9,265 research outputs found

    Environmental Forensic Chemistry and Sound Science in the Courtroom

    Get PDF

    Cyber security investigation for Raspberry Pi devices

    Get PDF
    Big Data on Cloud application is growing rapidly. When the cloud is attacked, the investigation relies on digital forensics evidence. This paper proposed the data collection via Raspberry Pi devices, in a healthcare situation. The significance of this work is that could be expanded into a digital device array that takes big data security issues into account. There are many potential impacts in health area. The field of Digital Forensics Science has been tagged as a reactive science by some who believe research and study in the field often arise as a result of the need to respond to event which brought about the needs for investigation; this work was carried as a proactive research that will add knowledge to the field of Digital Forensic Science. The Raspberry Pi is a cost-effective, pocket sized computer that has gained global recognition since its development in 2008; with the wide spread usage of the device for different computing purposes. Raspberry Pi can potentially be a cyber security device, which can relate with forensics investigation in the near future. This work has used a systematic approach to study the structure and operation of the device and has established security issues that the widespread usage of the device can pose, such as health or smart city. Furthermore, its evidential information applied in security will be useful in the event that the device becomes a subject of digital forensic investigation in the foreseeable future. In healthcare system, PII (personal identifiable information) is a very important issue. When Raspberry Pi plays a processor role, its security is vital; consequently, digital forensics investigation on the Raspberry Pies becomes necessary

    Analysis of adversarial attacks against CNN-based image forgery detectors

    Full text link
    With the ubiquitous diffusion of social networks, images are becoming a dominant and powerful communication channel. Not surprisingly, they are also increasingly subject to manipulations aimed at distorting information and spreading fake news. In recent years, the scientific community has devoted major efforts to contrast this menace, and many image forgery detectors have been proposed. Currently, due to the success of deep learning in many multimedia processing tasks, there is high interest towards CNN-based detectors, and early results are already very promising. Recent studies in computer vision, however, have shown CNNs to be highly vulnerable to adversarial attacks, small perturbations of the input data which drive the network towards erroneous classification. In this paper we analyze the vulnerability of CNN-based image forensics methods to adversarial attacks, considering several detectors and several types of attack, and testing performance on a wide range of common manipulations, both easily and hardly detectable

    Bits, Bytes, and Constitutional Rights: Navigating Digital Data and the Fourth Amendment

    Get PDF

    Privacy in the Genomic Era

    Get PDF
    Genome sequencing technology has advanced at a rapid pace and it is now possible to generate highly-detailed genotypes inexpensively. The collection and analysis of such data has the potential to support various applications, including personalized medical services. While the benefits of the genomics revolution are trumpeted by the biomedical community, the increased availability of such data has major implications for personal privacy; notably because the genome has certain essential features, which include (but are not limited to) (i) an association with traits and certain diseases, (ii) identification capability (e.g., forensics), and (iii) revelation of family relationships. Moreover, direct-to-consumer DNA testing increases the likelihood that genome data will be made available in less regulated environments, such as the Internet and for-profit companies. The problem of genome data privacy thus resides at the crossroads of computer science, medicine, and public policy. While the computer scientists have addressed data privacy for various data types, there has been less attention dedicated to genomic data. Thus, the goal of this paper is to provide a systematization of knowledge for the computer science community. In doing so, we address some of the (sometimes erroneous) beliefs of this field and we report on a survey we conducted about genome data privacy with biomedical specialists. Then, after characterizing the genome privacy problem, we review the state-of-the-art regarding privacy attacks on genomic data and strategies for mitigating such attacks, as well as contextualizing these attacks from the perspective of medicine and public policy. This paper concludes with an enumeration of the challenges for genome data privacy and presents a framework to systematize the analysis of threats and the design of countermeasures as the field moves forward

    Electronic Forms-Based Computing for Evidentiary Analysis

    Get PDF
    The paperwork associated with evidentiary collection and analysis is a highly repetitive and time-consuming process which often involves duplication of work and can frequently result in documentary errors. Electronic entry of evidencerelated information can facilitate greater accuracy and less time spent on data entry. This manuscript describes a general framework for the implementation of an electronic tablet-based system for evidentiary processing. This framework is then utilized in the design and implementation of an electronic tablet-based evidentiary input prototype system developed for use by forensic laboratories which serves as a verification of the proposed framework. The manuscript concludes with a discussion of implications and recommendations for the implementation and use of tablet-based computing for evidence analysis

    Florida marine biotechnology: research, development and training capabilities to advance science and commerce

    Get PDF
    The level of activity and interest in “marine biotechnology” among Florida university faculty and allied laboratory scientists is reported in this document. The information will be used to (1) promote networking and collaboration in research and education, (2) inform industry of possible academic partners, (3) identify contacts interested in potential new sources of funding, and (4) assist development of funding for a statewide marine biotechnology research, training and development program. This document is the first of its kind. Institutions of higher learning were given the opportunity to contribute both an overview of campus capabilities and individual faculty Expressions of Scientific Interest. They are listed in the table of contents. (104pp.

    Investigating the factors that influence digital forensic readiness in a South African organisation

    Get PDF
    Includes bibliographical references.Computer crimes affect the bottom line of organisations across the globe. The ability of criminals to exploit organisational systems and avoid prosecution is a concern for most organisations. This is due to the increased use of information and communication technology (ICT) by individuals and organisations. The rapid growth of ICT has affected our communication and information exchange. These advances have not only influenced the way we conduct our daily activities, but has also led to new opportunities, risks and challenges for technical and legal structures. Unfortunately, some individuals and groups have decided to use these ICT advances in order to engage in criminal activities, such as cybercrime. The increase of cyber-related crimes puts a lot of pressure on law enforcement agencies and organisations across the globe to produce credible digital forensic evidence
    • …
    corecore