7 research outputs found

    Nanophotonic reservoir computing with photonic crystal cavities to generate periodic patterns

    Get PDF
    Reservoir computing (RC) is a technique in machine learning inspired by neural systems. RC has been used successfully to solve complex problems such as signal classification and signal generation. These systems are mainly implemented in software, and thereby they are limited in speed and power efficiency. Several optical and optoelectronic implementations have been demonstrated, in which the system has signals with an amplitude and phase. It is proven that these enrich the dynamics of the system, which is beneficial for the performance. In this paper, we introduce a novel optical architecture based on nanophotonic crystal cavities. This allows us to integrate many neurons on one chip, which, compared with other photonic solutions, closest resembles a classical neural network. Furthermore, the components are passive, which simplifies the design and reduces the power consumption. To assess the performance of this network, we train a photonic network to generate periodic patterns, using an alternative online learning rule called first-order reduced and corrected error. For this, we first train a classical hyperbolic tangent reservoir, but then we vary some of the properties to incorporate typical aspects of a photonics reservoir, such as the use of continuous-time versus discrete-time signals and the use of complex-valued versus real-valued signals. Then, the nanophotonic reservoir is simulated and we explore the role of relevant parameters such as the topology, the phases between the resonators, the number of nodes that are biased and the delay between the resonators. It is important that these parameters are chosen such that no strong self-oscillations occur. Finally, our results show that for a signal generation task a complex-valued, continuous-time nanophotonic reservoir outperforms a classical (i.e., discrete-time, real-valued) leaky hyperbolic tangent reservoir (normalized root-mean-square errors = 0.030 versus NRMSE = 0.127)

    Parameterized Pattern Generation via Regression in the Model Space of Echo State Networks

    Get PDF
    Aswolinskiy W, Steil JJ. Parameterized Pattern Generation via Regression in the Model Space of Echo State Networks. In: Proceedings of the Workshop on New Challenges in Neural Computation. Machine Learning Reports. 2016

    Reservoir Computing: computation with dynamical systems

    Get PDF
    In het onderzoeksgebied Machine Learning worden systemen onderzocht die kunnen leren op basis van voorbeelden. Binnen dit onderzoeksgebied zijn de recurrente neurale netwerken een belangrijke deelgroep. Deze netwerken zijn abstracte modellen van de werking van delen van de hersenen. Zij zijn in staat om zeer complexe temporele problemen op te lossen maar zijn over het algemeen zeer moeilijk om te trainen. Recentelijk zijn een aantal gelijkaardige methodes voorgesteld die dit trainingsprobleem elimineren. Deze methodes worden aangeduid met de naam Reservoir Computing. Reservoir Computing combineert de indrukwekkende rekenkracht van recurrente neurale netwerken met een eenvoudige trainingsmethode. Bovendien blijkt dat deze trainingsmethoden niet beperkt zijn tot neurale netwerken, maar kunnen toegepast worden op generieke dynamische systemen. Waarom deze systemen goed werken en welke eigenschappen bepalend zijn voor de prestatie is evenwel nog niet duidelijk. Voor dit proefschrift is onderzoek gedaan naar de dynamische eigenschappen van generieke Reservoir Computing systemen. Zo is experimenteel aangetoond dat de idee van Reservoir Computing ook toepasbaar is op niet-neurale netwerken van dynamische knopen. Verder is een maat voorgesteld die gebruikt kan worden om het dynamisch regime van een reservoir te meten. Tenslotte is een adaptatieregel geïntroduceerd die voor een breed scala reservoirtypes de dynamica van het reservoir kan afregelen tot het gewenste dynamisch regime. De technieken beschreven in dit proefschrift zijn gedemonstreerd op verschillende academische en ingenieurstoepassingen

    Sequence generation with reservoir computing systems

    Get PDF

    Reliability of Extreme Learning Machines

    Get PDF
    Neumann K. Reliability of Extreme Learning Machines. Bielefeld: Bielefeld University Library; 2014.The reliable application of machine learning methods becomes increasingly important in challenging engineering domains. In particular, the application of extreme learning machines (ELM) seems promising because of their apparent simplicity and the capability of very efficient processing of large and high-dimensional data sets. However, the ELM paradigm is based on the concept of single hidden-layer neural networks with randomly initialized and fixed input weights and is thus inherently unreliable. This black-box character usually repels engineers from application in potentially safety critical tasks. The problem becomes even more severe since, in principle, only sparse and noisy data sets can be provided in such domains. The goal of this thesis is therefore to equip the ELM approach with the abilities to perform in a reliable manner. This goal is approached in three aspects by enhancing the robustness of ELMs to initializations, make ELMs able to handle slow changes in the environment (i.e. input drifts), and allow the incorporation of continuous constraints derived from prior knowledge. It is shown in several diverse scenarios that the novel ELM approach proposed in this thesis ensures a safe and reliable application while simultaneously sustaining the full modeling power of data-driven methods
    corecore