
Shape Formation by Programmable Particles∗

Giuseppe A. Di Luna1, Paola Flocchini2, Nicola Santoro3,
Giovanni Viglietta4, and Yukiko Yamauchi5

1 University of Ottawa, Ottawa, Canada
gdiluna@uottawa.ca

2 University of Ottawa, Ottawa, Canada
paola.flocchini@uottawa.ca

3 Carleton University, Ottawa, Canada
santoro@scs.carleton.ca

4 University of Ottawa, Ottawa, Canada
gvigliet@uottawa.ca

5 Kyushu University, Fukuoka, Japan
yamauchi@inf.kyushu-u.ac.jp

Abstract
Shape formation (or pattern formation) is a basic distributed problem for systems of compu-
tational mobile entities. Intensively studied for systems of autonomous mobile robots, it has
recently been investigated in the realm of programmable matter, where entities are assumed to
be small and with severely limited capabilities. Namely, it has been studied in the geometric
Amoebot model, where the anonymous entities, called particles, operate on a hexagonal tessella-
tion of the plane and have limited computational power (they have constant memory), strictly
local interaction and communication capabilities (only with particles in neighboring nodes of the
grid), and limited motorial capabilities (from a grid node to an empty neighboring node); their
activation is controlled by an adversarial scheduler. Recent investigations have shown how, start-
ing from a well-structured configuration in which the particles form a (not necessarily complete)
triangle, the particles can form a large class of shapes. This result has been established under
several assumptions: agreement on the clockwise direction (i.e., chirality), a sequential activation
schedule, and randomization (i.e., particles can flip coins to elect a leader).

In this paper we provide a characterization of which shapes can be formed deterministically
starting from any simply connected initial configuration of n particles. The characterization is
constructive: we provide a universal shape formation algorithm that, for each feasible pair of
shapes (S0, SF ), allows the particles to form the final shape SF (given in input) starting from
the initial shape S0, unknown to the particles. The final configuration will be an appropriate
scaled-up copy of SF depending on n.

If randomization is allowed, then any input shape can be formed from any initial (simply
connected) shape by our algorithm, provided that there are enough particles.

Our algorithm works without chirality, proving that chirality is computationally irrelevant
for shape formation. Furthermore, it works under a strong adversarial scheduler, not necessarily
sequential.

We also consider the complexity of shape formation both in terms of the number of rounds
and the total number of moves performed by the particles executing a universal shape formation
algorithm. We prove that our solution has a complexity of O(n2) rounds and moves: this number
of moves is also asymptotically worst-case optimal.

1998 ACM Subject Classification F.1.1 Models of Computation, F.2.2 Nonnumerical Algorithms
and Problems, I.2.11 Distributed Artificial Intelligence, I.2.9 Robotics

∗ Full version available at https://arxiv.org/abs/1705.03538. A short version appeared as “Brief
Announcement: Shape Formation by Programmable Particles” in Proceedings of DISC 2017.

© Giuseppe A. Di Luna, Paola Flocchini, Nicola Santoro, Giovanni Viglietta, and Yukiko Yamauchi;
licensed under Creative Commons License CC-BY

21st International Conference on Principles of Distributed Systems (OPODIS 2017).
Editors: James Aspnes, Alysson Bessani, Pascal Felber, and João Leitão; Article No. 31; pp. 31:1–31:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/157699401?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


31:2 Shape Formation by Programmable Particles

Keywords and phrases Shape formation, pattern formation, programmable matter, Amoebots,
leader election, distributed algorithms

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2017.31

1 Introduction

1.1 Background
The term programmable matter, introduced by Toffoli and Margolus over a quarter century
ago [23], is used to denote matter that has the ability to change its physical properties
(e.g., shape, color, etc.) in a programmable fashion, based upon user input or autonomous
sensing. Often programmable matter is envisioned as a very large number of very small
locally interacting computational particles, programmed to collectively perform a complex
task. Such particles could have applications in a variety of important situations: smart
materials, autonomous monitoring and repair, minimal invasive surgery, etc.

Several theoretical models for programmable matter have been proposed, ranging from
DNA self-assembly systems (e.g., [18, 19, 21]) to metamorphic robots (e.g., [3, 16, 24]) to
nature-inspired synthetic insects and micro-organisms (e.g., [10, 11]).

Of particular interest, from the distributed computing viewpoint, is the geometric Amoebot
model [2, 5, 6, 7, 8, 9, 10, 14]. In this model, introduced in [10] and so called because inspired
by the behavior of amoeba, programmable matter is viewed as a swarm of decentralized
autonomous self-organizing entities, operating on a hexagonal tessellation of the plane. These
entities, called particles, are constrained by having simple computational capabilities (they
are finite-state machines), strictly local interaction and communication capabilities (only
with particles located in neighboring nodes of the hexagonal grid), and limited motorial
capabilities (from a grid node to an empty neighboring node); furthermore, their activation
is controlled by an adversarial (but fair) synchronous scheduler. A feature of the Amoebot
model is that particles can be in two modes: contracted and expanded. When contracted, a
particle occupies only one node, while when expanded the particle occupies two neighboring
nodes; it is indeed this ability of a particle to expand and contract that allows it to move on
the grid.

In the Amoebot model, the research focus has been on applications such as coating [5, 9],
gathering [2], and shape formation [7, 8, 10]. The latter is also the topic of our investigation.

The shape formation problem is prototypical for systems of self-organizing entities. This
problem, called pattern formation in swarm robotics, requires the entities to move in the
spatial universe they inhabit in such a way that, within finite time, their positions form the
geometric shape given in input (modulo translation, rotation, scaling, and reflection), and no
further changes occur. Indeed, this problem has been intensively studied in active systems
such as autonomous mobile robots (e.g., [1, 4, 12, 13, 22]) and modular robotic systems
(e.g., [17, 20]).

Shape formation for Amoebots has been investigated in [7, 8, 10], taking into account
that, due to the ability of particles to expand, it might be possible to form shapes whose size
is larger than the number of particles.

The pioneering study of [7] on shape formation in the geometric Amoebot model showed
how particles can build simple shapes, such as a hexagon or a triangle. Subsequent investiga-
tions [8] have recently shown how, starting from a well-structured configuration where the
particles form a (not necessarily complete) triangle, they can form a larger class of shapes
under several assumptions, including randomization (which is used to elect a leader), chirality

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2017.31


G.A. Di Luna, P. Flocchini, N. Santoro, G. Viglietta, and Y. Yamauchi 31:3

(i.e., a globally consistent circular orientation of the plane shared by all particles), and a
sequential activation schedule (i.e., at each time unit the scheduler selects only one particle
which will interact with its neighbors and possibly move).

These results and assumptions immediately and naturally open fundamental research
questions, including: Are other shapes formable? What can be done deterministically? Is
chirality necessary? What happens if the scheduler is not sequential? What if the initial
configuration is not well structured? Notice that, without the availability of a unique leader
(provided by randomization), dropping the chirality assumption becomes a problem with a
non-sequential schedule.

In this paper, motivated and stimulated by these questions, we continue the investigation
on shape formation in the geometric Amoebot model and provide some definitive answers.

1.2 Main Contributions

We continue the investigation, significantly extending the existing results. Among other things,
we provide a constructive characterization of which shapes SF can be formed deterministically
starting from an unknown simply connected initial configuration S0 of n particles (i.e., a
connected configuration without “holes”).

As in [8], we assume that the size of the description of SF is constant with respect to the
size of the system, so that it can be encoded by each particle as part of its internal memory.
Such a description is available to all the particles at the beginning of the execution, and
we call it their “input”. The particles will form a final configuration that is an appropriate
scaling, translation, rotation, and perhaps reflection of the input shape SF . Since all particles
of S0 must be used to construct SF , the scale λ of the final configuration depends on n: we
stress that λ is unknown to particles, and they must determine it autonomously.

Given two shapes S0 and SF , we say that the pair (S0, SF ) is feasible if there exists a
deterministic algorithm that, in every execution and regardless of the activation schedule,
allows the particles to form SF starting from S0 and no longer move.

On the contrary, a pair (S0, SF ) of shapes is unfeasible when the symmetry of the initial
configuration S0 prevents the formation of the final shape SF . In Section 2, we formalize the
notion of unbreakable symmetry of shapes embedded in triangular grids, and in Theorem 1
we show that starting from an unbreakable k-symmetric configuration only unbreakable
k-symmetric shapes can be formed.

For all the feasible pairs, we provide a universal shape formation algorithm in Section 3.
This algorithm does not need any information on S0, except that it is simply connected.

These results concern the deterministic formation of shapes. As a matter of fact, our
algorithm uses a deterministic leader election algorithm as a subroutine (Sections 3.1–3.4).
If the initial shape S0 is unbreakably k-symmetric, such an algorithm may elect as many as
k neighboring leader particles, where k ∈ {1, 2, 3}. It is trivial to see that, with a constant
number of coin tosses, we can elect a unique leader among these k with arbitrarily high
probability. Thus, our results immediately imply the existence of a randomized universal
shape formation algorithm for any pair of shapes (S0, SF ) where S0 is simply connected. This
extends the result of [8], which assumes the initial configuration to be a (possibly incomplete)
triangle.

Additionally, our notion of shape generalizes the one used in [8], where a shape is only
a collection of triangles, while we include also 1-dimensional segments as its constituting
elements. In Section 4 we will show how the concept of shape can be further generalized to
include essentially anything that is Turing-computable.

OPODIS 2017



31:4 Shape Formation by Programmable Particles

Our algorithm works under a stronger adversarial scheduler that activates an arbitrary
number of particles at each stage (i.e., not necessarily just one, like the sequential scheduler),
and with a slightly less demanding communication system.

Moreover, in our algorithm no chirality is assumed: indeed, unlike in [8], different particles
may have different handedness. On the contrary, in the examples of unfeasibility given in
Theorem 1, all particles have the same handedness. Together, these two facts allows us to
conclude that chirality is computationally irrelevant for shape formation.

Finally, we analyze the complexity of shape formation in terms of the total number of
moves (i.e., contractions and expansions) performed by n particles executing a universal
shape formation algorithm, as well as in terms of the total number of rounds (i.e., spans
of time in which each particle is activated at least once, also called epochs) taken by the
particles. We first prove that any universal shape formation algorithm requires Ω(n2) moves
in some cases (Theorem 2). We then show that the total number of moves of our algorithm
is O(n2) in all cases (Theorem 3): that is, our solution is asymptotically worst-case optimal.
The time complexity of our algorithm is also O(n2) rounds, and optimizing it is left as an
open problem (we can reduce it to O(n logn), and we have a lower bound of Ω(n)).

Obviously, we must assume the size of S0 (i.e., the number of particles that constitute
it) to be sufficiently large with respect to the input description of the final shape SF . More
precisely, denoting the size of SF as m, we assume n to be lower-bounded by a cubic function
of m. A similar restriction is also found in [8].

To the best of our knowledge, all the techniques employed by our universal shape formation
algorithm are new.

Further technical details and most proofs can be found in the full version of the paper [15].

2 Model and Preliminaries

Particles. A particle is a conceptual model for a computational entity that lives in an
infinite regular triangular grid G, which we imagine as embedded in the Euclidean plane R2.
A particle may occupy either one vertex of G or two adjacent vertices: in the first case, the
particle is said to be contracted; otherwise, it is expanded. When it is expanded, one of the
vertices it occupies is called its head, and the other vertex is its tail. A particle may move
through G by repeatedly expanding toward a neighboring vertex of G and contracting into
its head.1

No vertex of G can ever be occupied by more than one particle at the same time.
Accordingly, a contracted particle cannot expand toward a vertex that is already occupied by
another particle. If two or more particles attempt to expand toward the same (unoccupied)
vertex at the same time, only one of them succeeds, chosen arbitrarily by an adversarial
scheduler (see below).

In our model, time is “discrete”, i.e., it is an infinite ordered sequence of instants, called
stages. Say that in the graph G there is a set P of particles, which we call a system. At
each stage, some particles of P are active, and the others are inactive. We may think of
the activation of a particle as an act of an adversarial scheduler, which arbitrarily and
unpredictably decides which particles are active at each stage. The only restriction on the
scheduler is a bland fairness constraint, requiring that each particle be active for infinitely
many stages in total. That is, the scheduler can never keep a particle inactive forever.

1 The model in [8] allows a special type of coordinated move called “handover”. Since we will not need
our particles to perform this type of move, we omit it from our model.



G.A. Di Luna, P. Flocchini, N. Santoro, G. Viglietta, and Y. Yamauchi 31:5

When a particle is activated for a certain stage, it “looks” at the vertices of G adjacent
to its head, discovering if they are currently unoccupied, or if they are head or tail vertices
of some particle. All particles are indistinguishable (i.e., they are anonymous). Each active
particle may then decide to either expand, contract, or stay still for that stage. All these
operations are performed by all active particles simultaneously, and take exactly one stage.
So, when the next stage starts, a new set of active particles is selected, which observe their
surroundings and move, and so on.

Each particle has an internal state that it can modify every time it is activated. The
internal state of any particle must be picked from a finite set: particles have an amount of
“memory” that is constant with respect to the size of the system, n.

Two particles can also communicate by sending each other messages taken from a finite
set, provided that their heads are adjacent vertices of G. A particle reads the incoming
messages from all its neighbors as soon as it is activated. If a second message is sent through
an edge of G before the first one is read, the first message is overwritten and becomes
inaccessible.

Each particle labels the six edges incident to each vertex of G with port numbers, going
from 0 to 5. Each particle uses a consistent numbering that is invariant under translation on
G. However, different particles may disagree on which of the edges incident to a vertex has
port number 0 and whether the numbering should follow the clockwise or counterclockwise
order: this is called the particles’ handedness. So, the handedness of a particle does not
change as the particle moves, but different particles may have different handedness.

At each stage, each active particle looks at its surroundings to see which neighboring
vertices are occupied, and it reads the incoming messages. Based on these and on its internal
state, the particle executes a deterministic algorithm that computes a new internal state,
the messages to be sent to the neighbors, and whether the particle should expand to some
adjacent vertex, contract, or stay still.

We assume that, when stage 0 starts, all particles are contracted, they all have the same
predefined internal state, and there are no messages pending between particles.

Shape formation. A shape is a non-empty connected set consisting of the union of finitely
many edges and faces of G. We stress that a shape is not a subgraph of an abstract graph,
but it is a subset of R2, i.e., a geometric set. A shape S is simply connected if the set R2 \ S
is connected (intuitively, S has no “holes”). The size of a shape is the number of vertices of
G that lie in it.

We say that two shapes S and S′ are equivalent if S′ is obtained from S by a similarity
transformation, i.e., a composition of a translation, a rotation, an isotropic scaling by a
positive factor, and an optional reflection. A shape S is minimal if no shape that is equivalent
to it has a smaller size. Let σ be a similarity transformation such that S′ = σ(S), where S is
minimal: we say that the (positive) scale factor of σ is the scale of S′.

A system of particles in G forms a shape S if the vertices of G that are occupied by
particles are exactly the ones that lie in S. An (S0, SF )-shape formation algorithm is an
algorithm that makes a system of particles form a shape equivalent to SF (not necessarily
SF itself), provided that they form shape S0 at stage 0. That is, however the port labels of
each particle are arranged, and whatever the choices of the scheduler are. After forming the
shape, the particles should no longer move. If such an algorithm exists, (S0, SF ) is called a
feasible pair of shapes.

In the rest of this paper, we will characterize the feasible pairs of shapes (S0, SF ), provided
that S0 is simply connected and its size is not too small. That is, for every such pair of

OPODIS 2017



31:6 Shape Formation by Programmable Particles

Figure 1 Two systems of particles forming equivalent shapes. Contracted particles are represented
as black dots; expanded particles are black segments (a dot represents a particle’s head). Shapes are
indicated by gray blobs. The shape on the left is minimal; the one on the right has scale 3.

shapes, we will either prove that no shape formation algorithm exists (Theorem 1), or we will
give an explicit shape formation algorithm. We will actually give a universal shape formation
algorithm (Theorem 3), which only takes the “final shape” SF (or a representation thereof)
as a parameter, and has no information on the “initial shape” S0, except that it is simply
connected. As in [8], we assume that the size of the parameter SF is constant with respect
to the size of the system, so that SF can be encoded by each particle as part of its internal
memory.

Unformable shapes. A shape is said to be unbreakably k-symmetric, for some integer k > 1,
if it has a center of k-fold rotational symmetry that does not coincide with any vertex of G.
Observe that there exist unbreakably k-symmetric shapes only for k = 2 and k = 3.

If the system initially forms an unbreakably k-symmetric shape, the port labels of
symmetric particles happen to be symmetric, and the scheduler always activates symmetric
particles simultaneously, then the system never ceases to form an unbreakably k-symmetric
shape. Therefore, we have the following:

I Theorem 1. If (S0, SF ) is a feasible pair and S0 is unbreakably k-symmetric, then any
minimal shape that is equivalent to SF is also unbreakably k-symmetric.

In Section 3, we are going to prove that the condition of Theorem 1 characterizes the
feasible pairs of shapes, provided that S0 is simply connected, and the size of S0 is large
enough with respect to the size of SF .

Measuring movements and rounds. We are also concerned to measure the total number of
moves performed by a system of size n executing a shape formation algorithm. For instance,
if the particles initially form a (full) regular hexagon, they must make at least Ω(n2) moves
in total to form a line segment (because Ω(n) particles must move over a distance of Ω(n)).
Hence we have the following lower bound:

I Theorem 2. A system of n particles executing any universal shape formation algorithm
performs Ω(n2) moves in total.

In Section 3, we will prove that our universal shape formation algorithm requires O(n2)
moves in total, and is therefore worst-case optimal with respect to this parameter.

Similarly, we want to measure how many rounds it takes the system to form the final
shape (a round is a span of time in which each particle is activated at least once). We will
show that our universal shape formation algorithm takes O(n2) rounds.



G.A. Di Luna, P. Flocchini, N. Santoro, G. Viglietta, and Y. Yamauchi 31:7

3 Universal Shape Formation Algorithm

Algorithm structure. The universal shape formation algorithm takes a “final shape” SF as
a parameter: this is encoded in the initial states of all particles. Without loss of generality,
we will assume SF to be minimal. The algorithm consists of seven phases:
1. A lattice consumption phase, in which the initial shape S0 is “eroded” until 1, 2, or 3

pairwise adjacent particles are identified as “candidate leaders”. No particle moves in this
phase: only messages are exchanged. This phase ends in O(n) rounds.

2. A spanning forest construction phase, in which a spanning forest of S0 is constructed,
where each candidate leader is the root of a tree. No particle moves, and the phase ends
in O(n) rounds.

3. A handedness agreement phase, in which all particles assume the same handedness as
the candidate leaders (some candidate leaders may be eliminated in the process). In this
phase, at most O(n) moves are made. However, at the end, the system forms S0 again.
This phase ends in O(n) rounds.

4. A leader election phase, in which the candidate leaders attempt to break symmetries and
elect a unique leader. If they fail to do so, and k > 1 leaders are left at the end of this
phase, it means that S0 is unbreakably k-symmetric, and therefore the “final shape” SF

must also be unbreakably k-symmetric (cf. Theorem 1). No particle moves, and the phase
ends in O(n2) rounds.

5. A straightening phase, in which each leader coordinates a group of particles in the
formation of a straight line. The k resulting lines have the same length. At most O(n2)
moves are made, and the phase ends in O(n2) rounds.

6. A role assignment phase, in which the particles determine the scale of the shape S′
F

(equivalent to SF ) that they are actually going to form. Each particle is assigned an
identifier that will determine its behavior during the formation process. No particle
moves, and the phase ends in O(n2) rounds.

7. A shape composition phase, in which each straight line of particles, guided by a leader, is
reconfigured to form an equal portion of S′

F . At most O(n2) moves are made, and the
phase ends in O(n2) rounds.

No a-priori knowledge of S0 is needed to execute this algorithm (S0 just has to be simply
connected), while SF must of course be known to the particles and have constant size, so
that its description can reside in their memory. Note that the knowledge of SF is needed
only in the last two phases of the algorithm.

Synchronization. As long as there is a unique (candidate) leader in the system, there are
no synchronization problems: this one particle coordinates all others, and autonomously
decides when each phase ends and the next phase starts.

However, if there are k > 1 (candidate) leaders, there are possible issues arising from
the intrinsic asynchronicity of our particle model. Typically, a (candidate) leader will be in
charge of coordinating only a portion of the system, and we want to avoid the undesirable
situation in which different leaders are executing different phases of the algorithm.

So, a basic synchronization protocol is executed “in parallel” with the shape formation
algorithm. This protocol simply makes sure that, whenever the (candidate) leaders are
neighbors (which is true most of the time), they exchange messages containing the identifiers
of the phases that they are currently executing, and those who are ahead wait until the
others have caught up (see [15] for more details).

OPODIS 2017



31:8 Shape Formation by Programmable Particles

Figure 2 The particles in white or gray are corner particles; the two in gray are locked particles.
Dashed lines indicate adjacencies between particles.

3.1 Lattice Consumption Phase

The goal of this phase is to identify 1, 2, or 3 candidate leaders. This is done without making
any movements, but only exchanging messages. Each particle’s internal state has a flag (i.e.,
a bit) called Eligible. All particles start the execution in the same state, with the Eligible
flag set. As the execution proceeds, eligible particles will gradually “eliminate themselves”
by clearing their Eligible flag. This is achieved through a process similar to erosion, which
starts from the boundary of the initial shape and proceeds toward its interior.

The “consumption” of the initial shape S0 starts from its corner particles: roughly
speaking, these are the particles located at convex vertices of S0 or at the end of dangling
edges, as Figure 2 shows.

By looking at its surroundings, a particle knows if it is a corner particle or not; then, it
can communicate this information to its neighbors. In most cases, if S0 is a simply connected
shape, removing any subset of its corner particles leaves the shape simply connected (i.e., it
does not disconnect it or create holes in it). There is just one exception, represented by the
two gray particles in Figure 2: removing both particles disconnects the shape. Fortunately,
such a configuration is unique and can be locally recognized by the gray particles (provided
that they send each other a description of their neighborhoods), which identify themselves as
locked particles. A locked particle waits and remains eligible until some of its neighbors have
eliminated themselves.

We can also prove that any simply connected shape contains non-locked corner particles,
and therefore the erosion process eventually succeeds: when only 1, 2, or 3 pairwise adjacent
eligible particles remain, they are the candidate leaders (technically, they become candidate
leaders by setting an internal Candidate flag). Note that taking another erosion step from
there may eliminate all particles (since they may behave symmetrically), and therefore we
must stop at this point and use other methods to elect a leader.

3.2 Spanning Forest Construction Phase

The spanning forest construction phase starts when 1, 2, or 3 pairwise adjacent candidate
leaders have been identified, and no other particle is eligible. In this phase, each candidate
leader becomes the root of a tree embedded in G. Eventually, the set of these trees will be a
spanning forest of the subgraph of G induced by the system of particles.

The algorithm is straightforward: the trees are constructed starting from the candidate
leaders, and the process involves more and more adjacent particles until all of them are
included. Each particle remembers which port label corresponds to its parent and which
ones correspond to its children. The details of this algorithm can be found in [15].



G.A. Di Luna, P. Flocchini, N. Santoro, G. Viglietta, and Y. Yamauchi 31:9

p

′pu

v

i

+ 1i

1
−i

+ 1i

(a) A neighbor u is unoccupied.

p
′′p

up

vp

ij
+i

′i

′′i
′p)j(

)j(

(b) Both neighbors u and v are occupied.

Figure 3 The subroutine by which p communicates its handedness to p′. The labels on edges
indicate port numbers. The labels in parentheses are messages.

3.3 Handedness Agreement Phase

When a candidate leader is notified by all its children that its tree can no longer be expanded,
it transitions to the handedness agreement phase. Recall that each particle may label ports
in clockwise or counterclockwise order: this is called the particle’s handedness. By the end of
this phase, all particles will agree on a common handedness. The agreement process starts at
the candidate leaders and proceeds through the spanning forest constructed in the previous
phase, from parents to children.

The core subroutine of this algorithm involves a generic particle p that intends to
communicate its handedness to one of its children p′ (in the tree constructed in the previous
phase). Of course, this cannot be done simply by message passing, because a particle has no
direct way to tell a neighbor which direction it “thinks” is clockwise: a special technique is
required, which is summarized in Figure 3.

Let u and v be the two vertices of G that are neighbors to both p and p′. Suppose first
that one of them is unoccupied, say u. Without loss of generality, p sees u to the left of p′,
as in Figure 3a. Then, p expands toward u and sends a message to p′ saying “I-Moved-Left”.
If p′ gets this message from its right neighbor, it has the same handedness as p; otherwise, it
inverts its own handedness to match p’s. Then, p goes back to its original location.

Suppose now that both u and v are occupied by particles pu and pv, as in Figure 3b.
Then, p sends a message to pu saying “You-are-my-Left-Neighbor” and one to pv saying
“You-are-my-Right-Neighbor”. Then, pu is supposed to message p′, but it does not know
where it is, except that it neighbors both pu and p. As there are two such locations, pu

sends an “I-am-the-Left-Neighbor” message to both. Again, if p′ receives this message from
its right neighbor (with respect to its parent p), it knows it has the same handedness as
p; otherwise, it inverts its handedness. In the meantime, pv does a similar thing, sending
“I-am-the-Right-Neighbor” messages. p′ waits until it has received messages from both pu

and pv, and then it notifies its parent p that the procedure is over.
This subroutine is executed between any non-leaf particle and all its children, starting

from the candidate leaders. Before that, the candidate leaders execute a variation of this
subroutine among themselves, to make sure they all have the same handedness (if they do
not, then all but one are eliminated). At the end of this process, all particles have agreed on
the same handedness.

The above algorithm has some obvious flaws, because several particles may be executing
the subroutine at the same time, possibly interfering with each other if they try to expand
toward the same vertex or if they send messages to the same particle. To solve the first
problem, the particle p that initiates the subroutine does not try to expand to u if it

OPODIS 2017



31:10 Shape Formation by Programmable Particles

remembers that it was originally occupied by some other particle; instead, it waits for pu to
come back or expands to v. Also, if two particles try to expand toward the same location,
only one succeeds: the other particle waits and tries again later.

To solve the second problem, when both u and v are occupied, p first locks both pu and
pv, then notifies p′, and then proceeds with the subroutine. When a particle is locked, it
finishes the current subroutine before starting a new one with another neighbor. So, when pu

sends its “I-am-the-Left-Neighbor” or “I-am-the-Right-Neighbor” to the wrong particle p′′,
this particle is able to realize that it is not the intended addressee, and ignores the message.
This is because the parent of p′′ cannot have locked pu and then notified p′′, since pu has
already been locked by p for an operation with p′.

A consequence of this protocol is that, if p can lock only pu, say, because pv has already
been locked by some other particle, then p keeps pu locked while it waits for pv to become
unlocked: note that this potentially gives rise to deadlocks. To prevent them, each particle
executes the subroutine with only one child at a time; when all its children have the same
handedness, then it “authorizes” its first child to proceed with its own children, etc. This
way, at any time there can be at most one pair of particles involved in the subroutine in each
tree of the spanning forest. Since there are at most three trees, it is then straightforward to
prove that deadlocks are impossible (see [15] for the details).

3.4 Leader Election Phase

In this phase, one candidate leader is finally elected to be the unique leader, provided that
the shape S0 is not unbreakably k-symmetric. If it is, then the k candidate leaders may be
unable to decide who should be elected, and hence all of them become leaders.

In order to elect a leader, the candidates “scan” their respective trees of the spanning
forest, searching for asymmetric features of S0 that would allow them to decide which
candidate should become the leader. This task is made possible by the fact that all particles
agree on the same handedness.

The algorithm is divided in steps: at each step, a particle q in each tree sends a constant-
length code to its parent, describing its neighborhood; the message is then forwarded all
the way to the candidate leader at the root of the tree. Such a code contains information
on all the neighbors of q, starting from the parent and proceeding in clockwise order: the
information that is encoded essentially tells whether each neighbor is a child of q, or some
other particle, or an unoccupied vertex of G.

Once all candidate leaders have obtained a code from a particle in their respective tree,
they send each other these codes and compare them. If the codes are not all equal, the
candidates are able to elect a unique leader. Otherwise, the “election attempt” fails, and
each candidate leader asks one of its children for another neighborhood code.

In the first step, the candidate leaders compare their own neighborhood codes. If the
election attempt fails, each of them asks its first child in clockwise order for its neighborhood
code. As the attempts keep failing, the particles in each tree are queried as in a preorder
traversal, where the children of every particle are always queried in clockwise order. Since all
particles agree on the same handedness, the candidate leaders keep comparing the codes of
symmetric particles in their respective trees, until asymmetric particles are found. In turn,
these particles have the same handedness, and so they produce the same neighborhood codes
only if their surroundings are indeed symmetric.

It follows that a unique leader is not elected only if S0 is unbreakably k-symmetric. If all
the election attempts fail, the k candidate leaders have no choice but to become all leaders.



G.A. Di Luna, P. Flocchini, N. Santoro, G. Viglietta, and Y. Yamauchi 31:11

3γ

2γ

1γ

(a) Each pioneer is obstructed
by a particle on its directrix.

3γ

2γ

1γ

(b) The obstructing particles
detach from their parents and
become the new pioneers.

3γ

2γ

1γ

(c) Each new pioneer pulls
a chain of particles from the
closest entry point.

Figure 4 Three stages of the straightening phase. The particles in gray are the leaders; the ones
in white are the pioneers. The edges of the spanning forest are drawn in dark gray, and the arrows
indicate where the particles are directed in the pulling procedure.

3.5 Straightening Phase
At the beginning of this phase, there are k = 1, k = 2, or k = 3 leaders, each of which is the
root of a tree of particles. These k trees are rotated copies of each other, and the leaders are
pairwise adjacent. The goal of this phase is to arrange the particles in a way that will make
the final phase of the algorithm simpler to design: that is, k straight lines radiating from the
center of the figure.

So, in this phase, each leader pi coordinates the “straightening” of its tree. pi chooses a
ray in the plane (i.e., a half-line) as its directrix γi. By the end of the straightening phase,
all particles will be located on these k directrices.

We use an important basic subroutine, called pulling procedure. We assume to have a
chain Q of contracted particles, the first of which, q, is called the pioneer. Suppose q intends
to move to an unoccupied neighboring vertex v, “pulling” the whole chain with it. So, q sends
a message saying “Follow-Me” to the next particle q′ in the chain Q, and then it expands to
v and contracts again. When q′ receives the message, it forwards it to the next particle in
Q, and moves to the position previously occupied by q, and so on. When the last particle
of Q has moved, it sends a message to its predecessor saying “Pulling-Complete”, which is
forwarded all the way to the pioneer, and the procedure ends.

The idea of the straightening phase is that a pioneer qi will walk along each directrix γi,
pulling particles onto it from the tree Ti of the leader pi (executing the pulling procedure
described above). While the pioneer is doing that, the leader remains in place, except perhaps
for a few stages, when it is part of a chain of particles that is being pulled by the pioneer.
Eventually, all the particles of Ti will form a line segment on the directrix.

If qi encounters another particle r on γi, belonging to some tree Tj , it “transfers” its role
to r, and “claims” the subtree T ′

j of Tj hanging from r, detaching r from its parent. The
next time the new pioneer r has to pull a chain of particles, it will pull it from T ′

j . For this
reason, r is called an entry point of the directrix. This algorithm is summarized in Figure 4.

If there is only k = 1 leader, there are no problems with the correctness of this algorithm.
Suppose that k > 1: then, every time a pioneer advances along its directrix, it notifies its
leader, who will synchronize with the other leaders (the details are in [15]). This is to ensure
that the straightening of every tree proceeds at the same pace. As a consequence, the k trees
of the spanning forest, which initially are symmetric under a k-fold rotation of the plane,
remain symmetric while the straightening proceeds.

OPODIS 2017



31:12 Shape Formation by Programmable Particles

2γ

1γ

1β

2β

(a) An unbreakably 2-symmetric shape with
scale 5 with a minimal equivalent shape consist-
ing of two adjacent faces and two edges

1β1
′β

2
′β2β

3β

3
′β

3γ

2γ

1γ

(b) An unbreakably 3-symmetric shape with
scale 13 with a minimal equivalent shape con-
sisting of a single face

Figure 5 Subdivision into elements (gray blobs) of unbreakably k-symmetric shapes. The
directrices, the backbone, and the co-backbone are also represented.

Because of this symmetry, no conflicts between different pioneers can ever arise. For
instance, it is impossible for a leaf f of a tree to be pulled along the chain led by a pioneer
while another pioneer is trying to “transfer” to f . Also, the k pulling procedures that are
executed in the same step involve disjoint chains: indeed, the k directrices are disjoint, and
the subtrees hanging from different entry points are disjoint.

Let us prove that a system of n particles executing this phase of the algorithm performs
O(n2) moves in total. Observe that each pulling procedure causes a new particle to join
a directrix, and so at most n pulling procedures are performed. On the other hand, each
pulling procedure involves at most n particles, and causes each of them to perform a single
expansion and a single contraction. The O(n2) bound follows, and the same bound on the
number of rounds can be obtained similarly.

3.6 Role Assignment Phase

At the end of the straightening phase, the system forms k equally long line segments, each
of which contains a leader particle. If k > 1, it means that the shape S0 that the particles
originally formed was unbreakably k-symmetric. Due to Theorem 1, if this is the case, we
have to assume that the “final shape” SF that the system has to form is also unbreakably
k-symmetric.

In the role assignment phase, the particles determine the scale of the shape S′
F , equivalent

to SF , that they are actually going to form. Then, each particles is assigned an identifier
describing which element of SF it is going to form in the shape composition phase.

Let S′
F be a shape equivalent to SF . The vertices of G that lie in S′

F are partitioned into
elements as shown in Figure 5. Each vertex of G that is in SF corresponds to a super-vertex
of S′

F ; the interior of each edge of G contained in SF corresponds to a super-edge of S′
F ;

the interior of each face of G contained in SF corresponds to a super-triangle of S′
F . The

only exceptions are the central super-edge of an unbreakably 2-symmetric shape, which is
further divided into two partial super-edges, and the central super-triangle of an unbreakably
3-symmetric shape, which is further divided into three (trapezoidal) partial super-triangles.

If there are k > 1 leaders, they have to partition the elements of S′
F into k equal parts,

so that the ith leader will form one part, (S′
F )i. Assume that the similarity transformation

mapping SF to S′
F is actually a homothety centered at the center of S0. First the ith leader

defines a backbone ray βi parallel to its directrix γi, as shown in Figure 5. If k = 3, it also



G.A. Di Luna, P. Flocchini, N. Santoro, G. Viglietta, and Y. Yamauchi 31:13

1β1
′β

2
′β

2β

3β

3
′β

Figure 6 The elements of an unbreakably 3-symmetric shape with a possible subdivision among
leaders. Blobs of the same color represent elements selected by the same leader.

defines a co-backbone β′
i, as in Figure 5b. Each leader first selects for itself all the elements

of S′
F that intersect βi or β′

i (the purpose of this selection will become clear in the next
phase). Then, each leader repeatedly and deterministically selects an element of S′

F that
is adjacent to an element that it has already selected and that has not been selected by
any leader, yet (see [15] for further details). As a result, S′

F is partitioned into k symmetric
sub-shapes (S′

F )i: one possible outcome is illustrated in Figure 6. Note that, since the above
algorithm is deterministic, no explicit agreement between leaders is needed.

Let us focus on a single directrix and its leader. In the role assignment phase, the leader
particle repeatedly changes its internal state and transfers the leadership to a neighbor (by
sending it a message). So, the particles on the directrix can collectively compute any function
that is computable by a Turing machine on a tape of length n/k: the leader is the head of
the machine, and the particles are the cells of its tape. Hence, with standard techniques, the
leader can do computations with binary numbers using the particles as bits. In particular, it
can compute a scale λ for S′

F that is large enough for it to contain all n particles, and small
enough for it to be completely covered by them. Moreover, it can do so in O(n2) rounds (the
details are in [15]). The number of vertices of G covered by S′

F may not be exactly n, but
recall that each particle can occupy two vertices in its extended state: if n is large enough
compared to the size of SF (which is a constant m), a suitable λ can indeed be found. Some
particles will have to be extended in the final configuration, and these are marked with a
special Double flag: these will be called double particles.

Then, the leader assigns a constant-size identifier to each element of (S′
F )i (there is a

constant number of them), and assigns each particle the role identifier corresponding to
the element it will contribute to forming in the next phase. To this end, the particles are
subdivided into contiguous chunks, each of which is associated with an element of (S′

F )i

and has the appropriate size (which can be computed “indirectly” by the leader, due to the
Turing-machine analogy above). If n is large enough, the leader can even place all the double
particles in chunks corresponding to (partial) super-triangles (the special case in which SF

consists only of edges is discussed in [15]).

OPODIS 2017



31:14 Shape Formation by Programmable Particles

3.7 Shape Composition Phase
In this phase, each of the k leaders will guide its team of particles in the formation of all
the elements of its sub-shape (S′

F )i ⊆ S′
F . If k > 1, the leader preliminarily relocates its

entire team from the directrix γi to the backbone ray βi. This can be done with the pulling
procedure used in Section 3.5 and the Turing-machine technique of Section 3.6. Indeed, the
leader knows the distance between γi and βi in terms of λ, but it does not have enough
internal memory to count to λ. So, it can use its team as a tape and count its steps in binary.

When the team is on βi, it starts forming the elements of (S′
F )i one by one, coordinated

by the leader. First the super-edges adjacent to the backbone ray βi are formed; then
the super-vertices not on βi adjacent to those super-edges, then the super-edges not on βi

adjacent to those super-vertices, etc. When all super-vertices and super-edges of (S′
F )i not

on βi have been formed, the (partial) super-triangles are formed. Finally, the elements on βi

are formed, from the closest to the center of S′
F to the farthest.

The elements on βi are formed last because this ray is used by the leader to pull the
entire “repository” of chunks wherever it has to go to form the next element e. Even though
(S′

F )i may not be connected (as in Figure 6), the leader has enough particles in one chunk to
count its steps while it pulls, and therefore to stop in the right position (the only exception
is when only super-vertex chunks are left in the repository: this case is discussed in [15]).

Once the repository is in position to reach e, the leader moves the corresponding chunk
Ce from the repository along a path W of already formed super-edges and super-vertices of
(S′

F )i (by simply swapping states of particles). This is easy to do, since there are no double
particles in W : they are all in the (partial) super-triangles. When Ce becomes adjacent to e,
the leader pulls it into position, also pulling W (which, as a result, goes back in its place)
and the rest of the repository. Then the leader leaves e and goes back to βi through W .

Note that, when e is a (partial) super-triangle, the leader may have to use the Turing-
machine technique to count its steps while forming it, so to know when it has reached a
corner of e. If e contains double particles, the leader first pulls all of Ce into e, and then it
leaves e. When the leader is gone, the first particle of Ce keeps pulling part of the chunk to
let the double particles expand and finally cover all of e.

To prove the correctness of this algorithm, it is crucial to observe that it is impossible for
two different teams to come into contact and interfere with each other’s movements: this is
because they are confined to move within different regions of G throughout the phase. Note
that selecting all the elements that intersect its backbone ray and its co-backbone ray (see
Section 3.6) gives a leader and its team free range to move between their directrix and their
backbone ray during the preliminary relocation step. This is true also if one team has already
started forming its elements while another is still moving from the directrix to the backbone.

Let us count the total number of moves performed in this phase. When a leader relocates
its team onto the backbone, it pulls all the particles at most O(n) times, and the total
number of moves is at most O(n2). Then, in order to form one element of S′

F , a leader may
have to pull at most O(n) particles (i.e., the repository) for at most O(n) times along the
backbone to get the chunk into position: this yields at most O(n2) moves. Then it has to pull
at most O(n) particles for a number of times that is equal to the size of the element of S′

F ,
which is O(n). Since the number of elements of S′

F is bounded by a constant, this amounts
to at most O(n2) moves, again. All other operations involve only message exchanges and no
movements. The O(n2) upper bound follows, and the same bound on the number of rounds
is obtained similarly. (The proof of the Θ(m3) bound on n in the theorem below is in [15].)

I Theorem 3. Let P be a system of n particles forming a simply connected shape S0 at stage
0. Let SF be a shape of constant size m that is unbreakably k-symmetric if S0 is unbreakably
k-symmetric. If all particles of P execute the universal shape formation algorithm with input



G.A. Di Luna, P. Flocchini, N. Santoro, G. Viglietta, and Y. Yamauchi 31:15

a representation of the final shape SF , and if n is at least Θ(m3), then there is a stage,
reached after O(n2) rounds, where P forms a shape equivalent to SF . The total number of
moves performed by P up to this stage is O(n2), which is asymptotically worst-case optimal;
particles no longer move afterwards.

4 Generalization to All Computable Infinite-Resolution Shapes

In the previous section we have shown that, given a shape SF of constant size m, a system of
n particles can form a shape geometrically similar to SF (i.e., essentially a scaled-up copy of
SF ) starting from any simply connected configuration S0, provided that SF is unbreakably
k-symmetric if S0 is, and provided that n is large enough compared tom. We only determined
a bound of Θ(m3) for the minimum n that guarantees the formability of SF . We could
improve it to Θ(m) by letting the Double particles be in any chunk and adopting a slightly
more sophisticated pulling procedure in the last phase. We may wonder if this modification
would make our bound optimal.

When discussing the role assignment phase, when the particles are arranged along straight
lines, we have argued that the system can compute any predicate that is computable by a
Turing machine on a tape of limited length. If we allow the particles to move back and forth
along these lines to simulate registers, we only need a (small) constant number of particles
to implement a full-fledged Turing machine with an infinite tape. So, in the role assignment
phase, we are actually able to compute any Turing-computable predicate (although we would
have to give up our upper bounds of O(n2) moves and rounds).

With this technique, we are not only able to replace our Θ(m3) with the best possible
asymptotic bound in terms of m, but we have a universal shape formation algorithm that,
for every n and every SF , lets the system determine if n particles are enough to form a
shape geometrically similar to SF . This is done by examining all the possible connected
configurations of n particles and searching for one that matches SF , which is of course a
Turing-computable task.

Taking this idea even further, we can extend our notion of shape to its most general form.
Recall that the shapes considered in [8] were sets of “full” triangles: when a shape is scaled
up, all its triangles are scaled up and become larger full triangles. In this paper, we extended
the notion of shape to sets of full triangles and edges: when an edge is scaled up, it remains
a row of points. Of course, we can think of shapes that are not modeled by full triangles
or edges, but behave like fractals when scaled up. For instance, we may want to include
discretized copies of the Sierpinski triangle as “building blocks” of our shapes, alongside full
triangles and edges. Scaling up these shapes causes their “resolution” to increase and makes
finer details appear inside them. Clearly, the set of all the scaled-up and discretized copies of
a shape made up of full triangles, edges, and Sierpinski triangles is Turing-computable.

Generalizing, we can replace our usual notion of geometric similarity between shapes
with any Turing-computable equivalence relation ∼. Then, the shape formation problem
with input a shape SF asks to form any shape S′

F such that SF ∼ S′
F . This definition of

shape formation problem includes and greatly generalizes the one studied in this paper, and
even applies to scenarios that are not of a geometric nature. Nonetheless, this generalized
problem is still solvable by particles, thanks to the technique outlined above.

References
1 H. Ando, I. Suzuki, and M. Yamashita. Formation and agreement problems for synchronous

mobile robots with limited visibility. In Proc. of ISIC, pages 453–460, 1995.
2 S. Cannon, J.J. Daymude, D. Randall, and A.W. Richa. A Markov chain algorithm for

compression in self-organizing particle systems. In Proc. of PODC, pages 279–288, 2016.

OPODIS 2017



31:16 Shape Formation by Programmable Particles

3 G. Chirikjian. Kinematics of a metamorphic robotic system. In Proc. of ICRA, pages
1:449–1:455, 1994.

4 S. Das, P. Flocchini, N. Santoro, and M. Yamashita. Forming sequences of geometric
patterns with oblivious mobile robots. Distrib. Comput., 28(2):131–145, 2015.

5 J.J. Daymude, Z. Derakhshandeh, R. Gmyr, A. Porter, A.W. Richa, C. Scheideler, and
T. Strothmann. On the runtime of universal coating for programmable matter. In Proc. of
DNA, pages 148–164, 2016.

6 J.J. Daymude, R. Gmyr, A.W. Richa, C. Scheideler, and T. Strothmann. Improved leader
election for self-organizing programmable matter. arXiv, 2017. URL: https://arxiv.org/
abs/1701.03616.

7 Z. Derakhshandeh, R. Gmyr, A.W. Richa, C. Scheideler, and T. Strothmann. An al-
gorithmic framework for shape formation problems in self-organizing particle systems. In
Proc. of NanoCom, pages 21:1–21:2, 2015.

8 Z. Derakhshandeh, R. Gmyr, A.W. Richa, C. Scheideler, and T. Strothmann. Universal
shape formation for programmable matter. In Proc. of SPAA, pages 289–299, 2016.

9 Z. Derakhshandeh, R. Gmyr, A.W. Richa, C. Scheideler, and T. Strothmann. Universal
coating for programmable matter. Theor. Comput. Sci., 671:56–68, 2017.

10 Z. Derakhshandeh, R. Gmyr, T. Strothmann, R.A. Bazzi, A.W. Richa, and C. Scheideler.
Leader election and shape formation with self-organizing programmable matter. In Proc.
of DNA, pages 117–132, 2015.

11 S. Dolev, S. Frenkel, M. Rosenbli, P. Narayanan, and K.M. Venkateswarlu. In-vivo energy
harvesting nano robots. In Proc. of ICSEE, pages 1–5, 2016.

12 P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Arbitrary pattern formation by
asynchronous, anonymous, oblivious robots. Theor. Comput. Sci., 407(1):412–447, 2008.

13 N. Fujinaga, Y. Yamauchi, H. Ono, S. Kijima, and M. Yamashita. Pattern formation by
oblivious asynchronous mobile robots. SIAM J. Comput., 44(3):740–785, 2016.

14 G.A. Di Luna, P. Flocchini, G. Prencipe, N. Santoro, and G. Viglietta. Line recovery by
programmable particles. In Proc. of ICDCN, to appear.

15 G.A. Di Luna, P. Flocchini, N. Santoro, G. Viglietta, and Y. Yamauchi. Shape formation
by programmable particles. arXiv, 2017. URL: https://arxiv.org/abs/1705.03538.

16 O. Michail, G. Skretas, and P.G. Spirakis. On the transformation capability of feasible
mechanisms for programmable matter. In Proc. of ICALP, pages 136:1–136:15, 2017.

17 A. Naz, B. Piranda, J. Bourgeois, and S.C. Goldstein. A distributed self-reconfiguration
algorithm for cylindrical lattice-based modular robots. In Proc. of NCA, pages 254–263,
2016.

18 M.J. Patitz. An introduction to tile-based self-assembly and a survey of recent results. Nat.
Comput., 13(2):195–224, 2014.

19 P.W. Rothemund. Folding DNA to create nanoscale shapes and patterns. Nature,
440(7082):297–302, 2006.

20 M. Rubenstein, A. Cornejo, and R. Nagpal. Programmable self-assembly in a thousand-
robot swarm. Science, 345(6198):795–799, 2014.

21 N. Schiefer and E. Winfree. Universal computation and optimal construction in the chemical
reaction network-controlled tile assembly model. In Proc. of DNA, pages 34–54, 2015.

22 I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: formation of geometric
patterns. SIAM J. Comput., 28(4):1347–1363, 1999.

23 T. Toffoli and N. Margolus. Programmable matter: concepts and realization. Physica D,
47(1):263–272, 1991.

24 J.E. Walter, J.L. Welch, and N.M. Amato. Distributed reconfiguration of metamorphic
robot chains. Distrib. Comput., 17(2):171–189, 2004.

https://arxiv.org/abs/1701.03616
https://arxiv.org/abs/1701.03616
https://arxiv.org/abs/1705.03538

	Introduction
	Background
	Main Contributions

	Model and Preliminaries
	Universal Shape Formation Algorithm
	Lattice Consumption Phase
	Spanning Forest Construction Phase
	Handedness Agreement Phase
	Leader Election Phase
	Straightening Phase
	Role Assignment Phase
	Shape Composition Phase

	Generalization to All Computable Infinite-Resolution Shapes

