127 research outputs found

    Modelling input texts: from Tree Kernels to Deep Learning

    Get PDF
    One of the core questions when designing modern Natural Language Processing (NLP) systems is how to model input textual data such that the learning algorithm is provided with enough information to estimate accurate decision functions. The mainstream approach is to represent input objects as feature vectors where each value encodes some of their aspects, e.g., syntax, semantics, etc. Feature-based methods have demonstrated state-of-the-art results on various NLP tasks. However, designing good features is a highly empirical-driven process, it greatly depends on a task requiring a significant amount of domain expertise. Moreover, extracting features for complex NLP tasks often requires expensive pre-processing steps running a large number of linguistic tools while relying on external knowledge sources that are often not available or hard to get. Hence, this process is not cheap and often constitutes one of the major challenges when attempting a new task or adapting to a different language or domain. The problem of modelling input objects is even more acute in cases when the input examples are not just single objects but pairs of objects, such as in various learning to rank problems in Information Retrieval and Natural Language processing. An alternative to feature-based methods is using kernels which are essentially non-linear functions mapping input examples into some high dimensional space thus allowing for learning decision functions with higher discriminative power. Kernels implicitly generate a very large number of features computing similarity between input examples in that implicit space. A well-designed kernel function can greatly reduce the effort to design a large set of manually designed features often leading to superior results. However, in the recent years, the use of kernel methods in NLP has been greatly under-estimated primarily due to the following reasons: (i) learning with kernels is slow as it requires to carry out optimization in the dual space leading to quadratic complexity; (ii) applying kernels to the input objects encoded with vanilla structures, e.g., generated by syntactic parsers, often yields minor improvements over carefully designed feature-based methods. In this thesis, we adopt the kernel learning approach for solving complex NLP tasks and primarily focus on solutions to the aforementioned problems posed by the use of kernels. In particular, we design novel learning algorithms for training Support Vector Machines with structural kernels, e.g., tree kernels, considerably speeding up the training over the conventional SVM training methods. We show that using the training algorithms developed in this thesis allows for training tree kernel models on large-scale datasets containing millions of instances, which was not possible before. Next, we focus on the problem of designing input structures that are fed to tree kernel functions to automatically generate a large set of tree-fragment features. We demonstrate that previously used plain structures generated by syntactic parsers, e.g., syntactic or dependency trees, are often a poor choice thus compromising the expressivity offered by a tree kernel learning framework. We propose several effective design patterns of the input tree structures for various NLP tasks ranging from sentiment analysis to answer passage reranking. The central idea is to inject additional semantic information relevant for the task directly into the tree nodes and let the expressive kernels generate rich feature spaces. For the opinion mining tasks, the additional semantic information injected into tree nodes can be word polarity labels, while for more complex tasks of modelling text pairs the relational information about overlapping words in a pair appears to significantly improve the accuracy of the resulting models. Finally, we observe that both feature-based and kernel methods typically treat words as atomic units where matching different yet semantically similar words is problematic. Conversely, the idea of distributional approaches to model words as vectors is much more effective in establishing a semantic match between words and phrases. While tree kernel functions do allow for a more flexible matching between phrases and sentences through matching their syntactic contexts, their representation can not be tuned on the training set as it is possible with distributional approaches. Recently, deep learning approaches have been applied to generalize the distributional word matching problem to matching sentences taking it one step further by learning the optimal sentence representations for a given task. Deep neural networks have already claimed state-of-the-art performance in many computer vision, speech recognition, and natural language tasks. Following this trend, this thesis also explores the virtue of deep learning architectures for modelling input texts and text pairs where we build on some of the ideas to model input objects proposed within the tree kernel learning framework. In particular, we explore the idea of relational linking (proposed in the preceding chapters to encode text pairs using linguistic tree structures) to design a state-of-the-art deep learning architecture for modelling text pairs. We compare the proposed deep learning models that require even less manual intervention in the feature design process then previously described tree kernel methods that already offer a very good trade-off between the feature-engineering effort and the expressivity of the resulting representation. Our deep learning models demonstrate the state-of-the-art performance on a recent benchmark for Twitter Sentiment Analysis, Answer Sentence Selection and Microblog retrieval

    Selecting answers to questions from Web documents by a robust validation process

    Get PDF
    International audienceQuestion answering (QA) systems aim at finding answers to question posed in natural language using a collection of documents. When the collection is extracted from the Web, the structure and style of the texts are quite different from those of newspaper articles. We developed a QA system based on an answer validation process able to handle Web specificity. A large number of candidate answers are extracted from short passages in order to be validated according to question and passages characteristics. The validation module is based on a machine learning approach. It takes into account criteria characterizing both the passage and answer relevance at the surface, lexical, syntactic and semantic levels to deal with different types of texts. We present and compare results obtained for factual questions posed on a Web and on a newspaper collection. We show that our system outperforms a baseline by up to 48% in MRR

    Factoid question answering for spoken documents

    Get PDF
    In this dissertation, we present a factoid question answering system, specifically tailored for Question Answering (QA) on spoken documents. This work explores, for the first time, which techniques can be robustly adapted from the usual QA on written documents to the more difficult spoken documents scenario. More specifically, we study new information retrieval (IR) techniques designed for speech, and utilize several levels of linguistic information for the speech-based QA task. These include named-entity detection with phonetic information, syntactic parsing applied to speech transcripts, and the use of coreference resolution. Our approach is largely based on supervised machine learning techniques, with special focus on the answer extraction step, and makes little use of handcrafted knowledge. Consequently, it should be easily adaptable to other domains and languages. In the work resulting of this Thesis, we have impulsed and coordinated the creation of an evaluation framework for the task of QA on spoken documents. The framework, named QAst, provides multi-lingual corpora, evaluation questions, and answers key. These corpora have been used in the QAst evaluation that was held in the CLEF workshop for the years 2007, 2008 and 2009, thus helping the developing of state-of-the-art techniques for this particular topic. The presentend QA system and all its modules are extensively evaluated on the European Parliament Plenary Sessions English corpus composed of manual transcripts and automatic transcripts obtained by three different Automatic Speech Recognition (ASR) systems that exhibit significantly different word error rates. This data belongs to the CLEF 2009 track for QA on speech transcripts. The main results confirm that syntactic information is very useful for learning to rank question candidates, improving results on both manual and automatic transcripts unless the ASR quality is very low. Overall, the performance of our system is comparable or better than the state-of-the-art on this corpus, confirming the validity of our approach.En aquesta Tesi, presentem un sistema de Question Answering (QA) factual, especialment ajustat per treballar amb documents orals. En el desenvolupament explorem, per primera vegada, quines tècniques de les habitualment emprades en QA per documents escrit són suficientment robustes per funcionar en l'escenari més difícil de documents orals. Amb més especificitat, estudiem nous mètodes de Information Retrieval (IR) dissenyats per tractar amb la veu, i utilitzem diversos nivells d'informació linqüística. Entre aquests s'inclouen, a saber: detecció de Named Entities utilitzant informació fonètica, "parsing" sintàctic aplicat a transcripcions de veu, i també l'ús d'un sub-sistema de detecció i resolució de la correferència. La nostra aproximació al problema es recolza en gran part en tècniques supervisades de Machine Learning, estant aquestes enfocades especialment cap a la part d'extracció de la resposta, i fa servir la menor quantitat possible de coneixement creat per humans. En conseqüència, tot el procés de QA pot ser adaptat a altres dominis o altres llengües amb relativa facilitat. Un dels resultats addicionals de la feina darrere d'aquesta Tesis ha estat que hem impulsat i coordinat la creació d'un marc d'avaluació de la taska de QA en documents orals. Aquest marc de treball, anomenat QAst (Question Answering on Speech Transcripts), proporciona un corpus de documents orals multi-lingüe, uns conjunts de preguntes d'avaluació, i les respostes correctes d'aquestes. Aquestes dades han estat utilitzades en les evaluacionis QAst que han tingut lloc en el si de les conferències CLEF en els anys 2007, 2008 i 2009; d'aquesta manera s'ha promogut i ajudat a la creació d'un estat-de-l'art de tècniques adreçades a aquest problema en particular. El sistema de QA que presentem i tots els seus particulars sumbòduls, han estat avaluats extensivament utilitzant el corpus EPPS (transcripcions de les Sessions Plenaries del Parlament Europeu) en anglès, que cónté transcripcions manuals de tots els discursos i també transcripcions automàtiques obtingudes mitjançant tres reconeixedors automàtics de la parla (ASR) diferents. Els reconeixedors tenen característiques i resultats diferents que permetes una avaluació quantitativa i qualitativa de la tasca. Aquestes dades pertanyen a l'avaluació QAst del 2009. Els resultats principals de la nostra feina confirmen que la informació sintàctica és mol útil per aprendre automàticament a valorar la plausibilitat de les respostes candidates, millorant els resultats previs tan en transcripcions manuals com transcripcions automàtiques, descomptat que la qualitat de l'ASR sigui molt baixa. En general, el rendiment del nostre sistema és comparable o millor que els altres sistemes pertanyents a l'estat-del'art, confirmant així la validesa de la nostra aproximació

    Multitask Learning with Deep Neural Networks for Community Question Answering

    Get PDF
    In this paper, we developed a deep neural network (DNN) that learns to solve simultaneously the three tasks of the cQA challenge proposed by the SemEval-2016 Task 3, i.e., question-comment similarity, question-question similarity and new question-comment similarity. The latter is the main task, which can exploit the previous two for achieving better results. Our DNN is trained jointly on all the three cQA tasks and learns to encode questions and comments into a single vector representation shared across the multiple tasks. The results on the official challenge test set show that our approach produces higher accuracy and faster convergence rates than the individual neural networks. Additionally, our method, which does not use any manual feature engineering, approaches the state of the art established with methods that make heavy use of it

    Finding answers to questions, in text collections or web, in open domain or specialty domains

    Get PDF
    International audienceThis chapter is dedicated to factual question answering, i.e. extracting precise and exact answers to question given in natural language from texts. A question in natural language gives more information than a bag of word query (i.e. a query made of a list of words), and provides clues for finding precise answers. We will first focus on the presentation of the underlying problems mainly due to the existence of linguistic variations between questions and their answerable pieces of texts for selecting relevant passages and extracting reliable answers. We will first present how to answer factual question in open domain. We will also present answering questions in specialty domain as it requires dealing with semi-structured knowledge and specialized terminologies, and can lead to different applications, as information management in corporations for example. Searching answers on the Web constitutes another application frame and introduces specificities linked to Web redundancy or collaborative usage. Besides, the Web is also multilingual, and a challenging problem consists in searching answers in target language documents other than the source language of the question. For all these topics, we present main approaches and the remaining problems
    corecore