar;{Ar} such that IAermax>N‘

( r
But this implies that either aN |>N or |8 N |>N for some
ij il
i,i. Now since q is bounded there exists M>0 such that

[P|<M for all Pea. From3.2.3-3 it follows that for large
enough N, max T, (g,n)| > 2M.
N

O<e<l
03"31
Hence Tr maps some point (;rnl) € Ig outside an. Now
N
since JT_ >0 on 13, m(T_ (I,)-a )>0. But then 2.4.4 says
N N

that JTr has a sign change.
N
Q.E.D.

The corollary below follows immediately.

3.3.2-2 Corollary. Suppose for all r Tr maps 12 homeomor-

phically onto an. If JTr(s,n)>0 for all r and all points
(g,n) € Ig. then {Ar} is bounded.
One would like to show that the requirement JTr(E.n)go

for all r and all points (g,n) ¢ Ig is sufficient to gqarantee
the boundedness of {A }. As indicated in 3.3.2-1, it is

clear that if the magnitude of a coefficient is large enough,
then the mapping Tr associated with the coefficient will

map some point in Ig outside an. However, it is no longer
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clear that m(Tr(IZ}-a)>0 since JTr(:.n) may be 0 outside aa.

Thus 2.4.4 cannot be used to obtain the contradiction that
JTr must have a sign change as was done in Theorem 3.3.2-1.
Although the writer has been unable to devise an acceptable
proof to date, further study may chow that the inequality,
m(Tr(Iz)~n)>0, is actually true.
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4. PROGRAM TENTEST

This chapter discusses the computer program TENTEST
which algebraically generates grids using tensor product
cubic B-splines. A listing of TENTEST is given in the
appendix at the end of this paper.

The first section of this chapter presents the major
steps involved in the computer algorithm. Sections 2
through 5 examine the important features of the program,

briefly discussing the subroutines involved.

4.1 The Algorithm

Although TENTEST contains almost a thousand lines
of code, it is based on the following eight step algorithm:

i. Input knot sequences {s;} and (t } consisting
of values from [0,1].

ii. Compute the tensor product cubic B-splines
corresponding to the knot sequences.

iii. Choose initial coefficients to form a bicubic
spline mapping from the square to a physical
domain.

iv. Use the mapping to plot a grid on the physical
domain.

v. If grid satisfactory, stop. If grid unsatisfac-
tory, continue.

vi. Input weights for smoothing functional.

vii. Complete one iteration of minimization routine
to obtain new coefficients.
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viii. Go to step iv.

There also exists a batch version of TENTEST which
allows the user to request several iterations of the minimi-
zation routine at a time. All the information needed to
plot the initial and final grids is stored in files which
can be interactively accessed after the execution of the
program is completed.

The programs were run on a PRIME 750 computer. The
PRIMOS operating system, coupled with a PLOT 1@ graphics
package, was used to interactively draw the grids on a
Tektronics 4014 terminal. The PRIME 750 can communicate
at a baud rate of up to 9600 thus making it satisfactory

for interactive graphics.

4.2 Computing the Tensor Product B-splines

Since B-splines are determined by the knots with
which they are associated, the first concern of the user
is to choose appropriate knot sequences. The user must
pick two _.equences s={si} and t={tj}. placing them in
file TENSORDAT. The user actually picks only the "interior"
knots for each sequence. In other words, he constructs
two increasing sequences of numbers between 0 and 1. After
reading the numbers from file TENSORDAT, TENTEST places
four 0's at the beginning of each sequence and four 1's
at the end of each sequence. By 3.2.2-3 (Curry and Schoenberg)

and 3.2.3-1, the cubic B-splines associated with s and t

G

Wy
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form bases for spline spaces S‘ S and S4 t* The functions

in each of these spaces will have three continuity condi-
tions at each interior knot. The products of the B-splines

will form a basis for the tensor product of S4 S and S4 £

The tensor product B-splines can be used to construct
a transformation T on the square which maps the boundary
of the square onto the boundary of a physical domain
as described in Chapter 3. The user may obtain a better
approximation to the boundary of the physical domain by
increasing the number of interior knots in s and t or by
redistributing the knots. This is discussed in more detail
in Section 4.5, |

On a given pxg mesh on the square with mesh points
(g ony)s u=l,...,p, v=1,...,q, the values of the tensor
product B-splines which compose T are fixed. Since these
tensor product B-splines are the products of B-splines
Bi.i=l....,m and Bj,j=l,...,n for some m and n, it is con-

venient to store the function values and first derivatives

of these B-splines at each Eu and ny- Subroutine COMSPLINE

uses the de Boor routine BSPLVD [de B, p. 288] to compute
these values. BSPLVD calculates the function value and
derivatives of all the nonvanishing B-splines at a given
point. COMSPLINE stores the function values and first
derivatives in two arrays: XSPLINE and YSPLINE. Therefore,
after a call to COMSPLINE is completed, XSPLINE will con-

tain the function value and first derivative of each B-
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spline in {By};71 at &, us=l,...,p and YSPLINE contains

the function value and first derivative of each B-spline

in {51}121 at ny,v=l,...,q. Computing T or its partial
derivatives at a mesh point becomes a matter of calculating
the sum of the products of the tensor product coefficients

with the appropriate elements of XSPLINE and YSPLINE.

i
This computation is done in subroutine TENVALF.
The next section explains how the coefficients are 1
chosen initially.
4.3 Choosing the Initial Coefficients *

Many different methods can be used to choose the

coefficients initially. Since B-spline coefficients model

the function they represent, one might simply choose the
boundary coefficients to equal points along the boundary
of the physical domain, and choose the interior coefficients
to equal points known to lie in the interior of the physical
domain, However, this creates the problem of deciding
which interior points should be chosen as coefficients.
Ideally, the original coefficients should produce a grid
which is somewhat smooth so that only a few iterations
are needed to obtain an acceptable degree of smoothness
and orthogonality.

For this reason, the computer program described in
this paper initially selects coefficients which produce
an approximation to the transfinite bilinear interpolant

of a mapping V:I2 - R2 satisfying V:alz'* an. In reality
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one need only define V on alz. The user may provide para-
metric equations which map the boundary of the square onto
the boundary of the physical domain, or simply input a

set of boundary points for the physical domain. In the
first instance V is defined by using the parametric equa-
tions. In the latter case V is obtained by linearly inter-
polating between successive boundary points. The parametric
equations below map the four sides of the unit square onto

the four sides of the trapezoid as shown in figure 6.

Vi ,0) (2g+1)
0

g,(¢)

V(l-n) = gz(ﬂ) =

|
P
~N W
3 4+
e |
g’

Vieg,1)

93(5) =

[
I~
N &>

o
S

V(O, rl) =

[
€«
F -

——

s}

0
S~
N =
s

-
V

The tra.sfinite bilinear interpolant U of V is defined

by

U( €, n) (1-n)V(E0) + aV(E,1)
gV(l,n) + (1-¢)V(0,n)
(1-€)(1-n)Vv(0,0) - E(1-n)V(1,0)

(1-8)nv(0,1) - gnV(1,1).

+

U agrees with V on the boundary of the square and hence
interpolates V at an infinite number of points. Transfinite
interpolants are discussed by William J. Gordon and Charles
A. Hall in [G].

The program selects initial coefficients which pro-

duce a variation diminishing spline approximation to U.

'
[
L
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Figure 6. Mapping from computational domain to physical |
domain,
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Hence, if T is constructed from tensor products of B-splines

81-81".5’ f=1,...,m and Bj=BJ.4't’j=l....,n. which corres-

pond to knot sequences s= {s;} T:f and ta {tj}?:?, respec-

tively, then the initial coefficients of the tensor product
splines are )a = U(s*t¥), i=1,...,m; j=1,...,n where
B%% ) S |

si'(sl+l’*"‘+si+3)/3' i=l,...,m and tj=‘tj+1*°"*tj+3)/3'

j=l,...,n. Since variation diminishing splines yield exact
approximations to linear polynomials, T will reproduce
the boundary of any physical domain which can be divided
into four line segments. Arbitrarily shaped‘boundaries
can be approximated as accurately as desired by increasing
the number of knots used to define the tensor product splines
or by changing the placement of knots to increase the concen-
tration in complex shaped areas of the boundary.

The initial tensor product coefficients are constructed
in subroutines BOUNCOEF and INNERCOEF. Figure 7 shows
a grid on a trapezoid domain constructed with a mapping T
having coefficients as described above. The grid is the

image of T over an equally spaced mesh on the square.

4.4 Minimizing the Smoothing Functional

In TENTEST, the cyclic coordinate method is used
to find the minimum of the smoothing functional G described
in Section 3.3. As the name suggests, this method attempts
to find the minimum of a multivariable function by cyclicly

searching in the direction of each coordinate axis. For

i
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G, the coordinate directions are represented by the tensor
product coefficients ajjr Byg fel,oooym; j=l,...,n,

The user must first decide what size mesh should
be used to obtain a grid with acceptable smoothness and
orthogonality. G is a function of 2mn coefficients, however,
since the boundary coefficients are fixed only 2(m-2)(n-2)
coefficients are free. Therefore, in general, the mesh
used for the minimization technique should contain at least
2(m-2)(n-2)points.

The user must also decide on the size of the weights
Wia Wy for G. One can choose constant weights for both
JT and Dot, or choose a weight function for Dot which pro-
duces more orthogonality near the boundary of the grid
than in the interior. Small constant weights of values
between 1 and 10 can be used initialiy to determine how
they affect the smoothness and orthogonality of the grid.

Changing coefficient «.. (or g,.) changes the value
i ij

A
of the mapping T only on the support of the tensor product
B-spline Bij' Therefore, in order to locate the minimum

of G in the direction represented by °ij one need only

consider the sum over those terms in G which contain the

value of JT or Dot at mesh points (g, n) lying on the support
of Bij'
tion associated with each tensor product coefficient for

Subroutine CORANGE determines the range of summa-

a given mesh on the square, and function GF computes the
sum over the range indicated by CORANGE. Figure 8 shows

the support of a tensor product B-spline associated with

ol
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knot sequences ss= {si)?:: and t= {tj}g::. The shaded sec-

tion represents the support of tensor product B-spline

86 5 In order to minimize in the direction of coefficient
’

% 5 it would be sufficient to look at the sum

6 7 2 2
GF o 3 5 wi(ITyq §=9Tyy) ad f CLITREE e
{23 ya3 4 14 yu2
+ 6 7 2
iz=8 j=3

Like G, the partial sum, GF, will be a quartic polynomial
in each coefficient.

All of this information is used by the minimization
routine FFMIN, Each call to FFMIN produces cne complete
iteration of the cyclic coordinate method. For each coeffi-
cient, the routine first determines the interval on which
the coefficient must lie if JT is to be nonnegative at most of
the mesh points affected by the coefficient. Then it calls
either TESTMIND, TESTMINL, TESTMINR, or TESTMINB depending
on whether the interval is biinfinite, has a left endpoint,
a right endpoint, or two endpoints. The chosen subroutine
finds the location of the minimum of GF on the interval
and changes the value of the appropriate coefficient accor-

dingly.

4,5 Distribution Functions

If solutions of partial differential equations on

4 domain are to be accurate, the grid on the domain must

o ek

e
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be concentrated in areas of rapid change such as boundary
layers and shocks. In most cases concentration near the
boundary of the comain can be easily accomplished through
the use of distribution functions.

Kearranging the points on the square mesh changes
the distribution of grid points on the physical domain. A
nonuniform distribution of points on the square mesh can

be viewed as the image of functions '1:11 - ll. and
.2:1l - il defined on ¢ and n, respectively. The grid is

then generated by the mapping T defined by %

T(g.n) = Toe(E.n)
where .:I2 --I2 satisfies

'(C»n) E l(g
z(n .

This is graphically illustrated in figure 9. The grid on
the physical domain is the image under T of an equally
spaced mesh on the square.

In the current version of TENTEST, the user may
request one of three distributions for ¢ and n: wuniform,
exponential, cr arctangent., Selecting the unfiform option
produces an equally spaced distribution, The distribution
function is simply the identity function on ll. If the
exponential option is selected, TENTEST calls routine

EXPONENTIAL which maps tel, into ¢(g) = et
c
e -]
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where ¢ is a nonzero constant. If ¢>0, ¢ concentrates
the grid lines near the line corresponding to z=0. If
c<0, ¢ concentrates the grid lines closer to the line
corresponding to Z=1. The grid in figure 10a was produced

with ol(E) = £ and '2(") = ¢(n). The constant ¢ is 4. In
figure 10b, vl(:) = ¢(€E) with c=5 and ’2(") = n. The

degree of concentra.ion increases or decreases as |c| is

increased or decreased. In figure 10c, ol(E) = ¢(&) with

c=2 and e,(n) = n.
TENTEST calls ARCTANGENT when the user selects the

arctangent distribution option. ARCTANGENT maps ;ell into

v(z) = arctangent (2cgz-c) - arctangent {-c)
arctangent (cCj - arctangent (-c)

where ¢ is a positive constant. This function concentrates
grid lines near points corresponding to =0 and g=1 simul-
taneously. This is shown in figure 10d with 91(£) = E,
9,(n) = v(n) and c=5.

Future improvements to TENTEST might include the
addition of more distribution functions and the creation
of a routine which allows the user to create his own dis-
tribution function by interactively digitizing points on
the unit square. The routine would then create a variation
diminishing spline approximation to the points to form |

the distribution function.

Since the distribution functions described in this

section are defined on Il' they can also be used to

.
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Figure 10a. Exponential dis-
tribution on n
with c=4.

Figure 10c. Exponential dis-
tribution on
E with ¢= -2
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Figure 10b. Exponential
distribution
on € with c=5.

Figure 10d. Arctangent
distribution
on n with ¢=5.

Figure 10. Concentrating grid points on trapezoid domain,
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redistribute the knots which define the tensor product
B-splines that form T. This will permit the user to con-
centrate more knots in areas mapped to complex portions

of the physical boundary so that T produces a better boun-
dary approximation. Presently the user can choose to keep
the original distribution on the knots or choose to redis-
tribute the knots to obtain an exponential or arctangent

distribution.

S et bt 0 s




5. RESULTS AND DISCUSSION

This chapter examines some of the grids produced by
TENTEST. Physical domains of various shapes are illustrated.
Some of the grids are for actual objects, such as an airfoil
or part of the épace shuttle, but most are simply grids on
domains of various shapes and sizes chosen to illustrate
the range of the program.

The user's chief concern is the creation of an accept- f ;
able grid on a given physical domain in the shortest amount |
of time possible. Since the grid will be the image of a
continuous mapping on the square, the best technique is to

minimize the smoothing functional by using a grid generated

from a coarse mesh. Then, once the new coefficients are
obtained, the user can request that the grid be plotted
using a much finer mesh. This technique is illustrated in

the examples which follow. Most of the examples contain at

least four grids: The image under T, with its initial
coefficients, of a coarse square mesh; the image of a finer
mesh; the image of the coarse mesh after several iterations
of the minimization procedure; and the image of a finer mesh
after application of the minimization procedure. Any other
grids shown are chosen to illustrate grid concentration or
other points of interest. 1In all the examples shown, only

constant weight functions were used in the smoothing functional.
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The first four examples show grids on domains with

common geometric shapes: a trapezoid, a quadrilateral

with unequal, nonparallel sides, a triangle and a circle.

Since the domains are simply connected and convex, only a

few interior points are needed for the sequences s and t

which determine the tensor product B-splines that compose T.

The next three examples show grids on domains which

are not convex. The major concern with such grids is the

overlapping of grid lines near the boundary.

The last examples deal with grids around concr:te

objects such as an airfoil or part of the space shuttle.

The irregular boundaries of some of these grids make it

necessary to use more knots to define T.

For convenience, the following notation is used in

this chapter.

Ng =

wj

number of B-splines Bi in the sequence corres-
ponding to knot sequence s, or 4 + number of

interior knots in s.

= number of B-splines B, in the sequence corres-

J
ponding to knot sequence t, or 4 + number of

interior knots in t.

constant weight multiplied times the terms in
the smoothing functional involving the Jacobian,
JT, of T,

constant weight multiplied times the terms in

the smoothing functional containing Dot.

R ——
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Ng x Ny will be the dimension of the tensor product
spline space generated by Btj = By x Bj. f=l,... Ng;
j = 1,...Ng. cpu = central processing unit - main control

section of a computer.

5.1 Convex Domains

The first three examples, which have linear boundaries,

require only one interior knot for each of the knot sequences

s and t. The simplicity of the domains also means that

a very coarse grid can be used to minimize the smoothing
functional. Four or five iterations produce good results.
The circular grids in the fourth example reqhire more

interior knots.

5.1.1 Trapezoid

In this example Ng = Np = 5 and wj = wd = 1. The
first picture in figure Il is the grid obtained using the
initial coefficients in Section 4.3. It is the image under
T of an equally spaced 5x5 mesh on the square. This is
the grid on which the minimization procedure was applied.
Note that the number of grid points is 25, while the number
of free coefficients is given by 2(Ng-2)(Ny-2) = 18.

Figure 1lb is a finer grid constructed using the same
coefficients. Figure llc shows how the initial 5x5 grid
changes after five iterations of the minimization procedure.
The new coefficients produce grid lines that appear to

be nearly orthogonal at most grid points. The image under
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the new T of a 20x20 mesh is given in figure l1d. The
amount of cpu time used in the optimization process was
1 minute and 25 seconds.

In figure 12 the weights wj and wd have been changed
to show what effect they have in the minimization process.
Figure 12a shows how the initial 5x5 grid is changed after
only three iterations when wj=0 and wd=1. Orthogonality
is more pronounced, but the grid spacing is no longer as
smooth. 1In the refined grid in 12b the spacing is very

skewed near the top boundary. Figure 12c shows the 5x5

grid after five iterations with wj=1 and wd=0. The spacing

is smoother but the grid lines are not orthogonal. Figure

12d shows a finer grid.

5.1.2 Quadrilateral with Unequal Sides

Again, in this example Ng = Nn = 5 which means
sequences $ and t each contain one interior knot. Also,
wj=wd=1. The minimization procedure was applied on the
5x5 grid shown in figure l3a. Five iterations of the
technique produced the grid in 13c. Figures 13b and 13d
show refined versions of the grids in 13a and 13b, respec-
tively. The five jterations of the minimization procedure
required 2 minutes and 16 seconds of cpu time. In figure
14 the optimized grids are concentrated near different
parts of the boundary. In l4a an exponential distribution
with parameter c=4 has been put on n. Figure 14b shows

an exponential distribution on £ and n with c=4 in each

T
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Figure 123 wjso, wd=l Figure 12b wj=o0, wdsl ,
T
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Figure 12¢ wj=l, wdso Figur: l12d wj=l, wdso
Figure 12 Effect of weights, wj and wd
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Figure 13 Grids on quadrilateral with unequal sides.



ORIGINAL FACL 15
OF POOR QUALITY 73

Figure 148 Exponential dis- Figure 14b Exponential dis-
tribution of n tribution on ¢
and n.

Figure 14c Arctangent dis- Figure 14d Arctangent dis-
tribution on ¢ tribution on p

Figure 14 Concentrating gridpoints on quadrilateral.
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case. In figures l4c and 14d, an arctangent distribution

with c=5 has been placed on € and n, respectively.

5.1.3 Triangle

In the previous examples, it was clear that each
side of the unit square should be mapped to a side of the
four-sided physical domain, but in the case of a triangle,

which has three sides, this cannot be done. The boundary

must be divided into four sections. The simplest thing

to do is to divide one of the sides of the triangle into

two parts so that two sides of the unit square are mapped g
onto one side of the triangle as shown in figure 15. Figure

16a shows the inftial 5x5 grid constructed with Ng = Nnp = §
and wj=wdsl. Figure 16b shows a 20x20 grid constructed

using the same coefficients, After five iterations of
the minimization procedure, the initial 5x5 grid is trans-
formed into figure 16¢. Figure 16d thows a finer grid.

Jptimization required 2 minutes and 22 seconds of cpu time.

5.1.4 Circle

A, i

Variation diminishing splines reproduce straight
lines exactly, but the same cannot be said about their
approximation of nonlinear curves. For such curves the
accuracy of the approximation depends on the number of
knots used to define the spline function. For this reason
more knots are needed to obtain a satisfactory mapping of

the unit square onto a circulai physical domain, For the
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grids shown in figure 17, Ng = Ny = 9 and wj=wd=l. Hence,
there are five interior knots in both sequence s aﬁd
sequence t.

Note that 2(Ng-2)(N,-2) = 98. Although this number
indicates that a mesh of at least 98 points should be used
for the minimization routine, the 8x8 grid shown in figure
17a seems to produce an acceptable grid. One reason for
this might be that the initial grid in 17a already appears
to be quite smooth and orthogonal at most points. The
major problems with orthogonality occur near the areas
to which the corners of the square are mapped. These areas
are indicated by the arrows ‘n V7a. Figure 18a shows how
the initial grid is changed after fifteen iterations of
the minimization procedure. Figures 17b and 18b show finer
grids. The fifteen iterations of the minimizatior procedure

required 20 minutes and 14 seconds of cpu time.

5.2 Nonconvex Domains

The grids in this section show some of the difficulties

in creating grids on domains which are not convex sets.

5.2.1 Nonconvex Quadrilateral

Figure 19 shows the shape of the domain. This example
was first mentioned in Section 2.5. The boundary of the
unit square is mapped onto the boundary of the domain as
indicated in figure 2. Example 2.5-1 shows that T will

not map the square homeomorphically onto the domain even
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Figure 18a Optimized grid

Figure 18b Optimized grid refined

Figure 18 Grids on circular domain after optimization.
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Figure 19 Nonconvex quadrilateral.
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after the coefficients are changed. This fact is supported
by the negative Jacobian present at one of the corners of
the square. The negative sign suggests that points near
that corner will be mapped outside of the physical domain.
This is confirmed by the grids illustrated. In this
example, Ng = Nn = 5 and wj=wd=l. The 5x5 initial grid
shown in figure 20a was used for the minimization procedure.
The enlarged picture in figure 20b shows a finer grid.
Figure 2la shows the result of four iterations of the
minimization procedure. The nonnegative Jacobian require-
ment pulls the grid lines into the interior of the domain.
However, figure 22 shows an enlarged version of the corner
which indicates that part of the grid still overlaps the
boundary. This means that the minimization routine was
unable to restrict all of the coefficients to intervals
where the Jacobian of T is nonnegative.

This is further indicated in figure 2lb which shows
a finer version of the grid in figure 2la. The four itera-
tions of the minimization procedure required 1 minute and

1 second of cpu time.

5.2.2 Puzzle Pieces

The next two domains, illustrated in figure 23, look
like pieces from a puzzle. In each case Ng = 19, Nn = 5,
wjsl and wd=10.

Grids on the first domain are shown in figures 24

and 25. The minimization procedure was performed on the

iy




82

Figure 20a Original grid

Figure 20b Original grid refined

Figure 20. Grids on nonconvex quadrilateral domain.
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Optimized grid

Figure 2la

Figure 21b Optimized grid refined

Optimized grids an nonconvex quadrilateral domain.

Figure 21

i
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Figure 22 Enlarged corner of optimized grid.
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22x8 grid in figure 24a. Figure 24b shows a finer grid.

Figure 24c shows the grid obtained after forty iterations
and figure 24d shows a finer grid. The grids in figure
25 show how the inftial grid changes after two, five and
fifteen iterations. The grid obtained after forty itera-
tions is shown again for comparison. On this domain Tentest
is able to pull all of the grid lines into the interior
of the domain.

Grids on the second domain are shown in figure 26.
The initial 22x8 grid is shown in figure 26a and figure
26b shows a finer grid. After forty iterations, the initial
grid is transformed into 26¢ and a finer grid is shown in
26d. Figure 27a shows a grid on the first domain concen-
trated near the bottom boundary by using an exponential
distribution on n with ¢c=4. Figure 27b shows a grid on
the second domain concentrated near the top by using an
exponential distribution on n with c¢s-4,

The forty iterations used for the first domain
required 1 hour, 42 minutes and 23 seconds of cpu time, but
the second domain required 2 hours, 4 minutes and 46 seconds

for forty iterations.

5.3 Grids for Specific Objects

This section dcals with grids about particular objects
such as an airfoil. 7Tne boundaries often have peculiarities
which make it difficult to obtain satisfactory grids. 1In

many cases it may be difficult to maintain smoothness in
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Figure 23 Puzzie shaped domains.
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Figure 24a Original grid Figure 24b Original grid
refined

Figure 24c Optimjzed grid Figure 24d Optimized grid
refined

Figure 24 Grids on first puzzle shaped dormain.
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Figure 25a After two Figure 25b After five
fterations fterations

Figure 25¢ After fifteen Figure 25d After forty
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Figure 25 Grids obtained afier various iterations,
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the grid while increasing orthogonality. Often the user

must try to find an acceptable balance. He must also attempt
to concentrate the grids in areas where rapid changes are
likely to occur when partial differential equations are

solved on the domain.

5.3.1 Airfoil

The grids in this example are for the Karmian -
Trefftz airfoil. The parameters Ng = 19, Ny = 9, wj=1 and
wd=.5. Hence, there are 15 knots in the s sequence and
5 knots in the t sequence. Figure 28 shows how the domain
can be viewed as having a boundary consisting of four parts.
The minimization procedure was performed on the 21xl12 grid
in figure 29a. The grid lines appear to be orthogonal
everywhere except near boundaries 1, 2 and 4. Note the
sharp corners behind the airfoil. After one iteration the
corners have been eliminated and the angles of the lines
near the airfoil are not as acute. This is shown in
figure 29b and in the finer grid in figure 30a.

Solutions on a grid about an airfoil are usually more
accurate if a higher concentration of points is placed
near the airfoil boundary since this is the area most
affected as air moves over the airfoil. Figure 30b shows
a 30x30 grid concentrated near the airfoil boundary by
using an exponential distribution on n with constant c=4.

The minimization procedure required 6 minutes and

36 seconds of cpu time.




Figure 28 Domain around Karman - Trefftz airfoil.
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5.3.2 Spike-Nosed Body

According to [Sm, p. 130], the spike-nosed configura-
tion occurs frequently in supersonic flow. R. E. Smith

states that supersonic flow about such bodies is unsteady,

with separation occurring near the nose-shoulder region.
Therefore, the grids must be concentrated in that area
(Sm, p. 48]. The boundary data for the grids shown in
this section can be found in [Sm, p. 60]. Rotating the
bottom boundary around a horizontal axis of symmetry produces
a clearer picture of the actual body. The ratio of the
length of the nose to the height of the shoulder is 2.14,.

As in the previous example, Ng = 19, Np = 9, wj=l
and wd=0.5. The 21x12 initial grid in figure 3la was used
for the minimization procedure. Two iterations produce a é
small amount of orthogonality near the bottom boundary as %
shown in figure 31b. Additional iterations produce an
undesirable-wiggle in the grid lines near the shoulder.

Figure 32a shows a finer grid and figure 32b shows a grid

concentrated near the bottom boundary by using an exponen-
tial distribution on n with c=4.
The two iterations of the minimization procedure

required 13 minutes and 1 second of cpu time.

5.3.3 Shuttle

The grids in this example are for a model of the
space shuttle. The optimized grids are the result of ten

fterations on the 32xl12 grid shown in figure 33. Para-
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Figqure 31b Optimized grid

Figure 31 Grids for spike-nosed body.
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Figure 32a Optimized grid refined

—_— e

Figure 32b Optimized grid concentrated near boundary of
spike-nose body.

Figure 32 Optimized grids for spike-nosed body.
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meters Ng = 29, Ny = 9, wiswd=l. Ten {terations of the
minimization procedure produce a small amount of orthogona-
lity near the boundary of the shuttle as shown in figure
34. Figure 35 shows an optimized 32x20 grid concentrated
near the shuttle boundary using an exponential distribution
on n with c=4, The ten iterations of the minimization
procedure required 1 hour and 43 minutes of cpu time. The
32x12 grid in figure 33 is the largest grid on which the

minimization procedure has been applied.
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Figure 34 Optimized grid for shuttle.

100




101

‘\l\\Ll\‘

Figure 35 Optimized grid concentrated near shuttle boundary.




6. CONCLUSIONS

This paper has examined an effective algebraic
method for creating boundary fitted coordinate systems.
The method, which involves a mapping T composed of tensor
product B-splines allows one to regulate grid characteris-
tics by adjusting the coefficients of the splines. Modifying
the coefficients so that they minimize a smoothing functional
enhances the smoothness and orthogonality of the grids
generated by T.
The method is implemented in the program TENTEST
which gives the user control over the number and concentra-
tion of grid points. The user can also regulate the amount
of smoothness and orthogonality in the grids by the selec-
tion of weight functions for the smoothing functional.
Suggestions for future revisions of TENTEST include
the addition of more distr.bution functions to allow greater
control over grid concentration. One might also investi-
gate the possibility of adjusting the boundary coefficients
during the optimjization process so that the boundary points
of the grid are affected by the minimization procedure.
Ultimately, the true test for a grid comes when {t
is actually used to solve partifal differential equations.
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Therefore, the next stage of research must include solving
problems on several grids produced by TENTEST. Then it
may be possible to change the program into an adaptive
technique which rearranges the grid points in response
to gradient intormation from the evolving solution,

Once these things are accomplished, one may attempt
to use the technique to generate grids on more complicated
multiconnected domains. This may involve the study of
techniques for grid patching.

Also, the Prime 750 computer is an excellent machine
for graphics, but not very fast in solving problems involv-
ing a large amount of computations. Hence, the possibility
of creating a version of TENTEST which operates efficiently
on a vector computer such as the VPS 32 at NASA Langley
Research Center should be investigated. This will permit
the user to run much larger and more complicated problems.

Finally, once this grid generation technique has
been thoroughly developed for two dimensional domains, a
three dimensional technique can be attempted. T would
become a mapping from the unit cube to the desired physical
domain, composed of the tensor product of B-splines in
the three coordinate directions. As in the two dimensjonal
case, characteristics of the grid would be changed by

changing the coefficients of the tensor product B-splines,.




(8]

{de B]

[cl

(ol
(F]
(6]
[H]
(o]

[s]

{Sm]

[st]

B8IBLIOGRAPHY

Bazaraa, Mokhtar and Shetty, C. M. Nonlinear

Programming: Theory and Algoritﬁm . New York:
John Wiley and Sons, T979.

De Boor, Carl. A Practical Guide to Splines. New
York: Springer-Verlag, 1978.

Curry, i#. B. and Schoenberg, I, J. "On Spline
Distributions and Their Limits: The Polya
Distribution Functions," Abstract 380t, Bulletin
of the American Mathematical Society, Vol. 53,
1947, p. 109,

Dugundji, James. Topology. Boston: Allyn and
Bacon, Inc., 19068.

Fleming, Wendell. Functions of Several Variables.
New York: Springer-Verlag, 1977.

Goldhaber, Jacob K. and Ehrlich, Gertrude. Algebra.
London: The MacMillan Company, 1970.

Heinz, Erhard. "An Elementary Analytic Theory of
the Degree of Mapping in n-Dimensional Space."
Journal of Mathematics and Mechanics, Vol. 8,
No. 2, 1959, p. 23I.

Ortega, J. M. and Rheinboldt, W. C. Iterative
Solution of Nonlinear Equations in Several
Variables. WNew York: Academic Press, 1970.

Schwartz, J. T. Nonlinear Functional Analysis.
New York: Courant Institute of Mathematical
Sciences, New York University, 1965.

Smith, R, E. "Two-boundary Grid Generation for the
Solution of the Three-dimensional Compressible
Navier-Stokes Equations," NASA TM 83123, May
198].

Starius, G. "Constructing Orthogonal Curvilinear
Meshes by Solving Initial Value Problems."
Numerische Mathematik, Vol. 28, 1977, p. 25.

104




105

[sS] Smith, Philip W. and Sritharan, S. S. “On the Grid
Generation Methods by Harmonic Mapping on Plane
and Curved Surfaces." [ICASE Report 84-]12, 1984.

[TWM] Thompson, J. E., Warsi, Z. U. A. and Mastin, C. W.
“Boundary-Fitted Coordinate Systems for
Numerical Solution of Partial Differential
Equations - A Review," Journal of Computational
Physics, Vol. 47, No. 17 July 1982, p. I.




APPENDIX




106

00001 {CEREXRTAREXRILARRERRLELASLRERRERAEARAXRERRAXRAERRER KA XA LR XX

00002

00003:C
00004:C
000035¢C
00006:C
00007:C
00008:C
00009:C
00010:C
00011:C
00012:C
00013:C
00014:C
00013:C
00014:C
00017:C
00018:C
00019:C
00020:C
00021:C
00022:C
00023:C
00024:C
00025:C
00026:C
00027:C
00028:C
00029:C
00030:C
00031:C
000323

00033:C
00034:C
00035:C
00036:C
00037:C
00038:C
00039:C
00040:C
00041:C
00042:C
00043:C
00044:C
00045:C
00046:C
00047:C
00048:C
00049:C
00030:C

PROGRAM TENTEST

TENTEST MAPS A SQUARE GRID (0,1)X(¢0,1) ONTO
A PHYSICAL DOMAIN OF ARBITRARY SHAPE THROUGH THE USE OF
TENSOR PRODUCT B-SPLINES. THE ORIGINAL KNOT SEQUENCES
MAY BE CHOSEN TO HAVE AN EQUALLY SPACED DISTRIBUTION,
EXPONENTIAL DISTRIBUTION, OR ARCTANGENT DISTRIBUTION.
SIMILAR CHOICES CAN BE MADE FOR THE DISTRIBUTION OF
GRIDPOINTS ON THE SQUARE.

TENTEST CONSTRUCTS AN INITIAL GRID GENERATION MAFPING
CONSISTING OF A LINEAR COMBINATION OF TENSOR PRODUCT
B-SPLINES WITH THE COEFFICIENTS CHOSEN SO THAT THE MAPPING
YIELDS A VARIATION DIMINISHING SPLINE APPROXIMATION
TO THE TRANSFINITE BILINEAR INTERPOLANT OF A
FUNCTION WHICH MAPS THE BOUNDARY OF THE UNIT SQUARE
ONTO THE BOUNDARY OF THE PHYSICAL DOMAIN,

IF THE USER REQUESTS A NEW GRID, TENTEST REARRANGES
THE COEFFICIENTS IN AN ATTEMPT TO MINIMIZE A FUNCTIONAL
G INVOLVING THE DIFFERENCE IN THE JACORIAN OF THE GRID
GENERATION MAPPING AT ADJACENT MESH POINTS AND THE DOT
PRODUCT OF VECTORS TANGENT TO THE GRID LINES ON THE
PHYSICAL DOMAIN.

ROUTINES

EXPONENTIAL
ARCTANGENT
FIXKNOTS
ROUNCOEF
INNERCOEF
COMSPLINE
TENVALF
TENSORVAL
JACOR
CORANGE

GF

FFHIN

CRIT
TESTMINO
TESTMINR
TESTMINL
TESTMINE
CuBIC
EXTREMES
NORM
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000351:C THE FOLLOWING SUBROUTINES ARE ALSO REQUIRED.
00052:C THEY MAY BE FOUND IN °A PRACTICAL GUIDE TO SPLINES®
000S3:C BY CARL DE BOOR, SPRINGER-VERLAG, 1978.
00054:C
00055:C BSPLVB... COMPUTES THE VALUE OF ALL POSSIBLE
00054:C NONZERO B-SPLINES OF A GIVEN ORDER AT
00057:C A GIVEN POINT.
00038:C
00059:C BSPLVUD... COMPUTES THE VALUE AND DERIVATIVES
00040:C OF ALL B-SPLINES WHICH DO NOT VANISH AT
00041:C A GIVEN POINT
00042:C
00063:C INTERV... DETERMINES THE KNOT INTERVAL ON WHICH A
00064:C GIVEN POINT LIES. ITS GUTPUT IS THE
00045:C SUBSCRIPT IDENTIFYING THE KNOT WHICH IS
00044:C IMMEDIATELY LEFT OF THE POINT.
00067:C *
00048:C BUALUE... CALCULATES THE JUDERIV-TH DERIVATIVE
00049:C OF A SPLINE FUNCTION WHOSE COEFFICIENTS
00070:C ARE STORED IN ARRAY BCOEF. THE VALUE OF
00071:C JDERIV IS PROVIDED BY THE USER.
00072:C :
00073:C
00074:C
000735:C TENTEST USES ROUTINES FROM A PLOT10 GRAPHICS
00074:C PACKAGE TO PLOT THE GRIDS.
00077:C
00078:C
0007%:C VARIABLES
00080:C '
00081:C NKNOTX,NKNOTY
00082:C AND
00083:C NEUWNOTX,NEWNOTY. .DIMENSIONS FOR SQUARE MESH.
00084:C NX,NY..» DINENSION OF SPLINE SPACE IN X
000835:C DIRECTION,Y DIRECTION.
00086:C KX.0oo QUANTITY OF NUMBERS TO BE ADDED TO THE FRONT
00087:C AND BACK OF THE INTERIOR X KNOT SEQUENCE.
00088:C ORDER OF B-SPLINES IN X DIRECTION.
00089:C KY.eo QUANTITY OF NUMBERS TO BE ADDED TO THE FRONT
00090:C AND BACK OF THE INTERIOR Y KNOT SEGUENCE.
00091:C ORDER OF B-SPLINES IN Y DIRECTION.
00092:C FNX,FNY.0 NUMBERS TO BE PLACED AT THE FRONT OF
00093:C THE X AND Y KNOT SEQUENCES. RESPECTIVELY.
00094:C BNX,BNY,.. NUMBERS TO BE PLACED AT THE BACK OF THE
000935:C X AND Y KNOT SEQUENCES,RESFPECTIVELY.
000946:C INX,INY.s, DIMENSIONS OF INTERIOR X AND Y KNOT SEQUENCES,
00097:C RESPECTIVELY.
00098:C INTX,INTY., INTERIOR X KNOT SEQUENCE; INTERIOR Y KNOT SEG.
00099:C TXsTY40s X KNOT SEQUENCE, Y KNOT SEGQUENCE.

00100:C ALPHA,BETA...  ARRAYS CONTAINING COEFFICIENTS OF
00101:C TENSOR PRODUCT SPLINE MAPPING.
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00102:C MB

00103:C AND

00104:C AP,BP... ARRAYS CONTAINING COORDINATES FOR
00105:C SQUARE MESH.

001046:C LEFTX,LEFTY... ARRAYS IDENTIFYING KNOT INTERVALS
00107:C ON WHICH SQUARE MESH COORDINATES LIE.
00108:C (LEFTX(I)=J IMPLIES TXCJ)<=A(I)I<TX(J+1))
00109:C W1,M2... WEIGHTS FOR JACOBIAN,DOT PRODUCT TO
00110:C BE USED IN SMOOTHING FUNCTIONAL.
00111:C X,Yeoo TWO-DIMENSIONAL ARRAYS CONTAINING COORDINATES
00112:C OF GRID POINTS TO BE PLOTTED.
00113:C KOUNTE... VARIABLE USED TO COUNT ITERATIONS OF
00114:C MINIMIZATION PROCEDURE, OR

00115:C NUMBER OF CALLS TO ROUTINE FFMIN.
00116:C

00117:C

00118:C AUTHOR: BONITA VALERIE SAUNDERS

00119:C DATE? JULY 1983

00120:C

00121:C

001223

00123:C

00124 CXERRRRRXRXRRRAKXXKALXXRRXEXXXAKERXRAXXKEEXXRRRRARARKREX KL
00125:C

00126:C

001272 COMMON/COEF /ALPHA(100,100),BETA(100,100)

00128: COMMON/KNOTS/TX(100),TY(100)

001292 COMMON/PARAM/FKOUNT

00130 COMMON/PARAM2/A(100)»B(100) » NXyNY,KX,KY

00131: +LEFTX(100),LEFTY(100)

001323 COMMON/KNOT/NKNOTX , NKNOTY

00133 COMMON/WEIGHTS /W1 W2

001342 COMMON/SPLINES/XSPLINE(S0,100,2),YSPLINE(50,100,2)
00135 COMMON/RANGE/IFIRST(100),ILAST(100),JFIRST(100)
001348 »JLAST(100)

001372 REAL X(100,100),BCOEF (100), INTX(100),INTY(100)
001382 »Y(100,100) ,AP(100),BP(100)

00139¢ CHARACTER®10 NAME

00140 INTEGER®2 STRING(28)

00141 INTEGERS2 NUMB,DATE(3)

00142¢ INTEGERS2 TIME,TIME1l,TIME2

001433 EQUIVALENCE (STRING(1),DATE)

00144: EQUIVALENCE (STRING(4),TIME)

00145 EGUIVALENCE (STRING(S),TIMEL)

00146 EQUIVALENCE (STRING(7),TIME2)

00147: NUMB=28

00148 CALL TIMDAT(STRING,NUMB)

00149: WRITE(1,111) DATE

00150¢ 111 FORMAT(3A2)

00151: WRITE(1,222) TIME,TIME1l,TIME2

001528 222 FORMAT(I4,146,18)




001538
001342
001552
001348
00137
oo158:
00159
00160¢
00161
001462
00143¢
001442
001652
00166¢
00167
00168:
00169¢
00170
00171¢
001723
00173
001742
- 001732
001742
00177
001782
00179
00180
001812
00182
00183
00184
00185
001863
00187
001882
001893
00190¢
001912
00192:
001932
00174
00195
00196
00197
00198¢
00199¢
00200
00201
00202:
00203

P1=3.14159
OPEN(12,FILEs’TENSORDAT’)
OPEN(13,FILE=’NEWDATA’)
OPEN(14,FILE='ORGRID')

- OPEN(16,FILE=’0R162’)

Wi=0

W2=0

KOUNTE=0

PRINTS, ' INPUT NKNOTX,NKNOTY’

" READ(1,%) NKNOTX,NKNOTY

10
15

18

19
16

20
50

NSAVEX=NKNOTX

NSAVEY=NKNOTY

PRINTS, ‘WHAT IS KX’

READ(1,8) KX

PRINTX, ‘WHAT I8 KY’

READ(1,%) KY

READ(12,%) FNX,BNX,FNY,BNY

READ(12,8) INX,INY

READ(12,%) (INTX(I),I=1,INX)

READ(12,%) (INTY(1),I1=1,INY)

PRINT®, DISTRIBUTION FOR X KNOTS’
PRINTS, ‘1=EQUALLY SPACED,2=EXPONENTIAL,3sARCTANGENT’
READ(1,%) KODEX

IF(KODEX-2) 5,10,13

CALL EXPONENTIAL(INTX,INX,2,)

GOTO 5

CALL ARCTANGENT (INTX,INX,S.)

PRINTS, 'DISTRIBUTION FOR Y KNOTS’
PRINTS, ‘1sEQUALLY SPACED,2=EXPONENTIAL ,3=ARCTANGENT’
READ(1,%) KODEY

IF(XODEY-2) 146,18,19

CALL EXPONENTIAL(INTY,INY,2.)

GO TO 16

CALL ARCTANGENT(INTY,INY,S.)

CONTINUE

NXsINX#KX

NY=INY$KY ’

CALL FIXKNOTS(KX,KY,FNX,FNY,BNX,BNY,
INX, INY, INTX, INTY)

CALL BOUNCOEF (KX;KY,NX,NY)

CALL INNERCOEF (KX,KY,NX,NY)

WRITE(16,%) ((ALPHACI,J),J=1,NY),I=l,NX)
WRITE(146,%) ((BETA(I,J),J=1,NY),I=1,NX)
DO SO Is=1,NKNOTX
ACI)=FLOAT(I-1)/(NKNOTX-1)

DO 20 J=1,NKNOTY
B(J)=FLOAT(J~1)/(NKNOTY-1)
IF(B(J).GE.1,0) B(J)=,99999

CONTINUE

CONTINUE
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00227
00228
002293
00230
00231
00232¢
00233
00234
002333
00236¢
002372
00238
00239
00240
00241
002422
00243
00244:
00245
002462
00247:
00248:
00249
00230
00251
002528
002338
00254

24

26
22

32

34

60
70

500
600

700
80

110

PRINTX, ‘DISTRIBUTION FOR COMPUTATIONAL X’
PRINTE, ‘1=EQUALLY SPACED, 2eEXPONENTIAL ,3I=ARCTANGENT’
READ(1,%) KODEXX

IF(KODEXX~-2) 22,24,26

CALL EXPONENTIAL (A,NKNOTX,2.)

GOTO 22

CALL ARCTANGENT(A,NKNOTX,S.)

CONTINUE

PRINTE,'DISTRIBUTION FOR COMPUTATIONAL Y’
PRINTX, ' 1sEQUALLY SPACED,2=EXPONENTIAL , IsARCTANGENT’
READ(1,%x) KODEYY

IF(KODEYY~-2) 39,32,34

CALL EXPONENTIAL (B,NKNOTY,2,) .
G0TO 30

CALL ARCTANGENT(B,NKNOTY,S.)

CALL CONMSPLINE

CALL CORANGE (NKNOTX,NKNOTY)

DO 70 I=1,NKNOTX

DO 40 J=1,NKNOTY

CALL TENVALF (ALPHA,LEFTX(I) ,LEFTY(J) KX)KY,I,Jy

X(1,4),0,0)

CALL TENVALF(BETA,LEFTX(I),LEFTY(J) KX,KY,I,J

1 Y(1,0),40,0) '

CONTINUE

CONTINUE

PRINTX,’ JACOBIAN YES(1) OR NO(O)’

READ{(1,x) JCODE

IF(JCODE.EQ.1) GOTO 700

PRINTX, 'COMPUTE DERIVATIVES YES(1) DR NO(O)’

READ(1,%) KCODE

IF(KCODE.ED.O) GOTO 80

PRINTX, ' INPFUT DERIVATIVES DESIRED FOR X,Y DIRECT’

READ(1,X) JDX,JDY

PRINTX,’ X Y X COMP DERIV Y COMP DE
DO 600 II=1,NKNOTX

DO 3500 JJ=1,NKNOTY

CALL TENUVALF (ALPHASLEFTX(II) LEFTY(JJ) oKX,KVp11,JJy

XD, JDX, JDY)

CALL TENVALF(BETA,LEFTX(II),LEFTY(JJ)oKX,KY,I1,JJy

YD, JDX,JDY)

PRINTX,A(II),R(JJ) XD, YD

CONTINUE

CONTINUE

GOTO 80

CALL JACOB(NX,NY,KX,KY,A,B)

CONTINUE

CALL EXTREMES(X,Y,TMAX, TMIN,NKNOTX,NKNOTY)

CALL NORM(X,Y,TMAX, TMIN,NKNOTX,NKNOTY)

PAUSE

NN=2 )

NAME=/PRODUCT GRID’




00253
002543
002371
00258:
00239
00260
00241
00262
002638
002642
00243
002642
00267
00268¢
00249
002702
002718
002728
00273
00274
00273:
00276
00277}
00278
00279¢
00280
00281
00282
00283
00284
00283
002848
00287}
00288
00289
00290
00291
00292
002933
00294
00295
002948
00297
00298
00299
00300
00301
003028
00303:
00304¢
003035:
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100

200

300
400

410

401

WRITE(13,8) NAME
WRITE(13,8)NKNOTX,NKNOTY y NN, NN
WRITE(13,%) (X(I,1),1=1,NKNOTX)
WRITE(13,%) (Y(1,1),I=1,NKNOTY)
WRITE(13,%) (X(I,NKNOTY),I=i,NKNOTX)
WRITE(13,%8) (Y(I,NKNOTY),I=1,NKNOTX)
WRITE(13,%) X(1,1),X(1,NKNOTY)
WRITE(13,%) Y(1,1),Y(1,NKNOTY)
WRITE(13,%) XCNKNOTX, 1), XCNKNOTX,NKNOTY)
WRITE(13,%) Y(NKNOTX,1),YC(NKNOTX,NKNOTY)
CALL INITT(960)

CALL TWINDO(0,760,0,760)

CM.L DUINDO(-.O?.I.O?.-.O?,I +07)

DO 200 I=1,NKNOTX

CALL MOVEA(X(I,1),Y(I,1))

DO 100 J=1,NKNOTY

CALL DRAWACX(I,J)Y(I,J))

CONTINUE

CONTINUE

DO 400 J=1,NKNOTY

CALL MOVEA(X(1,J4),Y(1,J0))

DO 300 I=1,NKNOTX

CALL DRAWA(X(I,J),Y(1,J))

CONTINUE

CONTINUE

WRITE(14,%) MKNOTY,NKNOTX

WRITE(14,%) ((X(I,J),1=1,NKNOTX),J=1,NKNOTY)
WRITE(14,%) ((Y(I,J)y1=1,NKNOTX),J=1,NKNOTY)
CALL MOVARS(0,740)

CALL ANMODE

PRINTX, ' ITERATION’ ,KOUNTE

PRINTR,’ NXs’,NX,’ NY=’ ,NY
IF(KOUNTE.EQ.0) GOTO 410

PRINTX,’ JACOBIAN WEIGHT=',W1

PRINTX, 'ORTHOG WEIGHT=’,W2

PRINTX, ‘OPTIMIZED ON’,NSAVEX,’ BY’ ,NSAVEY, ’
KOUNTE=KOUNTE+1

111

GRID’

PRINTS, D0 YOU WANT TO CHANGE THE GRID, YES OR NO(O)’

READ(1,%) KODE

IF(KODE.E@.0) GOTO 339

PRINTX, 'CURRENT WEIGHTS ARE’,W1,W2
PRINTX,’NEW WEIGHTS, YES(1) OR NO(O)’
READ(1,%) KW

IF(KW.EQ.0) GOTO 401

PRINTX,’ INPUT WEIGHTS FOR JACOB,ORTHOG’
READ(1,%) Wi,W2

CONTINUE

NKNOTX=NSAVEX

NKNOTYsNSAVEY

CALL FFMINCERMAX)

PRINTX,’OUTPUT JACOBIAN,YES(1) OR NO(O)’




00306
00307
00308
003093
00310
00311
003123
00313!
00314
003153
00316
00317
00318¢
003.9¢
00320
00321
003228
00323
00324
00325
00326
00327
00328
00329
00330:
00331
00332¢
00333
00334
00335
00334:
00337}
00338
00339
00340
00341
00342
00343
00344
00345¢
00344
00347
00348
00349
00350
00351
00352
00353
00354
00355
003564

399

901

502

423
450

454

456
452

460

462
458

470
480
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READ(1,%) JKODE

1F(JXODE.EQ.0) GOTO 399

CALL JACOBCNX o NY KX oKY Ay B)

CONTINUE

PRINTX, CHANGE NUM OF GRIDPOINTS, YES(1) OR NO(O)’
READ(1,8) KODE

IF(KODE.EQ.0) BOTO %501

PRINT®, ‘ENTER NUMBER OF GRIDPOINTS FOR X DIRECTION,
Y DIRECTION’

READ(1,%) NEWNOTX,NEWNOTY .
NKNOTXsNEWNOTX

"~ NKNOTY=NEWNOTY

60T0 502

CONT INVE

NEWNOTX=NKNOTX

NEWNOT YSNKNOTY

CONTINUE

CALL ERASE

DO 450 I=1,NEWNOTX

DO 425 J=1,NEWNOTY

AP(1)=FLOAT(I~1)/(NEWNNOTX-1)

BP(J)=FLOAT (J-1)/(NEWNOTY-1)

IF(AP(1),GE,1.0) AP(1)=,99999

IF(BP(J) ,GE.1,0) BP(J)=,9999

CONTINUE

CONT INVE

PRINTS,‘DISTRIBUTION FOR COMPUTATIONAL X’

PRINTS,‘ 1sEQUALLY SPACED,2=EXPONENTIAL , 3sARCTAN’

READ(1,%) KODE3X

IF(KODE3X-2) 452,454,456

CALL EXPONENTIAL (AP ,NEWNOTX,2.)

GOTO 452

CALL ARCTANGENT (AP,NEWNDTX,S.)

CONTINUE

PRINTX, ‘DISTRIBUTION FOR COMPUTATIONAL Y’

READ(1,%) KODE3Y

IF(KODE3Y-2) 458,460,462

CALL EXPONENTIAL (BP,NEWNOTY,2,)

GOTO 458

CALL ARCTANGENT (BP,NEWNOTY,S,)

CONTINUE

DO 480 I=1,NEWNOTX .
DO 470 J=1,NEWNOTY

CALL TENSORVAL (ALPHA,NX,NY ,KX,KY,AP(1),

BP(J) yX(1,J)40,0)

CALL TENSORVAL (BETA,NX,NY,KX,KY,AP(I),BP(J), .
Y(1,J),0,0) .
CONTINUE !
CONTINUE :
CALL EXTREME3(X, Y, TMAX, THIN,NEWNOTX,NEWNOTY) |
CALL NORM(X,Y,TMAX, THIN,NEWNOTX,NEWNOTY)



00357t
00358¢
003391
00340
00361¢
00362¢
003638
00344
00363
00366¢
00347
003486
00349
003704
003718
003728
003738
003741
00375

00376:C
00377:C
00378
00379:C
00380:C
00381:C
00382:C
00383¢C
00384:C
003835:C
00384:C
00387:C
00388:C
00389:C
00390:C
00391:C
00392:C
00393:C
00394
00395
00394
003972
00398
00399:
00400¢
00401
00402:C
00403:C
00404:C
00403

339

PAUSE

6070 338

CONTINE

CALL FINITT(0,760)

PRINTS, ‘KX I8 ‘KX

PRINTS, 'KY I8 ‘,KY

PRINTS, ‘DISTRIBUTIONS’

PRINTX, ’1=EQUALLY SPACED,2=EXPONENTIAL »3=ARCTANGENT’
PRINTS, ‘X KNOT DIST. IS‘,KODEX
PRINTS®,’Y KNOT DIST. I8’,KODEY

PRINTS, ‘CONPUTATIONAL X DIST 18’,KODEXX
PRINTS, ‘COMPUTATIONAL Y DIST I8’ ,KODEYY
CLOSE(12)

CLOSE(13)

CLOSE(14)

CALL TIMDAT(STRING,NUMB)

WRITE(1,222) TIME,TIMEL1,TIMER

1 4

END

SUBROUTINE EXPONENTIAL (X,N,AC)

THIS ROUTINE PRODUCES AN EXPONENTIAL DISTRIBUTION OF
POINTS BY SUBSTITUTING AN ORIGINAL SET OF NUMBERS

U LYING BETWEEN O AND 1 INTO THE EXPONENTIAL
FUNCTION (EXP(AXU)-1.)/(EXP(AC)~1) WHERE AC IS A
PARAMETER WHOSE VALUE IS SUPPLIED BY THE UGER.

VARIABLES

XeooTHIS AN ARRAY WHICH ON INPUT CONTAINS THE ORIGINAL
SET OF NUMBERS AND ON OUTPUT CONTAINS THE EXPONENTIAL

DISTRIBUTION OF NUMBERS.

N...8IZE OF ARRAY X
AC. .PARAMETER IN EXPONENTIAL FUNCTION

10

REAL X(100)

DO 10 Is=i,N

Usx(1)
X(I)s(EXP(ACRU)=1.)/(EXP(AC)~1.)
IF (X(1).6GE.1.0) X(1)=,99999
CONTINUE

RETURN

END

SUBROUTINE ARCTANBENT (X,N,AC)
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00404:C
004073C
004081C
00409¢C
00410tC
00411¢C
00412:C
00413:C
004141C
00413¢C
00416:C
004171C
00418:C
00419:C
004201C
00421:C
00422:C
004238

00424:

004258

00426¢

00427

00428¢

00429

004303

00431

00432:C
00433:C
00434:C
004353

00436¢

00437:C
00438:C
00439:C
00440:C
004413C
00442:C
00443:C
00444:C
00445:C
00444:C
00447:C
004484C

00449:C

00430:C
00451:C
00432:C
004531:C
00454:C
00435:C
004346:C
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THIS ROUTINE PRODUCES AN ARCTANGENT DISTRIBUTION

OF POINTS BY SUBSTITUTING AN ORIGINAL SET OF NUMBERS
U LYING BETWEEN O AND 1 INTO THE ARCTANGENT FUNCTION
CATANCAC) =ATAN(~ATAN(=AC) ) 7 (ATANCAC) ~ATAN(-AC))
WHERE AC IS A PARAMETER WHOSE VALUE 18

SUPPLIED BY THE USER.

VARIABLES

Xo oo THIS AN ARRAY WHICH ON INPUT CONTAINS THE ORIGINAL SET
OF NUMBERS AND ON OUTPUT CONTAINS THE ARCTANGENT DISTRIBUT
OF NUMBERS.,

N...SIZE OF ARRAY X

AC. .PARAMETER IN ARCTANGENT FUNCTION

REAL X(100)
D0 10 I=1,N
UsX(I)
X({I1)s(ATAN(2,BACKU-AC) ~ATAN(~AC))
% /(ATAN(AC)-ATAN(=AC))
IF(X{I).GE.1.0) X(I)=,99999
10 CONTINUE
RETURN
END

SUBROUTINE FIXKNOTS(KXKY,FNX)FNY,BNX,BNY,INX,
& INY,INTX,INTY)

THIS ROUTINE PLACES KX COPIES OF FNX AT THE
BEGINNING OF THE INTERIOR X KNOT SEGUENCE,
KY COPIES OF FNY AT THE BEGINNING OF THE
INTERIOR Y KNOT SEGUENCE, KX COPIES OF BNX AT THE
END OF THE INTERIOR X KNOT SEQUENCE AND KY COPIES
OF BNY AT THE IND OF THE INTERIOR Y KNOT SEQUENCE.

INPUY

KXooo OUANTITY OF NUMBERS TO BE ADDED TO THE FRONT
AND BACK OF THE INTERIOR X KNOT SEQUENCE.
ORDER OF B-SPLINES IN X DIRECTION.

KYeoo GQUANTITY OF NUMEERS TG BE ADDED TO THE FRONT
AND BACK OF THE INTERIOR Y KNOT SEQUENCE. ORDER
OF B-SPLINES IN Y DIRECTION,

FNXyFNY..o NUMBERS TO BE PLACED AT THE FRONT OF
THE X AND Y KNOT SEGUENCES, RESPECTIVELY,



00457:C
00458:C
004591C
0044603C
00461:C
00442:C
004463¢C
00444:C
00463:C
004441C
00447¢
00468:C
00449:C
00470
00471¢
004721
004738
004748
00473
004763
00477¢
00478
00479
00480
00461¢
00482¢
00483¢
00484
00483:
00486
00487:
004886
00489¢
00490¢
004918
004921
00493:
00494:C
00495:C
00496:C
004973
00498:C
00499:C
00500:C
00501:C
00302:C
00303:C
00304:C
00305:C
00306:C
00307:C

BNXyDNY o 40 NUMBERS TO BE PLACED AT THE BACK OF THE

X AND Y KNOT SEQUENCES,RESPECTIVELY,

INXo INY. oo DIMENSIONS OF INTERIOR X AND Y KNOT SEQUENCES,

RESPECTIVELY.

INTX,INTY..o INTERIOR X KNOT SEQUENCE,INTERIOR v KNCT SEQ,

OUTPUT(IN COMMON)
TXoTY00o X KNOT SEQUENCE, Y KNOT SEQUENCE

COMMON/KNOTS/TX(100),TY(100)
REAL INTX(1),INTY(1)
NX=INX$KX
NYsINY#KY
B0 100 I=KX41,NX
Js1-KX
TXCI)=INTX(J)

100 CONTINUE
DO 200 I=KY#1,NY
Jul-KY
TY(I)SINTY(J)

200 CONTINUE

DO S I=1,KX
TX(1)=FNX
INDEX=I4+NX
TXCINDEX) =BNX
S CONTIMNUE
DO é I=1,KY
TY(1)=FNY
INDEX=14NY
TY{INDEX) =BNY
& CONTINUE
RETURN
END

SUBDROUTINE BOUNCOEF (KXoKY,NX,NY)

TH18 ROUTINE COMPUTES THE BOUNDARY COEFFICIENTS
FOR TWO TENSOR PRODUCT B-SPLINES (X,Y COMPONENTS),
SPECIFICALLY, 1T COMPUTES ALPHA(I,1),BETA(I,1) AND
ALPHACT,NY),DETACI,NY) FOR I=1 TO NX}

ALPHA(1,J) ¢BETA(1,J) AND ALPHA(NX,J) oBETA(NX,J)
FOR J=i TO NY.

COEFFICIENTS ARE CHOSEN SO THAT THERE IS A
VARIATION DIMINISHING APPROXIMATION ALONG THE
BOUNDARY .




00508:C
005094C
00510:C
00311:C
005121C
_ 00513:C
00514:C
005133C
005143C
00517:C
00518:C
00519:C
00520:C
00521:C
00522:C
00523
00524:
00325
00524:
005272
005283
00529
003302
00531:
00532%
005332
00534:
005352
005364
00537:
00%38:
00539
00540
00541
005423
00543
00544
00545:
00546
00547:
00548
00549
00550¢
00551
005522
00553:
00554
00555
005542
00557:
005583
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YT

KX,KY...ORDER OF SPLINE IN X DIRECTION, Y DIRECTION
NX,NY. ..DINENSION OF SPLINE IN X DIRECT, Y DIRECT.

BOTH COEFFICIENT SEQUENCES WILL HAVE DIMENSION
NXSNY

OUTPUT

(IN COMMON)
BOUNDARY COEFFICIENTS PLACED IN ALPHA,BETA ARRAYS.

S0

100

150
200

300

COMMON/COEF /ALPHA(100,100),BETA(100,100)
COMMON/KNOTS/TX(100),TY(100)
DIMENSION TXSTAR(100),TYSTAR(100)
GIX(T)=2.%T#1,

61Y(T)=0.

G2X(T)=3.4T

G2Y(T)=2.XT

GIX(T)=4,2T

G3Y(7)=2,

GAX(T)=1,.-T

GAY(T)=2,.%T

PI=3,14159

DO 100 I=1,NX

SUM=0.

* B0 50 J=1,KX-1

SUM=SUM+TX(I+J)
CONTINUE
TXSTAR(I)=SUM/(KX-1)
CONTINUE

DO 200 J=1,NY
SUM=0.

DO 150 K=1,KY-1
SUN=SUM$TY (J4K)
CONTINUE
TYSTAR(J)=SUM/(KY-1)
CONTINUE

D0 300 I=1,NX
A=TXSTAR(I)
ALPHA(I,1)=6G1X(A)
BETA(I,1)=G1Y(A)
ALPHACI,NY)=G3X(A)
BETA(I,NY)=G3Y(A)
CONTINUE

DO 400 J=1,NY
B=TYSTAR(J) .
ALPHA(NX, J)=G2X(R)




00559

00340¢

00561

003622

003438

003642

00545:C
00566:C
00547:C
005683

00549:C
00570:C
00571:C
00572:C
00573:C
00574:C
005755C
00576:C
00577:¢C
00578:C
00579:C
00580:C
00581:C
00582:C
0058330
00584:C
00585:C
00386:C
00587:C
00588:C
00589:C
00590:C
00591:C
00592:

00593:C
00594:C
00595:C

00596:C

005972
005982
00599:
00600
006012
00402:
004603
00604
00605
00606
006073
00608
00609
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BETA(NX,J)=82Y(D)
ALPHA(L,J)=84X(R)
BETA(1,J)=B4Y(B)

400 CONTINUE

RETURN
END

SUBROUTINE INNERCOEF (KX,KY,NX,NY)

THIS ROUTINE COMPUTES THE INNER COEFFICIENTS
FOR TWO TENSOR PRODUCT B-SPLINES (X,Y COMPONENTS)
SPECIFICALLY, 1T COMPUTES ALPHA(I,J),BETA(I,J) FOR
I=2 TO NX-1, J=2 TO NY-1,

THE COEFFICIENTS ARE COMPUTED THROUGH THE USE OF
TRANSFINITE BILINEAR INTERPOLATION, THE
INTERPOLANTS ARE EVALUATED AT POINTS SO THAT THE
RESULTING COEFFICIENTS PRODUCE A VARIATION
DIMINISHING SPLINE APPROXIMATION TO THE
TRANSFINITE BILINEAR INTERPOLANT,

INPUT

KXyKY.. .ORDER OF B-SPLINES IN X DIRECTION,Y DIRECTION
NX,NY., .DIMENSION OF SPLINE SPACE IN X DIRECT,Y DIRECT

BOTH COEFFICIENT SEQUENCES WILL HAVE DIMENSION
NX¥NY

TX» TY(IN COMMON)...KNOT SEQUENCE FOR X DIRECT,Y
DIRECTION

OUTPUT(IN COMMON)

INTERIOR COEFFICIENTS PLACED IN ALPHA,BETA ARRAYS

COMMON/COEF /ALPHA(100,100) ,BETA(3100,100)
COMMON/KNQTS/TX(100),TY(100)
DINENSION TXSTAR(100),TYSTAR(100)
BIX(T)=2.,XT+1,
G1Y(T)=0,
G2X(T)=3. +T
G2Y(T)=2,.27
G3IX(T)=4.8T7
G3Y(T)=2,
GAX(T)=1,-T.
GAY(T)=2,XT
FX(X,Y)=GIX(X)R(1,-Y)+BIX(X) XY

% $G2X(YIRX4CL . =X) XGAX(Y)




006103
00411
006122
00413:
00614
00415:
00616¢
006172
00618
00619:
006202
00821
00422
00623¢
00424
00425
006263
00627:
00628
00429
00630:
006318
006322
00633
00634
00635:
00436
00637¢
00438°
00639:
00640%
00641:C
00642:C
00643:C
00644
00645:C
006455C
00647:C
00648:C
00649:C
00450:C
00651:C
00652:C
00653:C
00654:C
00655:C
006565C
00657:C
00458:C
00659:C
00660:C

2-G1X(0)X(1.~X)8(1,-Y)-G2X(0)¥XK(1.~Y)

E-GIX(0)IX(1.~X)BY-G2X(1.)8XEY

FY(X,Y)2G1Y(X)X(1.-Y)+BIV(X)RY

B FG2Y(Y)BX$(1,-X)XGAY(Y)
g -G1Y(0)R(1.~X)&(1.,-Y)-G2Y(0)EXX(1,-Y)

$-G3Y(0)8(1,-X)XY-G2Y (1. ) EXSY

50

100

150
200

300
400

PI=3.14159

DO 100 I=1,NX
SUN=0.

D0 50 J=i,KX-1
SUM=SUN+TX(I+J)
CONTINUE
TXSTAR(1)=5UM/(KX~1)
CONTINUE

BO 290 J=1,NY
SUM=20.,

DO 150 K=1,KY-1
SUN=SUN+TY (JHK)
CONTINUE
TYSTAR(J)=SUM/(KY-1)
CONTINUE

DO 400 I=5|NX‘1
N0 300 J=2,NY-1
A=TXSTAR(I)
B=TYSTAR(J)
ALPHA(I, J)=FX(A,R)
BETACI,J)=FY(A,B)
CONTINUE

CONTINUE

RETURN

END

SUBROUTINE COMSPLINE

THIS ROUTINE COMPUTES AND STORES THE FUNCTION

VALUES AND FIRST DERIVATIVES OF ALL THE NON-
VANISHING E-SPLINES AT EACH POINT OF A SQUARE
MESH.

IN ADDITION, IT DETERMINES THE KNOT INTERVAL

ON WHICH EACH MESH COORD'INATE LIES.

INPUT
(IN COMMON)

h's. L

KXeKYs 0o

TXeTYe 0o

DIRECTION.

ARRAYS CONTAINING COORDINATES FOR SQUARE
MESH, POINTS OF EVALUATION FOR B-SPLINES,
NKNOTX,NKNOTY. . .NUMEER OF ELEMENTS IN A,B.
ORDER OF B-SPLINES IN X DIRECTION, Y

X KNOT SEQUENCE FOR B-SPLINES,Y KNOT

118



119

00641:C SEQUENCE FOR B-SPLINES.

00662:C NXoNYo oo DIMENSION OF SPLINE SPACE IN X DIRECTION,
00643:C Y DIRECTION

00664:C

00645:C OUTPUT
004464:C (C(IN COMMON)

004473C

00448:C XSPLINE,YSPLINE..THREE DIMENSIONAL ARRAYS CONTAININC

00649:C FUNCTION VALUES AND FIRST DERIVATIVES OF
00670:C B-SPLINES IN X DIRECTION, Y DIRECTION AT
00671:C EACH ELEMENT OF A,B. THE FIRST SUBSCRIPT
00672:C IDENTIFIES THE B-SPLINE, THE SECOND

00673:C SUBSCRIPT REPRESENTS THE POINT OF EVALUATION
00674:C AND THE THIRD SUBSCRIPT (1 OR 2) INDICATES
00673:C WHETHER THE VALUE REPRESENTS A FUNCTION
00676:C EVALUATION OR DERIVATIVE EVALUATION. HENCE
00677:C XSPLINE(3,2,1) WILL CONTAIN THE VALUE OF THE
00478:C B-SPLINE IN THE X DIRECTION, B(3), AT A(Q).
00679:C

00680:C LEFTX,LEFTY... - ARRAYS IDENTIFYING KNCOT INTERVALS ON

00481:C WHICH MESH COORDINATES LIE. LEFTX(3)=4 WOULD
00682:C MEAN THAT A(3) LIES BETWEEN TX(4) AND TX(4+1)
00683:C

00684:C REQUIRED ROUTINES?
006835:C BSPLVD
00684:C BSPLVB
00687:C INTERV

004688:C

00689 COMHON/PARAN2/A(100) ,B(100) 4 NX,NY ,KX,KY,LEFTX(100)
006902 % HLEFTY(100)

006912 COMMON/SPLINES/XSPLINE(50,100,2),YSPLINE(50,100,2)
006928 COMMON/KNOTS/TX(100),TY(100)
00693 COMMON/KNOT/NKNOTX  NKNOTY
00694: REAM. DBIATX(4,2),WORK(4,4)
006952 IDER1IV=2

06696 JDERIV=2

006%97:C

00698:C INITIALIZATION

00699:C

00700 NUMX=NX +KX

007013 NUMY=NY +KY

00702 b0 3 I=1,NX

00703 DO 2 J=1,NKNOTX

00704 DO 1 KK=1,2

00705: XSPLINE(I,3,KK)=C\

00706: i ComImE

00707 2 CONTIME

007082 3 CONTImE

007093 DO 9 I=1,0Y

007102 DO 8 J=1,MKNOTY

007112 DO 7 KK=1,2

. g




Fad
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007212¢ YSPLINE(I,J,KK)=0.
007132 7 CONTINUE
00714} 8 CONTINUE
00713 9 CONTINUE
007148 DO 25 I=1,NKNOTX
00217 CALL INTERU(YX.NUHXpﬁ(I)oLEFTX(I)pNFLAB)
00718 CALL BSPLVD(TX,KX,A(I),LEFTX(1) WORK,DBIATX, IDERIV)
00719 DO 252 JJ=1,2
007203 PO 251 II=1,KX
: 00721¢ IB=LEFTX(I)-KX+11
E 007222 IF(1B.LE.Q) GOTO 251

% 00723: XSPLINECIB,I,JJ)=DBIATX(II,JJ)
Z J0724: 251 CONTIMUE
007253 252 CONTINUE
00726% 25 CONTINUE

00727 PRINTX, ‘DO ALL X SEO EQUAL ALL Y SEG YES(1) OR NO(O)’
007282 READ(1,%) KODE
007292 IF(KODE.EQ.0) GOTO 28
00730: DO 27 JJ=1,NKNOTY
007313 LEFTY(JJ)SLEFTX(JJ)
00732 D0 272 KK=1,2
| 00733 DO 271 II=1,NY
| 007342 YSPLINE(IT,JJyKK)=XSPLINE(II,JJ,KK)

0073%5: 271 CONTINUE
00736% 272 CONTINUE
00737: 27 CONTINUE

00738: GOTO 293

00739: 28 CONTINUE

00740 B3 29 J=1,NKNOTY

00741: CALL INTERV{TY,NUMY,R(J),LEFTY(J),MFLAS)

00742: CALL BSPLVD(TY,KY,R(J),LEFTY(J),WORK, DBRIATX, JDERIV)
. 00743: D0 292 JJ=1,2

00744: DO 291 II=1,KY

007452 JB=LEFTY(J)-KY+I1

00744: IF(JB.LE.O) GOTO 291

007472 YSPLINE(JB,J,JJ)=DBIATX(II,J))

00748: 291 CONTINUE
00749: 292 CONTINUE
00750 29 CONTINUE
00751 293 CONTINUE

007522 RETURN

007533 END

00754:C

00755:C

00756:C

00757 SUBROUTINE TENVALF (ARR,LEFTX,LEFTY,KX,KY
00758 X ,»1,J,VALUE, IDERIV, JDERIV)

00759:C

007460:C TENVALF COMPUTES PARTIAL DERIVATIVES FOR A TENSOR
00761:C PRODUCT SPLINE FUNCTION AS INDICATED BY THE FARAMETERS
00762:C IDERIV,JDERIV.



00743:C
007643C
00745:C
00764:C
00767:C
00768:C
00749:C
00770:C
00771:C
00772:C
00773:C
00774:C
007735:C
00776:C
00777:C
00778:C
00779:C
00780:C
00781:C
00782:C
00783:C
00784:C
007835:C
00784:C
00787:C
00788:C
00789:C
00790:C
00791:C
00792:C
007932

00794

00793:

00796

00797

007982

00799

00800°

e 9@ 99 o 9 o0

g
3

00812:C
00813:C

MRR.. .

Indeos

LEFTX. .,
LEFTY...
KXyKY4s oo
IDERIV...
JDERIV...

(IN CONMON)
XSPLINE,YSPLINE.

OUTPUT
VALUE...
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ARRAY OF COEFFICIENTS FOR SPLINE
FUNCTION

INDICIES FOR POINT OF EVALUATION
(AC(1)yB(J)),WHERE A,B ARE ARRAYS
WHICH CONTAIN COORDINATES OF A
SQUARE MESH.

VALUE INDICATING KNOT INTERVAL

ON WHICH ACI) LIES

VALUE INDICATING KNOT INTERVAL

ON WHICH B(J) LIES

ORDER OF B~SPLINES IN X-DIRECTION,
Y DIRECTION

ORDER OF DERIVATIVE DESIRED FOR X
DIRECTION

ORDER OF DERIVATIVE DESIRED FOR Y
DIRECTION

+ARRAYS CONTAINING FUNCTION

VALUES AND FIRST DERIVATIVES OF B-SPLINES IN
X DIRECTION, Y DIRECTION AT EACH POINT

GIVEN IN ARRAYS A,B

VALUE OF TENSOR PRODUCT SPLINE
OR DERIVATIVE

COMMON/SPLINES/XSPLINE(50,100,2),YSPLINE(S0,100,2)

DIMENSION ARR(
VALUE=0,
DO 13 JJ=1,KY

100,100)

JBsLEFTY-KY$+JJ

IF(JB.LE.O) GO
DO 12 II=1,KX
IBsLEFTX-KX+11

TO 13

IF(IB.LE.0) GOTO 12
VALUE=VALUE+ARR(IB,JB) XXSPLINE(IB,I,IDERIV$L)

8 XYSPLINE(JB,J,
12 CONTINUE
13 CONTINUE
RETURN
END

JDERIV+1)

SUBROUTINE TENSORVAL(ARR,NX,NY,KX,KY,A,B,VALUE

x ,JDX,JDY)

THIS ROUTINE CALCULATES THE VALUE OF A TENSOR PRODUCT
SPLINE AT THE POINT (A,B).




00814:C
00815:C
008146:C
00817:C
006818:C
00819:C
00820:C
00821:C
00822:C
00823:C
00824:C
00825:C
008246:C
00827:C
00828:C
00829:C
00830:C
00831:C
00832:

00833

008342

00835

00834

00837

00838

008392

00840

00841:C
00842:C
00843:C
008442

00845:C
00846:C
00847:C
00848:C
00849:C
00850:C
00851:C
00832:C
00853:C
008354:C
00855:C
00854:C
00857:C
00858:C
0085%:C
00840:C
00861:C
008623

008463:C
00864:C
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INPUT

ARR... ARRAY OF COEFFICIENTS’
NX;NY...DIMENSION OF SPLINE SPACE IN X DIRECT.,
Y DIRECTION. ARRAY ARR WILL HAVE

DIMENSION NXBNY.
KX,KY...ORDER OF B-SPLINES IN X DIRECT,Y DIRECT
AsB... POINT OF EVALUATION

(IN COMMON)
TXyTY.. .KNOT SEQUENCE FOR X DIRECT,
Y DIRECT.

OUTPUT

VALUE...VALUE OF TENSOR PRODUCT SPLINE AT (A,B)
COMMON/XNOTS/TX(100),TY(100)
DIMENSION BCOEF(100),ARR(100,100)
CALL INTERV(TY,NY,B,LEFTY,NFLAG)
VALUE=0.
DO 10 J=1,KY

10 BCOEF(J)=BVALUE(TX,ARR(1,LEFTY~KY+J) yNX,KXsA,JDX)
VALUE=BVALUE(TY{LEFTY-KY+1),BCOEF ,KY,KY,B,JDY)
RETURN
END

SUBROUTINE JACOB(NXsNY,KXsKY,A,B)

THIS ROUTINE COMPUTES THE JACORIAN OF A
TENSOR PRODUCT B-SPLINE MAPPING.

INPUT

NXsNYouo DIMENSION OF SPLINE IN X
DIRECTION,Y DIRECTION

KXsKYoso ORDER OF B-SPLINES IN X DIRECTION
Y DIRECTION

AyBoos ARRAYS CONTAINING EVALUATION
POINTS

(IN COMMOND

ALPHA,BETA. . .COEFFICIENTS OF BR-SPLINES

NKNOTX,NKNOTY .NUMBER OF ELEMENTS IN

ARRAYS AWK

QUTPUT(TO TERMINAL)
AvBoos 'ARRAYS CONTAINING EVALUATION
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00865:C POINTS
00844:C AJCOBIAN. .. JACOBIAN AT EACH POINT
008467:C
00848 COMMON/COEF /ALPHA(100, 100),BETA¢100,100)
00849¢ COMMON/KNOT/NKNOTX , NKNOTY
00870¢ REAL A(100),B(100)
00871 PRINTS,’ X Y JACOBRIAN’
00872 PRINTX,’ *
00873 DO 20 I=1,NKNOTX
00874 DO 10 J=1,NKNOTY
00875: 1I=1
008742 JJzJ
00877¢ CALL TENSORVAL (ALPHA, NX,NY KXy KY,ACI1),B(JJ),
008782 ¥ XDFIRST,1,0)
008791 CALL TENSORVAL (ALPHA,NXsNY KX, KY,ACII) 4BC. O,y
008802 8 YDFIRST,0,1)
00881 CALL TENSORVAL (BETA,NX,NY,KX,KY,A(11),B(JJ),XDSEC,
00882: % 1,0) :
00883 CALL TENSORVAL(BETA,NX,NY,KX,KY,A(I1),B(JJ),YDSEC,
00884 X 0,1)
0088352 AJCOBIAN=XDF IRSTSYDSEC-XDSECXYDFIRST
00886 PRINTX,A(I1),B(JJ),AJCOBIAN

00887¢ 10 CONTINUE

00888: 20 CONTINUE

00889 RETURN

00890 END

008%1:C

008%2:C

00893:C

00894 SUBROUTINE CORANGE (NKNOTX,NKNOTY)

00895:C

00894:C CORANGE DETERMINES THE RANGES OF SUMMATION
00897:C NEEDED TO MINIMIZE THE SMOOTHING FUNCTIONAL G IN
00898:C EACH COORDINATE DIRECTION.

00899:C SPECIFICALLY, FOR EACH COEFFICIENT ALPHA(I,J),
00900:C OR BETA(I,J), IT DETERMINES THE RANGE OF INDICES FOR
00901:C THE MESH POINTS LYING ON THE SUPPORT OF THE TENSOR
00902:C PRODUCT B-SPLINE HAVING SUBSCRIPTS I,J. 1T PLACES
00903:C THE SMALLEST IN IFIRST(I) AND JFIRST(J) AND THE
00904:C LARGEST INDICES IN ILAST(I) AND JLAST(J). THESE VALUES
00905:C DETERMINE WHICH TERMS IN G SHOULD BE SUMMED WHEN
009046:C MINIMIZING THE SMOOTHINA FURCTION IN THE DIRECTION
00907:C REPRESENTED BY THE COEFFICIENT ALPHA(I,J) OR BETA(I,J).
00908:C

00909:C INPUT

00910:C

00911:C MKNOTX,NKNOTY. . .DIMENSIONS FOR SQUARE MESH

00912:C OR NUMBER OF ELEMENTS IN ARRAYS A,B
00913:C (IN COMMON)

00914:C AyBeos .ARRAYS CONTAINING COORDINATES FOR

00915:C SQUARE MESH
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009163C  NX,NY.us DIMENSION OF SPLINE SPACE IN X DIRECT.

009171C »Y DIRECTION OR

00918:C TOTAL NO, OF B-SPLINES IN X DIRECTION,

00919:C Y DIRECTION

00920:C  KX/KY.us ORDER OF B-SPLINES IN X DIRECTION,

00921:C Y DIRECTION

00922:C  LEFTX,LEFTY... ARRAYS IDENTIFYING KNOT INTERVALS

00923:C ON WHICH SQUARE NESH COORDINATES

009241C LIE. (LEFTX(I)=J IMPLIES

00925:C TXCJ)<2ACTISTX(J+1) .
00926:C

00927:C  OUTPUT

00928:C .
00929:C  IFIRST,JFIRST.. ARRAYS CONTAINING STARTING

00930:C POINTS FOR THE RANGES OF SUMMATION

00931:C CORRESPONDING TO EACH COEFFICIENT

00932:C ALPHA(1,J),BETA(I,J).

00933:C  ILAST,JLAST..  ARRAYS CONTAINING FINAL

00934:C PCINTS FOR THE RANGES OF SUMMATION

00935:C CORRESPONDING TO EACH COEFFICIENT

00936:C ALPHACT,J) BETACI ,J)

00937:C :

009383 COHMON/PARAM2/A(100) , BC100) ,NX+NY KX, KY, |
00939: & LEFTX(100),LEFTY(100) |
00940: COMMON/RANGE/IF IRST(100) , ILAST(100)  JFTKST(100) |
00941: X JLAST(100)

009421 DO 50 I=1,NX

00943 IF(I.EQ.1) THEN

009443 1121

00945 ELSE

00946 II=IFIRST(I-1)

00947¢ ENDIF

00948¢ 10 IF(I.GE.LEFTX(II)-(KX-1) ,AND.I.LE.LEFTX(IID))
00949 x GOTO 20

00950 II=11+1

00951 GOTO 10

00952: 20 IFIRST(I)=Il

009332 30 II=II+1

00954 IF(I1.GT.NKNOTX) GOTO 40
00933 IFC(ILLT.LEFTX(II)-(KX-1)) G"TO 40
00956 G0TO 30

00957: 40 ILAST(D)=II-1
00958: 50 CONTINUE

00959 DO 100 J=1,NY

00960 IF(J.EQ.1) THEN

009613 JJ=1 )
009623 ELSE

009632 JJsJFIRST(J-1)

009642 ENDIF

00965¢ 60 IF(J,GE.LEFTY(JJ)-(KY-1).AND.J.LE.LEFTY(JJ))
009662 * GOTO 70




00947¢

009682

00969

00970¢

00971

00972

00973

009742

00975¢

00976

00977

00978:C
00979:C
00980:C
00981:

00982:C
00983:C
00984:C
00985:C
009864:C
00987:C
00988:C
00989:C
00990:C
00991:C
00992

00993:C
00994:C
00995:C
00996:C
00997:C
00998:C
00999:C
01000:C
01001:C
010023

01003:C
01004:C
01005:C
01004:C
01007:C
01008:C
01009:C
01010:C
01011:C
01012:C
01013:C
01014:C
01013:C
01016:C
01017:C

Ji=sJltl

GOTO 60
70 JFIRST(J)=JJ
80 JJsJitl

IF(JJ.GT.NKNOTY) GOTO 90
IFCJLLTL.LEFTY(JJ)-(KY=1)) GOTO 90

GOTO 80
90 JLAST(J)=JJ-1
100 CONTINUE
RETURN
END

.REAL FUNCTION GF(II,JJ)

FUNCTION GF COMPUTES THE SUM OF THE TERMS IN
THE SMOOTHING FUNCTIONAL G OVER THE RANGES INDICATED
BY IFIRST(II),JFIRST(JJ) AND ILAST(II), JLAST(JJ).

INPUT
IIvddese
(IN COMMON)

INDICES FOR COEFFICIENT INVOLVED
IN MINIMIZATION,

NKNOTX,NKNOTY,.,.DIMENSIONS FOR SQUARE MESH

ﬂ'Booo

NXsNY. oo

KXoKYss o

LEFTX,LEFTY.s s

IFIRST, JFIRST, .

ILAST,JLAST,.

Wi, wa...

OR NUMBER OF ELEMENTS IN ARRAYS A,R
ARRAYS CONTAINING COORDINATES FOR
SQUARE MESH

DIMENSION OF SPLINE SPACE IN X DIRECT.
»Y DIRECTION OR

TOTAL NO. OF B-SPLINES IN X DIRECTION,
Y DIRECTION

ORDER OF B-SPLINES IN X DIRECTION,

Y DIRECTION

ARRAYS IDENTIFYING KNOT INTERVALS

ON WHICH SQUARE MESH COORININATES

LIE. (LEFTX(I)=J IMPLIES

TXCD =A{D) <TX(I+D)

ARRAYS CONTAINING STARTING

POINTS FOR THE RANGES OF SUMMATION
CORRESPONDING TO EACH COEFFICIENT
ALPHA(1,J) yBETA(I,J).

ARRAYS CONTAINING FINAL

POINTS FOR THE RANGES OF SUMMATION -
CORRESPONDING TC EACH COEFFICIENT
ALPHA(T,J) »BETA(L»J)

.WEIGHTS FOR JACOBIAN, DOT PRODUCT

125
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01018:C OUTPUT

01019:7%
01020:C
01021:C
01022:C
01023
01024:
010233
01024
01027
01028
01029
010303
01031:
010323
010333
01034:
010352
01034
01037¢
01038:
01039
01040
01041
010423
010432
01044:
010452
01046
01047
01048
01049
01050:
01051
010528
010532
010354
010552
01056
01057
010582
010359
01060
01061
01062
01063
010642
010658
01066
01067
01068:

100
200

GFses PARTIAL SUM OF TERMS IN G OVER THE

APPROPRIATE RANGE.

REAL AJ(30,30),D0T(30,30)
COMMON/PARAM2/A(100),B(100) ,NX,NY ,KX,KY,
LEFTX(100),LEFTY(130)

COMMON/COEF /ALPHA(100,100),BETA(100,100)
COMMON/KNOT/NKNOTX » NKNOTY
COMMON/WEIGHTS/W1,W2
COMMON/RANGE/IFIRST(100),ILAST(100),JFIRST(100),
JLAST(100)

NUMX=NKNOTX

NUMY=NKNOTY

DELX=1./(NUHX-1.)

DELY=1./(NUMY~1,)

SDELX=DELXXDELX

SDELY=DELYXDELY

SUM=0.0

IF=IFIRST(II)

JF=JFIRST(JJ)

IL=ILAST(ID)

JL=JLAST(JJ)

IF(IF.GT,1) IF=IF-1

IF(JF.GT.1) JF=JF-1

IFCIL.LT.NUNX) IL=IL+1

IFCJL.LTNUMY) JL=JL+1

00 200 J=JF,JL

D0 100 I=IF,IL

CALL TENVALF(AL. AA,LEFTX(I),LEFTY(J),KXsKY,1,J,
F1X+1,0)

CALL TENVALF(BETA,LEFTX(I),LEFTY(J) KX, KY,1I,J,
F1Y,1,90)

CALL TENVALF (ALPHA,LEFTX(T) LEFTY(J),KX,KY,1,Jy
F2X+0,1)

CALL TENVALF(BETA:LEFTX(I),LEFTY(J),KX,KY,I,Js
F2Y,0,1)

AJCT,J)=FIXXFRY-F2XXFLY
DOT(1,J)=F1XXF2X+F1YXF2Y

SUM=SUM+LI0T(I,J)xx2

CONTINUE

CONT INUE

SUM1=0,

SUM2=0,

[0 400 J=JF,JL-1

DU 300 I=IF,IL-1

IF(I.EQ.1,AND.J.EQ.1) GOTO 300
IF(I.EG-I.AND.J.EQ.NUHY-I) GOTO 300
IF(I1.EQ.NUMX-1.AND.J.EQ.1) GOTO 300
SUM1=SUM1+(AJ(I,J)~AJ(I,J+1))X%2

i\



01049

01070

01071¢

010723

01073¢

01074

01075

010763

01077:C
01078¢C
01079:C
01080

01081:C
01082:C
01083:C
01084:C
01085:C
01084:C
01087:C
01088:C
01089:C
01090:C
010%1:C
01092:C
01093:C
01094:C
01095:C
01096:C
01097:C
01098:C
01099:C
01100:C
01101:C
01102:C
01103:C
01104:C
01105:C
01106:C
01107:C
01108:C
01109:C
01110:C
01111:C
01112:C
01113:C
01114:C
01115:C
01114:C
01117:C
01118:C
01119:C

SUM2=BUM24 (AJ(TI+1,J)~AJ(1,J) ) %22
300 CONTINVE
400 CONTINUE
SUM1sSUMIXDELX/DELY
SUM2=8SUM2RDELY/DELX
GF sW1%(SUM1 +SUM2) +W2DELXSDELYSSUM
RETURN
END

SUBROUTINE FFMIN(ERMAX)

FFMIN SEARCHES FOR THE MINIMUM OF THE SMOOTHING
FUNCTIONAL G. EACH CALL TO FFMIN PRODUCES ONE
COMPLETE ITERATION OF THE CYCLIC COORDINATE HMETHOD,
A MULTIDIMENSIONAL SEARCH TECHNIQUE FOR NINIMIZING
A FUNCTION OF SEVERAL VARIABLES WITHOUT USING
DERIVATIVES. THE ROUTINE SEARCHES FOR A MINIMNUM
ALONG EACH COORDINATE DIRECTION.

IN FFMIN THE COORDINATE DIRECTIONS ARE REPRE-

SENTED BY THE TENSOR PRODUCT COEFFICIENTS .FOR EACH
COEFFICIENT THE ROUTINE FIRST DNETERMINES THE
INTERVAL ON WHICH THE COEFFICIENT MUST LIE IF THE
JACOBIAN OF THE TENSOR PRODUCT MAPPING IS TO BE
NONNEGATTIVE AT ALL MESH POINTS AFFECTED BY THE
COEFFICIENT., IT THEN CALLS EITHER TESTMINO, TEST-
MINL, TESTMINR, OR TESTMINB DEPENDING ON WHETHER
THE INTERVAL 1S BIINFINITE, HAS A LEFT ENDPOINT,
A RIGHT ENDPOINT. OR TWO ENDPOINTS. THE CHOSEN
SUBROUTINE FINDS THE LOCATION OF THE MINIMUM OF
GF ON THE INTERVAL AND CHANGES THE AFPROPRIATE
COEFFICIENT ACCORDINGLY.

INPUT

(IN COMMON)
ALPHA,BETA. . ARRAYS CONTAINING COEFFICIENTS OF

TENSOR PRODUCT SPLINE MAPPING.

ArBoes ARRAYS CONTAINING COORDINATES FOR
SQUARE MESH.

NX)NYo oo DIMENSION OF SPLINE SPACE IN X DIRECT.

»Y DIRECTION OR
TOTAL MO. OF B-SPLINES IN X DIRECTION,
Y DIRECTION.
KXpKYo oo ORDER OF B-SPLINES IN X DIRECTION,
Y DIRECTION. v
LEFTX,LEFTY... ARRAYS IDENTIFYING KNOT INTERVALS
ON WHICH SQUARE MESH COORDINATES
LIE. (LEFTX(I)aJ IMPLIES
TXCI<=A(1){TX(I+1))
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011203C
01121:C
01122!
01123:C
011243C
01125:C
01126:C
01127:C
01128:C
01129:C
01130:C
01131:C
01132:C
01133:C
01134:C
01135:C
01135:C
01137:C
01138:C
01139:C
01140:C
01141:C
01142:
01143
01144:
0114%:
01146;
01147
01148:
01149:
01150:
01151:
01152:
01153:
01154:
01155:
011563
01157:
01158:
01159:
01160:
01161:
01162¢
01163:
011642
011458
01166}
011672
01168:
01169:
01170:
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IFIRST,JFIRST.. ARRAYS CONTAINING STARTING
POINTS FOR THE RANGES OF SUMMATION
CORRESPONDING TO EACH COEFFICIENT
ALPHACT, J),BETACI, J),

ILAST,JLAST..  ARRAYS CONTAINING FINAL
POINTS FOR THE RANGES OF SUMMATION
CORRESPONDING TO EACH COEFFICIENT
ALPHACT, J) »BETACI, 0.

W1,W200s MEIGHTS FOR JACOBIAN, DOT PRODUCT
TO BE USED IN GF,

NKNOTX ,NKNOTY ., . .DINENSIONS FOR SQUARE MESH
OR NUMBER OF ELEMENTS IN ARRAYS A,B.

QUTPUT

ERMAX. ¢, MAXIMUM CHANGE IN THE COEFFICIENTS
AFTER A COMPLETE ITERATION.

(IN COMMON)

ALPHA,BETA...  ARRAYS CONTAINING NEW COEFFICIENTS
FOR TENSOR PRODUCT SPLINE MAPPING.

COMMON/COEF /ALPHA(100,1001},BETAC100,100)

COMMON/PARAM2/A(100),B(100) )NX,NY,KX,KY,
® LEFTX(100),LEFTY(100)

COMMOMN/RANGE/IFIRST(100),ILAST(100),JFIRST(100),
¥ JLAST(100)

COMMON/PARAM/FKOUNT

COMMON/WEISHTS/W1,W2

COMMON/KNQT/NKNOTX , NKNOTY

REAL LEND,LINT,AJ(2)

INTEGER CTEST

FKOUNT=0

ERMAX=0 .,

DO 500 I=2,NX-1

DO 400 J=2,NY-1

IF=IFIRST(I)

IL=ILAST(D)

JF=JFIRST(J)

JL=JLAST(J))

MKOUNT=0
S CONTINMUE

HOLD=GF (1,J)

MTEST=MKOUNT/2%2

IF(MTEST.EQ.MKOUNT) THEN

HOCO=ALFHA(I,J)

ELSE

HOCO=BETA(I,J)

ENDIF

LEND=-10,0€8

REND=10.0E8

N



011718
01172:
011738
01174¢
01173
01174
01177¢
01178¢
01179
011802
01181:
01182:
011e3:
01184:
01185
01184
01187
01188
01189
01190
01191¢
01192
011932
01194
0119352
01196:
01197:
01198
0119¢¢
012002
01201
01202
01203
01204
01203
01206
012073
01208
01209
01210
o1211:
01212
01213:
012142
01213
01214
01217
01218
01219
01220
01221:

10

100
200
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KFLAG=0

IFLAG=0
DO 200 11IsIF,IL
DO 100 JJ=JF,JL
IF (WKOUNT/282.EQ.MKOUNT) THEN
ALPHA(T,J)=0,
ELSE
’ETA{I'J).OO
ENDIF
DO 1) Km},2
CALL TENVALF (ALPHALLEFTX(ID),LEFTY(JJ) yKX,KY, 11,
JJrF1Xs1,0)
CALL TENVALF(BETA,LEFTX(ID),LEFTY(JJ),KX,KY, 11,
JJrF1Yy1,0)
CALL TENVALF (ALPHA,LEFTX(II),LEFTY(JJ),KXsKY,11,
JJrF2X,0,1)
CALL TENVALF(BETA,LEFTX(II),LEFTY(JJ)yKX,KY, 11,
JIrF2Y,0,1)
AJ(K)=FIXEF2Y-F2XXF1Y
IF (MKOUNT/2%2,.EQ.MKOUNT) THEN
ALPHA(I,J)=1,
ELSE
BETA(I,J)=1.,
ENDIF
CONTINUE
D=AJ(1)
C=AJ(2)-D
IF(CQGTlllOE‘7) THEN
LINT=-D/C
IFCLINT.GT.LEND) THEN
IFCLINT.LE.REND) THEN
LENDsL INT
ELSE
IFLAG=-1
ENDIF
ENDIF
ELSE IF(C.LT.-1.0E-7) THEN
RINTs-D/C
IFC(RINT.LT.REND) THEN
IF(RINT.GE.LEND) THEN
REND=RINT
ELSE
IFLAG=-1
ENDIF
ENDIF
ELSE
KFLAG=KFLAG+1
ENDIF
CONTINUE
CONTINVE .
CTESTs(ILAST(I)-IFIRST(I)+1)X(JLAST(J)=JFIRST(J)+1)

s s




01222:
012232
01224
012252
01226
012272
01228:
012293
01230
012312
012322
01233:
01234
012352
012342
012372
012382
01239:
01240
012413
01242
01243
01244:
0124352
01246
012473
01248:
01249:
012503
012518
012523
012533
01254
01255¢
01254
012573
012583
012592
01260:
012613
01262:C
012463:C
01264:C
C12635:
012663
01267:C

01268:C

01269:C

01270:C

012713C
01272:C

400
500
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IF(KFLAG.EQ.CTEST.OR.IFLAG.EQ.~1) THEN
IF (MKOUNT/2%2,EQ.MKOUNT) THEN
ALPHA(T, J)=(LEND+REND) /2,
ELSE
BETA(I,J)=(LEND+REND) /2.
ENDIF
ELSE IF(LEND.LT.-1.0E7.AND.REND.6T.1.0E7) THEN
CENTER=0.0
CALL TESTMINO(MKOUNT,I,J)
ELSE IF(LEND.LT.-10,0E7) THEN
CENTER=0.,0
CALL TESTMINR(MKOUNT,1,J,LEND,REND)
ELSE IF(REND.GT.10.,E7) THEN
CENTER=0.0
CALL TESTMINL (MKOUNT,I,J,LEND,REND)
ELSE
CENTER=(LEND4REND) /2. :
CALL TESTMINR(MKOUNT,I,J,LEND,RENI) ?
ENDIF f
$2=GF(1,J) !
DIFF=HOLD-52
IF(HOLD.LT.S2) THEN
IF(MTEST.EQ.MKOUNT) THEN
ALPHA(I, J)=HOCO
ELSE
EETA(I,J)=HOCO
ENDIF
$2=HILD
DIFF=00
ENDIF
IF(ABS(DIFF) .GT.ERMAX) ERMAX=ARS(DIFF) g
FPRINTX, FUNCTION VALUE 15,52 |
PRINTX,’'COUNT IS’,FKOUNT
KFLAG=0 -
MKOUNT=MKOUNT +1 L.
IF (MKOUNT . NE . MKOUNT/2%2) GOTO S 3
CONTINUE
CONT INUE
RETURN
END

.
W B 1 i e

SUEROUTINE CRIT(CENTER,C!,C2,C3,C4,C5,NROOTS,R,MKOUNT,

x 1,0

CRIT FINDS THE COEFFICIENTS OF THE 4TH DEGREE

POLYNOMIAL REFRESENTING GF ANDI COMPUTES ITS CRITICAL
POINTS, I.E.y IT FINDS THE POINTS FOR WHICH THE DERIVATIVE
OF THE POLYNOMIAL IS 0.

s 200
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01273:C INPUT

01274:C

01275:C  CENTER... NUMBER AT CENTER OF INTERVAL TO BE

01276:C CONSIDERED. IF INTERVAL IS INFINITE THEN

01277:C CENTER ASSIGNED A VALUE OF 0.

01278:C  MKOUNT... MKOUNT EVEN MEANS THE COEFFICIENT

01279:C INVOLVED IN MINIMIZATION IS IN THE ALPHA

01280:C ARRAY. MKOUNT ODD MEANS THE COEFFICIENT

01281:C 1S IN THE BETA ARRAY.

01282:C  I,J.. SUBSCRIPTS FOR COEFFICIENT INVOLVED

101283:C IN MINIMIZATION

01284:C  (IN COMMON)

01285:C  ALPHA,BETA..  ARRAYS CONTAINING COEFFICIENTS OF

01284:C TENSOR PRODUCT SPLINE MAPPING. .
01287:C  A,B... ARRAYS CONTAINING COORDINATES FOR ;
01288:C SQUARE MESH. :
01289:C  NX,NY... DINENSION OF SPLINE IN X DIRECTION

01290:C »Y DIRECTION OK i
01291:C TOTAL NO. OF B-SPLINES IN X DIRECTION,

01292:C . Y DIRECTION.

01293:C  KX,KY.os ORDER OF B-SPLINES IN X DIRECTION,

01294:C Y DIRECTION.

01295:C  LEFTX,LEFTY... ARRAYS IDENTIFYING KNOT INTERVALS

012965C IN WHICH SQUARE MESH COGRDINATES

01297:C LIE. (LEFTX(I)=J IMPLIES

01298:C TX(D<=A(DI<TX(I+1))

01299:C

01300:C  W1,W2... WEIGHTS FOR JACORIAN, 0OT PRODUCT

01301:C TO BE USED IN GF.

01302: NKNOTX,NKNOTY. . .DIMENSIONS FOR SQUARE MESH ,
01303:C OR NUMBER OF ELEMENTS IN ARRAYS A,B,

01304:C  FKOUNT... PARAMETER CONTAINING NUMBER OF CALLS TO '
01305:C GF ;
01306:C XKoo ARRAY CONTAININ POINTS =2,-1,0,1,2

01307:C WHICY ARE USED AS TEST POINTS IN

01308:C DETERM1~ING THE COEFFICIENTS OF THE

01309:C ATH DEGREE POLYNOMIAL WHICH APPROXI- ¥,
01310:C MATES GF.

01311:C

01312:C OUTPUT :
01313:C ‘
01314:C  €1,C2,C3,C4,CS.. COEFFICIENTS OF 4TH DEGREE POLYNOMIAL. E
01315:C C1 IS THE COEFFICIENT OF THE ATH DEGREE TERM. |
013163C  NROOTS... NUMBER OF CRITICAL POINTS :
01317:C  R... ARRAY CONTAINING CRITICAL POINTS ;
01318:C f
01319 REAL R(3),BK(S) }
01320% COMMON/COEF /ALPHA(100,100) ,BETA(100,100) :
01321 COMMON/PARAM2/A(100),B(100) ,NXyNY ,KX,KY,LEFTX(100)

01322¢ % ,LEFTY(100)

01323: COMMON/KNOT/NKNOTX ,NKNOTY

e~ g SN N, it v
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013243
013253
013268
013273
01328
013292
01330:
013312
013323
01333
01334
01335
013368
01337:
013382
013393
01340
01341:
01342:
013432
01344
013452
013443
01347:

01348:

013492
013502
013512
013522
013532
01354
013532
013563
01357
013583
013593
013402
013611
01362:C
01363:C
01364:C
013652
01366:C
013467:C
01348:C
01369:C
01370:C
01371:C
013723
01373:C
01374:C

100

300
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COMMON/WEIGHTS/W1,U2
COMMON/PARAM/FKOUNT
COMMON/XKS/XK (%)
IF(MKOUNT/2%2,.EQ.MKOUNT) THEN
DO 100 IK=1,5
ALPHA(I, J)=XK¢IK) +CENTER
BKCIK)=GF(1,J)
FKOUNT=FKOUNT 41
CONTINUE
ELSE
po 200 IK=1,5
BETA(I,J)=XK(IK)+CENTER
BK(IK)=GF(I,J)
FKOUNT=FKOUNT +1
CONTINVE
ENDIF
B=XK(4)
B1=RK(1)
B2=RK(2)
B3=RK(3)
B4=RK(4)
B5=RK(5)
C5=83
SUM=-RS+8.X(R4-B2)+B1
C4=1./(12.,4D)XSUN
SUM=-BS+14,X(B4+B2)-30,.%XR3-R1
C3=1./(24,%0XD) XSUM
SUM=RS-2,%(K4-R2)-R1
€2=1./(12.XDX0IXD) XSUN
SUM=RS-4.%X(B4+K2)+6.XB3+R1
C1=1,/(24,XD¥X%X4) XSUM
IF (ABS¢C1).LT.1.0E-04) GOTO 300
CALL CURIC(4.%C1,3.%C2,2.%C3,C4,NROOTS,R)
RETURN
CONTINUE
NRDOTS=-1
RETURN
END

SUBROUTINE TESTMING(MKOUNT,I,J)

FOR A GIVEN COEFFICIENT ALFHA(I,J) OR BETAI,J)

TESTMINO FINDS AND TESTS THE CRITICAL FOINTS OF

THE 4TH DEGREE FOLYNOMIAL REPRESENTING GF TO
DETERMINE WHICH POINT YIELDS THE SMALLEST VALUE FOR GF
WHEN GF IS VIEWED AS A FUNCTION OF THAT COEFFICIENT.
THE NUMBER CHOSEN BECOMES THE NEW VALUE FOR

ALPHA(I,J) OR BETA(I,J) .



01375:C
01376:C
013772:C
01378:C
01379:C
01380:C
01381:C
01382:C
01383:C
01384:C
01385:C
01384:C
01387:C
01388:C
01389:C
01390:C
01391:C
013923

01393:C
01394:C
01395:C
01396:C
01397:C
01398:C
01399:C
01400:C
01401:C
01402:C
01403:C
01404:C
01405:C
014046:C
01407:C
01408:C
01409:C
01410:C
01411:C
01412:

01413:C
01414:C
014152

014162

01417

014182

014192

01420

01421

01422}

014232

01424

014252
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INPUT
MKOUNT... MKOUNT EVEN MEANS THE COEFFICIENT
INVOLVED IN MINIMIZATION IS IN THE ALPHA
ARRAY. MKOUNT ODR MEANS THE COEFFICIENT
IS IN THE BETA ARRAY.
Iedes SUBSCRIPTS FOR COEFFICIENT INVOLVED
IN MINIMIZATION
(IN COMMON)
ALPHA,BETA. . ARRAYS CONTAINING COEFFICIENTS OF
TENSOR PRODUCT SPLINE MAPPING.
ArBoos ARRAYS CONTAINING COORDINATES FOR
SQUARE MESH.
NXpNY. oo DIMENSION OF SPLINE IN X DIRECTION
»Y DIRECTION OR
TOTAL NO. OF B-SPLINES IN X DIRECTION,
Y DIRECTION.
KXsKYo oo ORDER OF B-SPLINES IN X DIRECTION,
Y DIRECTION,
LEFTX,LEFTY... ARRAYS IDENTIFYING KNOT INTERVALS
IN WHICH SQUARE MESH COORDINATES
LIE., (LEFTX(I)=J IMPLIES
TX(D) <=AC1) <TX(J+1))
W1,W2.., WEIGHTS FOR JACORIAN, DOT PRODUCT i
TO EE USED' IN GF. |
NKNOTX,NKNOTY, . .DIMENSIONS FOR SQUARE MESH |
OR NUMBER OF ELEMENTS IN ARRAYS A,E.
FKOUNT. . FARAMETER CONTAINING NUMEER OF CALLS TO ¢
GF .
XKoo ARRAY CONTAINING FOINTS -2,-1,0,1,2
WHICH ARE USED AS TEST POINTS IN
DETERMINING THE COEFFICIENTS OF THE
4TH DEGREE POLYNOMIAL WHICH APPROXI- y
MATES GF. :
OuTPUT ¥
ALPHA(I,J) OR BETA(I,J)..NEW VALUE FOR COEFFICIENT :
COMMON/COEF /ALPHA(100,100) , BETA(100,100) i
COMMON/PARAM2/A(100) ,K(100) ,NX,NY,KX,XY,LEFTX(100), é
x LEFTY(100)
COMMON/KNOT /NKNOTX , NKNOTY
COMMON/WEIGHTS/W1,W2
COMMON/PARAM/FKOUNT
COMMON/XKS/XK(S)
REAL R(3)
FM(R)=C1XR¥X44C2XRXRXR+CIXRXR+CAKRICS
D0 S0 IK=1,5

XK (IK)=FLOAT(IK) =3,




014262
01427
01428:
01429¢
01430%
01431
01432
01433
01434
01435:
01436¢
014372
01438:
01439:
014402
01441
01442
01443
01444
01445
01444:C
01447:C
01448:C
014493
01450:C
01451:C
0143522
01453:C
01454:C
01455:C
01436:C
01457:C
01458:C
01459:C
01440:C
01461:C
01462:
01463:C
01464:C
014453C
01466:C
01467:C
01468:C
01449:C
01470:C
01471:C
01472
01473:C
01474:C
01475:C
01476:C
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50 CONTINUE
CALL CRIY(0,C1,C2,C3,C4,C5,NROOTS,Ry MKOUNT,I,J)
IF(NROOTS.NE.-1) GOTO 335
RETURN

55 CONTINUE
TMIN=10.0E10
D0 600 1R=1,NROOTS
FMINN=FM(R(IR))
IF(FMINN.LT.TMIN) THEN
TMIN=FMINN
IMIN=IR
ENDIF

600 CONTINUE
IF (MKOUNT/2%2.EQ . MKOUNT) THEN
ALPHAC(L, J)=R(IMIN)
ELSE
BETA(I, J)=R(ININ)
ENDIF
RETURN
END

SUBROUTINE TESTMINR(MKOUNT.I,J,LEND,RENID

FOR A GIVEN COEFFICIENT ALPHA(I,J) OR BETA(I,J)
TESTHMINR FINDS AND' TESTS THE CRITICAL FOINTS OF
THE ATH DEGREE FOLYNOMIAL REFRESENTING GF TO
DETERMINE WHICH FOINT YIELDS THE SMALLEST VALUE FOR GF
WHEN GF IS VIEWED AS A FUNCTION OF THAT COEFFICIENT.
THE SMALLEST VALUE IS COMPARED WITH THE VALUE AT THE
RIGHT ENDPOINT OF THE INTERVAL (LENI,RENID
TO DETERMINE AT WHAT NUMBER THE MINIMUM VALUE
OF GF DCCURS. THE NUMBER CHOSEN HECOMES THE NEW
VALUE FOR ALFHA(I,J) OR BETACI,J) .

INPUT

MKOUNT, ., MKOUNT EVEN MEANS THE COEFFICIENT
INVOLVED IN MINIMIZATION IS IN THE ALFHA
ARRAY, MKOUNT OI'l MEANS THE COEFFICIENT
IS IN THE BETA ARRAY.

Iydes SUBSCRIFTS FOR COEFFICIENT INVOLVED
IN MINIMIZATION

LEND,REND. . LEFT ANI! RIGHT ENDPOINTS FOR

INTERVAL, LEND' IS A NEGATIVE NO. WITH VERY
LARGE MAGNITUTE INDNICATING THAT THE LEFT
ENDFOINT IS INFINITE.

(IN COMMON)

ALFHA,BETA. , ARRAYS CONTAINING COEFFICIENTS OF
TENSOR PRODUCT SPLINE MAFPING.




01477:C
01478:C
01479:C
01480:C
01481:C
01482:C
01483:C
01484:C
01485:C
01486:C
01487:C
01488:C
01489:C
01490:C
01491:C
014%2:C
01493:C
01494:C
01495:C
01495:C
01497:C
01498:C
01499:C
01500:C
01501:C
015022
01503:C
01304:C
01505:C
015062
015073
01508¢
013092
015102
015112
015122
015132
015142
0151358
015164
01517
015182
015103
01520
0135213
01522
013238
015242
0135258
015262
01527

ABiss ARRAYS CONTAINING COORDINATES FOR
SQUARE MESH.
NXyNY oo DIMENSION OF SPLINE IN X DIRECTION
»Y DIRECTION OR
TOTAL NO. OF B-SPLINES IN X DIRECTION,
Y DYRECTINN.
KXsKYs oo ORDER OF B-SPLINES IN X DIRECTION,
Y DIRECTION.
LEFTX,LEFTY... ARRAYS IDENTIFYING KNOT INTERVALS
IN WHICH SQUARE MESH COORDINATES
LIE. (LEFTX(I)=J IMFLIES
TXCD<=ACT)<TX(I+1))
Wi, W2... WEIGHTS FOR JACORIAN, DOT PRODUCT
TO BE USED IN GF.
NKNOTX,NKNOTY. . . DIMENSIONS FOR SQUARE MESH
OR NUMBER OF ELEMENTS IN ARRAYS A,B.
FKOUNT. .., PARAMETER CONTAINING NUMBER OF CALLS TO
GF
XKoo ARRAY CONTAININ POINTS -2,-1,0,1,2
WHICH ARE USED AS TEST POINTS IN
DETERMINING THE COEFFICIENTS OF THE
ATH DEGREE POLYNOMIAL WHICH APPROXI-
MATES GF.
ouTPUT
ALPHA(I,J) OR BETA(I,J)..NEW VALUE FOR COEFFICIENT
COMMON/COEF /ALPHA(100,1C0) ,Bx"A(100,100)
COMMON/PARAM/FXOUNT
COMMON/PARAM2/A(100),B{100) yNX,NY,KX,KY
x ,LEFTX(100),LEFTY(100)
COMMON/KNOT/NKNOTX , NKNOTY
COMMON/WEIGHTS/W1,42
COMMON/XKS/XK(5)
REAL Ri3),LEND
FM(R)=C1XRXX4+C2XRXR¥R+CIXRXR+CAAR+CS
XK(1)=REND
D0 50 IK=2,5
XK(IK)=RENN-FLOATC(IK) $1.,
50 CONTINUE

CALL CRIT(O,C1,C2,C3,C4,C5,NROOTS,R,MKOUNT,I,J)
IF(NROOTS.NE.~1) GOTO 55
PRINTX, 'WARNING #1 COEF IS 0’

RETURN

55 CONTINUE
TMIN=10.E10
IR=0

DO 600 IRCOT=1,NROOTS
IF(R(IROOT).LE,REND) THEN

Wl




01528:
015292
01530
01331¢
015322
01533
01534:
015358
01536
01537:

013538
01539
01540:
015418
015423
015433
01544:
013545
015463
015473
01548:
01549
015503
01551¢
01552
01553
01554:
01555
01554
01557
015583
015392
015602
01561:C
01562¢
01563:C
015643
01565:C
01566:C
01567:C
01568:C
01569:C
01570:C
01571:C
01572:C
01573:C
01574:C
01575:C
01574:C
01577:C
01578:C

600
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IR=IR+1
R(IR)=R(IROOT)
ENDIF
CONTINUE
NROOTS=1R
IF (NROOTS.EG.QO) THEN
IF (MKOUNT/2%2,EQ.MKOUNT) THEN
ALPHA(T, J)=REND
TMIN=FM(REND)
ELSE
BETA(I,J)=REND
TMIN=FM(REND)
ENDIF
ELSE
00 700 IRODOT=1,NROOTS
FMINN=FM(R(IROOT))
IF(FMINNL.LT.TMIN) THEN
THMIN=FMINN :
IMIN=IROOT
ENDIF
CONTINUE
FMINN=FN(RENI)
IF(FMINN.LT.TMIN) RCIMIN)=REND
IF(MKOUNT/2%2.EQ.HKOUNT) THEN
ALPHA (T, J)=R(IMIN)
TMIN=FM(R(IMIN))
ELSE
BETA(I,J)=R(ININ)
TMIN=FM(R(IMIN))
ENDIF
ENDIF
RETURN
END

SUBROUTINE TESTMINL {MKOUNT,I,J,LEND,REND)

FOR A GIVEN COEFFICIENT ALFHA(I,J) OR BETA(I,J)

TESTMINL FINDS AND* TESTS THE CRITICAL POINTS OF

THE ATH DEGREE POLYNOMIAL REPRESENTING GF TO
DETERMINE WHICH POINT YIELDS THE SMALLEST VALUE FOR GF
WHEN GF IS VIEWED AS A FUNCTION OF THAT COEFFICIENT,
THE SMALLEST VALUE IS COMPARED WITH THE VALUE AT THE
LEFT ENDPOINT OF THE INTERVAL (LEND,RENID)

TO DETERMINE AT WHAT NUMEER THE MINIMUM VALUE

OF GF OCCURS. THE NJMBER CHOSEN KHECOMES THE NEW

VALUE FOR ALFHA(I,J) DR RETA(I,J) .

INPUT



01379:C
01580:C
013581:C
01582:C
013583:C
01584:C
015835:C
013586:C
01587:C
01588:C
01589:C
013%0:C
01391:C
015923

01593:C
01594:C
01595:C
01596:C
01597:C
01598:C
01599:C
01600:C
01601:C
016022

01503:C
01604:C
01605:C
01606:C
01607:C
01608:C
014609:C
01610:C
01611:C
016123

01613:C
01614:C
014615:C
01614:C
01617:C
01618:C
01619:C
01620:C
01621:

01622

014623

01624

016252

0162643

01627

0146282

01629¢
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MKOUNT. . . MKOUNT EVEN MEANS THE COEFFICIENT
INVOLVED IN MINIMIZATION IS IN THE ALPHA
ARRAY. MKOUNT ODD MEANS THE COEFFICIENT
1S IN THE BETA ARRAY,
Ivdes SUBSCRIPTS FOR COEFFICIENT INVOLVED
IN MINIMIZATION
LEND,REND. . LEFT AND RIGHT ENDPOINTS FOR
INTERVAL. REND IS A VERY LARGE NUMBER,
INDICATING THAT THE RIGHT ENDPOINT IS
INFINITE.
(IN COMMON)
ALPHA,BETA. . ARRAYS CONTAINING COEFFICIENTS OF
TENSOR PRODUCT SPLINE MAPPING.
AyBoos ARRAYS CONTAINING COORDINATES FOR
SQUARE MESH,
NXyNY. oo DIMENSION OF SPLINE IN X DIRECTION
+Y DIRECTION OR
TOTAL NO. OF B-SPLINES IN X DIRECTION,
Y DIRECTION.
KXoKYo oo ORDER OF B-SPLINES IN X DIRECTION,
Y DIRECTION.
LEFTX,LEFTY... ARRAYS IDENTIFYING KNOT INTERVALS
IN WHICH SQUARE MESH COORDINATES
LIE, (LEFTX(1)=J IMPLIES
TX(D) <=AII<TX(I+1))
Wi, W20, WEIGHTS FOR JACOERIAN, DOT PRODUCT
TO RE USED IN GF.
NKNOTX ,NKNOTY .. . DIMENSIONS FOR SQUARE MESH ;
OR NUMBER OF ELEMENTS IN ARRAYS A,E, 4
FKOUNT.. PARAMETER CONTAINING NUMBER OF CALLS TO
GF
XKoo ARRAY CONTAININ POINTS -2,-1,0,1,2
WHICH ARE USED AS TEST POINTS IN
DETERMINING THE COEFFICIENTS OF THE
ATH DEGREE POLYNOMIAL WHICH APPROXI- .
MATES GF. R
QUTPUT
ALPHA(I,J) OR BETA(I,J)..NEW VALU™ FOR COEFFICIENT
COMMON/COEF /ALPHA (100,100} ,RETA(100,100)
COMMON/PARAM/FKOUNT
COMMON/PARAM2/A(100) , B(100) ,NX,NY ;KX ,KY
% ,LEFTX(100),LEFTY(100)
COMMON/KNOT/NKNOTX ,NKNOTY
COMMON/WEIGHTS /W1 ,u2
COMMON/XKS/XK(S)
REAL R(3),LEND %
FM(R)=C1SRAXA4+COARIRER+CIRXRAR+CAKXRICS :



016302
01631
01632:
014633¢
016348
0163352
016362
016372
01438:
01639
016408
01641
01642:
016433
016442
016452
01644
01647
01648
01649
01650
01651
01652:
01653
01654
016558
01656
01657
01458
01659
01640?
016613
016628
01463
01664
016652
016663
01667
01668
01669
01670
016712
016728
016733
0146748
0i67%%
014763
01677:C
01678:C
01679:C
01680

50

5%

600

700
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XK(1)=LEND
b0 50 IK=2,3
XKCIK)sLEND+FLOAT(IK) -1,
CONTINUE
CALL CRIT(0O,C1,C2,C3,C4,C5,NROOTS,R,)MNOUNT,
I,0
IF(NROOTS.NE.-1) GOTC 55
PRINTX, ‘WARNING &1 COEF IS 0
RETURN
CONTINUE
THIN=10,0E10
IL=0
N0 400 IR=1,NROOTS
IF(R(IR),GE.LENI)THEN
IL=IL+1
R(IL)=R(IR)
ENDIF
CONTINUE
NROOTS=IL
IF (NROOTS.EQ.0) THEN
IF(MKOUNT/2%2,.EQ.MKQUNT) THEN
ALPHA(T, J)=LEND
THIN=FM(LEND)
ELSE
BETA(I, J)=LEND
TMIN=FM(LEND)
ENDIF
ELSE
00 700 IR=1,NROOTS
FMINN=FM(R(IR))
IF(FMINN.LT.TMIN) THEN
TMIN=FMINN
IMIN=IR
ENDIF
CONTINUE
FMINN=FM(LEND)
IF(FMINN.LT.TMIN) ROIMIN)=LEND
IF (MKOUNT/2%2.EQ.MKOUNT) THEN
ALPHA(T, J)=R(IMIN)
TMIN=FM(R(IMIN))
ELSE
BETA(I, D) =R{ININ)
TMIN=FM(R(IMIN))
ENDIF
ENDIF
RETURN
END

SUBROUTINE TESTMINB(MKOUNT,I,J,LENL,REND)

s sl

s 1 Ayl e



014811C
01482:C
01683:C
01484:C
014835:C
01484:C
01687:C
01488:¢C
01639:C
014690¢C
01691:C
01692:C
01693:C
01694:C
014693:C
01496:C
014697:C
014698:C
01699:C
01700:C
01701:C
01702:C
01703:C
01704:C
01705:C
017063C
01707:C
01708:C
01709:C
01710:C
01711:C
01712:C
01713:C
01714:C
01715:C
01716:C
01717:C
01718:C
01719:C
01720:C
01721:C
01722:C
01723:C
01724:C
017232

017261C
01727:C
01728:C
01729:C
01730:C
01731:C

FOR A GIVEN COEFFICIENT ALPHA(I,J) OR BETACI,J)
TESTMINB FINDS AND TESTS THE CRITICAL POINTS OF
THE ATH DEGREE POLYNOMIAL REPRESENTING GF TO
DETERMINE WHICH POINT YIELDS THE SMALLEST VALUE FOR GF
WHEN GF 1S VIEWED AS A FUNCTION OF THAT COEFFICIENT,
THE SMALLEST VALUE IS COMPARED MITH THE VALUE
AT THE ENDPOINTS OF THE INTERVAL (LEND,REND)
TO DETERMINE AT WHAT NUMBER THE MINIMUM VALUE
OF GF OCCURS. THE NUMBER CHOSEN RECOMES YHE NEW
VALUE FOR ALPHA(I,J) OR BETA(I,J) .

INPUT

MKOUNT...

I'JOO
LEND,REND. .

(IN COMMON)
hLPHh'BEThoo

A’BOOO

NXsNY. oo

KXpKYsn s

LEFTX,LEFTY,..

Wwi,uW2...

MKOUNT EVEN MEANS THE COEFFICIENT
INVOLVED IN MINIMIZATION IS IN THE ALPHA
ARRAY. MKOUNT ODD MEANS THE COEFFICIENT
IS IN THE BETA ARRAY,

SUBSCRIPTS FOR COEFFICIENT INVOLVED

IN MINIMIZATION

LEFT AND RIGHT ENDPOINTS FOR

INTERVAL

ARRAYS CONTAINING COEFFICIENTS OF
TENSOR FRODUCT SPLINE MAPPING.
ARRAYS CONTAINING COORDINATES FOR
SQUARE MESH.,

DIMENSION OF SPLINE IN X DIRECTION
»Y DIRECTION OR

TOTAL NG, OF B-SPLINES IN X DIRECTION,
Y DIRECTION.

ORDER OF B-SPLINES IN X DIRECTION,
Y DIRECTION.

ARRAYS IDENTIFYING KNOT INTERVALS
IN WHICH SQUARE MESH CODRDINATES
LIE. (LEFTX(I)=J IMPLIES

TXCI) <=A(T)<TX(J+1))

WEIGHTS FOR JACOERIAN, DOT PRODBUCT
TO BE USED IN GF.

NKNOTX,NKNOTY. . .DINENSIONS FOR SQUARE MESH

FKOUNT...

xKOOO

OUTPUT

OR NUMBER OF ELEMENTS IN ARRAYS A,B.
PARAMETER CONTAINING NUMBER OF CALLS TO
GF

ARRAY CONTAININ POINTS -2,-1,0,1,2
WHICH ARE USED AS TEST POINTS IN
DETERMINING THE COCFFICIENTS OF THE

4TH DEGREE POLYNOMIAL WHICH APPROXI-
MATES GF.
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01732:C

01733:C ALPHA(I,J) OR BETACI,J)..NEW VALUE FOR COEFFICIENT
01734:C

017352 COMMON/COEF /ALPHA(100,100),BETA(100,100)

017362 COMMON/PARAM/FKOUNT

01737 COMMON/PARAM2/A(100) ,B(100) yNX,NY KX ,KY

017382 X ,LEFTX(100),LEFTY(100)

01739 COMMON/KNOT/NKNOTX, NKNOTY

01740 COMMON/UWEIGHTS/W1,u2

017412 COMMON/XKS/XK(3) .
01742 REAL R(3),LEND

01743: FM(R)=C1XRX%44+C2XRXRXR4+CIXRXR+CAXR4CT

01744; CENTER=(LEND+REND) /2, .
01745 XK(1)=LEND-CENTER

017468 XK(2)=(LEND-CENTER)/2,

017472 XK(3)=0.

01748 XK(4)=(REND-CENTER)/2.

01749 XK(5)=REND~CENTER

01750¢ CALL CRIT(CENTER,C1,C2,C3,C4,C5,NROOTS,R,MAOUNT,

01751¢ x LD

017523 IF (NROOTS.NE,-1) GOTO 55

017332 RETURN

01754% S5  CONTINUE

017553 THMIN=10.0E10

01736 I1B=0

01757: DO 600 IR=1,NROQTS

0173582 IF(R(IR)+CENTER.GE.LEND.AND.RC(IR) +CENTER.LE.RENID THEN
01759 IB=IR+1

017460 R(IBY=R(IR)

01761: ENDIF

01762% 600 CONTINUE

01763: NROOTS=IH

01764: IF (NROOTS.EQ.0) THEN

01765 IF (MKDUNT/2%2.EQ.MKOUNT) THEN .
017662 ALFHA(T, J)=CENTER

01767 TMIN=FM(CENTER)

017682 ELSE l
01769: BETA(I, J)=CENTER f
01770 TMIN=FM{CENTER)

017713 ENDIF

01772: ELSE

01773: Do 700 IR=1,NROOTS .
01774 FMINN=FM(R(IR))

01775: IF(FMINN.LT.TMIN) THEN

01776 TMINSFMINN

01777: IMIN=IR

01778: ENDIF

01779: 700 CONTINUE

01780: FMINNL=FM(LEND)

01781¢ FMINNR=FM(RENI)

017823 IF(FMINNL.LT.FMINNR) THEN

B e st
e » -



01783
01784:
01783
01784
01787¢
01788:
01789
017903
017912
01792:
01793¢
01794
017952
017963
01797
01798
01799:C
01800:C
01801:C
018023
01803:C
01804:C
01805:C
01806:C
01807:C
01808:C
01809:C
01810:C
01811:C
01812:C
01813:C
01814:C
018135:C
01816:C
01817:C
01818:C
01819
018202
018212
018223
01823
018242
018252
01824
01827¢
01828:
01829:
018302
01831:
01832:
018332

IFCFMINNL.LT.TMIN) THEN
 RCIMIN)=LEND
TMINSFN(LEND)
ENDIF
ELSE IF(FMINNR.LT.TMIN) THEN
RCININ)=REND
THIN=FM(REND)
ENDIF
IF (MKOUNT/2%2,EQ. MKOUNT) THEN
ALPHA(T, J)=R(IMIN) +CENTER
ELSE
BETACI,J)=R(IMIN) +CENTER
ENDIF
ENDIF
RETURN
END

SUBROUTINE CUBIC(A3,A2,A1,A0,NROOTS,RR)

CUBIC COMPUTES THE ROOTS OF A CUBIC POLY-
NOMIAL USING FORMULAS FROM *HANDBOOK OF
MATHEMATICAL TABLES AND FORMULAS® BY RICHARD
STEVENS BURINGTON,PH.D., MCGRAW-HILL ,NEW YORK,
1962,

INPUT
A3,A2,A1,A0,. COEFFICIENTS OF CURIC POLY-
NOMIAL

QUTPUT

NROOTS... NUMBER OF DIFFERENT REAL ROOTS
RR.u e ARRAY CONTAINING REAL ROQTS

REAL RR(3)

PIs3.1415

P=A2/A3

Q=A1/A3

R=A0/A3

A=1,/3.8(3.5Q-P%P)

B=1.,/27 .%(2,SPEPXP-9 . XPXQ+27.SR)
IF (ABS(B).LT.1.0E-06) THEN
SIGNB=0,

ELSE

SIGNB=R/ABS(B)

ENDIF

BB=BxXB/4,

AAA=PARARA/27,

TEST=BB+AAA
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01834!
01835
01834
01837:
01838
01839
01840:
01841:
01842:
01843
01844:
0184353
01846:
0ig47:
01848
01849
01859
01851
018523
01853
01854:
018558
01856
01857:
01858:
01839
01860
01861
01862}
01843
018642
0184352
018663
01847:C
01868:C
01869:C
01870:
01871:C
01872:
01873:C
01874:C
01873:C
01874:C
01877:C
01878:C
01879:C
01880:C
01881:C
oies2:
01883:C
01884:C

IF(TEST.LT.0) THEN
NROOTS=3
PHI=ACOS (~-SIGNBXSQRT(BB/ (~AAA)))
SRT=SART (~A/3.)
RR(1)=2,%SRTXCOS(PH1/3.,)
RR(2)=2,%SRTXCOS(PHI/3.42.8P1/3,)
RR(3)=2,8SRTXCOS(PHI/3,.+4.%P1/3,)
ELSE IF(TEST.GT.0) THEN
NROOTS=1
S1=-,5XB+SART(TEST)
S2=-,3%B-SART(TEST)
IF (ABS(S1).LT.1.0E-04) THEN
SIGNS1=0,
ELSE
SIGNS1281/.,BS(51)
ENDIF
IF (ABS(S2).LT.1.0E-058) THEN
SIGN32=0.
ELSE
SIGNS2=52/ARS(S2)
ENDIF
RR{1)=SIGNS1®(ABS(S1)X%(1./3. )
X +SIGNS2X(ABRS(S2)%%x(1./3.))

ELSE
NROOTS=2
RR(1)=-SIGNBX2,.XSQRT(-A/3,)
RR(2)=SIGNEXSORT(-A/3.)
END IF
D0 10 I=1,3
RR{I)=RR(I)-P/3.

10 CONTINUE
RETURN
END

SUBROUTINE EXTREMES(X,Y,TMAX, TMIN,NR,NC)
EXTREMES FINDS THE MAXIMUM AND MINIMUM VALUES
AMONG THE ELEMENTS OF TWO TwWO-DIMENSIONAL ARRAYS.

INPUT

XoooX COMPONENT

YooY COMFONENT

NR...['IMENSION UF X ARRAY

NC...LIMENSION OF Y ARRAY

OUTPUT
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01885:C THAX. . \MAXINUN VALUE IN ARRAYS

01884:C THIN.. . MINIMUN VALUE IN ARRAYS

01887:C :
01888! REAL X(100,100),Y(100,100) i
01889! THAX=X(1,1) :
01890: THINsX(1,1) 4
01891: DO 20 I=1,NR i
01892: 10 10 Je=i,NC j
01893: IF(X(I,J).GT. THAX) TMAXsX(I,J) 3
01894 IF(XCI,J) LT THIN) TMINsX(I,J) 1
01895 IFCY(T,J5.GT. THAX) TMAXaY(I,J) %
01896: IF(Y(T,J) LT, THIN) TMIN=Y(I,J) {
01897 10 CONTINUE ]
01898: 20 CONTINUE

01899: RETURN

01900: END

01901:C .
01902:C

01903:C ;
01904¢ SUBROUTINE NORM(X,Y,TMAX, THIN,NR,NC) 3
01905:C E
01906:C THIS ROUTINE NORMALIZES THE VALUES OF TWO

01907:C TWO DIMENSIONAL ARRAYS SO THAT THEY LIE

01908:C BETWEEN O AND 1 INCLUSIVE, ;
01909:C !
01910:C  INPUT '
01911:C

01912: X..oX COMPONENT ARRAY ON INFUT AND

01913:C NORMALIZED X COMPONENT ARRAY ON OUTFUT

01914:C Y...Y COMPONENT ARRAY ON INPUT AND ’
01915:¢C NORMALIZED Y COMPONENT ARRAY ON OUTPUT

01916:C NR,..DIMENSION OF X ARRAY

01917:C NC...DIMENSION OF Y ARRAY ‘
01918:C THAX.. .MAXIMUM VALUE IN ARRAYS

01919:C TMIN...MININUM VALUE IN ARRAYS

01920:C .
01921:C  OUTPUT R
01922 ;
01923:C X+ NORMALIZED X ARRAY ;
01924:C Y...NORMALIZED Y ARRAY :
01925: :
019262 REAL X(100,100),Y(100,100) i
01927: DO 20 I=3,NR )
01928 D0 10 J=1,NC &
01929 XCI, ) =(X(1,J)-THIN)/ CTHAX-TMIN) g
01930¢ YCI, D=(Y(T,J)-THIN)/ (THAX-TKIN) i
01931: 10 CONTINUE ]
01932: 20 CONTINUE [
01933¢ RETURN 2
01934¢ END

BOTTOM
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