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Abstract
Shape formation is a basic distributed problem for systems of computational mobile entities.
Intensively studied for systems of autonomous mobile robots, it has recently been investigated in
the realm of programmable matter. Namely, it has been studied in the geometric Amoebot model,
where the anonymous entities, called particles, operate on a hexagonal tessellation of the plane,
have constant memory, can only communicate with neighboring particles, and can only move
from a grid node to an empty neighboring node; their activation is controlled by an adversarial
scheduler. Recent investigations have shown how, starting from a well-structured configuration
in which the particles form a (not necessarily complete) triangle, the particles can form a large
class of shapes. This result has been established under several assumptions: agreement on the
clockwise direction (i.e., chirality), a sequential activation schedule, and randomization.

In this paper we provide a characterization of which shapes can be formed deterministic-
ally starting from any simply connected initial configuration of n particles. As a byproduct, if
randomization is allowed, then any input shape can be formed from any initial (simply connec-
ted) shape by our algorithm, provided that n is large enough. Our algorithm works without
chirality, proving that chirality is computationally irrelevant for shape formation. Furthermore,
it works under a strong adversarial scheduler, not necessarily sequential. We also consider the
complexity of shape formation both in terms of the number of rounds and the total number of
moves performed by the particles executing a universal shape formation algorithm. We prove
that our solution has a complexity of O(n2) rounds and moves: this number of moves is also
asymptotically optimal.
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48:2 Brief Announcement: Shape Formation by Programmable Particles

1 Background

The term programmable matter, introduced by Toffoli and Margolus [4], is used to denote
matter that has the ability to change its physical properties in a programmable fashion,
based upon user input or autonomous sensing. Often programmable matter is envisioned as
a very large number of very small locally interacting computational particles, programmed
to collectively perform a complex task. Such particles could have applications in a variety of
important situations: smart materials, minimally invasive surgery, etc.

Of particular interest, from the distributed computing viewpoint, is the geometric Amoebot
model. In this model, introduced in [3] and so called because inspired by the behavior of
amoeba, programmable matter is viewed as a swarm of decentralized autonomous self-
organizing entities, operating on a hexagonal tessellation of the plane. These entities, called
particles, are constrained by having simple computational capabilities (they are finite-state
machines), strictly local interaction and communication capabilities (only with particles
located in neighboring nodes of the hexagonal grid), and limited motorial capabilities (from
a grid node to an empty neighboring node); furthermore, their activation is controlled by
an adversarial (but fair) synchronous scheduler. A feature of the Amoebot model is that
particles can be in two modes: contracted and expanded. When contracted, a particle occupies
only one node, while when expanded the particle occupies two neighboring nodes; it is indeed
this ability of a particle to expand and contract that allows it to move on the grid.

The pioneering study of [1] on shape formation in the geometric Amoebot model showed
how particles can build simple shapes, such as a hexagon or a triangle. Subsequent investiga-
tions [2] have recently shown how, starting from a well-structured configuration in which the
particles form a (not necessarily complete) triangle, they can form a larger class of shapes
under several assumptions, including randomization (which is used to elect a leader), chirality,
and a sequential activation schedule (i.e., at each time unit the scheduler selects only one
particle which will interact with its neighbors and possibly move). Notice that, without the
availability of a unique leader (provided by randomization), dropping the chirality assumption
becomes a problem with a non-sequential schedule.

2 Our Contributions

We continue the investigation, significantly extending the existing results. Among other things,
we provide a constructive characterization of which shapes SF can be formed deterministically
starting from an unknown simply connected initial configuration S0 of n particles (i.e., a
connected configuration without “holes”).

As in [2], we assume that the size of the description of SF is constant with respect to
the size of the system, so that it can be encoded by each particle in a part of its internal
memory. Such a description is available to all the particles at the beginning of the execution
as their “input”. The particles will form a final configuration that is an appropriate scaling,
translation, rotation, and perhaps reflection of the input shape SF . Since all particles of S0
must be used to construct SF , they may have to scale up SF in order to fit: we stress that an
appropriate scale factor is unknown to particles, and they must determine it autonomously.
(We assume that the input shape SF that is actually given to the particles is the smallest
possible among the scaled copies of itself that can be embedded in the hexagonal grid.)

Given two shapes S0 and SF , we say that the pair (S0, SF ) is feasible if there exists a
deterministic algorithm that, in every execution (thus, regardless of the activation schedule),
allows the particles to form a scaled copy of SF starting from S0, and no longer move. Our
characrerization of feasibility is based on symmetries that are unbreakable: a shape is said
to be unbreakably k-symmetric, for some integer k > 1, if it has a center of k-fold rotational
symmetry that does not coincide with any vertex of the hexagonal grid.
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I Theorem 1. If (S0, SF ) is a feasible pair and S0 is unbreakably k-symmetric, then SF is
also unbreakably k-symmetric.

Interestingly, all the pairs not excluded by the above theorem turn out to be feasible
(provided that the size of S0 is large enough with respect to the size of SF ), and for them we
give a universal shape formation algorithm: this algorithm does not need any information on
S0, except that it is simply connected. The algorithm first elects 1, 2, or 3 leaders among
the particles. Electing a unique leader may be impossible due to the symmetry of S0: if
k > 1 leaders are elected, it means that S0 is necessarily unbreakably k-symmetric. Each
leader takes an equal portion of S0 and rearranges it into a straight line. Then, all leaders
reconfigure their respective lines to form a portion of SF , scaled up by an appropriate factor.
The optimal factor is computed by each leader by simulating a Turing machine on its line of
particles: the leader acts as the head, and uses the particles as memory cells on a tape.

I Theorem 2. Let P be a system of n particles forming a simply connected shape S0. Let
SF be a shape of constant size m that is unbreakably k-symmetric if S0 is unbreakably
k-symmetric. If all particles of P execute the universal shape formation algorithm with input
a representation of the final shape SF , and if n is at least Θ(m2), then eventually P forms a
scaled copy of SF , and the particles cease to move.

The total number of movements performed by the system executing our algorithm is
O(n2), which is asymptotically optimal: indeed, if S0 is a full hexagon and SF is a line
segment, Ω(n2) moves are needed. The number of rounds (i.e., periods of time in which each
particle is activated at least once) that an execution of our algorithm takes is also O(n2).

Our algorithm works under a stronger adversarial scheduler than [2], as it activates
an arbitrary number of particles at each execution step (i.e., not necessarily just one, like
the sequential scheduler). We also need a slightly less demanding communication system.
Moreover, in our algorithm, no chirality is assumed: indeed, unlike in [2], different particles
may have a different notion of clockwise direction. Because of this difficutly, part of the
algorithm is dedicated to a “handedness agreement” procedure. We stress that our results
prove that chirality is computationally irrelevant for shape formation.

These results concern deterministic shape formation. If randomization were allowed, we
could always elect a unique leader with arbitrarily high probability, and apply our algorithm
to any pair of shapes (S0, SF ) where S0 is simply connected, regardless of their symmetry.
This extends the result of [2], which assumes the initial configuration to be a (possibly
incomplete) triangle. Additionally, our notion of shape generalizes the one used in [2], where
a shape is only a collection of full triangles, while we include also 1-dimensional segments
as its constituting elements. Our technique actually allows us to generalize the concept of
shape much further, to include essentially anything that is Turing-computable.
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