29 research outputs found

    Shape Formation by Programmable Particles

    Get PDF
    Shape formation (or pattern formation) is a basic distributed problem for systems of compu- tational mobile entities. Intensively studied for systems of autonomous mobile robots, it has recently been investigated in the realm of programmable matter, where entities are assumed to be small and with severely limited capabilities. Namely, it has been studied in the geometric Amoebot model, where the anonymous entities, called particles, operate on a hexagonal tessella- tion of the plane and have limited computational power (they have constant memory), strictly local interaction and communication capabilities (only with particles in neighboring nodes of the grid), and limited motorial capabilities (from a grid node to an empty neighboring node); their activation is controlled by an adversarial scheduler. Recent investigations have shown how, start- ing from a well-structured configuration in which the particles form a (not necessarily complete) triangle, the particles can form a large class of shapes. This result has been established under several assumptions: agreement on the clockwise direction (i.e., chirality), a sequential activation schedule, and randomization (i.e., particles can flip coins to elect a leader). In this paper we provide a characterization of which shapes can be formed deterministically starting from any simply connected initial configuration of n particles. The characterization is constructive: we provide a universal shape formation algorithm that, for each feasible pair of shapes (S_0,S_F), allows the particles to form the final shape SF (given in input) starting from the initial shape S_0, unknown to the particles. The final configuration will be an appropriate scaled-up copy of S_F depending on n. If randomization is allowed, then any input shape can be formed from any initial (simply connected) shape by our algorithm, provided that there are enough particles. Our algorithm works without chirality, proving that chirality is computationally irrelevant for shape formation. Furthermore, it works under a strong adversarial scheduler, not necessarily sequential. We also consider the complexity of shape formation both in terms of the number of rounds and the total number of moves performed by the particles executing a universal shape formation algorithm. We prove that our solution has a complexity of O(n^2) rounds and moves: this number of moves is also asymptotically worst-case optimal

    Shape formation by programmable particles

    Get PDF
    Shape formation (or pattern formation) is a basic distributed problem for systems of computational mobile entities. Intensively studied for systems of autonomous mobile robots, it has recently been investigated in the realm of programmable matter, where entities are assumed to be small and with severely limited capabilities. Namely, it has been studied in the geometric Amoebot model, where the anonymous entities, called particles, operate on a hexagonal tessellation of the plane and have limited computational power (they have constant memory), strictly local interaction and communication capabilities (only with particles in neighboring nodes of the grid), and limited motorial capabilities (from a grid node to an empty neighboring node); their activation is controlled by an adversarial scheduler. Recent investigations have shown how, starting from a well-structured configuration in which the particles form a (not necessarily complete) triangle, the particles can form a large class of shapes. This result has been established under several assumptions: agreement on the clockwise direction (i.e., chirality), a sequential activation schedule, and randomization (i.e., particles can flip coins to elect a leader). In this paper we provide a characterization of which shapes can be formed deterministically starting from any simply connected initial configuration of n particles. The characterization is constructive: we provide a universal shape formation algorithm that, for each feasible pair of shapes (S0, SF), allows the particles to form the final shape SF (given in input) starting from the initial shape S0, unknown to the particles. The final configuration will be an appropriate scaled-up copy of SF depending on n. If randomization is allowed, then any input shape can be formed from any initial (simply connected) shape by our algorithm, provided that there are enough particles. Our algorithm works without chirality, proving that chirality is computationally irrelevant for shape formation. Furthermore, it works under a strong adversarial scheduler, not necessarily sequential. We also consider the complexity of shape formation both in terms of the number of rounds and the total number of moves performed by the particles executing a universal shape formation algorithm. We prove that our solution has a complexity of O(n2) rounds and moves: this number of moves is also asymptotically worst-case optimal

    Brief Announcement: Shape Formation by Programmable Particles

    Get PDF
    Shape formation is a basic distributed problem for systems of computational mobile entities. Intensively studied for systems of autonomous mobile robots, it has recently been investigated in the realm of programmable matter. Namely, it has been studied in the geometric Amoebot model, where the anonymous entities, called particles, operate on a hexagonal tessellation of the plane, have constant memory, can only communicate with neighboring particles, and can only move from a grid node to an empty neighboring node; their activation is controlled by an adversarial scheduler. Recent investigations have shown how, starting from a well-structured configuration in which the particles form a (not necessarily complete) triangle, the particles can form a large class of shapes. This result has been established under several assumptions: agreement on the clockwise direction (i.e., chirality), a sequential activation schedule, and randomization. In this paper we provide a characterization of which shapes can be formed deterministically starting from any simply connected initial configuration of n particles. As a byproduct, if randomization is allowed, then any input shape can be formed from any initial (simply connected) shape by our algorithm, provided that n is large enough. Our algorithm works without chirality, proving that chirality is computationally irrelevant for shape formation. Furthermore, it works under a strong adversarial scheduler, not necessarily sequential. We also consider the complexity of shape formation both in terms of the number of rounds and the total number of moves performed by the particles executing a universal shape formation algorithm. We prove that our solution has a complexity of O(n^2) rounds and moves: this number of moves is also asymptotically optimal

    Exploration of Finite 2D Square Grid by a Metamorphic Robotic System

    Full text link
    We consider exploration of finite 2D square grid by a metamorphic robotic system consisting of anonymous oblivious modules. The number of possible shapes of a metamorphic robotic system grows as the number of modules increases. The shape of the system serves as its memory and shows its functionality. We consider the effect of global compass on the minimum number of modules necessary to explore a finite 2D square grid. We show that if the modules agree on the directions (north, south, east, and west), three modules are necessary and sufficient for exploration from an arbitrary initial configuration, otherwise five modules are necessary and sufficient for restricted initial configurations

    The Canonical Amoebot Model: Algorithms and Concurrency Control

    Get PDF
    The amoebot model abstracts active programmable matter as a collection of simple computational elements called amoebots that interact locally to collectively achieve tasks of coordination and movement. Since its introduction (SPAA 2014), a growing body of literature has adapted its assumptions for a variety of problems; however, without a standardized hierarchy of assumptions, precise systematic comparison of results under the amoebot model is difficult. We propose the canonical amoebot model, an updated formalization that distinguishes between core model features and families of assumption variants. A key improvement addressed by the canonical amoebot model is concurrency. Much of the existing literature implicitly assumes amoebot actions are isolated and reliable, reducing analysis to the sequential setting where at most one amoebot is active at a time. However, real programmable matter systems are concurrent. The canonical amoebot model formalizes all amoebot communication as message passing, leveraging adversarial activation models of concurrent executions. Under this granular treatment of time, we take two complementary approaches to concurrent algorithm design. Using hexagon formation as a case study, we first establish a set of sufficient conditions for algorithm correctness under any concurrent execution, embedding concurrency control directly in algorithm design. We then present a concurrency control framework that uses locks to convert amoebot algorithms that terminate in the sequential setting and satisfy certain conventions into algorithms that exhibit equivalent behavior in the concurrent setting. Together, the canonical amoebot model and these complementary approaches to concurrent algorithm design open new directions for distributed computing research on programmable matter

    Line-Recovery by Programmable Particles

    Full text link
    Shape formation has been recently studied in distributed systems of programmable particles. In this paper we consider the shape recovery problem of restoring the shape when ff of the nn particles have crashed. We focus on the basic line shape, used as a tool for the construction of more complex configurations. We present a solution to the line recovery problem by the non-faulty anonymous particles; the solution works regardless of the initial distribution and number f<n−4f<n-4 of faults, of the local orientations of the non-faulty entities, and of the number of non-faulty entities activated in each round (i.e., semi-synchronous adversarial scheduler)

    Collisionless Pattern Discovery in Robot Swarms Using Deep Reinforcement Learning

    Full text link
    We present a deep reinforcement learning-based framework for automatically discovering patterns available in any given initial configuration of fat robot swarms. In particular, we model the problem of collision-less gathering and mutual visibility in fat robot swarms and discover patterns for solving them using our framework. We show that by shaping reward signals based on certain constraints like mutual visibility and safe proximity, the robots can discover collision-less trajectories leading to well-formed gathering and visibility patterns

    Search by a Metamorphic Robotic System in a Finite 3D Cubic Grid

    Get PDF
    We consider search in a finite 3D cubic grid by a metamorphic robotic system (MRS), that consists of anonymous modules. A module can perform a sliding and rotation while the whole modules keep connectivity. As the number of modules increases, the variety of actions that the MRS can perform increases. The search problem requires the MRS to find a target in a given finite field. Doi et al. (SSS 2018) demonstrate a necessary and sufficient number of modules for search in a finite 2D square grid. We consider search in a finite 3D cubic grid and investigate the effect of common knowledge. We consider three different settings. First, we show that three modules are necessary and sufficient when all modules are equipped with a common compass, i.e., they agree on the direction and orientation of the x, y, and z axes. Second, we show that four modules are necessary and sufficient when all modules agree on the direction and orientation of the vertical axis. Finally, we show that five modules are necessary and sufficient when all modules are not equipped with a common compass. Our results show that the shapes of the MRS in the 3D cubic grid have richer structure than those in the 2D square grid
    corecore