
✐
✐

“main” — 2009/11/10 — 10:05 — page 1 — #1 ✐
✐

✐
✐

✐
✐

✐
✐

“main” — 2009/11/10 — 10:05 — page 2 — #2 ✐
✐

✐
✐

✐
✐

✐
✐

“main” — 2009/11/10 — 10:05 — page 3 — #3 ✐
✐

✐
✐

✐
✐

Reservoir Computing: rekenen met dynamische systemen

Reservoir Computing: Computation with Dynamical Systems

David Verstraeten

Promotoren: prof. dr. ir. D. Stroobandt, dr. ir. B. Schrauwen
Proefschrift ingediend tot het behalen van de graad van
Doctor in de Ingenieurswetenschappen: Computerwetenschappen

Vakgroep Elektronica en Informatiesystemen
Voorzitter: prof. dr. ir. J. Van Campenhout
Faculteit Ingenieurswetenschappen
Academiejaar 2009 - 2010

✐
✐

“main” — 2009/11/10 — 10:05 — page 4 — #4 ✐
✐

✐
✐

✐
✐

ISBN 978-90-8578-309-1
NUR 984
Wettelijk depot: D/2009/10.500/67

✐
✐

“main” — 2009/11/10 — 10:05 — page I — #5 ✐
✐

✐
✐

✐
✐

Dankwoord

Dit proefschrift vertegenwoordigt een grote persoonlijke inspanning, maar
tegelijk zou dit werk niet mogelijk zijn geweest zonder de ondersteuning
van vele anderen. Ik wens iedereen die betrokken was bij mijn onderzoek
daarom van harte te bedanken, ook zij die hier niet bij naam genoemd
zijn.

Eerst en vooral bedank ik mijn promotoren dr. Benjamin Schrauwen
en prof. Dirk Stroobandt. Benjamin, bedankt voor de begeleiding van
de voorbije jaren en het opzetten van een zeer aangename werkomgeving.
Ik heb onderzoek kunnen doen in een stimulerende omgeving samen met
een jong en gemotiveerd team van enthousiaste onderzoekers en dat is
jouw verdienste. Onze beste ideeën zijn ontstaan op conferenties en die
momenten hebben me altijd gemotiveerd om ‘goeie science’ te produceren.
Dirk, bedankt om de kans en de ondersteuning te bieden die mij in staat
hebben gesteld dit doctoraat te doen.

Ik wil ook prof. Joni Dambre en prof. Jan Van Campenhout bedanken
voor het grondige nalezen (soms meerdere keren zelfs) en voor de waar-
devolle raad die dit werk hebben opgetild tot het huidige niveau. Jullie
visie, vaak vanuit een heel andere invalshoek dan ik gewend was, heeft
me gedwongen om mijn werk op andere manieren te bekijken en dat heeft
zeker bijgedragen tot de kwaliteit van dit proefschrift.

Verder ook een bedanking voor mijn collega’s om te helpen om van het
Reservoir Lab niet alleen een professioneel onderzoeksteam, maar in de
eerste plaats een leuke werkomgeving te maken. Merci, zowel aan de ‘an-
ciens’ Michiel D’Haene, Francis wyffels, Eric Antonelo, Pieter Buteneers,
Michiel Hermans en Xavier Dutoit, als aan de nieuwelingen: Antonio
Rebordao, Tim Waegeman, Philemon Brakel, Fionntan O’Donnell. Ook
bedankt aan de collega’s van HES om van de groepstweedaagse telkens een
leuke uitstap te maken: Fatma Abouelella, Peter Bertels, Karel Bruneel,

✐
✐

“main” — 2009/11/10 — 10:05 — page II — #6 ✐
✐

✐
✐

✐
✐

II

Harald Devos, Tom Davidson, Wim Heirman en Craig Moore.
Bedankt ook aan de collega-onderzoekers van de Photonics groep in

INTEC: prof. Peter Bienstman, Martin Fiers en Kristof Vandoorne, voor
de goede samenwerking rond een veelbelovende en opwindende volgende
stap in het research rond Reservoir Computing.

I also wish to thank the people at Planet GmbH, not only for offering
the opportunity to do research in an industrial setting and to work on real-
world engineering problems, but also for providing a very welcoming and
hospitable working and living environment during my stay there. Welf,
Udo, Klaus, Ulli, Hagen, Donata and the other Planeteers: thanks a lot,
I enjoyed my ‘German episode’ very much.

Bedankt aan Wim Meeus, Ronny Blomme en Michiel Ronsse voor de
logistieke steun en de hulp bij het opzetten van allerhande ICT-gerelateerde
constructies die mijn onderzoek mee hebben mogelijk gemaakt. Ik wens
ook de partners in het HomeMATE project te bedanken voor de goede
samenwerking en ik hoop dat we dit kunnen voortzetten in de toekomst.

Verder ook dank aan de leden van mijn examencommissie, en in het
bijzonder prof. Tom Dhaene, prof. Herbert Peremans en prof. Her-
bert Jaeger voor de waardevolle raadgevingen en opmerkingen over mijn
proefschrift.

Ik wil verder ook zeker mijn moeder, zus en (schoon-)familie en vrien-
den bedanken. Hoewel jullie niet rechtstreeks bij mijn onderzoek be-
trokken geweest zijn, hebben jullie ook bijgedragen tot dit werk door
jullie aanhoudende steun, aanmoedigingen en interesse.

Tot slot, maar eigenlijk in de eerste plaats, wil ik mijn vrouw Stans en
onze zoon Louis bedanken voor de voorbije jaren. Jullie hebben het de
voorbije jaren mogelijk gemaakt om dit werk te doen door van ons huis
een echte thuis te maken. Bedankt om dit met mij te delen.

David Verstraeten
Gent, 30 september 2009

✐
✐

“main” — 2009/11/10 — 10:05 — page III — #7 ✐
✐

✐
✐

✐
✐

III

Dit werk is ondersteund door het Instituut voor de Aanmoediging
van Innovatie door Wetenschap en Technologie Vlaanderen (IWT Vlaan-
deren).

This work was supported by the Institute for the Promotion of Inno-
vation through Science and Technology in Flanders (IWT Vlaanderen).

✐
✐

“main” — 2009/11/10 — 10:05 — page IV — #8 ✐
✐

✐
✐

✐
✐

✐
✐

“main” — 2009/11/10 — 10:05 — page V — #9 ✐
✐

✐
✐

✐
✐

Examencommissie

Prof. Rik Van de Walle, voorzitter
Academisch secretaris, Faculteit Ingenieurswetenschappen
Universiteit Gent

Prof. Joni Dambre, secretaris
Vakgroep ELIS, Faculteit Ingenieurswetenschappen
Universiteit Gent

Prof. Dirk Stroobandt, promotor
Vakgroep ELIS, Faculteit Ingenieurswetenschappen
Universiteit Gent

Dr. ir. Benjamin Schrauwen, promotor
Vakgroep ELIS, Faculteit Ingenieurswetenschappen
Universiteit Gent

Prof. Jan Van Campenhout
Vakgroep ELIS, Faculteit Ingenieurswetenschappen
Universiteit Gent

Prof. Tom Dhaene
Vakgroep INTEC, Faculteit Ingenieurswetenschappen
Universiteit Gent

Prof. Herbert Peremans
Active Perception Lab, Vakgroep Milieu, Technologie en
technologiemanagement,
Faculteit Toegepaste Economische Wetenschappen
Universiteit Antwerpen

✐
✐

“main” — 2009/11/10 — 10:05 — page VI — #10 ✐
✐

✐
✐

✐
✐

VI

Prof. Herbert Jaeger
School of Engineering and Science
Jacobs University

Eerste (interne) verdediging: 22 september 2009, 15h00
Openbare verdediging: 13 oktober 2009, 18h00

✐
✐

“main” — 2009/11/10 — 10:05 — page VII — #11 ✐
✐

✐
✐

✐
✐

Samenvatting

Reservoir Computing

Een groot aantal uitdagende en interessante problemen voor ingenieurs
kunnen niet worden opgelost met heuristische methoden of expliciet ge-
programmeerde algoritmen. Deze problemen zijn kandidaten bij uitstek
om aangepakt te worden met machine learning-methoden. Deze meth-
oden hebben alle de eigenschap dat ze leren uit voorbeelden, en dat
ze deze voorbeelden kunnen generalizeren op een ‘intelligente’ manier
naar nieuwe, ongeziene invoer. Er bestaan veel machine learning meth-
oden, en een grote subklasse wordt gevormd door de Neurale Netwerken
(NN). NN zijn zeer abstracte, connectionistische modellen van de manier
waarop het brein “rekent”. Ze bestaan uit netwerken van eenvoudige, niet-
lineaire rekenknopen die waarden communiceren langs gewogen verbindin-
gen. Door deze gewichten aan te passen (te trainen) op basis van voor-
beelden kan het gewenste gedrag van het netwerk verkregen worden. Als
het netwerk een recurrente structuur heeft (i.e., terugkoppellussen bevat),
dan zal het een geheugen hebben van invoer uit het verleden, waardoor het
temporele signalen kan verwerken en waardoor deze netwerken krachtige
niet-lineaire temporele rekenmethodes worden. Deze recurrente neurale
netwerken zijn echter berucht vanwege hun moeilijke trainbaarheid.

Recent werd een nieuw leerparadigma geïntroduceerd met de naam
Reservoir Computing (RC). Deze methode stelt ons in staat om recurrente
neurale netwerken te gebruiken zonder een lange en moeilijke trainings-
faze. Dezelfde basisidee is onafhankelijk geïntroduceerd als Echo State
Netwerken en Liquid State Machines. In beide gevallen bestaat het sys-
teem uit twee delen: een recurrent netwerk van neuronen dat het reser-
voir genoemd wordt en dat willekeurig geconstrueerd wordt en verder
niet getraind wordt, en een aparte lineaire uitleeslaag die getraind wordt
met eenvoudige eenstapsmethodes. De niet-lineaire transformatie en het

✐
✐

“main” — 2009/11/10 — 10:05 — page VIII — #12 ✐
✐

✐
✐

✐
✐

VIII

korte-termijngeheugen van het reservoir versterkt het rekenvermogen van
de eenvoudige, geheugenloze lineare uitvoerlaag.

Deze thesis

Sinds zijn introductie in 2002 heeft Reservoir Computing veel aandacht
getrokken binnen de onderzoeksgemeenschap rond neurale netwerken door
de combinatie van zijn eenvoud van gebruik en zijn uitstekende prestatie
op een brede waaier van toepassingen. In dit doctoraat zullen wij aan-
tonen dat RC kan uitgebreid worden van zijn oorspronkelijke neurale
implementaties naar een geheel nieuwe manier om te rekenen met gener-
ieke, niet-lineare dynamische media. Niettemin, het blind toepassen van
het RC paradigma op nieuwe reservoir types is niet mogelijk omdat de
noodzakelijke theoretische onderbouw ontbreekt. Deze thesis geeft een
experimentele validatie van de bewering dat RC kan toegepast worden
op generieke, niet-neurale netwerken en introduceert een aantal hulpmid-
delen die de ontwerper van een RC systeem kan helpen om de optimale
reservoir parameters te kiezen.

Klassieke RC en toepassingen

We beginnen met een beschrijving van de methodologie om een ESN
netwerk te bouwen, simuleren en trainen. Dit reservoirtype is sterk
aanwezig in deze thesis. Daarnaast bespreken we drie methodologische
principes die essentieel zijn voor een correcte evaluatie van de prestatie
van het systeem, en die helpen om deze prestatie te optimalizeren. Deze
klassieke, ‘neurale’ RC systemen worden dan gebruikt om zowel de brede
toepasbaarheid als de uitstekende prestatie van RC aan te tonen, door het
toe te passen op een herkenningstaak van gesproken cijfers, een industriële
signaalclassificatie taak en een biomedisch detectieprobleem.

Nieuwe implementaties van Reservoir Computing

Hoewel RC stamt uit het onderzoeksgebied rond neurale netwerken, kun-
nen zijn fundamentele concepten overgedragen worden op andere exciteer-
bare media en technologieën. Wanneer deze transitie naar nieuwe reser-
voirimplementaties gemaakt wordt, rijst de vraag hoe tijd moet voorgesteld
worden in deze systemen, en hoe de overgang tussen de verschillende tijds-
domeinen (invoer, reservoir en uitvoer) gedaan kan worden. Door de on-
derlinge verhouding tussen de tijdschalen in deze verschillende domeinen
te regelen kan men de geheugeneigenschappen van het reservoir aanpassen
aan de taak die bestudeerd wordt. We tonen aan dat het bijstellen van
deze tijdschalen cruciaal is voor het optimalizeren van de prestatie, door

✐
✐

“main” — 2009/11/10 — 10:05 — page IX — #13 ✐
✐

✐
✐

✐
✐

IX

de effecten te bestuderen in de context van een gesproken cijferherken-
ningstaak.

Vervolgens onderbouwen wij de bewering dat RC toepasbaar is op
meer generieke dynamische systemen verder, door verschillende nieuwe
reservoir implementaties voor te stellen en te onderzoeken. Deze imple-
mentaties vertonen gradueel minder en minder overeenkomsten met de
oorspronkelijk neurale reservoirs. We bespreken banddoorlaat reservoirs,
Cellulaire Niet-lineaire reservoirs en fotonische reservoirs en we tonen aan
dat al deze implementaties kunnen gebruikt worden in de context van het
RC-raamwerk.

Het quantificeren van reservoir dynamica

Het gebruik van nieuwe reservoirtypes leidt tot de vraag hoe deze sys-
temen moeten afgeregeld worden voor optimale prestatie. De klassieke,
stationaire methodes zijn niet meer toepasbaar op nieuwe reservoirs, dus
de nood ontstaat voor een nieuwe methode om het dynamisch regime te
quantificeren. We introduceren en onderzoeken een maat van reservoir
dynamica die gesteund is op concepten uit niet-lineaire dynamische sys-
teemtheorie. Deze maat neemt het eigenlijke werkingspunt in rekening, en
we tonen aan dat de maat kan dienen als accurate predictor van prestatie
voor verschilllende taken. Het voordeel van deze maat is dat zij toepas-
baar is op nieuwe reservoir implementaties en dat zij een nauwkeuriger
quantificatie biedt van het dynamische regime.

Regelen van de reservoir dynamica

Nadat we een manier hebben voorgesteld om de dynamica te meten, in-
troduceren en onderzoeken wij een generiek regelmechanisme, Intrinsieke
Plastiticiteit, dat actief de dynamica van het reservoir bijregelt. Het
mechanisme is gebaseerd op informatie-theoretische principes en regelt de
dynamica van het reservoir op een ongesuperviseerde, autonome en biol-
ogisch plausibele manier. De voorgestelde adaptatieregel is generisch: hij
kan gebruikt worden om individuele adaptatieregels te instantiëren voor
een gegeven reservoir type. We tonen aan voor twee verschillende reser-
voirtypes aan dat dit adaptatiemechanisme automatisch te parameters
van de knopen bijregelt in het reservoir en dat het optimale dynamische
regime bereikt wordt.

✐
✐

“main” — 2009/11/10 — 10:05 — page X — #14 ✐
✐

✐
✐

✐
✐

✐
✐

“main” — 2009/11/10 — 10:05 — page XI — #15 ✐
✐

✐
✐

✐
✐

Summary

Reservoir Computing

Many challenging and interesting problems in engineering are unsolv-
able using heuristic methods or explicitly programmed algorithms. These
problems are prime candidates for applying machine learning methods.
These methods share the common property that they learn by example
and can generalize these examples in an ‘intelligent’ way to new, unseen
inputs. Many machine learning techniques exist, and a large subclass of
these is formed by Neural Networks (NN). NN are very abstract connec-
tionist models of the way the brain does computation. They consist of
networks of simple, nonlinear computational nodes that communicate val-
ues across weighted connections. By training the values of these weights
based on examples, the desired behaviour of the network is attained. If
the network has a recurrent structure (i.e., feedback loops), then it will
have a memory of past inputs, which enables it to do processing of tem-
poral signals rendering them powerful nonlinear computational methods.
These recurrent neural networks are however notoriously difficult to train.

A novel learning paradigm called Reservoir Computing (RC) has been
recently introduced that enables the use of recurrent neural networks
without the lenghty and difficult training stage. The same basic idea
was introduced independently as Echo State Networks and Liquid State
Machines. In both cases, the architecture consists of a recurrent network
of neurons called the reservoir, which is constructed randomly and left
untrained, and a separate linear output layer that is trained using simple
one-shot methods. The nonlinear mapping and fading memory provided
by the reservoir boosts the power of the simple memoryless linear output.

✐
✐

“main” — 2009/11/10 — 10:05 — page XII — #16 ✐
✐

✐
✐

✐
✐

XII

This thesis

Since its introduction in 2002, Reservoir Computing has attracted much
attention in the neural networks community due to the combination of its
simplicity of use and its very good performance on a variety of difficult
benchmark tasks. In this doctoral thesis, we will provide experimental
evidence for the claim that RC can be extended beyond its original neu-
ral implementations to a novel way of doing computation with generic,
nonlinear dynamical media. However, blindly applying the RC paradigm
to novel reservoir types is not feasible since the necessary theoretical in-
sights are lacking. This thesis presents an experimental validation of the
claim that RC is applicable to generic, non-neural media and introduces
some tools that can help a designer of an RC system select the optimal
reservoir parameters.

Standard RC and Applications

We describe the methodology of constructing, simulating and training
ESN networks, which are featured prominently throughout this thesis. In
addition, we discuss three methodological principles that are essential for
a correct evaluation of the performance of the system, and that help to
optimize the performance. These standard, ‘neural’ RC systems are then
used to demonstrate both the wide applicability and good performance of
RC on a spoken digit recognition task, an industrial signal classification
task and a biomedical detection problem.

Towards novel implementations of reservoir computing

While RC is rooted in the research field of neural networks, its fundamen-
tal concepts can be transposed to other excitable media and technologies.
When making this transition to novel reservoir implementations, the issue
arises of how time should be represented and how the transition between
the different time domains (input, reservoir and output) can be done. By
adjusting the relationship between the time scales in these different do-
mains, one can tune the memory properties of the reservoir to the task
at hand. We show that tuning these time scales is crucial for optimizing
the performance by investigating its effects on a spoken digit recognition
task.

Next, we further substantiate the claim that RC is applicable to more
general dynamical systems by presenting and investigating several reser-
voir implementations that show progressively less similarities to the orig-
inal neural reservoirs. We discuss bandpass reservoirs, Cellular Nonlinear

✐
✐

“main” — 2009/11/10 — 10:05 — page XIII — #17 ✐
✐

✐
✐

✐
✐

XIII

reservoirs and photonic reservoirs and show that all these implementa-
tions can be used in the RC framework.

Quantifying reservoir dynamics

The use of novel reservoir types leads to the question of how to tune
these systems for optimal performance. Traditional, stationary measures
no longer apply to novel reservoirs, so the need arises for a method to
quantify the dynamical regime. We introduce and investigate a measure
of the reservoir dynamics that is based on nonlinear dynamical systems
theory. This measure takes the actual operating point into account, and
we show that this can be used as an accurate predictor of performance
for several tasks. The advantage of this measure is that it is applicable to
new reservoir implementations and offers a more accurate quantification
of the dynamical regime.

Tuning reservoir dynamics

After developing a way to quantify the dynamics, we introduce and inves-
tigate a generalized adaptation mechanism called Intrinsic Plasticity that
actively tunes the dynamics of the reservoir. The mechanism is based
on information theoretic principles, and tunes the dynamics of the reser-
voir in an unsupervised, autonomous and biologically plausible way. The
presented adaptation rule is generic: from it, one can derive individual
adaptation rules for a given reservoir type. We show that this adapta-
tion mechanism automatically adjusts the parameters of the nodes in the
reservoir and that it reaches the optimal dynamical regime by applying
it to two different reservoir types.

✐
✐

“main” — 2009/11/10 — 10:05 — page XIV — #18 ✐
✐

✐
✐

✐
✐

✐
✐

“main” — 2009/11/10 — 10:05 — page XV — #19 ✐
✐

✐
✐

✐
✐

List of Abbreviations

AI Artificial Intelligence

ANN Artificial Neural Network

APRL Atiya-Parlos Recurrent Learning

AUC Area Under Curve

BPDC Backpropagation Decorrelation

BPTT Backpropagation Through Time

CA Cellular Automaton

CNN Cellular Nonlinear/Neural Network

ESN Echo State Network

ESP Echo State Property

FFT Fast Fourier Transform

IP Intrinsic Plasticity

KS Kolmogorov-Sinai

LIF Leaky Integrate and Fire

LLE Local Lyapunov Exponent

LMS Least Mean Squares

LSM Liquid State Machine

LSV Largest Singular Value

MFCC Mel-Frequency Cepstral Coefficients

ML Machine learning

NN Neural Network

NMSE Normalized Mean Square Error

✐
✐

“main” — 2009/11/10 — 10:05 — page XVI — #20 ✐
✐

✐
✐

✐
✐

XVI

NRMSE Normalized Root Mean Square Error
RC Reservoir Computing
RCT Reservoir Computing Toolbox
ROC Receiver Operating Characteristic
RLS Recursive Least Squares
RTRL RealTime Recurrent Learning
SISO Single Input Single Output
SOA Semiconductor Optical Amplifier
SSV Structured Singular Value
SV Singular Value
TLG Threshold Logic Gate
TM Turing Machine
WER Word Error Rate

✐
✐

“main” — 2009/11/10 — 10:05 — page XVII — #21 ✐
✐

✐
✐

✐
✐

Mathematic notations

�x, z� inner product

I(X;Y) mutual information of stochastic variables X and Y

ηIP learning rate for the IP learning rule

ĥk kth local lyapunov exponent (LLE)

ĥmax maximal local lyapunov exponent (LLE)

H(X) entropy of stochastic variable X

Jf Jacobian of a map f

µSSV Structured singular value

M number of input nodes

N number of reservoir nodes

P number of output nodes

D number of samples in the dataset

DKL Kullback-Leibler divergence

ρ(W) spectral radius of matrix W

ρeff effective spectral radius

s(t) signal in continuous time, indicated with t

s[k] signal in discrete time, indexed with k

Td number of timesteps in the dth sample

u[k] input vector at timestep k

Wres reservoir weight matrix

Win input weight matrix

✐
✐

“main” — 2009/11/10 — 10:05 — page XVIII — #22 ✐
✐

✐
✐

✐
✐

XVIII

Wout output weight matrix
Wfb feedback weight matrix

x[k] vector of reservoir states at time k

✐
✐

“main” — 2009/11/10 — 10:05 — page XIX — #23 ✐
✐

✐
✐

✐
✐

Contents

1 Introduction 1
1.1 Automating information processing 1
1.2 Artificial Intelligence / Machine Learning 4
1.3 Artificial Neural networks 6

1.3.1 Applications of neural networks 8
1.3.2 Activation functions 9
1.3.3 Spiking neural networks 10
1.3.4 Network topologies 11

1.4 The origins of Reservoir Computing 14
1.4.1 A brief history . 14
1.4.2 Echo State Networks 15
1.4.3 Liquid State Machines 16
1.4.4 BackPropagation DeCorrelation 17
1.4.5 Early descriptions of neural RC systems 18
1.4.6 Applications of Reservoir Computing 18
1.4.7 Towards generic Reservoir Computing 19

1.5 Contributions and structure 21
1.5.1 Main contributions of this thesis 22
1.5.2 Structure of this thesis 24

1.6 List of publications . 25

2 Standard Reservoir Computing: methods and applications 29
2.1 Operational and functional aspects of reservoirs: the basics 29

2.1.1 Creating and using reservoirs 31
2.1.1.1 The standard architecture 31
2.1.1.2 Variations on the basic architecture . . . 34

2.1.2 Three views on reservoir functionality 35
2.1.2.1 The reservoir as a temporal kernel 35

✐
✐

“main” — 2009/11/10 — 10:05 — page XX — #24 ✐
✐

✐
✐

✐
✐

XX Contents

2.1.2.2 The reservoir as a complex preprocessing
filter for linear methods 37

2.1.2.3 The reservoir as a dynamical system: com-
putation at the edge of chaos 38

2.1.3 Performance evaluation 40
2.1.3.1 Regularization 40
2.1.3.2 Cross-validation 45
2.1.3.3 Unbalanced datasets and Fisher relabeling 47

2.2 Applications . 49
2.2.1 Academic tasks . 49

2.2.1.1 NARMA 49
2.2.1.2 Memory capacity 50
2.2.1.3 Signal template classification task 51
2.2.1.4 Signal generation tasks 52

2.2.2 Spoken digit recognition with a Liquid State Machine 54
2.2.2.1 Preprocessing 56
2.2.2.2 Noisy inputs 63
2.2.2.3 Comparison with the state of the art . . 64

2.2.3 The Ford dataset competition 64
2.2.3.1 Experimental setup 65
2.2.3.2 Results of the competition 69

2.2.4 Epilepsy detection 70

3 Towards generic Reservoir Computing: time scales and
novel reservoirs 73
3.1 Time scales and memory 73

3.1.1 Three different time steps 74
3.1.1.1 The reservoir timescale δ2: leaky integra-

tor nodes 74
3.1.1.2 The output time scale δ3 78
3.1.1.3 Transitions between time domains through

resampling 78
3.1.2 Node memory vs. reservoir memory 79
3.1.3 The impact of time scales on spoken digit recognition 80

3.1.3.1 Input Resampling vs. integration 82
3.1.3.2 Reservoir resampling vs. integration . . . 82

3.2 Bandpass reservoirs . 86
3.3 Cellular Nonlinear reservoirs 89

3.3.1 CNNs as reservoirs 90
3.3.2 Sweeping the parameter space 91
3.3.3 Template optimization with Coupled Simulated An-

nealing . 92

✐
✐

“main” — 2009/11/10 — 10:05 — page XXI — #25 ✐
✐

✐
✐

✐
✐

Contents XXI

3.4 Photonic reservoirs . 96
3.5 Conclusions . 98

4 Quantifying and adapting reservoir dynamics 101
4.1 Computation with generic dynamical systems 101

4.1.1 Characterizing dynamical systems 101
4.1.2 Computation at the edge of stability 104
4.1.3 Static reservoir measures and their disadvantages . 105

4.2 Quantifying reservoir dynamics 108
4.2.1 Linking different bounds for the echo state property

to network dynamics 108
4.2.2 Towards a more complete quantification of reservoir

dynamics . 113
4.2.3 The link between dynamics and state distributions 117

4.3 Adapting reservoir dynamics 117
4.3.1 Information theory and learning 119
4.3.2 An unsupervised adaptation rule for reservoirs . . 121

4.4 Towards generalized Intrinsic Plasticity 123
4.4.1 Derivation of the generalized rule 124
4.4.2 Specific IP rules for Fermi and tanh neurons . . . 126
4.4.3 The effects of IP on the neuron parameters and

weight distributions 127
4.4.4 Limitations of the assumptions 128

4.5 Experiments . 130
4.5.1 Preliminaries . 130
4.5.2 Results . 132

4.6 Constrained topologies . 136
4.7 Conclusions . 138

5 Conclusions and perspectives 141
5.1 Summary . 141
5.2 Conclusions . 142
5.3 Perspectives . 144

A The Reservoir Computing Toolbox 149
A.1 A high-level description 150
A.2 Getting started . 151

A.2.1 Configuration files 152
A.2.2 Some use cases . 153

A.2.2.1 Own dataset 153
A.2.2.2 Parameter sweeps 153
A.2.2.3 Custom scripts 154

A.3 Datasets . 154

✐
✐

“main” — 2009/11/10 — 10:05 — page XXII — #26 ✐
✐

✐
✐

✐
✐

XXII Contents

A.4 Topology generation and layers 155
A.5 generic_simulate.m . 158
A.6 Training and cross-validation 159
A.7 Parallellization . 160

Bibliography 163

✐
✐

“main” — 2009/11/10 — 10:05 — page 1 — #27 ✐
✐

✐
✐

✐
✐

1
Introduction

1.1 Automating information processing

Mankind has since long looked for ways to automate certain computa-
tional tasks, from the Jaquard loom at the beginning of 19th century to
the current proliferation of computers and electronic devices that have
become an indispensible part of our everyday lives. Both scientific and
economic progress has shifted over the past century from industrialisation
(the automation of industrial processes) to informatisation (the automa-
tion of information processing). This shift is captured in the term ‘infor-
mation age’ which indicates a transition to a society in which information
is the main commodity – in a similarly fundamental way as the industrial
revolution changed the society. This transition is still ongoing, and its
momentum is increasing.

In the same way that industrial processes try to automate the shaping
and combination of the basic resources provided by nature, information
processing transforms and combines information – information that can
be available in the external world (environment) or stored digitally some-
where. The processes that perform the actual information processing are
almost always based on some form of computation. As both the amount
of information and its importance in society are increasing, the need for
methods to automatically process this information also grows. This in-
creasing interest in computation has motivated scientists from a wide
variety of fields (such as logic, mathematics, physics and others) to start
thinking about the nature of computation and how humans can construct
systems that automate this process. Fueled by the rapidly accelerating
transition to an information society and the accompanying technological
advances in hardware, these individual research lines have converged in

✐
✐

“main” — 2009/11/10 — 10:05 — page 2 — #28 ✐
✐

✐
✐

✐
✐

2 1 Introduction

the past few decades in a whole new research field called computer sci-
ence. Taking into account the fact that computer science has computation
and information processing in its core, the term science of computation
was perhaps more fitting. Edsger Dijkstra, one of the founders of com-
puter science, summarized this in the well-known quotation: “Computer
Science is no more about computers than astronomy is about telescopes.”

There are quite a few theories of computation available. Most theo-
ries of computation have focused on algorithmic computation, i.e., which
requirements of the computation device (the computer in a generic sense)
are needed to execute certain algorithms, and what can be said about
the properties of those algorithms. Arguably the most important the-
ory of computation that has been described in this context has been the
theoretical framework described by Alan Turing (Turing, 1936). Turing
described an abstract device (the Turing machine) which is a conceptually
simple but powerful computation device with an infinite storage capac-
ity. The Turing machine has had a fundamental impact on the theory of
computation: it is a system that can compute any algorithm that eventu-
ally terminates. So, instead of reasoning about algorithms, the theorists
now have an actual device (albeit an abstract one) that executes these
algorithms which they can reason about.

Turing machines are devices that describe how algorithms can be ex-
ecuted. They consist of a processing unit (the head) that contains a pro-
gram which defines its behaviour and that operates on a separate storage
device for symbols (the tape). This basic architecture – separating storage
and processing units – can be made more general by storing the program
in the same memory as the data (which a.o. allows the device to mod-
ify its own program). This architecture is called the universal Turing
machine, because it can simulate any given Turing machine. This archi-
tecture was later adopted by Von Neumann as the basis for some of the
first discrete-symbol computers (as opposed to analog computers), and
as such it forms the basis for every modern personal computer. While
many variations have been invented and constructed, this fundamental
architecture is until now by far the most prevalent in any information
processing device.

One of the implications of the Turing architecture is the fact that the
behaviour of the processing unit – what its output should be, given a
certain input – is explicitly programmed by a human. Moreover, its fun-
damental mode of operation is timestep-based, and it reads and writes
discrete symbols instead of continuous values. Almost all modern com-
puters also have these three (programmed, timestep-based and digital)
properties. The popularity of this approach is due to various techno-
logical and historical reasons, but it is by no means the only way to do

✐
✐

“main” — 2009/11/10 — 10:05 — page 3 — #29 ✐
✐

✐
✐

✐
✐

1.1 Automating information processing 3

computation. Indeed, an important part of the message of this doctoral
thesis is the fact that computation is also possible using non-discrete (both
in time and state) systems that are not explicitly programmed.

The programmable computer is a very flexible and powerful device,
which is part of the reason why it has pervaded our daily lives so quickly
and profoundly and why today much of our economy relies on a vast
information processing infrastructure. However, the complexity of the
data and the increasingly challenging problems that arise in information
processing are pushing the current computation paradigm to its limits.
Novel ways of thinking about computation are needed to overcome these
limitations.

Standard computer programs are very good at processing large a-
mounts of predictable data in a very quick and deterministic way. While
this is useful in many cases, there is a broad class of problems or tasks that
humans solve or execute on a daily basis – sometimes apparently without
conscious thinking – but which remain unsolved up to a certain point
by standard programmed algorithms. Tasks such as listening, language
processing, reasoning or moving around in new environments are mastered
by most people yet no machine or device can do this with nearly the same
level of accuracy or flexibility. It is the type of task that, loosely speaking,
requires intelligence.

Intelligence (from the Latin intellegere – to understand) is difficult to
define, but regardless of the definition it is quite clear that computers are
not intelligent – sometimes to the frustration of their users. For instance,
when a user executes a certain task a couple of times, the computer will
not recognize this pattern and learn to do this task itself. Also, when
a computer is presented with input it was not explicitly programmed to
handle, it cannot think of a reasonable response by itself. Finally, be-
cause the amount of available information (think of the internet) and its
complexity (think of robots navigating in unknown environments) is in-
creasing, traditional algorithms can no longer provide the computational
power needed to process this information.

The search for systems that do have these properties is what pow-
ers research in artificial intelligence (AI) and machine learning (ML).
These closely linked research fields are quite young (even more recent
than computer science itself), but have seen an explosive growth in the
last decade(s). This is due to two factors: first of all, many of the methods
that are developed and studied require large amounts of computing time
and the technological advance in hardware has only very recently reached
the point where machines are fast and powerful enough to simulate these
methods in a usable manner. Secondly – and equally importantly – the
traditional, algorithmic way to build computation devices and program-

✐
✐

“main” — 2009/11/10 — 10:05 — page 4 — #30 ✐
✐

✐
✐

✐
✐

4 1 Introduction

ming them is reaching its limitations and novel paradigms for creating
powerful information processing systems are needed.

1.2 Artificial Intelligence / Machine Learn-
ing

It is difficult to define which systems can be considered intelligent – this
is probably more a philosophical than a technical question. The famous
but controversial Turing test (Turing, 1950) tries to provide a test for ar-
tificial intelligence by letting a human judge the intelligence of the system
through conversation from an isolated location. So far no machine has
passed the test, and is has been argued that this test is not able to detect
all aspects of intelligence.

One of the properties of intelligent systems is the fact that they are ro-
bustly able to give a meaningful response when they are faced with inputs
they have not seen before. They are able to do this because they ‘under-
stand’ how their (sometimes abstract) environment is structured, and
how their desired output is fundamentally related to their inputs. While
this mapping between inputs and desired outputs could be programmed
explicitly if it was known, this is not the case for many interesting real
world problems.

The focus of this doctoral thesis is on systems or methods whose be-
haviour is controlled and adjusted in a very specific way, namely by learn-
ing. Traditional rule- or heuristics-based AI has its merits and is used in a
wide range of applications, but usually needs quite extensive intervention
or design by a human expert. The techniques that fall under the name
‘machine learning’, on the other hand, usually require principally much
less human intervention. These methods share the common property that
they are not programmed or designed in the conventional sense, but that
they learn by generalizing from training examples – hence the name.

There exist many techniques that can be placed in the general category
of machine learning. After an on-and-off period from the sixties to the
eighties in the previous century, fundamental work on statistical learning
theory (Vapnik, 1995) and neural networks (Rumelhart et al., 1986) has
made the field grow explosively into the well established and respected
research area it is now. Partly driven by the exponential increase in raw
computing power but also by theoretical progress in understanding the
nature of learning, many insights into machine learning have been gained
over the past decades – both abstractly and from an implementation point
of view. It is beyond the scope of this thesis to present an overview of the

✐
✐

“main” — 2009/11/10 — 10:05 — page 5 — #31 ✐
✐

✐
✐

✐
✐

1.2 Artificial Intelligence / Machine Learning 5

field of machine learning so I will limit myself to a brief discussion of the
techniques that are relevant to this work, either because a direct exten-
sion of them is presented in this thesis or because they share interesting
characteristics with the methods used in this thesis.

Many different ways to classify the many ML methods exist. One very
high-level way to do this is according to the principal way the systems
learn. One can discern three main classes:

• Unsupervised learning methods These methods learn only from
the examples presented to them, without any clues as to what be-
haviour is required from the system. The main goal of these types of
algorithms is to discover regularities or properties in the data with-
out having them explicitly pointed out by the user. Examples are
Self Organizing Maps (SOM) (Kohonen, 2001) or K-means cluster-
ing (Hartigan, 1975), and applications include data clustering and
information retrieval.

• Reinforcement learning methods In this case, the system re-
ceives some clue about the desired behaviour, but the nature of
the information is limited. When presented with an example input,
the response of the system is evaluated and scored (rather good
response vs. rather bad response), but in neither of the cases the
actual correct behaviour is given. In other words, the system learns
through a system of rewards and/or penalties. These algorithms
are popular in the robotics community, since it is usually easier to
define a reward signal (how well the robot is doing) than an explicit
training signal (what the robot should do) in this case. Aside from
robotics, this technique is also popular for learning complex games
such as Go (Schraudolph et al., 1994), because here too it is difficult
to define the desired response of the system for every situation.

• Supervised learning methods This type of learning mechanism
will be the main focus of this thesis. In this case, for every input
example, the desired output (a discrete class label or continuous sys-
tem output) is known and is used for training the learning method.
In many real world situations this information is not available, but
when it is, it can greatly accelerate the learning process and lead to
superior accuracy.

Research in ML has focused on creating methods for solving complex
tasks, and it has looked for inspiration on how to construct these methods
in quite different areas. For instance, the field of statistics has been a rich
source of novel ideas for many mathematically inspired methods such as
kernel machines (Cristianini and Shawe-Taylor, 2000). On the other hand,

✐
✐

“main” — 2009/11/10 — 10:05 — page 6 — #32 ✐
✐

✐
✐

✐
✐

6 1 Introduction

neuroscience has inspired the use of more biologically plausible models
which are loosely based on the operation of the brain. This has led to
a quite extensive research area, and the models used here are generally
called Artificial Neural Networks (ANN).

1.3 Artificial Neural networks

Artificial neural networks (ANN) are models of the brain structure. De-
pending on the research goal or application there is a wide variety of
models in literature. The adjective ‘artificial’ is used to discern between
the abstract mathematical model, and biological (‘wet’) neural networks,
but it is usually clear from the context wether the real biological systems
or their models are concerned so the term is abbreviated to NN.

NNs consist of input/output processing nodes (the neurons) that are
connected into a network using weighted connections. In the case of ana-
log neurons, every neuron receives weighted values from the incoming
nodes to which it is connected, sums these values, computes its own out-
put by applying some (usually nonlinear) function and transmits these
output values via the outgoing weighted connections to the other nodes.
One can describe these systems in both the continuous time and discrete
(i.e., sampled) time domain, but there is no strict one-to-one mapping
between systems described in discrete time and systems described in con-
tinuous time. For instance, one can already have chaos in one-dimensional
discrete time systems, whereas in continuous time at least three dimen-
sions are needed for chaotic behaviour. The transition between both
domains is a research field in itself (very related to communication and
sampling theory). Section 3.1 of this doctoral thesis addresses this issue
in the context of Reservoir Computing. For this introduction, however,
we will focus on the discrete time domain.

Formally, the input-output behaviour of a standard artificial neuron
with index j is described by:

yj = f

�

i∈Sj

wijyi

 ,

where wij is the weight of the connection between neuron i and neuron j,
yi is the output or activation level of the ith neuron, Sj denotes the set of
indices of neurons with connections leading to neuron j and f is a (usually
nonlinear) transfer or activation function. A pictorial representation of a
neuron inside a network is shown in Fig. 1.1.

✐
✐

“main” — 2009/11/10 — 10:05 — page 7 — #33 ✐
✐

✐
✐

✐
✐

Figure 1.1: A simple network of neurons, with a close-up of the
internal operation of a neuron: the weighted sum of the inputs is
fed through a nonlinearity f.

✐
✐

“main” — 2009/11/10 — 10:05 — page 8 — #34 ✐
✐

✐
✐

✐
✐

8 1 Introduction

Table 1.1: Overview of the main properties for classifying neural
network models.

Time domain continuous discrete
Neuron communication spiking analog

Activation function (piecewise) linear nonlinear
Node memory no memory internal memory

Network topology feedforward recurrent

Usually the weight structure of the network is represented conveniently
as a weight matrixW , where the elementW [i, j] = wij . The behaviour of
a standard ANN is completely determined by the interconnection topol-
ogy and the transfer function f . It is beyond the scope of this thesis to
present a complete taxonomy of neural networks, but some of the main
properties (most of which are mutually orthogonal) of different NN mod-
els are shown in table 1.1.

Research on neural networks spans a whole spectrum, ranging from
neuroscientists who try to model the operation of single biological neu-
rons, to theoretical statisticians that use neural networks for datamining
applications. The goals of these research lines span an equally broad
spectrum: at the one end, NN models are constructed and simulated to
enhance the understanding of the brain, and at the other end NNs are
used to solve complex engineering problems or develop novel techniques
for learning machines. The research presented in this thesis is situated
on the engineering side of the spectrum.

1.3.1 Applications of neural networks

Neural networks are applied in various areas, perhaps more widely than
most people realise (Jain and Vemuri, 1999). Some application fields
include optical character recognition (neural networks are part of the
state-of-the-art in this field) (LeCun et al., 1989; Simard et al., 2003),
the autonomous flying of aircrafts in case of dramatic failures (such as
loss of a wing) (Anon, 1999), a multitude of applications in the field of
medical diagnosis and analysis (Ster et al., 1996), and fault detection or
quality assessment (QA) for industrial processes (Bishop, 1995). A full
description of the total range of tasks for which neural networks can be
or are being used is beyond the scope of this work.

✐
✐

“main” — 2009/11/10 — 10:05 — page 9 — #35 ✐
✐

✐
✐

✐
✐

1.3 Artificial Neural networks 9

−1 1

(a) Piecewise linear

−1 1

(b) Threshold function

−1 1

(c) Fermi function

−1 1

(d) Tanh function

Figure 1.2: Some common activation functions used in neural net-
works.

1.3.2 Activation functions
The transfer function f of the neuron which is applied to the weighted
sum of its inputs also determines the behaviour of the network. The most
common transfer function is a sigmoid-type function – the name is due
to its similarity to the letter S. Two common sigmoid functions are the
tanh (Figure 1.2 (d)) and the logistic or fermi function (Figure 1.2 (c)).
The fermi activation function is given by

fermi(x) = 1
1 + exp(−x) ,

and is related to the tanh activation function through :

tanh(x) = 2 fermi (2x)− 1.

Other common transfer functions include the piecewise linear function
(Figure 1.2 (a)), the threshold function (Figure 1.2 (b)) and the identity
function (in this case the node is sometimes referred to as a linear neu-
ron). Because the transfer function is nonlinear in most cases, it is also
commonly referred to as the nonlinearity of the neuron.

Most transfer functions share some common properties:

• They have a so-called squashing effect, referring to the boundedness
of the output range of the neuron. This means that regardless of

✐
✐

“main” — 2009/11/10 — 10:05 — page 10 — #36 ✐
✐

✐
✐

✐
✐

10 1 Introduction

the input values, the network’s internal activation values will always
remain limited.

• They are usually differentiable (but sometimes not continuously dif-
ferentiable, e.g., in the case of the threshold function). This need
for differentiability comes from the fact that many learning rules for
neural networks try to compute the gradient of the error w.r.t the
weights of the incoming connections to the neuron. Using this gradi-
ent, the weights can be adjusted using a technique called stochastic
gradient descent (this method will be used in Chapter 4 of this
work).

It should be obvious that the shape of the activation function has a large
impact on the behaviour of the neurons and the complete network. De-
pending on the precise requirements of the task and the implementation,
a trade-off can be made between the computational expressiveness and
the complexity (and accompanying computational requirements) of the
activation function. In Chapter 2, a study of this trade-off is presented
in the context of Reservoir Computing.

1.3.3 Spiking neural networks
A biologically more realistic but more complex family of neuron models
are the so-called spiking neurons (Maass and Bishop, 2001; Schrauwen,
2008), which can be used to create a spiking neural network (SNN) with
weighted connections, similarly to the analog neural networks discussed
above. These models are a more accurate representation of the way ‘wet’
neurons behave, but are significantly different from the analog neurons
described in the section above. First, they communicate through isolated
spikes instead of continuous values. These spikes are identical, so the in-
formation they convey is entirely contained in the precise timing or firing
rate of the spikes. Secondly, due to the way these neurons are modelled,
they posess some internal memory which means they can process tempo-
ral signals. Finally, it was shown theoretically that they are capable of
performing more complex operations than analog neurons (Maass, 1997).

The actual behaviour of the neurons depends strongly on the model
in use (there are a wide variety of models described in literature (Gerst-
ner and Kistler, 2002; Izhikevich, 2007)), but we will limit this discussion
to the model considered in this work, namely the leaky integrate and fire
(LIF) neuron (Adrian, 1928). This elementary model describes the opera-
tion of a spiking neuron as a leaky capacitor which is charged by incoming
spikes. The charge stored in the capacitor leaks away exponentially if no
spikes are received at a rate determined by the so-called membrane time

✐
✐

“main” — 2009/11/10 — 10:05 — page 11 — #37 ✐
✐

✐
✐

✐
✐

1.3 Artificial Neural networks 11

constant. If enough spikes are received in a certain time window, the
potential measured over the capacitor reaches a threshold. This triggers
an outgoing spike from the neuron and the membrane potential in the
capacitor is reset to a reset potential. Another behaviour that is observed
in biological neurons and that is often incorporated in spiking models is
a so-called refractory period. This is a brief (in the order of milliseconds)
period after a neuron has fired during which it is not sensitive to incoming
pulses. A side-effect of this refractory period is that the maximal firing
rate of the neuron is bounded.

In biological neural networks, the neurons are connected through sy-
napses – small gaps between the axons (outgoing fibers) and dendrites
(incoming fibers) of the communicating neurons. The spikes are trans-
mitted across these gaps through neurotransmitters, molecules that travel
across the so-called synaptic cleft. The bridging of this synaptic gap does
not happen instantaneously but is stretched over time, which means that
the current that enters the incoming neuron is not a pure spike. This be-
haviour is modeled through synapse models, of which again many types
exist. In this work only exponential synapse models are considered.

The use of spiking neural networks for engineering applications was
researched extensively in (Schrauwen, 2008). One of the considerations
that needs to be made when solving a problem with SNN is the transi-
tion between the analog and the spiking domain. Since information in
the real world is of an analog (non-discrete) nature and spiking neurons
communicate with spikes (isolated events in time), some attention should
be payed to the way the analog inputs are transformed to so-called spike
trains. There are a number of ways to encode analog information in spike
trains and every method has certain advantages and disadvantages. I
refer to (Schrauwen, 2008) for more information on this topic.

1.3.4 Network topologies
Another important property of NNs is the topology of the networks. The
topology is fully determined by the weight matrix W , which determines
both the connectivity, i.e., which neuron is connected to which, and the
weights of those connections – a zero value simply indicating the absence
of a connection. In the field of neural networks, many network topologies
have been defined. There is one property of the topology that has a big
impact on the behaviour and training of the network, namely the presence
or absence of recurrent connections.

Feedforward networks In the most common case, there are no re-
current connections and the network has a so-called feedforward structure.

✐
✐

“main” — 2009/11/10 — 10:05 — page 12 — #38 ✐
✐

✐
✐

✐
✐

12 1 Introduction

The nodes of the network are divided into layers, with information flowing
only to consecutive layers and not backwards. The inputs to the network
are fed in through the input layer, the outputs are read out at the output
layer and the intermediate layers are called hidden layers because their
activation is usually not directly observed. A schematic view of this net-
work topology is shown in Figure 1.3a. These networks are usually called
Multi-Layer Perceptrons (MLP).

The values of the internal and output neurons of these networks are
fully determined by the values of the inputs. In an electronic analogy,
these networks form a combinational circuit. There exist many learning
rules for these feedforward networks, the most famous and widely used
being doubtlessly the error-backpropagation rule (Rumelhart et al., 1986),
while more powerful and sophisticated extensions include second-order
versions such as the Levenberg-Marquardt method (Hagan and Menhaj,
1994) and fast but well performing extensions such as resilient propagation
(RPROP) (Riedmiller and Braun, 1993).

Due to the layered architecture and lack of memory of the feed-forward
networks, these types of NN are not capable of processing temporal in-
formation – i.e., in the cases where there is also information contained in
the order in which the inputs are presented to the network such as for
speech or robotics tasks. One way to compensate for this shortcoming is
to implement a tapped delay line into which the samples of the inputs are
fed chronologically, and use all taps as inputs to the network. This archi-
tecture is called a Time Delay Neural Network (TDNN) (first introduced
in (Waibel et al., 1989)). The analogon to these networks in filter theory
is the finite impulse response (FIR) filter.

The architecture is motivated by the famous Takens theorem (Takens
et al., 1981), which states that the (hidden) state of a dynamical system
can be reconstructed using an adequate delayed embedding of the observ-
able variables. This explicit embedding effectively converts the temporal
problem into a spatial one. While this topology enables the use of feed-
forward networks for temporal tasks, the disadvantages of this approach
are the artificially introduced time horizon, the need for many parameters
(i.e., weights) when a long delay is introduced, the artificial way in which
time is represented in the spatial domain and the fact that there is no
obvious biological analogon.

Recurrent networks The other (less common) topology type is the
so-called recurrent network. This network topology will be the main focus
of this thesis. In this case, there do exist connections projecting backwards
through layers. Every connection is also characterized by a delay, so that
the presence of these connections introduces a form of memory into the

✐
✐

“main” — 2009/11/10 — 10:05 — page 13 — #39 ✐
✐

✐
✐

✐
✐

1.3 Artificial Neural networks 13

(a) Feedforward network (b) Recurrent network

Figure 1.3: Different network topologies

network due to the fact that information does not flow in one direction
through the network but remains circulating inside and is integrated with
information of previous timesteps. Much in the same way Time Delay
Neural Networks are analogous to FIR filters, there exists some analogy
between recurrent networks and infinite impulse response (IIR) filters,
which also feature internal feedback loops.

The fact that memory exists within the network is due to the fact
that the network is a dynamic system. Indeed: the activation values (the
states) of the neurons are not only determined by the current input but
also by the previous state of the network (and thus, recursively, by all
previous inputs). This property makes these networks ideally suited to
solve inherently temporal problems from fields such as speech recognition,
machine control or dynamic system identification. A schematic view of
this topology is shown in Figure 1.3b. In this case, sometimes the lay-
ered structure is abandoned for an (equivalent) architecture with a single
hidden layer with internal recurrent connections1.

In principle, RNNs are very powerful tools for solving complex tem-
poral machine learning tasks. They have the advantages of feedforward
networks, which include robustness to noise, learning by example and
the ability to model highly nonlinear systems, and add to that an inher-
ent temporal processing capability. Possible – and actual – applications
are manifold and include the learning of context free and context sensi-
tive languages (Rodriguez, 2001; Gers and Schmidhuber, 2001), control
and modelling of complex dynamical systems (Suykens et al., 1996) and
speech recognition (Robinson, 1994; Graves et al., 2004). RNNs have been
shown to be Turing equivalent (Kilian and Siegelmann, 1996) for common

1In terms of the weight matrix W , both topology types can be easily discerned.
If the neurons indices i are chosen so that neurons belonging to a higher layer have
a higher index, then the weight matrix for a feedforward topology will be upper-
triangular. In the case of a recurrent network, this is not the case.

✐
✐

“main” — 2009/11/10 — 10:05 — page 14 — #40 ✐
✐

✐
✐

✐
✐

14 1 Introduction

activation functions and can approximate arbitary finite state automata
(Omlin and Giles, 1994).

Nonetheless, several factors still hinder the large scale deployment of
RNNs in practical applications. So far, not many learning rules exist
(Haykin, 1999; Jaeger, 2002; Suykens and Vandewalle, 1998) and most
suffer from slow convergence rates (Hammer and Steil, 2002). This is
partly due to the problem of vanishing gradients: first-order gradient de-
scent methods such as BackPropagation Through Time (BPTT) (Werbos,
1974, 1990) (which was later rediscovered in (Rumelhart et al., 1986)) or
RealTime Recurrent Learning (RTRL) (Williams and Zipser, 1989) use
the gradient of the error to update the network parameters, and these
gradients become very small after even a few timesteps back into the past
– a problem that also exists for deep (i.e., many-layered) feed-forward net-
works. Another problem is the existence of bifurcations – sudden changes
in the qualitative behaviour of the system due to only small changes in the
parameters. These behavioural changes make the training more difficult
and time-consuming.

Extensions using second-order curvature information of the error sur-
face using Kalman filtering have been proposed and currently form the
state-of-the-art of the field (Puskorius and Feldkamp, 1994; Prokhorov,
2007), but their use is very involved and is often reserved for experts in
the field. One possible solution to this is a specially constructed Long
Short Term Memory (LSTM) architecture (Schmidhuber and Hochreiter,
1997), which nonetheless does not always outperform time delayed neural
networks.

Part of the difficulty when training an RNN arises from its dynamical
nature, which means that the training process has to do two highly com-
plex tasks simultaneously: change the network parameters so that the
RNN operates in the correct dynamical regime, and enforce the desired
input/output behaviour. This task is comparable to chasing a moving
target. Since the RNN is a highly nonlinear system, it is clear that this
task is not trivial to say the least. Reservoir Computing offers a solution
to this problem.

1.4 The origins of Reservoir Computing

1.4.1 A brief history
Many good ideas have been inventend several times independently, such
as the telephone or the fundamentals of calculus. One could argue that
this is not a coincidence: if the settings are right for an interesting idea to

✐
✐

“main” — 2009/11/10 — 10:05 — page 15 — #41 ✐
✐

✐
✐

✐
✐

1.4 The origins of Reservoir Computing 15

be born, it should not be suprising that more than one person discovers
it. In 2001 and 2002, two seminal publications marked the birth of the
research field of Reservoir Computing. The technical report “The ‘echo
state’ approach to analysing and training recurrent neural networks” by
Jaeger (Jaeger, 2001a) and the Neural Computation letter “Real-time
computing without stable states: A new framework for neural computa-
tion based on perturbations” by Maass et al. (Maass et al., 2002b) both
introduced a novel way of training and using complex networks of neu-
ral nodes. Later, in 2004, another publication presented similar ideas,
which were however derived from an entirely different background. The
BackPropagation DeCorrelation (BPDC) learning rule for recurrent neu-
ral networks that was introduced there shares some fundamental similari-
ties with the previous two ideas. These contributions sparked considerable
interest in the community, and the similarities between both approaches
were immediately noticed (also by the authors themselves).

The ease of use and excellent performance of these methods were
quickly picked up by others, and the research started to gain momentum.
Additionally, several individual research groups – including the UGent
Reservoir Lab – began collaborating and streamlining the research for
this quickly growing research community. This has fueled the growth of
the field and has caused an almost exponential increase in the number
of Reservoir Computing related publications. For an overview of the re-
search field we refer to (Lukosevicius and Jaeger, 2007; Schrauwen et al.,
2007b; Lukosevicius and Jaeger, 2009). We will now briefly discuss these
original RC incarnations (and others) in more detail.

1.4.2 Echo State Networks
The Echo State Network (ESN) concept describes an engineering ap-
proach to training and using recurrent neural networks. The fundamental
issues associated with training RNNs (as discussed previously) were con-
veniently side-stepped by not training the network at all. The basic recipe
for constructing an ESN is both simple and elegant: a recurrent neural
network with a random topology and random weights is constructed. The
weight matrix is globally scaled to get the dynamics of the network in a
desirable regime. The network is driven by the external input, and the
response of the network is then used to train a simple linear regression or
classification function. Because the only training that is done is linear,
this can be done using very simple one-shot methods. We will elaborate
on the methods for constructing, training and using ESNs in chapter 2.

The ESN method is appealing not only because of its simplicity, which
allows to reason about these systems in an intuitive manner. Much of its

✐
✐

“main” — 2009/11/10 — 10:05 — page 16 — #42 ✐
✐

✐
✐

✐
✐

16 1 Introduction

appeal is caused by the good to excellent performance results on a variety
of difficult benchmark tasks.

While ESNs are simple yet powerful information processing systems,
not everything is known about their functionality. ESNs are determined
by a few global parameters that determine, e.g., the global scaling of
the weights from the input to the recurrent network and of the internal
weights of the network. However, even for ESNs with identical global
parameters there is still considerable variation on the performance on the
same task. This is due to the randomness with which these networks are
constructed, and the fact that there are still some unknown factors that
determine the performance of a specific ESN besides these global scaling
parameters.

The name Echo State Networks is based on the fact that, in order
to be useful, these networks should have the so-called Echo State Prop-
erty (ESP). This property states – informally – that the network should
asymptotically forget its initial state when it is driven by an external sig-
nal. Due to the recurrent connections in the network, information about
past inputs is stored in the network. According to the ESP, the network
should forget this information eventually, so that the network has in ef-
fect a fading memory. Thus, the network contains a rich set of nonlinear
transformations and mixings of the input signals of the current and past
timesteps (these are called the echos).

The ESP is not the only desirable property one requires from a good
ESN. The set of echos contained in the reservoir should also be dynami-
cally rich enough to boost the computational power of the linear readout.
On the other hand, if the network is too excitable, it moves to a differ-
ent dynamical regime where it no longer asymptotically forgets its inital
states. Thus, an optimal dynamical regime needs to be found for the prob-
lem at hand, where the dynamical transformation of the inputs provided
by the network is rich enough, and where the fading memory property is
still preserved. Unfortunately, this optimization at this point can only be
done through manual tweaking of the parameters or brute-force searching
of the optimal parameter values.

1.4.3 Liquid State Machines
The Liquid State Machine (LSM) is conceptually very similar to the ESN,
but it originated from a rather different background. It was introduced
by a research lab active in robotics and neuroscience.

In an abstract or theoretical sense, an LSM consists of two parts:
a high-dimensional ‘filter’ or mapping that maps the current and past
inputs u[k] onto a state vector x[k], and a (usually memoryless) readout

✐
✐

“main” — 2009/11/10 — 10:05 — page 17 — #43 ✐
✐

✐
✐

✐
✐

1.4 The origins of Reservoir Computing 17

function that maps the state vector onto an output vector y[k]. In order to
be computationally useful, the filter should have the so-called point-wise
separation property, which states that different input signals should be
mapped to different state vectors. Moreover, the readout function should
have the universal approximation property. This property states that the
readout function should be able to approximate any function on a closed
and bounded domain with arbitrary precision. It was shown in (Maass
et al., 2002b) that an LSM which satisfies these two properties, can be
trained to approximate any stationary mapping on time-varying inputs
with fading memory.

While the LSM is described as an abstract computational framework
with a mathematical foundation, in practice it usually consists of a re-
current network of spiking neurons and a separate linear readout layer –
very similar to the ESN. While the LSM can be used to solve engineer-
ing tasks, this was not its original intention. The LSM was invented by
researchers whose main interest is neuroscience and cognitive modeling.
In other words, they want to know how the brain works.

When neuroscientists model certain parts of the brain they aim to
evaluate how accurately the model represents the real biological systems.
It is however quite difficult to estimate how these models function from
a cognitive point of view. The LSM offers a simple solution for this: by
reading out the information contained in the network and feeding this to
a linear readout function, the information processing capabilities of the
model can be evaluated very easily. Because of this, most early descrip-
tions of LSMs use a network of biologically plausible spiking neurons,
which is excited by external inputs. Partly because of the superior com-
putational power of spiking neurons these LSMs have also been used for
engineering (Verstraeten et al., 2005) and robotics applications (Joshi and
Maass, 2005).

1.4.4 BackPropagation DeCorrelation
The underlying notion of constructing a random recurrent neural network
and training only the output layer was also formulated based on an en-
tirely different reasoning. In (Steil, 2004), a learning rule is introduced for
recurrent neural networks which is derived from the Atiya-Parlos (Atiya
and Parlos, 2000) (APRL) learning rule. When studying the weight dy-
namics of the APRL learning rule, it was noticed that only the weights
of the connections to the output nodes were substantially changed, and
the ‘internal’ weights were only scaled up and down in a global fashion
(Schiller and Steil, 2005). Based on this observation, a simplified version
of the APRL rule was derived which is only applied to the output layer,

✐
✐

“main” — 2009/11/10 — 10:05 — page 18 — #44 ✐
✐

✐
✐

✐
✐

18 1 Introduction

while the internal weights are chosen with a suitable initial global scaling.
This rule is called Backpropagation-Decorrelation (BPDC), and expresses
the same fundamental idea of training only the output layer based on a
suitably chosen dynamic reservoir. The main differences between BPDC
networks and Echo State Networks are the learning rule (online, epoch-
based BPDC and off-line one-shot linear regression, respectively), the
node type (fermi nonlinearities vs. tanh nonlinearities) and the network
topology (in the case of BPDC networks, feedback inside the output layer
is sometimes used).

1.4.5 Early descriptions of neural RC systems
Even earlier, in the nineties, some architectures were described that fall
under the RC framework, but at that time the contributions somehow
failed to attain the necessary critical mass to stimulate further research.
In (Dominey, 1995) a random but fixed recurrent network structure of
biologically plausible neurons is described, that is connected to a linear
layer which is trained with a very simple update rule. Similary, (Buono-
mano and Merzenich, 1995) describes a randomly connected network of
so-called integrate and fire neurons, which are fed with an external stim-
ulus. This network is constructed and left unchanged afterwards. A
readout layer is trained using a very simple adaptation rule – this system
shares considerable similarities to the Liquid State Machine. The use of
this system is demonstrated on a phoneme recognition task. Be it the
circumstances of the times, the presentation of the ideas or simple coin-
cidence, both publications did not, at the time, spark the interest of the
community enough to build further upon these concepts.

1.4.6 Applications of Reservoir Computing
Several successful applications of reservoir computing to both synthetic
data and real world engineering applications have been reported in the
literature. The former include dynamic pattern classification (Jaeger,
2001b), autonomous sine generation (Jaeger, 2001a), grammar modelling
(Tong et al., 2007) or the computation of highly nonlinear functions on
the instantaneous rates of spike trains (Maass et al., 2004a). In robotics,
RC systems have been used to control a simulated robot arm (Joshi and
Maass, 2004), to model an existing robot controller (Burgsteiner, 2005b),
to perform object tracking and motion prediction (Burgsteiner, 2005a;
Maass et al., 2002a), event detection (Jaeger, 2005; Hertzberg et al., 2002)
or several applications in the Robocup competitions (mostly motor con-
trol) (Oubbati et al., 2005; Plöger et al., 2004; Salmen and Plöger, 2005).

✐
✐

“main” — 2009/11/10 — 10:05 — page 19 — #45 ✐
✐

✐
✐

✐
✐

1.4 The origins of Reservoir Computing 19

At our own lab, several applications in the field of autonomous robotics
have been studied, including robot localization and event detection (An-
tonelo et al., 2008a), behaviour switching (Antonelo et al., 2008b) and
autonomous place cell discovery (Antonelo et al., 2009). RC systems have
been used in the context of reinforcement learning (Bush and Anderson,
2005).

Also, applications in the field of Digital Signal Processing (DSP) have
been quite successful, such as speech recognition (Maass et al., 2003;
Verstraeten et al., 2005; Skowronski and Harris, 2006; Ghani et al., 2008;
Jaeger et al., 2007) or noise modeling (Jaeger and Haas, 2004). In (Rao
et al., 2005), an application in Brain-Machine interfacing is presented
and (Venayagamoorthy, 2007) discusses an RC-based monitor for a power
system.

And finally, the use of reservoirs for chaotic time series generation
and prediction have been reported in (Jaeger, 2001b, 2003; Steil, 2006,
2005a; wyffels et al., 2008b; Crone et al., 2008). In many areas such
as chaotic time series prediction and isolated digit recognition, RC tech-
niques already outperform state-of-the-art approaches. A striking case is
demonstrated in (Jaeger and Haas, 2004) where it is possible to predict
the Mackey-Glass chaotic time series with several orders of magnitude
better accuracy than with classical techniques.

1.4.7 Towards generic Reservoir Computing
The systems and methods described above are all well grounded in the
fields of neural networks and neuroscience. The fact that all these con-
cepts were introduced into the same research field has enabled the simi-
larities between them to be discovered, which has definitely increased the
acceptance rate of the ideas. However, we argue that the true power of
these concepts lies precisely in extending them to other domains. Indeed:
the central idea that this doctoral thesis is centered around is the fact
that the mechanisms of Reservoir Computing are not bounded to neural
implementations (although they have proven themselves very useful there
already). Transposing these ideas onto other, non-neural systems opens
up a vast potential for using nonlinear dynamical media for computation.

As will be explained in more detail in later sections, the role of the
reservoir can be seen as a complex nonlinear multidimensional filter that
projects the input signals into a high-dimensional space, where the classi-
fication can be done much more accurately. Complex nonlinear filters are
used in many research fields, and RC can provide an elegant and powerful
mechanism for using these systems for computation. Examples (see Fig.
1.4) of such nonlinear media include actual in vivo neural networks grown

✐
✐

“main” — 2009/11/10 — 10:05 — page 20 — #46 ✐
✐

✐
✐

✐
✐

20 1 Introduction

(a) The gene regulatory network in

the bacterium E. Coli.

(b) Cultured neurons grown on an

array of micro-electrodes.

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 54, NO. 6, JUNE 2007 1161

The Tendon Network of the Fingers Performs
Anatomical Computation at a Macroscopic Scale
Francisco J. Valero-Cuevas*, Member, IEEE, Jae-Woong Yi, Daniel Brown, Robert V. McNamara, III,

Chandana Paul, Member, IEEE, and Hood Lipson, Member, IEEE

Abstract—Current thinking attributes information processing
for neuromuscular control exclusively to the nervous system. Our
cadaveric experiments and computer simulations show, however,
that the tendon network of the fingers performs logic computation
to preferentially change torque production capabilities. How this
tendon network propagates tension to enable manipulation has
been debated since the time of Vesalius and DaVinci and remains
an unanswered question. We systematically changed the propor-
tion of tension to the tendons of the extensor digitorum versus
the two dorsal interosseous muscles of two cadaver fingers and
measured the tension delivered to the proximal and distal inter-
phalangeal joints. We find that the distribution of input tensions
in the tendon network itself regulates how tensions propagate to
the finger joints, acting like the switching function of a logic gate
that nonlinearly enables different torque production capabilities.
Computer modeling reveals that the deformable structure of the
tendon networks is responsible for this phenomenon; and that this
switching behavior is an effective evolutionary solution permitting
a rich repertoire of finger joint actuation not possible with simpler
tendon paths. We conclude that the structural complexity of this
tendon network, traditionally oversimplified or ignored, may
in fact be critical to understanding brain-body coevolution and
neuromuscular control. Moreover, this form of information pro-
cessing at the macroscopic scale is a new instance of the emerging
principle of nonneural “somatic logic” found to perform logic
computation such as in cellular networks.

Index Terms—Biomechanical models, complexity, hand, manip-
ulation, model-structure detection, nonlinear systems.

Manuscript received September 15, 2006; revised November 4, 2006. This
work was supported in part by a DCI Postdoctoral Research Fellowship
Program, in part by the Whitaker Foundation, in part by the National Science
Foundation (NSF) under Grant 0237258 and Grant 0312271, and in part by the
National Institutes of Health (NIH) under Grant AR-R01-050520 and Grant
AR-R01-052345. Its contents are solely the responsibility of the authors and do
not necessarily represent the official views of the National Institute of Arthritis
and Musculoskeletal and Skin Diseases (NIAMS), or the NIH. The work of
J.-W Yi was supported by the Agency for Defense Development of South
Korea F. J. Valero-Cuevas and H. Lipson contributed equally to this work.
Asterisk indicates corresponding author.

*F. J. Valero-Cuevas is with the Neuromuscular Biomechanics Labora-
tory, Cornell University, 220 Upson Hall, Ithaca, NY 14853 USA (e-mail:
fv24@cornell.edu).

J. W. Yi, D. Brown, and R. V. McNamara, III are with the Neuromuscular
Biomechanics Laboratory, Cornell University, 220 Upson Hall, Ithaca, NY
14853 USA.

C. Paul is with the Neuromuscular Biomechanics Laboratory and the Com-
putational Synthesis Laboratory, Sibley School of Mechanical and Aerospace
Engineering, Cornell University, 220 Upson Hall, Ithaca, NY 14853 USA.

H. Lipson is with the Computational Synthesis Laboratory, Sibley School of
Mechanical and Aerospace Engineering, Cornell University, 220 Upson Hall,
Ithaca, NY 14853 USA.

Digital Object Identifier 10.1109/TBME.2006.889200

Fig. 1. The tendon network of the middle finger: Winslow’s rhombus repre-
sentation. Most finger muscles actuate the finger joints via a tendon network
composed of a sheath of collagen boundless embedded in connective tissue
wrapped over the phalanges [8], [9]. Winslow (1669–1760) proposed the tendon
network can be approximated by a discrete rhomboidal network of strings [11].
Palmar and dorsal oblique views of a longitudinally symmetric interpretation of
Winslow’s rhombus, adapted from Zancolli [9], for a 3-D generic right middle
finger with the second and third dorsal interosseous muscles (DI2 and DI3, re-
spectively) actuating the lateral inputs, and the extrinsic extensor muscle (EE)
actuating the central input. The outputs of the network are the proximal and ter-
minal slips that produce extensor torque at the DIP and PIP, respectively. MCP
is the metacarpo-phalangeal joint.

I. INTRODUCTION

I NSTANCES of the emerging principle of nonneural “so-
matic logic” such as intrinsic control [1], cellular circuitry

[2], [3], and passive dynamics [4] have been gaining attention
and support in recent literature. However, information pro-
cessing for neuromuscular control is still generally attributed
entirely to the nervous system. Muscle coordination for manip-
ulation is an important example of neuromuscular control we do
not completely understand even for common finger tasks such
as turning this page [5]. Besides its great clinical importance,
understanding manipulation lies at the crux of hypotheses
about human evolution [6] and the design of versatile robots
[7]. Fingers are anatomically remarkable in that their muscles
act through a complex tendon network (also called the extensor
mechanism or extensor hood) (Fig. 1). The importance of the
tendon network is well documented for healthy and impaired
finger [8]. The prevalent thinking among hand anatomists and
surgeons about the structure and function of the tendon network
[8], [9] remains faithful to early notions that it is a complex
network of collagen strings [10], [11]. It was first approximated
by Winslow as a longitudinally symmetric tendon rhombus [9],
[11] where the posture of the finger and input muscle forces
alter the propagation of tension though the network (Fig. 1). In
contrast, biomechanical studies of finger neuromuscular control

0018-9294/$25.00 © 2007 IEEE

Authorized licensed use limited to: University of Gent. Downloaded on June 19, 2009 at 07:53 from IEEE Xplore. Restrictions apply.

(c) The tendons of a finger do com-

putations (Figure from (Valero-

Cuevas et al., 2007)).

at the other end. By examining which frequencies have passed through in-phase,
the information in the database can be retrieved.

Finally, we analyse the complexity of the water using a measure of complexity
devised by Sporns, Tononi and Edelman [11] and show that water satisfies an
approximation to the separation property described by Maass.

2 Methods

The “liquid brain” was constructed from a transparent water tank suspended
over an overhead projector,(Figure 1). Four electric motors connected to a com-
puter via a serial control box were attached to each side of the tank to drive
a small weight into the water and thus create eight wave point sources. The
interference patterns so produced were projected on an antireflective cardboard
and recoded at a resolution of 320x240 pixels at 5 frames per second using a
standard web-cam. Each frame obtained with the camera was convolved using

Fig. 1. The Liquid Brain.

a Sobel edge detection mask that was suitably thresholded to remove noise and
averaged to produce a 32x24 grid. The cells of this matrix were used as the input
values for 50 perceptrons in parallel which were trained using the same p-delta
rule as used by Maass et al [3].

2.1 XOR task.

In order to recreate the XOR problem using the liquid, two motors were set up
at opposite sides of the tank. A single motor driven at constant frequency on left

(d) An actual reservoir of water

(Figure from (Fernando and So-

jakka, 2003)).

Figure 1.4: Several nonlinear dynamical systems that do computa-
tion, and have been or could be used for Reservoir Computing.

on chips (Dockendorf et al., 2009), chaotic attractors (Goh and Crook,
2007), biological networks such as the gene regulatory network of a bac-
terium (Jones et al., 2007) or the actual physical properties of a tendon in
a finger in response to external forces (Valero-Cuevas et al., 2007). The
idea of a reservoir has even been taken literally: a bucket of water dis-
turbed by speech signals has already been used to do speech recognition
(Fernando and Sojakka, 2003). Taking this idea to its extremes, there
are even scientists who have the view that the whole universe is one big
computation device (Lloyd, 2002; Fredkin, 2003), which is an interesting
theoretic construct but has little practical use.

While the examples above show that a whole variety of non-neural sub-
strates can be used for computation in the Reservoir Computing frame-
work, the majority of the research still takes place in the neural networks
and neuroscience communities. This is likely due to the historic origins
of the field, and also because the concepts of learning systems are closely
linked to neural network research. Nonetheless, applying the RC concept
to other (physical) systems could unlock a whole new range of applica-
tions. Moreover, there is a wide range of technologies or physical systems
that have properties which are required for RC (fading memory and a

✐
✐

“main” — 2009/11/10 — 10:05 — page 21 — #47 ✐
✐

✐
✐

✐
✐

1.5 Contributions and structure 21

tunable nonlinear mapping), but which have so far not yet been fitted
into the RC framework.

The transition from neural reservoirs to novel implementations is how-
ever far from trivial. Many questions arise, such as: what dynamical
systems are useful reservoirs? How should their dynamics be tuned for
optimal performance? What other parameters or properties influence
their use as a reservoir? To answer these questions, ideally a well-defined
theoretical basis for RC should be available, but at this point it does not
exist yet.

1.5 Contributions and structure

Reservoir Computing provides a simple but powerful framework for har-
nessing and using the computational capabilities of nonlinear dynamical
systems. This enables the application of a wide variety of existing tech-
nology in an entirely new context, namely for learning complex temporal
tasks. However, in order to use these dynamical systems for actual engi-
neering problems, several hurdles still need to be overcome. This doctoral
thesis aims to enhance the understanding of the principles underlying RC
and its use in engineering applications.

The fundamental idea underlying Reservoir Computing is that the
reservoir does a suitable nonlinear mapping with a fading memory of the
input signals into a higher dimensional space. This enables the use of
relatively simple but computationally undemanding linear classification
or regression algorithms. However, this does not explain which mapping
is most suitable, ‘how’ nonlinear this mapping should be, how much fading
memory the reservoir should have etc. When an engineer is presented with
a problem he wishes to solve using RC, the following issues need to be
addressed:

• Which reservoir node type is most suitable for this application?
Many different ‘neural’ nodetypes have been described and used
in literature with very different computational requirements and
characteristics. Depending on the specifications of the problem,
sometimes a trade-off needs to be made between the computational
power of the node types and the available processing power or time
- think of real-time applications. In many engineering applications,
the time or processing force needed for simulating a full-featured
reservoir is simply not available. What impact does this have on
the performance?

• Can we use preprocessing techniques to optimize the signal repre-

✐
✐

“main” — 2009/11/10 — 10:05 — page 22 — #48 ✐
✐

✐
✐

✐
✐

22 1 Introduction

sentation before feeding it to the reservoir? It is very common in
machine learning to incorporate a priori knowledge about the na-
ture of the problem and the input signals into the system to enhance
the representation. For instance, in the field of speech recognition
it is well known that there is much redundancy in the temporal do-
main which can be reduced drastically through appropriate use of
resampling and frequency domain techniques. How can an engineer
transpose these techniques to other, less known problem areas?

• Reservoir Computing is a temporal processing mechanism, which
means that it operates on signals where information is also encoded
in the precise timing of the values. This automatically leads to
the issue of how to represent time inside the different components
of the system, namely the input signal space, the reservoir state
space and the space of the readout. Every transition between these
spaces offers the possibility of tuning the timescales for optimal
performance.

• How should the dynamics of a reservoir be tuned so that it oper-
ates in the optimal regime? One of the tasks of the reservoir is to
‘dynamically transform’ the input signals so that the performance
of the linear readout is enhanced. There are at present no tools to
determine or quantify this dynamic regime accurately. There are
some approximate measures and guidelines that work well for stan-
dard reservoirs, but which break down completely when going to
more advanced node types. A more accurate and realistic method
for measuring the way the dynamic regime of the reservoir evolves
as it is driven by the input would be very helpful.

• Even if an engineer is able to tune the reservoir to the optimal
settings for a given nodetype and set of input signals, this knowledge
is often impossible to apply to a different reservoir type. Also, if
the dynamic properties of the input signals change (for instance, if
the dynamic range increases or decreases), this affects the operation
of the reservoir and can lead to sub-optimal performance. Ideally,
the reservoir should be able to adjust to these changes and try to
automatically self-adapt to the input so that the dynamic regime is
more or less optimal for the node type and input signals.

1.5.1 Main contributions of this thesis
In this section an overview is presented of the main research contributions
of this doctoral thesis.

✐
✐

“main” — 2009/11/10 — 10:05 — page 23 — #49 ✐
✐

✐
✐

✐
✐

1.5 Contributions and structure 23

We start with an overview of several academic and engineering appli-
cations that were tackled using traditional RC solutions. We focus not
only on the RC system itself, but also discuss the design choices made
for the ‘peripheral’ processing such as pre- and postprocessing steps. The
research on speech front-ends for digit recognition with spiking reservoirs
and the Ford automotive signal classification are personal efforts. The
work on epilepsy detection was initiated as a Master’s thesis by Pieter
Buteneers (currently pursuing a PhD on this topic) under my supervi-
sion.

Next, we introduce the notion of time scales in Reservoir Computing
and show how this can be linked to memory properties of the reservoir.
We further demonstrate the importance of tuning these time scales to a
given task by evaluating their effect on a spoken digit recognition task.
This work was done in close collaboration with dr. Benjamin Schrauwen,
with contributions by the Master’s thesis student Jeroen Defour.

Then, the possibility of using non-neural substrates in the RC frame-
work is demonstrated by presenting and experimentally validating differ-
ent reservoir implementations that range from standard to advanced and
novel. The usefulness of these different reservoir types is shown exper-
imentally by applying them to a set of benchmark tasks with differing
requirements. The implementation and evaluation of CNN-based reser-
voir in simulation and on the hardware was done in close collaboration
with dr. S. Xavier De Souza (KULeuven), for which I kindly acknowl-
edge his support. The work on photonic Reservoir Computing was mainly
done at the INTEC research department, in close collaboration with dr.
Benjamin Schrauwen, prof. Joni Dambre and myself.

We introduce and derive techniques for measuring the dynamical regime
that a reservoir operates in. We look at dynamical systems theory for in-
spiration, borrowing several insights from there and applying them to
the RC framework. This yields a novel measure of dynamics that is uni-
versally applicable and that offers a more accurate quantification of the
reservoir excitability than the standard stationary measures. This work
represents largely a personal effort, with support from dr. Benjamin
Schrauwen.

The next contribution is the derivation and experimental validation of
a generalized version of Intrinsic Plasticity, an unsupervised, bio-plausible
adaptation rule that has a mathematical foundation inspired by information-
theoretical principles. We generalize this rule beyond the traditional reser-
voir activation functions and demonstrate that this rule can be used to
automatically tune the dynamical regime of the reservoir, irrespective of
the initialization or the input signals. The derivation of the generalized
rule is a personal contribution, and the experimental validation of the

✐
✐

“main” — 2009/11/10 — 10:05 — page 24 — #50 ✐
✐

✐
✐

✐
✐

24 1 Introduction

rule was done in close collaboration with colleague Marion Wardermann,
Prof. Jochen Steil and dr. Benjamin Schrauwen.

Finally, we discuss the Reservoir Computing Toolbox (RCT), a com-
plete set of Matlab scripts and functions that allows both rapid ‘proto-
typing’ experiments and thorough exploration of design parameter spaces.
A wide range of datasets, reservoir types, adaptation rules and readout
and training mechanisms are built in the toolbox. Moreover, the tool-
box allows the creation and use of more complex, hierarchical reservoir
structures with multiple interconnected reservoirs in a single system. The
RCT is also built to allow parallelization of experiments on a computing
grid of potentially heterogeneous nodes. The original implementation of
the RCT was the result of a close collaboration between dr. Benjamin
Schrauwen and myself. The revised design of the datastructures and gen-
eral setup of the toolbox described in this thesis was a personal effort,
and for the actual code writing I want to kindly acknowledge the collab-
orative efforts from colleagues Marion Wardermann, prof. Joni Dambre
and Francis wyffels.

1.5.2 Structure of this thesis
The outline of this thesis is as follows.

Chapter 2 covers the construction and use of standard RC systems.
I start with a basic recipe on how to create reservoirs of the ESN type,
and an outline of the experimental settings that are used throughout this
thesis. Next, I discuss some simple but essential tools for maximizing
the performance of an RC system and correctly evaluating the results.
Finally, the different academic and real-world engineering applications
that will be used in the rest of this work are introduced and discussed.
This chapter not only shows the broad applicability of the RC framework,
but it can also be used as a source of inspiration when confronted with a
novel problem.

In Chapter 3, I make a transition from neural reservoirs to more gen-
eral other dynamical systems. I start with a discussion of the use of differ-
ent timescale domains in RC systems, and show that tuning the transition
between the domains is crucial for performance. Next, the universal ap-
plicability of the RC concept is shown by studying several non-standard
reservoir implementations, that gradually drift further from the original
neural RC incarnations.

As we have discussed, the use of novel dynamical systems as reservoirs
requires some tools to facilitate the search for optimal performance. In
Chapter 4, I first investigate more sophisticated measures for quantifying
the dynamical regime of the reservoirs, using concepts from dynamical

✐
✐

“main” — 2009/11/10 — 10:05 — page 25 — #51 ✐
✐

✐
✐

✐
✐

1.6 List of publications 25

system theory. The ability to quantify dynamics in a reservoir is useful,
but ideally, one would like to have an automatic adaptation of the reser-
voir dynamics. I therefore present a generalized version of an adaptation
rule that tunes the dynamics of the reservoir in an autonomous and unsu-
pervised way, based on a criterion that tries to maximize the information
transmission inside the reservoir.

Chapter 5 gives a summary and overview of the main conclusions that
were reached in each of the individual chapters, and draws an overall
conclusion of the research presented in this thesis.

In the Appendix, finally, I describe the Reservoir Computing Toolbox
and its main features and design principles. The toolbox was built in col-
laboration with several colleagues throughout my PhD work, and is now
used intensively both inside our research group and by other researchers
around the world.

1.6 List of publications

Journal publications
1. K. Vandoorne, W. Dierckx, B. Schrauwen, D. Verstraeten, R. Baets,

P. Bienstman and J. Van Campenhout. Toward optical signal pro-
cessing using Photonic Reservoir Computing. Optics Express, Vol.
16(15), pp. 11182-11192 (2008).

2. B. Schrauwen, M. D‘Haene, D. Verstraeten and D. Stroobandt.
Compact hardware Liquid State Machines on FPGA for real-time
speech recognition. Neural Networks(21), pp. 511-523 (2008).

3. B. Schrauwen, M. Wardermann, D. Verstraeten, Jochen J. Steil
and D. Stroobandt. Improving reservoirs using intrinsic plasticity.
Neurocomputing (71), pp. 1159-1171 (2008).

4. D. Verstraeten, B. Schrauwen, Michiel D‘Haene and D. Stroobandt.
An experimental unification of reservoir computing methods. Neu-
ral Networks, Vol. 20(3), pp. 391-403 (2007).

5. D. Verstraeten, B. Schrauwen, D. Stroobandt and J. Van Campen-
hout. Isolated word recognition with the Liquid State Machine: a
case study. Information Processing Letters, Vol. 95(6), pp. 521-528
(2005).

✐
✐

“main” — 2009/11/10 — 10:05 — page 26 — #52 ✐
✐

✐
✐

✐
✐

26 1 Introduction

Conference publications
1. D. Verstraeten and B. Schrauwen. On quantifying dynamics in

Reservoir Computing. International Conference on Artificial Neu-
ral Networks (ICANN), pp. 985-994 (2009).

2. P. Buteneers, B. Schrauwen, D. Verstraeten and D. Stroobandt.
Real-time Epileptic Seizure Detection on Intra-cranial Rat Data us-
ing Reservoir Computing. 15th International Conference on Neural
Information Processing of the Asia-Pacific Neural Network Assem-
bly (APNNA), pp. 56-63 (2009).

3. P. Buteneers, B. Schrauwen, D. Verstraeten and D. Stroobandt. E-
pileptic seizure detection using Reservoir Computing. Proceedings
of the 19th Annual Workshop on Circuits, Systems and Signal Pro-
cessing, on CD (2008).

4. D. Verstraeten, S. Xavier-de-Souza, B. Schrauwen, J. Suykens, D.
Stroobandt and J. Vandewalle. Pattern classification with CNNs as
reservoirs. Proceedings of the International Symposium on Nonlin-
ear Theory and its Applications (NOLTA), on CD (2008).

5. F. wyffels, B. Schrauwen, D. Verstraeten and D. Stroobandt. Band-
pass reservoir computing. Proceedings of the International Joint
Conference on Neural Networks, pp. 3203-3208 (2008).

6. B. Schrauwen, D. Verstraeten and J. Van Campenhout. An overview
of reservoir computing: theory, applications and implementations.
Proceedings of the 15th European Symposium on Artificial Neural
Networks, pp. 471-482 (2007).

7. D. Verstraeten, B. Schrauwen and J. Van Campenhout. Adapting
reservoirs to get Gaussian distributions. Proceedings of the 15th
European Symposium on Artificial Neural Networks, pp. 495-500
(2007).

8. B. Schrauwen, M. D‘Haene, D. Verstraeten and J. Van Campen-
hout. Compact hardware for real-time speech recognition using a
Liquid State Machine. Proceedings of the 20th International Joint
Conference on Neural Networks, on CD (2007).

9. B. Schrauwen, J. Defour, D. Verstraeten and J. Van Campenhout.
The Introduction of Time-Scales in Reservoir Computing, Applied
to Isolated Digits Recognition. Proceedings of the International
Conference on Artificial Neural Networks, Vol. 1(4668), pp. 471-
479 (2007).

✐
✐

“main” — 2009/11/10 — 10:05 — page 27 — #53 ✐
✐

✐
✐

✐
✐

1.6 List of publications 27

10. D. Verstraeten, B. Schrauwen and D. Stroobandt. Reservoir-based
techniques for speech recognition. Proceedings of the International
Joint Conference on Neural Networks (IJCNN), On CD (2006).

11. D. Verstraeten, B. Schrauwen, M. D‘Haene and D. Stroobandt.
Reservoir Computing and its digital hardware implementations. Pro-
ceedings of the Annual Machine Learning Conference of Belgium
and The Netherlands (Benelearn), pp. 171-172 (2006).

12. D. Verstraeten, B. Schrauwen, M. D‘Haene and D. Stroobandt. The
unified Reservoir Computing concept and its digital hardware im-
plementations. Proceedings of the 2006 EPFL LATSIS Symposium,
pp. 139-140 (2006).

13. D. Verstraeten, B. Schrauwen and D. Stroobandt. Reservoir Com-
puting with Stochastic Bitstream Neurons. Proceedings of the 16th
Annual ProRISC Workshop, pp. 454-459 (2005).

14. D. Verstraeten. Stochastic Bitstream-based Reservoir Computing
with Feedback. Fifth FirW PhD Symposium, on CD (2005).

15. D. Verstraeten, B. Schrauwen and D. Stroobandt. Isolated word
recognition using a Liquid State Machine. Proceedings of the 13th
European Symposium on Artificial Neural Networks (ESANN), pp.
435-440 (2005).

16. D. Verstraeten, B. Schrauwen and J. Van Campenhout. Recognition
of Isolated Digits using a Liquid State Machine. Proceedings of SPS-
DARTS 2005, pp. 135-138 (2005).

Others
1. B. Schrauwen, D. Verstraeten. Hardware speech recognition using

Reservoir Computing. NIPS 2006 demo session.

2. D. Verstraeten. An experimental comparison of reservoir comput-
ing methods. Invited talk at NIPS 2007 Workshop on Liquid State
Machines and Echo State Networks (2006).

3. D. Verstraeten. Speech recognition using reservoir computing. In-
vited talk : Paris workshop on New Ideas in Hearing (2006).

✐
✐

“main” — 2009/11/10 — 10:05 — page 28 — #54 ✐
✐

✐
✐

✐
✐

✐
✐

“main” — 2009/11/10 — 10:05 — page 29 — #55 ✐
✐

✐
✐

✐
✐

2
Standard Reservoir

Computing: methods and
applications

This chapter focuses on the ‘traditional’, neural implementations of
Reservoir Computing, i.e., Echo State Networks and Liquid State Ma-
chines. We first describe different ways of constructing, training and using
neural RC systems. We continue by discussing three methodological tech-
niques that are essential to the correct evaluation of the performance of a
given RC system. Following this operational view, we take a step back and
give three different high-level functional explanations of the functionality
of a reservoir. Finally, we devote a section to a thorough specification
and discussion of the academic and real-world learning problems that are
used in this thesis. The real-world tasks are discussed in more detail by
presenting an experimental exploration of the different design choices.

2.1 Operational and functional aspects of
reservoirs: the basics

Reservoir Computing is an umbrella term for a set of learning systems.
As was mentioned in the introduction to this work, these techniques were
independently introduced. In (Verstraeten et al., 2007), I introduce the
term Reservoir Computing and propose to unify the existing techniques
under this term. Since then, the term has been adopted in literature as a
general name for learning systems that consist of a dynamical recurrent
network of simple computational nodes combined with a simple (usually
linear) readout function.

Because of the broadness of the term Reservoir Computing, it is dif-

✐
✐

“main” — 2009/11/10 — 10:05 — page 30 — #56 ✐
✐

✐
✐

✐
✐

30 2 Standard Reservoir Computing: methods and applications

Figure 2.1: Schematic representation of an RC system. Fixed,
random connections are indicated with a solid line and trained con-
nections with a dashed line.

ficult to accurately define it: to my knowledge, no exact definition exists
in literature. However, to fix the thoughts I will start by giving a qual-
itative description of the common properties that all the RC systems in
this thesis have.

A Reservoir Computing system consists of two parts: the reservoir
and the readout function (see Figure 2.1). The reservoir is a (usually)
nonlinear dynamical system, consisting of a recurrently coupled network
of relatively simple computational nodes. The connections between the
nodes are randomly created and globally rescaled so that a suitable dy-
namical regime is reached. The readout function (or simply readout) is a
linear classification or regression algorithm which is trained by example,
using simple training mechanisms such as linear regression.

From an engineering point of view, Reservoir Computing systems are
attractive learning machines because of the following properties:

• They are easy to construct and optimize. Most RC systems can
be globally described using only a few parameters, which greatly
reduces the computational requirements for finding optimal settings
for these parameters.

• When trained properly, they are relatively robust to input and state
noise. This property is inherited from conventional neural networks.

• Because reservoirs are created randomly, they tolerate some vari-
ation in their internal parameters. This is of particular interest
when using analog electronics or physical hardware to implement
the RC systems. In this case, manufacturing and processing vari-
ations can lead to differences between different reservoirs with the

✐
✐

“main” — 2009/11/10 — 10:05 — page 31 — #57 ✐
✐

✐
✐

✐
✐

2.1 Operational and functional aspects of reservoirs: the basics 31

same parameters. The RC training method is robust against these
variations.

• Only the readout layer is trained, so it is possible to use the same
reservoir for solving different tasks simultaneously based on the
same input, with minimal additional computational requirements
once the layers are trained.

• RC systems show competitive performance in a variety of temporal
signal processing tasks. RC has been applied to many industrial
and academic problems, and in most cases excellent performance
can be reached.

We will now give a more detailed description of how to construct and
train a basic Reservoir Computing system.

2.1.1 Creating and using reservoirs

2.1.1.1 The standard architecture

In the following text, we assume that the RC system consists of N reser-
voir nodes, M inputs and P outputs. Most descriptions of RC systems in
literature use the ESN-style of creating the reservoir network, so we will
focus on that.

Creating the input and reservoir connections

For the ESN-style RC systems, reservoirs are usually constructed as fol-
lows:

• Construct an M × N input to reservoir weight matrix Win. The
weights are drawn from a random distribution or discrete set, and
are globally scaled with the input scale factor. The input scaling is
an important parameter for the performance because it determines
how strongly the reservoir is driven by the input. Depending on
whether the input signals should be fed to all the reservoir nodes,
this matrix can be full (all elements non-zero) or have a sparsity
defined by the input connection fraction.

• Construct an N ×N reservoir interconnection weight matrix Wres.
The values for the weights are again drawn from a distribution (e.g.,
a gaussian distribution) or a discrete set of values (e.g.,{−1, 1}).
Here, too, only a fraction (the reservoir connection fraction) of the
weights are non-zero. In the original contribution by Jaeger, it
is noted that the connection fraction should be small (around .1),

✐
✐

“main” — 2009/11/10 — 10:05 — page 32 — #58 ✐
✐

✐
✐

✐
✐

32 2 Standard Reservoir Computing: methods and applications

thus creating a sparsely connected network. The rationale behind
this is that the network should create a rich ‘reservoir’ of different
nonlinear transformations (called echos) of the current and past
input values - and a sparse network leads to non-correlated echos.
However, later research has shown that this line of reasoning is
not always justified (see e.g. (Verstraeten et al., 2006), (Schrauwen
et al., 2008a)).

• Rescale the weight matrix globally, such that the reservoir has a
suitable dynamic excitability. The most common way to do this
is to tune the spectral radius of Wres. The spectral radius of a
matrix is its largest absolute eigenvalue. It is a static measure1

of the dynamic excitability of the network - a value close to 1 is
usually proposed as a good starting point for optimizations of ESNs.
The precise rationale behind the rescaling is explained in detail in
Subsection 2.1.2.3 below and in Chapter 4.

Simulating the reservoir and training and testing the read-
out

• Construct a dataset D consisting of |D| samples.2 The number
of timesteps in the dth sample is written as Td. The dth sample
consists of a M × Td input signal matrix u and a corresponding
P ×Td desired output signal matrix y (we denote the actual output
of the reservoir system as ŷ to discern between the desired and
actual output). Split this dataset in a set Dtrain of training samples
and Dtest of testing samples, with |D| = |Dtrain|+ |Dtest|.

• Simulate the network using the training set Dtrain as follows: the
network state at time k is denoted as x[k]. For every sample, we
initialize x[0] = 0. Next, the network is simulated recursively, in a
timestep3 based way, as follows (see Figure 2.2):

x[k + 1] = f(Wresx[k] + Winu[k]).

Note that in (Jaeger, 2001a), the term u[k + 1] is used instead of
u[k] in the state update equation.

1I.e., it only takes stationary (unchanging) properties of the network into account.
2The notation |A| denotes the cardinality of the set A, i.e., the number of elements

it contains.
3Throughout this thesis, the notation [k] with square brackets is used for timesteps

in discrete time, and (t) with round brackets is used for coninuous time.

✐
✐

“main” — 2009/11/10 — 10:05 — page 33 — #59 ✐
✐

✐
✐

✐
✐

2.1 Operational and functional aspects of reservoirs: the basics 33

u

s

ô

M

Td

k k + 1

N

P

Input

Reservoir state

Output

Figure 2.2: Schematic representation of the simulation of an RC
system.

• After every sample is simulated, the |Dtrain| reservoir state ma-
trices are concatenated into a large state matrix A of dimension
(
�|D|
d=1 Td)×M .

• Compute the output weights by least squares regression on the ma-
trix A, using the desired output matrix y as the right-hand side.
I.e., compute the matrix Wout that satisfies the following equation

Wout = min
W
�A×W−y�2 .

In practice, this can be done in one step by using the Moore-Penrose
generalized matrix inverse (Penrose, 1955), or pseudo-inverse A† of
the matrix A, which is defined as : A† = (ATA)−1AT, as follows:

Wout = A†y = (ATA)−1ATy.

• Simulate the network on the test set Dtest in the same way as above,
and compute the output as follows:

ŷ[k] = Woutx[k].

• Evaluate the performance on the test set using an appropriate error
measure. For instance, a commonly used error measure for one-

✐
✐

“main” — 2009/11/10 — 10:05 — page 34 — #60 ✐
✐

✐
✐

✐
✐

34 2 Standard Reservoir Computing: methods and applications

dimensional output signals is the Normalized Root Mean Square
Error (NRMSE), defined as:

NRMSE = 1
|Dtest|

|Dtest|�

d=1

1
Td

Td�

k=1

�
(ŷd[k]− yd[k])2

σ
2
d,y

,

where σp,y denotes the variance of the desired output signal y in
example d.

2.1.1.2 Variations on the basic architecture

Many architectural and experimental variations on this basic setup have
been used and described in literature. We list the main possibilities of
extending this setup, but this list is by no means exhaustive:

• Using different activation functions. Many node types have already
been described in literature, including threshold functions, hyper-
bolic tangent, Fermi functions, or spiking neurons.

• Using direct input-to-output connections, i.e. concatenating the
reservoir states x and the inputs u to train and test the readout
layer. Often, this leads to a slight increase of performance at the
expense of a longer training time.

• Using output feedback, i.e. feeding the values of the readout layer
back into the reservoir or even to the readout layer itself. This
is useful in the case of signal generation tasks where the reservoir
system is used to generate a (possibly multidimensional) signal au-
tonomously or where longer memory is required (Maass et al., 2007).

• Using an online learning method such as Least Mean Squares (LMS)
or Recursive Least Squares (RLS) to train the output weight ma-
trix Wout. This is useful in case the statistical properties of the
inputs, outputs or their relation change - e.g. in the case of channel
equalisation (Jaeger and Haas, 2004).

• Using online adaptation rules for adjusting certain parameters of the
reservoir. This possibility will be discussed extensively in chapter
4.

• Using so-called leaky integrator neurons in the reservoir. In this
case, the update equation for the reservoir can be written as

x[k + 1] = (1− λ) · x[k] + λ · tanh(u[k]Win + x[k]Wres).

✐
✐

“main” — 2009/11/10 — 10:05 — page 35 — #61 ✐
✐

✐
✐

✐
✐

2.1 Operational and functional aspects of reservoirs: the basics 35

In this equation, λ is a time-constant that determines the slowness
of the dynamics of the reservoir. In effect, this is simply a first-
order low-pass filtered version of the actual sigmoid neuron output.
The use of this neuron model for Echo State Networks was first
described in (Jaeger, 2002), but has since been extended to more
advanced bandpass versions in (Siewert and Wustlich, 2007; wyffels
et al., 2008c). We will discuss both leaky integrator neurons and
bandpass neurons in more depth in Sections 3.1 and 3.2.

2.1.2 Three views on reservoir functionality
One of the attractive features of Reservoir Computing is the combination
of its simplicity of use and its good performance on many tasks. At this
point however, it is not yet clear why these systems perform well. In fact,
the reservoirs are usually created randomly which is not associated with
optimal performance.

An elaborate theoretical foundation of the operations of reservoirs
could shed some light on why reservoirs work well, and more impor-
tantly: which ones work best. Such a theory is presently still lacking,
but there is some knowledge to be gained when looking at the similarities
between reservoirs and other computational systems. In this section, we
will discuss three different angles from which to explain the functional-
ity of reservoirs in RC systems, namely kernel machines, linear regressors
or classifiers and dynamical systems. These explanations are not math-
ematically strict but do help to form an intuitive view on the properties
of reservoirs that make them suited for signal processing.

2.1.2.1 The reservoir as a temporal kernel

The first concept with which RC shares some common ideas is that of ker-
nel methods (Scholkopf and Smola, 2002), and particularly Support Vec-
tor Machines (SVMs) (Vapnik, 1999; Steinwart and Christmann, 2008).
SVMs are a technique in machine learning that attains state-of-the-art
performance results in many application fields (Cristianini and Shawe-
Taylor, 2000). The theory underlying kernel methods is founded in statis-
tics rather than biology or neuroscience.

Explained very briefly, kernel methods work by transforming input
vectors using a nonlinear map into a high-dimensional space. In this so-
called feature space, any standard (usually linear) technique from machine
learning or statistical analysis can be applied, such as linear or nonlinear
regression, principal component analysis (PCA) (Scholkopf et al., 1997)
or canonical correlation analysis (Van Gestel et al., 2001). By projecting

✐
✐

“main” — 2009/11/10 — 10:05 — page 36 — #62 ✐
✐

✐
✐

✐
✐

36 2 Standard Reservoir Computing: methods and applications

(a) The 2D case: not linearly sepa-

rable

(b) The 3D case: linearly separable

Figure 2.3: Projection of the input into a higher dimensional space
can make a classification problem linearly separable.

the input into a higher-dimensional space using the right kernel, the com-
putational performance of these methods can be boosted considerably.

This principle is illustrated in a simplified setting in Figure 2.3. The
problem shown here is known as the XOR problem and is one of the most
basic examples of a classification task that is not linearly separable4. In
the two-dimensional case on the left, there is no single line that separates
the circles from the stars. However, by choosing the right projection into
a three-dimensional space (shown on the right), it becomes trivial to find
a separating hyperplane (the equivalent of a line in higher-dimensional
spaces). This is due to the fact that, loosely speaking, if labeled data is
represented in a space with more dimensions, the probability of the data
being linearly separable increases (Cover, 1965).

Arguably one of the most important characteristics of kernel methods
is the fact that the projection into feature space is not explicitly computed.
This is due to a mathematical nicety called the kernel trick (Aizerman
et al., 1964), which follows from Mercer’s theorem that states that any
continuous symmetric positive semi-definite kernel K(x, z) can be written
as an inner product in the high-dimensional feature space. More formally,
for a kernel K that has the properties cited above, there exists a mapping
φ for which

K(x, z) =< φ(x),φ(z) > .

Many techniques in statistical analysis and machine learning use inner
products between data samples as a means of defining some sort of simi-

4This task was a.o. used to show the limitations of the single layer perceptron, which
can only solve linearly separable tasks (Minsky and Papert, 1969). This limitation
was later overcome by adding hidden layers to the perceptron, forming a Multi-Layer
Perceptron (MLP).

✐
✐

“main” — 2009/11/10 — 10:05 — page 37 — #63 ✐
✐

✐
✐

✐
✐

2.1 Operational and functional aspects of reservoirs: the basics 37

larity measure and use this in their computations, and due to the kernel
trick this inner product can be conveniently replaced by a kernel function,
without having to actually compute the high-dimensional mapping φ(·).
This enables for instance the use of infinite-dimensional feature spaces.

This projection of the input into a higher-dimensional space, followed
by the application of a simple linear algorithm also occurs in the case
of Reservoir Computing. The functionality performed by the reservoir
can be seen as a spatio-temporal, nonlinear transformation into a higher-
dimensional space, since the states of the neurons all represent a random
but fixed nonlinear mapping of the current and previous inputs to the
network. There are, however, two significant differences between kernel
methods and RC: in the case of reservoirs, the mapping does have to be
computed explicitly, and secondly, the mapping into feature space (i.e.,
the reservoir state space) is explicitly temporal because the reservoir has
a fading memory of previous inputs5. However, this explicit computation
of the kernel mapping does enable the use of, e.g., physical systems as
reservoirs.

A simplified illustration of this temporal trajectory of the reservoir in
the reservoir state space is shown with a separating hyperplane in Fig-
ure 2.4. Here, the trajectory of a reservoir in response to two different
spoken digits is shown (see Section 2.2.2 below for a specification of this
task). Because the reservoir has 100 nodes, the actual trajectory is 100-
dimensional which is difficult to represent pictorially - to say the least.
Because of this, I reduced the dimensionality of the trajectory by plotting
only the three main components resulting from dimensionality reduction
with Independent Component Analysis (ICA) (Karhunen et al., 2004).
Also shown is a hyperplane that separates most of the points in the tra-
jectory belonging to different classes. While the trajectories are actual
dimension-reduced trajectories by a reservoir, the hyperplane was drawn
manually. The figure is mainly intended to form some intuition about the
kernel functionality of a reservoir.

2.1.2.2 The reservoir as a complex preprocessing filter
for linear methods

Because the training and application of Reservoir Computing systems (as
with kernel methods) is in practice reduced to the use of simple linear
methods, nearly the whole body of theory from this well-researched field
is also applicable. Least squares regression is a tried-and-true method for

5This temporal mapping can be added to kernel methods as well using, e.g., de-
lay lines or specialised string-based kernels, but as discussed in subsection 1.3.4, this
introduces several disadvantages.

✐
✐

“main” — 2009/11/10 — 10:05 — page 38 — #64 ✐
✐

✐
✐

✐
✐

38 2 Standard Reservoir Computing: methods and applications

Figure 2.4: Three-dimensional image of a trajectory of the reservoir
in response to two different spoken digits, one drawn as stars and
the other as circles. Also shown is a classifying hyperplane that
separates (most of) the points.

fitting linear models to data, and was first described by Gauss already
in the nineteenth century. Many extensions on this basic algorithm have
since been described such as weighted linear least squares (Ryan, 1997),
LASSO regression (Tibshirani, 1996) , ridge regression (Tikhonov and
Arsenin, 1977) or online variants from adaptive filter theory such as Least
Mean Squares (LMS) (Haykin and Widrow, 2003) or Recursive Least
Squares (RLS) (Haykin, 1991). In this respect, the reservoir can be seen
as a random nonlinear preprocessing mechanism with fading memory that
boosts the power of linear algorithms.

2.1.2.3 The reservoir as a dynamical system: compu-
tation at the edge of chaos

Finally, RC shares some research questions with the fields of nonlinear
dynamics and control theory. Both the literature on LSMs and ESNs has
put forth the notion that reservoirs should operate at the so-called edge
of chaos (Langton, 1990; Legenstein and Maass, 2007). However, this
term is a bit misleading since these systems, as well as most reservoirs,
actually operate in a dynamically rich but stable regime. The edge of
stability would therefore perhaps be a more appropriate term.

✐
✐

“main” — 2009/11/10 — 10:05 — page 39 — #65 ✐
✐

✐
✐

✐
✐

2.1 Operational and functional aspects of reservoirs: the basics 39

The reason behind the importance of this type of dynamic regime is
best understood for classification problems: the reservoir should react
dynamically enough to input signals from different classes so that the
problem becomes linearly separable, which enables the linear readout to
do the classification. This view is related to the function of a reservoir as
a temporal kernel, described above. On the other hand, if the reservoir
is too dynamic (i.e. chaotic), its sensitivity will be too large and the
information about the inputs will be washed out by the wild dynamics.
More importantly: a chaotic reservoir means a high sensitivity to noise,
i.e., changes in the input signal that do not contain relevant information
for the problem at hand. Hence, the edge of stability is the optimal region
for the reservoir to operate in.

As was mentioned before, the most common parameter that tunes the
dynamics of the reservoir is the spectral radius of the reservoir weight
matrix. A value close to one is usually chosen. The choice of this value is
due to the so-called echo state property (ESP). This property, introduced
in (Jaeger, 2001a), states informally speaking that in the long term a
reservoir ‘forgets’ its initial state. This is highly related to the fact that
a network should possess ‘fading memory’ in LSM terminology (Maass
et al., 2004c) in order to be useful. The ESP is proven to depend on the
scaling of the reservoir weight matrix: for tanh reservoirs, if the largest
singular value (LSV) of the matrix is smaller than one the ESP is present.
However, if the spectral radius is larger than one, the ESP is not present
for zero input. This condition can be explained from a systems theory
point of view: for zero input the reservoir behaves as a linear system.
The eigenvalues of the weight matrix are then essentially the poles of the
system (see Figure 2.5). It is a well known result that a linear system is
asymptotically stable if the magnitude of all poles is smaller than zero.
Asymptotic stability means, informally speaking, that the system will
eventually return to a zero state if the input is switched off.

The fact that the spectral radius is only a strict criterion for zero
input is quite important and is often misinterpreted. The spectral radius
is a static measure (it only depends on the weight matrix), and does not
take the input to the network into account. However, once the network is
driven by an external input, the operating point of each of the nodes shifts
along the nonlinearity and the ‘effective’ spectral radius decreases. This
means that for reservoirs that are driven by a sufficiently large input, the
ESP can hold for weight matrices with spectral radius larger than one.

The spectral radius and other measures of dynamic behaviour in reser-
voirs will be revisited in Chapter 4.

✐
✐

“main” — 2009/11/10 — 10:05 — page 40 — #66 ✐
✐

✐
✐

✐
✐

40 2 Standard Reservoir Computing: methods and applications

Figure 2.5: Figure showing the eigenvalues of a random matrix
with gaussian distributed elements plotted in the complex plane.
The spectral radius (largest absolute eigenvalue) is one, which is
indicated by the single eigenvalue lying on the unit circle (on the
far right).

2.1.3 Performance evaluation
In this section we briefly discuss three mechanisms which are more or less
standard in the context of machine learning, but which are not rigourously
applied in the context of Reservoir Computing. We argue that these sim-
ple extensions of the classical training/testing methodology can and in
fact do increase not only the performance on tasks, but also the robust-
ness of the trained systems and the scientific validity of the conclusions
that can be drawn from experimental evidence. As such we argue that
these methods should be applied to RC systems, in the cases where it is
useful. Obviously, these techniques are also applied in the experiments
throughout this thesis whenever it is appropriate (for instance, the Fisher
relabeling discussed in 2.1.3.3 is not always useful).

2.1.3.1 Regularization

Consider the following series of numbers:

1, 1, 2, 3, 5, 8, ...

When asked to give the next number, most people will respond with
13, because they recognize the first digits of the Fibonacci sequence - and
even if they don’t know the exact name of the sequence, most will recog-
nize the fundamental rule that generated this series of numbers: namely
that every number (apart from the first two) is the sum of the two pre-

✐
✐

“main” — 2009/11/10 — 10:05 — page 41 — #67 ✐
✐

✐
✐

✐
✐

2.1 Operational and functional aspects of reservoirs: the basics 41

Figure 2.6: Overfitting: the error on the training set keeps decreas-
ing while the error on the (unseen) test set increases. The model is
learning the noise on the data instead of generalizing (learning the
statistical properties of the data).

vious numbers. This type of sequence-completion tasks is quite common
in some psychometric tests such as IQ-tests, but after some consideration
one could argue that these tests are fundamentally flawed because there
is no single right answer to the question ‘What is the next number in this
sequence?’. Even worse: there is an infinite number of possible answers.
Given a finite sequence of numbers, one can think of any number of rules
that have generated this sequence and that will come up with different
values for the next number in the sequence. Why is it, then, that the
majority of people still gets the answer that is intended, and that re-
searchers even count on this general consensus about the ‘right’ answer
to draw conclusions about someone’s level of intelligence?

The reason for this is related to the principle of Ockham’s razor.
William of Ockham stated that ‘entities must not be multiplied beyond
necessity’, which can be rephrased as: if multiple explanations of a phe-
nomenon are available, the simplest one is preferable. This principle is
used very often (sometimes implicitly) in science and research, and it is
so embedded in our thinking that many people would characterize this as
‘plain common sense’. This is why - even though there are infinitely many
possible rules that could have generated the sequence above - people tend
to choose the simplest rule: the Fibonacci rule.

Why are simple rules the best answer in this case? In other words: why
does an overly complex model not generalize well to unseen data? This is
because complex models or rules have a greater chance of incorporating
properties specific to the data (such as noise), as opposed to the properties
of the system that generated the data. One way to view this problem is

✐
✐

“main” — 2009/11/10 — 10:05 — page 42 — #68 ✐
✐

✐
✐

✐
✐

42 2 Standard Reservoir Computing: methods and applications

to consider the well-known concept of overfitting. Naively put, a model
has overfitted to the data when it has ‘learnt the data by heart’ instead of
capturing the underlying properties of the data. These models have failed
to generalize to unseen data. Overfitted models will typically exhibit very
good performance on the training set but bad performance on the test
set (see Figure 2.6). In the context of machine learning, the assumption
is sometimes used that a training set can be interpreted as a set of class
prototypes, corrupted by some form of noise. A good model should be
able to extract the fundamental underlying properties of the data while
ignoring the irrelevant information contained in the noise. In case we use
a model that is too complex (or: too computationally powerful) it will
also learn the noise on the training set. This means that, when presented
with unseen data samples, the model will be sensitive to the noise on
these inputs, and will produce non-accurate results.

So, we can say in very general terms that a trade-off should be made
between model complexity and generalization capability. The model
should be complex enough to accurately model the underlying system,
but not so complex that it becomes sensitive to the noise on the samples.
This design methodology is known as model selection. One way to do
this is by using regularization, which is a rather general concept of im-
posing some constraints on the model (usually some form of smoothness
constraint) in order to control the trade-off between model complexity
and overfitting avoidance. We will illustrate the concept with a simple
introductory example.

In Figure 2.7, some datapoints where generated from the system de-
scribed by the following fifth-degree polynomial:

y = 3− 2x+ 3x2 − x3 − 3x4 + .04x5

We take some values for x in the interval [−1, 2], and compute the
corresponding y values. Next, Gaussian noise is added to these y values
with a standard deviation of 0.9. This set of noisy (x, y) datapoints was
used as a training set to fit6 several polynomials of different degrees. Here,
the model complexity is determined by the degree of the polynomial (more
accurately: the number of free parameters). The actual polynomial is
plotted in the dashed lines, and in Figure 2.7 fitted polynomials of degree
one, five and eight are plotted. Also, the original polynomial and the fitted
curves were plotted in the interval [2, 3] to evaluate the performance on
unseen data (the test set).

It is clear that for the case of a polynomial of degree one (a simple
line), the model is too simple and none of the properties of the data is

6Using Matlab’s polyfit function, which uses least-squares fitting.

✐
✐

“main” — 2009/11/10 — 10:05 — page 43 — #69 ✐
✐

✐
✐

✐
✐

2.1 Operational and functional aspects of reservoirs: the basics 43

captured. In the case of a polynomial of degree eight, however, the model
has become too complex and has overfitted, which is visible through the
good performance on the training data, but very bad performance on the
test data. The middle figure seems to strike the correct balance between
the complexity and generalization and is (not coincidentally) of the same
degree as the original polynomial.

How do we apply this to Reservoir Computing setups? In the case of
polynomials, the model complexity is easily controlled with the degree of
the highest term. For linear discriminant systems however, the degree of
the variables is always one. How does one control the model complexity
there? There exist multiple ways to do this, depending on how one chooses
to characterise the regularization. Usually, linear models are regularized
by adding an additional penalty term - related to the norm of the weights
- to the prediction on the training set. This can be expressed formally as:

wopt = arg min
w
�Aw −B�k + λ �w�l , (2.1)

where �·�p denotes the p norm, and λ is a parameter that controls the
tradeoff between the error on the training set and the weight norm. De-
pending on the values of k and l, different forms of regularized linear
models can be obtained. For instance, if k = 2 and l = 1, we get what is
called LASSO-regression (Tibshirani, 1996), which leads to sparse mod-
els (meaning that many of the weights are zero), which in turn could be
useful in e.g. hardware implementations because of the limited number of
connections. Recent results from our lab also show that for certain tasks
LASSO-regression can achieve better results or more stable generators
than classic linear regression (Dutoit et al., 2009).

The more common case, and the case we will discuss here and use in
all the experiments described in this work, is the case where k = l = 2.
Here, both norms are the standard Euclidian norms and we obtain what
is known as ridge regression or (less commonly) Tikhonov regression
(Tikhonov and Arsenin, 1977). Here, as with standard least-squares re-
gression, the solution to the equation 2.1 can be obtained in one step as
follows:

wopt = (ATA+ λI)−1
A
T
B

In this case, there exists a convenient relation between the regulariza-
tion parameter and the model complexity (which is related to its compu-
tational expressive power). One can state:

γ(λ) =
p�

i=1

σi

σi + λ ,

✐
✐

“main” — 2009/11/10 — 10:05 — page 44 — #70 ✐
✐

✐
✐

✐
✐

Figure 2.7: Illustration of overfitting and model complexity. In the
top figure, the model is too simple to fit the data. In the middle
figure the model complexity is just right, and in the bottom plot
the model is too complex and overfitting occurs.

✐
✐

“main” — 2009/11/10 — 10:05 — page 45 — #71 ✐
✐

✐
✐

✐
✐

2.1 Operational and functional aspects of reservoirs: the basics 45

where λ is the value of the regularization parameter, γ(λ) is the number of
effective parameters, and σi is the ith eigenvalue of the matrix ATA . The
effective number of parameters quantifies the number of free parameters
of the model (the readout weights, in the case of reservoirs) are actually
used, and as such gives an indication of the complexity of the model
(Moody, 1992).

Another way of performing regularization is by adding noise to the
data. The noise on the training set will reduce the absolute magnitude
of the parameters, which in turn constrains the model complexity. In
(wyffels et al., 2008a), an experimental evaluation of both regularization
methods is done using a time series prediction and a system identification
task. The conclusion is that both methods yield similar optimal results.
However, ridge regression is preferable for pragmatic reasons: using noise
as regularization mechanism is inherently non-deterministic (which means
that results are not generally reproducible), and in cases where state noise
is added to a reservoir with output feedback, the whole reservoir needs
to be resimulated for every noise level, which dramatically increases the
computational requirements.

While ridge regression offers good control over the smoothness of the
obtained regression/readout function through a single parameter λ, the
best value to use still needs to be determined. The optimal value for
this regularization parameter would be the one that gives the best per-
formance on unseen data. Determining this optimal value is done using
grid-searching of the parameter with cross-validation, which will be dis-
cussed in the next subsection.

2.1.3.2 Cross-validation

Cross-validation is a technique used in statistical analysis and machine
learning for evaluating the performance of a model while eliminating as
much as possible misleading results due to (accidental) poor choice of the
training and test sets. These anomalies can occur (especially in the case
of small datasets) when for instance in a classification task the training
set does not cover the full space of classes. If the test set contains an
instance of a class that was not present in the training set, the model will
likely misclassify this sample which results in an unrepresentatively bad
performance. Or, in a more general case, it is possible that the training set
does not cover a representative sampling of the full population of possible
input patterns, and as such the performance of the trained model will be
suboptimal - not due to a lack of expressive power of the model but due
to a problem with the dataset. These problems can be avoided by using
cross-validation.

✐
✐

“main” — 2009/11/10 — 10:05 — page 46 — #72 ✐
✐

✐
✐

✐
✐

46 2 Standard Reservoir Computing: methods and applications

Cross-validation involves dividing the dataset, containing D samples,
into a number K of subsets, each containing the same number of samples
(which means that K should ideally be a divisor of D - if this is not the
case, the subsets should be as similar in size as possible). K − 1 subsets
are selected for training, and the remaining subset is used for testing of
the trained model. This process is repeated K times (hence the rather
archaic term folds), every time with a different subset for testing. After
this process, the performance is averaged out across all test performances.
This way, every subset is used exactly once for testing, which reduces the
chance of statistical anomalies considerably. In the special case where
K = D, the term leave-one-out cross-validation is used, because for every
fold a single sample is left out of the training set and used for testing.
The number of folds K is a parameter that offers a trade-off between
accurate evaluation of the performance of a model and computational re-
quirements: the extreme case of leave-one-out will offer the most accurate
estimate of the performance of the model (and will also maximize the use
of the data for training), but will also require the most time to evaluate.
However, the combination of a least squares model and leave-one-out of-
fers an interesting extension: the impact on the error of removing one
datasample from the training set can be computed without retraining the
model - a process known as virtual leave-one-out (Dreyfus, 2005). In this
way, an accurate evaluation of the performance of a linear classifier can
be obtained in a computationally very efficient way.

Cross-validation can also be used to select the optimal regularization
parameter. This is done by doing cross-validation on two levels in a
nested manner (this is also implemented in the RC Toolbox, described
in the Appendix). In this case, there are three different datasets: the
training set (used for training), the validation set (used for evaluating
performance in the inner cross-validation loop) and the test set (used for
evaluating performance in the outer cross-validation loop). The following
simple example illustrates this principle: suppose our dataset consists of 4
samples. We first split the dataset using an outer 4-fold cross-validation
scheme, using every sample in turn for testing. For every fold in this
outer cross-validation loop, the regularization parameter is set to different
values. The performance of every value of the regularization parameter is
then evaluated using inner three-fold cross-validation scheme, which splits
the remaining three samples into a training set containing two samples,
and a validation set containing one sample. While this training scheme
can be computationally costly, especially for a large number of folds, it
does ensure a more accurate evaluation of the performance of a classifier
given a certain dataset, and also guarantees that the regularization is
near-optimal.

✐
✐

“main” — 2009/11/10 — 10:05 — page 47 — #73 ✐
✐

✐
✐

✐
✐

2.1 Operational and functional aspects of reservoirs: the basics 47

Table 2.1: Illustration of how a dataset of 4 samples can be sub-
divided in a training set, validation set and test set using cross-
validation.

Training
set

Validation
set

Test set

1, 2 3
1, 3 2 4
2, 3 1
1, 2 4
1, 4 2 3
2, 4 1
1, 3 4
1, 4 3 2
3, 4 1
2, 3 4
2, 4 3 1
3, 4 2

2.1.3.3 Unbalanced datasets and Fisher relabeling

A final method that is beneficial for achieving optimal results for practical
classification applications in Reservoir Computing (which is as yet - to
our knowlege - undocumented), is the use of so-called Fisher-relabeling.
In many cases, the dataset being used is unbalanced, which means that
the number of examples of each class is not representative of the true
underlying distribution. This can occur for instance in a binary (i.e. two-
class) classification task, where more examples of class one are present in
the dataset than class two. Another example that occurs commonly is the
case of a multi-class problem (such as the speech recognition task which
is featured throughout this thesis). For multi-class tasks, with M classes,
the designer of the system always needs to choose between one-versus-
one classifiers or one-versus-all classifiers. The distinction is simple: in
the former case, a classifier is trained to discern every class from every
other class (resulting inM(M−1)/2 classifiers), in the latter case onlyM
classifiers are trained - each one will discern a class from all other classes
jointly (Duda et al., 2001). In the case of a one-versus-all classifier, even if
the original dataset is balanced (i.e. there is an equal number of examples
of every class), the dataset is unbalanced from the point of view of any
one of the single classifiers since there are M − 1 times as many negative
examples as positive examples.

This unbalance will have an effect on the generalization capabilities of
the classifiers. Since the readout is trained using least-squares regression,

✐
✐

“main” — 2009/11/10 — 10:05 — page 48 — #74 ✐
✐

✐
✐

✐
✐

48 2 Standard Reservoir Computing: methods and applications

Figure 2.8: Illustration of the effect of fisher relabeling. Without
relabeling, the separating hyperplane between the classes is shifted
towards the classes occuring most in the dataset (dashed line), but
if the class labels are reweighted, this effect can be countered (solid
line). Clearly, the margin of error is larger in the latter case.

the separating hyperplane will shift towards the class centers that are
most present in the dataset (this is illustrated in Figure 2.8). This effect
is undesirable: in the case of a one-versus-all classifier one wants the
hyperplane to lie ‘in the middle’ between the class in question and the
other classes. This can be achieved e.g. in the two-class case7 with n1
examples of class 1 and n2 examples of class 2 by relabeling the classes
from the usual [1,−1] for positive and negative examples respectively, to
[n1+n2
n1
,
n1+n2
n2

]. In this way, the class labels reflect the unbalance of the
number of examples in each class, and the shifting of the hyperplane is
undone. It is shown in (Duda et al., 2001) that the least-squares classifier
that is obtained after relabeling is actually equivalent to the so-called
Fisher discriminant (hence the name). This discriminant function builds
a linear hyperplane that aims to maximize the separation between two
classes (the between-class scatter) while at the same time minimizing the
variance of the samples in the same class (the within-class scatter).

Finally, we note that in the case of RC and from the point of view of the
readout layer, the reservoir state at every timestep should be considered
an example of a given class (since the readout operates on the reservoir
states). This means that if the examples of a class do not consist of the
same number of timesteps (which is the case in e.g. digit recognition,
where some digits are uttered faster than others), the dataset is unbal-
anced from the point of view of the linear readout, and it is beneficial

7This method can easily be extended to more than two classes.

✐
✐

“main” — 2009/11/10 — 10:05 — page 49 — #75 ✐
✐

✐
✐

✐
✐

2.2 Applications 49

(a) (b) (c)
Figure 2.9: Example input (a) and output timeseries for the 10th
order (b) and 30th order (c) NARMA task.

to apply fisher relabeling. While this operation is computationally cheap
(the relabeling of the classes is a very simple operation), the effects on the
performance can be substantial. As an illustratory example, we trained
a simple reservoir of 100 nodes on the digit recognition task (see Section
2.2.2 below for a specification of this task) and attained a word error rate
(WER) of 7.6% without relabeling, and a WER for the same reservoir of
6.6% after training on the relabeled data - meaning a full percent decrease
in error.

2.2 Applications

In this section, I present a set of both academic and real-world applica-
tions that have been tackled using RC during my research. This section
serves a double goal. The tasks presented here will be featured throughout
this thesis and they are introduced and specified in detail here. Addition-
ally, we present a more extensive experimental illustration of the use of
RC in three different real-world engineering tasks. As such, this section
can be read as a presentation of the broad scope of tasks that RC can be
applied to, and can serve as a source of inspiration when trying to tackle
a novel engineering problem.

2.2.1 Academic tasks

2.2.1.1 NARMA

The Non-Linear Auto-Regressive Moving Average (NARMA) task consists
of modeling the output of a SISO (Single Input Single Output) system.
Two versions are commonly used in literature, an ‘easy’ tenth order system

✐
✐

“main” — 2009/11/10 — 10:05 — page 50 — #76 ✐
✐

✐
✐

✐
✐

50 2 Standard Reservoir Computing: methods and applications

defined by the equation:

y[k + 1] = 0.3y[k] + 0.05y[k](
9�

i=0
y[k − i]) + 1.5u[k − 9]u[k] + 0.1,

and the more difficult thirtieth order system defined by:

y[k + 1] = 0.2y[k] + 0.04y[k](
29�

i=0
y[k − i]) + 1.5u[k − 29]u[k] + 0.001.

Here, u[k] is a uniform random signal in [0, .5], which serves as the input
to the NARMA system. The first 10 resp. 30 timesteps of y[k] are left
constant until the system is warmed up. The modelling of the NARMA
system is considered a quite difficult task that requires a relatively long
memory (an example input and output timeseries for both systems is
shown in Figure 2.9). The readout is trained to reproduce the signal y[k+
1]. A closer inspection of the system’s equations reveals that for instance
in the 30th order case, the reservoir needs to retain not only the memory
of the input signal of 30 timesteps ago (because of the term u[k−29]), but
actually an exponentially fading memory of all past outputs through the
term 0.2y[k]. The error is measured as the normalized root mean square
error (NRMSE), defined in Subsection 2.1.1 above. An important note
is that the 10th order equation can sometimes become unstable and run
away to very large values for certain random input timeseries. A check
for this should therefore be built in when generating timeseries based on
this system.

2.2.1.2 Memory capacity

This task was introduced in (Jaeger, 2002). It is not so much a learning
problem as a way of characterising the amount of memory that a network
has: the RC system simply has to reproduce successive delayed versions
of the random input as accurately as possible. The input of the reservoir
consists of a temporal signal u[k] which is drawn from a uniform distri-
bution in the interval [−.8, .8]. The outputs consist of an infinite number
of outputs ŷi[k] which try to reconstruct the delayed input u[k − i] for
i = 0...∞. In practice, we take the number of outputs twice as high as
the size of the reservoir (i = 2N) which is a good approximation since
the recall performance will drop steadily whenever we try to recall more
time steps back in time than there are nodes in the network. The “per-
formance” here is the memory capacity (MC), defined in (Jaeger, 2002)

✐
✐

“main” — 2009/11/10 — 10:05 — page 51 — #77 ✐
✐

✐
✐

✐
✐

2.2 Applications 51

as MC =
�∞
i=1MCi, with the i-delay memory capacity MCi defined as:

MCi = max
Wi
d[Wi](ui[k], yi[k])

= max
Wi

�ŷi[k]u[k − i]�2k�
(ŷi[k]− �ŷi[k]�k)

2
�

k

�
(u[k − i]− �u[k − i]�k)

2
�

k

= max
Wi

cov2(ui[k], yi[k])
σ2(yi[k])σ2(u[k − i]) ,

with ŷi[k] the output of the kth regressor and yk[k] the input signal de-
layed over k timesteps. Here, d[Wk] denotes the determination-coefficient
for the kth readout weight matrix, which is a measure of the variance in
one signal caused by the other. The third form of the equation shows that
the MC is defined as the normalized correlation between the outputs and
their associated delayed input. The maximum determination coefficient
for all possible readout weight matrices for the ith delay is taken, but
this is automatically achieved by training the readout weights using the
pseudo-inverse or Moore-Penrose inverse method, so in effect, by training
the RC system in a standard manner this maximum is always achieved
(Jaeger, 2002).

The amount of memory in a network is of vital importance for many
tasks. However, intuitively one can see that there is a tradeoff to be
made: the storage capacity of a network of a given size is limited, and
the further a network needs to remember in the past, the less “capacity”
it will have left to remember more recent inputs accurately. This can
be seen quite clearly on memory curves: these plots detail the individual
MCi terms versus i (see (Jaeger, 2002; White et al., 2002)). Memory
curves for reservoirs with both linear and tanh nodes are shown in Figure
2.10. These memory curves typically show a decreasing profile. It was
shown theoretically in (Jaeger, 2002) that linear reservoirs (i.e., with the
identity function as transfer function) have the highest memory capacity
for a given reservoir size, and the MC is bounded by N , the number of
neurons in the network. Adding nonlinearities to the nodes decreases the
memory capacity, but for some tasks some nonlinear behaviour is also
needed.

2.2.1.3 Signal template classification task

The problem here is to discern between two ‘template’ timeseries that are
corrupted by noise. The two templates are a square wave and a sawtooth.
Without noise, this task is relatively simple in the sense that conventional,
explicitly programmed solutions can easily be devised. With noise, it

✐
✐

“main” — 2009/11/10 — 10:05 — page 52 — #78 ✐
✐

✐
✐

✐
✐

52 2 Standard Reservoir Computing: methods and applications

(a) Tanh reservoir (b) Linear reservoir

Figure 2.10: Memory curve for tanh reservoirs (a) and linear reser-
voirs (b), for different values of the spectral radius.

becomes less trivial. This task should be considered as a proof-of-concept
problem that could demonstrate the potential usefulness of novel reservoir
architectures (as was the case for the photonic reservoirs of Section 3.4).

An example input timeseries and corresponding desired output is shown
in Figure 2.11. The main difficulty of this task from an RC point of view
lies in the transition points between the signal templates: the reservoir
needs to be able to react quickly to a change in the signal class, while
still being robust enough to retain the current classification output when
needed. The error for this task is measured in terms of the zero-one loss
(i.e., zero if correct, one if incorrect) on a timestep basis, which simply
means the fraction of timesteps that the output of the system is incorrect.

2.2.1.4 Signal generation tasks

This task differs from the previous ones because this is a signal generation
task: the RC system needs to generate the output signal by itself, i.e.,
without external inputs. An example of a signal generation task is the
Mackey Glass timeseries prediction. The goal is to make the reservoir
autonomously generate the signal described by the following time delay
differential equation:

ẋ = β xτ1− xnτ
− γx.

Here, xτ represents the value of x at time t−τ . Its behaviour is determined
by four parameters, which we set to standard values: β = .2, γ = .1,n =
10. The fourth parameter τ (the delay in the feedback loop) can be used
to tune the dynamics of the system from mild to moderate chaos (see
Figure 2.12). The values of the timeseries are generated through Euler
integration of the differential equation with stepsize 1.

✐
✐

“main” — 2009/11/10 — 10:05 — page 53 — #79 ✐
✐

✐
✐

✐
✐

(a) Input signal: random switching between a noisy sawtooth and square signal.

(b) Output signal : signal template class.

Figure 2.11: Input signal (a) and corresponding desired output
signal (b) for the signal classification task.

(a) τ = 17 (b) τ = 30
Figure 2.12: The Mackey Glass timeseries for two different values
of the delay parameter τ .

✐
✐

“main” — 2009/11/10 — 10:05 — page 54 — #80 ✐
✐

✐
✐

✐
✐

54 2 Standard Reservoir Computing: methods and applications

The training for signal generation tasks is done by first feeding the
teacher signal into the reservoir, and training the readout to do one-step
ahead prediction of this teacher signal. This process is called teacher
forcing. Once the readout is trained, the system can be run in signal
generation mode, by feeding the predicted signal instead of the teacher
signal back into the reservoir. Since the system was trained to do one-step
ahead prediction of this signal, it will continue to generate this signal.

For signal generation tasks like this one the RC system generates its
own input and there is no external signal that drives the reservoir. Be-
cause of this, any errors that are made in the signal prediction can possibly
accumulate and cause the output to drift ever further from the original
signal. This drifting can occur in three ways: the signal can die out be-
cause the gain of the feedback loop is not high enough, the output signal
can diverge from the desired teacher signal but still remain qualitatively
correct or the generated signal can become unstable and eventually run
away to very large values.

The evaluation of performance for signal generation tasks is not trivial
and depends on the task. For applications where the prediction horizon8

is short, usually a high precision of the predicted signal is a priority. In
this case, the NRMSE defined above is a suitable error measure. For
long term prediction applications on the other hand, the stability of the
predicted signal is more important than the precision, so here the devi-
ation timestep error (the first timestep where the deviation between the
generated and required signal reaches a certain value) is more important.
Finally, for some applications the goal is to generate qualitatively similar
signals to the teacher signal. An example of this is Central Pattern Gen-
erator (CPG) tasks: the objective is to generate complex periodic signals
robustly, but slight phase or frequency deviations from the teacher signals
can be tolerated. In this case, instantaneous error measures such as the
NRMSE do not capture the real requirements of the problem, and more
sophisticated error measures should be used based on methods that try to
fit the generated signal to the teacher signal, for example with matching
pursuit algorithms (Mallat and Zhang, 1993).

2.2.2 Spoken digit recognition with a Liquid
State Machine

In (Hopfield and Brody, 2000) J. J. Hopfield and C. D. Brody describe
the results of an experiment they conducted on the speech cortex of a
fictional species of mouse, the Mus Silicium. In reality they constructed

8This is the time interval that the system is expected to predict autonomously

✐
✐

“main” — 2009/11/10 — 10:05 — page 55 — #81 ✐
✐

✐
✐

✐
✐

2.2 Applications 55

(a) Training mode: teacher forcing

(b) Testing mode: autonomous signal

generation

Figure 2.13: Schematic image of training (a) and testing (b) for
signal generation tasks. The dashed connection is trained.

a type of spiking neural network and trained it to perform a simple speech
recognition task: the identification of the digit one out of other spoken
digits. The dataset9 they used is a subset of the TI46 speech corpus
(Doddington and Schalk, 1981), and consists of ten digits, zero to nine,
each uttered ten times by five different female speakers, resulting in 500
speech fragments sampled at 12 kHz.

In this section, we will use Liquid State Machine-type RC systems (i.e.,
reservoirs built with spiking neurons) to tackle this recognition task. The
majority of the existing research on automated speech recognition (ASR)
uses so-called Hidden Markov Models (HMMs), where the speech signal is
modeled as a Markov chain. Markov chains are statistical models that are
mathematically well understood and use relatively simple assumptions.
The task of the ASR system is then to learn the structure of the underlying
Markov chain, based only on indirect observations of the underlying state
- hence the term ’hidden’ in the name HMM.

The spiking reservoirs used here were built from Leaky Integrate and
Fire (LIF) neurons, with a refractory period of 10 ms and a membrane
time constant of 120 ms. This is biologically not very realistic (a more
realistic value would be 20 ms), but it does give the neurons enough inter-
nal memory to solve this task. The reservoir contains no synapse model,
which means that emitted spikes are transmitted directly to the receiving
neurons. Ten different linear classifiers are trained, each sensitive to a dif-
ferent digit in the vocabulary. These classifiers are trained to output the
correct value at each timestep (+1 for the correct class, −1 for the other
classes). During testing a final classification is reached by taking the tem-
poral mean of the output of every classifier, and applying winner-take-all

9Available for download at the website for the RC Toolbox,
http://snn.elis.ugent.be/rctoolbox.

✐
✐

“main” — 2009/11/10 — 10:05 — page 56 — #82 ✐
✐

✐
✐

✐
✐

56 2 Standard Reservoir Computing: methods and applications

to the resulting vector. The performance for the speech recognition task
is expressed as a Word Error Rate (WER): the fraction of incorrectly
classified words as a percentage of the total number of presented words:
WER = 100 · NncNtot

, with Nnc the number of incorrectly classified samples,
and Ntot the total number of samples presented.

In (Schrauwen et al., 2008a), it was shown that for neurons with a
binary (on-off) output, the two crucial parameters are the number of
incoming connections each neuron has (the fan-in or in-degree) and the
global weight scaling. In the same article it was shown that this effect is
no longer present in analog reservoirs. A simple synthetic task was used
where the delayed XOR-function of two random bit series was trained.
In Section 2.2.2.1 below, we will do a sweep of the same parameters, but
for a real-world engineering task of digit recognition. Additionally, we
will compare the results of different preprocessing techniques for the raw
speech files. For all the experiments in this section, a reservoir of 100
neurons was used. This is relatively small, but sufficient to allow for a
fair comparison between the different speech preprocessing methods. All
parameter points were evaluated with 25 different reservoir instantiations
and the reported errors are averaged over these instantiations.

2.2.2.1 Preprocessing

It is common practice in the field of speech recognition to transform the
sound to enhance the speech-specific features before applying a classi-
fication algorithm. The majority of the ASR systems use MFCC (Mel
Frequency Cepstral Coefficients), which we will discuss in detail. In addi-
tion, we will also investigate the performance of more biologically realistic
preprocessing models, which are all based on models of the first stages of
the human auditory processing system (specifically the cochlea). These
models vary in complexity and realism. The result of this preprocessing
step is either directly fed into the reservoir in the case of non-spiking
nodes, or else transformed into spike trains using a method called BSA
(Ben’s Spiker Algorithm) (Schrauwen and Van Campenhout, 2003). This
algorithm takes a temporal signal and a filter as input, and yields the
spiketrain that allows optimal reconstruction of the original signal when
decoded using this filter. The algorithm works by scanning across the
signal, and at each timestep computing a heuristic error measure. When
this error measure exceeds a threshold, a spike is generated and the filter
impulse response is subtracted from the signal. In this case, the filter
is exponentially decaying with a time constant of 30 sample timesteps.
For a spiking reservoir (a LSM), the spike trains generated by the reser-
voir are transformed back into the analog domain by filtering them with

✐
✐

“main” — 2009/11/10 — 10:05 — page 57 — #83 ✐
✐

✐
✐

✐
✐

2.2 Applications 57

an exponential filter, which mimicks the internal operation of the mem-
brane potential of a simple spiking neuron. These analog signals are then
subsampled by a factor of 20 before being fed to the readout.

Patterson-Holdsworth-Meddis model This model consists (as all
cochlear models under consideration here) of a filter bank introduced in
(Patterson et al., 1992), which models the selectivity of the human ear
to certain frequencies (shown in 2.14) followed by a stage that models
the nonlinear response of the hair cells in the cochlea (Meddis, 1986).
The filter bank in this case consists of logarithmically spaced gammatone
filters. The impulse response of these filters is a sinusoid modulated by
a gamma distribution function - hence the name. The center frequencies
of this filter bank were determined through psycho-acoustic experiments,
where the detection threshold of a pure sine tone masked by a block of
noise was determined. Based on this, the sensitivity to certain frequencies
was determined.

An example set of input spike trains generated by this ear model is
shown in 2.14, along with the performance results when varying the node
fan-in and weight scaling as described above. The overal performance is
not very good, with a best result of 45.2%.

Seneff cochlear model The Seneff cochlear model (Seneff, 1988) is
again a biologically realistic model of the human auditory system. It con-
verts a sound stimulus into a series of waveshapes that represent the firing
probabilities of the different hair cells in the human cochlea. It consists
of two stages: a critical filter bank that performs an initial spectral anal-
ysis based on psycho-acoustic properties of the human ear. This stage
is followed by a model of the nonlinear transduction stage implemented
by the hair cells, and which models saturation, adaptation and forward
masking. The parameters of the model were fitted to experimental data.

An example set of spike trains, the filter bank used by this model
and the performance results are plotted in Figure 2.15. This front end
performs considerably better than the Meddis model, with a smallest error
of 18.15%. This is, however, still not good enough to be of practical use.

Lyon Passive Ear model The Lyon Passive Ear model (Lyon, 1982)
is a model of the human inner ear or cochlea, which describes the way
acoustic energy is transformed and converted to neural representations.
The model consists of a filter bank that mimics the selectivity of the hu-
man ear to certain frequencies, followed by a series of half-wave rectifiers
(HWRs) and adaptive gain controllers (AGCs) both modeling the hair
cell response. Figure 2.16 shows a schematic representation of the differ-
ent steps of the model. We note that the Lyon model is relatively simple

✐
✐

“main” — 2009/11/10 — 10:05 — page 58 — #84 ✐
✐

✐
✐

✐
✐

(a) (b)

(c)
Figure 2.14: Illustration of the spike trains generated by the Meddis
ear model (a). The filter bank used in the Meddis ear model (b).
Experimental results for this preprocessing method (c).

✐
✐

“main” — 2009/11/10 — 10:05 — page 59 — #85 ✐
✐

✐
✐

✐
✐

(a) (b)

(c)
Figure 2.15: Illustration of the spike trains generated by the Seneff
cochlear model (a). The filter bank used in the Seneff ear model
(b). Experimental results for this preprocessing method (c).

✐
✐

“main” — 2009/11/10 — 10:05 — page 60 — #86 ✐
✐

✐
✐

✐
✐

60 2 Standard Reservoir Computing: methods and applications

Figure 2.16: Schematic overview of the elements of the Lyon
cochlear model: a cascading filter bank followed by half-wave rec-
tifiers and adaptive gain controllers (AGC).

and that more complicated ear models also exist (Van Immerseel and
Martens, 1993). Moreover, this form of preprocessing is computationally
more intensive than the use of a MFCC front end, taking about three to
five times as long to compute on a conventional processor.

The full time-sequence of the outputs of the last stage define a so-
called cochleagram (Figure 2.17), a collection of coefficients which indicate
a firing probability of a cochlear hair cell in response to the sound. The
performance using this biologically realistic coding is shown in Figure
2.17. It appears that this preprocessing method is a good match for the
recognition capabilities of the LSM. The smallest error is 8.6%.

MFCC MFCC stands for Mel-Frequency Cepstral Coefficients (Davis
and Mermelstein, 1980). MFCC is the de facto standard technique for
preprocessing speech before feeding it to a recognition system. The coef-
ficients are calculated as follows:

• The sample data is windowed using a hamming window.

• A FFT is computed.

• Its magnitude is run through a so-called mel-scale10 filter bank.

• The log10 of these values is computed.

• A cosine transform is applied to reduce the dimensionality and to
enhance the speech-specific features of the input.

The result is the so-called cepstrum.
10A mel-scale is a non-linear transformation of the frequency domain to model the

human selectivity to certain frequency bands.

✐
✐

“main” — 2009/11/10 — 10:05 — page 61 — #87 ✐
✐

✐
✐

✐
✐

(a) (b)

(c)
Figure 2.17: Illustration of the spike trains generated by the Lyon
cochlear model (a). The filter bank used in the Lyon ear model (b).
Experimental results for this preprocessing method (c).

✐
✐

“main” — 2009/11/10 — 10:05 — page 62 — #88 ✐
✐

✐
✐

✐
✐

62 2 Standard Reservoir Computing: methods and applications

(a) (b)

(c)
Figure 2.18: Illustration of the spike trains generated by the MFCC
preprocessing frontend (a). The mel-scale filter bank used in MFCC
(b). Experimental results for this preprocessing method (c).

In addition to the thirteen cepstral coefficients, the approximated
first and second order time-derivatives of these coefficients (the so-called
delta and delta-delta coefficients) were calculated - a common practice for
speech processing. This means that in total 39 spike trains are fed into
the liquid.

Best results for all models In table 2.2, I summarize the best
performances of each of the four speech front-ends we discussed. Clearly,
the Lyon model is the best match for this recognition architecture. This
is also the model that will be used in the remained of this thesis. Sur-
prisingly, the MFCC front-end does not combine well at all with our
recognition setup. This is probably due to the fact that MFCC tries to
incorporate temporal information into a single feature vector since it was
explicitly designed for use with HMMs (which have no fading memory).

✐
✐

“main” — 2009/11/10 — 10:05 — page 63 — #89 ✐
✐

✐
✐

✐
✐

2.2 Applications 63

Table 2.2: Optimal results for the four speech front-ends we con-
sidered.

Meddis Seneff Lyon MFCC
Optimal WER 45.2% 18.15% 8.6% 64.5%

The differences between the other, biologically inspired speech front-ends
are likely due to the different filter banks.

2.2.2.2 Noisy inputs

In (Verstraeten et al., 2005), I studied the robustness of the reservoir
to noisy environments. Specifically, I added noise from the NOISEX11

database to the test set. Different types of noise were added with different
Signal to Noise Ratios (SNRs): speech babble (B), white-noise (W) and
car interior noise (C) with SNR levels of 30, 20 and 10 dB. For these
experiments we used a larger reservoir of 1232 LIF neurons. The data
was preprocessed using Lyon’s cochlear model.

For comparison, we also give the best results from (Deng et al., 2004),
where a specific speech front end (Log Auditory Model or LAM) designed
for noise robustness is followed by an HMM. We note that in this case, the
dataset consisted of isolated digits from the TIDIGITS database, which is
not identical but nonetheless comparable to the one we used. The results
shown in Table 2.3 - expressed as recognition scores for easy comparison
- are thus indicative and not quantitative.

Table 2.3: The robustness of the LSM against different types of
noise.

Clean 30 dB 20 dB 10 dB
C LSM 97.5% 91.5% 89.5% 88.5%

LAM 98.8% 98.6% 98.8% 98.6%
B LSM ” 94.5% 93.5% 89%

LAM ” 98.4% 93.2% 72.5%
W LSM ” 85% 84% 79.5%

LAM ” 98.4% 95.7% 72.7%

It appears that the LSM is very robust to different types of noise being
added to the inputs. The HMM with the noise-robust front end performs
better for low noise levels and in case of car noise, but the general decay

11Available online at http://spib.rice.edu/spib/select_noise.html.

✐
✐

“main” — 2009/11/10 — 10:05 — page 64 — #90 ✐
✐

✐
✐

✐
✐

64 2 Standard Reservoir Computing: methods and applications

in performance with regard to the noise level is more gradual for the LSM
for the babble and white noise.

2.2.2.3 Comparison with the state of the art

In this subsection I present two relevant speech recognition systems as a
comparison for our presented technique. Sphinx4 is a recent speech recog-
nition system developed by Sun Microsystems (Walker et al., 2004), using
HMMs and an MFCC front end. When it is applied to the TI46 database,
a word error rate (WER) of 0.168% is achieved. The best RC system
from our experiments with a reservoir size of 1232 neurons achieved a
WER of 0.5% (Verstraeten et al., 2005). While slightly worse than the
state-of-the-art, we point out that the LSM offers a number of advantages
over HMMs. HMMs tend to be sensitive to noisy inputs, are usually bi-
ased towards a certain speech database, do not offer a way to perform
additional tasks (like speaker identification (Verstraeten, 2004) or word
separation) on the same inputs without a substantial increase in com-
putational requirements and are originally designed to process discretely
sampled discrete data while a lot of real-world information is continuous
in nature (in time as well as magnitude).

An additional comparison can be made by looking at the results de-
scribed in (Graves et al., 2004). There, a recurrent SNN is used with
so-called Long Short-Term Memory (LSTM). It is trained for exactly the
same dataset as used in this chapter. A WER of 2% was achieved. We
therefore conclude that RC passes the test of isolated digit recognition
very well and rivals the performance of standard HMM based techniques
and other kinds of SNN solutions.

2.2.3 The Ford dataset competition
The next real world problem I will discuss is also a temporal signal classifi-
cation task. At the 2008 World Conference on Computational Intelligence
(WCCI), a series of machine learning competitions was organised, rang-
ing from AI in games to robot car racing. One of the competitions was
organized in collaboration with the Ford Motor Company, and I partici-
pated with an RC system. The problem is set in an automotive industrial
context. It consists of classifying short, one-dimensional timeseries of 500
timesteps each. The short timeseries are said to be indicative of the maxi-
mum time window on which a classification decision typically needed to be
made. There are only two classes, one where a certain (unknown) symp-
tom is present and another class that is symptom-free. No additional
information is given about the nature of the signals or the symptoms

✐
✐

“main” — 2009/11/10 — 10:05 — page 65 — #91 ✐
✐

✐
✐

✐
✐

2.2 Applications 65

that occurred, or about how these signals were measured (e.g., the sam-
ple rate), but presumably it is an audio measurement of some industrial
automotive process. Also, visual inspection shows no discernable differ-
ence between positive and negative examples (see Figure 2.19). For this
problem the lack of information that is usually available in other cases -
and that can be used by the designer of the system to make some initial
choices for e.g. feature selection - presents an additional challenge.

For the competition, two different datasets are presented, A and B.
Dataset A consists of a clean training and test set and set B consists of
a clean training but noisy test set. obviously, while the competition was
running the test sets were not made public. There is also no indication
about the nature of the noise in the B dataset. In total there are 3601
examples available in the A training and validation sets (whose labels
were publicly available), and 1320 examples in the test set. For the B
dataset, the training and validation sets contain 3636 examples and the
test set consists of 810 samples. It is noted by the organizers that the two
datasets are unrelated and should not be mixed. The competition rules
allow two different classifiers to be trained/applied to the two datasets,
but the principal approach has to be the same for both cases.

The problem presented here - classification of finite timeseries - is
one that is traditionally solved by extracting feature vectors that capture
the important temporal characteristics as accurately as possible, where
common domains for these feature vectors include the frequency domain
or the wavelet domain. Next, one of (very) many possible stationary
classifiers is applied either to a feature vector at every timestep or to the
ensemble of feature vectors (which would be possible in this case given
the short length of the timeseries) and a decision can be made. For
this competition, however, we use RC which is a fundamentally different
approach because of the way time is handled: the reservoir is a dynamical
system that runs along in the same time domain as the input signal, and
the classification decision is only taken at the very end of the sample. This
is done in a similar way to the speech recognition task described earlier:
the mean of the classifier output is taken over the whole sample, and a
threshold function is applied which gives the final classification answer.

2.2.3.1 Experimental setup

The requirements of the task do not ask for a substantial change to the
classical RC setup. However, due to the similarity of the signals and
the apparent absence of discerning characteristics in the time domain
between the positive and negative examples, feeding the signals directly
into the reservoir without any form of preprocessing is not desirable. This

✐
✐

“main” — 2009/11/10 — 10:05 — page 66 — #92 ✐
✐

✐
✐

✐
✐

Figure 2.19: Example timeseries from the clean (top row) and
noisy (bottom row) Ford dataset. On the left, positive examples
are shown (with the symptom), on the right symptomless examples
are plotted.

✐
✐

“main” — 2009/11/10 — 10:05 — page 67 — #93 ✐
✐

✐
✐

✐
✐

2.2 Applications 67

is confirmed by some of our preliminary experiments where the signal is
fed into the reservoir directly: the classification accuracy is only a couple
of percent higher than the 50% baseline achieved by simple guessing.

Due to the pseudo-periodic nature of the input signals, a natural next
step is to look at the image of these timeseries in the frequency domain,
to see if there is any discernable difference between positive and negative
examples. To do this, we simply plot the periodogram of a concatenation
of all positive and negative examples. As can be seen in Figure 2.20, there
is no really dramatic difference in the spectral image of the positive versus
the negative examples, but there is at least some small distinction pos-
sible. In particular: the maximal spectral power lies at slightly different
frequencies for positive and negative examples - approximately 0.072 and
0.078 respectively, and for frequencies higher than the maximum-power
frequency, there is a region where the positive examples contain consid-
erably more power than the negative ones, in the normalized frequency
region [0.09 .2].

Motivated by the good results in the speech recognition task (which is
in some ways quite similar to this) we have constructed a feature extrac-
tion scheme based on a filter bank decomposition. When decomposing a
signal into different frequency bands, one has the choice to either apply
a FFT transform and work on the spectrographic image of the signal to
extract the necessary features, or to directly apply filters to the signal to
get the features. Here, we chose the latter option because this gives more
accurate control over the filter characteristics, at the expense of a higher
computational cost.

We normalize the samples to a maximal absolute amplitude of 1 and
apply a bank of second-order butterworth-type bandpass filters, result-
ing in a number of filtered signal channels. Then, half-wave rectification
is applied followed by a downsampling and a transformation to a dB-
scale12. The downsampling rate was set to 5, a value which was chosen
through experimental optimization. Similarly, the values for the center
and cutoff-frequencies were chosen initially by studying the relevant differ-
ences between the periodograms of the positive and negative examples,
and later fine-tuned through experimentation. In total, we selected 14
bandpass filters, whose frequency responses are shown in Figure 2.20c.
Notice how the pass-bands coincide with the main areas of difference be-
tween the positive and negative examples in Figure 2.20. An example of
the feature vectors that are produced by this filter bank preprocessor is
shown in Figure 2.21.

12Note the similarity with the cochlear ear model of the speech recognition task -
the AGC is not used here because the amplitude of the signals is quite constant.

✐
✐

“main” — 2009/11/10 — 10:05 — page 68 — #94 ✐
✐

✐
✐

✐
✐

0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

10

20

30

Normalized frequency

S
ig

n
a

l p
o

w
e

r
(d

B
)

(a) Clean dataset

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

5

10

15

20

25

30

Normalized frequency

S
ig

n
a

l p
o

w
e

r
(d

B
)

(b) Noisy dataset

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

−8

−6

−4

−2

0

Normalized Frequency (×π rad/sample)

M
a

g
n

itu
d

e
 (

d
B

)

(c) Frequency characteristics of the bandpass filters used in the preprocessing of the Ford

signals.

Figure 2.20: Periodogram of all positive (black) and negative
(grey) examples from the clean (a) and noisy (b) dataset. Fre-
quency characteristics of the bandpass filters used for preprocessing
are shown in plot (c). Note that the bandpass filters coincide with
the main frequency regions where the positive and negative exam-
ples differ.

✐
✐

“main” — 2009/11/10 — 10:05 — page 69 — #95 ✐
✐

✐
✐

✐
✐

2.2 Applications 69

Timestep

F
re

q
u

e
n

cy
 c

h
a

n
n

e
l

10 20 30 40 50 60 70 80 90 100

2

4

6

8

10

12

14

Figure 2.21: Example of the feature vectors extracted from the
signals.

2.2.3.2 Results of the competition

The classifiers in the challenge were evaluated primarily based on the ac-
curacy : Ntp+Ntn

Ntot
, with Ntp the number of true positives, Ntn the number

of true negatives and Ntot the total number of samples. In case of a tie,
the false positive rate was used as a tie-breaker. Before the competition,
it was obviously difficult to assess the performance of the method on the
complete dataset. For testing purposes, we reserved a part of the available
data for testing, but to construct the final classifier we trained our RC
system on all the available data. The final rankings were made public at
the conference itself, and according to the organisers of the competition
a wide variety of techniques were submitted including neural networks,
support vector machines and ensemble methods. A ranking list of the
first twenty contestants was presented, for the A dataset, the B dataset
and for a combined result. The best two methods for the A dataset (scor-
ing an accuracy of 100% and 99.6%) ranked 11th and 18th respectively
on the B dataset (scoring 68.1% and 59.3%), and the best two methods
for the B dataset (scoring 86.2% and 84.3%) ranked 9th and 10th on the
A dataset (94.9% and 94.5%). It appears therefore that the winners in
the A and B subcompetitions were rather specifically tuned (either on
purpose or by accident) for either the noisy or the non-noisy data.

Our proposed RC-based method ranked 12th on the A dataset, with
an accuracy of 92.5%, and 7th on the B dataset with an accuracy of
82.5%. On both datasets together, our method attained a 9th place, with
an accuracy of 88.7% - compare this with the winner on both datasets
who attained 92.2%, so 3.5% better. In conclusion, we have shown that
with only a very limited amount of time (only a couple of days work, vs.
several personweeks for other competitors13) we were able to construct a
classification method based on RC that achieves competitive results on a
difficult real-world signal classification task.

13This was communicated during talks at the competition session at the conference.

✐
✐

“main” — 2009/11/10 — 10:05 — page 70 — #96 ✐
✐

✐
✐

✐
✐

70 2 Standard Reservoir Computing: methods and applications

2.2.4 Epilepsy detection
Recently, a line of research was started at our lab that focuses on a very
concrete problem in a biomedical context, namely the detection of epilep-
tic seizures. This problem is formulated in a very broad way: for instance
the sensor signals on the basis of which the detection is done will be varied
in nature, ranging from Electro-EncephaloGraphic (EEG) measurements
over blood pressure to motion and accelerometry sensors. So far, two dif-
ferent seizure types were considered: Spike Wave Discharges (SWD) and
tonic-clonic seizures. The former type is characterised as an ‘absence’ or
‘petit mal’ seizure, meaning that the subject is temporarily unresponsive
to external stimuli, while the latter used to be called a ‘grand mal’ seizure
and consists of the tonic phase - where the subject tenses up - and the
clonic phase - where the subject exhibits jerking movements and convul-
sions. Both seizure types are potentially dangerous and an early detection
is therefore highly desirable. Small animal models (rats) of both seizure
types are available and close collaboration with the University Hospital
of Ghent has provided us with access to extensive datasets.

In (Buteneers et al., 2009), the initial promising results of the appli-
cation of RC to the problem of seizure detection on intracranially (inside
the scalp) measured EEG data in rats are presented. Two evaluation
criteria are used to assess the performance: classification speed and ac-
curacy. The former is measured as the delay between the start of the
actual seizure and the moment the RC system first detects the seizure
correctly. The latter is slightly more intricate: the readout function of
the RC system generates a continuous output at every timestep, and a
threshold is applied to this continuous value to determine the actual clas-
sification (seizure/no seizure). This threshold determines the trade-off
between false positives and false negatives: in case a high value indicates
a seizure, a high treshold will minimize the false positives but reduce the
fraction of true positive, and vice versa. Therefore, usually for binary
detection systems the threshold is varied across the whole range, and the
sensitivity14 is plotted versus the specificity15, resulting in a so-called Re-
ceiver Operating Characteristic (ROC) curve. The area under this curve
(AUC) is then a good indication of the global performance of the detection
system, regardless of the value of the threshold. For real world implemen-
tations in actual detection systems, the actual value of the threshold is
usually determined based on the requirements of the problem, which is
more costly: a false positive or a false negative response.

14TP/(TP + FN), with TP the number of true positives and FN the number of
false negatives

15TN/(TN + FP), with TN the number of true negatives and FP the number of
false positives

✐
✐

“main” — 2009/11/10 — 10:05 — page 71 — #97 ✐
✐

✐
✐

✐
✐

2.2 Applications 71

The reservoir used (Buteneers et al., 2009) uses leaky integrator nodes
(see Section 3.1), where the leak rate was optimized experimentally. The
AUC of the RC setup was compared with six other state-of-the-art meth-
ods for seizure detection, and RC improved on the performance of all
other methods with an AUC of 0.987 for the SWD seizures and 0.993 for
tonic-clonic seizures. However, recent (unpublished) results indicate that
a more elaborate tuning of the method by Van Hese et al (Van Hese et al.,
2003) can achieve similar results as the RC setup. Regarding classifica-
tion speed, it was found that the RC system detects the seizure with a
delay of on average 0.3 seconds for the SWD seizures and 3 seconds for the
tonic-clonic seizures, again outperforming the other methods - although
it should be noted that the other methods are not explicitly designed for
quick online detection.

Figure 2.22: Figure showing a single channel of an intracranial
EEG recording in a rat. The dashed line indicates where an SWD
seizure occurs.

✐
✐

“main” — 2009/11/10 — 10:05 — page 72 — #98 ✐
✐

✐
✐

✐
✐

✐
✐

“main” — 2009/11/10 — 10:05 — page 73 — #99 ✐
✐

✐
✐

✐
✐

3
Towards generic Reservoir

Computing: time scales and
novel reservoirs

The previous chapter was focused on neural implementations of Reservoir
Computing, using either analog sigmoidal or spiking neurons. In this
chapter, the initial steps in the transition towards more general reservoirs
will be taken.

As mentioned before, the idea of Reservoir Computing can be extended
from recurrent neural networks to other nonlinear dynamical networks
and even actual physical media. To make this transition possible, the first
issue that needs to be addressed is the representation of time. I will tackle
this topic by starting from a continuous time description of the system and
evaluating what the effects of discretizing time are in the input, reservoir
and output time domain. These effects will be linked to the memory
the system has. Next, I will present and discuss three reservoir types
that were studied by me or in collaboration with other research groups.
The implementations that are discussed here will drift gradually further
away from the original “neural” ESN or LSM incarnations: we will study
reservoirs made of bandpass neurons, Cellular Nonlinear Networks and
finally nonlinear photonic components.

3.1 Time scales and memory

So far, the RC setups that were discussed have been used in discrete time.
Any continuous input signals (such as speech) were tacitly assumed to be
sampled. However, if we want to apply the Reservoir Computing frame-
work to more general reservoir types, such as actual physical systems, one
of the questions that surfaces is how to deal with time, and more specif-
ically different time scales. Moreover, even for standard, discrete-time
reservoirs I will show that it can be useful to adjust the time scales of the

✐
✐

“main” — 2009/11/10 — 10:05 — page 74 — #100 ✐
✐

✐
✐

✐
✐

74 3 Towards generic Reservoir Computing: time scales and novel reservoirs

different components (input signals, reservoir states and output signals)
of the system.

3.1.1 Three different time steps
Since we will only consider simulations of reservoirs here, we will still use
discretized time. However, the signals at the input, inside the reservoir
and at the output can be sampled at different sample rates. For the
systems we will consider here, we can discern three different time domains,
each with its own time step:

• the input time step, indicated with δ1

• the reservoir time step, indicated with δ2, and

• the output time step, indicated with δ3.

Until now I have implicitly assumed that these time scales are identical,
but they do not need to be. In fact, it will be shown that tuning these
time scales can have a quite substantial effect on performance.

Because there is no absolute notion of time scale in these systems,
they are only defined relative to each other. Thus, two possible relations
can be investigated: the relation between δ1 and δ2 when going from the
input time domain to the reservoir time domain, and the relation between
δ2 and δ3 when going from the reservoir time domain to the output time
domain. In the following sections, we will discuss these timescales and the
transitions between them in more detail. While we will focus exclusively
on downsampling in the transitions between the input, reservoir and out-
put time domains, it may be useful to do upsampling for some tasks. For
instance, in case a very rapid response is needed from the reservoir, in-
creasing the sample rate of the input can help reduce the time needed for
the reservoir to ‘warm up’ at the expense of a shorter memory.

3.1.1.1 The reservoir timescale δ2: leaky integrator nodes

The first possibility to tune time scales in an RC system is located in the
transition between the input and the reservoir. One way to do this is to
consider first the following differential equation that describes a reservoir
in continuous time with activation function f , state vector x and input
signal u:

ẋ = 1
c

(−ax + f (Winu + Wresx)) ,

✐
✐

“main” — 2009/11/10 — 10:05 — page 75 — #101 ✐
✐

✐
✐

✐
✐

3.1 Time scales and memory 75

where a denotes the leaking rate of the neuron (the rate at which the
activation decreases with time) and c is a scaling factor for the temporal
dynamics. The discretization of this equation using the Euler method
with a timestep δ2 gives:

x((t+ 1)δ2) = (1− aδ2
c

)x(tδ2) + δ2
c
f (Winu(tδ2) + Wresx(tδ2)) ,

or, when we go over to discrete time, using the notation x((t + 1)δ2) =
x[k + 1]:

x[k + 1] = (1− aδ2
c

)x[k] + δ2
c
f (Winu[k] + Wresx[k]) .

It is shown in (Jaeger et al., 2007) that the term δ2
c can be lumped without

loss of generality into a common factor λ called the leak rate. Although
the retainment rate a was the major research topic of (Jaeger et al.,
2007) and λ was ignored, the focus will now be on λ and I will set the
retainment rate a to 1. The reason for this is the fact that the parameter
λ was previously not thoroughly investigated, and changing λ does not
affect the effective spectral radius of the reservoir while changing a does.
This fact was first noted in (Schrauwen et al., 2007a) and later also in
(Siewert and Wustlich, 2007). This coupling between time-scale settings
and dynamical regime of the reservoir is not desired because one would
like to be able to tune both separately and independently.

The assumptions introduced above ultimately yield:

x[k + 1] = (1− λ)x[k] + λf (Winu[k] + Wresx[k]) .

Closer inspection of this equation reveals that this is in fact a form of
first-order recursive low-pass filter (an infinite impulse response or IIR
filter). A general expression for this type of first order filter in discrete
time is:

x[k + 1] = (1− λ)x[k] + λu[k + 1].

Comparison of this expression with the one above shows that the former is
in fact a regular neuron with the integration mechanism placed behind the
nonlinearity (shown schematically in Figure 3.1a). Jaeger introduced this
model as leaky integrator nodes in (Jaeger, 2002), but for easy comparison
with the other models under consideration here, I call this model 1.

This equivalence between leaky integrator neurons and low-pass fil-
tered regular neurons introduces an interesting interpretation. Filter
theory tells us that the cut-off frequency of such a filter1 is given by:

1The cut-off frequency is the frequency where the power of the filtered signal is 1/2

✐
✐

“main” — 2009/11/10 — 10:05 — page 76 — #102 ✐
✐

✐
✐

✐
✐

76 3 Towards generic Reservoir Computing: time scales and novel reservoirs

(a) Model 1: integrator behind the nonlinearity

(b) Model 2: integrator in front of the nonlinearity

(c) Model 3: integrator across the nonlinearity

Figure 3.1: Diagrams of the three ways of constructing leaky in-
tegrator nodes. Variables are represented in rounded boxes, multi-
plication factors in circles and operators are shown in squares. The
z−1 operator represents a delay of one time step.

fc = λ/2π. Thus, by tuning the time constant λ, one has an easy and
intuitive way to filter out any frequencies of the signal transmitted by the
neuron that are irrelevant to the problem. Such frequency components
could be due to oscillators created inside the reservoir, or because these
frequencies simply contain noise.

Model 1 is not the only way an integrator can be added to a neuron.
One can also add the integrator in front of nonlinearity (shown in Figure
3.1b), which is commonly done when discretizing continuous time RNN
(CTRNN), as is done in case of BackPropagation Decorrelation (BPDC)

of the power of the filtered signal at a frequency in the pass-band.

✐
✐

“main” — 2009/11/10 — 10:05 — page 77 — #103 ✐
✐

✐
✐

✐
✐

3.1 Time scales and memory 77

learning of reservoirs (Steil, 2004, 2005b). This yields the following model:

z[k + 1] = (1− λ)z[k] + λ (Winu[k] + Wresx[k])
x[k + 1] = f(z[k + 1])

I call this model 2.
Finally, one can place the integrator across the activation function, as

shown in Figure 3.1c. This model was introduced in (Schrauwen et al.,
2007a). The state update equation now reads:

x[k + 1] = f ((1− λ)x[k] + λ (Winu[k] + Wresx[k])) .

This is model 3. Model 3 can be rewritten using �Wres = (1−λ)I+λWres

and �Win = λWin as:

x[k + 1] = f
�
�Wresx[k] + �Winu[k]

�
,

which shows that this is model is in fact equivalent with a standard reser-
voir where the off-diagonal elements of the reservoir matrix and the input
matrix have been scaled down with a factor λ. Note that this changes the
spectral radius, so the rescaling of the spectral radius of Wres should be
done after the rescaling due to λ. The advantage of this model is that the
integrator state can never ‘run away’ because it is bounded through the
nonlinearity. An additional advantage is the absence of computational
overhead since the integrators are integrated in Wres. However, a draw-
back is that the integrator state does leak away even with a = 1. The
leak is due to the contracting property of the non-linear mapping of the
hyperbolic tangent upon itself. This has as a consequence that the overall
amplitude of the reservoir dynamics scales down when λ goes to 0.

An interesting correspondence exists between model 1 and model 2.
We will show that these models can be transformed into one another,
provided the input is filtered and rescaled appropriately. We start with
the state update equation of model 1:

x[k + 1] = (1− λ)x[k] + λf (Winu[k] + Wresx[k]) .

Multiplying both sides with Wres gives:

Wresx[k + 1] = (1− λ)Wresx[k] + λWresf (Winu[k] + Wresx[k]) .

We introduce a new state vector x̂[k] = Winu[k] + Wresx[k]:

✐
✐

“main” — 2009/11/10 — 10:05 — page 78 — #104 ✐
✐

✐
✐

✐
✐

78 3 Towards generic Reservoir Computing: time scales and novel reservoirs

x̂[k + 1]−Winu[k + 1] = (1− λ) (x̂[k + 1]−Winu[k + 1]) + λWresf (x̂[k])
x̂[k + 1] = (1− λ)x̂[k] + λWresf (x̂[k]) +

Win (u[k + 1]− (1− λ)u[k])

We introduce a rescaled and filtered input signal

û[k] = 1
λ

(u[k + 1]− (1− λ)u[k]) ,

which ultimately yields

x̂[k + 1] = (1− λ)x̂[k] + λWresf (x̂[k]) + λWinû[k].

This is precisely the state update equation of model 2. Note however that
we have had to filter the input signal and that the state vectors between
the two models are not equivalent (the state vector of model 2 includes
the input!), so for all practical purposes model 1 and model 2 are not
trivially interchangeable. Theoretically there are some strong and weak
points concerning all three models, but we will have to experimentally
investigate which of these is somehow ‘optimal’.

3.1.1.2 The output time scale δ3
In addition to the possible transformation between input and reservoir
time scales δ1 and δ2 (or λ), there is also the possibility to transform the
time scale when going from the reservoir to the output. We will therefore
study the output time-scale δ3, used as follows:

�y((t+ 1)δ3) =Wresx((t+ 1)δ3) +Winpu(tδ3).

The reservoir states and inputs are thus intepreted in the output time
domain before training and applying the linear readout. At a first glance
this time scale does not seem to be very important, but as we will show
in the experiments, changing this time-scale can have a drastic effect on
performance.

3.1.1.3 Transitions between time domains through re-
sampling

The transitions between the input and reservoir time domain on the one
hand and the reservoir and output time domains on the other is done
through resampling. In the former case, the resampling ratio is δ1/δ2, in

✐
✐

“main” — 2009/11/10 — 10:05 — page 79 — #105 ✐
✐

✐
✐

✐
✐

3.1 Time scales and memory 79

Figure 3.2: The memory curve for different leak rates.

the latter it is δ2/δ3. The process of resampling should ideally be done
so that the Shannon-Nyquist sampling theorem is obeyed, i.e., that the
highest frequency fmax of the signal before resampling is not higher than
half the sampling rate fs of the resampled signal (the so-called Nyquist
frequency fs/2). In this way, aliasing of the resampled signal is avoided.
This is done by first applying a low-pass anti-aliasing filter to the signal
with an appropriate cut-off frequency before doing the resampling. For
the experiments described here, the Matlab resample function was used.

3.1.2 Node memory vs. reservoir memory
In the section above, I have mainly focused on interpreting the integra-
tion mechanism in the reservoir nodes as a low-pass filter. This is very
useful when thinking about reservoirs in the frequency domain. However,
another interpretation is possible and in some cases equally useful. When
the leak rate of a reservoir is changed, in effect one changes the memory
function (see Subsection 2.2.1.2) of the reservoir. This is shown in Fig-
ure 3.2. In this plot, the memory curve for a reservoir of 20 tanh nodes
is shown with different leak rates. The plot shows that decreasing leak
rates cause the memory curve to become flatter and wider. This means
that the reservoir has worse memory of recent inputs, but better mem-
ory of inputs further in the past. Thus, by decreasing the leak rate we
increase the longer-term memory of the nodes at the expense of precision
in recalling the more recent inputs.

At this point, we have two types of memory in a reservoir with leaky
integrator nodes. First of all there is the memory of the reservoir itself,
caused by the recurrent connections that retain information inside the
network. This type of memory is tuned by the dynamical regime of the

✐
✐

“main” — 2009/11/10 — 10:05 — page 80 — #106 ✐
✐

✐
✐

✐
✐

80 3 Towards generic Reservoir Computing: time scales and novel reservoirs

reservoir, but most importantly simply by the number of nodes in the
network. Second, each node now has internal memory because of the
integration mechanism. This node memory is changed by adjusting the
leak rate. We can now investigate the interplay between the two types of
memory.

Figure 3.3 shows plots for the performance on three tasks (30th order
NARMA, speech recognition and memory capacity) as a function of the
reservoir size and the leak rate. For the NARMA and memory task, we
slightly tweaked the task to show the effects more clearly. The input
used for these two tasks is normally white uniform noise, but in this case
we filtered this noise signal with a low-pass filter with normalized cut-off
frequency of 0.1 using a fourth order Butterworth filter. For the speech
recognition task, we downsampled the speech samples by a factor of 128
before applying the Lyon cochlear model, to reduce the computing time.

The plots for the NARMA task show that for a given reservoir size,
there is an optimal leak rate. These optimal leak rates for each reservoir
size are indicated with a dot in the figure on the right. The figure shows
clearly that the optimal leak rate decreases for increasing reservoir sizes.
This means that a trade-off is being made: for small reservoirs, the nodes
need more internal memory (lower leak rates) to perform well, while for
larger reservoirs the leak rate can become bigger because the network
itself has enough memory for the task. In the latter case, the bigger leak
rates are beneficial because they allow the higher frequencies contained
in the input signal to pass. Still, lowering the leak rate does not fully
compensate for the decrease in reservoir size.

A similar, yet less pronounced effect can be observed for the memory
task. Here, too, the optimal leak rate decreases for increasing reservoir
size. The effect is probably less pronounced in this case due to the simpler
mapping from the input to the outputs (a simple delay). This means
that the performance is likely less sensitive to the amount of information
contained in the reservoir.

For the speech recognition task, finally, the trade-off is less clear. In
fact, we observe that for every reservoir size, the performance levels off
for leak rates above around 0.1. This could mean that the relevant infor-
mation for solving this task is only contained in this frequency range.

3.1.3 The impact of time scales on spoken
digit recognition

In the previous section we focused only on the internal reservoir timescales,
defined by the leak rate λ. In this section, we will elaborate on this and

✐
✐

“main” — 2009/11/10 — 10:05 — page 81 — #107 ✐
✐

✐
✐

✐
✐

(a) 30th order NARMA

(b) Speech recognition

(c) Memory capacity

Figure 3.3: Plots showing the trade-off between reservoir memory
(determined by the number of nodes) and the node memory (deter-
mined by the leak rate) for three different tasks. On the left, a 3D
plot is shown, on the right the same plot in 2D, with the best leak
rate for every reservoir size marked. The Y-axis on the right hand
figures is reversed for better correspondence with the 3D plots.

✐
✐

“main” — 2009/11/10 — 10:05 — page 82 — #108 ✐
✐

✐
✐

✐
✐

82 3 Towards generic Reservoir Computing: time scales and novel reservoirs

Table 3.1: Minimal classification errors for all cases
Input resampling Reservoir resampling

Model 1 2.15% 0.48%
Model 2 2.32% 0.48%
Model 3 1.36% 0.40%

study the effects of the interplay of all three timescales, by experimentally
evaluating their effects on the digit recognition task. As was mentioned
before, the time steps δ1, δ2 (or λ) and δ3 are only defined relatively to
each other, so we will study the interplay between δ1 and λ, and between
δ3 and λ.

3.1.3.1 Input Resampling vs. integration

First we will study the influence on the performance of input downsam-
pling versus integration for the three models introduced in 3.1.1.1. To
be able to handle a broad range of parameters, we vary both these pa-
rameters in a logarithmic way, with base 10. Figure 3.4 shows the results
of this experiment. We can observe a diagonal area on Figure 3.4 which
corresponds to an optimal performance. For all three models we see that
the optimal performance is attained with the least resampling (bottom
of the plots). However, if we resample more, the error only slightly in-
creases. This creates a trade-off between computational complexity and
performance.

The optimal performance for the three different models is given in Ta-
ble 3.1. We see that model 3, with the integrator across the nonlinearity,
performs optimally, which is nice because this model introduces no extra
computational requirements compared to standard tanh reservoirs.

3.1.3.2 Reservoir resampling vs. integration

The second experiment studies the output time-scale compared to the
internal integrator. The results of this experiment are shown in Figure
3.5. For these experiments, the input time-scale is set to log10(δ1) = −2.
The setting of the input time-scale is not critical since the conclusions of
the results also apply to other input time-scale settings.

These figures are a bit more complex to interpret. The upper part,
with log10(δ3) = 0, has no reservoir resampling and is thus equal to a slice
of Figure 3.4 where log10(δ1) = −2. When increasing the resampling of
the reservoir states, we see that for the region of low integration (close to
0) there is a significant decrease of the error. But in the region where the
integration is optimal there is initially no improvement.

✐
✐

“main” — 2009/11/10 — 10:05 — page 83 — #109 ✐
✐

✐
✐

✐
✐

−4

−2

0

−3

−2

−1

0

0.05

0.1

log(δ
1
)

Testing error

log(λ)

W
E

R
Testing error

log(λ)

lo
g

(δ
1
)

−4−3−2−10

−3

−2.5

−2

−1.5

−1

(a) Model 1

−4

−2

0

−3

−2

−1

0

0.05

0.1

log(δ
1
)

Testing error

log(λ)

W
E

R

Testing error

log(λ)

lo
g

(δ
1
)

−4−3−2−10

−3

−2.5

−2

−1.5

−1

(b) Model 2

−4

−2

0

−3

−2

−1

0

0.05

0.1

log(δ
1
)

Testing error

log(λ)

W
E

R

Testing error

log(λ)

lo
g

(δ
1
)

−4−3−2−10

−3

−2.5

−2

−1.5

−1

(c) Model 3

Figure 3.4: Results for input resampling versus leak rate for the
three models. The small squares denote minimal error.

✐
✐

“main” — 2009/11/10 — 10:05 — page 84 — #110 ✐
✐

✐
✐

✐
✐

−4
−2

0

0

1

2

0

0.02

0.04

0.06

0.08

0.1

log(δ
3
)

log(λ)

Testing error
W

E
R

Testing error

log(λ)

lo
g

(δ
3
)

−4−3−2−10

0

0.5

1

1.5

2

(a) Model 1

−4

−2

0

0

1

2

0

0.02

0.04

0.06

0.08

0.1

log(δ
3
)

Testing error

log(λ)

W
E

R

Testing error

log(λ)

lo
g

(δ
3
)

−4−3−2−10

0

0.5

1

1.5

2

(b) Model 2

−4

−2

0

0

1

2

0

0.02

0.04

0.06

0.08

0.1

log(δ
3
)

Testing error

log(λ)

W
E

R

Testing error

log(λ)

lo
g

(δ
3
)

−4−3−2−10

0

0.5

1

1.5

2

(c) Model 3

Figure 3.5: Results for leak rate versus output resampling for the
three models. The small squares denote minimal error.

✐
✐

“main” — 2009/11/10 — 10:05 — page 85 — #111 ✐
✐

✐
✐

✐
✐

3.1 Time scales and memory 85

10 20 30 40

0.02

0.04

0.06

0.08

0.1

0.12

0.14

reservoir resampling

e
rr

o
r

Training error
Testing error

Figure 3.6: Classification error for a signal classification task with
respect to the output time-scale. Note that the time-scale is not
logarithmic in this figure.

The bottom part of the figures show a drastic increase in performance
when log10(δ3) is larger than 1.5. With such a high input and reservoir
resampling, there is actually just one time step left! For this task we thus
have optimal performance when reducing all the reservoir’s dynamics to
a single point in state space: the centroid of the dynamics in state space.
This is not entirely unexpected since the post-processing of the linear
classifier’s output is done by taking its temporal mean before selecting
the class output using winner-take-all. In fact, what we have done here
is swap the post-processing mean operator with the linear readout. This
is possible because both are linear operations.

Here, we can see one of the functional views we discussed in Section
2.1.2 on the RC network at work: when taking the centroid of the dynam-
ics of the reservoir as input to the linear readout, we are in fact using the
reservoir as a complex nonlinear kernel that is explicitly computed. In a
way, the method demonstrated here bridges the gap between Reservoir
Computing and kernel methods and shows that both are quite related.
A drawback of this drastic reservoir resampling is that all temporal in-
formation is lost. With less reservoir resampling, the reservoir is able to
already give a prediction of the uttered word even if it is for example only
partially uttered. We thus trade-off performance to the ability of doing
on-line computation.

One might think that when averaging out all the reservoir’s dynamics,
it has no real purpose. But when training a linear classifier to operate
on the temporal average of the frequency-transformed input, so without
using a reservoir, we end up with an error of 3%. This is quite good, but
still an order of magnitude worse than when using a reservoir of only 200
neurons.

The conclusions drawn here are, however, partly due to the fact that

✐
✐

“main” — 2009/11/10 — 10:05 — page 86 — #112 ✐
✐

✐
✐

✐
✐

86 3 Towards generic Reservoir Computing: time scales and novel reservoirs

here the desired class output remains constant during the whole input
signal. This is not generally the case. Let us consider for instance the
signal classification task. As Figure 3.6 shows, in this case there is a
trade-off between the amount of resampling of the reservoir responses
and the amount of information available to the linear readout to do the
classification. Only a small amount of reservoir resampling is needed to
attain optimal performance. In state space this can be seen as taking the
centroid of a small temporal region of the trajectory. This temporal aver-
aging out of the dynamics seems to significantly increase the classification
performance of the RC system.

In the first part of this chapter we have investigated the effects of
timescales in RC. While we used standard tanh reservoirs for our experi-
ments, the main message about the importance of tuning the timescales
to the problem at hand is applicable to any reservoir type. In the next sec-
tions, we will introduce and discuss some specific, more advanced reservoir
types that will gradually drift further from the standard ’neural’ reser-
voirs.

3.2 Bandpass reservoirs

In the previous section, we discussed and investigated the properties of
leaky integrator neurons. As was mentioned there, a closer look at the
state update equation for this neuron model reveals that it can be seen as
a standard sigmoidal neuron whose output is fed through a first-order low-
pass filter. The use of leaky integrator neurons has the effect of slowing
down the dynamics of the reservoir, as a result of the fact that the time
constant present in the equation is actually the timestep with which the
continuous-time model is sampled using an Euler approximation. How-
ever, from an engineering point of view, the filter interpretation is more
useful since this allows a more intuitive way of thinking about these reser-
voirs. It was this interpretation that led to a more advanced extension
on these leaky integrator neurons, called bandpass neurons.

Bandpass neurons are described in the extensive technical report (Siew-
ert and Wustlich, 2007). It first makes a thorough mathematical analysis
of the different parameters that are used in the leaky integrator model and
reduces the number of time constants from three to two without sacrific-
ing generality. Next, a thorough investigation of the implications of the
low-pass filter interpretation on the dynamics of the reservoir is made.
This investigation leads the authors to a simple but elegant extension,
first to high-pass filtered neurons (which are constructed by subtracting
a low-pass filtered version from the original signal), and then to more

✐
✐

“main” — 2009/11/10 — 10:05 — page 87 — #113 ✐
✐

✐
✐

✐
✐

3.2 Bandpass reservoirs 87

powerful bandpass neurons by combining both a low- and high-pass filter
applied to the neuron output. This process is represented schematically
in Figure 3.7.

In the original technical report, it was already mentioned that an
extension to more advanced higher order filters should be investigated,
and this is precisely what was done in (wyffels et al., 2008c). Here, the
use of second-order Butterworth filters for constructing bandpass neurons
is investigated. Second order Butterworth filters have a sharper cut-off
than the first-order filters that were originally used, and thus allow a
finer-grained control over the frequency bands that are filtered out, and
also cause less overlap between the bands of the individual neurons.

Since every neuron has its own bandpass filter, the bandwidths and
center frequencies for every neuron can be tuned. In case the task at hand
already suggests some prior information about which frequency bands are
important, it obviously makes sense to choose the bands of the neurons
around these important frequencies. This is for instance the case in the
tasks presented in (wyffels et al., 2008c). Three signal generation tasks
(see Subsection 2.2.1.4 for information on this type of task) were consid-
ered: a product of two sines with frequencies 23 Hz and 127 Hz, a product
of three sines with frequencies 23 Hz, 127 Hz and 521 Hz, and the Mackey-
Glass timeseries. For the first two tasks, it was shown by wyffels et al. that
band-pass filters give a considerable improvement over standard leaky in-
tegrator neurons. Moreover, band-pass neurons with finely tuned center
frequencies that match the signals that are to be generated yield the best
results. For the Mackey-Glass task, the center frequencies for the bands
were chosen based on visual inspection of the frequency spectrum of the
Mackey-Glass signal itself. In this way, a reservoir was generated that
could predict the Mackey-Glass series with an NRMSE of 0.0065 after 84
timesteps of autonomous generation. While this result is better than a
previously published result using Long-Short Term Memory (LSTM) net-
works (Gers et al., 2001), it was not as good as the performance reported
in (Jaeger and Haas, 2004) which was attained after thorough manual
optimization.

In most real-world cases, however, no such hints about the important
frequencies contained in the input are available, or the input signals for
the task span the whole frequency range in a more or less uniform way. In
those cases, it is advisable to have the reservoir represent a well-balanced
mix of frequency bands. This can be done by dividing the network into
pools of neurons which share the same center frequencies and bandwidths.
In (Siewert and Wustlich, 2007), one strategy that is suggested for choos-
ing the center frequencies is an ‘octave-style tuning’, whereby the cut-off
frequencies for a given band are a multiple of cut-off frequencies of the

✐
✐

“main” — 2009/11/10 — 10:05 — page 88 — #114 ✐
✐

✐
✐

✐
✐

(a) A low-pass (leaky integrator) neuron

(b) A high-pass neuron

(c) A bandpass neuron

Figure 3.7: Schematic representations of different filtered neurons.
In figure (c), a bandpass neuron is shown as a composition of a
low-pass filter and high-pass (but this can be swapped).

✐
✐

“main” — 2009/11/10 — 10:05 — page 89 — #115 ✐
✐

✐
✐

✐
✐

3.3 Cellular Nonlinear reservoirs 89

previous band, which results in an exponentially decreasing bandwidth.
In many of the studied cases, bandpass neurons can introduce signif-

icant improvement in performance over standard reservoirs or reservoirs
built from leaky integrator neurons. Since time scales play an important
role in the dynamics of reservoirs (see Section 3.1 of this work, and also
(Lukosevicius et al., 2006; Schrauwen et al., 2007a; Holzmann, 2008)),
bandpass neurons offer a finer and more usable way of tuning the time
scales that are present in the reservoir. Indeed: the connection topology,
nonlinearities and global weight scaling all introduce many additional fre-
quencies in the reservoir signals that weren’t present in the original input.
Bandpass neurons offer an elegant way of filtering out these superfluous
frequencies and retaining only information that is useful for the task at
hand (of course, determining which frequencies are in fact useful is a
different problem entirely).

3.3 Cellular Nonlinear reservoirs

Cellular Nonlinear Networks - sometimes also called Cellular Neural Net-
works (CNN) - are a computational concept introduced by L. Chua (Chua
and Yang, 1988b,a). Their architecture bears some similarity to other
parallel processing networks such as neural networks or cellular automata
(CA). Many different CNN models are described in the research litera-
ture, but it is usually possible to define some common characteristics:
CNNs are networks of simple nonlinear processing nodes that are dis-
crete, and coupled in a local, nearest-neighbour manner. The precise
interconnection topology can vary. Square, triangular, hexagonal and
other interconnection topologies exist. However, this topology is always
fixed and space-invariant which means that the weights of the connections
between a node and its nearest neighbours are defined by a fixed template
that is the same for each node. Also, the interconnection topology can
always be mapped onto a 2D plane or a 3D toroid. CNN models can be
continuous-time (CT-CNN) and discrete time models (DT-CNN).

Due to the 2D localized connections, one of the main application fields
for these CNNs is image and video processing (Xavier-de Souza et al.,
2006; Karacs and Roska, 2006; Török and Zarándy, 2002; Venetianter and
Roska, 1998), since many algorithms in this field operate locally. However,
many other applications exist, such as biological modelling (Nagy et al.,
2005), physical modelling (Korbel and Slot, 2006) or signal processing
(Chua et al., 1991; Bucolo et al., 2004). It has even been shown that
universal computation in the Turing sense is possible with CNNs (Chua
et al., 1993), resulting in what is known as a CNN Universal Machine

✐
✐

“main” — 2009/11/10 — 10:05 — page 90 — #116 ✐
✐

✐
✐

✐
✐

90 3 Towards generic Reservoir Computing: time scales and novel reservoirs

Figure 3.8: Image of the ACE16k chip.

(Roska and Chua, 1993). Much theoretical work has been done on the
dynamical behaviour of these networks(Chua, 1998; Yalcin et al., 2005),
in particular into the region at the edge of stability (Yang and Chua,
2001). This is perhaps not surprising given their similarities with cellular
automata.

To our knowledge, all work on CNNs has focused on achieving the
desired behaviour of the system based on explicit tuning of the weight
template, either manually or through some learning rule. By concate-
nating several operations defined by weight templates, complex (image
processing) algorithms can be executed. However, the use of a CNN (by
definition a nonlinear dynamical system) as a reservoir has not yet been
described in literature. In this section we explore this idea by a first
proof-of-concept application to the spoken digit recognition task.

3.3.1 CNNs as reservoirs
Many CNN models exist, but here we use a space-invariant model where
every cell is connected to its eight neighbours using the same weight tem-
plate (see Figure 3.9). The cells are further characterized by a piecewise
linear output function, and the network operates in a discrete time sim-
ulation mode. With these assumptions, the differences between the CNN
and the traditional reservoir setup are twofold:

• instead of a randomly connected network, the cells are connected in
a regular 2D lattice, with a space-invariant weight template;

• the output nonlinearity is a piecewise linear function instead of the
traditional smooth tanh function.

These two restrictions can easily be incorporated into a simulation
model, and we can thus simulate a CNN as reservoir using only adjust-

✐
✐

“main” — 2009/11/10 — 10:05 — page 91 — #117 ✐
✐

✐
✐

✐
✐

3.3 Cellular Nonlinear reservoirs 91

Figure 3.9: Schematic overview of the application of a CNN to an
image and its topology.

ments to the network topology and nonlinearity. The input signal is con-
nected to the CNN cells using a random input connection matrix - as with
traditional reservoirs - where here the connection weights are randomly
set to 0.1 or -0.1.

We also validated the simulation results on actual hardware. For this,
we used an ACE16k chip (Rodriguez-Vazquez et al., 2004) with 128x128
cells and a weight precision of 8 bits - Figure 3.8 shows an image of the
chip. However, for computational reasons we only use a center 8x8 grid of
nodes leaving the other cells inactive. When making the transition from
the software simulation to actual hardware, additional differences need to
be noted:

• the limited precision of the template weights : the weights are rep-
resented internally as 8 bit digital values;

• the chip is built on analog VLSI technology, which means that the
nodes have internal dynamical behaviour. It also introduces addi-
tional noise and other sources of variability such as thermal drift.

3.3.2 Sweeping the parameter space
In order to reduce the parameter space, we opted to use a symmetric tem-
plate with only three distinct weight values: diagonal, lateral (horizontal
and vertical) and self-recurrent. Thus, we were able to do a full sweep of
the interesting part of the three dimensional parameter space.

Figure 3.10 on the left hand side shows simulation results for the signal
classification task (see Subsection 2.2.1.3) as the diagonal, lateral and self-
recurrent weights are varied. On the left, the error is shown, and on the
right the variance of the error due to the variation of the remaining weight.
The top two figures show that positive diagonal weights are beneficial, but
that only the magnitude and not the sign of the lateral weights matters.

✐
✐

“main” — 2009/11/10 — 10:05 — page 92 — #118 ✐
✐

✐
✐

✐
✐

92 3 Towards generic Reservoir Computing: time scales and novel reservoirs

Additionally, the middle row shows that positive diagonal weights require
small negative self-recurrent weights and vice versa.

Figure 3.11 shows the same plots for the speech recognition task. The
aspect of the figures is less noisy, indicating a smoother error surface.
Also, in all three plots a symmetry is apparent which means that only
the absolute value instead of the sign of the weights is important. The
top plot shows that the value of the lateral weights have a bigger impact
on performance than the diagonal weights. Interestingly, the middle plot
shows that the values of the self-recurrent and diagonal weights are related
performance-wise, as indicated by the diagonal ridge of optimal perfor-
mance. Finally, the variance of the performance is almost everywhere
inversely related to the error, except in the middle area of the bottom
plot which is therefore the optimal region with regards to performance
and robustness.

3.3.3 Template optimization with Coupled Sim-
ulated Annealing

Next, we used a global optimization technique called Coupled Simulated
Annealing (CSA) (Xavier de Souza et al., 2006) for the optimization of
the CNN template, both in simulation and on the actual chip.

Traditionally, reservoirs are randomly constructed recurrent networks
of nonlinear nodes, where the interconnection weights are drawn from a
certain distribution - usually Gaussian. In the case of CNNs however,
the interconnection structure is quite specific and the parameter space
is far less-dimensional than for general reservoirs. This allows for the
use of search-based optimization techniques. Here, we use an extension of
the well known technique of Simulated Annealing (SA), which uses several
coupled SA processes running in parallel. CSA couples these parallel clas-
sifiers by their acceptance probabilities, which results in a better overall
performance and less sensitivity to the initial conditions. For our experi-
ments, the initial temperature was set to 1, the number of parallel probes
to 5 and the maximal number of iterations to 1000. Figure 3.12 shows a
schematic view of the different components involved in the experiments.
In case the experiments are done in software, the whole simulation, eval-
uation and optimization process is done using Matlab. For experiments
on chip, the input timeseries are transformed into avi files with a single
frame per timestep, and the resulting dynamical response from the chip
is also saved as an avi file, which is then transformed back to the internal
representation necessary for training and evaluation. In both cases, the
result of the evaluation step, i.e., the error on the test set, is used by the

✐
✐

“main” — 2009/11/10 — 10:05 — page 93 — #119 ✐
✐

✐
✐

✐
✐

Diagonal

La
te

ra
l

Classification error

−1 0 1

−1

−0.5

0

0.5

1 0.2

0.3

0.4

Diagonal

La
te

ra
l

Variance on the error

−1 0 1

−1

−0.5

0

0.5

1

0.02

0.04

0.06

Diagonal

Se
lf

−1 0 1

−1

−0.5

0

0.5

1 0.1

0.2

0.3

0.4

Diagonal

Se
lf

−1 0 1

−1

−0.5

0

0.5

1
0.01
0.02
0.03
0.04
0.05

Lateral

Se
lf

−1 0 1

−1

−0.5

0

0.5

1 0.2

0.4

0.6

0.8

Lateral

Se
lf

−1 0 1

−1

−0.5

0

0.5

1
0.01

0.02

0.03

0.04

Figure 3.10: Simulation results for the signal classification task as
a function of the template parameters. The template is symmetric -
with the lateral (horizontal and vertical), diagonal and self-recurrent
weights being three separate parameters. In the left column the
mean error on the testset is shown, in the right column the variance
on the error due to changes in the remaining weight.

✐
✐

“main” — 2009/11/10 — 10:05 — page 94 — #120 ✐
✐

✐
✐

✐
✐

Diagonal

La
te

ra
l

Word error rate

−1 0 1

−1

0

1

Diagonal

La
te

ra
l

Variance on the error

−1 0 1

−1

0

1

Diagonal

Se
lf

−1 0 1

−1

0

1

Diagonal

Se
lf

−1 0 1

−1

0

1

Lateral

Se
lf

−1 0 1

−1

0

1

Lateral

Se
lf

−1 0 1

−1

0

1

0.2
0.3
0.4
0.5
0.6

0.01
0.02

0.03

0.04

0.3
0.4

0.5
0.6

0.01
0.02
0.03
0.04
0.05

0.2

0.4

0.6

0.01

0.02

0.03

Figure 3.11: The same plots as in Figure 3.10 but for the speech
recognition task. The error metric is Word Error Rate (WER) - the
fraction of misclassified words. Error is plotted in the left column,
variance on the error is plotted in the right column.

✐
✐

“main” — 2009/11/10 — 10:05 — page 95 — #121 ✐
✐

✐
✐

✐
✐

3.3 Cellular Nonlinear reservoirs 95

Dataset Simulation?

Simulator Template

Reservoir
outputTraining

Evaluate
performance

CSA optimization
core

CNN
chip

AVI
files

AVI
files

MATLAB

AMC

Figure 3.12: Overview of the experimental setup.

Coupled Simulated Annealing module to adjust the template.
Since CSA is a probabilistic algorithm, the parameter space is sampled

in a non-uniform manner. Additionally, our experiments show that for
random templates, the error surface is quite complex. This makes it
difficult to visualize the results for the optimization process. We therefore
only mention the optimal performances here.

On the speech recognition task, running the CSA optimization on our
simulation model yielded a minimal error of 3.6%, and the same algorithm
on the chip achieved a minimal error of 6%. We did notice a larger
occurrence of badly performing templates on the chip (i.e., with large
error rates), which is probably caused by the fact that those templates
are less robust to the on-chip noise, rendering the task more difficult. As
a means of comparison: the average error of a standard reservoir of the
same size is 2%, and the direct application of a linear readout layer to
the feature vectors, i.e., without a reservoir in between, yields an error of
11%.

On the signal classification task, the optimal template found by the
CSA optimization core attained an error of 1% in simulation, and an even
lower error of 0.1% on chip. Here, standard reservoirs obtain a similar
error to the CNN simulation model of 1%, and the direct application of
the linear readout to the input is not able to solve the task at all since it

✐
✐

“main” — 2009/11/10 — 10:05 — page 96 — #122 ✐
✐

✐
✐

✐
✐

96 3 Towards generic Reservoir Computing: time scales and novel reservoirs

performance in terms of speed and power usage, but rather we investigate a photonic reservoir

which easily lends itself to future experimental verification.

We opted for a photonic chip with a network of many coupled Semiconductor Optical Am-

plifiers (SOA). We made this choice based on several observations. First of all, the steady-state

power transfer curve of an SOA resembles the upper branch of the tanh-curve used in ana-

log neural networks (Fig. 2), and thus seems an obvious choice for a first implementation of a

photonic reservoir. SOA’s also lend themselves to compact integration on a photonic integrated

circuit. Although the nonlinearities in SOA’s are not extremely fast, they are broadband which

makes the communication between adjacent nodes in the reservoir rather straightforward. A

reservoir based on resonant photonic crystal cavities offers the potential for much faster nonlin-

ear effects, but the potential mismatch in resonance wavelength between adjacent nodes could

mean that signals cannot propagate very far into the network. This makes them less suited for a

first prototype.

We stress the fact that it is not immediately obvious whether such a network of SOA’s will

make a good reservoir. Compared to tanh reservoirs, SOA’s lack the symmetric lower branch

of the tanh because optical power is non-negative. Also, if we want to implement this network

on a chip, we are limited to non-crossing interconnections, which is inherently less rich than

the random interconnection in software reservoirs. In spite of these two limitations, the SOA

however has richer internal dynamical behavior as opposed to the static neurons used in tanh

software reservoirs, which could be computationally more powerful. This dynamic behavior

comes into play at higher data rates because of the interaction between the photons and the car-

riers. Since it is not a priori clear how the performance of this photonic reservoir will compare

with a traditional tanh reservoir, we need to perform detailed simulations to resolve this issue.

Answering this question is the main contribution of this paper.

tanh

Total input

ou
tp

ut

0

0

-1

1

SOA

Pin

P o
ut

0
0

Fig. 2. (left) tanh transfer characteristic used in analog neural network — (right) SOA:

steady state power transfer curve

4. Simulation model

We developed our simulation program for photonic reservoirs within the framework of the

toolbox mentioned previously. This allowed us to utilize the existing training and evaluation

schemes for the memory-less readout function. For further details of this open source toolbox

we refer to the online manual [15] and the paper by D. Verstraeten et al. [16] where the toolbox

was first introduced.

4.1. SOA model

In our simulations we work with traveling wave SOA’s. This kind of SOA has anti-reflection

coatings on its facets, which allows us to neglect the influence of reflections. We use the stan-

dard traveling wave SOA equations [17]. P(z,τ) and φ(z,τ) represent the power and phase and

#95957 - $15.00 USD Received 8 May 2008; revised 27 Jun 2008; accepted 9 Jul 2008; published 10 Jul 2008

(C) 2008 OSA 21 July 2008 / Vol. 16, No. 15 / OPTICS EXPRESS 11186

Figure 3.13: Comparison of the standard tanh nonlinearity with the
steady-state input-output characteristic of an SOA. Note that the
SOA can only have a positive output because here power is used as
state variable. Figure taken from (Vandoorne et al., 2008).

requires at least some short-term memory. The fact that the speech task
yields higher errors on chip than in simulation as opposed to the signal
classification task, is possibly due to the fact that the on-chip noise has
a negative effect on the speech recognition task whereas for the simple
signal classification task it actually helps discerning between the signals.
However, further work is needed to make this conclusive.

3.4 Photonic reservoirs

Arguably the most technologically exotic implementation of Reservoir
Computing has been described in (Vandoorne et al., 2008). In that con-
tribution, a proof of concept study is presented of a simulated setup
of a reservoir constructed of so-called Semiconductor Optical Amplifiers
(SOA). SOA’s are optical gain elements made from semiconductor ma-
terial such as GaAs/AlGaAs or InP/InGaAs. Their steady-state power
input-output characteristic has a saturating shape, which bears strong
resemblance to the positive part of a tanh nonlinearity (see Figure 3.13).
However, it should be noted that these elements are dynamical in nature,
and as such can exhibit additional temporal effects that are not visible in
this steady-state curve. These SOA’s can be coupled to form an excitable
network of simple nonlinear nodes which can be used as a reservoir. This
section discusses first results of the application of these photonic reser-
voirs, which were collected in collaboration with Kristof Vandoorne of the
INformation TEChnology (INTEC) department of Ghent University.

The innovative character of this work lies in two fields: first of all,
Vandoorne’s article describes a model for a novel implementation medium
for reservoirs in nanophotonic technology, offering several advantages over

✐
✐

“main” — 2009/11/10 — 10:05 — page 97 — #123 ✐
✐

✐
✐

✐
✐

3.4 Photonic reservoirs 97

Figure 3.14: The 2D grid topology used for the SOA photonic
reservoir. The input is fed into the top left node and propagates
through the network in a waterfall manner. The long-term memory
is provided by the feedback connections.

purely electronic silicon implementations such as processing speed and
power efficiency. Second, the components used as nodes in the reservoir
are rather complex devices with an inherently dynamical behaviour due
to the build-up of carriers and the fact that the components are spatially
extended (i.e., their spatial dimensions have an effect on the behaviour).
This means that - contrary to traditional sigmoidal neurons - the SOA
nodes themselves have an internal state and act as nonlinear dynamical
components themselves. This also means that part of the memory of the
reservoir will be stored inside the nodes.

A 2D interconnected lattice of SOAs used as reservoir is described in
(Vandoorne et al., 2008). A 2D grid is used since the topology of a physical
implementation would also be constrained by the achievable fan-in and
fan-out of the neurons. The input signal is fed into the top-left node as
an analog optical signal, and propagates in a waterfall manner through
the network (shown in Figure 3.14). More long term memory is assured
through the presence of a small number of longer feedback connections
which feed the signals of downstream nodes back up to upstream nodes
in the network.

The validity of the concept and the setup is demonstrated in simula-
tion on the relatively simple square/sawtooth recognition task described
in Subsection 2.2.1.3. Plots for the input and output signals, and for
internal reservoir signals are shown in Figure 3.15.

Very recent experimental results show that after thorough optimiza-
tion of the parameters of the SOA nodes, these photonic reservoirs can
achieve comparable performance to standard tanh reservoirs on a 10th
order NARMA task and for the memory capacity (Vandoorne, 2009).
In this work, some of the techniques of resampling and adjusting the
timescales discussed in Section 3.1 of this chapter were used to optimize
performance. Specifically, the input signals were resampled to account

✐
✐

“main” — 2009/11/10 — 10:05 — page 98 — #124 ✐
✐

✐
✐

✐
✐

98 3 Towards generic Reservoir Computing: time scales and novel reservoirs

while Fig. 4(d) shows the result of the readout function. Note that the weights used by the off-

line readout function can be negative and in such a way negative outputs can be realized. (As

mentioned before, we envisage this training and readout in a first stage to be done off-line by

an electronic chip). Figure 4(e) shows the final output of the system, obtained by applying a

sign function on the result of the linear combination. In the example the system manages most

of the time to generate the desired output, barring some discrete spikes.

0 10 20 30

0

2.5

5
P

o
w

e
r

(m
W

)

0 10 20 30

!1

0

1

O
u
tp

u
t

0 10 20 30
0

2.5

5

P
o
w

e
r

(m
W

)

0 10 20 30
!4

!2

0

O
u
tp

u
t

0 10 20 30

!1

0

1

time (ns)

O
u
p
u
t

b)

c)

d)

e)

a)

Fig. 4. Pattern recognition task: a) Input signal with different transitions between the rec-

tangular and triangular waveform b) desired output c) state (i.e. optical power level) of

some of the reservoir nodes d) The approximation (blue) of the desired output (black) by

the readout function, e) final output of the system (red)

Figure 4 shows only qualitatively how the reservoir performs. We will now proceed to give

more a quantitative evaluation of the behavior of the reservoir.

5.2. Error rate

We now calculate the error rate of different photonic reservoirs on the classification task de-

scribed earlier. For this, we proceed as follows. Choosing a certain reservoir, we first train the

weights of the readout function using an input signal of length 100ns, together with its desired

output. Afterwards, the weights are kept fixed, and a new, different input signal of length 100ns

is presented to the reservoir. The output of the system is compared to the correct desired output,

and an error rate is defined as the percentage of time that the reservoir gives an incorrect answer.

In Fig. 5(a), we plot the error rate for the two photonic topologies from Fig. 3, with 25 SOA’s,

as a function of the globally set attenuation in the connections.

This is an important parameter, as it allows us to tune the system to the dynamic regime at the

edge of stability, where the computational power is the largest. In a practical implementation,

instead of tuning the loss in the connections, we can obtain a similar effect by tuning the pump

level of the SOA’s.

The best result is obtained using feedback in the system and corresponds to an error rate

of 2.5%. We see that if the attenuation in the system gets too small, the error rate increases

dramatically for the feedback network, as its dynamics become too chaotic.

#95957 - $15.00 USD Received 8 May 2008; revised 27 Jun 2008; accepted 9 Jul 2008; published 10 Jul 2008

(C) 2008 OSA 21 July 2008 / Vol. 16, No. 15 / OPTICS EXPRESS 11189

Figure 3.15: This figure shows the different signals generated dur-
ing the signal classification task with a photonic reservoir. The top
plot shows the input signal, the second plot shows the desired output
signal. The third plot shows some selected responses of SOA nodes
in the reservoir, the fourth plot shows the output of the readout
layer, and the bottom plot shows the output after post-processing
with a sign function. Figure taken from (Vandoorne et al., 2008).

for delays present in the SOA nodes.
The research into nanophotonic reservoirs has only started but has al-

ready kindled interest in many groups in the photonics community. This
is due to the fact that Reservoir Computing offers a novel way of using
photonic components for computing by not merely trying to mimic ex-
isting silicon components in photonic technology, but actually using the
fundamental properties of the nano-photonic components and optical sig-
nals. Research on photonic RC is ongoing and is very active, with research
groups from multiple Belgian universities collaborating on the topic.

3.5 Conclusions

In this chapter the initial steps towards generic reservoir types have been
taken. RC can enable the use of a wide range of excitable nonlinear media
for computation, many of which are actual physical systems that operate
in continuous time. Usually, however, for engineering applications the
transition to discrete sampled time has to be made at some point. I have
introduced three different temporal domains in an RC system, one for
the input, the reservoir and the output, and shown that adjusting these
different timescales is crucial for optimizing performance in several tasks.

✐
✐

“main” — 2009/11/10 — 10:05 — page 99 — #125 ✐
✐

✐
✐

✐
✐

3.5 Conclusions 99

Additionally, I have shown that by adjusting these timescales, a trade-off
can be made between memory that is present inside the network, due to
the recurrent connections, and memory that is present inside the nodes,
due to the integration mechanism.

Moreover, my experimental results have shown that in the case the
reservoir states are resampled, the optimal performance for the spoken
digit classification task we considered is actually reached for very drastic
resampling, i.e., when the signals are reduced to a single timestep. This
vector represents the centroid of the reservoir dynamics in the reservoir
state space. Interestingly, this was what was being done all along, ex-
cept it was done on the output signals instead of the reservoir signals.
When swapping the linear readout operation and the mean operation, we
are effectively transforming the reservoir into a kernel mapping that is
explicitly computed. This demonstrates an interesting link between RC
and kernel methods.

An interesting interpretation of the reservoir timescale as a low-pass
filter is possible, which enables the designer of an RC system to think
in the frequency domain. According to this viewpoint, each node is a
standard neuron with a low-pass filter attached to it, which filters out
any high-frequency components from the reservoir states that are not
relevant for the task at hand. This idea was built upon by Siewert et al.
to introduce first-order band-pass neurons, that allow a finer control over
the filtering characteristics of the nodes and also allow to filter out low
frequency components. Our lab has studied this node type and extended
it to higher-order filters, where we have shown that these reservoir types
can lead to better performance when the parameters are tuned properly.

Next, I have investigated a reservoir type that is yet one step further
from standard ESN reservoirs. The usefulness of CNNs in the context of
RC was evaluated by applying them to the isolated spoken digit recogni-
tion task. I used a hybrid analog/digital VLSI hardware implementation
of such a CNN, where the nodes of the reservoir have actual internal
dynamics because they are built from analog electronics. I have shown
that these CNN reservoirs can be used very well as reservoirs, and in the
case of the signal classification task the on-chip CNN reservoir even beats
standard tanh reservoirs. Moreover, I have demonstrated that CNN chips
(or models) can be used in an entirely different way than they normally
are. Whereas CNNs are mostly used as complex, fast filtering devices
for high speed image and video processing, we have shown that by using
them as excitable nonlinear media a whole range of novel applications
becomes available.

Finally, photonic reservoir computing was discussed. Here, the link
with what we know about neural networks becomes very weak. The nodes

✐
✐

“main” — 2009/11/10 — 10:05 — page 100 — #126 ✐
✐

✐
✐

✐
✐

100 3 Towards generic Reservoir Computing: time scales and novel reservoirs

are nonlinear photonic components with complex dynamical internal be-
haviour and that communicate with light. Nonetheless, experiments using
standard benchmarks have shown that this reservoir type is equally use-
ful for computational purposes, and can rival standard neural reservoirs.
Thus, Reservoir Computing can provide a whole new framework to use
this photonic technology, taking it well beyond its standard use in, e.g.,
high-power laser systems.

✐
✐

“main” — 2009/11/10 — 10:05 — page 101 — #127 ✐
✐

✐
✐

✐
✐

4
Quantifying and adapting

reservoir dynamics

We have shown that the idea of Reservoir Computing is extendable to
other dynamical systems than recurrent networks of analog or spiking
neurons. In this chapter, we will focus on developing tools for evaluating
and tuning the computational power of these novel reservoirs. While RC
can be a powerful framework for using dynamical systems for computa-
tion through learning, there are still many questions to be answered. The
first issue that needs to be addressed is: are there systematic ways to
evaluate the suitability of a novel dynamical system as a reservoir, other
than ‘blindly’ exploring the parameter space using simulation? Since the
dynamical regime is very important for the computational power of these
systems, we will look at existing theory on dynamical systems for in-
spiration and develop novel metrics for quantifying reservoir dynamics.
The next step is then not only to measure the dynamics of the reservoir,
but to actually tune them. This will be done using unsupervised local
adaptation that is based on biologically plausible principles with a theo-
retical basis founded in information theory. This adaptation mechanism
is also applicable to novel, non-neural reservoirs and can tune the actual
reservoir dynamics in a task-dependent way.

4.1 Computation with generic dynamical
systems

4.1.1 Characterizing dynamical systems
There are many types of dynamical systems, and the range of dynamical
behaviour these systems show is equally broad. We will limit this brief

✐
✐

“main” — 2009/11/10 — 10:05 — page 102 — #128 ✐
✐

✐
✐

✐
✐

102 4 Quantifying and adapting reservoir dynamics

discussion to discrete-time systems, but similar properties can be defined
for continuous time. Discrete-time dynamical systems can be classified
based on a variety of properties, but we will discuss their dynamical be-
haviour here based on two important subclasses: linear and nonlinear
systems.

For linear systems, a characterization of the system dynamics is usu-
ally done in terms of stability. The stability of a linear system is deter-
mined by the location of the eigenvalues of the system transfer function
in the complex plane, and its stability can be characterized by, a.o., its
response to a Dirac input pulse (the so-called impulse response). In par-
ticular, depending on the location of the largest eigenvalue of the transfer
function, the system can be:

• exponentially stable, which means that when the system is driven
by a Dirac pulse, it will exponentially go back to its initial state;

• marginally stable, which means that if the system is driven by a
Dirac pulse, it will not go back to its initial state but go to a different
fix-point;

• unstable, which means that the system will ‘run away’ when driven
by a Dirac pulse.

For nonlinear systems, stability is more difficult to define. For these
systems the stability theory originally developed by Aleksandr Lyapunov
(Lyapunov, 1966) comes into play. Here, too, different classes of stability
can be defined, always expressed w.r.t. an equilibrium point x∗ (a point
that the system maps onto itself) in the system’s state space. Nonlinear
systems can be:

• stable, meaning that trajectories close to x∗ stay close to x∗;

• asymptotically stable, meaning that trajectories that start close to
x
∗ asymptotically return to x∗, and

• exponentially stable, meaning that trajectories that start close to
x
∗ return to x∗ with an exponential rate of convergence.

These definitions are all related to a single equilibrium point, which is
called an attractor in those cases. However, a nonlinear dynamical system
can have anywhere from zero to an infinite number of equilibrium points.
Moreover, such systems can exhibit more complex behaviours, such as
periodic attractors (limit cycles) or strange attractors.

Usually, when studying nonlinear dynamical systems, one is interested
in the qualitative changes in behaviour of the system related to the change
of its parameters. What is often observed for these systems is that there

✐
✐

“main” — 2009/11/10 — 10:05 — page 103 — #129 ✐
✐

✐
✐

✐
✐

4.1 Computation with generic dynamical systems 103

Figure 4.1: The period-doubling route to chaos for the logistic
map.

is a whole range of possible behaviours ranging from a single equilibrium
point all the way to chaotic behaviour. This is illustrated in, e.g., the very
basic logistic map where the so-called period-doubling route to chaos can
be observed (see Figure 4.1). The logistic map (which is actually a very
simple model for population growth) is defined by:

x[k + 1] = rx[k](1− x[k]).

By varying the parameter r, the system goes through a whole range of
dynamical regimes, going from a single equilibrium point over a series of
period doublings to the chaotic regime for r > 3.57 (Sprott, 2003). If
such a simple map can already produce such varied behaviour, it should
come as no suprise that larger systems are even more complex to study
(such as, e.g., recurrent neural networks (Doyon et al., 1992; Bauer and
Martienssen, 1991)).

While most people have an intuitive notion of what chaos entails, some
misunderstanding can arise if a good definition is lacking. For instance,
chaos is sometimes confused with non-determinism. Non-deterministic
systems are systems that have a stochastic (random) factor somewhere,
either in their internal state variables (state noise) or in their parameters
(parameter noise). These systems are inherently unpredictable and the
same system starting from the same initial condition will almost certainly
follow different trajectories. Chaos, on the other hand, is defined as ’sen-
sitive dependence on initial conditions’. This means that the system itself
can be both deterministic or not, but slight changes in the initial condition

✐
✐

“main” — 2009/11/10 — 10:05 — page 104 — #130 ✐
✐

✐
✐

✐
✐

104 4 Quantifying and adapting reservoir dynamics

(or slight perturbations of a trajectory) will result in a strong deviation
from the original trajectory. This is related to Lyapunov’s notion of ex-
ponential stability: whereas stable systems converge exponentially to a
equilibrium point, chaotic systems do the opposite: they diverge expo-
nentially when slightly disturbed. The importance of stability and chaos
for computation, especially in the context of Reservoir Computing, will
be elaborated upon in the following section.

4.1.2 Computation at the edge of stability
Reservoirs are generic, dynamical, excitable and generally nonlinear sys-
tems. The readout layer, on the other hand, is linear and memoryless, and
- from a learning point of view - computationally not very powerful. The
functionality of a reservoir in this context can thus be described as “offer-
ing a rich ensemble of nonlinear temporal transformations of the current
and past inputs” to the readout. It follows that the dynamical regime
that the reservoir operates in is crucial for the amount of information
that the readout can extract from the reservoir states.

The term ‘rich ensemble’ is of course quite vague, and the question
remains what kind of transformation should be done by the reservoir in
order to be useful. The nature of this transformation is hinted at by the
notion of computation at the edge of chaos. This idea was originally pro-
posed in the context of cellular automata (Langton, 1990), where it was
stated that certain cellular automata (Wolfram, 2002), when operating
in a certain regime controlled by a single parameter, started exhibiting
phase transitions, and precisely these automata were shown to be capable
of universal computation in the Turing sense. While the general applica-
bility of this idea was later questioned (Mitchell et al., 1994), the central
message remains: if a system operates in a dynamical regime that lies on
the edge between stability and chaos1, its computational capabilities are
maximal.

The link between the dynamical properties of a system with regard to
information content and computation can be seen also in Pesin’s theorem
or formula (Pesin, 1977). This theorem relates the so-called Kolmogorov-
Sinai (KS) entropy to the Lyapunov spectrum. More specifically, the
theorem states that the KS entropy of a dynamical system is equal to the
sum of the positive Lyapunov exponents. The KS entropy, also known
as metric entropy, is a measure of the predictability of the trajectory of
the dynamical system, and can be related to a better known information
theoretic measure, namely Shannon’s entropy (Billingsley, 1965).

1... but still on the stable side. As was mentioned before, the edge of stability would
be a more accurate but perhaps less appealing term.

✐
✐

“main” — 2009/11/10 — 10:05 — page 105 — #131 ✐
✐

✐
✐

✐
✐

4.1 Computation with generic dynamical systems 105

In the context of RC, this concept can be explained in an intuitive
way for classification tasks2 as follows. The reservoir should be seen
as a dynamical system that follows a certain trajectory in state space,
driven by the external input signals. The readout layer - which is a linear
discriminant function - draws hyperplanes through the state space of the
reservoir, and as such creates regions which correspond to class decisions.
The idea is then that, ideally, the reservoir responds in such a way to
the external input signals that input signals of the same class drive the
reservoir to the same region in state space, and inputs of different classes
cause trajectories that are far enough apart that they lie on different sides
of the separating hyperplanes. We have already briefly discussed this view
on reservoirs in Subsection 2.1.2 and we refer again to Figure 2.4 for a
visualization of this concept.

It follows that the reservoir should operate in a dynamical regime that
lies in between highly stable behaviour (where the reservoir stays in the
same region, largely uninfluenced by the external input) and chaotic be-
haviour, where every change in the input signal is amplified exponentially
and most of the information about the input is lost. Moreover, for chaotic
systems the echo state property no longer holds, since slight changes in the
initial conditions are amplified exponentially. Thus, the reservoir should
react just ‘dynamically enough’ to separate inputs of different classes.
Of course, this view is only an abstraction because in reality there can
be substantial differences between inputs of the same class, and because
noise also determines the trajectory of the reservoir.

4.1.3 Static reservoir measures and their dis-
advantages

A different but related interpretation of the functionality of the reservoir
can be found in the so-called echo-state property (ESP) which was defined
by Jaeger in the seminal description of the Echo State Network (Jaeger,
2001a). The ESP states that the reservoir state observed after a suffi-
ciently long time (to let initial transients die out) is uniquely determined
by the input signal driving the reservoir. In the same document, three
other properties are proven to be equivalent to the echo state property,
namely: state-contracting, state-forgetting and input-forgetting. These
properties in essence convey the idea that the reservoir asymptotically
forgets inputs from the past - which is another way of saying that the
reservoir has fading memory. The designer of a RC system should be

2The reasoning is likely also valid for regression tasks, but the image is less visual
and intuitive.

✐
✐

“main” — 2009/11/10 — 10:05 — page 106 — #132 ✐
✐

✐
✐

✐
✐

106 4 Quantifying and adapting reservoir dynamics

Figure 4.2: The gain of the sigmoid nonlinearity is largest around
the origin. Once the neuron is driven by an external signal or a
constant bias, the working point shifts up or downward and the
gain decreases, resulting in a less dynamical reservoir.

able to control the memory properties of the reservoir. However, the ESP
is not the only property one desires from good reservoirs. Ideally, the
reservoir should provide also a suitable separation of the input signals in
state space. This is controlled by the dynamical regime of the reservoir.
One conceptually simple way (and with a mathematical justification) to
control the dynamics while ensuring the ESP was proposed by Jaeger and
is still widely used. It involves constructing a random reservoir with a
chosen weight distribution, and then rescaling the global weight matrix
to adjust the dynamical and memory properties of the reservoir.

As was mentioned in the brief description of the RC/ESN method-
ology, the spectral radius is an important parameter that controls the
dynamical regime of the reservoir. It amounts to a global scaling of the
eigenvalues of the connection matrix. From a system theoretic point of
view, this can be interpreted as follows: for a small-signal approximation
(i.e., the state of the reservoir remains near the zero fix-point), the reser-
voir can be approximated as a linear time-invariant, discrete-time system
described by the following standard :

x[k + 1] = Ax[k] + Bu[k]
y[k] = Cx[k] + Du[k],

where x[k] represents the state of the reservoir (the vector of neuron acti-
vations) at time k, and u[k] and y[k] represent the input and output to the
system, respectively. The matrix A contains the internal weights of the
reservoir (Wres from above), the B matrix contains the input-to-reservoir

✐
✐

“main” — 2009/11/10 — 10:05 — page 107 — #133 ✐
✐

✐
✐

✐
✐

4.1 Computation with generic dynamical systems 107

weights (Win from above), and C and D contain the (trained) reservoir-
to-output (Wout from above) and input-to-output weights respectively
(the latter is usually left zero).

It follows from linear system theory that if all singular values of the
matrix A are smaller than 13, it is definitely stable, whereas if any ab-
solute eigenvalue (i.e., spectral radius) is larger than 1, the system (i.e.,
the reservoir) will definitely be unstable in the sense that it will deviate
unboundedly from the fixed point when started from a non-zero state.
However, the reservoirs of the ESN type (and the reservoirs that we con-
sider in this thesis), have a squashing tanh() nonlinearity applied to them,
that counteracts this unbounded growth. This means that the norm of the
state vector of the reservoir will always remain finite. Using a saturating
nonlinearity also means that the spectral radius looses its significance as
a stability measure when the system deviates from the zero state. Once
the system is driven by an external input (especially with non-zero mean
or large dynamical range) or if a constant bias is fed to the nodes, the op-
erating point of all neurons shifts along the nonlinearity and the effective
local gain (i.e., the slope of the tangent in the operating point) becomes
smaller (see Figure 4.2).

In (Jaeger, 2003), the linear approximation described above is used to
derive some mathematically founded guidelines for constructing weight
matrices for reservoirs having the echo state property. Several bounds
have been described for this ESP:

• A reservoir whose weight matrix W has a largest singular value
(LSV) (denoted as σM (W)) smaller than one, is guaranteed to have
the echo state property. However, in practice this guideline is of lit-
tle use since the resulting reservoirs are not dynamically rich enough
to perform well because this is a very strict stability bound.

• A reservoir whose weight matrix has a spectral radius (SR) ρ(W) -
i.e. a largest absolute eigenvalue - larger than one is guaranteed not
to have the echo state property. So, ρ(W) < 1 is a necessary con-
dition for the echo state property. Note that this condition is only
applicable for zero input. This last part is sometimes misunder-
stood or omitted in literature, causing the incorrect identification
of a spectral radius smaller than one with the echo state property.
In fact, it is possible that reservoirs with a spectral radius larger
than one do possess the echo state property when driven by an ex-
ternal input - this was proven experimentally in, e.g., (Verstraeten
et al., 2006). While the spectral radius criterium is not a sufficient

3This implies that the maximal gain in any direction in state space is smaller than
one, and the system is always contracting.

✐
✐

“main” — 2009/11/10 — 10:05 — page 108 — #134 ✐
✐

✐
✐

✐
✐

108 4 Quantifying and adapting reservoir dynamics

condition, in practice it is used as a guideline for constructing good
reservoirs for many problems.

• In (Buehner and Young, 2006), a tighter bound on the echo state
property than σM (W) < 1 was presented. A Euclidean weighted
matrix norm �W�D =

��DWD−1��
2 = σM (DWD−1) was intro-

duced, for which the relation ρ(W) < infDδ
��DδWD−1

δ

�� < σM (W)
holds. The infimum of the norm over all D that are structured in
some way, called the structured singular value (SSV) µSSV , turns
out to offer a bound on the echo state property that is less conserva-
tive than the standard σM (W) < 1, namely infDδ

��DδWD−1
δ

�� < 1.
However, while this new bound is an improvement over the stan-
dard LSV, it is computationally quite demanding to evaluate (21
seconds for a reservoir of 500 nodes, versus .6 seconds to compute
the spectral radius).

There are a couple of problems with using these measures as a tuning
parameter for the dynamical regime of the reservoir. All the quantities
described above are static measures that only take the internal reservoir
weight matrix into account and disregard other factors such as input scal-
ing, bias or dynamical range of the input signals - factors that are equally
important in defining the dynamical properties of the system. Moreover,
they are only strictly applicable to reservoirs with a nonlinearity which is
linear around the origin (such as tanh or purely linear reservoirs): for the
small-signal approximation (the system is driven by a very weak signal),
all sigmoid nonlinearities behave more or less like identity functions. For
more exotic nonlinearities, this approximation usually no longer holds.

Clearly, an accurate way of quantifying the dynamics of the reservoir,
evaluated in the actual operating point of the reservoir, would be very
useful. I will investigate this notion in the following section, by deriving
and studying novel measures for quantifying the dynamic regime of the
reservoir.

4.2 Quantifying reservoir dynamics

4.2.1 Linking different bounds for the echo state
property to network dynamics

One possible way of measuring the stability (or chaoticity) of a trajectory
through state space of a dynamical system is the Lyapunov exponent
(Alligood et al., 1996). The Lyapunov exponent (LE) is a measure for the

✐
✐

“main” — 2009/11/10 — 10:05 — page 109 — #135 ✐
✐

✐
✐

✐
✐

4.2 Quantifying reservoir dynamics 109

exponential deviation in a certain direction of a trajectory, resulting from
an infinitesimal disturbance in the state of the system. If the trajectory
is near an attractor, the effect of the disturbance will disappear and the
LE will be smaller than zero. In case the system drifts away from the
trajectory exponentially, the LE is larger than zero and the trajectory is
unstable. Note that the LE can be positive in one direction and negative
in another.

A common definition of a chaotic trajectory is then that the trajectory

• is not asymptotically periodic,

• has no Lyapunov exponent that is exactly zero and

• has a largest Lyapunov exponent that is larger than zero.

A chaotic trajectory deviates exponentially in at least one dimension af-
ter a perturbation. The pth Lyapunov number Lp is related to the pth
Lyapunov exponent hp through Lp = exp(hp). Thus, if a trajectory is
chaotic, at least one Lyapunov number will be greater than one. For ev-
ery trajectory of a dynamical system in state space described by the state
vector x[k] at time k, we can calculate p = 1, . . . , n Lyapunov numbers
(one for every dimension of the state) by considering a unit hypersphere
in state space whose center follows the trajectory x[k], and considering
how it is transformed by the update function of the system. The hyper-
sphere will evolve to a hyperellipsoid as it travels through state space.
The Lyapunov numbers for the trajectory are then given by:

Lp = lim
K→∞

K�

k=1
(rkp)1/k

,

where rkp is the length of pth longest orthogonal axis of the hyper-ellipsoid
at discrete timestep k. The value of these lengths can be calculated as
follows. Let Jk denote the Jacobian of the kth iterative application of the
map f . The length of the axes of the hyper-ellipsoid is then given by the
square root of the eigenvalues of JkJT

k (see (Alligood et al., 1996) for a
more elaborate discussion). Thus, the Lyapunov number Lp expresses the
exponential expansion (Lp > 1) or contraction (Lp < 1) of a unit sphere
under the map f . Note that this method assumes that the limit above
converges.

In the case of sigmoidal reservoirs, we can calculate a measure an-
alytically that is closely related to the LE. The Jacobian matrix of the

✐
✐

“main” — 2009/11/10 — 10:05 — page 110 — #136 ✐
✐

✐
✐

✐
✐

110 4 Quantifying and adapting reservoir dynamics

reservoir state x = [x1, . . . , xn] at timestep k is given by:

Df(x[k]) =
�
∂f1
∂x1

(x[k]) · · · ∂f1
∂xn

(x[k])
∂fn
∂x1

(x[k]) · · · ∂fn∂xn (x[k])

�
.

Since a tanh reservoir is described by the following map:

f(x[k+1]) = tanh(x[k]∗W) =
�
tanh(

�n
i=1 w1ix1) · · · tanh(

�n
i=1 wnixn)

�
,

we obtain the Jacobian of the above map:

Df(x[k]) =

�
1− tanh2(

�n
i=1 w1ix1)

�
w11 · · ·

�
1− tanh2(

�n
i=1 w1ix)

�
w1n

...
...�

1− tanh2(
�n
i=1 wnixn)

�
wn1 · · ·

�
1− tanh2(

�n
i=1 wnixn)

�
wnn

=

�
1− x2

1(k)
�
w11 · · ·

�
1− x2

1(k)
�
w1n

...
...�

1− x2
n(k)
�
wn1 · · ·

�
1− x2

n(k)
�
wnn

= diag[(1− x2
1) . . . (1− x2

n)]×W.

The above matrix offers an analytical expression for the Jacobian matrix
J , which in turn allows us to approximate the Lyapunov numbers. The
maximal estimated LE �hmax can then be obtained by:

�hmax = log
�

max
p

K�

k=1
(rkp)1/k

�
,

where rkp =
�
|λp|, λp being the pth eigenvalue of JkJT

k .
Due to the analytical derivation of this rule, it can easily be calcu-

lated, and is exact. An extra speed-up can be attained by calculating the
exponents in a sampled manner, e.g., every 10 timesteps. This proved to
be an accurate approximation. We will demonstrate that this measure is
a good indicator of reservoir dynamics and performance. The Lyapunov
definition given above is in principle only suited for autonomous systems
(or driven systems where the driving force can also be modeled as state
variables, rendering the system autonomous). But in the case of reservoir
computing we have systems that are constantly driven by complex, even
random, input. The standard definition of a LE as the existence of a limit
will therefore not be applicable because no steady state is reached due to
the continuously changing input and state trajectory.

In (Legenstein and Maass, 2005), the LE is measured empirically for

✐
✐

“main” — 2009/11/10 — 10:05 — page 111 — #137 ✐
✐

✐
✐

✐
✐

4.2 Quantifying reservoir dynamics 111

a spiking reservoir by calculating the average euclidian distance of the
reservoir states resulting from time-shifting a single input spike over .5
ms. For spiking neurons this experimental approach is probably the only
way to formulate any conclusions about the stability of the system due
to the complexity and time-dependence of the model. This method can
be seen as the disturbance of an autonomous system where the exponen-
tial state deviation is an approximation of the LE. In (Schrauwen et al.,
2008a), the maximal LE is studied for reservoirs with a quantized sigmoid
nonlinearity, and the exponent is also computed numerically based on the-
ory from branching processes (Athreya and Ney, 2004). A disadvantage
of both methods is that they are very time-consuming.

To illustrate the relationship between these different bounds and reser-
voir performance for certain tasks, we evaluated the performance of dif-
ferent reservoirs on the NARMA (Figure 4.3), memory (Figure 4.4) and
speech recognition benchmark (Figure 4.5) by constructing the weight
matrix of the reservoirs and then rescaling it so that either the spectral
radius, LSV or µ has a specified value4. For each of these reservoirs, the
largest LE �hmax was also estimated for every trajectory and averaged
across all input timeseries.

For all three tasks, the optimal value for the µSSV parameter lies be-
tween that of the spectral radius and of the LSV (which was expected
since the spectral radius and LSV are a lower and upper bound for the
echo state property), but it is significantly higher than one – which in-
dicates that the reservoir is not globally asymptotically stable. This is
also confirmed when the corresponding LE is estimated, indicated by the
dashed lines on the figure. It appears that the system is on average state-
expanding for the trajectories caused by the inputs and the estimated LE
for the optimal values of the different metrics is very similar for all three
benchmarks and lies around 0.7, which indicates a dynamical regime: on
average the trajectory locally shows exponential deviation in at least one
direction. Note that the estimated �hmax are very similar for the NARMA
and memory capacity tasks, since in both cases the input to the reservoirs
is a uniform random signal. Note also that a largest estimated Lyapunov
exponent larger than zero in this case does not necessarily mean that a
system is chaotic, because it is input driven and Lyapunov exponents are
defined for k →∞.

4Note that these measures are not linearly related, meaning they are not simply a
rescaled version of each other. For a given value of one measure, the other two vary
quite substantially.

✐
✐

“main” — 2009/11/10 — 10:05 — page 112 — #138 ✐
✐

✐
✐

✐
✐

Figure 4.3: The top figure shows the performance on the NARMA
task as a function of different reservoir metrics. The bottom figure
shows the corresponding estimated Lyapunov exponents.

Figure 4.4: The top figure shows the performance on the memory
capacity task as a function of different reservoir metrics. The bot-
tom figure shows the corresponding estimated Lyapunov exponents.

✐
✐

“main” — 2009/11/10 — 10:05 — page 113 — #139 ✐
✐

✐
✐

✐
✐

4.2 Quantifying reservoir dynamics 113

Figure 4.5: The top figure shows the performance on the speech
recognition task as a function of different reservoir metrics. The
bottom figure shows the corresponding estimated Lyapunov expo-
nents.

4.2.2 Towards a more complete quantifica-
tion of reservoir dynamics

In the section above, the relationship between the maximum of the Lya-
punov spectrum and the performance of the reservoir was studied. It was
found that for a given task, the optimal performance of a reservoir was at-
tained for the same value of the maximal estimated Lyapunov exponent.
While this finding was useful from a theoretical point of view because it
offered a more refined measure of the reservoir dynamics than the sta-
tionary measures mentioned in the previous section, it does not supply a
practical means for choosing the reservoir dynamics or offer insight into
the meaning of this metric.

Closer inspection of the complete estimated Lyapunov spectrum re-
veals another, and in some ways more useful phenomenon. Figure 4.6
shows a plot of the mean over time of all Lyapunov exponents as the
spectral radius of the reservoir is varied from .1 to 3 and the reservoir
is driven by noise (which is the input for the NARMA task). The plot
shows that the maximal exponent increases monotonically (as was shown
previously in (Verstraeten et al., 2007)), but also that the minimal ex-
ponent reaches a maximum for a spectral radius of 1, and then decreases
again. Thus, the spectrum of Lyapunov exponents becomes narrower and

✐
✐

“main” — 2009/11/10 — 10:05 — page 114 — #140 ✐
✐

✐
✐

✐
✐

114 4 Quantifying and adapting reservoir dynamics

Figure 4.6: The full mean (over time) local Lyapunov spectrum for
a reservoir of 100 nodes for the NARMA task.

then broader again as the spectral radius of the reservoir weight matrix is
increased. More importantly, the maximum of the minimal LE coincides
with the value of optimal performance of the spectral radius. In the next
section, we will present some more elaborate experimental results and
discuss the implications of this phenomenon.

The maximal Lyapunov exponent is - for autonomous systems - an
indicator of chaotic behaviour: if it is larger than zero the system is said
to be chaotic, meaning that perturbations from a trajectory are amplified
exponentially in at least one direction. At first sight no such interpretation
exists for the minimal LE - it simply quantifies the minimal direction of
expansion of the system. However, closer inspection reveals that a more
informative interpretation is possible by inspecting the Jacobian matrix
itself.

We start with the following remark: when evaluating the Jacobian
around the origin in state space (zero fixpoint, i.e. x = 0), it reduces
to the weight matrix Wres of the reservoir, and its largest eigenvalue is
precisely the spectral radius of the reservoir. Therefore, the eigenvalue
spectrum of the Jacobian can be seen as some form of dynamical extension
of the static eigenvalue spectrum of the weight matrix (which was the
subject of previous work on dynamics in reservoirs, e.g., (Ozturk et al.,
2006)). Moreover, the so-called local Lyapunov spectrum (Wolff, 1992) at
a single time step k, given by log

�
eig(JTk Jk)

�
, is equal to the log of the

squared singular value spectrum of the Jacobian itself5 (Ziehmann et al.,
1999). Following this line of reasoning, we measured the minimal singular
value (SV) σm of the Jacobian6 and computed its mean over time as we
vary the spectral radius of the reservoir weight matrix, and the scaling

5In general, for any matrix M , the squares of its singular values are equal to the
eigenvalues of MTM or MMT .

6At every 50th timestep for computational reasons, but this provides sufficient
accuracy.

✐
✐

“main” — 2009/11/10 — 10:05 — page 115 — #141 ✐
✐

✐
✐

✐
✐

4.2 Quantifying reservoir dynamics 115

Figure 4.7: The top plots show the maximal LLE, the middle plots
show the minimal SV and the bottom plots show the performance
for the Mackey-Glass prediction (left) and NARMA (right) task.
Note that for the Mackey-Glass performance plot, higher is better
while for NARMA lower is better. The minimal SV attains a maxi-
mum in the same region as the performance, indicating that it is a
good predictor of the suitability of a reservoir.

factor of the input matrix. We then compared this measure with the
performance on two tasks: the Mackey Glass timeseries prediction with
delay parameter τ = 17 and the 30th order NARMA system identification
task (see Subsection 2.2.1 for a specification of these problems).

Figure 4.7 shows the mean maximal LE, the mean minimal singular
value of the Jacobian, and the score on both tasks, as the spectral ra-
dius and scaling factor of the input matrix are swept within plausible
ranges (every point in the plots represents the average over twenty dif-
ferent reservoir instantiations). The top plots show the maximal LE that
was introduced in the previous section. This measure clearly does not
capture all necessary dynamical properties of the reservoir, since it in-
creases monotonically with the spectral radius, and the input scaling has
hardly any influence. The middle plots on the other hand - which show
σm - offer a much more nuanced image. The minimal SV varies with
both the spectral radius and the input scaling - which indicates that it
captures the changing dynamical properties of the reservoir as a function
of the scaling parameters quite well. Moreover, the area of optimal per-
formance (bottom plots) coincides quite nicely with the areas where σm
is maximal. Thus, the minimal SV seems to be a more accurate predictor

✐
✐

“main” — 2009/11/10 — 10:05 — page 116 — #142 ✐
✐

✐
✐

✐
✐

116 4 Quantifying and adapting reservoir dynamics

of performance than both the largest LE and the spectral radius for the
tasks considered here.

The interpretation of the minimal SV of the Jacobian is at first sight
not trivial: it simply qualifies the minimal gain of the system in any
direction in state space. However, since σ−1

m =
���J−1
f

��� and κ(Jf) =
���J−1
f

��� �Jf�, σm can be written as the ratio between the norm �Jf� and
the condition number κ(Jf) of the Jacobian:

σm = �Jf�
κ(Jf)

,

where �·� denotes the l2 norm.
This relation yields an interesting interpretation. The norm of the

Jacobian is a measure of the maximal gain of the system in any direction,
while the condition number is used to quantify the degrees of freedom
in the system. This is used in, e.g., the field of robotics (which borrows
substantially from dynamical system theory), where both the condition
number and the norm of the Jacobian are widely used measures for quan-
tifying the dynamical behaviour of, e.g., robotic arms (Merlet, 2006). The
condition number is used there to quantify the closeness to a singular po-
sition (where the robot looses a degree of freedom due to constraints on
the joints) - large condition numbers are an indication of low dexterity.
When we transpose this interpretation to the reservoir, we can see that
the maximization of σm is in fact a joint optimization of :

• a high gain of the system, thus ensuring good separation of the
input signals in state space, and

• a small condition number, which means that the dynamical system
is far from singularity and has many degrees of freedom.

These two quantities are in opposition: if the gain of the reservoir is too
high, the nodes will start to saturate and the expressive power of the
nonlinearity decreases, which means that the reservoir is constrained to
a lower-dimensional subspace of the state space. This trade-off is clearly
present in the measure presented here.

A notable disadvantage of this measure of the reservoir dynamics, as
well as the other empirical measures that were described in (Legenstein
and Maass, 2005) and (Schrauwen et al., 2008a), is the fact that they can
only be computed through actual simulation of the reservoir. While this is
in a sense unavoidable (because the inputs determine the trajectory and as
such also the dynamical regime the reservoir operates in), one would like
to have a method that eliminates the computational cost of simulating the
reservoir. One possibility would be to develop measures that are based on

✐
✐

“main” — 2009/11/10 — 10:05 — page 117 — #143 ✐
✐

✐
✐

✐
✐

4.3 Adapting reservoir dynamics 117

statistical properties of the distribution of the input signals, rather than
actual instances of the input signals. The development of such measures
are a good candidate for future research directions.

4.2.3 The link between dynamics and state
distributions

The measures introduced above quantify the dynamic regime of the reser-
voir in its current operating point. However, these dynamics can also be
linked to the distribution of the reservoir states. This is illustrated in
Figure 4.8 for the basic case of tanh reservoirs. On the right hand side
we have plotted the state distribution of the reservoir after tuning the
spectral radius and feeding it with uniform noise in [0, 1]. If we tune the
dynamics by scaling the spectral radius to the values of .2, 1 and 2 (top,
middle and bottom plots), we can see this reflected in the distribution
of the neuron states: for small spectral radius, the dynamics is too sta-
ble and the state distributions are centered around the linear area of the
nonlinearity. For a spectral radius setting which is too large , the state
distributions are centered around the nonlinear saturating areas of the
nonlinearity, which results in an unstable reservoir and loss of expressive
power because of the saturation. In the middle plot, the dynamic regime
is ‘just right’, which is reflected in the distribution of the states: most of
the states lie in the linear area of the tanh function, but there is still a
good amount of nonlinear states.

This link between the dynamics and state distributions can be used to
our advantage. If we can develop a way to adapt the state distributions
of the neurons to a desired distribution, we have a method for adaptin
the dynamics of the reservoir. This idea is built upon in the next section.

4.3 Adapting reservoir dynamics

In the first sections of this chapter, we have introduced and investigated
ways of quantifying the dynamical regime of reservoirs. These measures
are, at least theoretically, applicable to generic reservoir types since they
can be used for many types of activation functions. Indeed: RC systems
are not limited to networks of sigmoidal neurons. While the spectral ra-
dius still bears some meaning in the case of Echo State Networks as a
linearization of the underlying nonlinear system around the zero fixpoint,
it quickly looses significance when we start to study more intricate reser-
voirs with nonlinearities that do not have such nice behaviour around the

✐
✐

“main” — 2009/11/10 — 10:05 — page 118 — #144 ✐
✐

✐
✐

✐
✐

(a)

(b)

(c)
Figure 4.8: How dynamics affects the state distributions of the
reservoir: in figure (a), the dynamics are too stable for most tasks
and the distribution is quite narrow. In figure (b), the balance
between linear and nonlinear components is just right, and in figure
(c) the reservoir is too dynamic which causes the nodes to saturate
and the reservoir to loose expressive power.

✐
✐

“main” — 2009/11/10 — 10:05 — page 119 — #145 ✐
✐

✐
✐

✐
✐

4.3 Adapting reservoir dynamics 119

zero point. For these reservoirs, traditional tuning parameters such as
spectral radius quickly become useless, and a new way of tuning the dy-
namics of these networks becomes necessary. Also, as mentioned before,
the spectral radius is a network property while the actual dynamics of
the reservoir are not only determined by the network weights but also by
the dynamical range and evolution of the input.

In this Section, we move from quantifying the reservoir dynamics to
actually controlling them. I will introduce a generalized version of an
online learning rule that fine-tunes the dynamical properties of a reser-
voir in an unsupervised and biologically inspired way, but with a clear
mathematical rationale underlying the rule, borrowing insights from in-
formation and communication theory. It is an improvement over the
standard manual tuning of the spectral radius in two ways: it offers an
automatic way of tuning the reservoir dynamics, and this tuning is input-
or task-dependent, which means that the actual dynamical properties of
the input signals are taken into account.

First, I will (very) briefly discuss some of the terminology that will
be used in the chapter, and some concepts from information theory and
their relationship to existing learning methods.

4.3.1 Information theory and learning
Information theory originated from the need for a mathematical founda-
tion for quantifying properties of (digital) data transmission and commu-
nication channels. However, it has proven to be more broadly applicable.
In particular, information theory has yielded some theorems and measures
that provide insight into the fundamental properties of what information
is, and more importantly - that quantify how much information data con-
tains. The notion information is of course a rather vague term without
a concrete definition - but this is precisely what information theory pro-
vides.

The seminal paper which started the field was written by Claude Shan-
non (Shannon, 1948). In it, the fundamental notion of information en-
tropy, also known as Shannon entropy, was defined. The information
entropy of a discrete stochastic variable X which can take n possible
values is given by:

H(X) = −
n�

i=1
p(xi) log(p(xi)).

The information entropy H(X) expresses the uncertainty associated with
the random variable X. A variable for which all values are equiprobable

✐
✐

“main” — 2009/11/10 — 10:05 — page 120 — #146 ✐
✐

✐
✐

✐
✐

120 4 Quantifying and adapting reservoir dynamics

will have maximal information entropy - which matches our intuition:
a variable for which all values are equally likely to occur has maximal
uncertainty. The extension of entropy to continuous variables is given by
the differential entropy, defined as :

h(x) = −
∞̂

−∞

f(x) log(f(x)),

but care should be taken when transposing interpretations of the dis-
crete valued entropy to the differential entropy (for instance, differential
entropy can become negative). These distinctions are however not im-
portant for the remainder of this discussion, since we will focus on the
so-called relative entropy or Kullback-Leibler divergence.

The Kullback-Leibler divergence DKL is a measure of the difference
between two probability distributions. It is defined as:

DKL(p̃, p) =
∞̂

−∞

p̃(x)log p̃(x)
p(x)dx,

and is expressed in units of bits or nats, depending on the base of the log-
arithm used (2 or e, resp.). When expressed as bits, it can be interpreted
as the number of additional bits needed to code instances from the distri-
bution p̃ using instances of p, i.e. the amount of additional information
needed to estimate p̃ based on samples from p. It is not a true metric in
the mathematical sense, because it is not symmetric and it does not obey
the triangle-inequality.

Using the entropy as an uncertainty measure, we can determine so-
called maximum entropy distributions. These distributions are the dis-
tributions whose entropy is the largest of all distributions belonging to a
class (where a class of distributions is defined, e.g., through constraints
on the moments). Maximum entropy distributions are important because
of two properties:

• Maximum entropy distributions minimize the amount of prior in-
formation incorporated in the distribution. This means that, given
some instances of a stochastic variable or prior knowledge about
that variable, a maximum entropy distribution taking this knowl-
edge into account will make the least additional assumptions about
that data. In a way this means that maximum entropy distributions
are the most ‘neutral’ distributions.

• Maximum entropy distributions arise quite naturally in many phys-
ical - and thus also neurobiological - systems.

✐
✐

“main” — 2009/11/10 — 10:05 — page 121 — #147 ✐
✐

✐
✐

✐
✐

4.3 Adapting reservoir dynamics 121

Constraints
Maximum
entropy

distribution
Expression Entropy

x ∈ [a, b]
Uniform

distribution
over [a, b]

f(x) =�
1
b−a if x ∈ [a, b]
0 if x /∈ [a, b]

ln(b− a)

µx = µ, µ > 0 Exponential
distribution

f(x) =�
1
µe
− xµ if x ≥ 0

0 if x < 0
1− ln(1

µ)

µx = µ and
σx = σ

Gaussian
distribution f(x) = e

− (x−µ)2
2σ2

√
2πσ2

ln
√

2πσ2e

Table 4.1: The most common maximum entropy distributions cor-
responding to given constraints.

In Table 4.1 some examples of maximum entropy distributions are given
for certain constraints on their moments.

These and related measures of information and entropy originated in
information and communication theory, but have since also been used
to develop various learning algorithms ranging from simple logistic re-
gression, over an infomax-based algorithm for Independent Component
Analysis (ICA) (Bell and Sejnowski, 1995) to even a whole family of rules
captured under the term Information theoretic learning (Principe et al.,
2000). These learning principles are all based on maximizing the mutual
information between either the input to the system and the output of the
system - resulting in an unsupervised rule - or between the output of the
system and the desired output of the system - resulting in a supervised
rule.

In this chapter, we will introduce, extend and study an unsupervised,
bio-plausible learning rule called Intrinsic Plasticity (IP) for individual
neurons in a reservoir, which is based on the information theoretic con-
cepts introduced above.

4.3.2 An unsupervised adaptation rule for reser-
voirs

As was discussed in the introductory Chapter 1 of this thesis, various ways
of constructing reservoir topologies and weight matrices have already been
described in literature (Liebald, 2004; Hajnal and Lorincz, 2006; Maass
et al., 2004b). As was already extensively argued above, the often assumed
rule-of-thumb of setting the spectral radius close to 1 is not generally

✐
✐

“main” — 2009/11/10 — 10:05 — page 122 — #148 ✐
✐

✐
✐

✐
✐

122 4 Quantifying and adapting reservoir dynamics

applicable (Steil, 2006; Verstraeten et al., 2006) because the dynamical
regime of the reservoir is also determined by the bias to the neurons and
the dynamical range of the inputs. So, optimization of a reservoir for
applications is typically based on experience and heuristics and partly on
a brute-force search of the parameter space. Moreover, the variance of the
performance across different reservoirs with the same spectral radius is
still quite substantial, which is clearly undesirable. So, a computationally
simple way to adapt the reservoirs to the task at hand without requiring
a full parameter sweep or hand tuning based on experience would be
welcome.

In this line, it was shown (Steil, 2007b; Wardermann and Steil, 2007;
Steil, 2007a) that the performance of off-line and on-line learning for
ESN networks with Fermi transfer functions7 can be improved by using
an unsupervised and local adaptation rule based on information maxi-
mization, called Intrinsic Plasticity (IP). This rule was first introduced in
(Triesch, 2005) as a formal model of processes known in neurobiology as
homeostatic plasticity - the term alludes to the self-regulatory behaviour
of biological neurons (Turrigiano and Nelson, 2004). Since this kind of
plasticity is present in almost all biological neurons, it seems natural to
investigate its formal counterpart in combination with standard artificial
network learning algorithms. For this intrinsic plasticity rule, Triesch
has also shown that in combination with Hebbian learning IP can drasti-
cally change the behavior of Hebbian networks towards finding heavy-tail
directions in arbitrary input distributions (Triesch, 2007). The interplay
between these two unsupervised adaptation rules was further investigated
in (Lazar et al., 2007). There, it was shown that the combination of IP
and STDP - which is a Hebb-like rule for spiking neurons - enhances the
robustness of the network against small perturbations and aids the net-
works in discovering temporal patterns present in the input signals. The
results from that work suggest that a fundamental underlying link be-
tween IP, STDP and unsupervised information maximization exists, and
that these rules operating strictly on the local neuron-level succeed in
steering the dynamics of the entire network towards a computationally
desirable regime.

In this Section, we investigate different versions of IP learning further,
extending and generalizing the idea. Whereas previous work on IP has
focused on the Fermi transfer function and an exponential target distri-
bution, we derive a more general formalism here that is independent of
the neuron’s activation function or the desired output distribution. This
allows the formalism to be applied to more general reservoir types. We

7As mentioned in subsection 1.3.2, the Fermi or logistic function is given by y =
1

1+exp(−x) .

✐
✐

“main” — 2009/11/10 — 10:05 — page 123 — #149 ✐
✐

✐
✐

✐
✐

4.4 Towards generalized Intrinsic Plasticity 123

use this generalized IP rule to derive a version for tanh neurons with
a Gaussian output distribution. Simulations show that in practice these
targets are reached surprisingly well despite the interference between neu-
rons introduced by the recurrency in the network.

The simple, local IP rule effectively makes reservoirs significantly more
robust: it gives the reservoirs the ability to autonomously and robustly
adapt their internal dynamics, irrespective of initial weight setting, in-
put scaling or topology, to a dynamical regime which is suited for the
given task. The rule is purely input driven, and adapts the reservoir in
an unsupervised way. Moreover, since it can be used for many activa-
tion functions (not only standard sigmoids), this opens the way for an
unsupervised adaptation mechanism for novel reservoir types.

4.4 Towards generalized Intrinsic Plasticity

Intrinsic Plasticity (IP), as introduced in (Triesch, 2005), models a well-
known phenomenon called homeostatic plasticity, which is observed in a
variety of biological neurons: these wet neurons tend to autonomously
adapt to a fixed average firing rate for physiological reasons. In (Tri-
esch, 2005) it was shown that such a mechanism, when the neurons have
an exponential output firing rate distribution, are effectively maximizing
information transmission when the neurons are interpreted as commu-
nication channels. While the biological mechanisms are not yet known
precisely, it is very plausible that every single neuron tries to balance the
conflicting requirements of maximizing its information transmission while
at the same time obeying constraints on its energy expenditure. IP for-
malizes these hypotheses by incorporating the following three principles:

1. information maximization: the output of the neuron should contain
as much information on the input as possible. This is achieved by
maximizing the entropy of the output firing rates;

2. constraints on the output distributions: these are first of all the
limited output range of the neuron (Atick, 1992), but can be also
the limited energy available (Baddeley et al., 1997);

3. local adaptation: a biological neuron is only able to adjust its in-
ternal excitability, and not the individual synapses (see (Zhang and
Linden, 2003), (Destexhe and Marder, 2004) for a discussion of this
common effect in biological neurons).

Following Triesch’ original line of argument, the information maximiza-
tion principle corresponds to a maximization of the entropy of the output

✐
✐

“main” — 2009/11/10 — 10:05 — page 124 — #150 ✐
✐

✐
✐

✐
✐

124 4 Quantifying and adapting reservoir dynamics

Figure 4.9: Schematic view of the generalized neuron model used
for deriving IP. The nonlinearity is indicated with f , and p is an
additional neuron parameter that will be tuned by the IP rule.

distribution of each neuron. In combination with the second principle
this leads to maximum entropy (ME) distributions with certain fixed mo-
ments. It is known that the ME distribution for a given mean (first mo-
ment) and support in the interval [0,∞] is the exponential distribution.
Likewise, the ME distribution for a given mean and standard deviation
with support in [−∞,∞] is the Gaussian.

We focus here on distributions of the exponential family because these
tend to have much of the probability density centered around zero. This
means that there is a high probability that many of the neuron activations
will be close to zero. This is very related to the biologically important
concept of sparse codes. Sparse codes seem to be present throughout the
mammalian brain, and represent a compromise between a local code –
which enables fast learning but has low generalization and error tolerance
– and a dense code – where learning is slow but which has a good rep-
resentational capacity and is robust against errors (Foldiak and Young,
1995).

4.4.1 Derivation of the generalized rule
The target of the Intrinsic Plasticity learning rule will be to drive the dis-
tribution of the output (activation) values of a single neuron to a certain
ME distribution. This will be done by minimizing the Kullback-Leibler
divergence DKL of the actual output distribution of the neuron, hy(y),
w.r.t. a certain target distribution h(y). Here, we will derive a general
expression for the derivative of DKL w.r.t. a generic parameter p of the
activation function, independent of the activation function of the neuron
or the target distribution. The parameter p can be, e.g., the gain or bias
of a neuron. This structure is shown schematically in Figure 4.9.

From this general expression, it is then quite easy to instantiate IP

✐
✐

“main” — 2009/11/10 — 10:05 — page 125 — #151 ✐
✐

✐
✐

✐
✐

4.4 Towards generalized Intrinsic Plasticity 125

rules for specific activation functions and/or target distributions. We
will use a neuron with activation function f and input z, such that its
activation value is given by y = f(z). To avoid clutter, we will denote
df
dz = f � and d

2f
dz2 = f ��. We will further assume that z is a parametrized

function of the actual neuron input x.

We start from the definition of DKL:

DKL(hy||ht) =
ˆ
hy(y) log

�
hy

ht

�
dy

=
ˆ
hy(y) log (hy(y)) dy −

ˆ
hy(y) log (ht(y)) dy

= E (log (hy(y))− log (ht(y))) ,

where E(·) denotes the expected value. Derivation of DKL w.r.t. p gives:

∂DKL

∂p
= E
�
∂

∂p
log (hy(y))−

∂

∂p
log (ht(y))

�
.

If f is strictly monotonous and increasing8, we have that hy(y) = hz(z)
f �(z) ,

with hz(z) the probability density function (pdf) of z, so this gives:

∂DKL

∂p
= E
�
∂

∂p
log
�
hz(z)
f �(z)

�
− ∂
∂p

log (ht(y))
�

= E
�
∂

∂p
log (hz(z))−

∂

∂p
log (f �(z))− ∂

∂p
log (ht(y))

�

= E
�
∂

∂p
log (hx(x))−

1
∂z
∂x

∂
2
z

∂p∂x
− f

��(z)
f �(z)

∂x

∂p
− h

�
t(y)
ht(y)

f
�(z)∂z
∂p

�

= −E
�

1
∂z
∂x

∂
2
z

∂p∂x
+ f

��(z)
f �(z)

∂z

∂p
+ h

�
t(y)
ht(y)

f
�(z)∂z
∂p

�
.

We now have a general expression for the derivative of DKL w.r.t. the
neuron parameter p, expressed in function of first and second derivatives
of the activation function f and the target pdf ht. This allows us to derive
a learning rule that minimizes this quantity using stochastic gradient
descent:

∆p = −η ∂DKL
∂p
,

whereby we approximate the expected values by the instantaneous values.

8If f is not monotonous, the input domain can be split in intervals where f is
monotonous and the rule can be derived for each of these intervals. In case f is
decreasing, hy(y) = −hz(z)

f �(z) should be used.

✐
✐

“main” — 2009/11/10 — 10:05 — page 126 — #152 ✐
✐

✐
✐

✐
✐

126 4 Quantifying and adapting reservoir dynamics

4.4.2 Specific IP rules for Fermi and tanh neu-
rons

Based on the result obtained above, we can now construct individual
learning rules by approximating the expectation operator using the in-
stantaneous values, and applying stochastic gradient descent as done by
Triesch et al. For instance, in the case of the original IP rule introduced
by Triesch et al in (Triesch, 2005), the target pdf is the exponential dis-
tribution: ht = 1

µe
− yµ , so ht�

ht
= − 1

µ . The activation function is the
Fermi function, given by: y = f(x) = 1/(1 + e−z), so f � = y(1 − y) and
f ��

f � = 1 − 2y. There are update rules for the neuron gain a and bias b,
defined as: z = ax + b, with x the weighted sum of the neuron inputs.
So, we have: ∂z∂a = x ,∂z∂b = 1 and ∂z

∂x = a. When we fill in a and b as
parameters p in the general equation derived above, this gives:

∂DKL

∂a
= −E

�
1
a

+ (1− 2y)x− 1
µ
y(1− y)x

�

∂DKL

∂b
= −E

�
(1− 2y)− 1

µ
y(1− y)

�
,

which yields precisely the update rules described by Triesch:

∆a = η
�

1
a

+ x−
�

2 + 1
µ

�
xy + xy

2

µ

�

∆b = η
�

1−
�

2 + 1
µ

�
y + y

2

µ

�
.

Similarly, we can derive an IP rule for tanh neurons with a Gaussian target
distribution. Here, ht(y) = 1√

2πσ2 exp
�
− (y−µ)2

2σ2

�
, so ht�ht = − (y−µ)

σ2 . For

the activation function we have y = tanh(z), so f � = 1−y2 and f
��

f � = −2y.
Filling this in gives:

∂DKL

∂a
= −E

�
1
a
− 2xy − y − µ

σ2 (1− y2)x
�

∂DKL

∂b
= −E

�
−2y − y − µ

σ2 (1− y2)
�
,

which gives the following update rule:

✐
✐

“main” — 2009/11/10 — 10:05 — page 127 — #153 ✐
✐

✐
✐

✐
✐

4.4 Towards generalized Intrinsic Plasticity 127

∆a = η
�

1
a

+ µx
σ2 −

xy

σ2 (2σ2 + 1− y2 + µy)
�

∆b = η
�
µ

σ2 −
y

σ2 (2σ2 + 1− y2 + µy)
�
.

Note that for both learning rules ∆a = η
a + ∆bx. This relation between

gain and bias update steps is independent of the activation function or
output distribution and gives the opportunity for some computational
optimization.

4.4.3 The effects of IP on the neuron param-
eters and weight distributions

In this subsection, we will discuss the effects of IP on the distribution
of the adjusted parameters and weights of the reservoir. For illustratory
purposes, we will study the case of a tanh reservoir, initially scaled to a
(generally suboptimal) spectral radius of 1.5, with IP adjustment of the
gain a and bias b in the case of a gaussian target distribution with a target
standard deviation of 0.2 and zero mean (which is the optimal setting for
the experiments discussed below).

Since the gain a of each neuron is changed by IP, this in effect changes
the weight matrix of the reservoir by scaling the input weights to each
neuron with the corresponding gain term. We can therefore easily com-
pute the resulting effective weight matrix due to the IP adaptation by
multiplying each row of the reservoir weight matrix with the correspond-
ing neuron gain. The eigenvalue distribution of the resulting effective
weight matrix before and after IP are shown in Figure 4.10. This shows
that the effective weight matrix is tuned to a spectral radius of close to 1,
which shows that tuning the output distributions also tunes the dynami-
cal regime of the reservoir.

Figure 4.11 shows the evolution of four reservoir properties during the
application of IP: the mean and standard deviation of the neuron states
is shown in the top plots, and the minimal singular value of the reservoir
Jacobian and the spectral radius of the effective weight matrix (taking the
changed gain into account) is shown in the bottom plots. The state mean
is not affected by the IP since we require a zero mean state distribution.
However, the standard deviation is brought down from an initial value
of 0.5 to close to the desired target standard deviation of 0.2. There is
a slight undershoot of the actual standard deviation which is due to the
fact that the state distributions are truncated in the interval [-1,1]. We
will discuss this phenomenon further below.

✐
✐

“main” — 2009/11/10 — 10:05 — page 128 — #154 ✐
✐

✐
✐

✐
✐

128 4 Quantifying and adapting reservoir dynamics

−1 0 1
0

1000

2000

3000

−1 0 1

−1

0

1

−1 0 1
0

2000

4000

−1 0 1

−0.5

0

0.5

Figure 4.10: The left hand side shows a histogram of the reservoir
states without (top plots) and with (bottom plots) IP adaptation.
On the right hand side, the corresponding eigenvalue distribution
of the resulting weight matrix is shown.

The bottom plots show that the minimal singular value of the Jaco-
bian – which we discussed above as a measure of the reservoir dynamics
– is effectively increasing due to the IP rule. This confirms the claim that
IP tunes not only the state distributions but also the effective dynamic
regime of the reservoir. This is also shown in the bottom right, showing
the spectral radius of the effective weight matrix: it drops from the initial
value of 1.5 to a much more suitable value of slightly above 1. Of course,
the resulting effective spectral radius depends on the setting of the de-
sired standard deviation. We will discuss the link between the standard
deviation of the target distribution and the effective spectral radius in
more detail in the section on experimental results below.

4.4.4 Limitations of the assumptions
During the derivation of the general IP rule above, there are two implicit
assumptions being made that are not applicable without certain caution-
ary remarks. The first assumption is the fact that the output distribution
of the neuron’s activation can be unbounded. This is necessary because
the desired distributions considered here (the exponential and Gaussian)
have an infinite support. However, in practice this can never be the case
due to the boundedness of the activation functions: their absolute value
is never larger than one. This of course has ramifications for the accuracy
with which the target distributions can be approximated. In particu-
lar, the actual mean and standard devations of the output distributions

✐
✐

“main” — 2009/11/10 — 10:05 — page 129 — #155 ✐
✐

✐
✐

✐
✐

4.4 Towards generalized Intrinsic Plasticity 129

0 100 200 300 400
−0.1

0

0.1
State mean

0 100 200 300 400

0.1

0.2

0.3

0.4

0.5

State std dev.

100 200 300 400

5

10

15

x 10
−3 Minimal sv

100 200 300 400

1.1

1.2

1.3

1.4

1.5
Effective spectral radius

Figure 4.11: The effects of IP on the mean and standard deviation
of the reservoir states, the minimal singular value of the jacobian
and the effective spectral radius. On all the plots, the horizontal
axis represents time.

will differ from the desired ones. However, it turns out to be possible to
compute this difference, based on truncated versions of the target distri-
butions. This discrepancy is further studied in (Schrauwen et al., 2008b).

The second assumption that does not hold when applying IP to reser-
voirs is the fact that all the derived rules are based on assuming inde-
pendence of the neurons’ input distributions. It is however not obvious
that this assumption holds in recurrent networks (in fact, quite proba-
bly it doesn’t), where neurons are coupled and the output of a neuron
indirectly influences its input. Also, the limited number of parameters
with which to tune the transfer function, might hinder the convergence
of the actual output distribution to the desired one. Still, for a single
neuron it was shown in (Triesch, 2005) that an exponential distribution
can be approximated very well by only adjusting the bias and gain of
the neuron. Similarly it was shown in (Schrauwen et al., 2008b) that for
recurrently coupled neurons the actual distribution approximates the de-
sired distribution very well, given the edge effects discussed earlier. This
is illustrated in Figure 4.12.

It has already been shown qualitatively in a previous publication by
Steil (such as (Steil, 2006)) that even though the original IP learning rule
actually only tunes the temporal distributions of single neurons, when
they are coupled together in a recurrent network, the same distribution
can be perceived spatially (even after a single time step if the reservoir
is large enough). A sparse temporal distribution thus results in a sparse
spatial code. However, it has not yet been proven theoretically that this
ergodic property always holds.

✐
✐

“main” — 2009/11/10 — 10:05 — page 130 — #156 ✐
✐

✐
✐

✐
✐

130 4 Quantifying and adapting reservoir dynamics

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

Output

P
ro

b
a

b
ili

ty
 d

e
n

si
ty

exponential distribution

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

Output

P
ro

b
a

b
ili

ty
 d

e
n

si
ty

Gaussian distribution

Figure 4.12: Comparison between the desired distributions (dashed
lines) and the actual distributions of the neurons after IP. Note the
edge effects that prevent the activations to reach high values.

4.5 Experiments

In this section, we will study the impact of both exponential and Gaus-
sian IP on the performance of RC on several benchmark applications.
We have already discussed the limited usefulness of the spectral radius
for non-tanh reservoirs. There is furthermore a quite large variance on
the performance when creating several random reservoirs with the same
spectral radius. And finally, the spectral radius stability measure cannot
be used on generic reservoir nodes or very constrained topologies. We will
show that IP can help with regard to all three issues.

4.5.1 Preliminaries

The three benchmarks we use in this section to evaluate the performance
of the different IP rules are chosen to span a wide range of desired features
we expect from reservoirs: the 30th order NARMA system identification
task, the memory capacity task and the isolated digit recognition task.
For the experiments we will use the following extension of a standard
ESN setup (see Section 2.1.1), which takes the additional gain parameter
a and per-neuron bias b into account. The reservoir states at time step
k, x[k] ∈ RN×1, are calculated by

x[0] = 0
x[k + 1] = f(Wres

resx[k] + Wres
inpu[k],a,b),

✐
✐

“main” — 2009/11/10 — 10:05 — page 131 — #157 ✐
✐

✐
✐

✐
✐

4.5 Experiments 131

where N is the number of network nodes, Wres
res ∈ RN×N is the matrix

of network weights, f(.) is the vector-valued version of the generalized
transfer function f(.), a,b ∈ RN are the vectors of gain and bias param-
eters in f(.), M is the number of external inputs to the network at each
time step, u(t) ∈ RM×1 the external input at time step t and the weights
connecting these to the reservoir nodes Wres

inp ∈ RN×M . Note that above
equation can be rewritten as

x[k + 1] = f(Ŵres
resx[k] + Ŵinp

resu[k] + b,1,0)
Ŵres
res = diag(a)Wres

res

Ŵres
inp = diag(a)Wres

inp.

This technique allows us to compare reservoirs that have been adapted
by IP directly with networks which have not been adapted. We will call
the spectral radius of Ŵres

res after applying IP the effective spectral radius
ρeff .

While it is possible to add linear terms from the input to the output,
we chose not to do this because we want to evaluate the influence of
IP on the reservoir, and adding the linear terms can cloud the effects
of IP. The training of the readout layer is done using ridge regression
(see Subsection 2.1.3.1), and the optimal regularization constant λ was
determined through linear searching using five-fold cross-validation.

Some parameters of the network are kept fixed over all experiments.
Network size is always 100 - this could have been optimized, but we care
here just for comparison between the two techniques. The Wres

res matrix
is always created by initializing all the weights uniformly distributed be-
tween -1 and 1, which is then scaled to a given spectral radius, whereas
the input weights are set with equal probability to -.1 or .1. The IP
parameters a and b are initialized to 1 and 0, respectively.

All results in plots and tables are averages and standard deviations
over 30 different reservoir instantiations with the same parameter set-
tings. For training the linear readout, the first 100 time steps of the
reservoir dynamics for every presented example were disregarded to allow
the network to ‘warm up’ (forget its initial state) sufficiently.

For pre-training a reservoir, the IP rule is applied with a learning
rate ηIP of 0.0005 for 100000 time steps. To check whether IP has had
sufficient time to adapt after this time, we verified that a and b had
converged to small regions and compared the expected probability density
with the one estimated from the reservoir’s output.

✐
✐

“main” — 2009/11/10 — 10:05 — page 132 — #158 ✐
✐

✐
✐

✐
✐

132 4 Quantifying and adapting reservoir dynamics

0.8 1 1.2
0

10

20

30

Memory − tanh

specrad

M
C

0.8 1 1.2
0.4

0.6

0.8

1
NARMA − tanh

specrad

N
R

M
S

E

0.2 0.4 0.6 0.8 1
0

10

20

30

Memory − fermi

µ

0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1
NARMA − fermi

µ

0.1 0.2 0.3 0.4 0.5
0

10

20

30

Memory − tanh

σ

0.1 0.2 0.3 0.4 0.5
0.4

0.6

0.8

1
NARMA − tanh

σ

0.5 1 1.5

0.05

0.1

0.15

speech − tanh

specrad

W
E

R

0 0.2 0.4

0.05

0.1

0.15

speech − fermi

µ

0.2 0.4 0.6

0.05

0.1

0.15

speech − tanh

σ

Figure 4.13: Results for all three benchmarks for tanh with spectral
radius ranging (left column), exponential IP for Fermi nodes (middle
column) and Gaussian IP for tanh nodes (right column).

4.5.2 Results

The three benchmark experiments are now evaluated using different
experimental setups. We first use the standard way of scaling reservoirs
by ranging over the spectral radius. We do this for both Fermi and
tanh nodes. Next, we evaluate the use of IP for Fermi nodes with an
exponential distribution (ranging over the mean µ), and tanh nodes with
a Gaussian distribution (ranging over the variance σ). For the Gaussian
distribution we only use µ = 0 since for other values, experiments show a
considerable performance drop.

The results are shown in Figure 4.13, where the first row shows the
results for the memory task, the second row shows the results for the
NARMA task, and the bottom row shows the result for the isolated
speech. The columns show the effects of ranging the spectral radius for

✐
✐

“main” — 2009/11/10 — 10:05 — page 133 — #159 ✐
✐

✐
✐

✐
✐

4.5 Experiments 133

Table 4.2: Best results for the three different benchmarks. IP is
slightly better than ranging the spectral radius, both in average per-
formance as in standard deviation (except for one case), denoted
between brackets. Some tasks perform better with a Gaussian dis-
tribution, others with an exponential distribution.

Fermi-specrad tanh-specrad Fermi-exp. IP tanh-Gauss.
IP

MC 17.41 (1.48) 29.78 (1.87) 20.32 (0.77) 31.31 (1.93)
NARMA 0.77 (0.012) 0.52 (0.050) 0.74 (0.019) 0.46 (0.042)
Speech 0.070 (0.018) 0.069 (0.015) 0.060 (0.012) 0.069 (0.015)

the tanh node type, exponential IP for Fermi nodes, and Gaussian IP
for tanh nodes. The results for ranging the spectral radius for the Fermi
nodes are not shown since the performance of this reservoir type is very
poor. This is expected since the spectral radius is not a good measure
for the dynamical regime when using Fermi nodes. The best values for
all settings are summarized in Table 4.2 where the results of ranging the
spectral radius for the Fermi nodes are added as a reference.

Memory The best achievable memory capacity of reservoirs without IP
is quite different for networks using tanh nodes and those using
Fermi nodes (see Table 4.2). Note that for memory capacity, higher
is better. While tanh networks can have a capacity of up to 31,
Fermi networks have little more than half that memory, 17. In tanh
networks, the drop in performance for spectral radii smaller than
optimal is not drastic. When using IP, the largest change in results
can be found in Fermi networks. While the best achievable memory
capacity increases by one-fourth, i.e. 4, the variance of the results
for one and the same parameter setting, i.e. µ, gets very small,
only 0.77, contrasting to setting the spectral radius, where this was
1.48. In tanh networks, the difference between using spectral radius
scaling and IP pre-adaptation was not as pronounced. The best
memory capacity achievable there, also increased by using IP from
29.78 to 31.31, but the variance is a little bit worse if using IP. Fur-
thermore, the performance drop for suboptimal parameter settings
is equally pronounced for σ as for spectral radii.

NARMA With tanh networks, the best error achieved was 0.52, at a
spectral radius of 0.95. For spectral radii of smaller than 0.9 or
larger than 1, performance drops considerably. When using Gaus-
sian IP, the performance improves considerably with up to 10%.
But, in contrast to the memory task, where the performance drop
looks qualitatively similar for changes in spectral radius and σ, the

✐
✐

“main” — 2009/11/10 — 10:05 — page 134 — #160 ✐
✐

✐
✐

✐
✐

134 4 Quantifying and adapting reservoir dynamics

optimal value of σ is very small, and the performance decreases
steadily for increasing values of σ. Fermi node networks perform
very poorly on this task. When using exponential IP, the perfor-
mance slightly increases, but is still considerably worse than tanh
nodes. Interestingly, if µ was chosen larger than 0.3, its value did
not have any notable impact on the performance, and the variance
dropped to very small values of 0.019.

Speech Using IP slightly improves both the mean and standard devia-
tion of the performance for both exponential and Gaussian distribu-
tions. For this task, the exponential distribution seems to perform
best. Another effect is the extreme drop in performance when rang-
ing the spectral radius to high values, where the reservoir becomes
unstable. When using IP, this instability is never reached.

When using Fermi neurons, and imposing an exponential distribution,
the optimal settings for µ differ for the three different tasks. Increasing
µ increases the linear memory present in the network, i.e. the best per-
formance could be observed for µ = 0.1. In NARMA, the opposite was
true: up to µ = 0.1, the variance of results was too high to be usable.

But when using tanh neurons and imposing a Gaussian distribution,
for σ, the optimal setting was almost the same for both tasks, besides the
performance drop in memory capacity for σ = 0.1, smaller settings were
better.

An interesting observation can be made from comparing optimal spec-
tral radius and the effective spectral radius of the optimal σ: where the
σ was optimal, the effective spectral radius was equal to the optimal
spectral radius of a network without IP (see Figure 4.14). Notice the
relatively small variance of the relation between moments and effective
spectral radius shown in this figure. Imposing certain output distributions
on the nodes of the reservoir is thus actually a precise way of controlling
the dynamics in the reservoir. Note that the effective spectral radius for
Fermi nodes can not at all be related to those of tanh neurons, which are
normally used. For tanh neurons, we see that when varying σ over its
complete range, we actually vary the effective spectral radius in its most
important range: between 0.8 and 1.1.

Note that IP and spectral radius influence each other in two ways.
Firstly, the initial scaling of the weight matrix can alter the learning
behavior of IP, because the adjustment factors of the intrinsic parameters
by the rule depend on the amount of activity present in the network.
Secondly, changing the gain of the transfer function corresponds to scaling
all incoming weights, and therefore changing the spectral radius of the
weight matrix. Thus, the effective spectral radius after applying IP will

✐
✐

“main” — 2009/11/10 — 10:05 — page 135 — #161 ✐
✐

✐
✐

✐
✐

4.5 Experiments 135

0 0.2 0.4 0.6 0.8
6

8

10

12

µ

e
ff
e
ct

iv
e
 s

p
e
ct

ra
l r

a
d
iu

s
exponential distribution

0 0.2 0.4 0.6
0.7

0.8

0.9

1

1.1

σ

e
ff
e
ct

iv
e
 s

p
e
ct

ra
l r

a
d
iu

s

Gaussian distribution

Figure 4.14: These plots show the relation between the mean and
standard deviation of the exponential and Gaussian distribution re-
spectively, and the effective spectral radius which is attained after
pre-training the reservoir using IP. These plots are generated from
the Memory Capacity task, but look almost identical for the other
tasks. This shows that there is a clear relation between moments
and effective spectral radius, which is task independent.

be different from the one the network was initialized to.
It is known that the memory capacity is highest for linear reservoirs

that have a spectral radius close to one (Jaeger, 2001b). We see a similar
effect when using IP: the best performance is attained for Gaussian dis-
tributions with small variance, where the bulk of the dynamics is thus in
the linear part of the tanh nonlinearity. The optimal variance is σ = 0.2
which we can clearly relate to an effective spectral radius of 1 in Fig-
ure 4.14. The NARMA task also seems to prefer reservoirs that for the
most part operate in their linear regime. This can be explained due to the
relatively large memory that is needed to solve the 30th-order NARMA
task. The speech task on the other hand appears to be a task that can
take advantage of the non-linearities when operating the bulk of the dy-
namics in the non-linear part of the Fermi neurons due to the exponential
distribution.

Note that for Fermi node networks, only IP with exponential target
distribution is studied here. When not pre-adapting Fermi networks, the
performance is always very bad. But, when using IP pre-adaptation,
Fermi neurons can already get the best performance for the speech task.
The bad performance on the memory and NARMA task might suggest
that the Fermi neurons are intrinsically flawed. But when pre-adapting
Fermi nodes with Gaussian IP, which is possible, but not thoroughly
investigated in this work, the results seem to be qualitatively similar to
the ones achieved with tanh node networks. The above results thus mainly
relate to the distributions, and not to the node types.

In previous work of Steil (Steil, 2006, 2007a) a good performance was

✐
✐

“main” — 2009/11/10 — 10:05 — page 136 — #162 ✐
✐

✐
✐

✐
✐

136 4 Quantifying and adapting reservoir dynamics

achieved for Fermi nodes with exponential IP on a related NARMA task.
This was however accomplished by additional features in the overall reser-
voir architecture that were deliberately left out in this work to be better
able to discern the actual influence of the reservoir: in the cited work not
only the current time step was fed to the reservoir, but also a time delayed
version of the input, and both these inputs were also directly fed to the
linear output. Since the NARMA task depends on a long input history,
and has a large linear component, these two features allow the reservoir
to perform better. The optimal value for µ in this setup is actually quite
low, which suggests that the reservoir only has to solve the non-linear
part of the NARMA task, while the linear, time delayed connection takes
care of the linear part. When the reservoir has to solve all these parts
by itself, we see that the exponential distribution is not the best option
since it is not able to generate a long enough memory of its input, as is
suggested by the results on the Memory Capacity task.

One important remark to be made is that the tasks considered here
are tasks that require reservoirs that operate close to the edge of stabil-
ity. This is confirmed when looking at the results for scaling the spectral
radius in the case of tanh reservoirs: for all three tasks the optimal spec-
tral radius lies close to 1. For these tasks, this means that IP tunes the
reservoir into the desired dynamical regime. However, some tasks require
reservoirs that operate in a different dynamical regime, far away from the
edge of stability. This is for instance the case in the multi-stable switch-
ing task described in (Jaeger, 2001b). Still, the majority of the tasks
where Reservoir Computing performs on par with or better than other
techniques require reservoirs at the edge of stability.

4.6 Constrained topologies

When constructing reservoirs for RC, in most cases completely random
connectivity matrices are used. These type of topologies have very good
reservoir properties because the dynamical regime can be easily changed
by globally scaling all the weights up or down. Due to this scaling, the
dynamical regime can be precisely and progressively varied from very
damped to highly unstable dynamics. The topologies are however not
easy to be implemented on, e.g., a planar substrate such as a silicon chip.

When we look at very constrained topologies such as 1D and 2D lat-
tices, which are the easiest topologies to implement on planar substrates,
they behave very badly as reservoirs: for example a 1D lattice where the
input is only fed to one of the nodes (see Figure 4.15) will have a very
sudden transition from order (only the node which is fed with the input

✐
✐

“main” — 2009/11/10 — 10:05 — page 137 — #163 ✐
✐

✐
✐

✐
✐

4.6 Constrained topologies 137

Figure 4.15: Example ring topology, where each node is connected
to its nearest-neighbours, and the input is only fed to a single neu-
ron.

is active, and the activity of all the other nodes is orders of magnitude
smaller) to a wildly oscillating reservoir when the weights are scaled up.
The boundary of stability is very narrow in this case. These topologies
can thus not easily be used in the usual sense when just globally scaling
the weights.

We will now demonstrate that imposing distributions on the reservoir
dynamics is the key to using these constrained topologies as reservoirs in a
very robust and reproducible way. We repeated the memory capacity and
NARMA task with the same settings as in the previous section, but now
using the constrained topology shown in Figure 4.15 which is a 1D ring
lattice consisting of 50 neurons that are only connected to their nearest
neighbors. For this experiment we only look at tanh nodes and IP with
a Gaussian distribution. The results can be seen in Figure 4.16. We did
not do this experiment for the speech task, since this task has multiple
inputs (one input for each frequency component in the cochlear model),
and in this experiment we only want to evaluate if IP is able to create
usable dynamics in a ring topology where only a single neuron initially
has some activity.

We first evaluate the performance of this ring topology when just scal-
ing the spectral radius. For both the memory capacity and the NARMA
task, scaling the spectral radius performs very poorly. Especially when
scaling up the reservoir for the NARMA task, we see a drastic increase
in error and variance of error, which is due to the unstable regime that is
reached.

When using Gaussian IP to pre-adapt this ring topology, we see an
increase in performance for both the memory capacity and NARMA task.
This clearly demonstrates that IP is very capable of enforcing a desired

✐
✐

“main” — 2009/11/10 — 10:05 — page 138 — #164 ✐
✐

✐
✐

✐
✐

138 4 Quantifying and adapting reservoir dynamics

0.5 1 1.5
0

10

20

30

Memory − tanh

specrad

M
C

0.2 0.4 0.6
0

10

20

30

Memory − tanh

σ

0.5 1 1.5
0.5

0.6

0.7

0.8

0.9

1
NARMA − tanh

specrad

N
R

M
S

E

0.2 0.4 0.6
0.5

0.6

0.7

0.8

0.9

1
NARMA − tanh

σ

Figure 4.16: Results for a ring topology, on the left for ranging
across the spectral radius without IP, on the right for adjusting the
desired standard deviation with IP.

dynamical regime on a reservoir, even if its topology is very constrained.
Using this IP rule thus allows to pre-adapt simple, constrained topolo-
gies prior to hardware implementation. Due to the pre-adaptation, these
very sparsely and regularly connected reservoirs can be actually used to
perform tasks in an efficient way.

4.7 Conclusions

The transition from neural implementations of reservoirs to more exotic
excitable media is not trivial. We are dealing with nonlinear dynamical
systems which are known to exhibit a wide variety of possible behaviours.
The engineer or researcher who wants to apply RC to a novel reservoir
implementation needs tools that offer at least some guidance as to which
reservoir or which parameter setting is suitable for computational pur-
poses. While guidelines based on stationary measures such as the spec-
tral radius are useful for standard reservoirs, these methods break down
when, e.g., non-standard activation functions are used or when the input
signal drives the reservoir into a very different dynamical regime.

In this chapter, we have introduced and investigated metrics for mea-

✐
✐

“main” — 2009/11/10 — 10:05 — page 139 — #165 ✐
✐

✐
✐

✐
✐

4.7 Conclusions 139

suring the dynamical excitability of the reservoir. This excitability changes
as the reservoir is driven by external inputs, and these metrics take this
into account by looking at the reservoir at the current point in the tra-
jectory. We have shown that for the tasks we considered, they are a good
predictor of performance. Moreover, we have given an interpretation of
the measure that offers more insight into the functionality of the reservoir,
showing that a trade-off is made between the excitability of the reservoir
and its ’degrees of freedom’ in state space.

Next, we have presented and derived a generalization of a reservoir
adaptation rule called IP that maximizes the entropy of the reservoir
states w.r.t. certain constraints on the moments. We have shown for
two instantiations that the adaptation is capable of driving the neurons
in larger networks to the theoretically derived renormalized mean and
variance of the desired truncated exponential and Gaussian output distri-
butions. An important effect of IP is that it makes it possible to use node
types and topologies which normally perform very poorly as reservoir.
The very special ring-topology can, through the use of IP, also be used as
a real reservoir. This has consequences for implementations of reservoirs
in hardware: for special reservoir types such as delay coupled systems
consisting of a delay line with nonlinear processing elements, application
of IP can aid to tune the system into the desired regime.

The idea of autonomously regulated robustness of dynamics is a pow-
erful concept. It was shown that a certain dynamic regime in reservoirs
leads to good performance for a given task. The IP rule allows the reser-
voirs to autonomously perceive and adapt their dynamics to this spe-
cific regime, irrespective of disturbances, initial weights or input scaling.
Reservoirs were already robust in the sense that the performance vari-
ance for random reservoirs is small. This robustness even improves when
adding IP, since reservoirs can now autonomously evolve towards the cor-
rect dynamic properties. This sets the stage for automatic tuning of novel
RC architectures with more complex or exotic nonlinearities than the tra-
ditional ESN implementations. Moreover, for some (e.g., hardware) reser-
voir types it may be useful to incorporate these adaptation mechanisms
into the reservoir to allow online tuning of the reservoir dynamics.

✐
✐

“main” — 2009/11/10 — 10:05 — page 140 — #166 ✐
✐

✐
✐

✐
✐

✐
✐

“main” — 2009/11/10 — 10:05 — page 141 — #167 ✐
✐

✐
✐

✐
✐

5
Conclusions and

perspectives

Here we will summarize the main contributions of this thesis. Next, we
draw some global conclusions and also list some possible avenues for future
research in this area.

5.1 Summary

In this work, I have presented experimental evidence to support the case
that Reservoir Computing is a novel method for computing with time
series. I started by showing the broad applicability and impressive per-
formance of Reservoir Computing by presenting and discussing several
difficult temporal processing tasks studied at our lab, both academic and
real-world problems - such as speech recognition and epileptic seizure
detection.

The claim that a reservoir can be seen as a generic nonlinear excitable
medium, beyond the original neural and bio-inspired implementations,
was illustrated by presenting an experimental overview of several stan-
dard and non-standard reservoir implementations, ranging from Echo
State Networks and Liquid State Machines over bandpass reservoirs to
implementations on an analog CNN VLSI chip and reservoirs built from
nano-photonic nodes. We have shown that each of these reservoir types is
suitable for doing nonlinear computation on timeseries. This establishes
RC as a novel, non-Turing computational paradigm, whose fundamen-
tal principles can be applied to physical and biological systems, either
by studying them from this point of view, or by actively constructing
reservoir-based systems.

Starting from the idea that reservoirs are nonlinear dynamical systems,
I then discussed several stationary metrics for quantifying the dynamical

✐
✐

“main” — 2009/11/10 — 10:05 — page 142 — #168 ✐
✐

✐
✐

✐
✐

142 5 Conclusions and perspectives

regime of standard reservoirs, and extended these metrics to dynamical
measures that take the actual trajectory of the reservoir through state
space into account as it is driven by the external input. I showed that
these dynamical measures offer an accurate prediction of performance on
several tasks. Moreover, since these measures are taken at the actual
operating point of the reservoir instead of a linearization around the zero
fixpoint, they can be applied to other, more complex nonlinearities - which
is necessary when studying more exotic reservoirs such as those that occur
in photonic reservoir computing or other physical RC systems.

Next - keeping in mind that the dynamics are crucial for the perfor-
mance of a reservoir - we have studied and extended an unsupervised, bio-
plausible local adaptation rule for the intrinsic parameters of the nodes in
the reservoir. This generalized IP rule was then experimentally validated
on a variety of different tasks, and it was shown that for each of these
tasks, the rule adapts the nodes of the reservoir into a desirable dynamic
regime. Moreover, we also used the rule to tune a ring reservoir topology,
which is notoriously difficult to operate. We showed that here too, the
IP rule adapts the parameters of the reservoir automatically so that the
dynamics are in the right regime. We claim that this rule can be of use
when going to more exotic reservoir implementations, where it is initially
not clear at all how to set the parameters of the nodes.

5.2 Conclusions

The take-home message of this thesis is that Reservoir Computing is a
promising and fundamental shift in the way computation with timeseries
is done. Currently almost all computation on temporal signals - mono-
or multidimensional - is done using conventional sequential programmed
machines, which means that they execute certain human-made algorithms
on their inputs. The main claim or message of this Ph.D. thesis is that
Reservoir Computing can and should be seen not only as a convenient
and computationally efficient way of training or using RNNs, but that it
represents a novel way of computing. More specifically, RC as a compu-
tational paradigm should be contrasted with the well known Turing class
of computing machines.

Turing machines were introduced by Alan Turing as a model for pro-
cedural or algorithmic computing, and are a very powerful but abstract
logical construct. Their introduction has been crucial for the develop-
ment of theoretical computer science, by defining in a strict logical and
mathematical way which devices are useful for computation. The Turing
machine is very important since it actually defines an equivalence class

✐
✐

“main” — 2009/11/10 — 10:05 — page 143 — #169 ✐
✐

✐
✐

✐
✐

5.2 Conclusions 143

of computational devices that have the same computational capabilities.
In practice, it is impossible to construct a Turing machine due to the re-
quirement of infinite storage capacity, but if these physical limitations are
ignored, many (abstract and physical) computational devices have been
proven to be Turing equivalent, including programming languages such
as Java or Pascal, cellular automata, and all modern computers.

In addition to being a powerful construct for reasoning about the
properties of computability, the Turing machine is also a model for how
to perform these computations. As such, the TM has been a source
of inspiration for Von Neumann when he introduced his architecture that
serves as the basis for all modern digital computers. A TM is an essentially
sequential machine, which actively requests its external input as it is
needed and performs the computations on its own pace - meaning that
computationally more complex operations take more time.

This computational paradigm can be contrasted with the RC way of
doing computation. The main differences are:

• Learning vs. explicit programming. This difference is more
generally applicable to the majority of methods in the field of ma-
chine learning, but it does represent a quite fundamental shift in
the way computational devices are constructed. Learning machines
learn by example, which means that a lot of difficult problems can
be tackled without exact knowledge of the underlying system or
properties of the problem, but it also means that there will always
remain a certain impression of a black-box for these systems, with
no strict proofs of them behaving in any circumstances. Moreover,
learning systems will usually still make errors, although it is the
task of the system designer to minimize these errors.

• Transient dynamics vs. stable states for computing. Reser-
voirs are dynamical systems that are continually driven by external
inputs or that generate their own dynamics. In contrast with, e.g.,
Hopfield nets (Hopfield, 1982), a reservoir is not used in a stable
state but is constantly in a transient dynamical regime. This is
very different from the way electronic computing devices using dig-
ital logic operate: in those devices, care is taken that the transients
have died out as much as possible and in synchronous systems this
is even guaranteed by a common clock signal.

• Generalization capabilities vs. predictable input domain.
When traditional computers are presented with inputs that they are
not programmed to handle, they generally do not know what to do
- depending on how the error handling is done this unknown input
will either be ignored, generate erroneous output or even cause the

✐
✐

“main” — 2009/11/10 — 10:05 — page 144 — #170 ✐
✐

✐
✐

✐
✐

144 5 Conclusions and perspectives

program to halt. RC systems on the other hand (and many other
learning systems) are more robust to unseen inputs, and indeed they
are capable of generalizing what they have seen in the training set
to novel inputs. This generalization is a very important property in
many applications and enables the robust deployment of systems in
real world environments.

• Implementation substrate. Most physical implementations of
Turing machines aim to model what is actually an abstract sequen-
tial processing machine, and try to minimize the unnecessary nonlin-
ear physical effects. Several physical RC implementations however
(modelled or actual), actively use the physical or dynamical prop-
erties of the implementation substrate, meaning that the medium
in which the reservoir is implemented forms an integral part of the
computational mechanism. While the application and study of these
physical reservoirs is certainly not trivial, it does open a potential
research and application area for many systems that were as yet not
seen as computational devices.

We have shown that RC shows much promise, both theoretically and
from an engineering point of view, as a framework for computation on
timeseries. The initial steps towards understanding and tuning the oper-
ation of reservoirs to optimal performance have been taken in this thesis.
Nonetheless, there is still a lot of open questions and much insight to
be gained. Reservoirs are complex nonlinear dynamical systems, and a
mathematical theory that fully explains their functionality would greatly
enhance our understanding and enable a more directed search for media
that are suitable in the context of Reservoir Computing.

5.3 Perspectives

Alternate reservoir implementations In this work, some Reser-
voir Computing implementations were already presented that deviate
from the neural models that started this research area. However, there
is still a vast range of possible reservoir implementations that can - and
likely will - be explored in the future. The use of very fast analog VLSI
chips was initiated through the study of CNN reservoirs, but there is
still a large potential for further study here. For instance, currently the
readout layer is simulated offline on the host computer which is both cum-
bersome and relatively slow. Modern CNN chips usually also incorporate
an accompanying DSP chip or FPGA, on which the readout layer could
be implemented. A working implementation of this CNN reservoir setup

✐
✐

“main” — 2009/11/10 — 10:05 — page 145 — #171 ✐
✐

✐
✐

✐
✐

5.3 Perspectives 145

would enable a vast array of applications, because these CNNs are often
tightly integrated with other visual processing hardware such as high-
speed Charge Coupled Devices (CCD). Reservoir Computing offers an
entirely novel way of using these sophisticated hardware visual processors
using learning mechanisms, instead of having to program them by hand.

The photonic Reservoir Computing research line is even more innova-
tive, but perhaps also more promising. Currently, industrial applications
of nanophotonic research are mostly focused on very high speed commu-
nication (because of the high speeds at which light moves), but the real
breakthrough going from fast silicon hardware computing to ultrafast
photonic hardware computing still has to happen. This is partly because
the direct transposition of design principles from the silicon world to the
photonic world causes problems: photonic memory is very difficult to
impossible to construct, the components that are used are very bulky
compared to their silicon counterparts and they often exhibit undesirable
nonlinear or chaotic behaviour. Due to this, most photonic systems still
need to make the transition to silicon at some point, which nullifies many
of their advantages. Photonic Reservoir Computing has the potential to
offer an entirely novel way of using photonic systems for computation, not
by constructing standard computers using photonic components, but by
actually using the complex nonlinear properties of light and nanophotonic
devices. The transition to photonic reservoirs opens up a large amount
of potential novel implementations that share no resemblance anymore to
ESNs or LSMs, but that do enable the use of very powerful, full-optical
high speed computation with light.

Dynamics measures We have presented the case in this work that a
reservoir can be seen as a generic nonlinear dynamic medium that boosts
the discriminative power of the simple linear readout function. Follow-
ing this line of reasoning, we have used techniques from dynamical sys-
tems theory to measure and quantify the actual dynamic properties as the
reservoir is driven by external inputs. Additionally, this quantification has
yielded more insights into the operation of the reservoir, and what con-
stitutes a good reservoir. More importantly, however, these techniques in
many cases translate to novel, non-neural reservoir implementations with
more advanced or complex nonlinear behaviour, because they evaluate
the dynamics in the actual working point of the reservoir. The extension
of these measures and their application to novel reservoir implementa-
tions is an interesting line of research that will surely be continued in the
future. Moreover, since the link between RC and dynamic systems theory
has been shown in this work, it seems obvious to borrow more extensively
from the knowledge in the latter field. The study of nonlinear control

✐
✐

“main” — 2009/11/10 — 10:05 — page 146 — #172 ✐
✐

✐
✐

✐
✐

146 5 Conclusions and perspectives

theory has yielded many results that could be applied to the design of
suitable reservoirs. Finally, the development of methods for measuring
useful dynamical reservoir properties do not only yield more insight into
the operation of these systems, but can also form the basis for the de-
velopment of adaptation or learning rules that optimize these dynamical
measures.

Reservoir adaptation The first steps towards an automatic adapta-
tion - rather than brute-force random search or tweaking by experts -
towards a good reservoir have been taken in this thesis. The proposed
adaptation rule is based on information theoretic principles and modeled
after a biological phenomenon, but has been proven to also adapt the dy-
namics of the reservoir to a desirable regime in an unsupervised way. This
type of adaptation will be crucial for constructing novel reservoir imple-
mentations, where traditional design principles such as spectral radius are
no longer valid. Intrinsic plasticity is one possibility that has shown to be
useful in the context of neural reservoirs, but it has yet to be extended to
more exotic reservoir implementations and transfer functions. Moreover,
the impact of IP on the reservoir dynamics and the interplay between
the rule and the dynamic properties should be studied thoroughly from a
system’s point of view, possibly using the dynamic quantification meth-
ods presented in this work. In particular, since our proposed dynamics
measure has increased the insight into the necessary criteria for a good
reservoir, this can serve as a guideline for extending the current adapta-
tion rule to a more advanced version that might require far less or even
no intervention from the designer at all.

Novel reservoir architectures The classical two-layer (reservoir
and readout) setup has been used extensively throughout this thesis.
However, the viewpoint of the reservoir as a nonlinear complex trans-
formation with memory can be extended beyond this basic architecture.
The central message of (Bengio, 2009) is that truly powerful learning ma-
chines need to have a multi-layered or hierarchical structure, with each
successive layer operating on a more abstract level than the previous one.
The fact that these deep networks are capable of achieving - despite their
complexity - very impressive and even state-of-the-art results, has been
shown multiple times, for instance by Yann LeCun’s LeNet (LeCun et al.,
1989) or Hinton’s Deep Belief Networks (Hinton et al., 2006). In this
context, Reservoir Computing also constitutes an appealing paradigm for
constructing deep architectures, due to the separation of the learning
system into a complex, random or unsupervisedly tuned nonlinear layer,
and a simple trainable linear layer. By stacking these layers, and ap-

✐
✐

“main” — 2009/11/10 — 10:05 — page 147 — #173 ✐
✐

✐
✐

✐
✐

5.3 Perspectives 147

plying suitable learning rules to the intermediate linear layers, powerful
hierarchical structures like the ones cited above can be constructed.

✐
✐

“main” — 2009/11/10 — 10:05 — page 148 — #174 ✐
✐

✐
✐

✐
✐

✐
✐

“main” — 2009/11/10 — 10:05 — page 149 — #175 ✐
✐

✐
✐

✐
✐

A
The Reservoir Computing

Toolbox

All the experiments described in this thesis were done using the RC Tool-
box (RCT). This toolbox was developed during my PhD work in collab-
oration with some of the colleagues at our lab. The toolbox is written in
Matlab, is open source1 and offers a user-friendly interface for the simula-
tion of all common - and less common - RC implementations. The toolbox
is essentially a collection of functions that are written around common
data structures. The RCT can be used in several ways, ranging from a
standard ESN setup applied to a user-defined dataset, to more flexible
custom experimentation scripts. The toolbox offers functions that can
help the user generate custom reservoir topologies, custom hierarchical
architectures, custom nonlinearities or complex node types, and custom
training functions.

This appendix describes the current version of the RCT. The old ver-
sion (designed and developed by B. Schrauwen and myself) already incor-
porated much of the functionality described below. However, as research
on reservoirs progressed, it became clear that a rewrite was necessary
to enable the toolbox to cope with new developments. Specifically, the
emerging of novel node types, adaptation rules and the investigation of
hierarchical RC structures did not fit in the old version. This is why I,
in collaboration with M. Wardermann, redesigned the underlying datas-
tructures and code to allow the RCT to be used for researching these new
topics.

1Available from http://reslab.elis.ugent.be/rct.

✐
✐

“main” — 2009/11/10 — 10:05 — page 150 — #176 ✐
✐

✐
✐

✐
✐

150 A The Reservoir Computing Toolbox

Figure A.1: A schematic overview of the three basic functionalities
provided by the RCT.

A.1 A high-level description

From a user point of view, there are a few possible scenarios for which the
RCT can be used. Many users who are new to the toolbox will want to
start with a very basic experiment, or apply the RC framework to their
own dataset. This can be easily done, and several examples on how to
do this will be given below. However, more advanced use of the toolbox
(i.e., custom architectures or learning rules) requires a more advanced
knowledge of the Matlab language, in particular function pointers and
anonymous functions.

The toolbox essentially consists of three layers of functionality - see
Figure A.1. At the center, the core is formed by a simulation engine
that simulates a given RC architecture based on the topology (which
layers are connected to which), the node nonlinearities and the weight
matrices. This core functionality is mainly provided by the function
generic_simulate (see Section A.5). Around this, a framework is pro-
vided for training and evaluating an architecture on a given dataset. This
functional layer contains functions that can train, e.g., the linear read-
outs, but also provides a flexible way of doing cross-validation (see Section
A.6).

Finally, at the highest level there is a parallellization and optimization
layer. The fundamental unit of work here is a single RC experiment (pro-
vided by the training/evaluation layer). The optimization functionality
currently allows manual parameter sweeps and post-experiment gathering
and processing of the data, contained in the function rc_simulate.m -
but work is ongoing on extending this functionality to an automatic op-

✐
✐

“main” — 2009/11/10 — 10:05 — page 151 — #177 ✐
✐

✐
✐

✐
✐

A.2 Getting started 151

timization framework, that finds a quasi-optimal parameter setting with
far less intervention from the user. The parallelization functionality, fi-
nally, enables the deployment of large-scale batches of jobs (for instance
parameter sweeps) across a computing grid of worker nodes with access
to a shared network drive (see Section A.7). At every level, many func-
tion hooks are built-in that can be configured by the user, and replaced
if necessary by custom functions.

A.2 Getting started

The root location of the RCT directory will be denoted by $RCTROOT.
From this location, the user can execute the script install.m, which will
automatically add the necessary directories to the Matlab path.

By default, the toolbox is configured to train and test a standard
ESN reservoir of 100 tanh nodes on a tenth-order NARMA task. This
experiment can be run immediately by executing rc_simulate, which
should give an output similar to :

>> rc_simulate
Warning: Using default settings.
To use your own configuration, set the variable custom_configuration to ...

the path of your own configuration.
Warning: Results of simulation will not be saved!
Job 1/1 (100 %). Time passed: 0.
Creating topology.
indices number 1/1.
Simulating network.
Resampling responses and outputs to highest sampling rate of any layer.
Training and evaluating readout using cross_validate. Elapsed time is ...

12.327436 seconds.
train_result 1: 0.15933(0.00302113), test_result: 0.160691(0.00810677)

The train and test results are the normalized mean square error (NMSE)
on the training and test set, respectively.

The rc_simulate script executes a standard workflow when doing
experiments with RC. The precise parameters that define the experi-
ment (such as the dataset to be used, the reservoir size and topology,
training method, . . .) are read from a configuration .m script. The
user can set the configuration file to be used by setting the variable
custom_configuration to the name of the configuration file (without
the .m extension). If this variable is not set, the default settings are
used (as in the example above). See defaults.m and the settings files

✐
✐

“main” — 2009/11/10 — 10:05 — page 152 — #178 ✐
✐

✐
✐

✐
✐

152 A The Reservoir Computing Toolbox

in $RCTROOT/default_settings/ for how this default experiment and
topology is defined exactly.

The rc_simulate and rc_simulate_job scripts do the following tasks:

• Generate a dataset, by calling the function stored in the variable
dataset_generation_function. This is discussed in more detail
in Section A.3.

• Construct a reservoir topology (all untrained weight matrices) based
on the parameters settings stored in the variable topology. The
weight matrices are also stored in the variable topology. This is
discussed in detail in Section A.4.

• Simulate the reservoir given the topology and input signals. This
is done by calling generic_simulate.m, which will be discussed in
more detail in Section A.5.

• Train the readout function and evaluate it on the train and test
data. More information on this is given in Section A.6.

A.2.1 Configuration files
As was already mentioned, the RCT is constructed to work with
configuration files. These files are simple matlab scripts where pa-
rameters are set for the experiments. The default configuration file
is $RCTROOT/defaults.m. This file gets called at the beginning of
rc_simulate. If a variable custom_configuration exists, the contents
of this variable are evaluated (using Matlab’s eval function), if not the
default settings are used. The variable custom_configuration can con-
tain either the name of a Matlab script, or some Matlab code that sets
parameters. As an example, there are two ways of changing the default
reservoir size from 100 to 200 nodes:

• By writing ’topology.layer(3).size=200;’ in
a configuration file (say, myconf.m), and setting
custom_configuration=’myconf’.

• By setting custom_configuration=’topology.layer(3).size=

200;’ directly.

For this simple example, the two forms are equivalent, but when
more parameters need to be changed it quickly becomes more conve-
nient to store everything in a configuration file. For more advanced users,
custom_configuration can be a cell array of strings that will be eval-
uated in order. This is for instance useful if you have small variations

✐
✐

“main” — 2009/11/10 — 10:05 — page 153 — #179 ✐
✐

✐
✐

✐
✐

A.2 Getting started 153

(say arch1.m, arch2.m, . . .) on a basic configuration (say base.m).
You can then set, e.g., custom_configuration={’base’, ’arch1’}; or
custom_configuration={’base’, ’arch2’};.

A.2.2 Some use cases
Depending on what the user wants, the toolbox can be used for a few
different scenarios. We will briefly discuss some of these scenarios and
the options that are available, ranked in increasing order of difficulty,
flexibility and required Matlab programming knowledge.

A.2.2.1 Own dataset

The user may wish to run the standard ESN setup on his/her own dataset.
This is done by creating a Matlab script (e.g., my_dataset.m) that gen-
erates or loads the data, and returns the input and output signals. See
Section A.3 for information on how to do this. Then the following code
will run the experiment on the custom dataset.

>> custom_configuration='dataset_generation_function=@my_dataset';
>> rc_simulate

A.2.2.2 Parameter sweeps

The rc_simulate script also supports ‘sweeping’ certain parameters (run-
ning experiments for a range of values of that parameters). This can be
specified through the variable parameter_ranges. It is a struct array
with two fields, .name and .range. The name field is a string containing
the name of the variable to be ranged over, and the range field is a vector
containing the values that the parameter should take. For instance, if
you want to range the spectral radius of the reservoir connection matrix
(see Section A.4 for more information about the topology) from .1 to 1
in steps of .1, the following code will do that:

>> parameter_ranges = struct('name', {'topology.conn(3,3).scale_factor'}, ...
'range', {.1:.1:1});

>> rc_simulate

You can also range over more than one parameter. For instance, if
you want to range both the reservoir scaling and the input scaling over
the same range, you can use:

✐
✐

“main” — 2009/11/10 — 10:05 — page 154 — #180 ✐
✐

✐
✐

✐
✐

154 A The Reservoir Computing Toolbox

>> parameter_ranges = struct('name', {'topology.conn(1,3).scale_factor', ...
'topology.conn(3,3).scale_factor'}, 'range', {.1:.1:1, .1:.1:1});

>> rc_simulate

Finally, it is also possible to range over non-scalar values, such as
function pointers. For instance:

>> parameter_ranges = struct('name', {'dataset_generation_function'}, ...
'range', {{'@dataset_narma_10', '@dataset_narma_30'}});

>> rc_simulate

If a parameter sweep is done, the user will want to store the results
of every parameter setting to file. This is done by setting save_results

to true. By default, it is false, and a warning is printed to remind the
user of this. If save_results is true, a directory will be created to store
the results. This directory is named with a timestamp to avoid conflicts
between experiments, and is created as a subdirectory of the location
specified by output_directory, whose default value is ’results’. In
this directory, for every parameter setting selected by parameter_ranges

a copy of the workspace is saved. If save_data is false, the data variable
is erased before saving which will reduce the necessary diskspace.

A.2.2.3 Custom scripts

If a user wants to execute a custom script that does not fit into the
standard experimental flow provided by rc_simulate_job.m, it suffices
to specify the name of the script like so: custom_script=’my_script’.
In this way, all the functionality of rc_simulate - such as parallelization
and parameter sweeping - to be used with user-defined scripts. Beware:
the script should save all necessary variables itself.

A.3 Datasets

The RCT includes some of the main benchmark tests that have been
described in RC literature and that were used in this thesis. The tasks
include the Mackey-Glass timeseries prediction (Steil, 2005a), the isolated
spoken digit recognition task from (Verstraeten et al., 2005), the NARMA
task described in (Jaeger, 2003) and (Steil, 2005a) and others.

Two main categories of problems can be defined: input-output tasks
and generation tasks. In the former case, the task consists of mapping a

✐
✐

“main” — 2009/11/10 — 10:05 — page 155 — #181 ✐
✐

✐
✐

✐
✐

A.4 Topology generation and layers 155

(possibly multidimensional) input signal to a (also possibly multidimen-
sional) output signal - an example is the NARMA task. In the latter
case, there is only a single (input) timeseries that is to be autonomously
generated by the reservoir - an example of this is the Mackey-Glass time-
series production. For these generation tasks, the output of the readout
is typically fed back into the reservoir. The system is trained by teacher
forcing the timeseries on the inputs, training the readout weights to do
one-step-ahead prediction and during the testing phase turning off the
teacher forced signal and feeding the network’s own predicted signal back.
This also means that in this case, there is no output layer, only an input
layer whose values are either teacher-forced or generated by the reservoir
itself. In the directory $RCTROOT/default_settings/ there is a configu-
ration file settings_pattern_generation that configures the topology
for a generation task (e.g., by taking away the output layer and setting a
connection from the reservoir to the input layer).

It is easy to create additional, custom datasets by defining your own
dataset function. This function should return two cell arrays, containing
the input and output signals. Each cell corresponds to an example in the
dataset. For input-output tasks, the output signals corresponding to the
inputs are returned by the dataset function, but for generation tasks, the
output cell array will be empty.

The function generate_datastruct, which is called at the begin-
ning of rc_simulate_job, will use the dataset_generation_function

to generate the dataset and fills it into the data variable. This variable
contains the field layer, which is a struct array with as much elements
as there are layers in the architecture (see Section A.4 below for more on
layers). For every layer, there are two fields: layer.r and layer.s. The
layer(:).r field contains the required or teacher forced signals, and the
layer(:).s field contains the signals or states that were actually sim-
ulated by running generic_simulate. For instance, in a simple input
output classification task, the data.layer(1).r field would contain the
inputs to the network, the data.layer(3).s field would contain the sim-
ulated reservoir states, and the data.layer(4).r and data.layer(4).s

would contain the desired outputs and simulated outputs respectively.

A.4 Topology generation and layers

Research on RC is currently starting to move from the standard single
reservoir setup to hierarchical approaches. Some innovative layered ar-
chitectures have already been described in literature (Jaeger, 2007), and
clearly more advanced setups will be studied in the future. That is why

✐
✐

“main” — 2009/11/10 — 10:05 — page 156 — #182 ✐
✐

✐
✐

✐
✐

156 A The Reservoir Computing Toolbox

the way the toolbox handles topologies was changed drastically compared
to previous versions.

The RCT works with a datastructure based on layers, and connections
between the layers. A layer consists of a set of nodes (ranging from very
simple linear nodes to nodes with complex nonlinearities and learning
rules). The connections between the layers are always defined by a weight
matrix, connecting each node of the outgoing layer to each node of the
incoming layer (obviously, if a weight is zero there is no connection). By
default, a standard four layer setup is used, with the first layer being the
input layer, the second being the bias layer, the third being the reservoir
itself and the fourth layer is the output layer - this is the most common
setup described in literature. However, the toolbox supports an arbitrary
number of layers (only limited by memory constraints) and connections
between the layers.

In the toolbox, all information about the topology and architecture
of the system is stored in the variable topology. It is a struct with the
fields layer and conn (for connections). Suppose there are four layers
in the architecture2, then topology.layer will in turn be a 1x4 struct
array, and topology.conn will be a 4x4 struct array (one for every pos-
sible connection between the layers). A single layer struct contains the
following fields:

• nonlin_functions : this is a cell array of function pointers, con-
taining the nonlinearity functions to be applied to the nodes in the
layer (e.g. tanh()). See Section A.5 for more information.

• is_trained_offline : a boolean field to indicate if a layer is
trained offline (such as for the output layer in the standard setup).

• is_trained_online : a boolean field to indicate if a layer is trained
online.

• init_simulation: a function pointer to a function that will be
called at the beginning of generic_simulate.m. This can be used
to, e.g., initialize the layer to a certain state. See Section A.5 for
more.

• finish_simulation : similarly to init_simulation, this contains
a function that will be called at the end of generic_simulate.m.
This is useful, e.g., to compute some metrics on the states of the
layer.

2This is the default setting: an input layer, a bias layer, a reservoir layer and an
output layer.

✐
✐

“main” — 2009/11/10 — 10:05 — page 157 — #183 ✐
✐

✐
✐

✐
✐

A.4 Topology generation and layers 157

• no_delay : a boolean field to indicate that the connections to this
layer are instantaneous, i.e., with zero delay. This is needed for
generator tasks, since there are two connections which would result
in a delay of two timesteps.

• is_teacher_forced: a boolean field that indicates whether a layer
is teacher-forced. This means that in generic_simulate, the states
of the layer are not computed through simulation, but the signals
contained in the data.layer().r field are used to drive the other
layers. Note that in an input-output task, the input layer is also
teacher-forced because the external inputs are used to drive the
other layers!

• dt: scalar field that indicates the timestep on which the layer op-
erates. This type of resampling was used for the experiments of
Section 3.1.

• node_type. String field that indicates the node type. Currently
only analog reservoirs are supported, but this will be extended to,
e.g., spiking or photonic reservoirs in the future.

• size : scalar field that determines how many nodes are in the layer.

• training_function : function pointer to the training function for
layers that are trained offline.

• regul_param : scalar field that sets the regularization parameter for
the training function. This can be optimized using cross-validation
- see Section A.6.

• scoring : function pointer to the scoring function. Default value is
score_nrmse, but many others are available in the toolbox.

• generic_scoring : boolean field that indicates if the scoring should
be done on a sample-by-sample basis. This is useful for large datasets.

The topology.conn struct contains all information about the connections
between the layers. Usually, only a small number of all possible connec-
tions between the layers will be in use. The conn struct has the following
fields:

• is_active : a boolean field that indicates if a connection is ac-
tive or not, i.e if it is taken into account during simulation with
generic_simulate. This can be used to quickly turn connections
between on and off.

✐
✐

“main” — 2009/11/10 — 10:05 — page 158 — #184 ✐
✐

✐
✐

✐
✐

158 A The Reservoir Computing Toolbox

• creation_pipeline : a cell array of function pointers that will be
called during the construction of the weight matrices. The functions
are called in succession, and act as a pipeline - i.e., the results are
passed on from function to function. This allows a lot of flexibility
when generating connections. For instance, if the creation pipeline
consists of : {@gen_rand, @assign_randn, @scale_specrad}, first
a random connectivity matrix will be created with a given connec-
tion fraction (see below), next weights are assigned from a random
normal distribution and finally the weight matrix is rescaled to a
certain spectral radius given by scale_factor below.

• scale_factor: a scalar value that indicates the scaling factor used
in the scale functions in the creation pipeline. This can be for
instance the spectral radius, a constant scale factor or the largest
singular value. The meaning of this scalar is determined by the
scaling function that is used.

• conn_frac : the connection fraction used when creating the con-
nectivity matrix (which node is connected to which). A fraction
conn_frac of all possible connections will be set, with a value of 1
indicating that all nodes of the outgoing layer are connected to all
nodes of the incoming layer.

• discrete_set : a vector of values from which the weights are ran-
domly drawn by the function assign_discrete.

A.5 generic_simulate.m

The function generic_simulate is the core of the toolbox. Its signature
is:

[data, topology] = generic_simulate(topology, data, simulated_connections, ...
sample_len)

The function takes a topology and a dataset, and simulates the entire
architecture for all samples in the dataset. The simulated states of the
layers that are not teacher forced, are written into the data.layer().s

fields. The function only simulates active connections (where is_active

is true).
At every timestep, the state vector of every layer is updated by com-

puting the weighted sum of all layers that are incoming to that layer.

✐
✐

“main” — 2009/11/10 — 10:05 — page 159 — #185 ✐
✐

✐
✐

✐
✐

A.6 Training and cross-validation 159

Then, all nonlinearities are applied in the order given by topology.

layer(:).nonlin_functions. There are two types of nonlinear func-
tions: simple functions that only operate on the current timestep (such
as tanh()), and complex nonlinearities that take - in addition to the
current state vector - also the topology, data and other arguments (see
generic_simulate.m for the exact argument list). The complex nonlin-
earities can be used for, e.g., online learning rules or adaptation rules such
as Intrinsic Plasticity (see Section 4.3 of this thesis and (Schrauwen et al.,
2008b)).

A.6 Training and cross-validation

This section deals with offline training and cross-validation methods. The
difference with online training methods is that the adjustment of the
weights is done in a single-shot fashion after all simulations have been
done, whereas for online learning the weights are continually adjusted
while the reservoir or other layers are simulated.

A layer n can be trained offline simply by setting topology.layer(n).

trained_offline to true, and filling in an appropriate training func-
tion in topology.layer(n).training_function. The most popular lin-
ear training functions in the RC community are available in the tool-
box (train_pseudo_inverse and train_ridgre_regress), but other
less common training methods are also provided (such as robust lin-
ear training, train_robust.m (Ryan, 1997) or iteratively weighted least
squares (IWLS), train_iwls.m (Ryan, 1997)).

These functions can be used to train a layer on data from other in-
coming layers that were already simulated on the dataset. Obviously, for
a trained layer, the data.layer(n).r field of required states should be
filled in, otherwise an error will occur. The trained weights for all incom-
ing layers are automatically distributed and filled into the corresponding
topology.conn(i,n).w fields.

For a more accurate evaluation of a certain architecture/parameter
combination, cross-validation can be applied (see Subsection 2.1.3.2 of
this work). Cross-validation is implemented through the function cross_

validate.m and offers a function hook that allows to specify the pre-
cise way in which cross-validation occurs. This function hook, speci-
fied in train_params.cross_val_set_function returns a struct array
that has two fields: train and test. Every element of the struct ar-
ray represents a fold, and for each fold, the train and test fields con-
tain the sample numbers (the indices for the data struct containing the
dataset) that should be used for training and testing respectively. By

✐
✐

“main” — 2009/11/10 — 10:05 — page 160 — #186 ✐
✐

✐
✐

✐
✐

160 A The Reservoir Computing Toolbox

default this function hook is set to random_cross_val, which creates
a number of folds equal to train_params.folds, and randomly dis-
tributes all examples across the training and test fields making sure that
every sample is used for testing once. Other cross-validation-set func-
tions include no_cross_val (only one fold, simple train and testset -
the fraction of train samples is set using train_params.train_frac),
cross_val_only_training (all examples in the training set, useful for
maximizing data use) and random_freerun_cross_val.

This latter function is useful when using the freerun operation mode,
where the reservoir is left to generate signals on its own instead of be-
ing driven by an external input. This mode is activated by setting
train_params.freerun to true. If this is the case, the cross_validate

function will split all samples from the testset in every fold, and split off
the first fraction (specified by train_params.freerun_split). The por-
tion of the data before this freerun splitpoint is then added to the training
set (for maximizing the data use) and also used to warmup the reservoir
during the testing. The testing is then done starting from the freerun
splitpoint, using a reservoir warmed up with a teacher-forced training
signal.

Many linear training methods use some form of regularization (see
Subsection 2.1.3.1 of this work). This regularization parameter can be au-
tomatically optimized by using cross_validate_grid instead of cross_

validate. In this case, a linear sweep is done of the regularization pa-
rameter, and for every value a cross-validation-set struct array is again
created. The training examples of every fold are then passed to the reg-
ular cross_validate function as a complete dataset, which means that
inside cross_validate the training samples will be further divided into
a training and validation set. This results in the nested cross-validation
setup that was described in Subsection 2.1.3.1. After all values of the reg-
ularization parameter were evaluated, the optimal value is selected and
the performance on the testset is returned.

A.7 Parallellization

If a network of computers capable of running matlab and having access
to the same shared network drive is available, the RCT supports par-
allelization of batch jobs. This is done in an ‘embarrasingly parallel’
way, meaning that there is no data dependency between the tasks run-
ning in parallel. The parallelization is being done on the level of jobs or
experiments. This means that for, e.g., parameter sweeps with multiple
runs (instantiations of reservoirs with the same parameter settings), every

✐
✐

“main” — 2009/11/10 — 10:05 — page 161 — #187 ✐
✐

✐
✐

✐
✐

A.7 Parallellization 161

experiment will be a single job in the batch. On a lower level, multicore/-
multithreaded parallelization of, e.g., matrix operations is provided by
(the more recent versions of) Matlab itself.

The parallel infrastructure is based on a client-server architecture.
All necessary files and functions are contained in the folder $RCTROOT/

parallel. The interface for submitting a job to the grid has been made
the same as running experiments locally, i.e., with rc_simulate. This
means that it suffices to define a custom_configuration variable and
if necessary a custom_script variable and then the user can call rc_

simulate_par instead of rc_simulate. This function will execute the
default configuration file, all custom configuration files and then save the
workspace to the shared network drive in a new job directory - which is
named with a timestamp of the moment when the job is created. This
saved workspace will then be loaded by the worker nodes when starting
a job, to ensure that every worker node executes the job in the same
environment. The script also saves a jobfile, which is a .mat file that
contains the number of jobs, and which parameter combinations should
be simulated.

The server or dispatcher is a matlab process that continually polls the
shared directory for new job files. If a job file is detected, the dispatcher
loads the jobfile, checks which job is next in the queue and waits for a
message from one of the worker nodes. The worker nodes periodically
contact the dispatcher through a TCP/IP connection and ask for new
jobs. If a job is waiting in the waiting queue, the dispatcher sends the job
number, job directory and job name to the worker node, which then starts
the experiment, and the dispatcher moves the job number to the running
queue. When a worker node is finished it also contacts the dispatcher
to notify that the job is done, and the dispatcher moves the job number
from the running queue to the done queue. If all waiting/running jobs
are done, the filename of the jobfile is prepended with done_ so that the
dispatcher ignores it from then on.

All communication between the dispatcher and the worker nodes is
done through two TCP/IP ports, which can be specified when start-
ing the dispatcher and worker processes. For automating the manage-
ment of the worker nodes, several batch-scripts have been written in
$RCTROOT/parallel/bash_scripts, which read a file called nodes.list.
All commands to the worker nodes (such as starting/stopping or checking
the presence of a matlab process) are issued through an ssh connection
to all network clients contained in the file nodes.list.

✐
✐

“main” — 2009/11/10 — 10:05 — page 162 — #188 ✐
✐

✐
✐

✐
✐

✐
✐

“main” — 2009/11/10 — 10:05 — page 163 — #189 ✐
✐

✐
✐

✐
✐

Bibliography

Adrian, E. (1928). The Basis of Sensation: The Action of the Sense
Organs. W.W. Norton & Co, New York.

Aizerman, M., Braverman, E., and Rozonoer, L. (1964). Theoretical
foundations of the potential function method in pattern recognition
learning. Automation and Remote Control, 25(6):821–837.

Alligood, K., Sauer, T., and Yorke, J. (1996). Chaos: An Introduction to
Dynamical Systems. Springer.

Anon (1999). Intelligent flight control: Advanced concept program, final
report. Technical report, The Boeing Company.

Antonelo, E. A., Schrauwen, B., and Stroobandt, D. (2008a). Event detec-
tion and localization for small mobile robots using reservoir computing.
Neural Networks, 21:862–871.

Antonelo, E. A., Schrauwen, B., and Stroobandt, D. (2008b). Modeling
multiple autonomous robot behaviors and behavior switching with a
single reservoir computing network. In IEEE International Conference
on Man, Systems and Cybernetics.

Antonelo, E. A., Schrauwen, B., and Stroobandt, D. (2009). Unsupervised
learning in reservoir computing: Modeling hippocampal place cells for
small mobile robots. In International Conference on Artificial Neural
Networks (ICANN). (accepted).

Athreya, K. and Ney, P. (2004). Branching processes. Dover Publications.

Atick, J. J. (1992). Could information theory provide an ecological the-
ory of sensory processing? Network: Computation in Neural Systems,
3(2):213–251.

✐
✐

“main” — 2009/11/10 — 10:05 — page 164 — #190 ✐
✐

✐
✐

✐
✐

164 A Bibliography

Atiya, A. F. and Parlos, A. G. (2000). New results on recurrent network
training: Unifying the algorithms and accelerating convergence. IEEE
Transactions on Neural Networks, 11:697.

Baddeley, R., Abbott, L. F., Booth, M. C. A., Sengpiel, F., Freeman,
T., Wakeman, E. A., and Rolls, E. T. (1997). Responses of neurons
in primary and inferior temporal visual cortices to natural scenes. In
Proceedings in Biological Sciences, volume 264, pages 1775 – 1783.

Bauer, M. and Martienssen, W. (1991). Lyapunov exponents and dimen-
sions of chaotic neural networks. J. Phys. A: Math. Gen, 24:4557–4566.

Bell, A. J. and Sejnowski, T. J. (1995). An information-maximization
approach to blind separation and blind deconvolution. Neural Compu-
tation, 7(6):1129–1159.

Bengio, Y. (2009). Learning deep architectures for AI. Foundations &
Trends in Machine Learning, to appear.

Billingsley, P. (1965). Ergodic Theory and Information. John Wiley and
Sons Inc.

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Claren-
don Press, Oxford.

Bucolo, M., Fortuna, L., Frasca, M., La Rosa, M., Virzi, M., and
Shannahoff-Khalsa, D. (2004). A nonlinear circuit architecture for
magnetoencephalographic signal analysis. Methods of information in
medicine, 43(1):89–93.

Buehner, M. and Young, P. (2006). A tighter bound for the echo state
property. IEEE Transactions on Neural Networks, 17(3):820–824.

Buonomano, D. V. and Merzenich, M. M. (1995). Temporal informa-
tion transformed into a spatial code by a neural network with realistic
properties. Science, 267:1028–1030.

Burgsteiner, H. (2005a). On learning with recurrent spiking neural net-
works and their applications to robot control with real-world devices.
PhD thesis, Graz University of Technology.

Burgsteiner, H. (2005b). Training networks of biological realistic spiking
neurons for real-time robot control. In Proceedings of the 9th Inter-
national Conference on Engineering Applications of Neural Networks,
pages 129–136, Lille, France.

✐
✐

“main” — 2009/11/10 — 10:05 — page 165 — #191 ✐
✐

✐
✐

✐
✐

A Bibliography 165

Bush, K. and Anderson, C. (2005). Modeling reward functions for in-
complete state representations via echo state networks. In Proceedings
of the International Joint Conference on Neural Networks, Montreal,
Quebec.

Buteneers, P., Schrauwen, B., Verstraeten, D., and Stroobandt, D. (2009).
Real-time epileptic seizure detection on intra-cranial rat data using
reservoir computing. In Proceedings of the 15th International Con-
ference on Neural Information Processing of the Asia-Pacific Neural
Network Assembly, APNNA.

Chua, L. (1998). CNN: A paradigm for complexity. World Scientific.

Chua, L., Roska, T., and Venetianer, P. (1993). The CNN is universal
as the Turing machine. IEEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications, 40(4):289–291.

Chua, L., Yang, L., and Krieg, K. (1991). Signal processing using cellular
neural networks. The Journal of VLSI Signal Processing, 3(1):25–51.

Chua, L. O. and Yang, L. (1988a). Cellular neural networks: Applications.
IEEE Transactions on Circuits and Systems, 35(10):1257–1272.

Chua, L. O. and Yang, L. (1988b). Cellular neural networks: Theory.
IEEE Transactions on Circuits and Systems, 35(10):1273–1290.

Cover, T. (1965). Geometrical and statistical properties of systems of lin-
ear inequalities with applications in pattern recognition. IEEE trans-
actions on electronic computers, 14(3):326–334.

Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction to Support
Vector Machines and Other Kernel-based Learning Methods. Cambridge
University Press.

Crone, S. F., Nikolopoulos, K., and Hibon, M. (2008). Automatic mod-
elling and forecasting with artificial neural networks - a forecasting
competition evaluation. Technical report, Lancaster University Man-
agement School.

Davis, S. and Mermelstein, P. (1980). Comparison of parametric rep-
resentations for monosyllabic word recognition in continuously spoken
sentences. IEEE Transactions on Acoustics, Speech and Signal Process-
ing, 28(4):357–366.

Deng, Y., Chakrabartty, S., and Cauwenberghs, G. (2004). Analog au-
ditory perception model for robust speech recognition. In Proceedings
of the International Joint Conference on Neural Networks (IJCNN),
pages 1705–1710.

✐
✐

“main” — 2009/11/10 — 10:05 — page 166 — #192 ✐
✐

✐
✐

✐
✐

166 A Bibliography

Destexhe, A. and Marder, E. (2004). Plasticity in single neuron and
circuit computations. Nature, 431:789–795.

Dockendorf, K. P., Park, I., He, P., PrÃncipe, J. C., and DeMarse, T. B.
(2009). Liquid state machines and cultured cortical networks: The
separation property. Biosystems, 95(2):90 – 97.

Doddington, G. and Schalk, T. (1981). Speech Recognition: Turning
Theory to Practice. IEEE Spectrum, 18(9):26–32.

Dominey, P. (1995). Complex sensory-motor sequence learning based on
recurrent state representation and reinforcement learning. Biological
Cybernetics, 73(3):265–274.

Doyon, B., Cessac, C., Quoy, M., and Samuelides, M. (1992). Destabi-
lization and Route to Chaos in Neural Networks with Random Connec-
tivity. In Advances in Neural Information Processing Systems 5,[NIPS
Conference] table of contents, pages 549–555. Morgan Kaufmann Pub-
lishers Inc. San Francisco, CA, USA.

Dreyfus, G. (2005). Neural Networks: Methodology And Applications.
Springer.

Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pattern Classification
- Second Edition. John Wiley and Sons, Inc.

Dutoit, X., Schrauwen, B., Van Campenhout, J., Stroobandt, D.,
Van Brussel, H., and Nuttin, M. (2009). Pruning and regularization
in reservoir computing. Neurocomputing, 72:1534–1546.

Fernando, C. and Sojakka, S. (2003). Pattern recognition in a bucket.
In Proceedings of the 7th European Conference on Artificial Life, pages
588–597.

Foldiak, P. and Young, M. (1995). The handbook of brain theory and
neural networks, chapter Sparse coding in the primate cortex, pages
895–898. Bradford Books.

Fredkin, E. (2003). An introduction to digital philosophy. International
Journal of Theoretical Physics, 42(2):189–247.

Gers, F., Eck, D., and Schmidhuber, J. (2001). Applying LSTM to time
series predictable through time-window approaches. In Proceedings of
the International Conference on Artificial Neural Networks, pages 669–
676. Springer-Verlag London, UK.

✐
✐

“main” — 2009/11/10 — 10:05 — page 167 — #193 ✐
✐

✐
✐

✐
✐

A Bibliography 167

Gers, F. and Schmidhuber, J. (2001). LSTM recurrent networks learn
simple context free and context sensitive languages. IEEE Transactions
on Neural Networks, 12(6):1333–1340.

Gerstner, W. and Kistler, W. (2002). Spiking Neuron Models. Cambridge
University Press.

Ghani, A., McGinnity, T., Maguire, L., and Harkin, J. (2008). Neuro-
inspired Speech Recognition with Recurrent Spiking Neurons. In Pro-
ceedings of the 18th international conference on Artificial Neural Net-
works, Part I, pages 513–522. Springer.

Goh, W. and Crook, N. (2007). Pattern recognition using chaotic tran-
sients. In Submitted to 15th European Symposium on Artificial Neural
Networks (ESANN’2007).

Graves, A., Eck, D., Beringer, N., and Schmidhuber, J. (2004). Biologi-
cally plausible speech recognition with LSTM neural nets. In Proceed-
ings of Bio-ADIT, pages 127–136.

Hagan, M. and Menhaj, M. (1994). Training feedforward networks with
the Marquardt algorithm. IEEE Transactions on Neural Networks,
5(6):989–993.

Hajnal, M. and Lorincz, A. (2006). Critical Echo State Networks. Lecture
notes in Computer Science, 4131:658.

Hammer, B. and Steil, J. J. (2002). Perspectives on learning with recur-
rent neural networks. In Proceedings of the European Symposium on
Artificial Neural Networks (ESANN).

Hartigan, J. (1975). Clustering algorithms. John Wiley & Sons, Inc. New
York, NY, USA.

Haykin, S. (1991). Adaptive filter theory. Prentice-Hall, 2nd edition.

Haykin, S. (1999). Neural Networks: a comprehensive foundation (Second
edition). Prentice Hall.

Haykin, S. and Widrow, B. (2003). Least-Mean-Square Adaptive Filters.
Wiley-Interscience.

Hertzberg, J., Jaeger, H., and Schönherr, F. (2002). Learning to ground
fact symbols in behavior-based robots. In Proceedings of the 15th Eu-
ropean Conference on Artificial Intelligence, pages 708–712.

Hinton, G., Osindero, S., and Teh, Y. (2006). A fast learning algorithm
for deep belief nets. Neural Computation, 18(7):1527–1554.

✐
✐

“main” — 2009/11/10 — 10:05 — page 168 — #194 ✐
✐

✐
✐

✐
✐

168 A Bibliography

Holzmann, G. (2008). Echo state networks with filter neurons and a de-
lay&sum readout. Technical report, Institute for Theoretical Computer
Science, Technische Universität Graz.

Hopfield, J. and Brody, C. D. (2000). What is a moment? “Cortical”
sensory integration over a brief interval. In Proceedings of the National
Academy of Sciences of the United States of America, volume 97, pages
13919–13924.

Hopfield, J. J. (1982). Neural networks and physical systems with emer-
gent collective computational abilities. Proceedings of the National
Academy of Science USA, 79(8):2554–2558.

Izhikevich, E. M. (2007). Dynamical Systems in Neuroscience: The Ge-
ometry of Excitability and Bursting. The MIT Press.

Jaeger, H. (2001a). The “echo state” approach to analysing and training
recurrent neural networks. Technical Report GMD Report 148, German
National Research Center for Information Technology.

Jaeger, H. (2001b). Short term memory in echo state networks. Tech-
nical Report GMD Report 152, German National Research Center for
Information Technology.

Jaeger, H. (2002). Tutorial on training recurrent neural networks, covering
BPTT, RTRL, EKF and the “echo state network” approach. Techni-
cal Report GMD Report 159, German National Research Center for
Information Technology.

Jaeger, H. (2003). Adaptive nonlinear system identification with echo
state networks. In Advances in Neural Information Processing Systems,
pages 593–600.

Jaeger, H. (2005). Reservoir riddles: Sugggestions for echo state network
research (extended abstract). In Proceedings of the International Joint
Conference on Neural Networks, pages 1460–1462.

Jaeger, H. (2007). Discovering multiscale dynamical features with hierar-
chical echo state networks. Technical report, Jacobs University.

Jaeger, H. and Haas, H. (2004). Harnessing nonlinearity: predicting
chaotic systems and saving energy in wireless telecommunication. Sci-
ence, 308:78–80.

Jaeger, H., Lukosevicius, M., and Popovici, D. (2007). Optimization
and applications of echo state networks with leaky integrator neurons.
Neural Networks, 20:335–352.

✐
✐

“main” — 2009/11/10 — 10:05 — page 169 — #195 ✐
✐

✐
✐

✐
✐

A Bibliography 169

Jain, L. C. and Vemuri, V. (1999). Industrial applications of neural net-
works. CRC Press, Boca Raton.

Jones, B., Stekel, D., Rowe, J., and Fernando, C. (2007). Is there a liquid
state machine in the bacterium escherichia coli? pages 187–191.

Joshi, P. and Maass, W. (2004). Movement generation and control with
generic neural microcircuits. In Proc. of BIO-AUDIT, pages 16–31.

Joshi, P. and Maass, W. (2005). Movement generation with circuits of
spiking neurons. Neural Computation, 17(8):1715–1738.

Karacs, K. and Roska, T. (2006). Route number recognition of public
transport vehicles via the bionic eyeglass. In Proceedings of the 10th
International Workshop on Cellular Neural Networks and their Appli-
cations (CNNA’06), pages 28–30.

Karhunen, J., Hyvärinen, A., and Oja, E. (2004). Independent component
analysis. Wiley-Interscience.

Kilian, J. and Siegelmann, H. (1996). The dynamic universality of sig-
moidal neural networks. Information and Computation, 128:48–56.

Kohonen, T. (2001). Self-organizing maps. Springer.

Korbel, P. and Slot, K. (2006). Modeling of elastic inter-node bounds in
Cellular Neural Network-based implementation of the deformable grid
paradigm. In 10th International Workshop on Cellular Neural Networks
and Their Applications, 2006. CNNA’06., pages 1–6.

Langton, C. G. (1990). Computation at the Edge of Chaos - Phase-
transitions and Emergent Computation. Physica D, 42(1-3):12–37.

Lazar, A., Pipa, G., and Triesch, J. (2007). Fading memory and times
series prediction in recurrent networks with different forms of plasticity.
Neural Networks, 20(3):312–322.

LeCun, Y., Jackel, L. D., Boser, B., Denker, J. S., Graf, H. P., Guyon,
I., Henderson, D., Howard, R. E., and Hubbard, W. (1989). Handwrit-
ten digit recognition: Applications of neural net chips and automatic
learning. IEEE Communication, pages 41–46.

Legenstein, R. and Maass, W. (2005). New Directions in Statistical Signal
Processing: From Systems to Brain, chapter What makes a dynamical
system computationally powerful? MIT Press.

✐
✐

“main” — 2009/11/10 — 10:05 — page 170 — #196 ✐
✐

✐
✐

✐
✐

170 A Bibliography

Legenstein, R. A. and Maass, W. (2007). Edge of chaos and prediction
of computational performance for neural microcircuit models. Neural
Networks, pages 323–333.

Liebald, B. (2004). Exploration of effects of different network topologies
on the esn signal crosscorrelation matrix spectrum. Master’s thesis,
School of Engineering & Science at International University Bremen.

Lloyd, S. (2002). Computational capacity of the universe. Physical Review
Letters, 88(23):237901–237901.

Lukosevicius, M. and Jaeger, H. (2007). Overview of Reservoir Recipes.
Technical report, Jacobs University.

Lukosevicius, M. and Jaeger, H. (2009). Reservoir Computing Approaches
to Recurrent Neural Network Training. Computer Science Review,
3(3):127–149.

Lukosevicius, M., Popovici, D., Jäger, H., and Siewert, U. (2006). Time-
warping invariant echo state networks. Jacobs University technical re-
port, 2:1–15.

Lyapunov, A. (1966). Stability of motion. Academic Press, New-York and
London.

Lyon, R. (1982). A computational model of filtering, detection and com-
pression in the cochlea. In Proceedings of the IEEE ICASSP, pages
1282–1285.

Maass, W. (1997). Noisy spiking neurons with temporal coding have
more computational power than sigmoidal neurons. In Mozer, M., Jor-
dan, M. I., and Petsche, T., editors, Advances in Neural Information
Processing Systems, volume 9, pages 211–217. MIT Press (Cambridge).

Maass, W. and Bishop, C. (2001). Pulsed Neural Networks. Bradford
Books/MIT Press, Cambridge, MA.

Maass, W., Joshi, P., and Sontag, E. D. (2007). Computational aspects
of feedback in neural circuits. PLOS Computational Biology, 3(1):e165,
1–20.

Maass, W., Legenstein, R. A., and Markram, H. (2002a). A new ap-
proach towards vision suggested by biologically realistic neural micro-
circuit models. In Proc. of the 2nd Workshop on Biologically Motivated
Computer Vision, Lecture Notes in Computer Science. Springer. in
press.

✐
✐

“main” — 2009/11/10 — 10:05 — page 171 — #197 ✐
✐

✐
✐

✐
✐

A Bibliography 171

Maass, W., Natschläger, T., and H., M. (2004a). Fading memory and
kernel properties of generic cortical microcircuit models. Journal of
Physiology, 98(4-6):315–330.

Maass, W., Natschläger, T., and Markram, H. (2002b). Real-time com-
puting without stable states: A new framework for neural computation
based on perturbations. Neural Computation, 14(11):2531–2560.

Maass, W., Natschläger, T., and Markram, H. (2003). A model for real-
time computation in generic neural microcircuits. In Proceedings of
NIPS, volume 15, pages 229–236. MIT Press.

Maass, W., Natschläger, T., and Markram, H. (2004b). Computational
models for generic cortical microcircuits. In Feng, J., editor, Compu-
tational Neuroscience: A Comprehensive Approach, chapter 18, pages
575–605. Chapman & Hall/CRC, Boca Raton.

Maass, W., Natschläger, T., and Markram, H. (2004c). Fading memory
and kernel properties of generic cortical microcircuit models. Journal
of Physiology – Paris, 98(4–6):315–330.

Mallat, S. and Zhang, Z. (1993). Matching pursuit with time-frequency
dictionaries. IEEE Transactions on Signal Processing, 41:3397–3415.

Meddis, R. (1986). Simulation of mechanical to neural transduction in the
auditory receptor. The Journal of the Acoustical Society of America,
79:702.

Merlet, J. (2006). Jacobian, manipulability, condition number, and accu-
racy of parallel robots. Journal of Mechanical Design, 128:199.

Minsky, M. and Papert, S. (1969). Perceptrons: An Introduction to Com-
putational Geometry. MIT Press, Cambridge, MA.

Mitchell, M., Crutchfield, J., and Hraber, P. (1994). Dynamics, Compu-
tation, and the" Edge of Chaos": A Re-Examination. 19:497–497.

Moody, J. (1992). The effective number of parameters: An analysis of
generalization and regularization in nonlinear learning systems. In Pro-
ceedings of NIPS, volume 4, pages 847–854.

Nagy, Z., Voroshazi, Z., and Szolgay, P. (2005). An emulated digital
retina model implementation on FPGA. In 9th International Workshop
on Cellular Neural Networks and Their Applications, 2005, pages 278–
281.

✐
✐

“main” — 2009/11/10 — 10:05 — page 172 — #198 ✐
✐

✐
✐

✐
✐

172 A Bibliography

Omlin, C. W. and Giles, C. L. (1994). Constructing deterministic finite-
state automata in sparse recurrent neural networks. In IEEE Inter-
national Conference on Neural Networks (ICNN’94), pages 1732–1737,
Piscataway, NJ. IEEE Press.

Oubbati, M., Levi, P., Schanz, M., and Buchheim, T. (2005). Veloc-
ity control of an omnidirectional robocup player with recurrent neural
networks. In Proceeding of the Robocup Symposium, pages 691–701.

Ozturk, M. C., Xu, D., and Principe, J. C. (2006). Analysis and design
of echo state networks. Neural Computation, 19:111–138.

Patterson, R., Robinson, K., Holdsworth, J., McKeown, D., Zhang, C.,
and Allerhand, M. (1992). Complex sounds and auditory images. Au-
ditory physiology and perception, pages 429–446.

Penrose, R. (1955). A generalized inverse for matrices. 51(1955):406–413.

Pesin, Y. (1977). Characteristic Lyapunov exponents and smooth ergodic
theory. Russian Mathematical Surveys, 32(4):55–114.

Plöger, P. G., Arghir, A., Günther, T., and Hosseiny, R. (2004). Echo
state networks for mobile robot modeling and control. In RoboCup
2003: Robot Soccer World Cup VII, pages 157–168.

Principe, J., Xu, D., and Fisher, J. (2000). Information theoretic learning.
Unsupervised adaptive filtering, pages 265–319.

Prokhorov, D. (2007). Training recurrent neurocontrollers for real-time
applications. IEEE Transactions on Neural Networks, 18:1003–1015.

Puskorius, G. V. and Feldkamp, L. A. (1994). Neurocontrol of nonlinear
dynamical systems with kalman filter trained recurrent networks. IEEE
Transactions on Neural Networks, 5:279–297.

Rao, Y., Kim, S.-P., Sanchez, J., Erdogmus, D., Principe, J., Carmena,
J., Lebedev, M., and Nicolelis, M. (2005). Learning mappings in brain
machine interfaces with echo state networks. In Proceedings of the
2005 IEEE International Conference on Acoustics, Speech, and Signal
Processing, pages 233–236.

Riedmiller, M. and Braun, H. (1993). A direct adaptive method for fast
backpropagation learning: The RPROP algorithm. In Ruspini, H.,
editor, Proceedings of the IEEE International Conference on Neural
Networks, pages 586–591, San Francisco.

Robinson, A. J. (1994). An application of recurrent nets to phone proba-
bility estimation. IEEE Transactions on Neural Networks, 5:298–305.

✐
✐

“main” — 2009/11/10 — 10:05 — page 173 — #199 ✐
✐

✐
✐

✐
✐

A Bibliography 173

Rodriguez, P. (2001). Simple recurrent networks learn context-free
and context-sensitive languages by counting. Neural Computation,
13(9):2093–2118.

Rodriguez-Vazquez, A., Linan-Cembrano, G., Carranza, L., Roca-
Moreno, E., Carmona-Galan, R., Jimenez-Garrido, F., Dominguez-
Castro, R., and Meana, S. (2004). ACE16k: the third generation of
mixed-signal SIMD-CNN ACE chips toward VSoCs. IEEE Transac-
tions on Circuits and Systems I, 51(5):851–863.

Roska, T. and Chua, L. (1993). The CNN universal machine: an analogic
array computer. IEEE Transactions on Circuits and Systems II: Analog
and Digital Signal Processing, 40(3):163–173.

Rumelhart, D., Hinton, G., and Williams, R. (1986). Parallel Distributed
Processing, chapter Learning internal representations by error propa-
gation. MIT Press, Cambridge, MA.

Ryan, T. P. (1997). Modern Regression Methods. Wiley and sons.

Salmen, M. and Plöger, P. G. (2005). Echo state networks used for motor
control. In Proceedings of the 2005 IEEE International Conference on
Robotics and Automation, pages 1953–1958.

Schiller, U. D. and Steil, J. J. (2005). Analyzing the weight dynamics of
recurrent learning algorithms. Neurocomputing, 63C:5–23.

Schmidhuber, J. and Hochreiter, S. (1997). Long short-term memory.
Neural Computation, 9:1735–1780.

Scholkopf, B. and Smola, A. (2002). Learning with kernels. MIT press
Cambridge, Mass.

Scholkopf, B., Smola, A., and Muller, K. (1997). Kernel principal com-
ponent analysis. Lecture notes in computer science, 1327:583–588.

Schraudolph, N., Dayan, P., and Sejnowski, T. (1994). Temporal Differ-
ence Learning of Position Evaluation in the Game of Go. Advances in
Neural Information Processing, pages 817–817.

Schrauwen, B. (2008). Towards applicable spiking neural networks. PhD
thesis.

Schrauwen, B., Busing, L., and Legenstein, R. (2008a). On Computa-
tional Power and the Order-Chaos Phase Transition in Reservoir Com-
puting. In Proceedings of NIPS.

✐
✐

“main” — 2009/11/10 — 10:05 — page 174 — #200 ✐
✐

✐
✐

✐
✐

174 A Bibliography

Schrauwen, B., Defour, J., Verstraeten, D., and Van Campenhout, J.
(2007a). The introduction of time-scales in reservoir computing, ap-
plied to isolated digits recognition. In Proceedings of the International
Conference on Artificial Neural Networks (ICANN).

Schrauwen, B. and Van Campenhout, J. (2003). BSA, a fast and accurate
spike train encoding scheme. In Proceedings of the International Joint
Conference on Neural Networks (IJCNN), pages 2825–2830.

Schrauwen, B., Verstraeten, D., and Van Campenhout, J. (2007b). An
overview of reservoir computing: theory, applications and implementa-
tions. In Proceedings of the European Symposium on Artifical Neural
Networks (ESANN).

Schrauwen, B., Warderman, M., Verstraeten, D., Steil, J. J., and
Stroobandt, D. (2008b). Improving reservoirs using intrinsic plastic-
ity. Neurocomputing, 71:1159–1171.

Seneff, S. (1988). A joint synchrony/mean-rate model of auditory speech
processing. Journal of Phonetics, 16:1.

Shannon, C. E. (1948). A mathematical theory of communication. Bell
System Technical Journal, 27:379–423, 623–656.

Siewert, U. and Wustlich, W. (2007). Echo-state networks with band-pass
neurons: Towards generic time-scale-independent reservoir structures.
Technical report, Planet GmbH.

Simard, P., Steinkraus, D., and Platt, J. (2003). Best practices for con-
volutional neural networks applied to visual document analysis. In
Document Analysis and Recognition, 2003. Proceedings. Seventh Inter-
national Conference on, pages 958–963.

Skowronski, M. D. and Harris, J. G. (2006). Minimum mean squared
error time series classification using an echo state network prediction
model. In IEEE International Symposium on Circuits and Systems.

Sprott, J. C. (2003). Chaos and Time–Series Analysis. Oxford University
Press.

Steil, J. J. (2004). Backpropagation-Decorrelation: Online recurrent
learning with O(N) complexity. In Proceedings of the International
Joint Conference on Neural Networks (IJCNN), volume 1, pages 843–
848.

Steil, J. J. (2005a). Memory in backpropagation-decorrelation O(N) ef-
ficient online recurrent learning. In Proceedings of the International
Conference on Artificial Neural Networks (ICANN).

✐
✐

“main” — 2009/11/10 — 10:05 — page 175 — #201 ✐
✐

✐
✐

✐
✐

A Bibliography 175

Steil, J. J. (2005b). Stability of backpropagation-decorrelation efficient
O(N) recurrent learning. In Proceedings of ESANN’05, Brugge.

Steil, J. J. (2006). Online stability of backpropagation-decorrelation re-
current learning. Neurocomputing, 69:642–650.

Steil, J. J. (2007a). Online reservoir adaptation by intrinsic plasticity
for backpropagation-decorrelation and echo state learning. Neural Net-
works, 20(3):353 – 364.

Steil, J. J. (2007b). Several ways to solve the mso problem. In Proceedings
of the European Symposium on Artificial Neural Networks (ESANN),
pages 489–494.

Steinwart, I. and Christmann, A. (2008). Support Vector Machines.
Springer Verlag.

Ster, B., Dobnikar, A., et al. (1996). Neural networks in medical diagnosis:
Comparison with other methods. In Proceedings of the International
Conference EANN, volume 96, pages 427–430.

Suykens, J. and Vandewalle, J., editors (1998). Nonlinear Modeling: Ad-
vanced Black-Box Techniques, chapter Enhanced Multi-Stream Kalman
Filter Training for Recurrent Networks, page 29?53. Kluwer Academic
Publishers.

Suykens, J., Vandewalle, J., and De Moor, B. (1996). Artificial Neural
Networks for Modeling and Control of Non-Linear Systems. Springer.

Takens, F., Rand, D. A., and L.-S., Y. (1981). Detecting strange attrac-
tors in turbulence. In Dynamical Systems and Turbulence, volume 898
of Lecture Notes in Mathematics, pages 366–381. Springer-Verlag.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso.
J. Royal. Statist. Soc B., 58(1):267–288.

Tikhonov, A. and Arsenin, V. Y. (1977). Solutions of Ill-Posed Problems.
Winston and Sons.

Tong, M. H., Bickett, A. D., Christiansen, E. M., and Cottrell, G. W.
(2007). Learning grammatical structure with echo state networks. Neu-
ral Networks, 20(3):424–432.

Török, L. and Zarándy, Á. (2002). CNN based color constancy algorithm.
Cellular Neural Networks and Their Applications, page 452.

✐
✐

“main” — 2009/11/10 — 10:05 — page 176 — #202 ✐
✐

✐
✐

✐
✐

176 A Bibliography

Triesch, J. (2005). A gradient rule for the plasticity of a neuron’s intrinsic
excitability. In Proc. of the Int. Conf. on Artificial Neural Networks
(ICANN).

Triesch, J. (2007). Synergies between intrinsic and synaptic plasticity
mechanisms. Neural Computation, 19:885–909.

Turing, A. (1936). On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Soci-
ety, 42(2):230–265.

Turing, A. (1950). Computing machinery and intelligence. Mind,
59(236):433–460.

Turrigiano, G. and Nelson, S. (2004). Homeostatic plasticity in the de-
veloping nervous system. Nature Reviews Neuroscience, 5(2):97–107.

Valero-Cuevas, F., Yi, J., Brown, D., McNamara, R., Paul, C., and Lip-
son, H. (2007). The tendon network of the fingers performs anatomical
computation at a macroscopic scale. IEEE Transactions on Biomedical
Engineering, 54(6 Part 2):1161–1166.

Van Gestel, T., Suykens, J., De Brabanter, J., De Moor, B., and Vande-
walle, J. (2001). Kernel canonical correlation analysis and least squares
support vector machines. Lecture notes in computer science, pages 384–
389.

Van Hese, P., Martens, J., Boon, P., Dedeurwaerdere, S., Lemahieu, I.,
and Van de Walle, R. (2003). Detection of spike and wave discharges
in the cortical EEG of genetic absence epilepsy rats from Strasbourg.
Physics in Medicine and Biology, 48(12):1685–1700.

Van Immerseel, L. and Martens, J.-P. (1993). Pitch and voiced/unvoiced
determination with an auditory model. Journal of the Acoustical Soci-
ety of America, 91(6):3511–3526.

Vandoorne, K. (2009). Photonic Reservoir Computing with SOAs: Mem-
ory task and NARMA10 task. Technical report, INTEC, Ghent Uni-
versity.

Vandoorne, K., Dierckx, W., Schrauwen, B., Verstraeten, D., Baets, R.,
Bienstman, P., and Van Campenhout, J. (2008). Toward optical sig-
nal processing using photonic reservoir computing. Optics Express,
16(15):11182–11192.

Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer-
Verlag, New York.

✐
✐

“main” — 2009/11/10 — 10:05 — page 177 — #203 ✐
✐

✐
✐

✐
✐

A Bibliography 177

Vapnik, V. N. (1999). The nature of statistical learning theory. Statis-
tics for engineering and information science. Springer, second edition
edition.

Venayagamoorthy, G. (2007). Online design of an echo state network
based wide area monitor for a multimachine power system. Neural
Networks, 20(3):404–413.

Venetianter, P. and Roska, T. (1998). Image compression by cellular neu-
ral networks. IEEE transactions on circuits and systems I: fundamental
theory and applications, 45(3):205–215.

Verstraeten, D. (2004). Een studie van de Liquid State Machine: een
woordherkenner. Master’s thesis, Ghent University, ELIS department.

Verstraeten, D., Schrauwen, B., D’Haene, M., and Stroobandt, D. (2007).
A unifying comparison of reservoir computing methods. Neural Net-
works, 20:391–403.

Verstraeten, D., Schrauwen, B., and Stroobandt, D. (2006). Reservoir-
based techniques for speech recognition. In Proceedings of the World
Conference on Computational Intelligence, pages 1050–1053.

Verstraeten, D., Schrauwen, B., Stroobandt, D., and Van Campenhout,
J. (2005). Isolated word recognition with the liquid state machine: a
case study. Information Processing Letters, 95(6):521–528.

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., and Lang, K. (1989).
Phoneme recognition using time-delay neural networks. IEEE Trans-
actions on acoustics, speech and signal processing, 37(3):328–339.

Walker, W., Lamere, P., Kwok, P., Raj, B., Singh, R., Gouvea, E., Wolf,
P., and Woelfel, J. (2004). Sphinx-4: A flexible open source framework
for speech recognition. Technical report, Sun Microsystems Inc.

Wardermann, M. and Steil, J. J. (2007). Intrinsic plasticity for reservoir
learning algorithms. In Proceedings of the European Symposium on
Artificial Neural Networks (ESANN).

Werbos, P. J. (1974). Beyond Regression: New Tools for Prediction and
Analysis in the Behavioral Sciences. PhD thesis, Applied Mathematics,
Harvard University, Boston, MA.

Werbos, P. J. (1990). Backpropagation through time: what it does and
how to do it. Proc. IEEE, 78(10):1550–1560.

White, O., Lee, D., and Sompolinsky, H. (2002). Short-term memory in
orthogonal neural networks. Neural Comput Phys Rev Lett, 92:148102.

✐
✐

“main” — 2009/11/10 — 10:05 — page 178 — #204 ✐
✐

✐
✐

✐
✐

178 A Bibliography

Williams, R. J. and Zipser, D. (1989). A learning algorithm for continually
running fully recurrent neural networks. Neural Computation, 1:270–
280.

Wolff, R. (1992). Local Lyapunov exponents: looking closely at chaos.
Journal of the Royal Statistical Society. Series B (Methodological),
pages 353–371.

Wolfram, S. (2002). A New Kind of Sciences. Wolfram Media, Inc.

wyffels, F., Schrauwen, B., and Stroobandt, D. (2008a). Stable output
feedback in reservoir computing using ridge regression. In International
Conference on Artificial Neural Networks.

wyffels, F., Schrauwen, B., and Stroobandt, D. (2008b). Using reservoir
computing in a decomposition approach for time series prediction. In
Lendasse, A., editor, Proceedings of the European Symposium on Time
Series Prediction, pages 149–158, Porvoo. Multiprint Oy / Otamedia.

wyffels, F., Schrauwen, B., Verstraeten, D., and Stroobandt, D. (2008c).
Band-pass reservoir computing. In Hou, Z. and Zhang, N., editors,
Proceedings of the International Joint Conference on Neural Networks,
pages 3203–3208, Hong Kong.

Xavier de Souza, S., Suykens, J., Vandewalle, J., and D., B. (2006). Coop-
erative behavior in coupled simulated annealing processes with variance
control. In Proc. of the International Symposium on Nonlinear Theory
and its Applications (NOLTA).

Xavier-de Souza, S., Van Dyck, M., Suykens, J., and Vandewalle, J.
(2006). Fast and Robust Face Tracking for CNN chips: application
to wheelchair driving. pages 200–205.

Yalcin, M., Suykens, J., and Vandewalle, J. (2005). Cellular neural net-
works, multi-scroll chaos and synchronization. World Scientific.

Yang, T. and Chua, L. (2001). Testing for local activity and edge of chaos.
Int. J. Bifurcation and Chaos, 11:1495–1591.

Zhang, W. and Linden, D. J. (2003). The other side of the engram:
Experience-driven changes in neuronal intrinsic excitability. Nature
Reviews Neuroscience, 4:885–900.

Ziehmann, C., Smith, L., and Kurths, J. (1999). The bootstrap and
Lyapunov exponents in deterministic chaos. Physica D, 126(1-2):49–
59.

✐
✐

“main” — 2009/11/10 — 10:05 — page 179 — #205 ✐
✐

✐
✐

✐
✐

✐
✐

“main” — 2009/11/10 — 10:05 — page 180 — #206 ✐
✐

✐
✐

✐
✐

	1 Introduction
	1.1 Automating information processing
	1.2 Artificial Intelligence / Machine Learning
	1.3 Artificial Neural networks
	1.3.1 Applications of neural networks
	1.3.2 Activation functions
	1.3.3 Spiking neural networks
	1.3.4 Network topologies

	1.4 The origins of Reservoir Computing
	1.4.1 A brief history
	1.4.2 Echo State Networks
	1.4.3 Liquid State Machines
	1.4.4 BackPropagation DeCorrelation
	1.4.5 Early descriptions of neural RC systems
	1.4.6 Applications of Reservoir Computing
	1.4.7 Towards generic Reservoir Computing

	1.5 Contributions and structure
	1.5.1 Main contributions of this thesis
	1.5.2 Structure of this thesis

	1.6 List of publications

	2 Standard Reservoir Computing: methods and applications
	2.1 Operational and functional aspects of reservoirs: the basics
	2.1.1 Creating and using reservoirs
	2.1.1.1 The standard architecture
	2.1.1.2 Variations on the basic architecture

	2.1.2 Three views on reservoir functionality
	2.1.2.1 The reservoir as a temporal kernel
	2.1.2.2 The reservoir as a complex preprocessing filter for linear methods
	2.1.2.3 The reservoir as a dynamical system: computation at the edge of chaos

	2.1.3 Performance evaluation
	2.1.3.1 Regularization
	2.1.3.2 Cross-validation
	2.1.3.3 Unbalanced datasets and Fisher relabeling

	2.2 Applications
	2.2.1 Academic tasks
	2.2.1.1 NARMA
	2.2.1.2 Memory capacity
	2.2.1.3 Signal template classification task
	2.2.1.4 Signal generation tasks

	2.2.2 Spoken digit recognition with a Liquid State Machine
	2.2.2.1 Preprocessing
	2.2.2.2 Noisy inputs
	2.2.2.3 Comparison with the state of the art

	2.2.3 The Ford dataset competition
	2.2.3.1 Experimental setup
	2.2.3.2 Results of the competition

	2.2.4 Epilepsy detection

	3 Towards generic Reservoir Computing: time scales and novel reservoirs
	3.1 Time scales and memory
	3.1.1 Three different time steps
	3.1.1.1 The reservoir timescale 2: leaky integrator nodes
	3.1.1.2 The output time scale 3
	3.1.1.3 Transitions between time domains through resampling

	3.1.2 Node memory vs. reservoir memory
	3.1.3 The impact of time scales on spoken digit recognition
	3.1.3.1 Input Resampling vs. integration
	3.1.3.2 Reservoir resampling vs. integration

	3.2 Bandpass reservoirs
	3.3 Cellular Nonlinear reservoirs
	3.3.1 CNNs as reservoirs
	3.3.2 Sweeping the parameter space
	3.3.3 Template optimization with Coupled Simulated Annealing

	3.4 Photonic reservoirs
	3.5 Conclusions

	4 Quantifying and adapting reservoir dynamics
	4.1 Computation with generic dynamical systems
	4.1.1 Characterizing dynamical systems
	4.1.2 Computation at the edge of stability
	4.1.3 Static reservoir measures and their disadvantages

	4.2 Quantifying reservoir dynamics
	4.2.1 Linking different bounds for the echo state property to network dynamics
	4.2.2 Towards a more complete quantification of reservoir dynamics
	4.2.3 The link between dynamics and state distributions

	4.3 Adapting reservoir dynamics
	4.3.1 Information theory and learning
	4.3.2 An unsupervised adaptation rule for reservoirs

	4.4 Towards generalized Intrinsic Plasticity
	4.4.1 Derivation of the generalized rule
	4.4.2 Specific IP rules for Fermi and tanh neurons
	4.4.3 The effects of IP on the neuron parameters and weight distributions
	4.4.4 Limitations of the assumptions

	4.5 Experiments
	4.5.1 Preliminaries
	4.5.2 Results

	4.6 Constrained topologies
	4.7 Conclusions

	5 Conclusions and perspectives
	5.1 Summary
	5.2 Conclusions
	5.3 Perspectives

	A The Reservoir Computing Toolbox
	A.1 A high-level description
	A.2 Getting started
	A.2.1 Configuration files
	A.2.2 Some use cases
	A.2.2.1 Own dataset
	A.2.2.2 Parameter sweeps
	A.2.2.3 Custom scripts

	A.3 Datasets
	A.4 Topology generation and layers
	A.5 generic_simulate.m
	A.6 Training and cross-validation
	A.7 Parallellization

	Bibliography

