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—— Abstract

We consider search in a finite 3D cubic grid by a metamorphic robotic system (MRS), that consists
of anonymous modules. A module can perform a sliding and rotation while the whole modules
keep connectivity. As the number of modules increases, the variety of actions that the MRS can
perform increases. The search problem requires the MRS to find a target in a given finite field.
Doi et al. (SSS 2018) demonstrate a necessary and sufficient number of modules for search in a
finite 2D square grid. We consider search in a finite 3D cubic grid and investigate the effect of
common knowledge. We consider three different settings. First, we show that three modules are
necessary and sufficient when all modules are equipped with a common compass, i.e., they agree
on the direction and orientation of the z, y, and z axes. Second, we show that four modules are
necessary and sufficient when all modules agree on the direction and orientation of the vertical axis.
Finally, we show that five modules are necessary and sufficient when all modules are not equipped
with a common compass. Our results show that the shapes of the MRS in the 3D cubic grid have
richer structure than those in the 2D square grid.
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1 Introduction

Swarm intelligence has shed light to collective behavior of autonomous entities with simple
rules, such as ant, boid, and particles. The notion is applied to a collection of robots and
swarm robotics has attracted much attention in the past two decades. Each autonomous
element of the system is called a robot, module, agent, process, and sensor, and a variety of
swarm robot systems have been investigated such as the autonomous mobile robot system [16],
the population protocol model [3], the programmable particles [5], Kilobot [15], and 8D
Catoms [17]. Dumitrescu et al. considered the metamorphic robotic system (MRS), that
consists of a collection of modules in the infinite 2D square grid [10, 9]. The modules are
anonymous, i.e., they are indistinguishable. They are autonomous and uniform, i.e., each
module autonomously decides its movement by a common algorithm. They are oblivious, i.e.,
each module has no memory of past. Thus, each module decides its behavior by observing
other modules in nearby cells. Each module can perform a sliding to a side-adjacent cell and
a rotation by 90 degrees around a cell. The modules must keep connectivity, which is defined
by side-adjacency of cells occupied by modules. The authors considered reconfiguration, that
requires the MRS to change the initial shape to a specified final shape [10]. They showed
that any horizontally convex connected initial shape of an MRS can be transformed to any
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convex final shape via a straight chain shape. Later Dumitrescu and Pach showed that any
connected initial shape can be transformed to any connected final shape via a straight chain
shape [8]. In other words, the MRS has the ability of “universal reconfiguration.”

Reconfiguration can generate dynamic behavior of the MRS. Dumitrescu et al. demon-
strated that the MRS can move forward by repeating a reconfiguration [9]. They showed a
reconfiguration that realizes the fastest locomotion. Doi et al. pointed out that the oblivious
modules can use the shape of the MRS as global memory and the MRS can solve more
complicated problems as the number of modules increases. They investigated search in a
finite 2D square grid, that requires the MRS to find a target cell in a finite rectangle field [7].
Each module does not know the position of the target cell or the initial configuration of
the MRS. They showed that if the modules agree on the cardinal directions (i.e., north,
south, east and west), three modules are necessary and sufficient, otherwise five modules
are necessary and sufficient. Nakamura et al. considered evacuation of the MRS from a
finite rectangular field in the 2D square grid [14]. There is a hole (i.e., two side-adjacent
cells) on the wall of the field, and the MRS is required to exit from it from an arbitrary
initial position and arbitrary initial shape. They showed that two modules are necessary and
sufficient when the modules agree on the cardinal directions, otherwise four modules are
necessary and sufficient.

In this paper, we investigate the effect of common knowledge on search by the MRS
in the 3D cubic grid. We consider the following three cases: (i) modules equipped with
a common compass (i.e., they agree on the direction and orientation of z, y, and z axes).
(i) modules equipped with a common vertical axis (i.e., they agree on the direction and
orientation of z axis), and (4i7) modules not equipped with a common compass (i.e., they
have no agreement on directions and orientations). We demonstrate that three modules are
necessary and sufficient when the modules are equipped with a common compass and five
modules are necessary and sufficient when the modules are not equipped with a common
compass. The numbers of sufficient modules in the 3D cubic grid are the same as those in
the 2D square grid [7] because the MRS has more states in the 3D cubic grid than in the
2D square grid. For the intermediate case with a common vertical axis, we demonstrate
that four modules are necessary and sufficient. Thus, our results in the 3D cubic grid show
a smooth trade-off between the computational power of the MRS and common knowledge
among modules, that the previous results in the 2D square grid could not find. We present
search algorithms for these three settings and show the necessity by examining the state
transition graph of the MRS.

Related work. Reconfiguration of swarm robot systems have been discussed for the
MRS [8, 10], autonomous mobile robots [11, 16] and programmable particles [6, 12]. Michail
et al. considered the programmable matter system, that is similar to the MRS and investigated
reconfiguration by rotations only and that by rotations and slidings [13]. They showed
that the combination of rotations and slidings guarantees universal reconfiguration, while
rotations only cannot. They also presented O(n?)-time reconfiguration algorithm by rotations
and slidings, where n is the number of computing entities. Almethen et al. considered
reconfiguration by line-pushing, where each module is equipped with the ability of pushing
a line of modules [2]. They presented O(nlogn)-time universal reconfiguration algorithm
that does not promise connectivity of intermediate shapes and O(n4/n)-time reconfiguration
algorithm that transforms a diagonal line into a straight chain with preserving connectivity.
The same authors later showed that their programmable matter system has the ability of
universal reconfiguration and O(n+/n)-time reconfiguration algorithm together with Q(nlogn)
lower bound [1].
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Little has been discussed for memory complexity of swarm robot systems. The autonomous
mobile robot system consider extreme cases, where all robots are equipped with either no
memory or unlimited memory [16]. Das et al. introduced the luminous robot model, where
each robot is equipped with a light [4]. A luminous robot can change the color of its light
and the color of the light can be observed by other robots. Thus, a luminous robot has a
state. The authors showed that the robots can be synchronized by a constant number of
colors. Doi. et al. pointed out that the number of memory-less modules of the MRS can
be considered as an indicator of memory complexity [7]. The existing two papers [7, 14]
demonstrated the relationship between search and evacuation in 2D square grid. Finally, the
programmable particle system [5] consider computing entities with constant-size memory.

2  Preliminary

We consider a metamorphic robotic system (MRS) in a finite 3D cubic grid. A metamorphic
robotic system consists of a collection of anonymous (i.e., indistinguishable) modules. A
module can observe the positions of other modules in nearby cells, computes its next movement
with a common algorithm, and performs the movement.

Each cell of the 3D cubic grid can adopt at most one module at a time. Cell (z,y, z) is the
cell surrounded by grid points (z,y, 2), (z+ 1,9, 2), (z,y+1,2), (x,y,2+1), (x+ 1,y +1,2),
(x+1,y,2+ 1), (x,y+1,z4+1),and (x + 1,y + 1,2+ 1). Cells (z+1,y,2), (z,y+ 1,2),
(,y,2+ 1), (x — 1,y,2), (z,y — 1,2), (x,y,z — 1) are side-adjacent to cell (x,y,z). We
consider the positive = direction as Fast, the positive y direction as North, and the positive
z direction as Up.

The MRS moves in a finite field, which is a cuboid of width w, depth d and height h with
its two diagonal cells being (0,0,0) and (w—1,d —1,h —1). We consider two types of planes;
the first type is a set of cells forming a plane perpendicular to one of the z, y, and z axes.
The second type is a set of cells parallel to one of the x, y, and z axes and diagonal to the
remaining two axes. For example, {(z,y, z)|y = s} for some s € Z is a plane of the first type
and {(z,y, z)|x +y = s’} for some s’ € Z is a plane of the second type. A line of cells is a set
of cells forming a horizontal or vertical line on a plane. For example, {(z,y, 2)|ly = u,z = v}
for some u,v € Z is a line and {(z,y, z)|x +y = v,z = v’} for some «/,v’ € Z is a line.

The field is surrounded by six planes, which we call walls. More precisely, the walls are
{(z,y,2)|x = —1} (the West wall), {(z,y,2)ly = —1} (the South wall), {(z,y,2)|z = —1}
(the Bottom wall), {(z,y, z)|z = w} (the East wall), {(x,y, )|y = d} (the North wall), and
{(z,y,2)|z = h} (the Top wall).

All modules synchronously perform observation, computation, and movement in each
discrete time t = 0,1,2,.... A configuration of the MRS is the set of cells occupied by the
modules. We say two modules are side-adjacent if they are in the two side-adjacent cells. We
also say that a module m is side-adjacent to cell ¢ if the cell occupied by m is side-adjacent
to ¢. Given a configuration of the MRS, consider a graph where each vertex corresponds
to a module and there is an edge between two vertices if the corresponding modules are
side-adjacent. If this graph is connected, we say the MRS is connected.

A module can perform two types of movements, sliding and rotation.

1. Sliding: When two modules m; and m; are side-adjacent, another module m; can move
from a cell side-adjacent to m; to an empty cell side-adjacent to m; and m; along m;
and m;. During the movement, m,; and m; cannot perform any movement. See Figure 1
as an example.
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Figure 2 Example of an observation at the red module with a local coordinate system.

2. Rotation: When two modules m; and m; are side-adjacent, m; can move to a cell side-
adjacent to m; by rotating 7/2 in some direction. There are six cells side-adjacent to m;
and m; can move to four of them by rotation. During the movement, m; cannot move
and the cells that m; passes must be empty. See Figure 1 as an example.

Note that several modules can move at the same time as long as their moving tracks do not

overlap. The modules must keep two types of connectivity at each time step.

1. At the beginning of each time step, the modules must be connected.

2. At each time step, the modules that do not move must be connected.

We assume that each module obtains the result of an observation and moves to the next
cell in its local x-y-z coordinate system. We assume that the origin of the local coordinate
system of a module is its current cell and all local coordinate systems are right-handed.
In this paper, we consider three types of MRSs with different degree of agreement on the
coordinate system. When all modules agree on the directions and orientations of z, ¥y, and z
axes, we say the MRS is equipped with a common compass. When all modules do not agree
on the directions or orientations of x, y, and z axes, we say the MRS is not equipped with a
common compass. Hence, local coordinate systems are not consistent among the modules.
As an intermediate model, we consider modules that agree on the direction and orientation of
the vertical axis. In this case, we say the MRS is equipped with a common vertical axis. The
state of the MRS is its local shape. If the modules are equipped with a common compass or
a common vertical axis, the state of the MRS contains common directions and orientations.
Otherwise the state of the MRS does not contain any directions and orientations.

The search problem requires the MRS to find a target placed at one cell in the field from
a given initial configuration. We call the cell containing the target the target cell. The MRS
finds a target when one of its modules enters the target cell.

When a module executes the common algorithm, the input is the observation of cells in a
cube of size (2k+1) x (2k+1) x (2k+1) centered at the module (i.e., its k-neighborhood). The
value of k is fixed by the algorithm. A module detects whether each cell in its k-neighborhood
is a wall cell or not and whether it is occupied by a module or not. Let C,, be the set of cells
occupied by some modules, C,, be the set of wall cells, and C, be the set of the remaining
(i.e., empty) cells of an observation. More precisely, each set of cells is a set of coordinates of
the corresponding cells observed in the local coordinate system of the module. For example,
in Figure 2, the result of an observation at the red module is C,, = {(0,—1,0), (1,—1,0)},
Cy = 0, and C, is the remaining cells. When a common algorithm outputs coordinate (a, b, ¢)
at a module, the module moves to (a,b, ¢) in its local coordinate system.
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When we describe an algorithm, the elements of C,,, C,, and C,. are specified in a
“canonical coordinate system,” i.e., the global coordinate system. When the modules are
equipped with a common compass, without loss of generality, we assume that the common
compass is identical to the global coordinate system. Thus, each module computes its
movement by checking C,,, Cy,, and C.. When the modules agree on a common vertical axis,
without loss of generality, we assume that the vertical axis is identical to z axis of the global
coordinate system. Each module computes its movement by rotating the current observation
by /2, m, 37/2, and 27 around the common vertical axis and comparing the results with
Ch, Cy, and C,. It selects an output with a movement and if there are multiple outputs with
movement it nondeterministically selects one of them. When the modules are not equipped
with a common compass, a module checks 24 rotations of the current observation and selects
an output in the same way as the above case.

3 Search algorithms for an MRS in a finite 3D cubic grid

In this section, we present search algorithms with small number of modules. Our proposed
algorithms are based on a common strategy. Since the MRS does not know the position of
the target cell, we make the MRS visit all cells of the field. The proposed algorithms slice
the field into planes and the MRS visits the cells of each plane by sweeping each row or
column of the plane. Thus, the proposed algorithms are extensions of the search algorithms
by Doi et al. in a finite 2D square grid [7].

3.1 Search with a common compass

We show the following theorem by a search algorithm for the MRS of three modules equipped
with a common compass.

» Theorem 1. The MRS of three modules equipped with a common compass can solve the
search problem in a finite 3D cubic grid from any initial configuration.

The proposed algorithm considers planes that is parallel to the z-axis and the angles
between it and each of z-axis and y-axis are 7/2. Each plane is represented as {(z,y, z)|z+y =
s} for s =1,2,.... The MRS moves along each line parallel to the z-y plane {(z,y, 2)|z +y =
s,z =t} for t =0,1,2,.... Figure 3 shows a moving track of the proposed algorithm.

S

T(—n

Figure 3 Search by three modules equipped with a common compass.

The MRS continues to search each plane until it reaches the northeasternmost plane.
Then, it moves along the edges of the field so that it returns to the southwesternmost plane.
It starts searching each plane again to visit all cells of the field.

The MRS moves forward or turns by repeating a sequence of movements, that we call a
move sequence. The proposed algorithm consists of the following move sequences.
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Move sequence Myw (Figure 4). The blue module is in cell (z,y, z) at first. By this
move sequence, the green module reaches cell (x — 1,y + 1,2). By repeating Myw n
times, some modules visit the cells (z — k,y + k,2)(0 < k < n). That is, it visits all the
cells of the horizontal line {(z,y, z)|x + y = s,z = t}.

Move sequence Mrynnyw (Figure 5). By this move sequence, the MRS changes its move
sequence from Myw to Mgsg.

Move sequence Mgg (Figure 6). The blue module is in cell (z,y, 2) at first. By this move
sequence, the green module reaches cell (z+ 1,y —1, z). By repeating Mgg n times, some
modules visit the cells (z + k,y — k, 2)(0 < k < n). That is, it visits all the cells of the
horizontal line {(z,y, z)|x +y = s,z = t}.

Move sequence Mry,nse (Figure 7). By this move sequence, the MRS changes its move
sequence from Mgg to Myw.

Move sequence Mp (Figure 8). By this move sequence, the MRS changes its move
sequence from Mgg to Mp.

Move sequence Mp (Figure 9). The blue module is in cell (z,y, z) at first. By this move
sequence, the green module reaches cell(z,y,z — 1). By repeating Mp n times, some
modules visit the cells (x,y,z — k)(0 < k < n). That is, it visits all the cells of the line
{(xvyaz)‘x =8Yy= t}'

Move sequence Mp (Figure 10). By this move sequence, the MRS changes its move
sequence from Mp to Myw .

Move sequence MyEcorner (Figure 11). By this move sequence, the MRS changes its
move sequence from Mp to MwaiiBottom-

Move sequence My aiiBottom (Figure 12). The blue module is in cell (z,y,0) at first.
By this move sequence, the green module reaches cell (z,y — 1,0) along the edge. By
repeating Mw 11 Bottom 1 times, some modules visit the cells (z,y — k,0)(0 < k < n).
That is, it visits all the cells of the line {(z,y, )|z = s,z = 0}.

Move sequence Mgsw corner (Figure 13). By this move sequence, the MRS changes its
move sequence from My i1 Bottom t0 Myp.

Move sequence My,. (Figure 14) The blue module is in cell (0,0, z) at first. By this
move sequence, the green module reaches cell (0,0, z 4+ 1). By repeating My, n times,
some modules visit the cells (0,0,%)(0 < k < n). That is, it visits all the cells of the line

{(z,y,2)[z =0,y = 0}.

The proposed algorithm consists of the following seven steps.

Step 1 The MRS repeats My, that makes it move in the northwest direction along a

horizontal line on a plane {(z,y, z)|z + y = s} for some s.

Step 2 When the MRS reaches the north or west wall, it changes the moving direction to

southeast by MrpyrnNw -

Step 3 The MRS repeats Mgg, that makes it move in the southeast direction along a

horizontal line on {(z,y, z)|x +y = s}. This movement makes the MRS move along the
same horizontal line as Step 1.

Step 4 If the MRS is adjacent to the top wall it moves to the plane {(z,y,z)|z +y = s+ 1}

Then, it repeats Mp shown in Figure 9, that makes it move down along the south wall
or east wall until it reaches the bottom wall. Then, it leaves the wall by Mp. It starts
searching the new plane by repeating Steps 1, 2, 3, and 4. Otherwise, it proceeds to
Step 5.

Step 5 When the MRS reaches the south or east wall, it moves to the row above by M7y, sE-

Then, it repeats Steps 1, 2, and 3 so that it visits all cells on the new horizontal line.
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the red module moves. When the blue module is in
the red module moves. When the blue module is in
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the green module reaches (x + 1

)

Figure 9 Move down on the north or east wall. In each figure, the red module moves. When the

Figure 5 Turn on the north or west wall. In the first figue, the red module moves.

Figure 7 Turn on the south or east wall. In each figure, the red module moves.

Figure 8 Move around the top of the north or east wall. In each figure, the red module moves.
blue module is in cell (z,y, z), after this move sequence, the green module reaches cell (z

Figure 4 Move to northwest. In each figure
cell (z,y, z), after this move sequence, the green module reaches cell

Figure 6 Move to southeast. In each figure,

cell (z,y, z), after this move sequence,
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" Figure 10 Leaving the bottom of the north or east wall. In each figure, the red module moves.

' Figure 11 Move on the northeast corner. In the first figure, the red module moves.

7 Figure 12 Move along the bottom of the wall. In each figure, the red module moves. When the
blue module is in cell (z,y,0), after this move sequence, the green module reaches cell (z,y — 1,0).

" Figure 13 Move on the southwest corner. In the first figure, the red module moves.

' Figure 14 Move up on the southwest corner. In each figure, the red module moves. When the
blue module is in cell (0,0, z), after this move sequence, the green module reaches cell (0,0, z + 1).
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Figure 15 States of the MRS of three modules equipped with a common compass.

Step 6 When the MRS reaches the northeast corner of the top wall, the algorithm sends the
MRS back to the southwest corner, where the MRS starts searching by repeating Steps 1
to 5. It moves along the northeast edge until it reaches the northeast corner of the bottom
wall by Mp. Then, it moves along the east edge of the bottom wall until it reaches
the south east corner of the bottom wall by My gcorner and repeating My q11Bottom- 1t
moves along the south edge of the bottom wall until it reaches the southwest corner of
the bottom wall by repeating My 41 Bottom- - Finally, it moves along the southeast edge

until it reaches the southwest corner of the top wall by Msw corner and repeating My,.

Then, the MRS returns to Step 4.

Table 1 and 2 show the input and the output of the proposed algorithm. Each element
specifies a part of the input (especially, C,, and C¢), and the MRS does not care whether
other cells than those specified are walls or not.

We briefly address the correctness of the proposed algorithm. When the MRS is on a
plane {(z,y, z)|z +y = s} for some s, it visits all cells in the horizontal line {(x,y, z)|x +y =
s,z =t} for some t by repeating Steps 1, 2, and 3. Then, it proceeds to the horizontal line
{(z,y,2)|x +y = s,z =t + 1} by Step 5. By repeating Steps 1, 2, 3, and 5, it eventually
reaches the top wall. Then, it starts searching for cells in {(x,y, z)|x +y = s + 1} by Step 4
and 6.

Repeating the above movement, the MRS eventually reaches the northeast corner of the

top wall. At this point, it may have not yet visited the cells near the south west corner.

Steps 6 enables the MRS visit these cells by moving it to the southwest corner of the top
wall and starting Step 1 again.

There exist initial configurations that satisfies no condition of Table 1 and 2. We add
exceptional transformation rules from such initial configurations. Figure 15 shows all states
of three modules equipped with a common compass. Observe that any configuration can be
transformed to another one in one time step. (Note that more than one module can move in
one time.) Hence, even if the initial state of the MRS does not match any entry of Table 1
and 2, the MRS can be transformed into one of the entries and the MRS can start search
from any initial configuration.

3.2 Search with a common vertical axis

We show the following theorem by a search algorithm for the MRS of four modules equipped
with a common vertical axis.

» Theorem 2. The MRS of four modules with a common vertical axis can solve a search
problem in a finite 3D grid if no pair of modules have an identical observation in an initial
configuration.

20:9
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Table 1 Search algorithm for the MRS equipped with a common compass (Former part).

Cm Cuw Ce Output
Msg (0,0,1),(1,0, 1) (2,0,0) (1,0,0)
(1,0,0),(1,0,—1) (1,-1,0)
(0 0,1),(0,—1,1) (0,—2,0) | (0,—1,0)
( )7(07 L, ) (177170)
Mryrnsk ( ,1),(1,0,1) (2,0,0) (0,-1,0) | (=1,0,1)
( )7( 7070) (070571)5 (1’07 1)
(0,0,1)
(0,0,1),(0 ,71 1) (0,—2,0) (0,1,1)
(0, —1,0),(0, —2,0) (0,0, 1) 0,-1,1)
Mnw (-1 ,0),( 1, 0 1) (0,—1,0) | (=1,1,0)
(0,0,—-1),(0 ,17—1) (0,2,0) (0,1,0)
( 70)7( 1, ) (17070) (_17170)
( 1)7( 1,0,— ) (_27070) ( 17070)
Mzurnw | (0,—1,0),(0,—1,1) (0,1,0) (0,0,1)
(1,0,0),(1,0,1) (=1,0,0) (0,0,1)
Mr (0,0,1),(1,0,1) (2,0,0),(0,0,2) (1,0,0)
(1,0,0),(1,0,-1) (2,0,0),(0,0,1) (1,1,0)
(0,0,1),(0,1,1) (1,0,0),(0,0,2) (0,1,0)
(0,0,1),(0,-1,1) (0,0,2),(0,-2,0) (0,-1,0)
(0,-1,0),(0,-1,-1) | (0,0,1),(0,-2,0) (1,-1,0)
(0,0,1),(1,0,1) (0,0,1),(0,-1,0) (1,0,0)
Mp (0,1,0),(0,1,—1) (1,0,0) (0,0,-1)
(0,1,0),(0,1,1) (1,0,0) (0,0,-1) (0,1,-1)
(0,0,-1),(0,0,—2) (1,0,0) (0,-1,-1)
(1,0,0),(1,0,—1) (0,-1,0) (0,0,-1)
(1,0,0),(1,0,1) (0,-1,0) (0,0,-1) (1,0,-1)
(0,0,-1),(0,0,—2) (0,-1,0) (-1,0,-1)

We prove Theorem 2 by a search algorithm.

The proposed algorithm considers planes that is parallel to the z-z plane or the y-z plane.
The
MRS moves along each vertical line {(z,y, z)|x = s,y = ¢} when it is on the plane z = s for
t=0,1,2,... and {(z,y,2)|x =t',y = '} when it is on the plane y = ¢’ for ¢’ =0,1,2,....
Figure 16 shows an execution of the proposed algorithm.

Each plane is represented as x = s for s = 0,1,2,... and y = s’ for s’ = 0,1,2,....

The MRS continues to search each plane perpendicular to the z-axis until it reaches the
east wall. Then, it starts to search each plane perpendicular to the y-axis. Repeating the
process four times, it returns to its initial position.

The proposed algorithm consists of the following move sequences. We omit the detailed
description and figures due to the page limitation.

Move sequence Mpyywn. By this move sequence, the MRS visits all the cells of the
horizontal line {(x,y, z)|x = s,y = t}.

Move sequence Myrp,. By this move sequence, the MRS visits all the cells of the horizontal
line {(z,y,z)|x = s,y =t}.

Move sequence Mrpy»y. By this move sequence, the MRS changes its move sequence
from Myp to Mpown-
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Table 2 Search algorithm for the MRS equipped with a common compass (Latter part).

Cm Cu Ce Output
Mp (0,1,0),(0,1,1) (1,0,0),(0,0,—1) (0,-1,0), (-1,1,0)
(0,2,0)

(0,0,-1),(-1,0,-1) (1 0, 0) (0,0, —2) (0,—1,0) (-1,0,0)

(1 0,0),(1,0,1) (0,-1,0),(0,0,-1) (1,1,0)

( ) (071771) ( )5(0 0 2) (07 170)
MNEcorner (0,0,7 ),(0,—1,-1) (0,1,0),(1,0,0), (-1,0,-1)

(0,0,-2)

Mw atiBottom (1,0,0),(1,-1,0) (0,0,-1) (0, )
(1,0, O) (1,1 0) (0,0,-1) (0,—1,0) (1,-1,0)
(0’ )7(7 ) ( 07_1) (_ ’0)

(0,— ),( 1,-1,0) | (0,0,-1),(0,—2,0) (-1,0,0)
(0,— ,O),(l,—l,O) (0,0,-1) (-1,0,0) | (-1,-1,0)
(-1,0,0),(—2,0,0) (0,0,—-1) (-1,1,0)

Msw corner (-1,0,0),(-1,1,0) (0,0,-1),(-2,0,0), (-1,0,1)

(0,—1,0)

Muyp (0,-1,0),(0,-1,1) (-1,0,0),(0,—-2,0) (0,0,1)
(0,-1,0),(0,-1,-1) | (-~1,0,0),(0,—2,0) (0,0,1) (0,-1,1)
(0,0,1),(0,0,2) (-1,0,0),(0,-1,0) (0,1,1)

Otherwise Otherwise Otherwise (0,0,0)

e 78
e 1

i
@ N
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Figure 16 Example of a search by four modules.
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Move sequence Mry,»,p. By this move sequence, the MRS changes its move sequence
from Mpown to Myy.

Move sequence Mpi. By this move sequence, the MRS changes its move sequence from
Mpown to Mpa.

Move sequence Mpo. By this move sequence, the MRS visits all the cells of the horizontal
line {(z,y, z)ly = s,z = 0}.

Move sequence Mps. By this move sequence, the MRS changes its move sequence from
Mps to MUp.

Move sequence Mg orner- By this move sequence, the MRS changes its move sequence
from Mpown to Mp1.

The proposed algorithm consists of the following six steps. We use north, south, east,

and west for explanation, however each module does not need to know these directions.
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Step 1 By Mpown, the MRS moves down along a vertical line on a plane {(z,y, z)|y = s}
for some s.

Step 2 When the MRS reaches the bottom wall, it changes the direction by Mryrnp-

Step 3 By My, the MRS moves up along the same vertical line as Step 1.

Step 4 If the MRS is adjacent to the bottom of west wall, it moves to the next plane
{(z,y,2)|ly =s— 1} by Mp1. Then it moves along the bottom wall in the east direction
by Mps. When the MRS reaches the east wall, it performs Mps and starts searching the
next plane by repeating Step 1. Otherwise, it proceeds to Step 5.

Step 5 When the MRS reaches the top wall, it moves west by one row by Mpy,,u. Then it
repeats Step 1 again.

Step 6 When the MRS reaches southwest corner, it performs Mcorner and starts searching
on a plane perpendicular to the previous search plane. Thus, a search plane is first
perpendicular to the x axis and moves to east, second it is perpendicular to the y axis
and moves to north, third it is perpendicular to the x axis and moves to west, and finally,
it is perpendicular to the y axis and moves to south.

Depending on its initial state, MRS may start from the middle of the above track.

We omit the description like Table 1 and 2 due to the page limitation.

We briefly address the correctness of the proposed algorithm. The MRS visits all cells
on a vertical line {(z,y,z)|x = t,y = s} by Steps 1, 2, and 3. Then, it proceeds to the
next vertical line by Step 5. By repeating Steps 1, 2, 3, and 5, it visits all cells on plane
y = s. By Step 4, it starts searching the next plane y = s — 1. By repeating Steps 1 to 5, it
eventually reaches the southwest corner of the bottom wall. It starts searching the vertical
line {{(x,y,7)|x = 1,y = d — 2}} by Step 6. By repeating Step 1 to 6 four times, the MRS
visits all cells of the field.

3.3 Search without a common compass

We show the following theorem by a search algorithm for the MRS of five modules not
equipped with a common compass.

» Theorem 3. The MRS of five modules not equipped with a common compass can solve a
search problem in a finite 3D grid if no pair of modules have an identical observation in an
initial configuration.

We prove Theorem 3 by a search algorithm for the MRS of three modules not equipped
with a common compass.

The proposed algorithm considers each plane perpendicular to one of the x, y, and z axes.
The choice of the axis depends on the initial configuration of the MRS, and the modules do
not need to know the global coordinate system. In the following, without loss of generality,
we assume that the MRS considers planes perpendicular to the z axis, i.e., x = s(y = 8,2 = s,
respectively) for s = 0,1,2,.... It moves along each vertical line {(z,y, 2)|z = s,y = t,2 = u}
or horizontal line {(x,y,z)|z = s,y = u,z = t} for u = 0,1,2,... on the plane. Figure 17
shows an execution of the algorithm.

The MRS continues to search each plane perpendicular to the z-axis until it reaches the
east wall. Then, it changes the search direction from the positive z direction to the negative
x direction and it starts to search each plane perpendicular to the z-axis until it reaches the
west wall.

The proposed algorithm consists of the following move sequences. We omit the detailed
description and figures due to the page limitation.
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Figure 17 Example of a search with five modular robots.
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Move sequence M porward- By this move sequence, the MRS visits all the cells of the
horizontal line {(z,y, )|z = s,y = t}.

Move sequence Mpgacr. By this move sequence, the MRS visits all the cells of the
horizontal line {(x,y, z)|x = s,y = t}.

Move sequence Mr,,»p- By this move sequence, the MRS changes its move sequence
from Mpgorward 10 MBack-

Move sequence Mr7..»r. By this move sequence, the MRS changes its move sequence
from Mpack to Mporward-

Move sequence Mpgqq4.. By this move sequence, the MRS changes its move sequence from
MForward 10 MrurmB.

Move sequence Mg orper- By this move sequence, the MRS changes its move sequence
from Mpgorward 10 MryrnB-

The proposed algorithm consists of the following six steps. We use down direction for
explanation, but each module does not need to know the down direction.

Step 1 By Mporward, the MRS moves to the down direction along a vertical line on a plane
{(z,y,2)|x = s} for some s.

Step 2 When the MRS reaches the bottom wall, it changes the direction to up by Mryrnp-

Step 3 By Mpgck, the MRS moves up along a vertical line followed in Step 1.

Step 4 If the MRS is adjacent to the bottom wall, it moves to plane {(z,y, z)|z = s+ 1} by
Mryrnr, and starts searching the new plane by repeating Steps 1,2, and 3.

Step 5 When the MRS reaches the top or bottom wall, it moves to the southern row by
MEgage. Then it repeats Steps 1, 2, and 3 again.

Step 6 When the MRS reaches a corner of the field, it perform Mcorner and changes the
search direction from the positive x direction to the negative x direction.

We omit the description like Table 1 and 2 due to the page limitation.

We briefly address the correctness of the proposed algorithm. The MRS visits all the
cells on line {(z,y, z)|x = s,y =t} by Steps 1, 2, and 3. Then, it proceeds to the next line
by Step 5. By repeating Steps 1, 2, 3, and 5, it visits all cells on plane z = s. By Step 4, it
starts searching a new plane x = s + 1. By repeating Steps 1 to 5, it eventually reaches the

corner adjacent to the south wall and the east wall. By Step 6, it starts searching west wall.

By repeating Steps 1 to 6 twice, the MRS visits all cells of the field.
You can find demonstration videos of the proposed algorithms in [18].
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Figure 18 State transition graph for a MRS consisting of 3 modules with common vertical axis.

4 Necessary number of modules

We show that the three algorithms presented in Section 3 use the minimum number of
modules for each setting.

» Theorem 4. The MRS of less than three modules equipped with a common compass cannot
solve the search problem in a finite 3D cubic grid.

Due to the page limitation, we show a sketch of the proof.

A single module cannot perform any movement because there is no static module during
the movement.

Two modules can perform rotations and we can show that the MRS can move straight
to one direction by repeating rotations. Thus, when both modules cannot observe any wall
(i.e., in the middle area of the field), the MRS moves straight. Assume that the straight
movement of the MRS is parallel to = axis. When the field is large enough, the MRS cannot
move along some lines parallel to the z axis because the MRS cannot count.

We next show the necessary number of modules equipped with a common vertical axis.

» Theorem 5. The MRS of less than four modules equipped with a common vertical axis
cannot solve the search problem in a finite 3D cubic grid.

Proof. In the case of one module, the MRS cannot move because it cannot perform any
sliding or rotation.

In the case of two modules, there are two possible states of the MRS. Let S 4 be the state,
where the two modules form a vertical line, and Sg be the state, where the two modules
form a horizontal line. There exists only one horizontal line state because the modules do not
agree on x axis or y axis. In S4, one of the two modules can perform a rotation because they
agree on a common vertical axis. Any rotation in S results in Sg. In Sp, both modules
obtain the same observation if their local coordinate systems are symmetric against their
midpoint, and if one of them moves then the other also moves. Thus, the two modules cannot
perform any movement. Consequently, the two modules cannot move to any direction.

In the case of three modules, we check possible movements of the MRS by the state trans-
ition graph shown in Figure 18. State S2 cannot be transformed to any other configuration
because both endpoint modules obtain the same observation. Therefore, it is necessary to
move only by S7, 52,53, and S2. However, no matter which transformation of the S7, 53, 53,
and S2, the MRS cannot move in the east, west, south or south direction. Therefore, when
there is no wall in the visibility, the MRS cannot move, thus it cannot search the whole
field. <
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Figure 19 State transition graph for the MRS of 4 modules not equipped with a common compass.

We finally show the necessary number of modules not equipped with a common compass.

» Theorem 6. The MRS of less than five modules not equipped with a common compass
cannot solve the search problem in a finite 3D cubic grid.

Due to the page limitation, we show a sketch of the proof.

A single module cannot perform any movement because there is no static module during
the movement.

Two modules not equipped with a common compass cannot perform any movement,
because if one module moves then the other module also moves.

Three modules have two states, i.e., the “L”-shape and the “I”-shape. In the L-shape, no
module can perform a movement because of the symmetry. In the I-shape, two endpoint
modules can perform rotations and a new state is an L-shape or I-shape. The MRS does not
move after these rotations. Consequently, the MRS cannot move to any direction.

Four modules have eight states. By the state transition graph of the four modules shown
in Figure 19, we can show that the MRS cannot move to any direction.

5 Conclusion and future work

In this paper, we considered search by the single MRS in the finite 3D cubic grid. We
demonstrated a trade-off between the common knowledge and the necessary and sufficient
number of modules for search. We finally note that the proposed algorithms depend on
parallel movements, i.e., they are not designed for the centralized scheduler.

Our future goal is a distributed coordination theory for the MRS. First, reconfiguration
and locomotion of a single MRS in the 3D cubic grid have not been discussed yet. Second,
it is important to consider interaction among multiple MRSs such as rendezvous, collision
avoidance, and collective search. Finally, the MRS is expected to solve more complicated
tasks by interaction with the environment.
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