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Abstract – Reliability of
Extreme Learning Machines

Klaus Neumann

The reliable application of machine learning methods becomes increasingly impor-
tant in challenging engineering domains. In particular, the application of extreme
learning machines (ELM) seems promising because of their apparent simplicity and
the capability of very efficient processing of large and high-dimensional data sets.
However, the ELM paradigm is based on the concept of single hidden-layer neural
networks with randomly initialized and fixed input weights and is thus inherently
unreliable. This black-box character usually repels engineers from application in
potentially safety critical tasks. The problem becomes even more severe since, in
principle, only sparse and noisy data sets can be provided in such domains. The
goal of this thesis is therefore to equip the ELM approach with the abilities to
perform in a reliable manner.

This goal is approached in three aspects by enhancing the robustness of ELMs
to initializations, make ELMs able to handle slow changes in the environment
(i.e. input drifts), and allow the incorporation of continuous constraints derived
from prior knowledge. It is shown in several diverse scenarios that the novel ELM
approach proposed in this thesis ensures a safe and reliable application while si-
multaneously sustaining the full modeling power of data-driven methods.

Keywords. Machine learning, artificial neural network, random projection, ex-
treme learning machine, reliability, cognitive robotics, continuum robotics, dynam-
ical system, copper wire bonding.
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Chapter 1

Introduction

In recent years, machine learning has matured to a point where the application
of learning methods in the engineering of complex systems increasingly comes
into focus of applied research. A prominent example is the German leading edge
cluster “Intelligent Technical Systems”1, which implements a dedicated project
to apply self-optimization and learning methods in technical production systems
and the intelligent mechatronical devices of tomorrow. In this application do-
main, such systems are supposed to interact with flexible environments, can han-
dle unexpected situations, have access to large amounts of expert knowledge or
data-encoded experience, and behave user-friendly. It is undoubted that learning
rather than situation-dependent programming is the method of choice to handle
the engineering of complex systems, e.g. where analytic models hardly exist or in
non-stationary environments which require adaptability by means of re-learning.

But despite the remarkable success of machine learning techniques, which
demonstrated their promising potential already in many relevant scenarios, their
acceptance is still very weak. Yet, usually, parametric models with a fixed struc-
ture derived from first principles about the task are used for engineering challenges.
The construction of parametric models requires precise expert knowledge and in-
deed avoids unexpected behavior. They are thus insufficient to assimilate any
uncertainty that arises from the inherent process properties and are infeasible for
application where the construction of analytic models is difficult.

Novel learning approaches that are qualified for application in relevant engi-
neering tasks will face the challenge to ensure several different requirements simul-
taneously, while capitalizing on the full power of data-driven modeling methods in
order to cope with the unpredictability of complex environments. A hierarchy of
requirements on machine learning algorithms that I perceive as common-ground
for machine learning is depicted in Fig. 1.1. I separated the different requirements
into three main classes: speed, performance, and reliability.

In fact, many machine learning techniques exclusively focus on the performance
and the speed of the learning algorithm [1, 2], but the acceptance of such methods
is not only associated to these features. Also reliability plays an essential role [3].
The speed of the model is mainly driven by its computational complexity which
can be distinguished in execution time, learning speed and memory consumption,

1This research and development project is funded by the German federal ministry of education
and research (BMBF) within the leading-edge cluster competition “it’s OWL”.
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Fig. 1.1: Requirements on machine learning techniques separated into three main
categories: speed, performance, and reliability.

but also the complexity due to the specific implementation is important [4]. How-
ever, the performance of the model is typically measured by training and test error
which quantify the mapping and generalization ability [5]. Also the class of poten-
tially learnable functions plays an essential role and is referred to as universality
(universal function approximation capability) of the model [6]. The third impor-
tant point is the reliability of the machine learning algorithm which can refer to a
high probability, or even a mathematical proof, of a safe application (see e.g., [7]).

The incorporation of these demands becomes even more difficult since only
sparse and noisy data sets can be provided. Exhaustive sampling of the underlying
input-output relation is, in principle, impossible due to physical restrictions of
the involved machinery, in particular, if many input dimensions are present. In
addition, the provided data sets are typically highly non-linear which makes the
recording of uniformly sampled data sets delicate and leads to big gaps in the
data. Generalization towards such regions is particularly challenging and requires
a dedicated treatment.

In the last decade, the re-advent of random projection methods in many chal-
lenging application domains attracted a lot of attention, because random projec-
tions, in principle, allow for very efficient processing of large and high-dimensional
data sets [8]. These approaches initialize the free parameters randomly and restrict
learning to linear methods for obtaining a suitable read-out function. A promi-
nent method based on artificial feed-forward neural networks and high-dimensional
random projections is the extreme learning machine (ELM) as proposed in [9]. It
comprises a single hidden-layer feed-forward neural network with fixed random
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input weights and a trainable linear output layer. ELMs have become popular,
because, compared to traditional backpropagation training, they train much faster
since output weights are computed in a single batch regression step. Despite this
apparent simplicity, ELMs are universal function approximators with high prob-
ability under mild conditions if arbitrarily large networks can be considered [10].
Although ELMs are a promising basis for the solution of ambitious learning tasks,
it is obvious that the inherently unreliable character of random projection methods
repels engineers from application in potentially safety critical tasks.

Therefore, the goal of this thesis is to provide the extreme learning machine ap-
proach with the abilities to perform reliably in diverse, challenging engineering tasks
by exploiting the simplicity, universality and computational efficiency of the model.

The special focus on reliability of ELMs is also visualized schematically in Fig. 1.1.
These crucial demands on the reliability of ELMs are approached in three steps.
In the first step, the robustness of the ELM performance against random initializa-
tions is tackled. An unsupervised technique that addresses this issue by providing
task-specific features is intrinsic plasticity (IP). IP was already successfully used
in the context of random projections [11] and for the optimization of static reser-
voir computing approaches [12]. In order to speed-up the learning, batch intrinsic
plasticity (BIP) [13, 14] is introduced, which is a highly efficient batch version of
IP. This approach is presented and investigated in Chap. 3.

In the second step, the classical (online) IP learning is applied to compensate
small and slow drifts in the input distributions, e.g. due to the application in non-
stationary environments. Drift compensation through IP learning offers a different
and novel approach, which internalizes the drift in the network model by sustaining
the neural encoding in the hidden-layer without using a continuous error feedback.
It turns out that only the combination of a proposed modification of the IP rule
and the usage of the natural gradient [15, 16] provides learning dynamics that are
well suited for compensation of such drifts. These modifications are introduced
and analyzed in Chap. 4.

In the third step, the black-box character of ELMs is approached by incorpo-
ration of continuous constraints [17], derived from prior knowledge about the spe-
cific task, into the learning. This is reasonable, because machine learning solutions
have to guarantee certain properties of the learned function for a safe operation
in many application domains. A constraint that is present in the ideal function is
of great advantage in order to prevent overfitting. Yet, model selection strategies
are entirely specific for these constraints and can not easily be found for complex
constraints. However, this task is not trivial because the ELM approach gains
its very power from the universal approximation capability. The incorporation of
continuous constraints into the learning of ELMs is presentd in Chap. 5.

Finally, The novel ELM approach is applied to three salient and relevant tasks
emphasizing the power and generality of the presented approach. Chap. 6 shows
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how the ELM approach is applied to control the bionic handling assistant (BHA),
such that this novel bioinspired robot is enabled to perform in highly reactive
tasks [17]. The major problem is that only sparse data can be provided for learn-
ing, due to physical restrictions of the robot. Successful learning is only possible
because prior knowledge about the BHA’s physical structure is used to formulate
continuous constraints that lead to robust generalization results.

Chap. 7 introduces a mechanism to estimate dynamical systems that are used
to generate movements applied in the field of humanoid robotics and imitation
learning [18, 19, 20]. Data sets in these scenarios are sparse and typically derived
from only few demonstrations. Therefore, many state-space regions remain where
no information on the dynamics are available. Generalization towards such re-
gions is meaningful only if strong biases are introduced, for instance, assumptions
on global stability properties of the to-be-learned dynamics. The special role of
stability in this context is thus emphasized and Lyapunov’s theory is used to ob-
tain continuous constraints for the learning in order to enforce asymptotic stability
of the induced dynamics explicitly. The approach is analyzed in a scenario where
trajectories are learned and generalized from human handwriting motions. It is
also demonstrated that the novel approach leads to robust movement generation,
when learning from robotic data obtained by kinesthetic teaching of the humanoid
robot iCub.

The last application is shown in Chap. 8, where the modeling of the ultrasonic
softening effect for copper bonding is presented [21]. Copper bonding is a future
technology and used as interconnection for individual electrodes. Whereas copper
has favorable mechanical and electrical properties for building bond connections,
the interaction of the process parameters is largely unknown. Modeling by means
of learning seems promising but also difficult since the production of big data
sets is yet impossible. It is shown that the presented approach is able to deal
with sparse data sets and therefore produces models with good generalization
capability. The results presented in this chapter were developed in the InCuB2

project, which aims at the development of self-optimizing techniques to enable
the reliable production of copper bonding connections under varying conditions.
Chap. 9 draws conclusions on impact and implications of this work.

In summary, this thesis investigates the reliability of extreme learning machines
in three different aspects and shows how the ELM technique can be equipped with
the abilities to learn reliable models in three highly relevant tasks. This emphasizes
the generality of the approach and shows that learning is feasible despite that
provided data sets are sparse and noisy.

2InCuB (Intelligent Copper/Cu Bonding) is a project funded by the German BMBF within
the “Intelligent Technical Systems” leading-edge cluster.



Chapter 2

Random Projections and
Extreme Learning Machines

Random projection methods are very appealing approaches in the field of artificial
neural networks that stand for the advances of fast learning. Novel approaches
in this field project the input into a high-dimensional space generating features of
the data. Characteristic for random projections is that the feature generation is
initialized randomly and remains fixed during the supervised learning phase which
leads to fast learning in comparison to the learning via backpropagation of errors
through the entire network.

A prominent representative of high-dimensional random projection methods is
the extreme learning machine (ELM) which is a recently developed learning scheme
for single hidden-layer feed-forward neural networks. The ELM approach is the
fundamental basis for the methods developed in this thesis. This particular chapter
therefore introduces the original ELM approach and various improvements. Also,
a rigorous review of the past random projections literature with its relation to
ELMs is presented.

The remainder of this chapter is organized as follows. Sect. 2.1 describes the
basic ELM model while Sect. 2.2 explains further developments of the ELM tech-
nique. Sect. 2.3 presents a review of the developments of random projection meth-
ods starting from linear random projections. Sect. 2.4 summarizes the chapter.
Parts of this chapter are based on [12, 14].

2.1 Extreme Learning Machine

The extreme learning machine (ELM) [9] as a representative of random projection
methods was recently proposed. The method is appealing because of the high
learning efficiency, conceptual simplicity, and the good generalization capability.
A discussion on the relation between the ELM approach and earlier proposed feed-
forward random projection methods is given in [22] and [23]. A survey on ELM
techniques can be found in [24].

Consider the ELM network architecture depicted in Fig. 2.1. The figure shows a
single hidden-layer feed-forward neural network comprising three layers of neurons:
x ∈ RI denotes the input, h ∈ RR the hidden, and ŷ ∈ RO the output neurons. The
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x y
h(x)

W
inp

W
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Fig. 2.1: Extreme learning machine with three layer structure. Only the read-out
weights are trained supervised.

input is connected to the hidden-layer through the input matrix W inp ∈ RR×I .
The read-out matrix is given by W out ∈ RO×R. For input x the output of the ith
neuron is thus given by:

ŷi(x) =
R∑
j=1

W out
ij f(

I∑
k=1

W inp
jk xk + bj)︸ ︷︷ ︸

hidden-layer: h(x)

, (2.1)

where i = 1, . . . , O, bj is the bias for neuron j, and f(x) = 1
1+e−x denotes the

sigmoid activation function called Fermi function applied to each neuron in the
hidden-layer component-wise. h(x) denotes the so-called hidden-layer or hidden
state of the ELM. The components of the input matrix and the biases are drawn
from a random distribution and remain fixed after initialization.

Let D = (X,Y ) = (x(k),y(k)) with k = 1 . . . Ntr be the data set for training
where Ntr is the number of training samples. Supervised learning is restricted to
the read-out weights W out ∈ RO×R and done by minimization of the following
training error functional:

Etr =
1

2Ntr
‖W ·H(X)− Y ‖2 Wout

−−−→ min , (2.2)

where H(X) ∈ RR×Ntr is the matrix collecting the hidden-layer states obtained for
inputs X ∈ RI×Ntr after the application of the non-linearity f , and Y ∈ RO×Ntr

is the matrix collecting the corresponding target values. The solution of this
functional is given by the least squares solution given by the Moore-Penrose pseudo
inverse [25] in computationally cheap fashion:

W out = Y ·H(X)† , (2.3)
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where H(X)† is the pseudo inverse of the hidden-layer matrix. Note that this
matrix has the minimal matrix norm among the set of valid solutions.

One of the most attracting properties of the ELM is its ability to approximate
universal functions under mild conditions. This feature was rigorously theoreti-
cally investigated in [10] and summarized in the following theorem:

Theorem (Universal Function Approximation Capability). Given any
small positive scalar value ε > 0, a non-constant and bounded activation func-
tion f : R→ R which is infinitely differentiable in any interval, and Ntr arbitrary
distinct samples (X,Y ) = (x(k),y(k)) where x(k) ∈ RI and y(k) ∈ RO. Then,
there exists a hidden-layer with size Ñ ≤ Ntr with Ñ ,Ntr ∈ N such that for any
W inp and b randomly chosen from any intervals RR×I , RR according to any con-
tinuous probability distribution, the inequality ‖W out ·H(X) − Y ‖ < ε holds with
probability one1.

The theorem states that the ELM is able to approximate any given data set with
targets Y from distinct inputs X with arbitrary small error ε despite the random-
ness of the high-dimensional projection onto the hidden-layer states. The only
restriction is that enough hidden-layer neurons has to be provided before training
which is well-known in machine learning as model selection problem.

2.2 Improvements of the Extreme Learning Machine

Despite that ELMs are universal function approximators, neuron model, net-
work size, regularization strength, and, in particular, the features provided by
the hidden-layer strongly influence the generalization performance. However, in
the classic ELM approach, most of the quantities remain for manual tuning by
means of expert knowledge about the specific task. It has been claimed for ELMs
that “apart from selecting the number of hidden nodes, no other control parame-
ters have to be chosen manually” ([26], p. 1411). However, it is empirically shown
in [12] that this claim is based on the assumption that either very large data sets
are used as in [10, 27, 26] or the network size is explicitly chosen to be much smaller
than the number of training samples (e.g., in [28], pp. 1355-1356). The theoretical
foundation of this phenomenon is based on the empirical risk minimization prin-
ciple [29]: models such as ELMs that are provided with only few data samples are
prone to overfitting of the data. In contrast, training data can be very expensive in
practical applications, e.g. in tasks involving robots. It can also be undesirable to
limit the hidden-layer size R to a small fraction of the number of training samples
Ntr, because, then, the network can suffer from a poor approximation capability.
Another argument is that the controlling of the network size only affects the num-

1This theorem was taken from [10] and modified according to the terminology of this thesis.
Some minor changes of this theorem were also made by the author for mathematical consistency.
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ber of features rather than their complexity. Effects of regularization, both, in the
output learning and the features provided by the hidden-layer encoding are thus
ignored. In such cases, appropriate model selection becomes an important issue
and remains challenging due to the lack of precise knowledge about the interplay
between model complexity, output learning, and performance for ELMs.

Several different techniques to tune the network’s parameters towards a given
task have been contributed in the recent past. These methods tackle the hidden-
layer size, the read-out learning, the encoding in the hidden-layer regarding the
features and are discussed in the following sections. Also genetic approaches are
also popular due to the fast learning procedure of the underlying ELM approach
which is used as an element of a population [30].

2.2.1 Supervised Read-Out Learning and Regularization

Since the reconstruction of a function from a finite set of data is a clearly ill-
posed problem, prior knowledge of the function that has to be reconstructed is
necessary in order to find a suitable solution. The most commonly used prior
knowledge is that the function is smooth, such that similar inputs correspond to
similar outputs [31]. Therefore, typical choices for regularization functionals in
neural networks punish high curvatures, i.e. strong oscillations, of the attained
input-output mapping.

In the original ELM approach, overfitting is prevented by implicit regulariza-
tion: by either providing a large number of training samples or by using small
network sizes. Assuming noise in the data, it is well known that this is equiva-
lent to some level of output regularization [32, 1] punishing big read-out weights
W out. It is therefore natural to consider output regularization directly as a more
appropriate technique for arbitrary network and training data sizes [33]. As a
state of the art method, Tikhonov regularization [34, 35] is used which is also a
standard method for reservoir networks2 [36] and machine learning in general [32].
The assumption of a Gaussian prior for the learning parameters W out leads to
the new error function punishing the growth of the network’s read-out weights
quadratically. It is flexibly controlled by a regularization parameter α > 0 in the
error function:

Etr =
1

2Ntr
‖W ·H(X)− Y ‖2 + α‖W‖2 Wout

−−−→ min , (2.4)

where H(X) ∈ RR×Ntr is the matrix collecting the hidden-layer states obtained
for inputs X ∈ RI×Ntr , and Y ∈ RO×Ntr is the matrix collecting the correspond-
ing target values. The solution of this functional is given by ridge or Tikhonov
regression [34, 35] in computationally cheap fashion:

W out = Y ·H(X)T ·
(
H(X) ·H(X)T + αI

)−1
, (2.5)

2A Special approach to train recurrent neural networks highly related to learning for ELMs
that is more elaborately discussed in Sect. 2.3.4.
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where I ∈ RR×R is the identity matrix. The computation of this solution is, as a
side effect, also numerically more stable because of the better conditioned matrix
inverse. A suitable regularization parameter α > 0 needs to be chosen carefully.
Too strong regularization, i.e. too large α, can result in poor performance, because
it limits the effective model complexity inappropriately [1]. On the other hand,
a too small value of α does not avoid the overfitting of data. This is a typical
machine learning model selection problem for the ELM. The parameter α can be
determined by line search after definition of a suitable validation set.

2.2.2 Hidden-Layer Size

To match the challenge of model selection, improvements of the ELM have been
developed recently that are based on the idea to change the hidden-layer size in or-
der to enhance the generalization ability. This section reviews the most important
developments on ELMs searching for a task-specific hidden-layer size providing
good performing networks.

The incremental extreme learning machine (I-ELM) is an approach which adds
random neurons one-by-one to the initially small hidden-layer until a desired min-
imum training error is reached. It is shown in [37] that the universal function
approximation ability of the ELM is preserved when incrementally updating the
size of the hidden-layer. Due to the independence of the hidden-layer neurons, a
complete re-computation of the read-out weights is not necessary. The previous
solution can be re-used such that learning stays efficient. Also enhanced implemen-
tations of the I-ELM exist which choose the neuron-to-add by use of training error
criteria from a group of neurons. This approach produces more compact learning
architectures with the benefit of faster convergence time [38]. The so-called error
minimized extreme learning machine (EM-ELM) [28] also aims at increasing the
hidden-layer size while sustaining the universal approximation capability. Instead
of adding neurons one-by-one, also groups of neurons can be implemented into the
hidden-layer.

A related idea to improve ELMs is named optimally pruned extreme learning
machine (OP-ELM) proposed by Miche et al. in [39, 40]. It is based on the
original ELM algorithm and extends it by a pruning strategy of the hidden-layer
neurons. The OP-ELM methodology can be separated into three main steps:
build a big and random hidden-layer, rank the hidden neurons by application of a
technique called multi-response sparse regression algorithm, and prune the neurons
according to a leave-one-out cross-validation. It was shown that this method leads
to favorable performance results. A similar idea which also supplies a pruning
strategy for ELMs is proposed in [41]. This method, however, applies statistical
criteria (χ2 and information gain) to select the neurons to prune instead of using
a validation set. The recently developed Tikhonov regularized optimally pruned
extreme learning machine (TROP-ELM) [42] represents an extension of the already
mentioned OP-ELM with an additional L2-regularization penalty. The approach
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applies a cascade of two regularization techniques: a L1-penalty to rank the hidden-
layer neurons is used first, then a L2-penalty on the read-out weights is applied.
This enhances the numerical stability and enables efficient pruning of the neurons.
It is shown in [42] that the TROP-ELM approach systematically outperforms the
OP-ELM and produces more robust results in terms of standard deviation for
different network initializations.

2.2.3 Neural Encoding

In the ELM paradigm, a typical heuristics is to scale the data to [−1, 1]I and
to draw the biases b and input weights W inp uniformly from [−1, 1]I . Then, al-
lowing an arbitrary large number R of hidden neurons and a large training set,
manual tuning of the input weights or the activation function parameters is not
needed, because a random initialization of these parameters is sufficient to create
a rich feature set. In practice, the hidden-layer and training set size is limited
and the performance does indeed depend on the hyper-parameters controlling the
distributions of the initialization at least of the input weights and the biases b.
Very small weights result in approximately linear neurons with no contribution
to the non-linear approximation capability, whereas large weights drive the neu-
rons into saturation resulting in a binary encoding. This is demonstrated in [12].
Apparently, the choice of scaling matters.

Recently, the relation between ELMs and reservoir networks is investigated in a
static reservoir computing setup [43, 12]. Reservoir networks can be interpreted as
ELMs with additional recurrent weights in the hidden-layer. Their precise relation
to ELMs is discussed in Sect. 2.3.4 One major result is that recurrent connections
between the hidden neurons enhances the spatial encoding of static inputs. This
result is argued to be caused by the non-linear mixing of features which is favorable
for more complex mappings. The experiments are based on considering the cumu-
lative energy content of the hidden state representation. The recurrent connections
in the hidden-layer enrich the neural encoding due to the mixing of features and
shows that reservoir networks hold a inherently higher dimensional hidden state
representation. This is advantageous for the separability of inputs and increases
the performance on various regression and classification tasks. Despite this advan-
tage, unfortunately, the analytical properties of the hidden representation are lost
due to the convergence process of the networks state. The deep relation between
ELM and reservoir computing is also analyzed and improved by other researchers.
Reinhart, for instance, introduces an associative version of the ELM in [44], which
is very successfully applied in a bi-directional setup to learn forward and inverse
mappings at the same time.

Another method for optimization of reservoir networks and ELMs that is very
successfully used for neural networks is intrinsic plasticity (IP) [11]. It was de-
veloped by Triesch in 2004 [45] as a model for homeostatic plasticity for analog
neurons with Fermi-function. The mapping enhancement of static reservoirs via
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IP learning is considered as a promising machine learning method and compared
to ELMs in [12].

2.3 Review of Random Projection Methods

In the last decades, artificial neural networks (ANN), in particular multi-layer
perceptrons (MLP), have gained extensive popularity and the literature is growing
day-by-day. Until now, MLPs provide a well-established approach in the field of
machine learning and have been used increasingly as a promising modeling tool
in almost all areas of research where quantitative approaches are desired such as
pattern recognition [1], forecasting [46], economy [47], and medicine [48]. The
main advantage of MLPs is that these networks possess the universal function ap-
proximation capability, i.e., that a feed-forward network provided with sufficiently
many hidden neurons and layers is able to approximate any continuous multi-
variate function uniformly to a desired degree of accuracy when supported with
appropriate activation functions. This was independently proved in 1989 by Cy-
benko [49], Hornik et al. [50], and Funahashi [6]. In fact, MLPs can approximate
functions that are not differentiable in the classical sense, but possess a generalized
derivative as in the case of piecewise differentiable functions [51].

The backpropagation (BP) algorithm is one of the most popular supervised
learning algorithms for layered networks [52]. Improving the learning speed of BP
and increasing the generalization capability of the networks have always played a
central role in neural network research. Besides that MLPs trained with BP have
demonstrated their potential in many relevant tasks, the training of such networks
was nevertheless claimed as the computational “bottleneck” for applications when
using large data sets. Moreover, problems such as trapping into local minima, sat-
uration, weight interference, initial weight dependence, and also overfitting, make
MLP training difficult. Additionally, it is also very difficult to select parameters
like the number of neurons in a layer and the number of hidden-layers in a network,
thereby selection decisions for a proper architecture are not easy.

2.3.1 Linear Random Projections.

One proper solution to the issue of high computational complexity is to decrease
the number of variables to only the most useful and required ones for the con-
sidered problem. Two general ideas can be used: pruning the variables, or com-
bining them, for example, by projection. The problem remains however similar,
one has to either select which variables are relevant using a pruning strategy and
a criterion, or find a way of combining them appropriately which can be very
time taking. Optimizing a projection matrix, for example, with principle com-
ponent analysis [53] strategies require the calculation and inversion of correlation
matrices which might be not feasible for very high-dimensional data. For the mat-
ter of projecting to a lower dimensional space, Johnson and Lindenstrauss [54]
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have shown that it is possible to embed small sets of points in high-dimensional
spaces into spaces of much lower dimension such that distances between these
points are preserved with high accuracy. Furthermore, distributions of input pat-
ters become more compact after projection into the low-dimensional space [55].

W
inp
y

x

Fig. 2.2: Linear random
projection into a lower di-
mensional space.

Random projections for dimensionality reduction (see
e.g. [56]) are well established and commonly used in
the field of machine learning [57, 58]. Early attempts
to utilize random projection methods are simply lin-
ear, see Fig. 2.2 for illustration. A randomly initial-
ized matrix W inp is used to project input patterns x
from a high-dimensional space to a lower dimensional
representation:

y = W inpx + b , (2.6)

where the parameters of the projection W inp and b
are selected randomly. It was shown that, e.g. clus-
tering techniques that rely on pairwise distances of
the data points can then work easily in the projected
space [59] and that random projections achieve com-
petitive performances compared to dimension reduc-
tion by principle component analysis [53]. Since random projections require no
learning, they provide a considerable solution for computation on large and com-
plex data sets.

2.3.2 (Random Vector) Functional-Link Networks.

Novel random projection methods are based on a functional separation between
a potentially high-dimensional non-linear feature generating part and the read-
out function. While the feature generating part of the random projection method
is initialized randomly and stays fixed during the supervised learning phase, the
learning reduces to a set of linear equations in the adaptable parameters which
makes learning very efficient. It is characteristic for such approaches to use very
high-dimensional and non-linear projections. These often actually increase the
feature dimensionality in contrast to the linear down projections discussed in the
previous section.

The first steps towards high-dimensional and efficient random projections were
made in the late 80s. Pao introduces the functional-link network (FLN) [60] and
provides a rigorous analysis in his popular book about pattern recognition and
neural networks, because he realized that “real world tasks require the ability to
deal with a very large number of patterns” [61]. A schematic view of the FLN
architecture is provided in Fig. 2.3.

From Pao’s viewpoint, the successive layers in MLPs carry out a sequence
of mappings until an appropriate representation, where it is possible to perform
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a desired functionality, is found. He claimed that “it might be possible to en-
hance the original representation right from the start, in a linearly independent
manner, so that hyperplanes for separation can be learned more rapidly” ([61],
p. 198). This claim was not solely limited to classification tasks, also regres-
sion tasks are solvable by FLNs. The FLN aims at generating a sufficiently
enhanced representation of the input pattern such that the associated output
can be learned effectively. This network architecture is called flat network be-
cause it has no hidden-layers. This may sound a little controversial, since the
approximation capability of neural networks is directly associated to the hidden-
layer. However, the flat network can be executed without dispensing non-linearity,
provided that the input pattern is enhanced with additional higher order in-
formation. In other words, higher-order correlations among input components

x y
h(x)

W
inp

W
out

x

...

Fig. 2.3: Random vector
functional-link (RVFL) net with
linear part x and enhancement
nodes h(x).

can be used to construct a higher-order net-
work to perform non-linear mappings using
only a single layer of units. Pao et al. in-
stantly realized that a promising enhancement
of the original representation is to describe it
in a space of increased dimensionality. A ques-
tion arose from that: how to choose additional
dimensions?

To answer this question, the FLN follows
the idea of enhancing the representation with
linearly independent functions equipped with
the pattern x as argument. The functions can,
e.g. be a subset of a complete orthonormal ba-
sis spanning the n-dimensional representation
space, such as the trigonometrical functions:
sin(πx), cos(πx), sin(2πx), cos(2πx), and so
on; or the polynomial basis: x, x2, x3 and so
on. Interestingly, those enhancements are in-
spired by either the Fourier or Taylor analysis.
Hence, learning the weights of a flat network is
equivalent to solving a system of linear equa-
tions. This ability is important in any real
world pattern recognition task because learning can be done very efficiently by
any linear method. Most importantly, Pao stressed that “pseudo inversion does
indeed give a best fit solution [but] that solution is often unacceptable, however, as
indicated by the high error value at the end of the process” ([61], p. 206). Also [60]
emphasized the use of online learning to adapt the read-out weights. The main
reason for this is that the pseudo inverse solely minimizes the quadratic error func-
tional on the training data without any respect to regularization. This fact can
lead to overfitting and thus poor generalization which can be avoided by online
learning, regularization, appropriate pruning strategies or early stopping.
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The random initialization of the input weights and their separation from the
read-out learning was proposed for FLNs in [60] and called random vector func-
tional link (RVFL) net. The enhancement of the flat network is substituted by the
random hidden-layer of a classical ANN - the read-out function is defined as:

y = W out(x|f(W inpx + b)) , (2.7)

where W out are the read-out weights, W inp is the collection of input weights
for the enhancement neurons, f is the component-wise applied sigmoid activation
function, b are the biases, and x is the input pattern used as argument mapped
onto the output y. The mathematical concatenation (x|f(. . . )) between x and
the random hidden state f(. . . ) shows that despite the link between enhancement
nodes and output, also a direct connection between input and output is part of
the network structure which is, basically, a linear model. The architecture is based
on Hornik, Stinchcombe, and White’s theorem [50] which proves that the success
of single hidden-layer neural networks with sigmoid activation functions is due
to their universal approximation capability. The theoretical justification for the
RVFL network is given in [62]. It is shown that RVFL nets are indeed universal
function approximators for continuous functions on bounded and finite dimensional
sets despite the randomness of the enhanced representation and that RVFL are
efficient with respect to the error convergence rate. Interestingly, Igelnik et al.
also show, by application of a limit integral formulation of the to-be-approximated
function and a subsequent Monte-Carlo evaluation method, that similar results
are obtained for hidden neurons that are based on products of univariate functions
or radial basis functions. Further investigations on learning and generalization
characteristics of RVFL nets can be found in [63, 64]. The RVFL and FL nets are
still subject to active research - many extensions were developed and applied to
various kinds of applications, see [65, 66]. A rigorous survey can be found in [67].

In summary, the main difference between RVFL nets and extreme learning ma-
chines is not only the architecture but also the fact that learning without iterative
tuning is rather suppressed than explicitly emphasized for RVFL nets.

2.3.3 Radial Basis Function Networks.

Radial basis function (RBF) networks provide an attractive alternative to sigmoid
networks for learning real-valued mappings because of two main advantages: first,
they provide an excellent approximation capability to smooth functions and, sec-
ond, the centers of the radial basis functions are interpretable as prototypes of the
data samples. The computation of the network’s output is determined as:

yi =
R∑
j=1

W out
ij fj (‖x− cj‖) , (2.8)

where R is the number of center locations cj , the matrix W out collects the read-
out parameters, and fj is a non-linear transfer function. The transfer function
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is typically Gaussian with covariance matrix Σj but also other functions can be
applied. The architecture of the RBF network is illustrated in Fig. 2.4 - the input
pattern x is mapped into the projection space through the radial basis functions
determined by the centers c and their covariances Σ.

In parallel to the progress of multi-layer perceptrons represented by functional-
link nets, radial basis function (RBF) networks went through a similar excit-
ing development in the late 80s. Broomhead and Lowe deployed the theory of
multi-variable interpolation in high-dimensional spaces in [68] to develop a new
perspective on RBF networks in which “the nature of the fitting procedure is
explicit” ([68], p. 323). This explicit nature of the fitting procedure helped to

x y
RBF

c,Σ W
out

|| ||²

Fig. 2.4: Radial basis function
(RBF) network and trainable lin-
ear read-out weights.

develop a better understanding of the gen-
eral properties of layered non-linear networks
which perform an equivalent function with a
focus on universal approximation [68]. They
directly inferred that RBF “generalization is
therefore synonymous with interpolation be-
tween the data points [. . . ] generated by the
fitting procedure as the optimum approxima-
tion [. . . ]” ([68], p. 323). In particular, the
paper proposes to relax the strict interpo-
lating nature and suggested that “[. . . ] we
do not necessarily require that the radial ba-
sis function centers correspond to any of the
data points” ([68], p. 325), which is the first
step towards a random projection for RBF
networks. Nevertheless, the baseline perfor-
mance of the RBF networks in the performed
experiments was obtained by assuming fixed non-linearities and choosing the lo-
cations of the centers randomly from the training data set. This is based on the
assumption that the training data is distributed representatively for the problem.
Broomhead and Lowe mentioned that the adjustable weights in the read-out can
be determined by linear methods when the centers are selected, which is effectively
the same as fixed input-to-hidden-layer weights during supervised learning. Thus,
in the least squares context, training the network is equivalent to solving a system
of linear equations. By specialization to a minimum norm solution, which is guar-
anteed by the pseudo inverse technique, the solution exists and becomes unique.
In this sense, the network has a “guaranteed learning algorithm” ([68], p. 326)
which is at the same time computationally efficient.

The main consequence of the generalizations is the need for a mechanism to
choose suitable sets of RBF centers and non-linearities. Since the criticism re-
mained that the particular choice of centers and non-linearities influences the per-
formance of the RBF network crucially, Lowe addresses the criticism in [69]. The
experimental results in his paper are obtained by adaption of the RBF centers and
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the non-linearities by means of a non-linear optimization problem. He claimed that
“the initial choice of centers and the parameters of the non-linearity are equivalent
to the random start of the weights employed in a multi-layer perceptron prior to
training” ([69], p. 171). Learning is thus done subsequently in an iterative manner
to minimize the training error until a local minimum is reached. The inclusion of
the basis function centers as parameters into the supervised learning process can
be carried out by using non-linear optimization techniques in parallel to the linear
read-out learning. This can be advantageous, e.g. because, less hidden units are
needed, but it certainly adds complexity to the learning due to the performance
of non-linear optimization [70]. In this context, Poggio et al. suggests in [70] to
use gradient descent based methods to implement supervised learning of the center
positions, a method that they call generalized radial basis functions.

Although the application of linear learning methods for the read-out weights
and unsupervised methods to learn the center locations yields very efficient train-
ing, researchers reported inferior results when compared to sigmoid backprop-
agation networks. For instance, Moody and Darken’s RBF network needs 10
times more training samples than a standard sigmoid network in order to reach a
comparable generalization performance on the Mackey-Glass time-series task [71].
Wettschereck et al. “identified several plausible explanations for this performance
gap” ([72], p. 1132): first, all parameters in standard sigmoid networks are de-
termined by supervised learning through backpropagation, whereas the supervised
learning in typical RBF networks is restricted only to the output weights and
second, the application of the Euclidean distance for computation of the basis
function argument assumes that all input features are equally important. This
assumption is known to be false in many applications. However, one of the main
difference between MLPs and RBF networks is that MLPs construct global ap-
proximations while RBF networks construct local approximations of input-output
mappings due to their exponentially decaying localized non-linearities (e.g. Gaus-
sian functions) [5]. This implies that RBF networks do not suffer from destructive
interference during learning but also have no extrapolation ability as MLPs. There-
fore, unsupervised adaptation of the randomly initialized feature generating part
is indispensable. In summary, the idea of a functional separation between feature
generation and linear read-out learning is indeed established for RBFs but it is
not common to apply completely random hidden nodes without subsequent unsu-
pervised adaption which is different to commonly used derivatives of the extreme
learning machine approach.

2.3.4 Reservoir Computing

Recurrent neural networks (RNNs) are promising tools for application in non-linear
time series processing. One reason is that RNNs are universal approximators of
dynamical systems [73]. However, the application of RNNs in challenging mod-
eling tasks was limited for a long time, despite the great potential and several
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successful applications. The main reason for this is that training of RNNs is usu-
ally achieved by gradient descent methods like backpropagation trough time [74]
or real time recurrent learning [75] which is problematic for several reasons. RNNs
can potentially implement complex spatio-temporal dynamics that are prone to
bifurcations [76] where the gradient information degenerates. In general, conver-
gence of the learning cannot be guaranteed. Already single parameter updates
are computationally expensive and with the additional need for many cycles in
the learning process this results in long training times [77]. Tasks that require
long-range memory are challenging, because the gradient information exponen-
tially disappears [78]. Advanced training algorithms for RNNs need substantial
experience of the user for successful application.

In recent years, a different approach to use RNNs became popular: the reservoir
computing (RC) approach [77, 12, 79], a paradigm to use recurrent neural networks
with fixed and randomly initialized recurrent weights. Fig. 2.5 visualizes the typical
setup of a reservoir network. The dynamics of the reservoir and the output function
can be calculated according to the following equations:

h(k + 1) = f
(
W inpx(k) +W rech(k)

)
y(k) = W outh(k) ,

(2.9)

where h, x, y denotes the hidden state, the input, and the read-out layer respec-
tively. f denotes a non-linear transfer function and W ∗ (∗ = inp, rec, out) the
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Fig. 2.5: Echo state network (ESN) without
output feedback. The hidden-layer neurons
are connected via recurrent weights.

respective weights for the input, the
recurrent reservoir, and the output
weights of the network. From a
machine learning point of view, the
reservoir serves as a fixed spatio-
temporal kernel projecting the input
data non-linearly into a high dimen-
sional space of the reservoir network
states. In the limit of infinitely many
neurons, this is equivalent to a recur-
sive kernel transformation [80]. The
subsequent use of a trainable non-
recurrent linear readout layer W out

combines the advantages of recurrent
networks with the ease, efficiency and optimality of linear regression methods.
New applications for processing temporal data have been reported, for instance in
speech recognition [81, 82], sensori-motor robot control [83, 84, 85, 86], detection
of diseases [87, 88], or flexible central pattern generators in biological modeling [89].

The first ideas towards RC were independently introduced by Maass et al.
under the notion of liquid state machines [90] and by Jaeger as echo state net-
works [91]. The learning of these networks is done by harvesting the reservoir
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states during application of the training data followed by linear regression to learn
the read-out weights. In [92, 93], Schiller and Steil realized that the functional de-
composition between dynamic reservoir and read-out layer is an inherent property
of networks that are trained with the constrained optimization method by Atiya
and Parlos [94]. The weight dynamics show that the internal recurrent connections
adapt slowly in comparison to the weights connecting the reservoir with the read-
out layer [93]. This natural separation was used to develop an interesting learn-
ing scheme also restricted to the read-out weights called backpropagation decor-
relation [95, 96, 97]. In this sense, random projections into a high-dimensional
spatio-temporal space through a dynamic reservoir is a natural means to look at
neural network approaches. A more detailed discussion on reservoir computing
approaches and their relation to random projections with additional consideration
of output feedback can be found in [44].

2.3.5 Miscellaneous Random Projection Methods.

Various other researchers anticipated the importance of fast and robust learning of
artificial neural networks based on linear least-squares methods as well. However,
the functional separation between input and output mapping in these models is
not explicit: either the input weights are learned supervised or the error-signal is
propagated trough multiple layers. It is still worth it to mention these methods.

In [98], an algorithm for the training of MLPs solely based on linear algebraic
methods is presented. Besides that the convergence speed of the algorithm is up to
orders of magnitude higher than that of back-propagation, all weights connecting
the hidden-layers are adapted without following the idea of a functional separa-
tion. Yam et al. [99] proposed a method based on linear least squares to initialize
feed-forward neural networks. Despite the partition of input and output layer,
the initialization method is supervised and compared to random initializations.
Specifically, in [100], a method for learning a single layer neural network by solv-
ing a linear system of equations is proposed. This method also learns the inverse
non-linear transfer functions and avoids the problem of local minima. This method
is also used in [101] to learn the last layer of a neural network, while the rest of
the layers are updated employing any other non-linear algorithm (for example,
conjugate gradient). Castillo extended his method [100] in [102], although in this
case multiple layers are learned by using a system of linear equations. Recently,
“re-inventions” of elder random projection models are proposed in [103, 104].

2.4 Summary

Random projection methods have already demonstrated their great potential in
several different applications for two main reasons. On the one hand, the initial-
ization of random projections is simple because many parameters are initialized
randomly and stay fixed during supervised learning. On the other hand, learning



Summary 19

is typically restricted to the read-out weights and is thus very efficient due to the
use of linear optimization techniques. This is caused by the functional separation
of the mapping parameters before and after the non-linearity which essentially
simplifies the learning procedure.

Recently, improvements in the acquisition of data through general purpose
computers made it possible to obtain large scale data sets [8]. More abundant
information in terms of data set size and dimensionality gradually increased the
required computational complexity. In 2004, Extreme learning machines became
popular, because of the demand for simple models with efficient learning procedure.

In fact, ELMs are successfully used in several applications, but many aspects
of the learning parameters are not considered in the original contribution. The
neuron model, network size, regularization strength and in particular the features
provided by the hidden-layer strongly influence the generalization performance but
often remain fixed during learning. One reason is that it has been claimed for ELMs
that the random projection is already sufficient for a successful approximation of
data set [26]. This is not true, because further studies showed that this claim is
based on the (strong) assumption that either very large data sets are used [12] or
the network size to number of training samples ratio is chosen to be very small [28].
In cases where this assumptions are violated (which is the rather common case),
appropriate model selection and optimization becomes an important issue. Several
interesting improvements on the ELM approach are discussed in this chapter, but
model selection still remains challenging due to the lack of precise knowledge about
the interplay between model complexity, output learning, and performance. This
thesis therefore provides an approach to feature reliable learning with ELMs.

Despite the great success of ELMs in various applications by many researchers,
the original contribution of the ELM approach with respect to earlier proposed
random projection methods is discussed controversially (see [22] and [23]). In this
chapter, the most important developments in the field of random projections is
pointed out and also the chronological order of the original contributions is em-
phasized. Also the relation to ELMs and random projections in general is discussed
in detail in this chapter. Tab. 2.1 states a review of random projection methods
and their relations listed in tabular form. In my opinion, the ELM approach is the
only random projection method which explicitly emphasizes the importance of the
high-dimensional data representation, the simplicity of the model (solely through
random projection), and the fast learning procedure through batch learning. How-
ever, Huang missed - in his first contributions about ELMs ([9, 10]) - to discuss
the relation of the ELM approach to earlier proposed FLN and RBF networks. It
is obvious that this is problematic since the original contribution of ELM was not
entirely clear at this point. I think that one major problem of the actual ELM
literature is the lack of a comprehensive survey and also a systematic taxonomy
summarizing the improvements of ELMs. [24] and [105] are attempts to solve this
issue but they only cover specific parts of the literature.
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Tab. 2.1: Overview: random projection methods.

Method Mapping Projection Learning/Tuning Application Citations

Linear
random
projection

Random, analytical,
linear, spatial, global

Low-dimen. No learning
Dimensionality
reduction

[56, 57, 58]

Functional
link net

Deterministic, analytical,
linear and non-linear,
spatial, global

High-dimen.
features (selection),
read-out (linear, online)

regression, classification [60, 61, 67]

Random
vector
functional
link net

Random, analytical,
linear and non-linear,
spatial, global

High-dimen.

Features
(random, unsupervised),
read-out (linear)

regression, classification [60, 62, 65]

Radial basis
function net

Random, analytical,
non-linear, spatial,
local

Low or
high-dimen.

Features (unsupervised),
read-out (linear)

Regression, classification,
probability density
estimation

[68, 69, 70]

Reservoir
computing

Random, non-analytical,
non-linear, global,
spatio-temporal or static

Rich dynam-
ics, low or
high-dimen.

Features
(random, unsupervised),
read-out (linear)

Regression, classification,
sequence transduction,
prediction

[77, 91, 95]

Extreme
learning
machine

Random, analytical,
non-linear, spatial,
global

Low or very
high-dimen.

Features
(random, unsupervised),
read-out (linear, batch)

Regression, classification [9, 10, 12]



Chapter 3

Robustness to Initializations by
Batch Intrinsic Plasticity

The last decade showed that the extreme learning machine (ELM) successfully
allows very efficient learning with good generalization. However, it is obvious that
the task performance and the generalization ability is depending on the random
projection. To enhance the robustness to initializations and different input data
distributions is therefore an important ingredient for reliable learning. Batch in-
trinsic plasticity (BIP), a highly efficient unsupervised learning scheme, addresses
this issue by adaptation of the activation functions of the hidden-layer neurons
such that certain desired output distributions are achieved.

The remainder of this chapter is organized as follows. The first section of this
chapter, Sect. 3.1, integrates unsupervised learning by BIP into the context of
reliability. The conversion of intrinsic plasticity (described in Sect. 3.2) towards
a batch method suited for the prerequisites of the ELM approach is described in
Sect. 3.3. Sect. 3.4 analyzes the impact of BIP on a single neuron model statis-
tically. Different studies on the performance of networks trained with BIP are
provided by Sect. 3.5.

BIP was first introduced in [13] and further analyzed in [14]. A deeper analysis
of intrinsic plasticity and its synergies with recurrence in the context of reservoir
computing and random projections is provided in [12]. It is explained that intrin-
sic plasticity is comparable to a feature-regularization mechanism and therefore
enhances the generalization capability.

3.1 Reliability and Robustness to Initializations

“The task performance of the ELM approach strongly depends on the random
initialization”. This is indeed a fact that one has to face when applying ELMs.
One way to deal with it, is to tune the ELM parameters towards a task-suitable
regime which can lead to good generalization results (e.g. see [10, 106]). However,
this approach is clearly heuristic. In fact, automatic methods to tune the random
initialization of the ELM approach in order to avoid overfitting are desired, i.e.
an appropriate optimization of the input weights and the biases of the non-linear
transfer functions.

21
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One reason for the high dependence on the random initialization is that, with-
out expert-tuning by means of additional task knowledge, a random initialization
can lead to the problem of saturated or constant neurons. This can be avoided
by finding activation functions which are in a favorable regime. Methods only
controlling the network size and the output matrix are insufficient in tuning the
neurons to a good regime, where the encoding is optimal. This motivates tech-
niques to tune the output distributions of hidden-layer neurons in a regime where
the encoding is suited for good generalization.

To achieve this goal, a biologically plausible mechanism first introduced by
Triesch [45] under the notion of intrinsic plasticity (IP) can be used. It is shown
in [11], that IP enhances the encoding of recurrent neural networks in the field
of reservoir computing. The output of a respective hidden-layer neuron is forced
by IP to approximate an exponential distribution. This maximizes the network’s
information transmission, caused by the high entropy of the distribution. IP can, in
principle, be applied for ELMs as well, but counteracts the idea of computationally
cheap one-shot learning.

Therefore, batch intrinsic plasticity (BIP) [13] is introduced, which is a highly
efficient batch version of intrinsic plasticity. This approach is used to optimize
the hidden-layer of ELMs. BIP is applied in a pretraining phase which adapts
the activation function of the hidden-layer neurons analytically by a pseudo in-
verse technique such that desired output distributions are achieved. It is shown
in [13, 14] that BIP mitigates the dependence of the performance on the random
initialization.

This chapter shows that ELMs pretrained by BIP are significantly more robust
to random initializations and achieve better generalization results than purely
random ELMs on different real world tasks. The approach is also compared to
other state of the art optimization techniques for ELMs.

3.2 Intrinsic Plasticity

Intrinsic Plasticity (IP) was developed by Triesch in 2004 [107, 45, 108] as a model
for homeostatic plasticity for analog neurons with Fermi-function. Since its in-
troduction, the IP-rule has been used to learn sensory representations [109] and
to enhance the encoding of reservoir networks [11, 36]. Also static reservoirs are
considered as promising machine learning methods [12]. Triesch also shows in [108]
that synergies of synaptic plasticity and IP can detect heavy tail input distribu-
tions.

The goal of IP is to optimize the information transmission of a single neu-
ron strictly locally by adaptation of slope a and bias b of the non-linear activa-
tion function f(x) = 1

1+e−ax−b
(Fermi-function) such that the neurons’ outputs

become exponentially distributed. IP-learning can be derived by minimizing the
Kullback-Leibler-divergence D(fx, fexp) between the output fx and an exponential
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distribution fexp:

D(fx, fexp) =

∫
Ω
fx(x) log

(
fx(x)

fexp(x)

)
= −H(x) +

1

µ
E(x) + log(µ) , (3.1)

where H(x) denotes the entropy and E(x) the expectation value of the output
distribution. In fact, minimization of D(fx, fexp) in Eq. (3.1) for a fixed E(x)
is equivalent to entropy maximization of the output distribution. The following
online update equations for slope and bias - scaled by the step-width ηIP - are
obtained:

∆a =
ηIP

a
+ y∆b ∆b = ηIP

(
1−

(
2 +

1

µ

)
x+

1

µ
x2

)
. (3.2)

The only quantities used to update the neuron’s non-linear transfer function are x,
the synaptic sum arriving at the neuron, its squared value x2 , and the firing rate
µ. Since IP is an online learning algorithm, training is organized in epochs: for a
predefined number of training epochs the network is fed with the entire training
data and each hidden neuron is adapted to the network’s current input separately.
In fact, for small mean values, i.e. µ ≈ 0.2, the neuron is forced to respond strongly
only for a few input stimuli.

3.3 Batch Intrinsic Plasticity: Methodology

Since batch intrinsic plasticity (BIP) is an unsupervised training algorithm, only
the set of inputs u = (u(1), . . .u(Ntr)) ∈ RI×Ntr are used for optimization. The

Input stimulus x

Activation f(x)

si2 s iN tr−1

t 1
t 2

s i1

tN tr−1

tN tr

s iN tr ...

. . .

Fig. 3.1: Batch intrinsic plasticity formulated as a
regression problem.

goal is to adapt slope ai
and bias bi of the acti-
vation function such that
a desired distribution fdes

for the neuron’s outputs
hi(k) = f(aisi(k) + bi)
is realized. The main
idea is to formulate a lin-
ear regression problem in-
stead of online learning.
Linear regression problems
can be solved by comput-
ing a pseudo inverse of a
matrix which features ef-
ficient unsupervised learn-
ing. Random virtual tar-
gets t = (t1, t2 . . . tNtr)

T are drawn in ascending order t1 < · · · < tNtr from the
desired output distribution fdes. Fig. 3.1 illustrates BIP schematically: the targets
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t and the input stimuli si are combined to build data pairs inducing a regres-
sion problem. The synaptic sum arriving at neuron i when stimulated by training
sample k is given by si(k) = Win

i u(k) and collected in si = Win
i u. Since the

stimuli need to be mapped onto the right targets, a rearrangement of the stimuli
in ascending order si(1) < · · · < si(Ntr) is done by sorting si ← sort(si). This is
necessary because a monotonically increasing activation function f is used to map
all incoming training stimuli on the right targets and infer the desired distribution
fdes for the neuron’s output. Defining the data matrix Φ(si) =

(
sTi , (1 . . . 1)T

)
and

the parameter vector vi = (ai, bi)
T , learning for the i-th neuron is formulated as

a linear and over-determined regression problem, where the outputs are mapped
onto the targets hi(k) ≈ tk:

‖Φ(si) · vi − f−1(t)‖ → min . (3.3)

The solution for the optimal slope ai and bias bi is obtained by computation of
the Moore-Penrose pseudo inverse [25]:

vi = (ai, bi)
T = Φ†(si) · f−1(t) . (3.4)

Typically Fermi and tanh functions are used as activation functions. The algorithm
is always terminating, since the pseudo inverse always exists. It is also important
that the virtual targets are in [0, 1] (if the Fermi function is used). For this reason,
only truncated probability distributions are applied. The learning is done in an
one shot fashion and summarized in Alg. 1.

Algorithm 3.1 Batch intrinsic plasticity (BIP) for ELMs

Require: get inputs u = (u(1), u(2) . . . u(Ntr))
T

for all hidden neurons i do
get stimuli si = W in

i · u
draw targets t = (t1, t2 . . . tNtr)

T from desired distribution fdes

sort targets t← sort(t) and stimuli si ← sort(si)
build Φ(si) =

(
sTi , (1 . . . 1)T

)
calculate (pseudo-)inverse (ai, bi)

T = vi = Φ(si)
† · f−1(t)

end for
return v = (v1, v2 . . . vR)T

The pretraining is of the same order of complexity as the supervised read-out
learning for ELMs, since only the least squares solutions of the linear model Φ
have to be calculated. Only the virtual targets ti used as meta-parameters are
necessary to fully define the regression model. Since the method is unsupervised,
Alg. 3.1 has to be recomputed if new input samples are used, e.g. when changing
the task. The following section Sect. 3.4 investigates the behavior of BIP when
stimulated with different inputs.
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3.4 BIP and Single Neuron Behavior

A single neuron model with different fixed input distributions fs is considered in
order to illustrate the behavior of BIP learning. Ntr = 50 samples are used for
training and Nte = 1000 samples for testing - both drawn from fs.
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Fig. 3.2: A neuron’s activation function adapted by BIP to approximate the output
distributions fdes (y-axis) while starting from the input distributions fs (x-axis).
The input distribution is varied over the rows, while the output distributions varies
column-wise.

Three different input and output distributions are taken into account: fdes =
fs = exp(onential), norm(al), and uni(form). The moments of the distributions
are: µ(exp) = 0.2, σ(exp) = 0.2, µ(norm) = 0.5, σ(norm) = 0.1, µ(uni) = 0.5, and
σ(uni) = 0.3. These values are used for the following experiments.

Fig. 3.2 illustrates the result of adapting the neuron’s non-linear transfer func-
tion. The input distribution is assigned to the rows of the figure, while the desired
output distribution is given column-wise. The incoming training stimuli are visual-
ized by the crosses on the x-axis, while the corresponding targets are displayed on
the y-axis. The x-axis shows a histogram of the synthetically created test stimuli
while the y-axis shows a histogram of the outputs produced by the learned activa-
tion function transforming the inputs. Especially when stimulated with Gaussian
input, the neuron is able to achieve the three desired output distributions very
accurately - illustrated by the second row in Fig. 3.2. It is demonstrated in the
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χ2 µ σ exp norm uni

.49±.36 .98±1.04 1.83±.37

exp .18±.02 .49±0.01 0.46±.04

.21±.03 .08±0.01 0.25±.02

.08±.06 .05±0.04 0.27±.11

norm .20±.02 .50±0.01 0.49±.04

.19±.02 .09±0.01 0.29±.01

.27±.11 .25±0.09 1.14±.13

uni .19±.02 .49±0.01 0.49±.03

.18±.02 .09±0.01 0.31±.01

Tab. 3.1: Fits of output distributions.
A cell contains mean and standard de-
viation of the χ2-value, µ and σ.

rnd lgα=-15 −12 −9
BIP

R= .062±.003 .062±.003 .060±.002

50 .062±.004 .063±.004 .059±.002

100 .094±.034 .093±.032 .077±.017

.073±.014 .072±.013 .061±.002

150 .149±.076 .148±.076 .107±.042

.073±.013 .073±.013 .062±.003

200 .229±.160 .227±.158 .153±.085

.075±.015 .075±.015 .062±.003

Tab. 3.2: Test errors on the figure-eight
robotics task. Comparison of randomly
initialized and BIP pretrained ELMs.

first column of Fig. 3.2 that the exponential distribution is approximated for all
inputs. However, since the sigmoid activation function has only two degrees of
freedom, the match is typically not perfect. The figure shows that large deviations
from the optimal output distribution can sometimes be observed.

Further statistics are summarized in Tab. 3.1. The table shows the results
obtained for one neuron which is trained by BIP for 100 trials. After each trial,
the mean and the standard deviation of the output distribution are collected which
determines the deviation of samples from the desired distribution. The table shows,
that µ and σ of the output distribution are always approximated very well with
low variance.

3.5 Experimental Results

This section contains the results obtained for the experiments involving optimiza-
tion by batch intrinsic plasticity. Sect. 3.5.1 shows a robotic scenario where the
network learns the inverse kinematics of a six degrees of freedom (DOF) robot
arm. Corke’s tool box [110] is applied for simulation of the robot. Sect. 3.5.2
investigates the interpolation and extrapolation behavior of ELMs pretrained with
BIP and Sect. 3.5.3 demonstrates the network abilities for real world regression
tasks.

3.5.1 Figure-Eight with a 6-DOF Robot

The following two sections describe experiments, where the networks’ input matrix
components W in

ij and the biases bi are drawn from an uniform distribution in
the interval [−10, 10], while the slopes ai are set to unity. In the experiments,
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Fig. 3.3: Robotics task for ELMs with: R = 150 and ε = 10−12. Left: performance
of the randomly initialized ELM. Right: performance of the ELM which was first
trained with the BIP method.

the Fermi-function is used as activation function and the desired output is the
truncated exponential distribution fdes = fexp with a fixed mean µ = 0.2.

The network models are applied to learn the observed inverse kinematics map-
ping between joint and task space of the redundant six degrees-of-freedom (DOF)
Puma560 robot arm shown in Fig. 3.3. Ntr = 100 training samples are generated
by projecting a task trajectory specified in Cartesian end-effector coordinates into
the joint space of the robot arm by means of the analytically calculated inverse
kinematics function F : U → Y, where U is the task and Y the joint space. For
each task space input (u1(k) . . . u6(k))T containing the end-effector position and
orientation the six-dim target vector (y1(k) . . . y6(k))T is computed and addition-
ally corrupted with Gaussian noise (σN = 0.1). The generated trajectory forms
an eight - see Fig. 3.3. The left plot images the learned inverse kinematics for
a randomly initialized ELM, which apparently overfits the data. The right plot
shows the result of the supervised learning for an ELM which was first trained
with BIP. The learned part of the inverse kinematics is approximated very well.

Additionally, Nte = 1000 test samples are created to verify the generalization
capability for different hidden-layer sizes R and output regularization strengths ε.
The results of the experiments are summarized in Tab. 3.2 and done for 10 different
ELMs and 10 different data set configurations for each cell. The results show
that the ELMs trained with BIP perform significantly better than the randomly
initialized networks over the whole range of the parameters. Even ELMs with a
big hidden-layer and low output regularization (e.g. with R = 200, ε = 10−15)
do not tend to overfit the data after BIP-pretraining. Also the variance in the
performance is much less after pretraining, a robust solution from the learning can



28 Robustness to Initializations by Batch Intrinsic Plasticity

be guaranteed.

3.5.2 Two-Circles learned with a 6-DOF Robot

The following section describes why the shaping of output distributions of the
hidden-layer neurons is important and analyzes its influence on the networks’ per-
formance. The mapping abilities of the BIP pretrained ELMs is investigated on a
further robotics tasks where the scaling of the neurons’ input weights is artificially
tuned to undesired regimes. It is additionally analyzed how strong the results of
BIP depend on the random initialization of the input matrix and the biases.

The hidden-layers have R = 200 neurons, the parameterized Fermi-function is
used as activation function and the desired output used to produce the targets for
the BIP learning is again the truncated exponential distribution fdes = fexp with
a fixed mean µ = 0.2. The networks for this robotics task had a ridge regression
parameter of α = 10−5. The regularization parameter was identified as parameters
leading to the lowest test error by line search in the range α ∈ [10−9, 10−8, . . . , 103].

Again, the task is to learn the inverse kinematics mapping between joint and
task space of a redundant six degrees of freedom (DOF) robot arm shown in
Fig. 3.4. Ntr = 200 training samples andNtr = 2000 test samples are generated and
additionally corrupted with Gaussian-noise (σN = 0.1). The generated trajectory
forms four circles where only the second and third circle is designated for training
and the first and the fourth cycle for testing - see Fig. 3.4.

The figure shows the results for ELMs which hidden-layer neurons are tuned
into a specific regime in order to clearly extract the effect of BIP. The figure is
separated into two rows. The first row illustrates the robotics task and the respec-
tive reproduction performance. The second row shows the output distributions
of two randomly selected hidden-layer neurons for the three different examples
respectively. The left part of the figure demonstrates a situation where the neu-
rons are saturated. This was achieved by drawing the input matrix weights and
biases uniformly from [−10, 10]. The first two images in the second row show
that the neurons in this case have an almost binary coding. The robot arm is
supposed to follow an circular trajectory which is not approximated accurately.
The extrapolation ability of the ELM is poor, strong overfitting occurs. Fig. 3.4
(right) shows the effect of hidden-layer neurons with almost constant activation
functions producing peak-like output distributions. The input weights and biases
are drawn from [−0.1, 0.1]. Therefore, the complexity of the network is to low and
the mapping can not be approximated. The centered plots illustrate the mapping
results for an ELM which was trained by BIP after the random initialization in a
saturated or constant regime. The hidden-layer neurons approximate exponential
distributions with fixed mean µ = 0.2 illustrated by the third and the fourth his-
togram in the second row of Fig. 3.4 - the network performs well. The shaping of
the output distribution clearly improves the generalization ability of the network.
Note, that the desired distribution is not always produced with high accuracy (see
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Fig. 3.4: The effect of saturated (left) and almost constant hidden-layer neurons
(right) on the robotics interpolation task (RoboInter). BIP produces desired out-
put distributions favorable for generalization (center).

third plot in the second row of Fig. 3.4). However, mean and standard deviation
are approximated very well. These example demonstrates that the shaping of
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Fig. 3.5: Performance on the test set for different
input matrix and bias scalings.

output distributions for the
hidden-layer neurons sepa-
rates into two effects: weights
which are too large or too
small for the given task are
scaled and the encoding in
the hidden-layer is sparsified
due to the exponential distri-
bution. The combination of
these effects leads to a good
generalization ability.

Fig. 3.5 shows how the
test error measured as root
mean square error changes
when the input matrix W in

and the biases b are scaled
with a factor. After scaling
the input matrix and the bi-
ases, one part of the networks
is trained with BIP. The test
error for the randomly initialized ELM highly depends on the initialization indi-
cated by the blue error surface which has a minimum for an input scaling of 1.25
and a bias scaling of 10−2. The networks trained with BIP perform very well



30 Robustness to Initializations by Batch Intrinsic Plasticity

independently of the initialization. BIP compensates the scaling of the incoming
stimuli such that a good generalization capability occurs indicated by a flat error
surface below the one for the randomly initialized ELMs.

3.5.3 Batch Intrinsic Plasticity vs. Random Initializations

The following section describes experiments focusing on the impact of BIP and
ridge regression on the task performance on different real world tasks. The in-
put matrix components W in

ij , the biases bi for a respective ELM are drawn from

the uniform distribution in [−1, 1]. The Fermi-function f(x) = 1/(1 + e−aix−bi) is
again used as activation function for the networks and the desired output produc-
ing the targets for the BIP learning is again the truncated exponential distribution
fdes = fexp with a fixed mean µ separately drawn for each neuron from the uniform
distribution µ ∈ [0.05, 1]. BIP is applied after the random initialization of the net-
works as pretraining method. The results are averaged over 20 different network
initializations for each data set. The statistics over the networks is contained in
the following tables. The optimal ridge regression parameter and network size is
determined by a line search.

The data sets used for investigation are: Abalone (Ab), CaliforniaHousing (Ca),
CensusHouse8L (Ce), DeltaElevators (De), ComputerActivity (Co), and Eleva-
tors (El). All data sets are regression tasks from the UCI machine learning repos-
itory - detailed information can be found in [111]. The separation of the data sets
into training and test data is predefined as specified in the UCI repository for the
respective tasks. The input data has been normalized to [−1, 1], while the output
data was normalized into the range [0, 1]. The results of the learning for three
of the tasks are illustrated in Fig. 3.6. The first row shows the development of
the test error for growing hidden-layer size when trained with linear regression.
The randomly initialized ELMs strongly overfit the training data when the net-
work becomes large. This effect is significantly reduced when pretrained with BIP.
Whereas the effect is present for all data sets, I show only three for illustration
in Fig. 3.6. The second row in Fig. 3.6 displays the development of the test error
when changing the ridge regression parameter for networks with R = 500 hidden
neurons. The networks’ show a typical generalization behavior where the models
first overfit the data, reach an optimal value and then degenerate for too strong
regularization. The BIP-pretrained ELMs perform better than the randomly ini-
tialized networks in a large range of output regularization parameters and are by
far less sensitive to its choice. The results for the best performing ELMs are sum-
marized in Tab. 3.3 and Tab. 3.4. Tab. 3.3 contains the performance results on
the test sets for randomly initialized ELMs and BIP-trained ELMs with linear
regression. The results are given for the best obtained hidden-layer size which was
varied in R ∈ [5, 10, . . . , 500, 1000]. The BIP-pretrained ELMs perform better than
the purely random initialized networks for the majority of the tested regression
tasks and lead to stable results with low variance. The results also show that the
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Fig. 3.6: RMSE development on the test set for growing hidden-layer size and
different ridge regression parameters.

BIP-pretrained networks can handle larger hidden-layer without overfitting the
data. The change in the hidden-layer encoding shows a significant impact on the
networks’ performance. Since large networks have a good generalization ability
after training with BIP, ELMs with a R = 500 neuron hidden-layer are used for
further experiments. The expectation is that the BIP networks, in this case, per-
form better than the random networks after supervised readout training with ridge
regression, since the previous experiments show that BIP improves the generaliza-
tion ability significantly for large networks. The test error results are stated for the
best performing networks with the corresponding output regularization strength
α which was found in α ∈ [10−9, 10−8, . . . , 103] in Tab. 3.4.

The performance results from other methods are summarized in Tab. 3.5, in or-
der to compare the results obtained for the BIP-pretrained ELMs with the state of
the art optimization techniques for ELMs. The performance results for the RELM,
EI-ELM, I-ELM and CI-ELM where taken from [33, 23, 37, 112] respectively. It
is shown that the BIP-pretrained ELMs additionally trained with ridge regression
can perform better than other state of the art models. However, the optimization
is done in a complementary way, which is important to note. In such a case, it is
possible to combine those methods with BIP. Interestingly, the RELM performs
best on almost all of the tasks, which is not fully consistent with the results ob-
tained in this thesis. The results demonstrate that the best performance of the BIP
networks additionally trained with ridge regression in comparison to the randomly
initialized networks is not only due to ridge regression or BIP. The combination
of ridge regression and BIP leads to significantly better performing networks with
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Task BIP R RND R

Ab .075±.001 35 .075±.001 35

Ca .158±.005 90 .159±.003 25

Ce .066±.001 210 .068±.002 110

De .053±.001 130 .053±.001 70

Co .039±.002 170 .048±.009 90

El .037±.002 500 .040±.004 90

Tab. 3.3: The results of BIP pretrained in
comparison to randomly initialized ELMs
for regression tasks. The networks are
stated with the optimal hidden-layer size.

BIP lgα RND lgα

.073±.001 1 .074±.001 -1

.149±.001 2 .153±.001 0

.063±.001 0 .064±.001 -3

.053±.001 1 .053±.001 -2

.034±.001 0 .035±.002 -2

.036±.001 0 .036±.001 -1

Tab. 3.4: BIP pretrained and ran-
domly initialized ELMs. The net-
works are stated with the optimal
ridge regression parameter.

Task RELM EI-ELM I-ELM CI-ELM

Ab 0.076± 0.006 0.082± 0.002 0.092± 0.005 0.083± 0.003
Ca 0.117± 0.003 0.149± 0.002 0.168± 0.005 0.155± 0.005
Ce 0.036± 0.002 0.083± 0.001 0.092± 0.867 0.087± 0.002
De 0.018± 0.003 0.058± 0.003 0.074± 0.013 0.060± 0.007
Co 0.019± 0.003 0.094± 0.003 0.120± 0.013 -

Tab. 3.5: Mean performance and standard deviation of other state of the art
methods on the respective regression tasks used to benchmark BIP pretrained
ELM with ridge regression.

a low variance in the test error for all tasks used in the experiments. In addition,
the BIP trained networks have higher optimal ridge regression parameters. This
is due to the fact that the features provided by the hidden-layer are more task
suited. Less large output weights are needed to produce a good mapping. This is
desired cause it makes the networks robust against noise in the hidden-layer state.

3.6 Conclusive Remarks

This chapter introduces batch intrinsic plasticity (BIP) and suggests its application
as optimization method for the neural encoding of ELMs by shaping the output
distributions of the hidden-layer neurons. This method represents a key ingredi-
ent for reliable learning because it makes the ELM technique robust to random
initializations.

The method is used to initialize the network’s input weights and biases without
detailed knowledge about the task and also overcomes the problem of slow learning
dynamics of the original IP algorithm by formulating a regression problem. The
experiments show that the new learning method produces the desired output dis-
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tributions despite that only two parameters per hidden-layer neuron are used for
adaptation. It is demonstrated that the production of sparse codes in the hidden-
layer of a neural network by producing exponential distributions with low fixed
mean can lead to good generalization results in two different robotic scenarios.
Especially networks with a large hidden-layer have a better generalization ability
when pretrained with BIP.

In addition, the method is compared to other ELM techniques for different
real world regression tasks from the UCI machine learning repository. Since every
hidden-layer neuron is updated separately, BIP is well suited for methods optimiz-
ing ELMs by incrementally growing the network without re-computation of the
already obtained biases and slopes. BIP complements those methods and could -
combined with other optimization methods - lead to even better learning results
for ELMs. In addition, every neuron can be trained by a different desired output
distribution in order to produce a more diverse encoding in the hidden-layer. Only
the desired distribution fdes and the inverse of the activation f−1 is needed for the
method, which points out the high flexibility of the method. The generic formu-
lation might be used to analyze the performance of the method with respect to
other desired output distributions and activation functions. This leads to different
codes in the hidden-layer and has a huge impact on the network’s performance.

One important information to mention is that BIP is not well suited to learn
from correlated data (e.g. from trajectories that only cover small parts of the
workspace). Since BIP changes the activation functions of the neurons such that
their output distributions become exponentially distributed, input data that is
not close to the training data very likely leads to saturated neurons. This is not
favorable for generalization. A possible solution to this issue is to draw input
samples randomly from a desired distribution in the workspace that differs from
the training data. Unfortunately, these different cases for unsupervised learning
with BIP is yet not well investigated and is part of future research.
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Chapter 4

Robustness to Drifts by
Intrinsic Plasticity with

Natural Gradient

Drift compensation is an important approach enhancing the reliability of machine
learning techniques in long-term scenarios where measurements are made for long
periods of time. The deterioration of an involved sensor or systematical shifting
and scaling of the sensory information through other processes can lead to an
inherit change of the underlying function which is referred to as input drift. The
compensation of such drifts is tackled in this chapter by means of unsupervised
adaptation through intrinsic plasticity which is optimized with the natural gradient
technique and another weight scaling mechanism.

The remainder of this chapter is organized as follows. The first section of
this chapter, Sect. 4.1, emphasizes the role of unsupervised learning by intrinsic
plasticity via natural gradient descent for reliable learning results. In particular,
the reliability to temporal changes of the mapping are discussed in detail. Sect. 4.2
revisits intrinsic plasticity (IP) as a stochastic gradient descent method whereas
the following sections (Sect. 4.3 and Sect. 4.4) introduce an extension of IP through
the use of the natural gradient technique. Sect. 4.5.2 provides a rigorous analysis
on this new online adaptation rule in the context of drift compensation. Sect. 4.5.3
demonstrates the method in a real world scenario with the humanoid robot iCub
and Sect. 4.6 provides a rigorous discussion of the chapter.

The natural gradient technique for IP was introduced in [15]. The results
obtained by use of the natural gradient descent approach with application to drift
compensation are taken from [16]. Part of these results are taken from Strub’s
master thesis [113].

4.1 Reliability and Drift Compensation

Drift compensation is highly useful in real world applications where measurements
are made for long periods of time [114] or if inputs are influenced systematically
through other processes like, for instance, in case of a change of illumination or
a (sudden) displacement of a camera. The literature shows that a detection of

35
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the drift before the compensation is a promising approach [115, 116]. In these
cases a suitable compensation strategy needs to be chosen in order to cope with
the drift successfully. One such strategy is to adjust the data accordingly, e.g. to
recenter to compensate respective mean shifts or to rescale to compensate changes
in variance. This requires external data analysis and appropriate measures but
does not adapt the learned model to internalize the drift. Thereby the learned
model does not actually encode for the current real world input, but rather for the
input at learning time before the drift occurs.

This is opposed to an implicit approach to drift compensation that internalizes
the drift into the model by continuous re-adaptation. In principle, continuous
online learning of the weights though backpropagation can provide respective re-
learning. This actually is a strong argument in favor of applying online-learning
while already exploiting the learned model. But it requires that error feedback
is continuously available to change the neural code that solved the learning task
for the original data. In real applications, this may not be feasible. Consider for
instance the application of a learned virtual sensor for which training data can be
generated in the laboratory using a costly direct sensor. The goal is to replace
this sensing in the real product, where supervised re-adaptation of the weights is
consequently not possible by definition.

Drift compensation through IP learning in the presence of mean and variance
changes offers a different and novel approach, which internalizes the drift in the
network model so that the input data does not need to be analyzed. It simulta-
neously sustains the neural encoding, which was learned using the error feedback
for the original data, so that there is also no need for continuous error feedback
and retraining. IP achieves this by exploiting that the considered networks restrict
error driven weight adaptation to the outputs of the network, whereas optimiza-
tion of the input encoding in the hidden-layer is decoupled from the output weight
adaptation and provided by the IP learning. The drift compensation is therefore
in some sense a desired side effect of the local and unsupervised optimization of
the encoding of each single neuron in the network. Note that we do not con-
sider so-called concept-drifts, which means online changes in the desired output
function [117], as opposed to compensation of online changes of the input signal.

However, it turns out that only the combination of a proposed modification of
the IP rule and the usage of the natural gradient provides an IP learning dynamics
that it is well suited for compensating such drifts. Therefore, the natural gradient
for intrinsic plasticity learning is introduced and its impact is analyzed in rigorous
detail. Also, a further novel mechanism to adaptively transfer persistent changes
of the activation function caused by IP to the weights is presented in order to avoid
numerical instabilities.

It is shown that the use of the natural gradient descent technique is indispens-
able for successful drift compensation because the learning dynamics potentially
suffer all known drawbacks of standard stochastic gradient. The parameter esti-
mates can lead to small gradient norms in some regions of the parameter space, so
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called plateaus, where convergence is slow. One reason for this is that the parame-
terization and the corresponding output of a model are defined in different metric
spaces. Most gradients defined on an error measure only utilize the Euclidean
metric in the parameter space. But, generally, there is no reason to assume that
the Euclidean metric is the preferential distance measure between solutions. It is
well known that the parameter space has a Riemannian metric structure in many
cases, for instance in the weight space of neural networks [118]. The parameter
space can be analyzed by means of information geometry - a theory which employs
differential-geometric methods in statistics [119, 120].

While the steepest direction in a parameter space with an Euclidean metric
structure is given by the conventional gradient, the steepest direction in a pa-
rameter space with Riemannian metric structure is given by the so-called natural
gradient. It is obtained by transforming the Euclidean metric in the output space
by means of an often only locally defined metric tensor into the parameter space.
The tensor needs to be well-suited to the Riemannian metric of the parameter
space.

It has been shown that the natural gradient can be advantageous for different
stochastic learning setups like blind-source separation or statistical estimation of
probability density functions (see e.g. [118, 121, 122]). It has also been applied
to improve the learning dynamics of multilayer networks [118, 123]. For instance
in [124], the authors distinguish between a transient and an asymptotic phase in
the learning dynamics which both show significant gains in performance over stan-
dard gradient descents. The concept of natural gradient has further been extended
to more general classes of multidimensional regression and classification problems
in [65]. An alternative derivation of the natural gradient is given in [125], together
with the natural equivalent of batch learning, linked to Levenberg-Marquardt op-
timization. Recently, the special case of learning for non-linear discriminant net-
works was improved by use of natural gradient in [126].

As opposed to standard neural learning, where the input weights are adapted,
IP learning adapts parameters of the activation function. In this chapter, the cor-
responding Riemannian metric tensor for IP, which was first introduced in [12], is
defined and analyzed in detail. Thereby, the natural gradient for IP is introduced.
Like in other domains, where natural gradients were previously explored, experi-
ments reveal that the Riemannian metric and the associated natural gradient are
more suited to describe distance relations between output distributions for IP and
provide superior learning dynamics.

The following sections describe the natural gradient descent for IP and proposes
techniques to tackle numerical issues of the IP learning rule. Experiments that ana-
lyze the differential-geometric properties of IP are provided in order to complement
the theory of natural gradient. It is also shown how the learning dynamics change
when following the natural gradient. The major part is to demonstrate the effects
of natural gradient IP learning for compensating drifts in the input, including a
real world learning task from robotics. In summary, this chapter shows that IP
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learning simultaneously provides unsupervised learning and input drift compensa-
tion through sustainment of the neural encoding in the hidden-layer which is an
important property of reliable learners in long-term learning scenarios.

4.2 Intrinsic Plasticity as Stochastic Gradient Descent

Intrinsic Plasticity (IP) was developed by Triesch in 2004 [45] and optimizes the
information transmission of a single neuron strictly locally by adaptation of slope
a and bias b of the activation function such that the neuron’s output y becomes
approximately exponentially distributed with a fixed mean µ. This is done with
respect to the input sample distribution fx(x). IP-learning can be derived by using
the insight from statistics that fy(y) = fx(x)·(∂y/∂x)−1 and the equation ∂y/∂x =
ay(1−y), obtained by analyzing the Fermi function. Minimization of the difference
L(fy, fexp) = L(θ) between the output fy and an exponential distribution fexp,
quantized by the Kullback-Leibler-divergence [127] (KLD) delivers the following:

L(θ) = E[l(y, θ)] = C +

∫
Ω
− ln

(
ay(1− y)

e
1
µ
y

)
︸ ︷︷ ︸

l(y,θ)

fy(y) dy , (4.1)

where C remains as a constant of the potential and can be neglected without loss of
information. Since IP was introduced as a stochastic gradient rule, the respective
online loss function can be identified with the integrand l(y, θ) (see Eq. (4.1)).
Here the KLD is interpreted as expected loss E[l(y, θ)] for the input samples x
distributed according to fx(x). A separation of Eq. (4.1) into the entropy Hx[y]
and the expectation value of the output distribution Ex[y] is possible [107], which
directly shows that a minimization of L(θ) for a fixed mean Ex[y] is equivalent to
entropy maximization of the output distribution. Additional information about
the KLD and its relation to exponential distributions can be found in [128].

Fig. 4.1 shows how four different input distributions (first row in the figure)
are transformed into exponential-like distributions (second row in the figure) after
training with IP. The figure clearly reveals that the best possible fit after IP learn-
ing is highly dependent on the input distribution. This is due to the fact that only
two parameters in the Fermi function are adapted. These distributions are used
as input for the experiments in the following sections.

4.3 The Natural Gradient for Intrinsic Plasticity

Given an input distribution fx(x), an analog neuron establishes a differentiable
mapping between the parameter space Θ = R2 and the manifold of possible out-
put distributions Υ. The KLD comparing a given distribution to the exponential
distribution with fixed mean µ in Eq. (4.1) can be used to derive a canonical dis-
tance measure on the output distribution space resulting in a Riemannian metric
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Fig. 4.1: Four input distributions fx(x) (1st row) and the learned exponential-like
output distributions fy(y) for µ = 0.2 (2nd row).

Neuron

=ℝ
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d ⋅F⋅d  D  f 1 , f 2

Fig. 4.2: Differentiable relation (neuron) and metrics F and D between parameter
space Θ = R2 and manifold of possible output distributions Υ.

F on the parameter space Θ. The metric determining the distance between two
output distributions y1(x) = y(x, θ1) and y2(x) = y(x, θ2) in Υ defined by the pa-
rameter settings θ1 and θ2 = θ1 +dθ in Θ for an infinitesimal change of parameters
dθ is given by D (y1, y2). This distance measure is transformed such that it induces
the Riemannian metric tensor F (θ) - a 2× 2 positive definite matrix given by the
Fisher information [129] - as a pull-back onto the parameter space:

D (y1, y2) = Ex[(l(y1, θ1)− l(y2, θ2))2]

= Ex[(l(y1, θ1)− l(y1, θ1)−∇l(y1, θ1)dθ)2]

= Ex[(∇l(y1, θ1)dθ)2]

= dθ · Ex[∇l(y1, θ1) · (∇l(y1, θ1))T ] · dθ = dθ · F (θ) · dθ.

(4.2)

This idea guarantees that the distance between two parameter vectors θ1 and θ2 -
as measured by the length of the geodesic with respect to the metric tensor F (θ) -
is equal to the previously defined distance measure D(y1, y2) on the corresponding
output distributions y1 and y2 in Υ. The relation between parameters and output
distributions established by a non-linear transfer function of a neuron and its’
corresponding distance measures is schematically illustrated in Fig. 4.2.

The steepest descent direction of a potential with Riemannian structure is
given by the natural gradient defined by the metric tensor. The following update
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equation is obtained when using the natural gradient for IP:

θt+1 = θt − ηIP(F (θ) + εI)−1∇l(y, θ) = θt − ηIP∇NIPl(y, θ) , (4.3)

where I is the 2 × 2 - identity matrix and ε ≥ 0 is a positive scalar. We call
∇NIP := (F (θ) + εI)−1∇ the natural gradient operator for IP. Typically ε can
be set to zero to obtain a plain natural gradient formulation. But in the more
general definition Eq. (4.3), ε introduces a blending between standard and natural
gradient. Note that this blending influences the step width of the numerically
applied gradient descent and stabilizes the inversion of the metric tensor F .

The main problem with this formulation is that the expected gradient with
respect to the input is needed, but not available in an online framework. However,
it was shown in [123] that is possible to estimate the metric tensor online by
defining a proportional control law:

˙̂
F (θ) = λ

(
F (x, θ)− F̂ (θ)

)
, (4.4)

where F̂ is the estimate of the Fisher matrix and F (x, θ) the Fisher information
for one input element x. The problem then reduces to finding a good λ, which
must be small since the loss function is continuous and a good initial value F̂0(θ).
The learning by natural gradient descent thus becomes online capable and com-
putationally feasible.

4.4 Working-Point Transformation for IP

A closer inspection of Eq. (3.2) (left) reveals that the standard IP rule can suffer
from numerical instabilities in particular for large input amplitudes which lead to
small slopes a. In this regime of small slopes the discretization becomes problem-
atic due to the singularity induced by the 1

a -term, illustrated in Fig. 4.5 (A). The
combination with the results of experiments in Sect. 4.5.2 reveals that IP has a
“working point” at a = 1. It is therefore favorable to keep the parameter a close to
this “working point”, which can be achieved by a novel modification of IP learning.
It proposes to scale the neuron’s input weights with the slope in order to transform
the working point appropriately:

∆~w = ηws · (−~w + a · ~w) . (4.5)

with ηws < ηip (ηws is set to 10−5 in the experiments). With this additional
adaptation rule, the slope tends to converge back to unity, as the weights converge
to the former slope values. Hence the semantics of the IP learning rule remain
the same while transferring the learned pertinent slope information from the slope
parameter a to the synaptic weights. The collection of learning rules given by
Eq. (4.3), Eq. (4.2) and Eq. (4.5) are used in the following experiments and called
Natural IP (NIP).



Experimental Results 41

4.5 Experimental Results

This section contains the experiments investigating the impact of the natural gradi-
ent and the working point transformation on the online IP rules with an additional
application to drift compensation. Sect. 4.5.1 investigates the differential geomet-
ric properties of the natural gradient descent for intrinsic plasticity in two different
scenarios. The novel learning rule for drift compensation is analyzed in Sect. 4.5.2.
Sect. 4.5.3 demonstrates that drift compensation by NIP is possible in a real world
scenario involving the humanoid robot iCub.

4.5.1 The Impact of the Natural Gradient on Intrinsic Plasticity

The following experimental results are obtained for a single-neuron model with pa-
rameterized Fermi function. The experiments are performed with different inputs:
the first row in Fig. 4.1 shows the four different input distributions that are used
for investigation. A Gaussian (1-G), a bipartite (2-G), a tripartite (3-G) Gaussian
and an uniform (U) distribution. Ntr = 100 samples are independently drawn
from each distribution and used for training. A step width of ηIP = 10−3 and a
numerical stabilization of ε = 10−1 is used. For online estimation of the metric
tensor a decay rate of λ = 0.01 is used.

Information Geometry

The following experiment visualizes how the geometry of the potential L changes
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Fig. 4.3: Fisher metric at point θ for the 1-G distribution (left). The geometry
change of the attractor basin using the natural gradient (center, right). IP potential
and Fisher metric at the attractor (center). NIP potential and plain Euclidean
metric (right).
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by use of the metric tensor F at the attractor θ∗. The 1-G distribution is used as
input to a single Fermi neuron model for illustration.

Fig. 4.3 (left) shows schematically the Euclidean and the Fisher metric at a
given parameter configuration θ = (2,−0.5)T . Note that the gradient induced by
the Fisher metric is not orthogonal to the equipotential lines anymore. The direc-
tion of the steepest descent therefore changes and points in a more direct way to
the attractor than the standard gradient for IP which is using the plain Euclidean
metric visualized as black circle in the figure. Fig. 4.3 (center) shows the potential
L(θ) with a clearly visible plateau in b-direction, where the change in the KLD is
small. The dashed line is the unit circle with a radius of η in the geometry defined
by the metric tensor F (θ∗), which is well suited to the potential: the unit circle is
stretched in b-direction. Fig. 4.3 (right) visualizes the distortion of the potential
after transformation with F (θ∗). The induced landscape becomes “Euclidean-like”
after transformation and loses the plateau - the transformed potential is isotropic.

Information Geodesy

The following experiment focuses on a more global analysis of the natural gradient
descent. A gradient descent from a given starting point θ to the attractor θ∗ is
performed while the relative geodesic length (RGL) of the path is recorded. The
RGL gives the length of the geodesic γ from starting point θ to the attractor θ∗

with respect to the shortest way in the parameter space:

RGL(θ) =

∫
γ ds

‖θ − θ∗‖ , (4.6)

where ds =
√

da2 + db2 is the infinitesimal arc length in parameter space.
Fig. 4.4 (left) shows the potential field L(θ) of the Gaussian input distribution

Task E[RGL] (IP) E[RGL] (NIP)

1-G 1.3493 ± 0.5730 1.0748 ± 0.0526

2-G 1.0473 ± 0.0300 1.0234 ± 0.0342

3-G 1.1209 ± 0.0753 1.0505 ± 0.0506

U 1.0219 ± 0.0206 1.0056 ± 0.0099

Tab. 4.1: Relative average length of the
geodesics E[RGL] and their standard derivation√
E[(RGL− E[RGL])2] for IP and NIP learning.

(1-G) while the right hand side
of the figure shows the poten-
tial field L(θ) of the uniform
input distribution (U). It also
shows four starting points θ1−4

for the learning of each input
distribution. The black lines
show gradient descents per-
formed by IP, while the yellow
lines are the geodesics from
the NIP learning. Both ap-
proaches have the same fixed-
point, but the geodesics of the NIP learning imply a more direct path to the
attractor in parameter space. Thus the natural gradient method is better suited
to the potential than the conventional IP gradient. Tab. 4.1 displays the results of
an experiment where the RGL is measured for N = 100 different starting points
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drawn from a Gaussian distribution centered around the attractor with covariance
matrix Σ = I. It shows the average RGL and its standard deviation.

Since the minimum value for the RGL is one (which corresponds to a straight
line from the initial point to the attractor in parameter space), the values for the
RGL in Tab. 4.1 show that the geodesic lines of NIP are almost straight for all
tested input distributions (visualized in Fig. 4.4). In addition, the low standard
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Fig. 4.4: Geodesics in the IP potential. Geodesic lines for the Gaussian (1-G)
distribution (left). Geodesic lines for the uniform (U) distribution (right).

deviation demonstrates that the curvature of the geodesic is more independent
from the initial point in the potential when using the natural gradient instead of
the conventional gradient.

4.5.2 Drift Compensation with Intrinsic Plasticity

Drift compensation is a practically highly relevant issue for the application of
machine learning algorithms, because in real plants sensors and actuators are typi-
cally subject to wear and other non-stationary effects, e.g. induced by temperature
changes. As already discussed in the introductory part of this chapter, drift can
be externally compensated by re-adjusting the data which requires an additional
mechanism, or internalized into the learned model for continuous adaptation. IP
provides a novel approach to the latter, because it internalizes the drift in an un-
supervised and local way, while not relying on continuous error feedback learning.
It optimizes the neural encoding by shifting the mean through the bias and scal-
ing the variance through the slope parameter in the activation function. Drift
compensation can thus be considered as an inherent side effect of the IP learn-
ing approach, which has not been analyzed in the IP literature yet. Obviously,
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the learning dynamics of IP changes the effectiveness of drift compensation and
the following sections show that the interplay of input drift and the standard IP
learning dynamics leads to typical plateaus, which can be avoided when using NIP.

Analysis of IP Learning in the Presence of Input Drifts

The following experiment with a synthetic input signal provides an initial analysis
of IP learning with and without the natural gradient in the presence of drifts. It
demonstrates that standard IP always implies some drift compensation, but it is
not fast enough and can be improved trough the proposed modifications. Exper-
iments are performed using an input signal comprising a product of oscillations
x(t) = sin(0.2t) · sin(0.053t) · sin(0.092t). In the beginning, IP learning is applied
for 5 × 104 steps in order to let the parameters converge with a learning rate of
ηip = 10−3. After learning, two manipulations of the input signal are carried out
to analyze the impact of the natural gradient and weight scaling on the IP learning
dynamics in the presence of drifts: (i) gradual scaling of the signal changing the
variance and (ii) a gradual shift of the signal changing the mean. In the first ex-
periment, a gradual linear scaling of the input signal up to a factor of 100 or 1/100

respectively starting from 1 in 106 steps is applied. In the second experiment, a
gradual linear shifting to 50 or -50 respectively starting from 0 in 5 × 105 steps
is applied. Whereas these scaling and shifts are taken to the extremes, they are
meant to show the full behavior of the learning algorithm and to allow to clearly
display and discuss the effects of the NIP and weight scaling modifications to the
original IP rule.

The plots in Fig. 4.5 show the IP (black) and NIP (yellow) learning dynamics
for the described scalings and shifts. The blue-dashed lines show the computed
ground truth target slope and bias, which are necessary to perfectly compensate
the input signal manipulation. The left column summarizes the results for the
scaling while the right column outlines the effects for the shifting of the input
signal. The first row in Fig. 4.5 (A, B) displays the logarithm of the slope ratio
for IP (black) and NIP (yellow), which is defined as follows:

“Slope Ratio” (IP) :
a(t)

atrain
“Slope Ratio” (NIP) :

a(t) · s(t)
atrain · strain

where a(t) is the recorded slope at time t and atrain is the learned slope for the
non-scaled and non-shifted input. The term s(t) simply denotes the scaling factor
of the weights at time step t with respect to the weight with unity norm, in order
to make the results comparable. The second row (C, D) shows the shifting of
the bias b(t) with respect to the bias btrain for the non-manipulated input signal
divided by the actual slope a(t). Hence, the plots show the effective mean shift by
IP (black) and the adapted NIP (yellow) learning rule.

“Bias Shift” (IP):
b(t)− btrain

a(t)
“Bias Shift” (NIP) :

b(t)− btrain

a(t) · s(t)
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Fig. 4.5: IP and NIP in a single neuron. The logarithm of the slope ratio for each
scaling and shifting value, respectively (A, B). The bias shift divided by the slope
for the according scaling and shifting value (C, D). The KL-divergence for scaling
and shifting (E, F). These experimental results are from [16, 113].

The KLD is computed to measure the success of the respective adaptation by IP
or NIP (see E and F).

Variance Shift Reveals Working Point. Fig. 4.5 (A) shows that the IP learn-
ing rule is not able to counteract the signal manipulation for an increasingly small
scaling within the given time constraints. While compensation is good for small
variations, IP learning degenerates when the scaling decreases further. In the case
of a linearly increasing scaling, the slopes get very small until numerical instabili-
ties occur due to discretization. The plot also shows that the adapted learning rule
from Eq. (4.5) suffices to achieve the target slope ratio and resolve the numerical
instabilities.

Basically, the shift of the working point by the ∆w learning rule is responsible
for the good matching of the target - see the NIP line (yellow) in Fig. 4.5 (A).
Fig. 4.5 (C) shows that IP as well as NIP react suitably and hardly adapt the
bias when scaling the input signal. The oscillations of the “Bias Shift” in the plot
are mainly induced by the division with the slope - small variations in the bias
get magnified for very small slopes. This oscillation is an effect of discretization,
although not really a problem because the actual bias changes itself are very small.
The KLD for the IP and NIP cases are shown in Fig. 4.5 (E) and confirm the
increased performance - the KLD is small for the new learning rule.
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Mean Shift Leads to Plateaus. Fig. 4.5 (B) illustrates the occurrence of a
systematic overestimation of the input variance by IP when the signal is shifted.
The reason for the overestimation is that decreasing the slope leads to an increased
effect of the bias shift. In fact, IP drives the neuron into a parameter regime where
the gradient nearly vanishes which leads to very slow convergence, e.g. a typical
plateau that prevents efficient learning. This suboptimal behavior is rectified by
using NIP which gives a much better estimation of the gradient direction in param-
eter space. Therefore the slope ratio with NIP hardly changes during a pure shift
of the input signal, although a small underestimation can still be seen. Fig. 4.5
(D) shows that IP as well as NIP achieve a good compensation for the shift by use
of the bias. However, the KLD for NIP stays close to the optimal value for shifting
of the input signal - in contrast to the results for IP adaptation (see Fig. 4.5(F)).

4.5.3 Learning to Point with the Humanoid Robot iCub

In this section, a real world task involving the humanoid robot iCub demonstrates
that drift compensation is possible by sustaining the neural encoding with the
proposed learning scheme. Humanoid robots are designed to solve service tasks in
environments where a high flexibility is required. To cope with various kinds of
drifts in the input, e.g. with changing illumination or a displacement of a sensor,
is a prerequisite for such systems. We use a hand-eye coordination task that is
inspired by [130] and is discussed in depth in a further contribution [131]. The
humanoid robot iCub learns to point towards an object based on the raw visual
input from his head cameras. We investigate, if NIP learning can cope with the
input shift that is associated with a small displacement of the head, a typical
problem if there is wear in the mechanical mechanism. As before, we explore quite
extreme and even exaggerated displacements to challenge the NIP algorithm.

Fig. 4.6: Kinesthetic teaching of the humanoid robot iCub. One tutor guides
iCub’s left arm and another holds a red cup to point at in his left hand.
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The experimental setting is illustrated in Fig. 4.6. A human tutor physically
guides iCub’s arm by means of kinesthetic teaching using a recently established
force control on the robot. The tutor can actively move all joints of the arm to
place the end-effector at the desired position. To create training data, a second
person in an approximate distance of two meters to the robot moves an object in
the visual field of iCub while the human tutor is guiding its arm to point at the
object by means of a laser pointer attached to the robot’s hand. The 2D-pixel
coordinates of the object in both eye-cameras are extracted by a tracking system
and recorded together with the joint angles of the arm, for further details see [131].
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Fig. 4.7: Drift compensation by sustaining the neural encoding with NIP for the
humanoid robot iCub.

NIP learning is applied online in order to adapt the hidden-layer of ELMs.
The networks consist of R = 100 neurons, the network’s weights and biases are
initialized randomly from an uniform distribution in the interval [−1, 1], and the
slopes are initially set to one. The regression parameter is α = 10−3 in the fol-
lowing experiments. The task is to learn the mapping from the 2 × 2D pixel
coordinates received by both cameras (with a resolution of 640 × 480 pixels) onto
the end effector configuration of the robot’s left arm, i.e. the respective joint
angle configuration. N = 5 data sets are recorded where the tutor in front of
iCub painted eight-like figures. The data sets comprise 458 to 506 samples where
Ntr = 300 where used for training and the remaining samples were used for test-
ing. For each data set, a different head configuration of pan and tilt-angle of the
neck was chosen from θpan ∈ [−20, 20] and θtilt ∈ [−20, 20] divided equally in 5
steps. This represents a relatively strong displacement of the head, which leads to
a shift in the input data as visualized in Fig. 4.7 (left). The pointing task remains
invariant. Note that in this case it is infeasible to cope with the input shift by
continuous online supervised error learning, because no error feedback is available
when exploiting the learned model to realize the actual pointing on the robot.
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Fig. 4.7 (right) compares the ELM network’s performance with and without
NIP on the shifted data without re-adapting the output weights. The network
is pre-trained on the first data set by means of NIP for 1000 epochs and then
trained by ridge regression. Then the network is tested on the shifted data sets
2-5, either directly or after additional 1000 NIP epochs on each new data set to
compensate the shift. All results are averaged over 10 network initializations. The
test error significantly increases for data sets 2 to 5, if no NIP training is applied.
This is expected, since the data varies with changing head configuration and the
network can not arbitrarily generalize. However, the NIP training can compensate
the shift and keep the error low, despite relatively large displacements and without
re-training the output weights.

4.6 Conclusive Remarks

This chapter presents two interconnected contributions to IP learning which was
previously introduced as a biologically plausible and effective means to optimize
the encoding of inputs in neural networks of various types.

First, the well known natural gradient is introduced and analyzed for intrinsic
plasticity. The significant impact of the natural gradient for this learning dynamics
is shown and an additional modification of IP learning is introduced, which targets
to further optimize IP by keeping the parameters close to a suitable working point.
These modifications improve IP learning over the previous learning scheme and can
be applied to any of the known applications of IP learning.

Second, the implicit capability of IP learning to cope with drifts in the input
is analyzed for the first time and identified as a very special mechanism and novel
approach to drift compensation. It internalizes the effects of drift into the learned
model by adaptation of the activation function parameters without the need to
change the input data. This adaptation is achieved without the usage of online
error feedback. This is a novel and highly useful approach and can be applied
when using ELM feed-forward type networks. However, it turns out that the drift
compensation effect works well only in connection with the proposed modifications
and improvements of the IP learning dynamics.

Further work shall be directed towards a closer comparison of possible drift
compensation schemes and towards the identification of problem domains where
this scheme works well. In particular the interplay of IP learning speed and drift
speed deserves attention in order to reliably compensate input changes. Neverthe-
less, the novel learning scheme provides a first account on drift compensation with
IP learning and yields encouraging results on synthetic and first real world data
obtained through improved natural gradient learning.



Chapter 5

Reliability via Incorporation of
Continuous Constraints

The black-box character of neural networks in general and extreme learning ma-
chines (ELM) in particular is one of the major concerns that repels engineers from
application in unsafe automation tasks. This particular issue is approached by in-
corporation of continuous constraints into the learning process of ELMs which are
derived from prior knowledge about the specific task. This is reasonable, because
machine learning solutions have to guarantee a safe operation in many application
domains. This chapter reveals that the special form of ELMs, with its functional
separation and the linear read-out weights, is particularly well suited for the ef-
ficient incorporation of continuous constraints in predefined regions of the input
space.

The remainder of this chapter is organized as follows. The first section of this
chapter, Sect. 5.1, explains the relation between reliability of ELMs and the incor-
poration of continuous constraints with additional focus on applications. Sect. 5.2
discusses related work. Sect. 5.3 and Sect. 5.4 describe how to incorporate discrete
constraints into the learning of ELMs with certain guarantees on their satisfaction.
Sect. 5.5 contains three different experiments obtained to investigate the impact
of continuous constraints on the learning of ELMs. The first experiment analyzes
the learning of a monotonically increasing one-dimensional mapping. The second
experiment investigates an upper-bounded mapping in two dimensions. Finally,
learning of the redundant kinematics of the Puma560 robot in a dynamical systems
formulation with respect to previously defined joint limits is examined. Most of
the content of this chapter is related to [16].

5.1 Reliability via Continuous Constraints

Modern machine learning solutions often need to guarantee certain properties of
the learned function to ensure a safe operation of the technical system while si-
multaneously providing the full power of data-driven modeling. The behavior of
classical neural networks is solely determined by the data subject to the particular
process synthesizing the data. But this lack of process depending internal struc-
ture might be an issue if the network is faced with sparse and noisy data, which

49
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VerificationVerificationGeneralizationGeneralizationIncorporationIncorporation

Fig. 5.1: The reliable integration of prior knowledge in form of discrete constraints
can be separated into three main aspects: (i) the integration of the constraint into
the learning algorithm in discrete points, (ii) the generalization of the point-wise
constraints towards the continuous region by means of the generalization capability
of the underlying ELM, and (iii) the mathematical ex-post verification that the
constraint holds in the learned function.

can lead to inconsistencies with respect to the physics of the underlying process.
In cases where predictions are made beyond the training data (extrapolation), in-
consistent predictions become even more likely and severe. It is obvious that the
consideration of prior knowledge about the task in form of continuous constraints
is useful to overcome data limitations and enhances the reliability of the learner.

The acceptance of applied machine learning algorithms usually scales with
the degree to which the constraints can reliably be incorporated into the learner,
where “reliable“ can refer to a high probability, or even a mathematical proof, of
success. This task is not trivial because many machine learning algorithms gain
their very power from the universal approximation capabilities of their underlying
models. The restriction of the approximation capability, i.e. model complexity,
to enhance the reliability is thus no adequate solution. In addition, data in real
world applications are typically noisy, which leads to an natural risk of overfitting
corrupted data. A constraint that is present in the ideal function, from which the
training data are sampled, may therefore be violated by the learned function. A
general approach to incorporate continuous constraints efficiently is missing.

Yet, model selection strategies are entirely specific for these constraints and can
not easily be found for complex constraints. The issue of incorporation becomes
even more complex due to the large variety of such constraints. Constraints can
appear only locally in a possibly lower dimensional subregion of the input space
or globally in the whole input space. Constraints may be defined only at certain
discrete points or in a continuous region. The latter is of course the more complex
case: only a discrete number of data points can be input to the learner, but the
constraint must be generalized to the full region under question. The reliable
integration of prior knowledge in form of constraints can be separated into three
main aspects: (i) the integration of the constraint into the learning algorithm
in discrete points, (ii) the generalization of the point-wise constraints towards
the continuous region by means of the generalization capability of the underlying
learner, and (iii) the mathematical ex-post verification that the constraint holds for
the learned function in the continuous region. (i), (ii) and (iii) are interconnected
if the learning algorithm directly guarantees the constraint. The key idea is thus
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to iterate steps (i) and (ii) for learning and (ii)-verification successively. Fig. 5.1
schematically illustrates this idea.

This thesis shows that the particular form of the extreme learning machine with
its fixed input weights and high-dimensional hidden-layer representation, allows for
an efficient and flexible incorporation of continuous constraints in the learned func-
tion without losing the universality of the ELM approach. To this aim, the actual
incorporation of the continuous constraint is done by an incremental sampling
method which successively implements constraints in discrete points via quadratic
programming in a highly efficient manner, i.e. learning refers to minimization of
the standard square error under additional linear constraints. The goal is that
the discrete constraints are then generalized by the ELM towards a continuous
input space region called workspace1. It turns out that all constraints which can
be expressed as linear inequalities involving arbitrary derivatives of the learned
functions and multiple dimensions can be incorporated. This is possible because
partial differentiation of a function which is implemented by an ELM, can directly
be performed due to the special form of the ELM with its fixed input weights. It
is furthermore shown that the inherent generality of the proposed approach can
be used to implement complex forms of prior knowledge such as stability of the
to-be-learned dynamics. This is achieved by connecting multiple outputs via a con-
tinuous constraint induced by a Lyapunov function and demonstrated practically
in Chap. 7. Besides these features, the locality of the approach prevents a direct
guarantee of the satisfaction of the constraint in the continuous region. However,
as the neural network model allows analytical differentiation, it is shown that the
verification can be constructively and effectively proven ex-post if needed.

5.2 Related Work

The incorporation of specific kinds of prior knowledge was tackled before in several
machine learning models. Many of those deal with the embedding of bounds on
the derivatives [132, 133] or minimum/maximum output control [134] into feed-
forward learning structures. Some approaches use a-priori model selection to guar-
antee certain properties, like non-negativity in non-negative matrix factorization
(NMF) [135], or limits of the model complexity. In automatic control, for example,
constraints like maximum energy of the control signal, monotonicity or smooth-
ness are often required to ensure safe operation of the plant [136]. This is prior
knowledge in the sense that certain desired relations between inputs and outputs
are known in advance.

There are also attempts to structure the embedding of prior information into
classes. For instance in [137], three main classes are distinguished: structural,
data, and the algorithm class. An example for structural methods is the so called

1The workspace is the set of inputs that can appear in typical situations during application of
the model.
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hybrid model [138, 139], which integrates two sub models: a partial first principles
model, which incorporates the available prior knowledge about the process being
modeled and a neural network which serves as an estimator of unmeasured process
parameters that are difficult to model from first principles. Niyogi et al. presents
a data driven approach in [140] which creates virtual samples and is element of
the data class. Also Burges uses virtual samples to bias a support vector machine
[141]. This is reasonable because most of the learning algorithms assume noise-free
samples which can cause a poor generalization performance. Selections of specific
kernels [142] and constraints on the search bias [143] are in the algorithm class.

Interestingly, Yu et al. defines prior knowledge similar to Abu-Mostafa’s hy-
potheses as ”all the auxiliary information about the learning task [...] that2 can
be used to guide the learning process“ ([144], p. 8), while the information typically
”comes from either related discovery processes or domain experts“ ([144], p. 8).
They give an additional but similar structuring for approaches incorporating prior
domain knowledge into inductive machine learning. Existing methods are classi-
fied due to the use of prior domain knowledge, which is either used 1) to prepare
training samples, 2) to initiate the hypothesis space, 3) to alter the search ob-
jective, or 4) to augment the search. Since inductive learning is investigated, the
authors essentially state that ”[...] any learning algorithm already makes assump-
tions apart from the training data [...] which cannot replace prior3 knowledge,
and can be expressed mathematically as: Generalization = Data + Knowledge“
([145], p. 6). It is nevertheless clear that the prior knowledge implemented by the
algorithm is task specific according to the no free lunch theorem [146] and needs to
be chosen carefully. Learning by constraints as proposed in this thesis uses prior
knowledge to alter the search objective and therefore belongs to the third class of
Yu’s taxonomy.

One big problem is that most methods can only integrate specific types of prior
knowledge in continuous workspace regions. In order to embed prior knowledge
in a more generic way, continuous constraints on the optimization process appear
to be promising. The estimation of parameters w minimizing a non-linear (error)
function f(xi,w) subject to a constraint c(w,x) ≤ 0 for training input stimuli
xi in a continuous region Ω is called semi-infinite programming (SIP) problem,
because, in principle, the solution must fulfill the constraint for infinitely many
inputs x ∈ Ω. Yet, general solutions to the SIP problem are either computationally
expensive because f or c are highly non-linear in w or strongly restricted because
f is only linear or quadratic in x. [147] gives a comparative review on several
solutions to the SIP problem.

First efforts towards neural networks, encoding a-priori information, can be
found in [148]. The paper proposes two different approaches for incorporation:
constraints on the architecture and/or constraints on the connection weights. The

2The word “that” is an additional comment by the author and only added for the sake of
readability. It is not part of the original comment.

3The word “prior” is an additional comment by the author and not in the original comment.
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authors show that it is possible for monotonic and concave behavior to trans-
form the infinitely many constraints of the SIP problem into a finite number of
constraints which only involve the network weights. The method applies backprop-
agation rules for learning and forces all network outputs to this specific behavior
which restrict learning to rather simple and low-dimensional domains.

Abu-Mostafa and Sill connected so-called ”hints“ to constraints on the objec-
tive function via virtual samples [149, 150]. Such hints are used as auxiliary infor-
mation about the target function which is learned in a data-driven process. Hints
are also used as additional regularization when added to the objective function
which punish the violation of previously defined prior knowledge. The ill-posed
problem is thus transformed into a well-posed problem, however, without regards
to continuous constraints. A neural network solution that is able to embed general
prior knowledge by learning is introduced in [151]. The authors present back-
propagation rules for MLPs and also for single hidden-layer networks that respect
additional terms in the error function to constrain arbitrary partial derivatives of
the network’s output. However, training these networks is computationally very
expensive. A neural network architecture that includes functional prior knowledge
in form of non-linear functions to enhance the generalization capability is proposed
in [152]. Learning is done by a gradient based l2-optimization technique and thus
potentially suffer all known drawbacks of gradient descent. [153] investigates prior
knowledge integration with a particular focus on the universal approximation of the
model. Learning is achieved by means of conjugate gradient descent. The method
introduced in [154] also allows the incorporation of prior knowledge, however, with
application of standard non-linear programming techniques which renders learning
computationally expensive as well. Attempts to use prior knowledge to initialize
neural networks can, e.g., be found in [155]. The paper investigates specific prior
knowledge expressed in form of proportional rules for so-called rapid backpropaga-
tion networks. The generalization ability and convergence speed of the networks is
enhanced significantly in comparison to networks initialized without prior knowl-
edge. In [156], Lauer et. al. introduce an approach to incorporate various kinds
of prior knowledge into support vector regression. However, the method only con-
siders discrete constraints without generalization towards a continuous workspace
region and can therefore not implement continuous constraints. One of the prede-
cessors of this method is presented by Mangasarian et al. in [157]. This method
introduces a learning problem in the form of a linear program which also includes
the prior knowledge in the learning as a finite set of inequalities. In this case,
simpler constraints as for the proposed approach are considered: Mangasarian’s
method does not include prior knowledge on the derivatives of the function.

A model based on radial basis function (RBF) networks focusing on continuous
constraints is introduced by Hu et al. in [137] and further investigated in [158].
This approach implements prior knowledge by a sampling method comparable to
the method in [156]. The model also suggests a strategy to incorporate continu-
ous priors in an architectural way, i.e. changing the feature pool by addition of
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basis functions, based on a global maximization step which is essential but not
further described. Another method also dealing with continuous constraints on a
theoretical level was proposed in [159] and is based on kernel expansion and re-
gression. Sampling is also used for the implementation of continuous constraints.
However, the main disadvantage of this abstract formulation is that no specific
information about the optimization problem is available. This implies that opti-
mization is, in general, only achievable with non-linear programming techniques
which renders learning computationally expensive. Furthermore, guarantees are
restricted to probability ranges because an efficient verification algorithm for this
method is missing. Another drawback of this method is that the outputs are
treated independently which restricts the class of implementable prior knowledge
strongly. Also the prior knowledge integration into ELMs was focused earlier in a
very limited manner [160, 161]. The ELM model introduced in [160] is not capable
of approximating universal functions and does not handle continuous constraints.
The symmetric ELM [161] only considers prior symmetry assumptions. Tab. 5.1
shows a summary of the mentioned related work, respective features, and citations.

The following section shows that the proposed approach to incorporate con-
tinuous constraints via successively applied quadratic programming into ELMs is
an effective means to represent the SIP problem. The quadratic error functional
f(xi,w) = Etr(x

i,W out) for training inputs xi subject to continuous constraints
c(x,w) = C(x,W out) ≤ 0 appears to be quadratic in the learning parameters
w = W out and highly non-linear in the input x,xi ∈ Ω, whereas the constraint
function is linear in the learning parameters w = W out and also highly non-linear
in the input x. This distinctiveness is due to the inherent functional separation be-
tween random hidden-layer projection and read-out weights and thus implies that
the proposed ELM approach is a general, feasible and computationally efficient
solution for SIP.
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Tab. 5.1: Overview: related methods applying prior knowledge.

Method Model Basis Prior Knowledge Safety Learning Citations

Monotonic MLP
MLPs,
RBF nets

Monotonicity (continuous)
via architectural bias
(model selection)

Proof Backpropagation [132, 136, 133]

Hints
MLPs,
RBF nets

Hints via virtual
samples (discrete)

Probability Backpropagation [149, 150]

Prior knowledge
MLP

MLP,
Single layer networks

Bounds on derivatives
via error function
(continuous)

Probability Backpropagation [151]

Prior knowledge
SVM

Support vector
machine

Linear inequality
constraints (discrete) Proof

Linear
programming

[156]

Generalized
constraint
neural network

Hybrid: RBF net,
constrained RBF net

Linear inequality
constraints
(continuous/discrete)
via architectural bias

Probability
Quadratic
programming

[137]

Cutting plane
method

Conceptional basis
(kernel methods)

Inequality constraints
on single output dim.
(continuous/discrete)

Probability
Non-linear
programming

[159]

Symmetric
ELM

ELM (model selection) Symmetry (continuous) Proof
Linear
regression

[161]
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5.3 Embedding Discrete Constraints into ELMs

This section describes how discrete constraints are incorporated into the learning of
extreme learning machines (ELM). The error functional used to obtain the closed
form for the read-out weights via ridge regression is interpreted as a quadratic
program which explicitly embeds constraints in discrete points u. Afterwards, the
effective generalization of the constraints towards a continuous region is explained.

5.3.1 Incorporation of Discrete Constraints via
Quadratic Programming

Many constraints on a desired function can be expressed by bounding the output
y(·) (see Eq. (2.5)) or its partial derivatives. Hence, I generally refer to a constraint
C(W out,u) for input u ∈ Ω with respect to the read-out parameters W out as a
linear combination of partial derivatives with parameters γi ∈ R and bound c ∈ R
of the form:

C(W out,u) =
∑
i

γiD
mi
ŷi(u) =

∑
i

γiW
out
i ·Dmi

h(u) ≤ c. (5.1)

Dmi
= ∂M/∂umi1

. . . umiM
is the component-wise differential operator, whereas

the vector mi = (mi
1 . . .m

i
M ) ∈ [1, 2, . . . , I]M defines the input dimensions with

regard to which the differentiations are carried out. Interestingly, Eq. (5.1) shows
that the constraint can be rephrased in terms of the hidden state and is linear in
the learning parameters W out due to the fixed input weights and the functional
separation. This defines a linear inequality for each discrete sample u.

If a sample set U = (u1, . . . ,uNs) comprising Ns discrete inputs is given, in-
corporation of these constraints into the function learned by the ELM is phrased
as solving a quadratic program [162, 163] optimizing the read-out weights W out

subject to a system of linear inequalities C(W out, U) ≤. First, a collection of the
hidden states H(X) for input stimuli X is phrased in a block-diagonal matrix Ĥ
according to the following definition:

Ĥ :=


H(X)T 0 0 0 . . .

0 H(X)T 0 0 . . .
0 0 H(X)T 0 . . .
. . . . . . . . . . . . . . .

 ∈ RO·Ntr×O·R . (5.2)

Also the read-out weights W out and the target values Y are rephrased for appli-
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cation in the quadratic program.

Ŵ out :=

(W out
1· )T

(W out
2· )T

. . .

 ∈ RO·R and Ŷ :=



y1(1)
y1(2)
. . .
y2(1)
y2(2)
. . .

 =

Y1·
Y2·
. . .

 ∈ RO·Ntr , (5.3)

where Yi·, e.g., denotes the ith row of matrix Y . These equations allow a redefi-
nition of the quadratic program applied for learning the data set, where Tikhonov
regularization is directly attached to the already defined matrices:∣∣∣∣∣∣∣∣( Ĥ√

α · I

)
· Ŵ out −

(
Ŷ

0̂

)∣∣∣∣∣∣∣∣2 → min

subject to: Aieq · Ŵ out ≤ c ,

(5.4)

where α is the ridge regression parameter, I ∈ RO·R×O·R is the identity matrix,
0̂ := (0, 0, . . . )T ∈ RO·R is a collection of zero values, and Aieq ∈ RNs×O·R and
c ∈ RNs define the constraint matrices (Ns is the number of point constraints uj):

Aieq :=

γ1D
m1

hT (u1), γ2D
m2

hT (u1), . . .

γ1D
m1

hT (u2), γ2D
m2

hT (u2), . . .
...

 and c = (c, c, . . . )T . (5.5)

However, to make this approach feasible, also the multi-dimensional differentiation
has to be carried out. Fortunately, the special form of the ELM allows to compute
a closed form of arbitrary partial derivatives of the different output components
analytically as:

∂M ŷi(u)

∂um1 . . . umM
=
∑
j

W out
ij

∂Mhj(u)

∂um1 . . . umM

=
∑
j

W out
ij f (M)(aj

∑
k

W inp
jk uk + bj) · aMj W inp

jm1
. . .W inp

jmM
, (5.6)

where f (M) denotes the Mth derivative of f . Note, that the output of the network
can be interpreted as 0th derivative when choosing M = 0. Solving the quadratic
program now guarantees satisfaction of the given constraints with respect to the
discrete samples u ∈ Ω in the input space, which is already useful in many appli-
cations.

Independent Outputs. If it is possible to assume independent outputs (also
be means of prior knowledge), then the previously defined quadratic program
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in Eq. (5.4) becomes more simple. Independent outputs in mathematical terms
means that only one or less of the γ’s is not equal to zero, i.e. (γ1, γ2, . . . γO) =
(0, . . . , 0, ε, 0, . . . , 0). The learning program can be reduced to the following pro-
gram: ∣∣∣∣∣∣∣∣( H√

α · I

)
·W outT

i· −
(
Y

0̂

)∣∣∣∣∣∣∣∣2 → min

subject to: Aieq · Ŵ outT
i· ≤ c ,

(5.7)

where the constraint matrices are defined according to the following redefinition
of Eq. (5.5)

Aieq :=

γiD
mi

hT (u1)

γiD
mi

hT (u2)
...

 and c = (c, c, . . . )T , (5.8)

where i is the only output dimension who’s γi is not equal to zero. Learning is
then applied for each dimension i separately. Note, that finding the solution of
the quadratic program is more computationally efficient in this case because of
the reduced dimensionality. However, complex forms of prior knowledge include
all dimensions and thus needs the connection of multiple output dimensions as in
Eq. (5.4). Stability is such a form of prior knowledge and is discussed in detail in
Sect. 5.5.3 and Chap. 7

5.4 From Discrete to Continuous Constraints

The next step is to target constraints in a continuous, compact region Ω of the
input space, i.e. to generalize the point-wise constraints ui to a continuous region
Ω. Discrete inputs ui ∈ Ω are regarded as discrete samples of the continuous
constraint. In principle, no finite number of discrete samples ui can implement
the constraint and at the same time guarantee its generalization to hold in the
continuous region without additional verification effort. In fact, the quadratic
program only guarantees the satisfaction of the continuous constraint in the points
ui. It can be expected that the generalization ability and the implicit smoothness
of the used ELM enables an implementation of the constraint in the whole region Ω
with only a limited number of discrete samples. The expectation is therefore that
sampling is sufficient for generalization. But then, it is necessary to verify ex-post
that the constraint C(u) = C(W out,u) ≤ 0 (the read-out matrix is omitted and
the constraint C(u) ≤ c is equivalently changed to C(u) − c ≤ 0 in the following
sections for notational simplicity) holds for all u ∈ Ω and not only for the discrete
samples ui.

It is impossible to verify the satisfaction of a given constraint in a continu-
ous region in the input space in closed form, because the universal approximation
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capability of the ELM [10] implies that the learned function can in principle be ar-
bitrarily complex. An algorithm to verify the fulfillment of the constraints which is
based on a worst case analysis of the Taylor approximation of the learned function
is provided. The algorithm’s result P (C, ŷ,Ω, ε) with respect to the constraint C,
reliability margin ε, and the ELM’s output ŷ is true for region Ω if and only if the
constraint C is satisfied by the function ŷ(·) in region Ω with reliability margin ε.

5.4.1 Constraint Sampling

Assume that an arbitrary number of continuous constraints Ci : i = 1, . . . N is
given. The constraints are present in the workspace Ω. The goal is to construct

N different sample pools Ui = (u1
i , . . . ,u

N i
s

i ) that are sufficient to generalize the
discrete constraints towards the continuous region Ω. As a first step (k = 0), the
network is initialized randomly and trained without any constraints (the sample
matrices Uki are empty in the beginning): U0

i = ∅ : ∀i = 1, . . . , N . In this case
learning can be done in computationally cheap fashion by ridge regression, which
is a standard technique for ELMs.

In the next step, NC samples Û = {û1, û2, . . . , ûNC} are randomly drawn from
an uniform probability distribution in Ω. Afterwards, the number of samples νi
in Û that fulfill the continuous constraint Ci are determined according to the
constraint formulation in Eq. (5.4). The sampling algorithm stops if more or
equal than pi percent (defined by the user) of these samples fulfill the continuous
constraints with additional reliability margin εi > 0, i.e. νi/NC ≥ pi. Otherwise,
the most violating samples ûj for each constraint are added to the sample pool
Uk+1
i = Uki ∪j ûj to constitute the new sample set Uk+1

i . The obtained set of
samples is then used for training according to Eq. (5.4). For εi > 0 the constraint
Ci ≤ 0 is εi-fulfilled in the sense that a violation of size εi is tolerated. This
guarantees convergence of the sampling algorithm. A pseudo code of the learning
procedure is provided in Alg. 5.2.

Algorithm 5.2 Sampling discrete constraints

Require: data set D, region Ω, counter k = 0, empty sample pools Uki = ∅
Require: ELM trained with D according to Eq. (2.5)

repeat
draw samples Û = {û1, û2, . . . , ûNC}
νi = no. of samples in Û fulfilling Ci(û) ≤ εi
determine most violating samples ûj ← arg maxu∈Û Ci(u)

if pi >
νi
NC

then Uk+1
i = Uki ∪j ûj

train ELM with D, and Uk+1
i according to Eq. (5.4)

until pi >
νi
NC

: ∀i
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5.4.2 Reliability Verification

To effectively verify the satisfaction of the continuous constraint in the workspace
region Ω, a second order Taylor approximation of the constraint C and its corre-
sponding remainder are calculated. The Taylor approximation in u0 ∈ Ω is given
as:

C(u) = T (u,u0) + rem(u,u0) (5.9)

= K + JT (u− u0) +
1

2
(u− u0)TH(u− u0) + rem(u,u0) , (5.10)

where K = C(u0) is the constant term, J = ∇C(u)|u0 is denoting the Jacobian
vector, H = (∇∇T )C(u)

∣∣
u0 is the Hessian matrix evaluated at point u0, and

rem(u,u0) is the remainder term. An upper bound for the remainder is computed:

rem :=
∑
i

γi
∑
j

W out
ij Mj

|uj − uj |3
6

, (5.11)

where i is the dimension of the constrained output and γi are the coefficients
defined as in Eq. (5.1). The used variables are:

uj = min
u∈Ω

W inp
j u , uj = max

u∈Ω
W inp
j u , and (5.12)

Mj = max
uj∈[uj ,uj ]

[
f (M+3)(ajuj + bj) · aM+3

j W inp
jm1

. . .W inp
jmM

]
. (5.13)

The maximization steps in (5.12) can be performed by evaluating the vertices of Ω
if the region Ω is a convex polyhedron, e.g. a regular hypercube. The maximization
in Eq. (5.13) uses that f can be differentiated analytically if the Fermi-function is
used which is one-dimensional w.r. to its argument. This is only feasible due to the
simple and elegant form of the ELM. The remainder of the Taylor approximation
rem(u,u0) in Eq. (5.10) is bounded from above by rem in Eq. (5.11) in region Ω:

rem ≥ rem(u,u0) : ∀u ∈ Ω. (5.14)

A proof of the proposition in Eq. (5.14), is given in the appendix, see Sect. A.2.
Since T (see Eq. (5.10)) is a polynomial of second order, it is possible to find its
global maximum and minimum in Ω analytically. In order to find a worst case
approximation of the learned function, the following is tested and a recursive step
is performed:

P (Ω) =


1 : if max

u∈Ω

[
T (u,u0)

]
< ε− rem

0 : if min
u∈Ω

[
T (u,u0)

]
> ε+ rem∧

i P (Ωi) : otherwise

(5.15)
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where u0 ∈ Ω is the base of the Taylor approximation and Ω =
⋃
i Ωi is divided

into the pairwise disjoint subregions Ωi.
A schematic view of the decision process in Eq. (5.15) is given in Fig. 5.2. The

figure shows an one-dimensional mapping with constraint C ≤ 0 and safety margin
ε and three subregions (Ωi−1, Ωi, and Ωi+1) where the satisfaction of the constraint
within the reliability margin is tested. The center of each region u0 defines the
respective Taylor polynomial and the remainder estimate rem of L. The regions
show the possible cases of Eq. (5.15):

1. The maximum of the Taylor polynomial in region Ωi−1 is below ε−rem. The
constraint is fulfilled and the ouput the the verification algorithm is P = 1.
In mathematical terms: max

u∈Ωi−1

[
T (u,u0)

]
< ε− rem .

2. The minimum of the Taylor polynomial in region Ωi+1 is above ε+ rem and
therefore P = 0 - there exists at least one point in this region where the
constraint is violated. In mathematical terms: min

u∈Ωi+1

[
T (u,u0)

]
> ε+rem .

3. It is not clear whether the constraint in region Ωi is satisfied or not - a
division into smaller subregions is necessary.

An intrinsic feature of Taylor approximations is that the quality of the estimated
approximation is the best close to the approximation point u0 (locality feature):
the smaller the region Ω, the better the estimation. This separation is performed
until convergence of the algorithm, where an early stop is possible whenever the
constraint is definitely not fulfilled in some subregion. For ε > 0, the constraint is
ε-fulfilled such that a violation of size ε is tolerated, very similar to the ε-sensitive
loss functions frequently employed in support vector regression. In engineering
applications, one might also set ε < 0 to guarantee some safety margin, e.g. to
balance numerical errors.

5.5 Experimental Results

This section investigates the learning with different continuous constraints for ex-
treme learning machines. The particular focus lies on the learning of sparse and
noisy data.

5.5.1 One-Dimensional Mapping with Monotonicity

An ELM withR = 100 hidden-layer neurons is supposed to learn an one-dimensional
R → R mapping. The input weights and the biases are randomly drawn form an
uniform distribution in [−10, 10] and trained by BIP with µBIP = 0.2 beforehand.
The data is generated by a stairs-like function which is monotonically increasing
and subject to Gaussian noise with varying amplitude σnoise. A visualization of
this function can be seen in Fig. 5.4. The continuous constraint for learning is
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Ω i-1

rem

rem



 - rem

 + rem

max T

min T

max T

min T

Ω i Ω i+1

Fig. 5.2: Illustration of the reliability margin verification for an one-dimensional
input. The plot shows a constraint C(u) ≤ 0, the safety margin ε with a Taylor
polynomial T (u,u0) of second order, and subregions Ωi, Ωi−1, and Ωi+1.

monotonicity which is equivalent to a positive first derivative of the network’s
output y(x):

∂

∂x
y(x) ≥ 0 : ∀x ∈ I ⇔ − ∂

∂x
y(x) ≤ 0 : ∀x ∈ I , (5.16)

where I = [−1, 1] is the input interval. The constraint sampling algorithm searches
in a sample pool with NC = 104 samples in each step until the continuous con-
straint is satisfied with a probability of p = 1.0. Three different experiments are
conducted. The first experiment investigates the impact of the data set size, the
second experiment analyzes the role of noise, and the third experiment examines
the influence of the regularization parameter for the implementation of the con-
tinuous constraint.

In the first experiment, learning is conducted for data sets with different train-
ing set sizes reaching from Ntr = 30 to Ntr = 300 samples in a logarithmic scale.
The number of constraint samples needed to successfully implement the continu-
ous constraint according to Eq. (5.16), training, and test errors are recorded. The
experiment is averaged over one-hundred network initializations. The noise level
for this data set is σnoise = 0.15 and the regularization parameter α = 10−8 is
previously defined. Fig. 5.3 (first row, left plot) shows the experimental results
for the recorded number of constraint samples. It is clearly visible that a decreas-
ing number of discrete constraints is necessary to implement monotonicity into
the network’s mapping if the data set size is increasing. This is due to the fact
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Fig. 5.3: Investigations on an one-dimensional mapping. The number of samples
needed in order to implement a continuous constraint (first row) and corresponding
training and test errors (second row) for data sets with different sizes (left), noise
levels (center), and regularization parameters (right).

that the noise can be eliminated by averaging of the target data. It is also visi-
ble in Fig. 5.3 (second row, left plot) that the errors for networks with (denoted
by CLS in the plots) and without (denoted by RR in the plots) continuous con-
straint decrease with growing size of the data set. The networks provided with
small data sets highly profit from the implementation of the continuous constraint
which enhances the generalization capability of the ELMs indicated by the low
test error.

A corresponding statement holds for the learning procedure when noise is con-
sidered, see Fig. 5.3 (center column). In this experiment, the number of training
samples Ntr = 30 and the regularization parameter α = 10−8 are fixed. The noise
amplitude is varied from σnoise = 0.15 to σnoise = 0.01. Fig. 5.3 (first row, center
plot) demonstrates that a decreasing number of constraints are needed to imple-
ment the continuous constraint with decreasing noise level of the input data. Also
the errors of the networks are shrinking for lower noise levels indicated by the re-
sults contained in Fig. 5.3 (second row, left plot). The influence of the constraints
enhances the generalization capability in particular for the networks coping with
noisy data sets.

The results of the third experiment are depicted in Fig. 5.4 (third column).
The experiment investigates the influence of regularization on the performance
of the networks. Ntr = 30 samples, contaminated by Gaussian noise with an
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amplitude of σnoise = 0.15, are used for training. The regularization parameter is
varied from α = 10−8 to α = 100 logarithmically. It is shown that the number of
constraints needed for implementation is decreasing with increasing regularization.
This is expected because the model complexity is lower and the generalization of
the discrete constraints towards the continuous region becomes easier. Networks
with low regularization have a significantly better test error when provided with
the continuous constraint and thus profit more form the prior knowledge than
networks with high degree of regularization. Networks with strong regularization
are not capable to capture the structure of the data to a high degree and thus
already implement the continuous constraint which is intrinsically encoded in the
data.

Test Samples
ELM
Real Function

 

 

 

 

 

 

 

 

Test Samples

Constraints

Constrained ELM

Real Function

 

 

 

 

 

 

Fig. 5.4: Investigations on an one-dimensional mapping. Comparison of the learn-
ing without (first row) and with (second row) continuous constraint (monotonicity)
on a noisy and small data set (first column). Learning of a big data set (second
column). The learned mapping for a noisy and medium size data set (third col-
umn). Learning on a medium size data set with low noise level (fourth column).
Extreme learning machines coping with sparse and noisy data clearly profit from
incorporation of continuous constraints.

The different stages of the results are illustrated in Fig. 5.4. The first row of
the figure contains the results of the networks without respect to the continuous
constraint. The second row shows the results with an particular consideration of
monotonicity in I, see Eq. (5.16). The first column of Fig. 5.4 shows two network
mappings that are trained with a moderate noise level of σnoise = 0.15 and only very
few samples Ntr = 30. The classical ELM networks overfit the data set indicated by
strong oscillations visible in Fig. 5.4 (first column, first row). The incorporation of
monotonicity according to Eq. (5.16) leads to a smooth solution, see Fig. 5.4 (first
column, second row). It is clearly visible that the implementation of constraints
leads to a better generalization ability because the overfitting of the samples is
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suppressed. The second column of the plot illustrates that this effect becomes
smaller with a growing data set size which is already supported by the previous
experiments. In this plot, the same noise level of σnoise = 0.15 was used and the
data set was equipped with Ntr = 200 samples. Both solutions start to coincide in
the densely sampled regions of the data set. Even the networks without the use
of a continuous constraint perform very well. The third column of Fig. 5.4 shows
networks that are trained with a high noise level of σnoise = 0.2 and a medium size
data set of Ntr = 50 samples. Fig. 5.4 (first row, third column) shows that the
networks without respect to monotonicity are subject to strong overfitting. The
positive effect induced by the implementation of the continuous constraint leads
again to a good generalization capability and eliminates overfitting, see Fig. 5.4
(second row, third column). Unsurprisingly, the learning results for both networks
become significantly better and also coincide when the noise level is decreased
(noise is changed to σnoise = 0.05 for the same data set size as in the third column)
visualized by the fourth column of the figure.

This experiment illustrates the results obtained for the constrained learning
procedure for an one-dimensional example where monotonicity is explicitly imple-
mented in form of a continuous constraint. It is shown that the properties of the
data set are important to consider when dealing with reliable learning and that
the implementation of continuous constraints has a strong positive impact on the
generalization of data that only comprise few and noisy samples. Note, that data
sets that are provided with many samples and low noise level only need a small
number of constraints in order to implement the continuous constraint in a con-
tinuous region. Additionally, the experiments show that the regularization of the
networks has a significant impact on the learning with prior knowledge. The higher
the regularization, the lower the model complexity, the less samples are needed for
successful implementation of the continuous constraint.

5.5.2 Two-Dimensional Mapping with
Bounded Maximum Output

An ELM with R = 100 hidden-layer neurons is supposed to learn an R2 → R map
of four super-positioned two-dimensional Gaussian functions. The centers of the
single distributions are µ1...4 = (±0.5,±0.5)T and the respective variance of the
distributions are σ1...4 = 1

5 . Ntr = 500 samples are used for training, Nte = 500 for
testing, and NC = 104 for the sample pool. Also Gaussian noise with an amplitude
of 0.1 is added to the training data. The network is trained by BIP with µBIP = 0.2
beforehand. The regularization parameter α = 10−4 is obtained by line search.
Simultaneously, an artificial constraint is supposed to be satisfied by the network
after learning: the maximal output of the network is restricted to

y(x) ≤ 0.4 = c ⇔ y(x)− c ≤ 0 for all x ∈ Ω = [−1, 1]2 , (5.17)
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where c is the output bound. Note, that the output of the network is interpreted as
0th derivative according to Eq. (5.1) and Eq. (5.6) and is thus consistent with the
proposed framework when choosing M = 0. In each step, the algorithm adds the
3 most violating sample constraints to the learning pool U until no violation can
be assessed anymore (p = 1.0). The reliability margin for the discrete constraints
is set to ε = 0.01 which enforces the output in the discrete samples to stay below
c = 0.4 and permits a maximal output of c+ε = 0.4+0.01 = 0.41 in the remaining
continuous region. A cell is divided along its longest side into two equal parts, if
the satisfaction was not verified in the respective step to a desired degree. This
defines the structure of the subregions.
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Fig. 5.5: Iteration of the constrained learning algorithm. Green boxes show regions
where the constraint is verified, red boxes where the constraint is violated and
crosses mark samples in U obtained by the iteration process. The maximal output
bound is strongly violated by the unconstrained learner (left). The output of the
network shrinks in each step of the iteration (center). The constraint is satisfied
and proofed (right).

Fig. 5.5 summarizes the results of the task. The first row shows the outputs of
the network in the first, fourth and the last (12th) iteration of the learning, while
the second row visualizes the corresponding outcome of the verification algorithm.
In the plots of the second row: green boxes show regions where the constraint is
verified, red boxes where the constraint is violated and crosses mark samples in U
obtained by the iteration process. Obviously, the constraint is violated before the
iteration starts - see Fig. 5.5 (left column). After some iterations of the algorithm,
the maximal output of the network in Ω shrinks due to the addition of samples of
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the constraint. The right hand side of the figure demonstrates that the constraint
is fulfilled after twelve iterations, e.g. on basis of 36 discrete ui sampling the con-
straint. Note that the samples are only placed where the mapping produces high
output values and thus violate the continuous constraint in Eq. (5.17). Moreover,
the cells produced by the recursive step are small in the region where the network’s
output y is close to the upper bound c. This is due to the fact that the remainder
rem becomes big in comparison to the difference of network output y and the
output bound c = 0.4. Note, that it was already shown in [17] that the proposed
sampling strategy is superior to a random sampling of the continuous constraint.

5.5.3 Learning the Redundant Kinematics of the Puma560 Robot

Practicable representations of robot kinematics is an essential tool in the field of
robotics. Especially, if the robot is capable of using many degrees of freedom,
which allows the robotic system to solve tasks in a highly flexible way using the
redundancy of the robot. The kinematics of a robotic platform can be separated
into a well-defined forward model (mapping from joint to task space) and it’s
inverse mapping (mapping from task to joint space), namely the inverse kinematics.
This mapping is highly ill-posed for redundant robots and therefore difficult to
perform due to the non-convexity of the solution sets.

One way to deal with the control of robots is to learn the kinematics. In par-
ticular, the learning of inverse kinematics was studied in the past with different
focuses. Basically, the approaches differ in one main aspect: either the encoding
of the kinematics is done by solving the direct inverse kinematics, i.e. on the posi-
tion level or the differential inverse kinematics are solved on the so-called velocity
level. In [164], the differential inverse kinematics is learned by locally weighted
projection regression, where global consistency is achieved by selectively choosing
one of several trained linear models by partitioning the input space. A compara-
ble idea is given by [165]. The approach uses a gating network combining local
models. The approach in [166] focuses on a mapping approximation on the posi-
tioning level, where structured output learning is applied. A probabilistic model
in the input-output space is learned and used for prediction of target outputs.
An approach implementing dynamical systems with attractors for using robots
with redundant manipulators was introduced in [167]. However, this model can-
not guarantee stability and was not used for real robot applications. In contrast,
[168] applies a recurrent neural network controller. The network is stabilized by
an integral condition which needs to be tuned precisely.

Besides the fact that learning-driven methods represent appealing new ap-
proaches for the control of robots in comparison to analytical models, most tasks
in robotics still need safety in many respects. However, it is inherent to many
learning methods, that the worst case while application cannot be estimated accu-
rately. It is still challenging to use the advantages of learning while simultaneously
ensuring a safe application.
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Very recently, Reinhart et al. in [169] proposed a method highly inspiring the
approach introduced in this illustrative example. The kinematic information is
stored in a bi-directionally used network structure with output feedback resolving
ambiguity of the inverse kinematics by means of multi-stable attractor dynamics.
However, the approach in [169] lacks a direct stabilization of the dynamics in order
to enhance the systems safety. Therefore, a relative encoding of the dynamics is
introduced which can be shaped explicitly by additional constraints and guarantee
a stable behavior. It is shown that the stabilization through additional constraints
does not affect the performance of the inverse estimate in a negative way and leads
to stable and accurate results for robot control. A simulation of the Puma560 robot
is applied, using Corke’s tool box [110].

Neural Learning Approach:
Extreme Learning Machine, State Prediction, and Stability

Assume that a data set D = (xi,qi) : i = 1, . . . Ntr comprising Ntr samples is
given. Each data pair (xi,qi) encodes a valid combination of end-effector position
xi and corresponding joint angles qi. Multiple solutions of the inverse kinematics
can also appear in this data set because of the robot’s redundancy, i.e. there might
exist pairs (xi,qi) and (xj ,qj) with xi = xj and qi 6= qj .

The idea is to use the data set D in order to learn a dynamical system to
solve the redundant inverse kinematics of the robot. The dynamical system is
parameterized by the desired end-effector position x and forces the initial state q0

to converge towards a valid solution of the inverse kinematics q for end-effector
configuration x. This allows the network to encode several solutions qi to one
end-effector position x in order to cope with the redundancy of the Puma560.
The selection of this solution is dependent on the initial state q0 of the dynamical
system.

Desired dynamics - in particular the contraction of the state towards the desired
attractor which encodes the inverse kinematics of the robot - is implemented by
state prediction [169]. The state prediction approach extends the training data
with synthesized sequences to facilitate attraction to the data samples.

An important issue to cope with is that learning of dynamical systems is typ-
ically prone to instabilities. The system’s state might diverge due to unstable
behavior. The network is stabilized by an additional continuous constraint which
forces the state of the system to stay in the robot’s joint limits such that it is
always close to the training data.

Network Architecture: Extreme Learning Machine. The network com-
prises three layers: u ∈ RI collects the input, h ∈ RR the hidden, and y ∈ RO the
output neurons. The input matrix W in ∈ RR×I semantically separates the input
uk = (x,qk)T into parameters x ∈ RX and network state qk ∈ RQ at time step
k, where the input is satisfying X + Q = I. The output of the ELM is then
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used to compute the next state of the network by discretization of the continuous
dynamics:

qk+1 = qk + ∆t · ŷ(uk) , (5.18)

where ∆t is a time constant, k is the current time step of the iteration, and ŷ(uk)
is the output of the ELM with input uk.

Programming Dynamics: State Prediction. In order to imprint suitable
dynamics into the ELM, the programming dynamics approach recently introduced
in [169] called state prediction (SP) is used and adapted for the model introduced in
the previous paragraph. This approach extends the training data with synthesized
sequences to facilitate attraction to the data samples. Sequences q̂sn(k) = qn +
(1− k

K )2νs are generated for each input sample pair xn and qn in the data set; s
denotes the index of the S sequences, νs ∈ RQ is a small perturbation, k = 1, . . . ,K
are the time steps, and n = 1, . . . , N is the index of the training samples. This
imprints qn as a valid attractor of the dynamical system.

The corresponding hidden network states h(xn, q̂
s
n(k)) for each sequence are

collected. Attraction to the desired outputs is enforced by mapping states h(xn, q̂
s
n(k))

to outputs q̂sn(k + 1) − q̂sn(k). This can be accomplished efficiently by applying
ridge regression:

W out = (HTH + αI)−1HT Q̂ , (5.19)

where

H =


h(x1, q̂

1
1(1))T

...
h(xn, q̂

s
n(k))T

...
h(xn, q̂

S
N (K − 1))T

 and Q̂ =


q̂1

1(2)T − q̂1
1(1)T

...
q̂sn(k + 1)T − q̂sn(k)T

...
q̂SN (K)T − q̂SN (K − 1)T

 (5.20)

collects the hidden states and the desired outputs in the respective matrices and
α modulates the trade-off between weight decay and training error. The perturba-
tions νs ∈ RQ are chosen randomly by a multivariate Gaussian distribution with
Σ = σ · I centered around the origin:

νs ← N (0,Σ) , (5.21)

The presented approach differs from the original work in [169] by using a rela-
tive instead of an absolute encoding of the output. The network therefore induces
continuous dynamics whose discretization is explicitly controlled through ∆t. This
yields S = 7 sequences with K = 5 time steps for training in the experiments,
which enlarges the training set by a factor of S · (K− 1). However, learning is still
feasible due to the efficient learning scheme of the ELM approach.
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Stabilization of Neural Dynamics by Continuous Constraints. It was al-
ready shown in [169] that the presented approach is able to learn the kinematics
of a complex robot. However, this method lacks a direct stabilization mechanism
which is desired in order to control the robot in a safe manner. Therefore, a contin-
uous constraint which forces the programmed dynamics to stay in the predefined
joint limits is introduced. It is shown in the following section that this technique
stabilizes the dynamics while simultaneously sustaining the performance of the
kinematic control.

The joint limits of the Puma560 robot are set to [−π, π] in the experiments.
This defines a hypercube where each point x ∈ Ω on the surface of this cube ∂Ω is
mapped onto an uniquely defined normal vector n(x) ∈ Rd with ‖n(x)‖ = 1. The
normal vector is pointing towards the outside of the cube. Samples are drawn from
an uniform distribution on the surface Ω of the cube. The resulting continuous
constraint is expressed as a scalar product between the normal vector n(x) and
the network’s output y(x):

n(x)T · y(x) ≤ 0 : x ∈ Ω . (5.22)

This continuous constraint is valid because the scalar product is linear and forces
the network’s dynamics to stay inside the hypercube and thus stabilizes the dy-
namical system by avoiding diverging behavior.

6-DOF Robot Arm Kinematics

The neural model is trained to learn the inverse kinematics of the Puma560 Robot
whereas the network is restricted to control the end effector position only. The
architecture of the Puma560 robot arm provides four different solutions in the
workspace for the inverse kinematics in this setting. Fig. 5.6 (second row) visualizes
the Puma560 robot performing a movement in the four different joint settings.
The tool box [110] which provides a framework to obtain the solutions analytically
is applied in the experiments and for visualization. Ntr = 500 data points are
generated for training and Nte = 500 for testing by sampling the first three joints
according to an uniform distribution in between the joint limits. The application
of state prediction in order to program the multi stable dynamics yields S · (K −
1) ·Ntr = 7 · (5− 1) · 500 = 14000 data points in the training set. These Ntr = 500
samples are equally divided into four parts. The samples of each part are provided
with a single solution of the inverse kinematics which is different to the solutions
of the other data set parts. This ensures that samples with ambiguous solutions
to the inverse kinematic mapping are included in the training set. The continuous
constraint is sampled according to the previous section. Only one sample is added
per iteration. The network is set up with six input neurons (x,q) for the end
effector position and the actual joint angles and three neurons q̇ which encode the
change of the dynamical joint state of the robot. The new state of the robot is
obtained by integration according to Eq. (5.18). Networks with R = 300 neurons
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Fig. 5.6: Task space trajectory (first row) vs. joint space trajectory (second row).

in the hidden-layer are used. The input weights W inp and biases b are initialized
uniformly in [−1, 1], respectively, and trained by BIP.

Fig. 5.6 shows a setup where the trained networks are used to reproduce a
closed loop task space trajectory. Each column visualizes the result obtained for
one solution of the inverse kinematics. The first row shows the goal (black dashed
line) and the actually reproduced trajectory (red line). The second row shows
the robot performing the movement while sustaining one solution of the inverse
kinematics. The plot demonstrates that the redundant inverse kinematics are
learned with a high degree of precision and that the different solutions are stable
in a comprehensive part of the workspace.

The capability of the network to encode several solutions simultaneously with a
particular respect to stability is evaluated and the results are presented in Fig. 5.7.
The three main learning parameters are varied in order to analyze their impact on
the performance. The first row summarizes the results for a change of the regu-
larization parameter α. The second row visualizes the performance and stability
change for different variances Σ of the basin size, see Eq. (5.21). Finally, the last
row investigates the effect of sampling the continuous constraint in Eq. (5.22) in
the process of learning. The left column plots shows the estimate of the relative
violation #xa

N , where N = 10000 denotes the number of samples x drawn from an
uniform distribution on the surface of the hypercube Ω, and #xa is the number of
samples that are above zero according to Eq. (5.22). The second column visualizes
the average distance between desired and actually implemented attractor for the
four different solutions. For this purpose, the network dynamics in Eq. (5.18) are
iterated until convergence, i.e. that no significant change in the state is recogniz-
able anymore.

The first experiment, results shown in Fig. 5.7, demonstrates, on the one hand,
that the violation of the continuous constraint is decreasing for an increasing reg-
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Fig. 5.7: Violation of the continuous constraint (left column) and the error of
the attractor implementation (right column). Results for different regularization
parameters α (first row) and variations of the basin size σ. The change of the
measurements during the iteration of the sampling strategy (third column).

ularization parameter which leads to a stabilization of the dynamics. On the other
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hand, the average error of the attractors encoding the redundant solutions of the
inverse kinematics is also increasing. The main reason is that the regularization of
the read-out weights affects each part of the workspace equally: the surrounding
surface of the hypercube, where stability is demanded, and the inside of the cube,
where the attractors are located. The same applies to the variance of the Gaus-
sian distribution in Eq. (5.21). The stability is increasing with growing variance,
because the basins of attraction are growing with this parameter. However, the
borders of attraction between the four solutions are blurred such that the attrac-
tors are encoded with less precision - the errors are increasing. The last experiment
shows the results for the iteration of the proposed constrained learning procedure
during iterative sampling. The dynamics are stabilized within the progress of
sampling which is shown by the decreasing violation of the continuous constraint.
Besides this stabilization, also the attractors are incorporated with constant accu-
racy. The sampling of the continuous constraint on the hypercube does not affect
the attractors inside the hypercube. This shows that the constrained learning
approach is sufficient to learn redundant kinematics of the Puma560 stably and
accurate at the same time.

5.6 Conclusive Remarks

The presented approach shows that the ELM is particularly well suited to include
prior knowledge into the learned function by means of adding linear constraints,
which are functions of arbitrary derivatives and linear in the read-out weights of
the considered network (see Sect. 5.3). Generalization of the constraint towards
the continuous region is achieved by successively sampling the discrete constraints
at positions where the continuous constraint is violated (see Alg. 5.2). Where no
direct data are available, constraints quasi substitute actual data and can be gen-
erated artificially from prior knowledge. This is the key for faithful interpolation
between sparse data points. However, quadratic optimization can guarantee the
fulfillment of such constraints after learning in the discrete samples, whereas the
step towards continuous constraints needs additional effort. The ELM architecture
motivates an efficient verification algorithm, which is based on a worst-case approx-
imation of the Taylor expansion of the learned function and presented in Sect. 5.4.
To derive the respective bounds on the remainder of the Taylor approximation is
only applicable because derivatives and maxima can be analytically determined
due to the special form of the ELM - the random and untrained projection of the
inputs into the networks state space.

It is shown that this approach provides all the tools to combine the full repre-
sentational power of the ELM with guarantees on the performance of the learned
function, which are crucial in many engineering and automatic control applications.
The flexibility to define constraints locally and selectively in continuous regions and
the computational efficiency due to successively applied quadratic programming
scheme distinguishes the presented ELM approach from other schemes that for
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instance guarantee monotonicity by means of a-priori model selection. The gener-
ality of the proposed approach to incorporate prior knowledge is one of its major
advantages. This chapter shows, that besides simple cases of prior knowledge such
as partial monotonicity, convexity, or bounds on the output, also complex types
are expressible such as stability of the to-be-approximated dynamics as for the
illustrative Puma560 example.

This chapter shows several illustrative examples where data-driven learning is
applied with additional prior knowledge about the task. Several ”rules of thumb“
can be deduced from these experiments. First, the impact of prior knowledge is
higher if the data set is noisy and/or sparse. This is clear because less and unreli-
able data means that more prior knowledge is required. In fact, the networks profit
mostly from continuous constraints in the regions where only few data samples are
present. Second, the strength of the Tikhonov regularization is directly linked to
the constraint incorporation. The experiments show that the number of needed
constraint samples can be reduced by stronger regularization, which, in return,
means that too weak regularization leads to a bigger demand of constraints due to
the possible overfitting of noisey data samples. The regularization parameter thus
appears as an important control variable to cope with the curse of dimensional-
ity. In summary, generalization of the discrete constraints to continuous regions
becomes easier with lower model complexity of the network. Finally, continuous
constraints present in one part of the workspace does not affect the model complex-
ity of the network in other parts of the workspace too much. This is demonstrated
in Sect. 5.5.3, where the dynamical system representing the inverse kinematics of
the Puma560 robot is stable (due to the continuous constraint) close to the joint
limits while sustaining the four redundant solutions in between the joint limits.

Obviously, the iterative verification and sampling algorithm becomes expensive
with increasing input dimensionality of the learned function and is not practical
in very high dimensions. However, in many applications, the output is rather low-
dimensional. In such cases, the proposed scheme is very efficient, optimally exploits
the special architectural setting of the ELM to compute all necessary quantities,
and provides guarantees on particular constraints without introducing additional
architectural bias. However, also higher dimensional problems can be tackled, if
the demand for constraint samples is decreased by increasing the regularization
parameter.



Chapter 6

Reliable Control of the
Bionic Handling Assistant

The bionic handling assistant is a novel robot platform manufactured by Festo.
The morphology of the robot is inspired by elephant-trunks and actuated by a
pneumatic control. This chapter shows how the control of the bionic handling
assistant is accelerated by means of learning.

The remainder of this chapter is organized as follows. The first section of this
chapter, Sect. 6.1, introduces the bionic handling assistant as a robotic platform
where reliable learning is essential. Sect. 6.2 states the architecture of the low-
level control of the BHA. The data set used for investigation of the proposed ELM
approach is described in Sect. 6.3. The methods used for comparison are stated in
Sect. 6.4. The experimental results are given in Sect. 6.5. Sect. 6.6 demonstrates
the advantages of the learned model when applied in the control loop of the bionic
handling assistant in a reactive robotics scenario. The conclusive remarks on this
chapter are given in Sect. 6.7. Part of the experimental results concerning the
bionic handling assistant are taken from [16].

6.1 Controlling the Bionic Handling Assistant

The bionic handling assistant (BHA) [170, 171] is a pneumatically actuated, award-
winning [172] robot platform [173, 174] manufactured by Festo and inspired by
elephant-trunks. The actuation principle with several segments of continuous par-
allel components has gathered increasing interest in robotics research over the last
decade. It belongs to a new class of soft and lightweight robots with pneumatic
chambers which allows for a safe physical interaction between robots and humans.
A picture of the BHA is shown in Fig. 6.1 (left), the structure of the BHA separated
into three segments is depicted in Fig. 6.1 (right).

The downside of the biologically inspired design of the BHA is that hardly any
analytic models are available for control, which qualifies learning as an essential
tool for its application. The actuation itself operates with pneumatics, which is
not sufficient for a reliable positioning of the robot: air pressure only describes a
force, and friction with the addition of physical hysteresis effects causes different
outcomes for the same pressure. In order to avoid this problem, the BHA has cable
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Fig. 6.1: The bionic handling assistant (BHA) (left). The segments and respective
length sensors of the BHA (right).

potentiometers (see Fig. 6.1 (right)) that allow to sense the outer length of the ac-
tuators providing geometric information about the robot shape. Controlling these
lengths can, in principle, be done with standard schemes like proportional integral
derivative control (PID). The fundamental problem is that these approaches rely
on quick and reliable feedback from the robot, while the BHA only provides very
delayed and noisy feedback due to its pneumatic actuation. Consequently, the con-
trol would need to be applied with very low gains, which corresponds to only slow
movements. At this point, learning can largely help to leverage the opportunities
provided by the BHA. The control of the actuator lengths is improved by learning
the inverse mapping from some desired actuator length to the pressure necessary
to reach it in a mechanical equilibrium. This model thus allows a direct estimation
of a reasonable control signal that can be applied on the robot very aggressively,
without waiting for delayed feedback.

However, learning the inverse mapping for length control from scratch is dif-
ficult. On the one hand, data sampling is very expensive and must be done with
great efficiency. For each ground truth point of training data, some pressure needs
to be applied on the real robot. This pressure must be active until the physical
deformations of the robot have reached a mechanical equilibrium, which can take
up to 20 seconds for a single data point. On the other hand, the resulting samples
are very noisy due to strong physical hysteresis effects induced by the soft materi-
als applied. During the physical equilibration process, the visco-elastic properties
of the elastic material result in slightly different equilibrium lengths every time.
This process can be seen as highly inhomogeneous noise and requires multiple
repetitions of the same experiment to obtain a reasonable basis for data driven
learning. Exhaustive and precise sampling of the nine-dimensional input space of
length values is impossible and a feasible machine learning algorithm has to cope
with such a sparse and noisy data set.
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It is nevertheless possible to derive continuous constraints from prior knowledge
about the physical plant applicable in the learning process. In fact, it is known
in advance that the ground-truth behavior per axis is strictly monotonous, since
higher pressure in one actuator physically leads to an extension of the actuator
itself. Formulated as a constraint, it is necessary for the learner to reflect this
behavior in order to be applicable in a closed control loop without leading to an
amplification of errors. This is particularly important for those parts in the set of
inputs where only few samples are provided.

It is shown in this chapter, that the control of the BHA can be accelerated
significantly by application of the proposed ELM approach. Learning is only feasi-
ble because continuous constraints derived from prior knowledge about the actual
robot are used to guide the learning process. The control of the BHA is there-
fore a prototypical engineering application, where learning subject to continuous
constraints is the method of choice, because no analytic model is available.

6.2 Low-Level Control of the BHA

Controlling the lengths can, in principle, be done with standard schemes like PID
control. But since the BHA cannot provide a quick and reliable feedback due to
the visco-elastic mechanics, the control would need to be applied with very low
gains, corresponding to slow movements. A feed-forward controller is added in

BHA - Plant
noisy, delayed

PID – fbc
slow, accurate

ELM – ffc
rapid, ff

L
des. p

ff

p
fb

L
real p

des.

Fig. 6.2: The control loop: combination of the learned feed-forward and feedback
controller for the BHA.

parallel to the feedback signal of the PID control. The feed-forward controller
is supposed to represent the direct relation between length and pressures in a
mechanical equilibrium and thus serves as a basis for the control of the BHA. The
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PID controller is reduced to balance the small error between feed-forward control
and actual output and can then be applied with low gains without losing the fast
response of the combined controller.

Fig. 6.2 visualizes the control loop of the BHA schematically. The image shows
the BHA plant with its noisy and delayed feedback, the PID as a feedback controller
that works accurate but can only be applied with low gains, and the ELM as inverse
model used as feed-forward controller. The BHA is provided with pressure values
and replies with sensor values obtained by the cable potentiometers measuring the
expansion of the respective pressure chamber. The PID controller is provided with
the difference of the desired length values and the length sensor values while the
ELM is fed by the desired length values. This ensures that the PID controller acts
in a small range correcting the small errors of the ELM model in the feedback loop.
The outputs of ELM and PID controller are added together and used to control
the BHA. The following sections show the construction of the data set for learning
the feed-forward controller by means of the ELM approach with additional use of
continuous constraints.

6.3 Learning the BHA Data Set

The BHA data set contains the relation between geometric length and pressure in
a mechanical equilibrium. The recorded data units are milli-bar for pressure and
meters for length. The goal is to learn a partially monotonous model

p̂(l) : R3 → R3 : ∀segments , (6.1)

which approximates the mapping from desired lengths l (meter) of the three actu-
ators for the respective segment to the three necessary pressures p (milli-bar) in
the mechanical equilibrium. Further, the observation that the entire mapping from
length sensor values to chamber pressures can be separated into three independent
three-dimensional problems for the different segments (see Fig. 6.1 (right)) is used
in order to simplify the learning scenario. For each segment, the pressure space
is explored by applying pressures between minimum and maximum value in five
equidistant steps. This results in a pressure grid comprising 5×5×5 = 125 samples.
For each pressure, the resulting combination of three lengths was recorded after a
waiting phase of 20 seconds in order to reach the mechanical equilibrium. In order
to deal with the inherent variation due to the visco-elastic material, this process
is repeated five times with different traversal orderings, such that 625 samples per
segment are available for learning. The minimum and maximum pressures, and
the resulting length ranges are collected in Tab. 6.1.

The grid for the applied pressures of segment one is illustrated in Fig. 6.3 (left).
The corresponding length values recorded on the robot are shown in Fig. 6.3 (right).
The data are clearly non-linear, with strong interactions of components and has
huge gaps in the middle part of the target data, for which generalization is critical.
All this makes the task evidently difficult to learn.
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Seg. Max. Pres. Min. Pres. Max. Len. Min. Len. #Samples #Trials

1 800 mbar 0 mbar 0.32 m 0.16 m 625 5
2 1000 mbar 0 mbar 0.33 m 0.15 m 625 5
3 1200 mbar 0 mbar 0.29 m 0.16 m 625 5

Tab. 6.1: Properties of the BHA data set for the different segments.
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Fig. 6.3: Data set for segment 1. Pressure grid with five samples per dimension
(left) and the corresponding length values (right). The highly non-linear relation
between lengths and pressures leads to big gaps in the input space of the data.

Error Measure. Let D = (pi, li)j : i = 1 . . . Ntr, j = 1 . . . 5 be the recorded data
set, for segment j, learning with Ntr = 125 training samples. An appropriate error
measure is to compute the per-axis average-deviation from the measured ground
truth value:

E =
1

Ntr

∑
i

1

D

∑
d

‖pid − p̂d(li)‖ , (6.2)

where Ntr is the number of samples in the evaluated data set and D = 3 is the
input and output dimensionality.

Continuous Constraints (Partial Monotonicity). The ground-truth behav-
ior is supposed to be strictly monotonous per axis for each segment. Rephrased in
mathematical terms, the learner p(l) for one segment therefore needs to fulfill the
following three properties:

Cd(l) = − ∂

∂ld
p̂d(l) < 0 : ∀l ∈ Ω , (6.3)

where d = 1, 2, 3 is the input dimension, l is an length input for the respective seg-
ment, and Ω = [0.16, 0.32]× [0.15, 0.33]× [0.16, 0.29] is the three-dimensional input
space defined by the minimal and maximal length of the segment (see Tab. 6.1).
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6.4 Models for the BHA Data Set

This section provides detailed information about the learning of the BHA data set
and two additional models for comparison on the BHA data set.

6.4.1 Linear model

The linear fit p(l) = M ·l+o with regression matrix M and offset o is applied to the
BHA data. The parameters are obtained by regression of the data and monotony
is checked by looking for positivity of the diagonal elements of regression matrix
M . Partial monotonicity is not enforced by learning but checked. However, the
continuous constraints are typically satisfied by the linear model due to the low
complexity of the model.

6.4.2 Partially monotonic MLP

The partially monotonic multi-layer perceptron (PMMLP) model is a special case
of the model in [132, 175] where only one hidden-layer is used. Partial monotonicity
is implemented by initializing certain input weights positive. In order to implement
the monotonic behavior, the respective weights in the output matrix are restricted
to be positive. In total, R = 300 Neurons are used for the hidden-layer in total.
An MLP is known as an universal approximator of monotonous functions, but the
constraints defined for monotonicity reduce the number of degrees of freedom for
the weights. The capability to approximate arbitrary, partially (but also globally)
monotonic functions was nevertheless proven in [132].

6.4.3 ELM for the BHA data set

The goal for each segment is to learn an ELM model p(l) : RI=3 → RO=3 that
maps the desired length l (meter) of the three actuators to the three necessary pres-
sures (milli-bar) p in the mechanical equilibrium with additional use of continuous
constraints:

p̂i(l) =

R∑
j=1

W out
ij f(aj

I∑
k=1

W inp
jk lk + bj) , (6.4)

where i is the index for the respective pressure chamber. The ELMs used in the
experiments have R = 300 hidden-layer neurons and are optimized by BIP with
µBIP = 0.2. The regularization parameters α = 10−5, 10−3, and 10−2 are obtained
by line search for the segments 1,2, and 3 respectively. The input space of the ELM
where the constraint is implemented is defined by the morphology of the BHA
and its physical restrictions stated in Tab. 6.1. Nre = 106 samples are used for
rejection sampling. Additionally, a lower bound of c = 100 mbar/meter (defined
with some tolerance ε = 100 mbar/meter) is implemented. Only networks where
the algorithm terminates successfully were taken into account in the experiments.
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6.5 Experimental Results on the BHA Data Set

The performance of the three different constrained models is evaluated on the BHA
data set. The linear model (LM), a partially monotonic multi layer perceptron
(PMMLP) [132] and the ELM model with additional use of prior knowledge are
tested.

The results are obtained by cross-validation over the five trials measured by
the error function in Eq. (6.2). For each fold, four trials are used for training and
one trial is used for testing the generalization ability of the models. Afterwards,
the errors are averaged over the five folds. 100 different network initializations are
tested and the training and test errors of the best performing models are stated in
Tab. 6.2. The mapping ability of the LM is too poor to capture enough structure

Seg. LM PMMLP ELM

1 50.1/54.0 39.84/46.24 30.77/39.76
2 64.5/69.0 47.69/56.19 36.29/49.77
3 60.9/68.2 50.03/60.40 43.80/58.23

Tab. 6.2: Best training/test errors for the different models out of 100 initializations.

encoded in the BHA data - the errors are large. The PMMLP performs better
than the LM since it induces non-linearity. Unfortunately, the performance of
the PMMLP is depending on the experience of the tuning expert. Especially, the
tuning of the input scaling remains difficult. The ELM - in contrast - performs
significantly better although it was provided with the same number of hidden-layer
neurons.

In order to show the quality of the produced mapping by the PMMLP and
ELM, also the mean and standard deviation over the different initializations are
stated in Tab. 6.3. In order to make the results comparable, both networks are
provided with the same number of neurons. The mean performance of the ELM

Seg. PMMLP ELM

1 43.60±2.09/49.96±1.91 31.01±0.11/39.92±0.10
2 51.04±1.93/59.39±1.86 36.61±0.15/50.13±0.14
3 55.31±3.20/65.78±3.05 43.89±0.06/58.40±0.09

Tab. 6.3: Mean training errors ± standard deviation of the training errors / mean
test errors ± standard deviation of the test errors for 100 initializations.

is close to the best performance (compare results summarized in Tab. 6.2 and
Tab. 6.3). The standard deviation of the errors for the ELM is very low in com-
parison to the standard deviation for the PMMLP. The main reason for this is the
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use of BIP (see Chap. 3) producing a task-specific representation in the hidden-
layer irrespective of the random initialization and ridge regression additionally
regularizing the read-out layer.

The experiments show that the ELM is outperforming the other models signifi-
cantly. One essential reason is that the two competing models (LM, PMMLP) fulfill
the constraint globally by means of model selection, although only a dimension-wise
monotony is required. This too conservative model selection of LM and PMMLP
reduces their approximation capability too much. There is no simple way to imple-
ment the desired partial constraint through a model selection mechanism, which
underscores the flexibility of the presented approach. The effort of quadratic opti-
mization and verification of the learned ELM function pays off, because the local
implementation of the continuous constraint (if enforced only in the previously
defined region Ω of the input space) leaves more degrees of freedom in the model
for approximation of the actual non-linear mapping.

6.6 Experimental Results for Closed Loop Application

Three experiments to test the influence of the ELM model onto the performance
of the actual closed loop control of the BHA were conducted. The results of the
experiments are summarized in Tab. 6.4. In the first experiment, the value of each

ELM Model Jump [s] Fall [s] Trajectory [s]

deactivated 13.16±0.61 5.69±0.08 38.63±0.59
activated 3.37±0.18 2.66±0.04 6.23±0.03

Tab. 6.4: Speed tests of the control loop with and without the application of the
ELM as feed-forward control.

pressure chamber is first set to 0.19 m and then jumps to 0.24 m. A posture is
considered as reached until the difference between real and desired length of each
segment is less the 1 cm. The time until the posture is reached is recorded. The
values are averaged over ten repetitions. Tab. 6.4 (Jump) shows that the posture
is reached almost four times faster in the cases where the ELM is activated. A
visualization of this jump process for one chamber in segment one is presented in
Fig. 6.4 (left). The plot clearly shows that the robot is able to follow the desired
length with a high precision, while the simple PID control reacts idle caused by
the low gains.

In the second experiment, the value of each pressure chamber is first set to
0.24 m and then falls to 0.19 m. It is important to investigate this separately to
the jump experiment because the physics of this process is different: the chambers
has to be deflated instead of pressurized. Tab. 6.4 (Fall) shows the results of the
experiment. The activation of the ELM model increases the performance of the
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Fig. 6.4: Illustration of the three experiments conducted with and without ELM
model. The reaction of the BHA on a jump (left), on a fall of the pressure (center),
and a trajectory (right).

robot from 5.69 to 2.66 seconds which is still a significant enhancement. Fig. 6.4
(center) visualizes the process for the fall experiment. Also the deflation process
is accelerated with the application of the inverse model. The posture is reached
with a precision of one percent already after two and a half seconds.

The last experiment comprises five movements merged to a trajectory. The next
posture is submitted after the previous posture is reached. The time until the last
posture is reached is recorded. Tab. 6.4 (Trajectory) shows that the activation of
the ELM leads to a significant speed-up of the movement trajectory. The delays
for the simple PID controller aggregate such that this strategy takes more than
half a minute to process this trajectory. The strategy with activated ELM takes
around six seconds. Fig. 6.4 (right) shows the processing of the trajectory where
each posture lasts for a time of five seconds. The BHA is able to closely follow
the trajectory with activated ELM model. Without ELM model, the BHA reactes
slowly and is highly over-challenged with the fast posture changes.

6.7 Conclusive Remarks

The bionic handling assistant (BHA) represents a robotic platform where learning
is indispensable for a fast and accurate control. Manual modeling remains difficult
due to several intrinsic properties of the underlying mapping. The main reason for
these difficulties is the pneumatic actuation which results in complex friction effects
and a strongly delayed feedback. However, learning has to cope with the downsides
of the pneumatic design: data sampling is very expensive and the resulting samples
are very noisy due to the soft materials applied. But it is nevertheless possible
to derive continuous constraints from the physical plant applicable in the learning
process which makes learning only then feasible. Without a learned low-level con-
troller, appropriate human-robot interaction would not be imaginable. The results
are very encouraging and the learned controller was actually used as basis for a re-
cently developed higher process learning scheme inspired by infant-learning called
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“goal-babbling” [176, 177, 178] to obtain an inverse mapping through exploration
on the BHA robot ([178], video [179]). The learned controller of the BHA is also a
demonstrator for self-organization and cognitive learning for intelligent technical
systems in the “it’s owl” leading-edge cluster1.

This example shows that the ELM is particularly well suited to include prior
knowledge into the learned function by means of adding constraints which are
linear functions of arbitrary derivatives. Quadratic optimization can guarantee
fulfillment of such constraints after learning in discrete points, whereas the step
towards continuous constraints is achieved through an efficient verification algo-
rithm, which is based on a worst-case approximation of the Taylor expansion of the
learned function. This allows enhanced reliability in the sense that certain phys-
ical properties are satisfied. It is furthermore shown that unsupervised learning
by means of batch intrinsic plasticity leads to a higher robustness of the learning
results. The standard deviation of the experimental results is more than one order
of magnitude lower for the models trained with unsupervised optimization through
BIP and continuous constraints in comparison to the results for the PMMLP net-
works. This guarantees good and trustworthy learning results and makes a vali-
dation set unnecessary. It is also clear that the BHA is prone to non-stationary
behavior due to the visco-elastic properties of the used material. The physical
equilibration process therefore results in different equilibrium lengths with respect
to the history of the arm because of hysteresis effects. It is undoubted that sys-
tematic changes in the underlying mapping appear in long term scenarios. Also
rapid changes are possible such as a defect pressure chamber because the BHA is
susceptible to damages in the exterior hull. In this cases, no target data is avail-
able and strongly motivates unsupervised compensation of such changes. Online
training by IP with natural gradient as introduced in Chap. 4 can be used as a
basis for compensation.

This approach maintains the universal approximation capability of the ELM
approach and at the same time achieves guarantees on the performance of the
learned function, which are crucial in this engineering and automatic control ap-
plication. The flexibility of the implementation of continuous constraints which
defines constraints locally and selectively in continuous regions allows good gen-
eralization on the collected BHA data. Additional experimental results show that
the learned controller accelerates the BHA significantly in comparison to standard
PID control without the danger of error amplification in the closed control loop.
This ensures a save and fast application of the BHA, which is an indispensable
prerequisite for proper human-robot interaction.

1See www.its-owl.de or www.cor-lab.de for further details.



Chapter 7

Stable Estimation of
Dynamical Systems and

Reliability

The data-driven approximation of vector fields that encode dynamical systems is a
persistently hard task in machine learning. When data is sparse and given in form
of velocities derived from few trajectories only, there are state-space regions where
no information on the vector field and its induced dynamics are available. Reliable
generalization towards such regions is meaningful only if strong biases are intro-
duced, for instance assumptions on global stability properties of the to-be-learned
dynamics. This chapter therefore introduces a novel learning scheme based on
the constrained ELM approach introduced in this thesis that represents dynamical
systems by means of vector fields, where asymptotic stability is explicitly enforced
through utilizing techniques from Lyapunov’s stability theory. In particular, the
learning of the vector field is constrained through a Lyapunov function candidate,
which in turn is first adjusted towards the training data. The significance of opti-
mized Lyapunov function candidates is pointed out and the approach is analyzed in
a scenario where trajectories are learned and generalized from human handwriting
motions.

The remainder of the chapter is organized as follows. At first, Sect. 7.1 describes
the role of dynamical system estimation with additional focus on stability for
the reliable generation of complex movements for robots and mentions related
work. Then, Sect. 7.2 introduces neurally imprinted vector fields as an approach
to learn dynamical systems in a data-driven manner based on extreme learning
machines. Sect. 7.3 explains the relevance of Lyapunov function candidates for
the stability and accuracy of the resulting estimates. The obtained experimental
results are summarized in Sect. 7.4, which contains three different experiments also
comprising the humanoid robot iCub. Finally, Sect. 7.5 gives conclusive remarks
on this chapter.

The concept of neurally imprinted stable vector field was introduced in [18] and
further developed in [20]. The idea of highly flexible Lyapunov function candidates
through learning with continuous constraints was proposed in [19]. Most of the
content of this chapter is based on this publications.
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7.1 Stable Estimation of Dynamical Systems and
Reliable Movement Generation

The approximation of vector fields from sparse data, that, e.g., encode quantita-
tive flow visualization [180], optical flow in computer vision [181], or force fields
in motor control [182], is an important but also challenging task for learning al-
gorithms. Such vector fields represent non-linear dynamical systems which were
recently also applied in cognitive robotics and appear as one of the most promising
candidates as computational basis for exploitation of flexible motor capabilities of
modern robots [183, 184] and also humanoids [185]. For instance, point-to-point
movements modeled by autonomous dynamical systems can provide a library of
basic building blocks called movement primitives [186] which are very successfully
applied to generate movements in a variety of manipulation tasks [187, 188]. How-
ever, in such scenarios, training data typically consist of only few trajectories and
thus leave many regions in the state space with no information of the desired vector
field. Generalization towards such regions is particularly challenging because small
errors in the approximation of the vector field can get amplified during numerical
integration and can lead to divergence of the dynamical system.

Learning is obviously an appropriate means to enable adaptive behavior, but
the learning of controllers is valid only if certain demands on reliability can be
guaranteed. Recently, several studies emphasized that stability plays an important
role for the reliability of such tasks [189]. A widely known approach to tackle this
issue is called dynamic movement primitives (DMP) [190] which is a successful
technique to generate reaching motions towards a target attractor with dynamical
systems. It provides an accurate non-linear estimate of a given trajectory robust
to spatial perturbations while ensuring global stability at the target attractor. The
stability is enforced through a stable linear dynamical system which suppresses a
non-linear perturbation at the end of the motion. The smooth switch from non-
linear to linear dynamics is controlled by a phase variable. The phase variable can
be seen as external stabilizer which in return distorts the temporal pattern of the
dynamics. This leads to the inherent inability of DMP to generalize well outside
the demonstrated trajectory [191].

This fact directly motivates methods which are capable of generalizing to un-
seen areas. Such methods are time-independent and thus preserve the spatio-
temporal pattern. They became of special interest by focusing on the “what to
imitate” problem [192, 193]. However, the incorporation of stability into non-linear
dynamical systems is inherently difficult due to their high complexity, in partic-
ular, if systems are supposed to approximate given data sets. On the one hand,
an integration through conservative stability constraints often leads to a poor re-
production performance. On the other hand, a too strong focus on the accurate
reproduction of the data lead to a weak robustness to perturbation which might
end in divergence. The trade-off between stability and performance is often re-
solved for the benefit of stability in return for losing accuracy. This resolution is
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undesired if the complex parts of underlying dynamics are of major interest which
is the case for humanoid robotics. How to imprint stability, while simultaneously
sustaining the complexity of the dynamical system is thus a key question to tackle.

Several solutions to that question have been developed in previous years. The
common basis of these approaches is Lyapunov’s theory which is a powerful tool to
analyze the stability of such systems. One statement is that asymptotic stability
of a fixpoint is equivalent to the existence of a Lyapunov function. However, most
of the approaches for estimation of dynamical systems only deal with simple and
data-independent Lyapunov functions which makes the finding of a satisfactory
solution to the trade-off difficult. Artstein and Sontag [194, 195] generalized Lya-
punov’s theory of stability by defining conditions on a so-called control Lyapunov
function, which stabilizes non-linear dynamical systems through online corrections
during runtime. The construction of a control Lyapunov function, which guaran-
tees stability without interfering with the data, was so far only solved for special
cases and remains difficult [196].

An appealing approach that aims at ensuring robustness to temporal pertur-
bations by learning vector fields from demonstrations is the stable estimator of
dynamical systems (SEDS) [193]. It is based on a mixture of Gaussian functions
and respects correlation across several dimensions. It is shown, that SEDS is
globally asymptotically stable but restricted to approximate contractive dynamics
corresponding to a quadratic Lyapunov function [193]. The extension of SEDS
called SEDS-II was very recently published in [197]. It is grounded on the idea
of online corrections by means of control Lyapunov functions and implements less
conservative stability conditions compared to SEDS. However, the learning of the
dynamical systems via SEDS-II is not informed by stability assumptions, where
stability is only achieved by online perturbations of the dynamics triggered by
a violation of the control Lyapunov function. Hence, SEDS-II cannot guarantee
direct constructive stability. In [198], Reinhart et al. applied a neural network
approach to generate movements for the humanoid robot iCub [199]. The perfor-
mance and the stability are addressed by two separately trained but superimposed
networks. The first network approximates the data, while the second network
addresses stability by learning a velocity field, which implements a contraction
towards the desired movement trajectory. However, also this approach cannot di-
rectly guarantee the stability of the motion. In this cases, the trade-off between
the globally enforced stability constraint and the data approximation prevents an
accurate learning of complex movements. Yet, SEDS nor superposition approaches
can resolve this.

The application of standard candidates, i.e. quadratic Lyapunov candidates as
in Fig. 7.1 (left) or matrix parametrized candidates visualized in Fig. 7.1 (center)
is not satisfactory when the task demands an appropriate complexity. In theory,
much more complex functions are possible and also desired, see Fig. 7.1 (right),
but there is no constructive or analytic way to derive such a candidate function
directly.
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Fig. 7.1: Level sets of three different Lyapunov function candidates L = (x− x∗)2,
L = (x−x∗)TP (x−x∗), and L =?, surrounding an asymptotic fixed-point attrac-
tor, but which one to apply for learning?
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Fig. 7.2: Schematic view of the proposed approach
to learn vector fields. The learning is separated
into two steps: i) predefine a Lyapunov candidate
L through optimization of parameters P and ii) use
this function L to sample constraints U that are im-
plemented by a successively applied quadratic pro-
gram learning the data. The resulting dynamical
system ẋ = v̂(x) approximates the data (X,V ) and
be asymptotically stable in x∗ after learning.

For this reason a method
called “neurally imprinted
stable vector fields” [18] to
learn time independent vec-
tor fields that lead to asymp-
totically stable dynamics is
introduced. The method
also allows to learn highly
flexible Lyapunov candidates
from data. The necessary
continuous constraint to en-
able successive quadratic pro-
gramming is deduced from
stability assumptions based
on Lyapunov’s stability the-
ory. The learning it-
self is separated into two
main steps, see Fig. 7.2
for illustration of this pro-
cess for Lyapunov candi-
dates of type: L = (x− x∗)TP (x− x∗).
First, a Lyapunov candi-
date is constructed through
parameter optimization to-
wards the data. It is used
to obtain inequalities con-
straints on the parameters of
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the trained ELM in discrete points of the workspace. Second, the inequality con-
straints are implemented by a quadratic program minimizing the error between
training data and output of the network. The constraints are sampled until their
satisfaction in the predefined continuous workspace. Finally, the resulting vector
field induces stable dynamics by construction which are linked to the previously
defined Lyapunov candidate. Note, that the locality of this approach prevents
a direct stability guarantee, but as the ELM allows analytical differentiation, it
can be constructively and effectively proven ex-post if needed, see Chap. 5. Dur-
ing this chapter, different Lyapunov candidates are introduced and their impact
on the estimation of dynamical systems for movement generation is investigated.
In addition, experimental results that analyze the proposed method in detail is
presented which show that the incorporation of the flexible learned Lyapunov can-
didates strongly reduces the trade-off between stability and accuracy. They also
emphasize that the obtained dynamical systems are suited to allow robust and
flexible movement generation for robotics.

7.2 Neurally-Imprinted Stable Vector Fields

This section briefly introduces the technique to implement asymptotic stability
into extreme learning machines via sampling of constraints based on my recently
published paper [18]. Stability is enforced by sampling linear constraints obtained
from a Lyapunov candidate. We suggested to use quadratic functions for stabiliza-
tion which are in fact relatively simple when considering complex robotic scenarios
and thus raises the question: what Lyapunov candidate to apply instead?

7.2.1 Problem Statement

Point-to-point motions as driven by vector fields are considered: a state variable
x(t) ∈ Ω ⊆ Rd in time t ∈ R defines a discrete motion of a robotic system, where
this variable x(t) could be the robot’s joint angles or the position of the arm’s
end-effector at time t:

ẋ = v(x) . (7.1)

It is assumed that v : Ω→ Ω is non-linear, continuous, and continuously differen-
tiable with a single asymptotically stable fixed-point attractor x∗ = v(x∗) = 0 in
Ω without loss of generality1. The limit of each trajectory satisfies:

lim
t→∞

x(t) = x∗ : ∀x ∈ Ω . (7.2)

The focus is the estimation of v as a function of x by using demonstrations for
training and ensure its asymptotic stability at target x∗ in Ω. The estimate is
denoted by v̂ in the following.

1An arbitrary fixed-point attractor can be shifted to the origin of the coordinates’ system by
means of the diffeomorphism τ(x) = x − x∗. The transformed dynamical systems is equivalent
to the original system.
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7.2.2 Extreme Learning Machine for Estimating v(x)

Consider an ELM for estimation of v comprising three layers of neurons, where the
input x ∈ Rd and the output v̂ ∈ Rd have the same dimensionality d. For input x
the output of the ith neuron is given by:

v̂i(x) =
R∑
j=1

W out
ij f(

d∑
n=1

W inp
jn xn + bj) , (7.3)

where i = 1, . . . , d, bj is the bias for neuron j, and f denotes the Fermi activation
function applied to each neuron in the hidden-layer.

Let D = (xi(k),vi(k)) : k = 1 . . . N i, i = 1 . . . Ntraj be the data set for training
where Ntraj is the number of demonstrations. Nds denotes the overall number of
samples in D. The evolution of motion can be computed by numerical integration
of ẋ = v̂(x), where the term x(t = 0) ∈ Rd denotes the starting point of the
motion.

7.2.3 Stabilization through Lyapunov’s Theory

Dynamical systems implemented by neural networks have been advocated as a
powerful means to model robot motions [198, 169], but “the complexity of training
these networks to obtain stable attractor landscapes, however, has prevented a
widespread application so far” [190]. One reason for this is that learning a vector
field from a few training trajectories gives only sparse information on the shape of
the entire vector field. There is thus a desperate need for generalization to spatial
regions where no training data reside.
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Fig. 7.3: Unstable estimation of dynamical systems through demonstrations by an
ELM. Shapes are from the LASA data set: A-shape (first), sharp-C (second), and
J2-shape (third).

Fig. 7.3 illustrates three examples of unstable estimation of non-linear dynam-
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ical systems using ELMs. The data are from the LASA data set2 comprising
20 handwritten motions by humans. The networks are each trained with three
trajectories obtained from a human demonstrator. The first plot shows that the
reproduced trajectories converge to a spurious attractor in the immediate vicinity
of the target or diverge. The second plot demonstrates that the motion either con-
verges to other spurious attractors far away from the target or completely diverge
from it. The third plot show an example motion also subject to unstable behav-
ior. This illustration shows that learning this attractor landscape is particularly
hard without explicit stabilization because the training data comprises only a few
training samples that encode the target.

In order to stabilize the dynamical systems estimate v̂, the conditions for
asymptotic stability of arbitrary dynamical systems discovered by Lyapunov are
recalled: a dynamical system is asymptotically stable at fixed-point x∗ ∈ Ω in
the compact and positive invariant region Ω ⊂ Rd if and only if there exists a
continuous and continuously differentiable function L : Ω → R (called Lyapunov
function) which satisfies the following conditions:

(i) L(x∗) = 0 (ii) L(x) > 0 : ∀x ∈ Ω,x 6= x∗

(iii) L̇(x∗) = 0 (iv) L̇(x) < 0 : ∀x ∈ Ω,x 6= x∗ .
(7.4)

A function L that only satisfies condition (i)-(iii) is called: Lyapunov candidate.
Such a function can be used to obtain a learning algorithm that also satisfies
condition (iv) w.r.t. the estimated dynamics v̂. Condition (iv) can be re-written
by using the ELM learner defined in Eq. (7.3):

L̇(x) =
d

dt
L(x) = (∇xL(x))T · d

dt
x = (∇xL(x))T · v̂

=
d∑
i=1

(∇xL(x))i ·
R∑
k=1

W out
ij · f(aj

d∑
k=1

W inp
jk xk + bj) < 0 .

(7.5)

Note that L̇ is linear in the output parameters W out irrespective of the form of the
Lyapunov function L. Eq. (7.5) defines a linear inequality constraint L̇(x) < 0 on
the read-out parameters W out for a given point u ∈ Ω, which can be implemented
by the previously defined successive quadratic programming technique defined in
Chap. 5. The training of the read-out weights W out is rephrased as a quadratic
program subject to constraints given by L:

W out = arg min
W

(‖W ·H(X)− V ‖2 + α‖W‖2)

subject to: L̇(U) < 0 ,
(7.6)

where the matrix V contains the corresponding target velocities of the demon-
strations and U = (u(1), . . . ,u(Ns)) is the matrix collecting the discrete samples
obtained by sampling.

2The data were taken from [200] called LASA data set.
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7.3 What is a good Lyapunov Candidate for Learning?

The previous section describes how a Lyapunov candidate L : Ω→ R, which satis-
fies condition (i), (ii), and (iii) is used to draw inequality constraints implemented
by the quadratic program in Eq. (7.6). Fig. 7.4 illustrates the incorporation effect
by showing the same demonstrations as in Fig. 7.3 but with additional stabilization
by using the simple quadratic Lyapunov candidate Lq = x2. It is shown that the
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Fig. 7.4: Stable estimation of A-shape (first), sharp-C (second), and J2-shape
(third) by applying Lq as Lyapunov candidate. Compare with Fig. 7.3

form of the candidate has a great impact on the resulting shape of the estimated
dynamics. The data-independent candidate function Lq is sufficient to estimate
the A-shape (Fig. 7.4, first) with good generalization. It is less suited to approxi-
mate the sharp-C shape (Fig. 7.4, second). The third shape also remains difficult
for the learning with such a simple Lyapunov candidate.

Note that it is impossible to find an estimate for the sharp-C that approximates
the data accurately while simultaneously fulfilling the quadratic constraint given
by the Lyapunov candidate function Lq. Already some of the training samples
(xi(k),vi(k)) are violated by Lq: (∇Lq(xi(k)))T ·vi(k) > 0. This is in contradiction
to condition (iv) of Lyapunov’s theorem.

In order to prevent a violation of the training data D by a given Lyapunov
candidate L, the measure M in Eq. (7.7) is defined. The following functional is
called measure of violation:

M(L) =
1

Nds

Ntraj∑
i=1

N i∑
k=1

Θ
[
(∇L(xi(k)))T · vi(k)

]
, (7.7)

where Θ : R → R denotes the ramp function3, which guarantees that only those
samples (xi(k),vi(k)) are counted inM where the scalar product between∇L(xi(k))
and vi(k) is positive and thus violating Lyapunov’s condition (iv).

3The ramp function is zero for inputs below zero and the identity function for input values
above or equal to zero.
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A good Lyapunov candidate does not violate the training data too much (i.e.
M is small). This cannot be guaranteed for data-independent Lyapunov candidates
in general. This raises the question: which Lyapunov candidate function is feasible
for learning dynamical systems from complex data? The following sections answer
this questions by proposing three different Lyapunov candidate functions compared
in several experimental setups.

7.3.1 Quadratic Lyapunov Candidate

The most commonly used Lyapunov candidate is quadratic and given by the fol-
lowing function:

Lq = (x− x∗)T (x− x∗) , (7.8)

which is also used as a Lyapunov candidate in the experimental setup considered in
this thesis. This function is data independent, quadratic and fulfills the conditions
(i)-(iii). The function Lq is also a valid Lyapunov function for estimates produced
by SEDS [193].

In [18], Lyapunov candidates of the following form are considered (the level
sets of this Lyapunov candidate function are elliptic):

LP (x) =
1

2
(x− x∗)T · P · (x− x∗) . (7.9)

Note that (i)-(iii) are fulfilled if P is positive definite and symmetric and that LP
equals Lq if P is equal to the identity matrix. It is defined as:

P = arg min
P∈P

M(LP ) . (7.10)

M is defined according to the following sum over the training data which is derived
from Eq. (7.7) by differentiation and injection of Eq. (7.9) as Lyapunov candidate:

M(LP ) =
1

Nds

Ntraj∑
i=1

N i∑
k=1

Θ
[
(xi(k))T · P · vi(k)

]
, (7.11)

The minimization operator in Eq. (7.10) can be formulated as a non-linear pro-
gram, where sequential quadratic programming based on quasi Newton methods is
used for optimization [201]. The possible matrices are restricted to be an element
of P := {P ∈ Rd×d : P T = P, λi ∈ [α, 1], λi is EV of P}4, where α = 0.1 is a
small and positive scalar.

7.3.2 Neural Architecture for Learning a Lyapunov Candidate

The candidate functions Lq and LP are only able to capture a limited class of
dynamics. Therefore, [19] suggested to learn a candidate function which is more
flexible but in turn still feasible for implementation.

4EV is used as abbreviation of the mathematical term “eigenvalue”.
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Consider an ELM architecture which defines a scalar function LELM : Rd → R.
Note, that this ELM also contains a three-layered and random projection structure
with only one output neuron. The read-out matrix becomes W out ∈ RR. The
main goal is to minimize the violation of the training data measured by Eq. (7.7)
by making the negative gradient of this function follow the training data closely.
Again, a quadratic program is defined:

1

Nds

Ntraj∑
i=1

N i∑
k=1

‖ − ∇LELM(xi(k))− vi(k)‖2 → min
Wout

, (7.12)

subject to the following equality and inequality constraints corresponding to Lya-
punov’s conditions (i)-(iv) such that LELM becomes a valid Lyapunov candidate:

(a) LELM(x∗) = 0 (b) LELM(x) > 0 : x 6= x∗

(c) ∇LELM(x∗) = 0 (d) − xT∇LELM(x) < 0 : x 6= x∗ ,
(7.13)

whereas the constraints (a) and (c) define equality constraints, the constraints (b)
and (d) define inequality constraints which are implemented by sampling these
constraints according to Alg. 5.2. The gradient of the scalar function defined by
the ELM is linear in W out and therefore suited for implementation. It is given by:

(∇LELM(x))i =
R∑
j=1

W out
j f

′
(aj

d∑
k=1

W inp
jk xk + bj) · (ajW inp

ji ) , (7.14)

where f
′

denotes the first derivative of the Fermi function. This technique allows
the learning of a flexible Lyapunov candidate function that is optimized towards
the data.

7.4 Experimental Results

This section contains the experimental results obtained for different Lyapunov
function candidates. First the impact of stability is investigated in Sect. 7.4.1. In
Sect. 7.4.2, different Lyapunov candidates are tested and compared on the LASA
data set comprising 20 different hand writing motions by humans. Finally, the
approach is evaluated in a real world imitation learning scenario involving the
humanoid robot iCub in Sect. 7.4.3.

7.4.1 The Impact of Regularization and Stability Incorporation

This section contains experiments regarding the regularization of the parameters.
All experiments in this section are performed with LP as Lyapunov candidate.
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Stable vs. Unstable Estimation. In order to analyze the impact of the sta-
bilization mechanism, shapes learned from human-demonstrated movements are
applied. The used data is composed of three S-like trajectories with 250 samples
each and the end-point located at the origin (see Fig. 7.5). The ELM is initialized
with R = 100 neurons in the hidden-layer. The slopes ai are initialized with ones,
biases bi and components of W inp are initialized randomly drawn from the uniform
distribution on [−1, 1]. The regularization parameter is α = 10−5. The constraint
samples are drawn from the uniform distribution on the set Ω = [−1, 2.5]×[−1, 2.5],
which covers the relevant region of the task space. Lyapunov functions LP (x) with
elliptic form, where P is obtained according to Eq. (7.10) are considered. Fig. 7.5
(left) illustrates an example of unstable estimation of a non-linear dynamical sys-
tem by an ELM trained without the usage of explicit stability constraints. In the
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Fig. 7.5: The impact of the incorporation of asymptotic stability into the learning.
Visualized dynamics of a network trained without stability constraints (left) and
the same network trained with constraints for stabilization (right).

areas close to the demonstrations, the trajectories converge to a spiral attractor
close to the target. In other regions of the space, they either converge to spurious
attractors or diverge. In contrast, Fig. 7.5 (right) shows the same network setup
but trained with the stabilization method. The generated trajectories converge to
the target, because the learning process enforces asymptotic stability of the fixed
point attractor in x∗. This ensures that the target is reached when starting from
any point in the workspace. In the following, an evaluation of the new stability
mechanism is shown, using two performance measures. The first measure is the
mean square error Etr = 1

Ntr

∑
k ‖v(k)− v̂(x(k))‖2 evaluated on the training data,

which quantifies the ability to approximate the training data. The second mea-
sure quantifies the stability of the dynamical system. For this measure, Ns = 100
starting points uniformly drawn from [−1, 2.5] × [−1, 2.5] are chosen. The start-
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ing points are used to perform movements with Nmax = 1000 steps with step size
∆t = 0.1; the resulting states x(Nmax) are recorded. If the end-point x(Nmax) of
the reproduced trajectory is in the vicinity of the desired attractor x∗ = 0, the
end-point is recognized as converged (i.e. ‖x(Nmax) − x∗‖ < δ = 1), otherwise as
diverged. The distance dist = ‖x(Nmax) − x∗‖ from the converged points to the
attractor and the number of converged points S are stored. All results are averaged
over Nni = 10 different network initializations. In Tab. 7.1 the results of the ex-
periments for networks with and without stabilization for different regularization
parameters α are shown. The precision is given in the distance (dist) of the end-

Without constraints With constraints

lnα dist S/Ns Etr dist S/Ns Etr

−8 .431±.067 .686±.053 .208±.0006 .049±.014 1 .263±.0036
−6 .431±.018 .813±.031 .218±.0008 .043±.016 1 .283±.0043
−4 .401±.013 .917±.053 .235±.0027 .055±.014 1 .313±.0029
−2 .382±.010 .965±.044 .304±.0028 .020±.012 1 .377±.0026

Tab. 7.1: Network learning with and without constraints compared for different
regularization parameters α.

point to the desired attractor after convergence. The ratio S/Ns shows how many
generated movements according to the numerical integration process converged
to the desired target. Note that S/Ns = 1 holds for all constrained networks.
The results show that the stability ratio increases with growing regularization for
networks trained without constraints. This induces a trade-off between stability
and accuracy for the unconstrained ELM. For the explicitly stabilized ELMs, the
trade-off is resolved, because all networks converge to the target independent of
the regularization. Also the target is imprinted with a higher degree of precision
(cf. Tab. 7.1 dist).

Constraints: Sampling and Generalization. This paragraph investigates
the generalization of the discrete constraints towards a continuous region and the
effects on the stability of the estimated dynamical system. For this region, only
parts of the workspace are subject to sampling. Fig. 7.6 shows the results of the
experiment; please compare with Fig. 7.5 left and right. In this experiment, only
the region below the black stroke is subject to constraint sampling. Three regions
in this experiment are interesting: the spiral attractor in region 1, that appears
in Fig. 7.5 (left), is deleted due to the sampling of constraints. The spiral repeller
in Region 3 is still active since it is close to the demonstrations and not subject
to sampling. Region 2 shows that the stability constraint can be generalized far
beyond the border of the workspace towards regions not subject to sampling,
since no data is present in this region, thanks to the strong bias induced by the
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Fig. 7.6: Investigation of the S-shape where a network is trained with constraints
that are only sampled in the lower half of the workspace.

stability constraints. This example shows that the locality of the approach is no
disadvantage. Instead, locality adds high flexibility to the approach. This is not
possible with global constraints such as SEDS [193] or the superimposed vector
fields approach [198] introduce.

Regularization vs. Violation. This paragraph shows an investigation on each
of the twenty motion shapes separately. The results are visualized in Fig. 7.9. The
plot in the upper part of the figure shows the value for M defined in Eq. (7.7) and
Eq. (7.11) for each shape of the data set. It is revealed that the simple Lyapunov
candidate LP (x) strongly violates the training data for some of the shapes such as
the G, the S, and the J2-shape. The second plot in Fig. 7.9 shows the number of
samples drawn in the learning phase until implementation of asymptotic stability.
This plot summarizes the results for networks with different regularization param-
eters trained with LP . Two results can be deduced from this experiment. First,
there is a clear correlation between difficult shapes - in the sense of M - and the
number of applied samples: difficult shapes need more samples for implementation
of stability. Second, networks with stronger regularization need less constraints for
enforcing stability. This is advantageous, because it significantly reduces the time
needed for learning. Note, that the number of samples until implementation of sta-
bility for some shapes can be reduced significantly by increasing the regularization
parameter from α = 10−8 to α = 10−2.

Fig. 7.9 (third plot) shows the training error obtained in this experiment. It is
observable that the training error is high for shapes which also produce a high value
of violation M . This is expected because the networks are forced to implement the
Lyapunov candidate. Thus, if the Lyapunov candidate violates the training data,
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Fig. 7.7: Investigation on 20 shapes of the LASA data set. Evaluation of the
violation measure M on each shape (first), the used number of samples until im-
plementation of asymptotic stability (second), and the training errors (third).

the network dynamics will not accurately reproduce the demonstrations. It is also
revealed that the training error is decreasing for lower regularization parameters
α. These experiments show that the regularization parameter is still important to
tune, besides that the stability of the resulting estimate is mainly influenced by
the sampling scheme.

7.4.2 The Impact of Different Lyapunov Candidate

In previous sections, three different Lyapunov candidates Lq, LP , and LELM are
suggested for learning. This section, therefore, compares and discusses the result-
ing performance of the estimated dynamical systems when applying these candi-
dates for learning on the LASA data set. In contrast to the previous experimental
section, two different performance measures that are more reasonable to quantify
the goodness of the estimate are chosen. The local accuracy of the estimate is
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measured according to:

Evelo =
1

Nds

Ntraj∑
i=1

N i∑
k=1

(
r

(
1− vi(k)T v̂(xi(k))

‖vi(k)‖‖v̂(xi(k))‖+ ε

)2

+ q
(vi(k)− v̂(xi(k)))T (vi(k)− v̂(xi(k)))

‖vi(k)‖‖vi(k)‖+ ε

) 1
2

,

(7.15)

which was suggested as a local measure of the velocity field in [193] and quantifies
the discrepancy between the direction and magnitude of the estimated and the
ground-truth velocity vectors for all training data points5. The accuracy of the
reproductions is measured according to:

Etraj =
1

T ·Nds

Ntraj∑
i=1

N i∑
k=1

min
l
‖x̂i(k)− xi(l)‖ , (7.16)

where x̂i(·) is the equidistantly sampled reproduction of the trajectory xi(·) and
T denotes the mean length of the demonstrations.

The results for each shape are averaged over ten network initializations. Each
network used for estimation of the dynamical system comprises R = 100 hidden-
layer neurons, α = 10−8 as regularization parameter, and NC = 105 pool samples
for the sampling of the constraints. The networks for Lyapunov candidate learning
also comprise R = 100 neurons in the hidden-layer and α = 10−8 as regularization
parameter.

Results on Selected Shapes (A-shape and J2-shape). Two movements
from the data set are used to analyze the performance of the methods in detail:
A-shape and J-2-shape. This demonstrations are shown in Fig. 7.3 (left) and
Fig. 7.8, respectively. The experimental results are provided in Tab. 7.2. The table
contains the measure of violation M , the velocity error according to Eq. (7.15),
and the trajectory error defined in Eq. (7.16). The first tabular states the results
for the A-shape, the second tabular summarizes the experimental results for the
J2-shape, and the overall results for the LASA data set are collected in Tab. 7.2
(last tabular). Fig. 7.8 visualizes the estimation of the J-2-shape and the respective
Lyapunov candidates.

The numerical results in Tab. 7.2 show that the function used for implemen-
tation of asymptotic stability has a strong impact on the approximation ability
of the networks. The A-shape (see first tabular) was accurately learned by all
models. The reason is that the demonstrations do not violate the respective Lya-
punov candidates to a high degree which is indicated by small value of M . The
J-2-shape is one of the most difficult shapes in the LASA data set due to the

5Measure and values are (r = 0.6, q = 0.4) taken from [193] and ε = 10−6.
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A-shape #Samples M Evelo Etraj

Lq 21.5± 3.4 0.008 .106± .0006 .0081± .0003
LP 18.8± 2.1 0.000 .096± .0015 .0053± .0002
LELM 50.2± 10.6 0.000 .103± .0023 .0066± .0004

J-2-shape #Samples M Evelo Etraj

Lq 111.9± 23.5 0.198 .093± .0015 .0298± .0032
LP 215.4± 36.8 0.147 .143± .0011 .0241± .0004
LELM 77.9± 7.8 0.000 .069± .0013 .0079± .0004

LASA all #Samples M Evelo Etraj

Lq 61.2± 2.4 0.0582 .114± .0003 .0218± .0005
LP 63.2± 2.2 0.0180 .110± .0004 .0177± .0003
LELM 69.2± 4.8 0.0001 .103± .0006 .0145± .0004

Tab. 7.2: Learning results for A-shape, J-2-shape, and the entire data. The ta-
ble contains the number of samples used until implementation of the continuous
constraint, the violation of the training data through the Lyapunov Candidate
measured by M , the velocity error Evelo, and the trajectory error Etraj.

high curvature inherent to the demonstrations of this movement shape. There-
fore, the networks trained with the LELM candidates perform significantly better
than the other methods, which is expected because of the high flexibility of the
learned Lyapunov candidate. This is due to the high flexibility of the candidate
function which smoothly suites the candidate towards the data. The third tabular
in Tab. 7.2 shows the results for the whole data set. It shows that the differences
in the velocity error are marginal in comparison to the values for the trajectory
error. The networks trained with the quadratic Lyapunov candidate Lq perform
the worst because the function cannot capture the structure in the data. The
method using LELM has the lowest trajectory error values which is due to the high
flexibility of the candidate function. Thus, the experiments support the hypothe-
sis that the flexibility of the Lyapunov candidate becomes more important if the
demonstrations are of high complexity.

In addition to the experiments, Fig. 7.8 shows the estimations of the J-2-shape
and their respective Lyapunov candidates. The left column of the figure contains
the estimation result obtained for an ELM without regards to stability. The data
is accurately approximated but the target is not reached at the end of the repro-
duced trajectories. The plot also emphasizes that even reproductions starting in
the vicinity of the demonstrations are prone to divergence. The second column
illustrates the results for networks trained with respect to Lq. It is shown that
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Fig. 7.8: Estimates of the J-2-shape and respective Lyapunov candidates. The J-2-
shape approximated without explicit stabilization (first column), with Lq (second
column), LP (third column), and LELM as Lyapunov candidate (fourth column).
The LELM Lyapunov candidate leads to good generalization results.

this Lyapunov candidate introduces a very strict form of stability, without respect
to the demonstrations. The reproductions are directly converging towards the at-
tractor. This is due to the high violation of the demonstrations by Lq close to the
start of the demonstrations. Column three of Fig. 7.8 shows the results for LP .
This Lyapunov candidate is data-dependent but still too limited to capture the full
structure of the J-2 demonstrations. The fourth column of the figure illustrates
the performance of the networks trained by LELM. The Lyapunov candidate is
strongly curved to follow the demonstrations closely (first row, fourth column).
The estimate leads to very accurate reproductions with good generalization capa-
bility.

Results on the Entire Shape Set. Fig. 7.9 shows an investigation of several
measures on each of the twenty shapes separately to get an overview of the impact
of the Lyapunov candidate on the accuracy of the resulting estimate. The first plot
of the figure shows the value for M defined in Eq. (7.7) for each shape of the data
set. The quadratic and non-data dependent Lyapunov candidate function Lq is
not able to capture the structure of some shapes such as the G, the J2, the sharp-C
shape, etc. This violation can be relaxed by introduction of the matrix P for this
candidate optimized by means of Eq. (7.10). Some of the shapes are not violated
to a high degree anymore after optimization - e.g. the sharp-C shape. The LELM
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Fig. 7.9: Investigation on the LASA data set. Evaluation of the violation measure
M on each shape (first), the used number of samples until implementation of
asymptotic stability (second), and the training errors (third).

is strongly curved towards the data and thus prevents a violation of the shapes.
These results support the idea that optimized Lyapunov candidates enhance the
class of accurately learnable shapes. The second plot of Fig. 7.9 shows the number
of samples drawn in the learning phase until implementation of asymptotic stability
at x∗. There is again a clear correlation between difficult shapes - the training data
which are violated by the respective candidate function indicated by a high value
of M - and the number of applied samples, i.e. the difficult shapes need more
samples for implementation. Note, that the number of samples for some shapes is
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very high for the data independent Lyapunov candidates. Fig. 7.9 (third) shows
the velocity error obtained in this experiment. It is obvious that the training error
is high for shapes which also produce a high value of violation M . This is also the
case for Fig. 7.9 (fourth) which measures the trajectory error of the reproductions
for different candidate functions. The networks equipped with the highly flexible
LELM function perform the best among the different candidates.

Fig. 7.12 and Fig. 7.13 comprise the visualization for the results on the en-
tire LASA data set. Fig. 7.12 contains the learned Lyapunov candidate functions
LELM visualized as level sets and Fig. 7.13 shows the corresponding estimate of
the dynamics with respect to the demonstrations. Note that all networks produce
stable and accurate movements which converge to the given target point attractor
due to the combination of optimized Lyapunov candidate and constrained learn-
ing. In conclusion, it is demonstrated that data-dependent and flexible Lyapunov
candidates are of great significance for the accurate estimation of vector fields.

7.4.3 Kinesthetic Teaching of iCub

The presented Lyapunov approach is applied in a real world scenario involving the
humanoid robot iCub [199]. Such robots are typically designed to solve service
tasks in environments where a high flexibility is required. Robust adaptability by
means of learning is thus a prerequisite for such systems. The experimental setting
is illustrated in Fig. 7.10. A human tutor physically guides iCub’s right arm in the
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Fig. 7.10: Kinesthetic teaching of iCub (first three plots). The tutor moves iCub’s
right arm from the right to the left side of the small colored tower. Reproduction
of the learned trajectories in meter according to the Lyapunov candidates Lq, LP ,
and LELM (right).

sense of kinesthetic teaching using a recently established compliant force control
on the robot [202]. The tutor can thereby actively move all joints of the arm to
place the end-effector at the desired position. Beginning on the right side of the
workspace, the tutor first moves the arm around the obstacle on the table, touches
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its top, and then moves the arm towards the left side of the obstacle were the move-
ment stops. This procedure is repeated three times. The recorded demonstrations
comprise between Ntraj = 542 and Ntraj = 644 samples. The hidden-layer of the
networks estimating the dynamical system consists of R = 100 neurons and the
regression parameter is α = 10−5 in the experiment as well as for the network used
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Fig. 7.11: Reproductions of iCub’s move-
ments according to LELM subject to ran-
dom spatial perturbations.

for LELM. The networks’ weights and
biases are initialized randomly from
an uniform distribution in the inter-
val [−10, 10] due to the low ranges of
the movement. The results of the ex-
periment are visualized in Fig. 7.10
(right). The figure shows the im-
pact of the different Lyapunov candi-
dates on the estimation of the dynam-
ics. The estimation of the networks
trained by the quadratic function Lq
is not able to capture the complex
shape of the dynamics. The networks
trained with the LP function provides
a better performance. The networks
using the LELM function yields an ac-
curate estimate. Fig. 7.11 illustrates
the robustness of the learned dynamics against spatial perturbations. There-
fore, N = 75 starting points are randomly drawn from an uniform distribution
in Ω = [−0.05, 0.1] × [−0.5, 0.25] × [−0.05, 0.2]. Even the trajectories which start
far away from the demonstrations form a trajectory which is influenced by the
training data and converge to the target attractor. This observations underline
the robustness and accuracy of the proposed learning method for movement gen-
eration of humanoid robots by means of programming by demonstration.

7.5 Conclusive Remarks

This section introduces a novel learning scheme to approximate vector fields from
few demonstrations called “neurally imprinted stable vector fields”. The general-
ization of the vector fields becomes feasible due to the strong bias of the model
induced by stability assumptions. Since the dynamical systems considered have
only one asymptotically stable fixpoint attractor, the vector fields are shaped by
application of Lyapunov’s stability theory. The learning scheme principally incor-
porates linear inequality constraints in discrete points of the workspace derived
from a so-called Lyapunov candidate efficiently by the successive quadratic pro-
gramming technique introduced in Chap. 5. Despite the fact that the constraints
are only satisfied in discrete points by construction, it is shown that these con-
straints can be generalized towards a continuous region. The proposed sampling
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strategy permits to choose desired regions for the implementation of constraints
because of the locality of the approach. It is shown experimentally that this flexi-
bility can be advantageous due to the large variety of such constraints. They can
appear in several bounded regions in possibly lower dimensional subregions of the
input space, they can be defined only at certain discrete points or in continuous
regions. Several experiments demonstrated that the new learning approach is suf-
ficient to implement accurate estimates from only a few demonstrations and that
this leads to stable dynamical systems. Further experiments demonstrated the
role of regularization, the obtained errors, and the number of samples needed for
implementation of the constraint. In addition, the accuracy of the estimates were
enhanced by using a more flexible Lyapunov candidate function also learned by
an extreme learning machine which is adapted towards the data. This new Lya-
punov candidate relaxed the constraints such that more data sets can be learned
with adequate accuracy. Finally, it is demonstrated that the learning scheme can
cope with data obtained by kinesthetic teaching of the humanoid robot iCub and
it is shown that it generates smooth and accurate reproductions of the learned
demonstrations irrespective of strong perturbations.
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Fig. 7.12: Collection of learned Lyapunov candidates LELM for the LASA data
set. Demonstrations are shown in black and Lyapunov candidates as equipotential
lines.
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Fig. 7.13: Collection of the corresponding learned dynamical systems v̂ for the
entire LASA data set. Reproductions are shown in red and dynamical flow is
shown in blue.
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Chapter 8

Reliable Modeling of the
Ultrasonic Softening Effect

by Integrating Prior Knowledge

Power-semiconductor modules are used to control and switch high electrical cur-
rents and voltages. Usually, ultrasonic wire bonding is used to connect the electri-
cal terminals of such power modules. Recently, the application of copper instead
of aluminum became indispensable because of the ever-growing market of power-
ful and efficient power modules. Copper has favorable mechanical and electrical
properties but its physical behavior in the context of bonding is yet not well under-
stood. A model of the processes involved is essential and desperately desired. This
model needs to include the so-called ultrasonic softening effect. It is a key effect
within the wire bonding process primarily enabling the robust interconnection be-
tween the wire and a substrate. However, the physical modeling of the ultrasonic
softening effect is notoriously difficult because of its highly non-linear character
and the absence of a proper measurement method. In a first step, this chapter
emphasizes the importance of the modeling of the ultrasonic softening effect by
showing its impact on the wire deformation experimentally. In a second step, a
data-driven model of the ultrasonic softening effect, which is constructed from data
using the proposed ELM technique, is presented. A typical caveat of data-driven
modeling is the need for training data that cover the considered domain of pro-
cess parameters in order to achieve accurate generalization of the trained model to
new process configurations. In practice, however, the space of process parameters
can only be sampled sparsely. It is shown that the novel ELM technique enables
the integration of useful prior knowledge about the process into the data-driven
modeling process, which results in accurate generalization despite the presence of
sparse and noisy data.

The results in this chapter were obtained in collaborative manner in the BMBF
funded project InCuB (intelligent copper bonding), which aims at the development
of self-optimizing techniques to enable the reliable production of copper wire bond-
ing connections. The common ground for the applied optimization techniques is
the learned physical model of the ultrasonic softening effect for copper wire bond-
ing. This chapter is almost completely reproducing the results of the paper by

109
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Unger et al. [21], which summarizes parts of the work achieved in the InCuB
project and recalls the main aspects of modeling the ultrasonic softening effect in
a data-driven manner.

8.1 The Ultrasonic Softening Effect
with Application to Copper Wire Bonding

Ultrasonic wire bonding is an established technology used since decades to connect
the electrodes of electrical devices. Because of its flexibility, reliability and cost-
efficiency it is widely used for connecting the individual electrodes of microelec-
tronic chips as well as high power semiconductor modules like insulated-gate bipo-
lar transistors (IGBT). Aluminum wire is preferably used in heavy wire applica-
tions because of its robust bonding behavior and low cost. Some copper wire bonds

Fig. 8.1: The copper bonding process on a copper sub-
strate. Copyright: Hesse Mechatronics GmbH.

on a copper substrate are
shown in Fig. 8.11. In
recent years, the growing
market of powerful and ef-
ficient power modules re-
quires a material with bet-
ter mechanical and elec-
trical properties than alu-
minium. Therefore, cop-
per wire as bonding mate-
rial is highly desired. The
superior material proper-
ties of copper compared
to aluminium include sig-
nificantly higher electri-
cal and thermal conduc-
tivity, mechanical stabil-
ity as well as higher inter-
connection reliability of copper bonds. Therefore, smaller chips can be operated
at higher temperature but with identical switching power leading to reduced costs
and higher yield. For these reasons, a technology change from aluminium to cop-
per is indispensable. Typical application fields of products equipped with copper
wire bonds are, for instance, the strongly growing markets of renewable energy
and electric vehicles [203].

Copper wire bonding is currently in the state of being established as an al-
ternative interconnection method, mainly in thin wire applications, but recently
also in heavy wire bonding of power electronics. Because of the different material
properties, the bonding parameters in copper wire bonding differ significantly from

1Copyright on picture: Hesse Mechatronics GmbH, www.hesse-mechatronics.de
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those of aluminium wire bonding. Ultrasonic power and the normal bonding forces
are about 2 to 3 times higher. The copper wire bonding process also reacts more
sensitive to parameter changes. This makes manufacturing of reliable copper bond
connections challenging.

In order to increase the reliability of the copper bonds, an adaptation of the
bonding parameters at runtime is desired. For this purpose, the german BMBF2

funded the project InCuB3, which develops self-optimizing and cognitive learning
techniques to enable the reliable production of copper bonding connections un-
der varying conditions. The bonding machine will be provided with the abilities
to react to different external influences. Such influences can be the temperature,
the material of the substrate, and process parameters (e.g. the normal force and
its duration). Optimal compromises between several objectives need to be com-
puted before operation. Therefore, multi-objective optimization techniques are
employed [204] and a model of the entire bonding process is required.

Since the interaction of the these parameters is largely unknown and an ac-
curate physical model is not yet available, learning is an reasonable means to
construct a model of the copper bonding process. Thus, data and specific prior
knowledge about the physics of copper bonding are provided to construct and
analyze the performance of the model. The data-driven modeling extracts reg-
ularities of the bonding process from exemplary bonds produced with different
process parameters. The trained model can then generalize these regularities to
unseen process parameters. The only issue is the generalization from only few
training examples. Accurate generalization of the data-driven model is again only
achieved because specific prior knowledge about the bonding process is provided
for learning. The data-driven development of this model through learning is done
in the context of the self-optimization project4 also part of the leading-edge cluster
“it’s OWL”.

Several contributions investigating the bonding process with aluminum are
already published. Some of these works deal with the quality control and are
used in commercial products: a method called process integrated quality control
(PiQC) is introduced in [205, 206, 207, 208]. The construction of reliable copper
bonds is a persistently challenging task and not yet understood satisfactory [209].
One reason is that the prior knowledge gained from the aluminum bonding process
[210] is not necessarily negotiable - a separate accurate model of copper bonding is
desired. The modeling of the ultrasonic softening effect by means of finite element
methods [211, 212] is, in principle, possible but the construction of a general model
remains difficult and computationally expensive. Also, many of these models fit
important parameters through data in a calibration step [213].

2Bundesministerium für Bildung und Foschung, Federal Republic of Germany.
3InCuB is a project within the “Intelligent Technical Systems” leading-edge cluster.
4Information about the self-optimization project can be found on its-owl.de
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8.2 Copper Wire Deformation by Ultrasonic Softening

Ultrasonic wire bonding is a cold friction welding process. The wire is placed under
the tip of a slim rod-like bonding tool (see Fig. 8.1). It is pressed onto the electrode
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Fig. 8.2: Deformation experiment showing the ultrasonic softening effect (left).
Schematic illustration of the copper wire bonding process by means of ultrasonic
softening (right).

surface with a well-selected normal force causing an initial cold straining at the
contact area. A so-called ultrasonic transducer generates mechanical vibrations
in the ultrasonic range, e.g. 60 kHz, which are transferred by the bonding tool
into the welding area. The deformation of the wire and the adhesion between wire
and substrate steadily progress during this welding process. Finally a pure inter-
metallic compound between wire and electrode is formed at temperatures well
below the melting point of the bonding partners. After the first bond the machine
forms the so-called loop and then the second bond connection is established. After
cutting the wire, the tool is lifted and the interconnection process is finished. The
bonding process is schematically illustrated in Fig. 8.2 (right).

It is essential to consider all effects to build a model of the bonding process.
These effects are: the static elasto-plastic deformation, the ultrasonic softening
effect, and the proceeding adhesion between wire and substrate. This work par-
ticularly focuses on the ultrasonic softening effect. This effect was first presented
in [214]. It describes the macroscopic softening of the material under applied ul-
trasound. The yield strength is lowered such that the material can be manipulated
at lower mechanical stresses and forces. The ultrasonic softening has a significant
influence on the bonding process, because it enables the deformation and growth
of the bonding area with reasonable normal forces.

Deformation tests with the bonding machine are conducted to investigate the
ultrasonic softening effect. The ultrasound is turned on and off during each ex-
periment to analyze the effect of the high frequency vibrations. In each experi-
ment, the normal force acting on the wire is increased linearly from 100 cN up to
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2800 cN within 1200 ms. The bonding machine and in particular the bonding tool
is not perfectly rigid, which makes it necessary to measure its elastic deformation.
Therefore, the bonding tool is placed on a hard substrate, onto which it exerts
the nominal force. The measured elastic deformation of the bonding machine is
then subtracted from the total deformation in the regular bonding experiments.
Ultrasonic softening and hardening effects are clearly visible in the observed wire
deformations shown in Fig. 8.2 (left). Line 1, depicted in the figure, is a typical
force-strain curve for a radially deformed wire without ultrasound. In this exper-
iment, the static normal force only induces a deformation of approximately 13%.
In experiments corresponding to line 2, 3, and 4, the ultrasound is applied between
1400 cN and 2100 cN with an altering amplitude from 10 V to 30 V. The wire soft-
ens considerably during the application of ultrasound. The amount of deformation
increases with higher ultrasound voltages. After shutdown of the ultrasound, the
curves show a hardening effect since the gradient of the force-deformation curves
are increased compared to line 1 (see Fig. 8.2, left). As expected, the total defor-
mation after applying ultrasound increases with the ultrasonic amplitude.

Ultrasonic softening is a highly non-linear effect acting on a microscopic scale.
The InCuB research project requires an accurate model that can be computed
efficiently. This thesis therefore proposes to use the ELM technique with additional
prior knowledge about the physical effect, which leads to accurate models and are
efficient to compute at the same time.

8.3 Data-Driven Modeling with Integration of
Prior Knowledge

This section presents a data-driven approach to model the ultrasonic softening
effect. First, the model’s input-output structure is introduced. Then, the ELM
modeling technique including the integration of prior knowledge about the bonding
process into the learning is explained.

8.3.1 The Copper Wire Bonding Model

A schematic view of the ideal copper wire bonding process as considered in this
setup, i.e. without external perturbations, is shown in Fig. 8.3. The input of the
model is the point in time t of the process, the applied ultrasonic voltage US(t) and
the normal force FN (t) between bonding tool and substrate. The output of the
model is the wire deformation D̂(t) at time t. The ultrasonic voltage and normal
force are approximately constant during the bonding experiments considered in
this experimental setup. Therefore, the model can be understood as a function
of time parameterized by the bonding parameters, i.e. ultrasonic voltage and
normal force. This leads to a two-dimensional encoding of the bonding process.
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Fig. 8.3: Schematic view of the model of the
ultrasonic softening effect.

The model needs to quantify the
impact of different process pa-
rameter configurations which are
not contained in the data set
for learning. Besides this gen-
eralization of the training data
to unseen process configurations,
an efficient evaluation of the
model is an additional require-
ment. Training can be accom-
plished offline and is decoupled from the evaluation phase.

8.3.2 Data-Driven Modeling with Extreme Learning Machines

To model the ultrasonic softening effect in a data-driven manner, again, the ex-
treme learning machine (ELM) technique is applied. The input of the ELM is
denoted by x = (t|US |FN ) ∈ RI=3, the hidden-layer by h ∈ RR, and the output is
denoted by D̂ ∈ RO=1. For input x, the output is computed by

D̂(x) =

R∑
j=1

W out
j f(

I∑
k=1

W inp
jk xk + bj) , (8.1)

where D̂(x) encodes the wire deformation during the copper wire bonding process
for input configuration x. Let D = (X,D) = (xk, Dk) with k = 1 . . . Ntr be
the data set for training, where Ntr is the number of training samples, X is the
collection of input configurations, and D is the matrix of target wire deformations.
Inputs and outputs are normalized to the range [-1, 1] according to the distribution
of the training data.

8.3.3 Learning with Prior Knowledge

Learning a well applicable model of the ultrasonic softening effect from few train-
ing samples is particularly challenging because only sparse information about the
underlying mapping is given. It might be possible that larger parts of the parame-
ter space controlling the bonding process remain uncovered with data. Therefore,
there is considerable need for generalization towards regions subject to sparse
sampling. Fortunately, prior knowledge about physical properties of the bonding
process is available:

(1) The wire deformation is monotonically increasing in time.

(2) The wire deformation is monotonically increasing w.r.t. the ultrasonic volt-
age because higher voltages lead to a stronger wire deformation.
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(3) The wire deformation is monotonically increasing w.r.t. the normal force of
the tool. The normal force puts pressure on the wire and thus leads to a
stronger wire deformation.

It is possible to rephrase this specific prior knowledge in mathematical terms using
the model input variable u = (t|US |FN ) ∈ R3 to formulate point-wise constraints:

(1) ∂1D̂(u) =
∂

∂t
D̂(u) > 0 : ∀t ∈ Ω ,

(2) ∂2D̂(u) =
∂

∂US
D̂(u) > 0 : ∀US ∈ Ω ,

(3) ∂3D̂(u) =
∂

∂FN
D̂(u) > 0 : ∀FN ∈ Ω ,

(8.2)

where Ω is a predefined region in the model’s input space.
The read-out weights are then trained by solving the proposed successively

applied quadratic program optimizing W out subject to a set of collected point
constraints Ui = {u1

i , . . . ,u
Nu
i } in order to implement the conditions (1), (2), and

(3):

W out = arg min
W

(‖W ·H(X)−D‖2 + α‖W‖2)

subject to: ∂iD̂(Ui) > 0 : i = 1, . . . , 3 ,
(8.3)

where the matrices H(X) and T again collect the hidden states and targets for
inputs X, respectively, and α is a regularization parameter. Solving the quadratic
program guarantees satisfaction of the given constraints with respect to the discrete
inputs Ui, which is already useful in many applications. The generalization of
the discrete constraints Ui towards the continuous region Ω is again achieved by
applying the sampling strategy proposed in Chap. 5.

8.4 Experimental Results

This section explains the experimental setup that was applied to acquire data
from a bonding machine producing bond connections with copper wire. The gen-
eralization ability of the proposed ELM technique is analyzed systematically and
compared to the classical ELM technique.

8.4.1 Experimental Setup

A Hesse Mechatronics Bondjet BJ939 bonding machine equipped with a standard
wire bondhead is used for data acquisition. This bondhead is designed for bonding
with copper wires in the range of 100µm to 500µm diameter. Tab. 8.1 lists the
specifications of the bondhead, wire and substrate which are used for all experi-
ments. In order to obtain training data for the data-driven modeling, a 5 × 5 -
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Specification Value

Bondhead type RBK01 Back-cut
Transducer Type 60 kHz

Digital Generator Power Output 100 W
Wire Size 500µm (Cu)
Substrate DCB-thickness: 0.38 mm ceramic, 0.3 mm Cu

Tab. 8.1: Specification of the bondhead, wire and substrate.

grid covering the region of interest of the bonding parameters (voltage US (t) and
normal force FN (t)) is created. The minimum and maximum ultrasonic voltage
as well as the minimum and maximum normal forces are limited by the process.
The ultrasonic voltage US(t) is varied from 44 V to 52 V and the normal force
FN (t) is varied from 3000 cN to 3800 cN both in 5 equally distant steps. For
each grid point, ten individual bond connections are produced. The applied ultra-
sonic voltage US(t) and normal force FN (t) are approximately constant throughout
bonding. The resulting wire deformation trajectories D̂ (t) for each process config-
uration are recorded, downsampled and averaged. The measured wire deformation
is the height reduction during the time interval between touchdown of the tool on
the wire and the end of the ultrasonic vibrations.

The experiments are conducted in random order to avoid time-dependent devi-
ations in the data set due to environmental influences. To be able to differentiate
between the first and second bond of each interconnection, the type of bond was
logged as well. For both of these types, individual models are trained.

8.4.2 Learning Setup

ELMs with (CELM) and without (ELM) the application of the continuous con-
straints derived from prior knowledge about the bonding process are trained on
the recorded data. To analyze the generalization ability of the data-driven mod-
els, a leave-one-out cross-validation is conducted. Training is repeated such that
each of the 25 sampled process configurations is once left out from the training
set and serves as test scenario. Additionally, the impact of the ELM parameters
on the generalization performance is evaluated by changing the hidden-layer size
R ∈ [30, 50, 100] and the regularization parameter α ∈ [10−4, 10−6, 10−8]. The
model performance is evaluated on the training and test set by computing the er-
ror between estimated and recorded wire deformation averaged over all time steps.
Results are averaged over 10 independent ELM initializations.
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Fig. 8.4: Cross-validation errors for training and test sets of ELMs without (ELM)
and with (CELM) constraints.

8.4.3 Results

The cross-validation results for ELM networks equipped with and without prior
knowledge are shown in Fig. 8.4. The best performing network among the net-
works without prior knowledge has a hidden-layer with R = 50 neurons and a
regularization parameter of α = 10−6. ELMs with R = 100 hidden neurons and
a regularization parameter of α = 10−8 show a typical behavior when learning
from few data: they achieve a low training error around Etr = 0.002 but have high
corresponding test errors of about Ete = 0.016. This big gap between training and
test errors indicates strong overfitting. Applying the learning with constraints,
the same networks have a slightly increased training error around Etr = 0.003,
but the test error is significantly decreased towards Ete = 0.0045. Note that the
generalization capability is increased by application of prior knowledge irrespective
of the network parameters in this scenario. This demonstrates that the applica-
tion of suitable constraints alleviates the problem of overfitting when training data
is sparse and that the integration of prior knowledge into the learning facilitates
reliable and robust generalization.

Fig. 8.5 shows the results of the data-driven modeling with and without con-
straints in more detail. Each cell of the panel corresponds to the process param-
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Fig. 8.5: The cross-validation results of the copper bonding experiment visualized
for a ELM model without and with the application of constraints (R = 100 and
α = 10−8). The recorded data is depicted in gray and the generalization of the
respective parameter configuration is depicted by dashed (ELM) or solid lines
(CELM). The constrained learning result in a good generalization performance
within the standard deviation of the recorded wire deformations.

eters of the bonding machine indicated by the surrounding axes. In each cell, the
recorded wire deformation over time for these bonding parameters is shown by a
solid line with standard deviation computed from the ten repeated bonding exper-
iments (gray areas). The generalization performance of models trained with and
without prior knowledge are plotted by solid bold and dashed lines, respectively.
Due to the high degree of non-linearity, a complex model is required in order to
capture the structure of the data. However, a high model complexity, i.e. ELMs
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with large hidden-layers and small regularization constants, are prone to overfit-
ting and poor generalization when trained on sparse and noisy data. In particular,
the parameter configurations at the corner and the edge of the matrix are difficult
to generalize (see the corners of Fig. 8.5). This is reasonable since the models
need to extrapolate the training examples to these process configurations. Thus,
the data-driven modeling without prior knowledge needs a careful fine-tuning of
its regularization parameter or network size. On the contrary, Fig. 8.5 demon-
strates that the integration of prior knowledge about the underlying process into
the learning by means of linear inequality constraints mitigates the issue of sparse
data and results in a significantly increased generalization performance.

8.5 Conclusive Remarks

This chapter introduces the InCuB project which aims at the optimization of the
copper wire bonding process. The ultimate goal of this research is the reliable
production of copper wire bond connections under varying conditions for the pro-
duction of reliable power modules. The basis for the optimization is a data-driven
model because no analytic model is available. For the in-process adaptation of
the bonding parameters, a model-based optimization together with self-optimizing
techniques will be applied to achieve this goal in future work. For this purpose,
a validated physical model of the process, which can be computed efficiently, is
mandatory. Although ultrasonic wire bonding is widely used and the ultrasonic
softening effect has been investigated in previous studies, there is still no model
of the bonding process or the ultrasonic softening available which fulfills these
requirements.

This chapter shows that the data-driven ELM model of the ultrasonic softening
for copper wires for the first time which is accurate and efficient to compute. The
issue of poor generalization from sparse data is addressed by integrating prior
knowledge about the ultrasonic softening effect into the learning which then yields
to accurate generalization and reduced overfitting. Supplementing data-driven
modeling techniques with prior knowledge about the underlying process results
in highly reliable models and is a promising methodology for a broader range of
applications in the modeling domain of complex physical processes.
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Chapter 9

Conclusion

The development and application of well-performing machine learning algorithms
is an important next step towards the competitive industries of tomorrow. How-
ever, a good performance is not the only requirement for machine learning algo-
rithms that are applied in such domains. It is at the same time strongly desired
that they satisfy certain reliability requirements, while sustaining the universal ap-
proximation capability and advantages of data-driven modeling methods. This is
particularly difficult because, in real applications, data are typically noisy, outliers
occur, and there is always a risk of overfitting corrupted data. In addition, princi-
pally, data sampling is very expensive and thus only few samples can be provided
in a conceivably high-dimensional input space.

The extreme learning machine (ELM) is a recently developed and potentially
promising algorithm for the application in challenging engineering tasks. It mainly
attracts researchers because of its structural simplicity and the efficient learning
procedure. However, the black-box character of this technique appears as one of the
major disadvantageous. This thesis therefore proposes a novel learning approach
based on the concept of ELMs that focuses on the reliability of the learning.

The term “reliability” is referred to three actual requirements that are inves-
tigated in rigorous detail: first, the robustness of the learning results to different
initializations of the input-output mapping which is especially important for ran-
dom projections. Second, the consideration of input drifts which usually occur in
long-term scenarios, and, third, the incorporation of prior knowledge about the
task which tackles the undesired black-box character of ELMs.

At first, batch intrinsic plasticity (BIP) is introduced in Chap. 3, which is the
“batch” version of intrinsic plasticity rule by Triesch. The method is capable of
learning requested output distributions such as the exponential distribution and
leads to the optimization of the information transmission through the hidden-layer
neurons by entropy maximization. It is demonstrated that the generalization ca-
pability of the ELM networks used in several different robotic setups is enhanced.
A successful application of BIP for ELMs is not surprising, since IP was already
analyzed for other neural network techniques [11]. In conclusion, it is demon-
strated that BIP reduces the dependence of the network’s performance on their
initialization in a computationally efficient manner.

In Chap. 4, IP learning is also applied for unsupervised compensation of input
drifts. It is of great advantage that the input data does not need to be analyzed,
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which offers a different and novel approach without application of continuous error
feedback. It is demonstrated that the proposed modification of the IP rule and the
usage of the natural gradient provides learning dynamics that are well suited for the
online compensation of input drifts in a robotic scenario with the humanoid robot
iCub. These chapters (Chap. 3 and Chap. 4) show that IP learning as unsupervised
learning scheme is an interconnected means to handle different important aspects
of reliability for ELM learning.

It is essential that the black-box character of random projection methods is
tackled in tasks which crucially require a save application. The incorporation of
prior knowledge about the specific tasks seems encouraging, because it cannot be
expected that the learner automatically fulfills this prior knowledge by solely ap-
plying the data set for learning. In this thesis, prior knowledge is represented by
continuous constraints in a previously defined workspace. The associated algo-
rithms and experiments are discussed in Chap. 5. However, the actual incorpora-
tion is not trivial because the ELM paradigm possesses the universal approxima-
tion capability. It is nevertheless shown that large classes of prior knowledge can
be formulated as continuous constraints on the read-out weights. Besides simple
cases of prior knowledge such as partial monotonicity, convexity, or bounds on
the output, also complex types are expressible such as state space stability of the
to-be-approximated dynamics for the Puma560 robot and Lyapunov stability for
movement generation for the humanoid robot iCub. Some ”rules of thumb“ are
also derived from the experiments. First, the impact of prior knowledge is higher
if the data set is noisy and/or sparse. This fact was used through-out entire thesis.
Second, the strength of the Tikhonov regularization is directly linked to the con-
straint incorporation. Hence, the regularization parameter appears as an control
variable to handle the curse of dimensionality. In summary, it is shown that this
novel approach provides all the tools to combine the full representational power
of the ELM with guarantees on the performance of the learned function, because
the form of the ELM is particularly well suited for the incorporation of continuous
constraints.

Finally, it is demonstrated that the proposed approach leads to excellent results
in three different real world scenarios emphasizing its generality and relevance. The
first example shows experimentally that the proposed approach is able to accel-
erate the control of the bionic handling assistant (BHA) significantly by learning
the physical relation between pressure and expansion of a chamber. Learning is
particularly hard since only few and very noisy data samples can be provided due
to the slow convergence of the BHA towards the mechanical equilibrium for a
certain pressure value. This issue was resolved by integration of physical prior
knowledge about the robot into the ELM approach, which lead to a robust model
for the control of the BHA. The proposed approach is also compared to other mod-
els implementing prior knowledge. However, these models only guarantee a single
specific constraint in the entire state space and thus have less degrees of freedom
resulting in a decreasing generalization ability.
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Chap. 7 comprises experiments that show the proposed approach in the field of
computational imitation learning and movement generation from few demonstra-
tions in robotics. Stability in terms of Lyapunov’s theory appears as a indispens-
able property for dynamical systems providing robots with the abilities to perform
complex movements robustly. The proposed approach is thus applied to enforce
stability by means of constraint sampling from a predefined Lyapunov candidate
function. In fact, most of the state of the art approaches for estimation of dynami-
cal systems only deal with simple and data-independent Lyapunov functions which
renders the finding of a satisfactory solution to the trade-off between stability and
accuracy difficult. The significance of the learning of highly flexible Lyapunov
function candidates is thus highlighted and analyzed in a scenario where trajecto-
ries are learned and generalized from human handwriting motions. It is shown that
the flexible learned Lyapunov candidate enables the proposed approach to learn
robust movement generation from robotic data obtained by kinesthetic teaching
of the humanoid robot iCub.

Chap. 8 shows how the proposed approach is applied to construct a precise
model for the copper wire bonding process. This model is designated for the
InCuB-project which develops a self-optimization procedure leading to robust cop-
per wire bond connections. Learning in this scenario is only successful because
prior knowledge about the specific tasks is available and leads to reliable results
despite that the provided data are sparse and noisy. However, the time-correlated
form of the training data of the applications in Chap. 7 and Chap. 8 prevents
pretraining by BIP. Such tasks remain difficult for unsupervised tuning; a further
investigation is left for future research.

The real world examples provide both, highly relevant applications and addi-
tional insight on the usefulness and generality of the proposed scheme. It demon-
strates a typical case where data-driven learning is needed because no analytic
models are available. However, learning is difficult because sampling can be done
only in the real world setup and is thus expensive and potentially noisy. The
ELM provides a promising approach for such application domains, because learn-
ing for this method is efficient while good generalization can be expected. Only
the unreliable character of the original approach seems problematic. This issue is
approached in three different aspects and it is showen that the reliability of ELMs
is enhanced significantly. I expect that this treatment can open new application
domains for data driven learning, where reliability is crucial and traditionally only
analytic modeling has been possible.
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Appendix

A.1 Related References by the Author

[13] - Klaus Neumann and Jochen J. Steil. Batch Intrinsic Plasticity
for Extreme Learning Machines. Proc. Int. Conf. on Artificial Neural
Networks, vol. 6791, no. 1, pp. 339-346, 2011.
This paper introduces batch intrinsic plasticity as a method to optimize extreme
learning machines. The pretraining aims at desired output distributions of the hid-
den neurons and was inspired by intrinsic plasticity [45]. All authors contributed
to the research design. The content of this paper is related to Chap. 3. I presented
the paper at the ICANN 2011 in Helsinki, Finland

[14] - Klaus Neumann and Jochen J. Steil. Optimizing Extreme Learning
Machines via Ridge Regression and Batch Intrinsic Plasticity. Neuro-
computing (Special Issue ELM 2012), vol. 102, pp. 23-30, 2013.
This paper analyzes batch intrinsic plasticity in more detail. In particular together
with ridge regression for robotic applications. All authors contributed to the re-
search design. The content of the paper is used in Chap. 3. I presented the paper
at the ELM 2011 in Hangzhou, China.

[12] - Klaus Neumann, Christian Emmerich, and Jochen J. Steil. Regu-
larization by Intrinsic Plasticity and its Synergies with Recurrence for
Random Projection Methods. Journal of Intelligent Learning Systems
and Applications vol. 4, no. 3, pp. 230-246, 2012.
The Paper investigates the role of intrinsic plasticity as a feature regularization and
recurrence as a technique to produce a non-linear mixture of sigmoid features for
random projections. The paper was written during my PhD time but most of the
actual content were developed in my master’s thesis. Emmerich performed experi-
ments regarding the role of the recurrent weights for static reservoir computing. All
authors contributed to the research design. Parts of the paper are used in Chap. 2.

[15] - Klaus Neumann and Jochen J. Steil. Intrinsic Plasticity via Nat-
ural Gradient Descent. Proc. Europ. Symp. on Artificial Neural
Networks, pp. 555-560, 2012.
This paper introduces the natural gradient descent for intrinsic plasticity which is
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interpreted as stochastic gradient descent. All authors contributed to the research
design. This paper is related to Chap. 4. I presented the paper at ESANN 2012
in Bruges, Belgium.

[16] - Klaus Neumann, Claudius Strub, and Jochen J. Steil. Intrinsic
Plasticity via Natural Gradient Descent with Application to Drift Com-
pensation. Neurocomputing (Special Issue ESANN 2012), vol. 112, pp.
26-33, 2013.
This paper extends the natural gradient descent for intrinsic plasticity in [15] by
another modification of intrinsic plasticity and applies this novel learning rule to
compensate input drifts. Main parts of this work considering the application to
drift compensation and the working point transformation originate from the mas-
ter thesis of Claudius Strub under my supervision. All authors contributed to the
research design. This paper is the basis for Chap. 4.

[17] - Klaus Neumann, Matthias Rolf, and Jochen J. Steil. Reliable In-
tegration of Continuous Constraints into Extreme Learning Machines.
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol.
21, no. supp02, pp. 35-50, 2013.
This paper proposes the ideas to use continuous constraints as prior knowledge
and introduces an algorithm for implementation into extreme learning machines.
It is shown that this algorithm also works in a real world scenario involving the
bionic handling assistant. I developed the method to incorporate prior knowledge
and Rolf provided the data set of the BHA. All authors contributed to the research
design. Parts of the paper are used in Chap. 5 and Chap. 6. I presented the paper
at the ELM 2013 in Singapore and received a best presentation award.

[18] - Andre Lemme, Klaus Neumann, R. Felix Reinhart, and Jochen
J. Steil. Neurally Imprinted Stable Vector Fields. Proc. Europ. Symp.
on Artificial Neural Networks, pp. 327-332, 2013.
This paper introduces a neural network strategy to model dynamical systems
learned from data, e.g. in the field of imitation learning in robotics. The paper is
a joint work of the European project “AMARSi” and the leading-edge cluster “it’s
owl”. Andre Lemme and Felix Reinhart mainly developed the idea of movement
generation through a vector field representation while I developed the algorithm
based on Lyapunov’s stability theory to enforce asymptotic stability by means of
the constrained learning scheme introduced in [17]. All authors contributed to the
research design. The paper is mainly related to Chap. 7. I presented the paper at
the ESANN 2013 in Bruges, Belgium and received a best student paper award.

[19] - Klaus Neumann, Andre Lemme, and Jochen J. Steil. Neural
Learning of Stable Dynamical Systems based on Data-Driven Lyapunov
Candidates. Int. Conf. on Intelligent Robots and Systems, pp. 1216-
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1222, 2013.
The paper proposes a method to learn Lyapunov candidate functions from data
which I developed for the estimation of vector fields as in [18]. All authors con-
tributed to the research design. The content is related to Chap. 7. I presented the
paper at IROS 2013 in Tokyo, Japan.

[20] - Andre Lemme and Klaus Neumann and R. Felix Reinhart and
Jochen J. Steil. Neural Learning of Vector Fields for Encoding Stable
Dynamical Systems. Neurocomputing, In Press.
This paper investigates the results of [18] in more detail in a special issue. In
particular, the method is tested in a humanoid robot scenario involving iCub. All
authors contributed to the research design. The paper is published in the special
issue of the ESANN 2013 conference. The content is strongly related to Chap. 7.
The paper will appear soon.

[21] - Andreas Unger and Walter Sextro and Simon Althoff and Klaus
Neumann and R. Felix Reinhart and Michael Brökelmann and Daniel
Bolowski and Karsten Guth. Investigation and modeling of the ultra-
sonic softening effect for the copper wire bonding process. Int. Conf.
on Integrated Power Electronics Systems (CIPS 2014), In Press.
This conference contribution investigates the ultrasonic softening effect for copper
wire bonding and proposes an approach which models this effect with additonal
use of prior domain knowledge about the task. While Reinhart developed the
cross-validation framework, I provided the software library to enable the incorpo-
ration of prior knowlegde. The Incub project and partners1 provided the data set
for data-driven learning and investigations about the ultrasonic softening effect for
copper wire bonding. All authors contributed to the research design. The content
is related to Chap. 8. The paper will appear at the beginning of 2014 and Unger
and I will present the paper at CIPS 2014 in Nürnberg, Germany.

A.2 Proof of the Proposition in Eq. (5.14)

The separation of the output into a linear combination of the hidden states can
be used to determine the upper bound of the remainder for a single neuron for the
Taylor approximation. Partial derivatives of the hidden states are given in order
to calculate the remainder terms:

Dmhj(u) = f (M)(aj
∑
k

W inp
jk uk + bj) · aMj W inp

jm1
. . .W inp

jmM
(A.1)

1Members of the “Lehrstuhl für Mechatronik und Dynamik der Fakultät für Maschinenbau”,
the Hesse Mechatronics GmbH, and the Infineon Technologies AG.
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Since a Taylor approximation of the constraint is performed, the remainder term
is written in Lagrange form. The upper bound therefore becomes:

rem(u,u0) =
1

3!

[
(u− u0)T∇

]3∑
i

γiD
m yi(u)− c|u∈S (A.2)

=
1

3!

[
(u− u0)T∇

]3∑
i

γiD
m
∑
j

W out
ij hj(u)|u∈S (A.3)

=
1

3!

∑
i

γi
∑
j

W out
ij

[
(u− u0)T∇

]3
Dmhj(u)|u∈S (A.4)

=
1

3!

∑
i

γi
∑
j

W out
ij

[
(uj − u0

j )
T ∂

∂uj

]3

Dmhj(uj)|u∈S (A.5)

≤ 1

6

∑
i

γi
∑
j

W out
ij Mj |uj − uj |3 = rem : ∀u,u0 ∈ S , (A.6)

where uj = W inp
j u is the projection of the input onto the weight vector of the

jth hidden neuron by means of the scalar product. Eq. (A.6) holds subject to the
following maximizations and minimizations for the one-dimensional case:

Mj = max
uj∈[uj ,uj ]

[
f (M+3)(ajuj + bj) · aM+3

j W inp
jm1

. . .W inp
jmM

]
, (A.7)

uj = min
u∈S

W inp
j u , uj = max

u∈S
W inp
j u . (A.8)

The step from Eq. (A.4) to Eq. (A.5) is only possible because the Fermi-functions
are one-dimensional with respect to the respective weight vector. Furthermore,
since the effectively one-dimensional Fermi-function f is used as activation and
derivatives of this function are always analytically known polynomials in f , a cal-
culation of the neuron-specific maximum Mj in the step from Eq. (A.7) to Eq. (A.8)
is possible with very small numerical error ≈ 10−16. Note that the implementa-
tion of this algorithm can be significantly simplified by using specific geometrical
shapes for the region S, i.e. convex polytopes, which are more practicable for cal-
culation reasons. In the example described in Sect. 5.5.3, a rectangular region in
the two-dimensional input space is used. The regions for the BHA implementation
where cubic (see Chap. 6). Then both the projection (see Eq. (5.12)) of the region
onto the weight vector of a neuron becomes very simple (only the edge-point of
the rectangle needs to be projected onto the vector in order to get uj and uj) and
the calculation of the global extrema in Eq. (5.15) is simpler - standard-functions
can be used.
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M. Brökelmann, D. Bolowski, and K. Guth. Modeling the Ultrasonic Soften-
ing Effect for Robust Copper Wire Bonding. In Proc. Int. Conf. on Integrated
Power Electronics Systems, 2014. In Press.



131

[22] L.P. Wang and C.R. Wan. Comments on the Extreme Learning Machine.
IEEE Trans. on Neural Networks, 19(8):1494–1495, 2008.

[23] G.-B. Huang. Reply to Comments on the Extreme Learning Machine. IEEE
Trans. on Neural Networks, 19(8):1495–1496, 2008.

[24] G.-B. Huang, D. Wang, and Y. Lan. Extreme Learning Machine: a Survey.
Int. Journal of Machine Learning and Cybernetics, 2(2):107–122, 2011.

[25] R. Penrose. A Generalized Inverse for Matrices. In Mathematical Proc. of
the Cambridge Philosophical Society, pages 406–413, 1955.

[26] N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundararajan. A Fast
and Accurate Online Sequential Learning Algorithm for Feedforward Net-
works. IEEE Trans. on Neural Networks, 17(6):1411–1423, 2006.

[27] Q. Zhu, A. Qin, P. Suganthan, and G.-B. Huang. Evolutionary Extreme
Learning Machine. Pattern Recognition, 38(10):1759–1763, 2005.

[28] G. Feng, G.-B. Huang, Q. Lin, and R. Gay. Error Minimized Extreme Learn-
ing Mmachine with Growth of Hidden Nodes and Incremental Learning.
IEEE Trans. on Neural Networks, 20:1352–1357, 2009.

[29] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag
New York, Inc., New York, NY, USA, 1995.

[30] F. Han, H.-F. Yao, and Q.-H. Ling. An Improved Extreme Learning Machine
Based on Particle Swarm Optimization. In Proc. Int. Conf. on Intelligent
Computing, volume 6840, pages 699–704, 2012.

[31] F. Girosi, M. Jones, and T. Poggio. Regularization Theory and Neural Net-
works Architectures. Neural Computation, 7:219–269, 1995.

[32] C. M. Bishop. Training with Noise is Equivalent to Tikhonov Regularization.
Neural Computation, 7(1):108–116, 1995.

[33] W. Deng, Q. Zheng, and L. Chen. Regularized Extreme Learning Machine.
In Proc. IEEE Symp. on Computational Intelligence and Data Mining, pages
389–395, 2009.

[34] A. N. Tikhonov and V. Y. Arsenin. Solution of Incorrectly Formulated Prob-
lems and the Regularization Method. Soviet Math. Doklady, 4:1035–1038,
1963.

[35] A. N. Tikhonov. Solutions of Ill-Posed Problems. Mathematics of Computa-
tion, 32(144):1320–1322, 1978.



132

[36] B. Schrauwen, M. Wardermann, D. Verstraeten, J. J. Steil, and
D. Stroobandt. Improving Reservoirs using Intrinsic Plasticity. Neurocom-
puting, 71(7):1159–1171, 2008.

[37] G.-B. Huang, L. Chen, and C.-K. Siew. Universal Approximation using In-
cremental Constructive Feedforward Networks with Random Hidden Nodes.
IEEE Trans. on Neural Networks, 17(4):879–892, 2006.

[38] G.-B. Huang and L. Chen. Enhanced Random Search Based Incremental
Extreme Learning Machine. Neurocomputing, 71:3460–3468, 2008.

[39] Y. Miche, A. Sorjamaa, and A. Lendasse. OP-ELM: Theory, Experiments
and a Toolbox. In Proc. Int. Conf. on Artificial Neural Networks, pages
145–154, 2008.

[40] Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, and A. Lendasse.
OP-ELM: Optimally Pruned Extreme Learning Machine. IEEE Trans. on
Neural Networks, 21(1):158–162, 2010.

[41] H.-J. Rong, Y.-S. Ong, A.-H. Tan, and Z. Zhu. A Fast Pruned-Extreme
Learning Machine for Classification Problems. Neurocomputing, 72(1–
3):359–366, 2008.

[42] Y. Miche, M. van Heeswijk, P. Bas, O. Simula, and A. Lendasse. TROP-
ELM: A Double-Regularized ELM using LARS and Tikhonov Regulariza-
tion. Neurocomputing, 74(16):2413–2421, 2011.

[43] C. Emmerich, F. R. Reinhart, and J. J. Steil. Recurrence Enhances the
Spatial Encoding of Static Inputs in Reservoir Networks. In Proc. Int. Conf.
on Artificial Neural Networks, pages 148–153, 2010.

[44] F. R. Reinhart. Reservoir Computing with Output Feedback. PhD thesis,
Faculty of Technology, Bielefeld University, 2011.

[45] J. Triesch. A Gradient Rule for the Plasticity of a Neurons Intrinsic Ex-
citability. In Proc. Int. Conf. on Artificial Neural Networks, pages 65–70,
2005.

[46] J. J. Steil. Several Ways to Solve the MSO Problem. In Proc. Europ. Symp.
on Artificial Neural Networks, pages 489–494, 2007.

[47] K. A. Krycha and U. Wagner. Applications of Artificial Neural Networks in
Management Science: a Survey. Journal of Retailing and Consumer Services,
6(4):185–203, 1999.

[48] P. J. G. Lisboa. A Review of Evidence of Health Benefit from Artificial
Neural Networks in Medical Intervention. Neural Networks, 15(1):11–39,
2002.



133

[49] G. Cybenko. Approximation by Superpositions of a Sigmoidal Function.
Math. Control Signals Systems, 2:303–314, 1989.

[50] K. Hornik, M. Stinchcombe, and H. White. Multilayer Feedforward Networks
are Universal Approximators. Neural Networks, 2(5):359–366, 1989.

[51] K. Hornik. Approximation Capabilities of Multilayer Feedforward Networks.
Neural Networks, 4(2):251–257, 1991.

[52] G. E. Hinton D. E. Rumelhart and R. J. Williams. Learning Representations
by Back-Propagating Errors. Nature, 323:533–536, 1986.

[53] D. Fradkin and D. Madigan. Experiments with Random Projections for
Machine Learning. In Proc. Int. Conf. on Knowledge Discovery and Data
Mining, pages 517–522, 2003.

[54] W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitz Mappings into a
Hilbert Space. In Proc. Conf in Modern Analysis and Probability, volume 26,
pages 189–206, 1984.

[55] S. Dasgupta. Experiments with Random Projections. In Proc. Conf. on
Uncertainty in Artificial Intelligence, pages 143–151, 2000.

[56] E. Bingham and H. Mannila. Random Projection in Dimensionality Reduc-
tion: Applications to Image and Text Data. Knowledge Discovery and Data
Mining, pages 245–250, 2001.

[57] S. Kaski. Dimensionality Reduction by Random Mapping: Fast Similar-
ity Computation for Clustering. In Proc. IEEE Int. Joint Conf. on Neural
Networks, volume 1, pages 413–418, 1998.

[58] C. Hegde, M. B. Wakin, and R. G. Baraniuk. Random projections for man-
ifold learning. In Proc. Neural Information Processing Systems, 2007.

[59] X. Z. Fern and C. E. Brodley. Random Projection for High Dimensional Data
Clustering: a Cluster Ensemble Approach. In Proc. Int. Conf. on Machine
Learning, pages 186–193, 2003.

[60] Y. H. Pao and Y. Takefuji. Functional-Link Net Computing, Theory, System
Architecture, and Functionalities. IEEE Computation, 25(5):76–79, 1992.

[61] Y. H. Pao. Adaptive Pattern Recognition and Neural Networks, volume 1.
Addison-Wesley, 1989.

[62] B. Igelnik and Y. H. Pao. Stochastic Choice of Basis Functions in Adap-
tive Function Approximation and the Functional-Link Net. IEEE Trans. on
Neural Networks, 6(6):1320–1329, 1995.



134

[63] Y. H. Pao, G. H. Park, and D. J. Sobajic. Learning and Generalization
Characteristics of the Random Vector Functional-Link Net. Neurocomputing,
6(2):163–180, 1994.

[64] B. Igelnik, Y. H. Pao, S. R. LeClair, and C. Y. Shen. The ensemble approach
to neural-network learning and generalization. IEEE Trans. on Neural Net-
works, 10(1):19–30, 1999.

[65] G. H. Park and Y. H. Pao. Unconstrained Word-Based Approach for Off-
Line Script Recognition using Density-Based Random-Vector Functional-
Link Nets. Neurocomputing, 31(1–4):45–65, 2000.

[66] D. Husmeier and J. G. Taylor. Modelling Conditional Probabilities with
Committees of RVFL Networks. In Proc. Int. Conf. on Artificial Neural
Networks, pages 1053–1058, 1997.

[67] S. Dehuri and S.-B. Cho. A Comprehensive Survey on Functional-Link Neu-
ral Networks and an Adaptive PSO-BP Learning for CFLNN. Neural Com-
puting and Applications, 19(2):187–205, 2010.

[68] D. S. Broomhead and D. Lowe. Multivariable Functional Interpolation and
Adaptive Networks. Complex Systems, 2:321–355, 1988.

[69] D. Lowe. Adaptive Radial Basis Function Nonlinearities, and the Problem
of Generalisation. In Proc. Int. Conf. on Artificial Neural Networks, pages
171–175, 1989.

[70] T. Poggio and F. Girosi. A Theory of Networks for Approximation and
Learning. A.I. Memo, Massachusetts Institute of Technology, 1140, 1989.

[71] J. Moody and C. J. Darken. Fast Learning in Networks of Locally-Tuned
Processing Units. Neural Computation, 1(2):281–294, 1989.

[72] D. Wettschereck and T. Dietterich. Improving the Performance of Radial
Basis Function Networks by Learning Center Locations. In Proc. Neural
Information Processing Systems, pages 1133–1140, 1992.

[73] K.-I. Funahashi and Y. Nakamura. Approximation of dynamical systems by
continuous time recurrent neural networks. Neural Networks, 6(6):801–806,
1993.

[74] P. J. Werbos. Backpropagation through Time: what it does and how to do
it. Proc. of the IEEE, 78(10):1550–1560, 1990.

[75] R. J. Williams and D. Zipser. A Learning Algorithm for Continually Running
Fully Recurrent Neural Networks. Neural Computation, 1:270–280, 1989.



135

[76] K. Doya. Bifurcations in the Learning of Recurrent Neural Networks. Proc.
IEEE Int. Symp. on Circuits and Systems, 6:2777–2780, 1992.
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[207] Herbert Stürmann. Wire Bonding Process Control Targeting 100% Yield.
Advanced Packaging, 17(1):32–35, 2008. Hesse & Knipps GmbH, Paderborn,
Germany.

[208] K. Schrimper. Process Integrated Quality Control (PiQC) for Fully Auto-
matic Wire Bonders. EPP EUROPE Electronics Production and Test, (11),
2008. Hesse & Knipps GmbH, Paderborn, Germany.

[209] R. Rodwell and D. A. Worrall. Quality Control in Ultrasonic Wire Bonding.
Microelectronics International, 2(3):67–72, 1985.

[210] A. Siddiq and E. Ghassemieh. Thermomechanical Analyses of Ultrasonic
Welding Process using Thermal and Acoustic Softening Effects. Mechanics
of Materials, 40(12):982–1000, 2008.

[211] C. Zhang and L. Li. A Coupled Thermal-Mechanical Analysis of Ultrasonic
Bonding Mechanism. Metallurgical and Materials Transactions, 40(2):196–
207, 2009.

[212] C. Zhang. A Thermomechanical Analysis of an Ultrasonic Bonding Mecha-
nism. PhD thesis, Utah State University, USA, 2011.

[213] C. Doumanidis and Y. Gao. Mechanical Modeling of Ultrasonic Welding.
Welding Research Journal, 83:140–146, 2004.

[214] B. Langenecker, C. W. Fountain, and S. R. Colberg. Effects of ultrasound
on deformation characteristics of structural metals. Defense Technical In-
formation Center, 1965.



146




	Abstract
	Introduction
	Random Projections and Extreme Learning Machines
	Extreme Learning Machine
	Improvements of the Extreme Learning Machine
	Review of Random Projection Methods
	Summary

	Robustness to Initializations by Batch Intrinsic Plasticity
	Reliability and Robustness to Initializations
	Intrinsic Plasticity
	Batch Intrinsic Plasticity: Methodology
	BIP and Single Neuron Behavior
	Experimental Results
	Conclusive Remarks

	Robustness to Drifts by Natural Intrinsic Plasticity
	Reliability and Drift Compensation
	Intrinsic Plasticity as Stochastic Gradient Descent
	The Natural Gradient for Intrinsic Plasticity
	Working-Point Transformation for IP
	Experimental Results
	Conclusive Remarks

	Reliability via Continuous Constraints
	Reliability via Continuous Constraints
	Related Work
	Embedding Discrete Constraints into ELMs
	From Discrete to Continuous Constraints
	Experimental Results
	Conclusive Remarks

	Reliable Control of the Bionic Handling Assistant
	Controlling the Bionic Handling Assistant
	Low-Level Control of the BHA
	Learning the BHA Data Set
	Models for the BHA Data Set
	Experimental Results on the BHA Data Set
	Experimental Results for Closed Loop Application
	Conclusive Remarks

	Stable Estimation of Dynamical Systems and Reliability
	Reliable Estimation of Dynamical Systems
	Neurally-Imprinted Stable Vector Fields
	What is a good Lyapunov Candidate for Learning?
	Experimental Results
	Conclusive Remarks

	Reliable Learning of the Ultrasonic Softening Effect
	Ultrasonic Softening with Application to Copper Bonding
	Copper Wire Deformation by Ultrasonic Softening
	Data-Driven Modeling with Integration of Prior Knowledge
	Experimental Results
	Conclusive Remarks

	Conclusion
	Appendix
	Related References by the Author
	Proof of the Proposition in Eq. (5.14)

	References

