4,320 research outputs found

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    Influence of the ratio on the mechanical properties of epoxy resin composite with diapers waste as fillers for partition panel application

    Get PDF
    Materials play significant role in the domestic economy and defense with the fast growth of science and technology field. New materials are the core of fresh technologies and the three pillars of modern science and technology are materials science, power technology and data science. The prior properties of the partition panel by using recycled diapers waste depend on the origin of waste deposits and its chemical constituents. This study presents the influence of the ratio on the mechanical properties of polymer in diapers waste reinforced with binder matrix for partition panel application. The aim of this study was to investigate the influence of different ratio of diapers waste polymer reinforced epoxy-matrix with regards to mechanical properties and morphology analysis. The polymer includes polypropylene, polystyrene, polyethylene and superabsorbent polymer (SAP) were used as reinforcing material. The tensile and bending resistance for ratio of 0.4 diapers waste polymers indicated the optimum ratio for fabricating the partition panel. Samples with 0.4 ratios of diapers waste polymers have highest stiffness of elasticity reading with 76.06 MPa. A correlation between the micro structural analysis using scanning electron microscope (SEM) and the mechanical properties of the material has been discussed

    A Survey of Automated Process Planning Approaches in Machining

    Get PDF
    Global industrial trend is shifting towards next industrial revolution Industry 4.0. It is becoming increasingly important for modern manufacturing industries to develop a Computer Integrated Manufacturing (CIM) system by integrating the various operational and information processing functions in design and manufacturing. In spite of being active in research for almost four decades, it is clear that new functionalities are needed to integrate and realize a completely optimal process planning which can be fully compliant towards Smart Factory. In order to develop a CIM system, Computer Aided Process Planning (CAPP) plays a key role and therefore it has been the focus of many researchers. In order to gain insight into the current state-of-the-art of CAPP methodologies, 96 research papers have been reviewed. Subsequent sections discuss the different CAPP approaches adopted by researchers to automate different process planning tasks. This paper aims at addressing the key approaches involved and future directions towards Smart Manufacturing

    Feature technology and its applications in computer integrated manufacturing

    Get PDF
    A Thesis submitted for the degree of Doctor of Philosophy of University of LutonComputer aided design and manufacturing (CAD/CAM) has been a focal research area for the manufacturing industry. Genuine CAD/CAM integration is necessary to make products of higher quality with lower cost and shorter lead times. Although CAD and CAM have been extensively used in industry, effective CAD/CAM integration has not been implemented. The major obstacles of CAD/CAM integration are the representation of design and process knowledge and the adaptive ability of computer aided process planning (CAPP). This research is aimed to develop a feature-based CAD/CAM integration methodology. Artificial intelligent techniques such as neural networks, heuristic algorithms, genetic algorithms and fuzzy logics are used to tackle problems. The activities considered include: 1) Component design based on a number of standard feature classes with validity check. A feature classification for machining application is defined adopting ISO 10303-STEP AP224 from a multi-viewpoint of design and manufacture. 2) Search of interacting features and identification of features relationships. A heuristic algorithm has been proposed in order to resolve interacting features. The algorithm analyses the interacting entity between each feature pair, making the process simpler and more efficient. 3) Recognition of new features formed by interacting features. A novel neural network-based technique for feature recognition has been designed, which solves the problems of ambiguity and overlaps. 4) Production of a feature based model for the component. 5) Generation of a suitable process plan covering selection of machining operations, grouping of machining operations and process sequencing. A hybrid feature-based CAPP has been developed using neural network, genetic algorithm and fuzzy evaluating techniques

    Gas field scheduling

    Get PDF
    Woodside Offshore Petroleum is the operator in the development of new gas fields in Australia's North West Shelf project. Sequencing the development of new gas fields in this project is a key determinant of its return on investment. This development sequence has constraints imposed by infrastructure and contractual obligations as well as natural features. The determination of an optimal or very good solution may involve a number of techniques from operations research. The study group attempted several approaches to the problem, principal amongst them being mathematical programming and dynamic programming. A few other heuristic approaches were also considered. The mathematical programming approach was able to yield solutions to small instances of the problem. The group was able to identify several avenues for further research and work on the problem is ongoing

    Dynamic scheduling in a multi-product manufacturing system

    Get PDF
    To remain competitive in global marketplace, manufacturing companies need to improve their operational practices. One of the methods to increase competitiveness in manufacturing is by implementing proper scheduling system. This is important to enable job orders to be completed on time, minimize waiting time and maximize utilization of equipment and machineries. The dynamics of real manufacturing system are very complex in nature. Schedules developed based on deterministic algorithms are unable to effectively deal with uncertainties in demand and capacity. Significant differences can be found between planned schedules and actual schedule implementation. This study attempted to develop a scheduling system that is able to react quickly and reliably for accommodating changes in product demand and manufacturing capacity. A case study, 6 by 6 job shop scheduling problem was adapted with uncertainty elements added to the data sets. A simulation model was designed and implemented using ARENA simulation package to generate various job shop scheduling scenarios. Their performances were evaluated using scheduling rules, namely, first-in-first-out (FIFO), earliest due date (EDD), and shortest processing time (SPT). An artificial neural network (ANN) model was developed and trained using various scheduling scenarios generated by ARENA simulation. The experimental results suggest that the ANN scheduling model can provided moderately reliable prediction results for limited scenarios when predicting the number completed jobs, maximum flowtime, average machine utilization, and average length of queue. This study has provided better understanding on the effects of changes in demand and capacity on the job shop schedules. Areas for further study includes: (i) Fine tune the proposed ANN scheduling model (ii) Consider more variety of job shop environment (iii) Incorporate an expert system for interpretation of results. The theoretical framework proposed in this study can be used as a basis for further investigation

    An Integrated Intelligent CAD/CAPP Platform: Part II - Operation Sequencing Based on Genetic Algorithm

    Get PDF
    We present a platform for integrated CAD/CAPP part design based on Elementary Machining Features (EMF) and intelligent approach for setup planning and operation sequencing based on a genetic algorithm through two papers. In this paper, as Part II of this platform, CAD/CAPP integration was realized via information from the enriched EMF, as well as production rules and a genetic algorithm. This is done for the purpose of the automated machining operation sequencing. Operation sequencing was conducted by using the improved genetic algorithm (GA).The improved GA uses integer representation for operations and implements modified genetic operators, enabling the achievement of high results in a reasonable computational time. In the paper we present a comprehensive case study applied to some existing and one new industrial example, confirming a high level of usability of the proposed GA and overall platform. Experimental results show that the improved GA algorithm gives slightly better results than similar algorithms in literature. For industrial example, we use body of the hydraulics cylinder which consists of 52 EMF. After implementation of the proposed methodology, the optimal machining operation sequence was identified, as well as the total machining cost of 142.49 BAM

    Stochastic make-to-stock inventory deployment problem: an endosymbiotic psychoclonal algorithm based approach

    Get PDF
    Integrated steel manufacturers (ISMs) have no specific product, they just produce finished product from the ore. This enhances the uncertainty prevailing in the ISM regarding the nature of the finished product and significant demand by customers. At present low cost mini-mills are giving firm competition to ISMs in terms of cost, and this has compelled the ISM industry to target customers who want exotic products and faster reliable deliveries. To meet this objective, ISMs are exploring the option of satisfying part of their demand by converting strategically placed products, this helps in increasing the variability of product produced by the ISM in a short lead time. In this paper the authors have proposed a new hybrid evolutionary algorithm named endosymbiotic-psychoclonal (ESPC) to decide what and how much to stock as a semi-product in inventory. In the proposed theory, the ability of previously proposed psychoclonal algorithms to exploit the search space has been increased by making antibodies and antigen more co-operative interacting species. The efficacy of the proposed algorithm has been tested on randomly generated datasets and the results compared with other evolutionary algorithms such as genetic algorithms (GA) and simulated annealing (SA). The comparison of ESPC with GA and SA proves the superiority of the proposed algorithm both in terms of quality of the solution obtained and convergence time required to reach the optimal/near optimal value of the solution

    Optimal production scheduling for dairy industries

    Get PDF
    In this work, a complete two-level framework for use in food and in particular dairy industries is proposed. The specific characteristics of the dairy industry have been taken into consideration, in terms of the behavior of food sales over time and the special requirements in the production phase. At the scheduling level, an MILP (Mixed Integer Linear Programming) model of the system was developed, using a continuous representation of time

    An ESPC algorithm based approach to solve inventory deployment problem

    Get PDF
    Global competitiveness has enforced the hefty industries to become more customized. To compete in the market they are targeting the customers who want exotic products, and faster and reliable deliveries. Industries are exploring the option of satisfying a portion of their demand by converting strategically placed products, this helps in increasing the variability of product produced by them in short lead time. In this paper, authors have proposed a new hybrid evolutionary algorithm named Endosymbiotic-Psychoclonal (ESPC) algorithm to determine the amount and type of product to stock as a semi product in inventory. In the proposed work the ability of previously proposed Psychoclonal algorithm to exploit the search space has been increased by making antibodies and antigen more cooperative interacting species. The efficacy of the proposed algorithm has been tested on randomly generated datasets and the results obtained, are compared with other evolutionary algorithms such as Genetic Algorithm (GA) and Simulated Annealing (SA). The comparison of ESPC with GA and SA proves the superiority of the proposed algorithm both in terms of quality of the solution obtained, and convergence time required to reach the optimal /near optimal value of the solution
    corecore